
UC Berkeley
UC Berkeley Previously Published Works

Title
Semantic Adversarial Deep Learning

Permalink
https://escholarship.org/uc/item/8xp911g3

Journal
IEEE Design and Test, 37(2)

ISSN
2168-2356

ISBN
978-3-319-96144-6

Authors
Seshia, Sanjit A
Jha, Somesh
Dreossi, Tommaso

Publication Date
2020-04-01

DOI
10.1109/mdat.2020.2968274

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xp911g3
https://escholarship.org
http://www.cdlib.org/

8 2168-2356/20©2020 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Keynote

Editor’s note:
Adversarial examples have emerged as a key threat for machine-learning-
based systems, especially the ones that employ deep neural networks.
Unlike a large body of research in this area, this Keynote article accounts
for the semantic, context, and specifications of the complete system with
machine learning components in resource-constrained environments.

—Muhammad Shafique, Technische Universität Wien

 Machine learning (Ml) algorithms, fueled
by massive amounts of data, are increasingly being
utilized in several domains, including healthcare,
finance, and transportation. Models produced by
ML algorithms, especially deep neural networks
(DNNs), are being deployed in domains where trust-
worthiness is a big concern, such as automotive
systems [1], finance [2], healthcare [3], and cyber
security [4]. Of particular concern is the use of ML
(including deep learning) in cyber–physical systems
(CPSs) [5], such as autonomous vehicles, where
the presence of an adversary can cause serious con-
sequences. However, in designing and deploying
these algorithms in critical CPSs, the presence of an
active adversary is often ignored.

Adversarial ML (AML) [6] is a field concerned
with the analysis of ML algorithms to adversarial

Semantic Adversarial
Deep Learning
Sanjit A. Seshia
University of California at Berkeley

Somesh Jha
University of Wisconsin—Madison

Digital Object Identifier 10.1109/MDAT.2020.2968274
Date of publication: 20 January 2020; date of current version:
20 April 2020.

attacks, and the use of such analysis in
making ML algorithms robust to attacks.
It is part of a broader agenda for safe
and verified ML-based systems [7].
The major focus has been on test-time
adversarial attacks, in which adversar-
ial examples, inputs crafted by adding
small, often imperceptible, perturba-
tions to existing data, force a trained ML

model to misclassify. In this article, we contend that
the work on AML, while important and useful, is not
enough. In particular, we advocate for the increased
use of semantics in adversarial analysis and design of
ML algorithms. Semantic adversarial learning explores
a space of semantic modifications to the data, uses
system-level semantic specifications in the analysis,
utilizes semantic adversarial examples in training, and
produces not just output labels but also additional
semantic information. Focusing on deep learning, we
explore these ideas and provide initial experimental
data to support them. Although the focus of much of
our article is on DNNs, the idea of semantic adversarial
learning is applicable to a broad class of ML systems.

Semantic AML can be particularly relevant for
developing robust ML models and ML-based systems
in resource-constrained environments. A semantic
approach can show that traditional (e.g., pixel-level)
adversarial robustness is not necessary when those
adversarial inputs do not lead to system-level failures.

Tommaso Dreossi
Amazon Search

KeynoteKeynote

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

9 March/April 2020

By focusing efforts to make the ML model robust to
only those adversarial inputs that are semantically
meaningful and have system-level implications, a
semantic adversarial approach makes more efficient
use of resources that can be especially valuable in
applications in embedded systems and Internet-
of-Things (IoT) devices.

We begin in the “Background” section with some
relevant background, and then present our proposal
for semantic adversarial learning in the “Semantic
adversarial analysis and training” section. Some
directions for future work are sketched in the “Con-
clusion” section. An earlier version of this article
appeared at CAV 2018 [8].

Background

Background on ML
We describe some general concepts in ML. We

will consider the supervised learning setting. Con-
sider a sample space Z of the form X × Y and an
ordered training set S = ((x i , y i)) i =1 m (xi is the data and
yi is the corresponding label). Let H be a hypothe-
sis space (e.g., weights corresponding to a logistic-
regression model or a neural network model). There
is a loss function 𝓁: H × Z → R so that given a hypoth-
esis w ∈ H and a sample (x, y) ∈ Z, we obtain a loss
𝓁(w,(x, y)). We consider the case where we want to
minimize the loss over the training set S

 L S (w) = 1 _ m ∑
i =1

m

 ℓ (w, (x i , y i)) + λ(w).

In the above equation, λ > 0, and the term (w)
is called the regularizer and enforces “simplic-
ity” in w. Since S is fixed, we sometimes denote
𝓁i(w) = 𝓁(w,(xi, yi)) as a function only of w. We
wish to find a w that minimizes the loss LS(w) or,
in other words, we wish to solve the following
optimization problem:

 min
w ∈H

 L S (w) .

Example: We will consider the example of the logistic
regression.

In this case, X = Rn, Y = {+1, −1}, H = Rn, and the
loss function 𝓁(w, (x, y)) is as follows (represents the
dot product of two vectors):

 log (1 + e −y(w T ⋅x)) .

If we use the L2 regularizer (i.e., (w) = ǁ w ǁ2),
then LS(w) becomes

 1 _ m ∑
i =1

m

 log (1 + e − y i (w T ⋅ x i)) + λ‖w ‖ 2 .

Classifiers: We focus on ML models that are clas-
sifiers, which are functions from Rn to C, where
R denotes the set of reals and C is the set of class
labels. To emphasize that a classifier depends on a
hypothesis w ∈ H, which is the output of the learn-
ing algorithm described earlier, we will write it as Fw

(if w is clear from the context, we will sometimes sim-
ply write F). For example, after training in the case of
the logistic regression, we obtain a function from Rn

to {−1, +1}. Vectors will be denoted in boldface, and
the r th component of a vector x is denoted by x[r].

Throughout this article, we refer to the function
s(Fw) as the softmax layer corresponding to the classi-
fier Fw. In the case of the logistic regression, s(Fw) (x)
is the following tuple (the first element is the probabil-
ity of −1 and the second one is the probability of +1):

 < 1 _
1 + e w T ⋅x

 , 1 _
1 + e − w T ⋅x

 > .

Formally, let c = |C | and Fw be a classifier. We
let s(Fw) be the function that maps Rn to R + c such
that ǁs(Fw)(x)ǁ1 = 1 for any x [i.e., s(Fw) computes
a probability vector]. We denote s(Fw)(x)[l] to be
the probability of s(Fw)(x) at label l. Recall that the
 softmax function from Rk to a probability distribu-
tion over {1, . . . ,k} = [k] such that the probability of
j ∈ [k] for a vector x ∈ Rk is

 e x[j] _
 ∑
r =1

k
 e x[r]

 .

Some classifiers Fw(x) are of the form argmaxl

s(Fw)(x)[l] (i.e., the classifier Fw outputs the label
with the maximum probability according to the
“softmax layer”). For example, in several DNN archi-
tectures, the last layer is the softmax layer. We are
assuming that the reader is familiar with the basics
of DNNs. For readers not familiar with DNNs, we can
refer to the excellent book by Goodfellow et al. [9].

Background on logic
Temporal logics are commonly used for specify-

ing desired and undesired properties of systems. For
CPSs, it is common to use temporal logics that can
specify properties of real-valued signals over real
time, such as signal temporal logic (STL) [10] or
metric temporal logic (MTL) [11].

A signal is a function s : D → S, with D ⊆ R≥0

being an interval, and either S ⊆ B or S ⊆ R, where
B = {⊤, ⊥} and R is the set of reals. Signals defined
on B are called Booleans, whereas those on R are
said real valued. A trace w = {s1, . . . , sn} is a finite set

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

10 IEEE Design&Test

Keynote

of signals defined over the same interval D. We use
variable xi to denote the value of a real- valued signal
at a particular time instant.

Let Σ = {σ1, . . . , σk} be a finite set of predicates
σi : Rn → B, with σi ≡ pi(x1, . . . , xn) ⊲ 0, ⊲ ∈ {<, ≤},
and pi : Rn → R a function in the variables x1, . . . , xn.
An STL formula is defined as follows:

 ϕ : = σ | ¬ϕ | ϕ ∧ ϕ | ϕ U I ϕ (1)

where σ ∈ Σ is a predicate and I ⊂ R≥ 0 is a closed
nonsingular interval. Other common temporal oper-
ators can be defined as syntactic abbreviations in the
usual way, like for instance ϕ1 ∨ ϕ 2 := ¬(¬ϕ1 ∧ ¬ϕ2),
FI ϕ := ⊤ UI ϕ, or GI ϕ := ¬FI ¬ϕ. Given t ∈ R≥ 0, a
shifted interval I is defined as t + I = {t + t′ | t′ ∈ I }.
Let w be a trace, t ∈ R≥ 0, and ϕ be an STL formula.
The qualitative (Boolean) semantics of ϕ is induc-
tively defined as follows:

 w, t σ iff σ(w (t)) is true

 w, t ¬ϕ  iff w, t ϕ

 w, t ϕ 1 ∧ ϕ 2 iff w, t ϕ 1 and w, t ϕ 2 (2)

 w, t ϕ 1 U I ϕ 2 iff ∃ t ′ ∈ t + I s.t. w, t ′ ϕ 2 and

 ∀ t ′′ ∈ [t, t ′] , w, t ′′ ϕ 1 .

A trace w satisfies a formula ϕ if and only if
w, 0 ϕ, in short w ϕ. STL also admits a quantitative
or robust semantics, which we omit for brevity. This
provides quantitative information on the formula,
telling how strongly the specification is satisfied or
violated for a given trace.

Adversarial robustness
The field of AML has grown rapidly in recent

years, and a full survey is beyond the scope of this
article; we refer the reader to other papers on this
topic [6], [8]. Instead, in this section, we present a
general formulation of adversarial robustness [12] to
test-time attacks that captures all the formulations in
the literature that we are aware of.

In such adversarial attacks, the adversary starts
with a given example x ∈ X and perturbs it so as
to produce “wrong” output. Formally, let X ̃ ⊆ X be
a set of allowed perturbed inputs, µ : X × X → R≥0

be a quantitative function (such as a distance, risk,
or divergence function), D : (X ×X) × R → B be
a constraint defined over µ, A : X × X × R → B
be a target behavior constraint, and α, β ∈ R be the
parameters. Then, the problem of finding a set of

inputs that falsifies the ML model can be cast as a
decision problem as follows.
Definition 1: Given x ∈ X, find x∗ ∈ X such that the
following constraints hold:

1) admissibility constraint: x∗ ∈ X ̃ ;
2) distance constraint: D (µ(x, x∗), α);
3) target behavior constraint: A(x, x∗, β ).

The admissibility constraint (1) ensures that the
adversarial input x∗ belongs to the space of admissi-
ble perturbed inputs. The distance constraint (2) con-
strains x∗ to be no more distant from x than α. Finally,
the target behavior constraint (3) captures the target
behavior of the adversary as a predicate A(x, x∗, β )
which is true iff the adversary changes the behavior
of the ML model by at least β modifying x to x∗. If the
three constraints hold, then we say that the ML model
has failed for input x. We note that this is a so-called
“local” robustness property for a specific input x, as
opposed to other notions of “global” robustness to
changes to a population of inputs [8], [13].

Typically, the problem of finding an adversarial
example x∗ for a model f at a given input x ∈ X, as
formulated above, is formulated as an optimization
problem in one of two ways.

• Minimizing perturbation: Find the closest x∗  that
alters f ’s prediction. This can be encoded in con-
straint (2) as µ(x, x∗) ≤ α.

• Maximizing the loss: Find x∗ that maximizes false
classification. This can be encoded in the con-
straint (3) as L(f (x), f (x∗)) ≥ β.

Definition 2: The optimization version of Definition 1
is to find an input x∗ such that either x∗ = argminx∗∈X α
or x∗  = argmaxx∗∈X β, subject to the constraints in
Definition 1.

We refer the reader to [12] for a description of
how the variants of adversarial robustness published
in the literature can all be captured by the defini-
tions above.

Semantic adversarial analysis and
training

A central tenet of this article is that the analysis of
DNNs (and ML components, in general) must be more
semantic. In particular, we advocate for the increased
use of semantics in several aspects of adversarial anal-
ysis and training, including the following.

• Semantic modification space: Recall that the
goal of adversarial attacks is to modify an input

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

11 March/April 2020

vector x with an adversarial modification δ so as
to achieve a target misclassification. Such modifi-
cations typically do not incorporate the applica-
tion-level semantics or the context within which
the neural network is deployed. We argue that it
is essential to incorporate more application-level,
contextual semantics into the modification space.
Such semantic modifications correspond to modi-
fications that may arise more naturally within the
context of the target application. For example, for
a DNN used for perception in an autonomous vehi-
cle, the semantic space would be the 3-D scene
around the vehicle, including the location and
characteristics of vehicles and other agents. We
view this approach not as ignoring arbitrary modifi-
cations (which are indeed worth considering with
a security mind set), but as prioritizing the design
and analysis of DNNs toward semantic adversarial
modifications. The “Compositional falsification”
section discusses this point in more detail.

• System-level specifications: The goal of much of
the work in adversarial attacks has been to gen-
erate misclassifications. However, not all mis-
classifications are made equal. We contend that
it is important to find misclassifications that lead
to violations of desired properties of the system
within which the DNN is used. Therefore, one
must identify such system-level specifications
and devise analysis methods to verify whether
an erroneous behavior of the DNN component
can lead to the violation of a system-level spec-
ification. System-level counterexamples can be
valuable aids to repair and re-design ML models.
See the “Compositional falsification” section for
a more detailed discussion of this point.

• Semantic loss functions for training: Most ML mod-
els are trained with the main goal of reducing mis-
classifications as measured by a suitably crafted
loss function. We contend that it is also important
to train the model to avoid undesirable behaviors
at the system level. For this, we advocate using
methods for semantic training, where a semantic
loss function is used that incorporates semantic
properties including system-level specifications
and confidence levels in the training process.
The “Semantic training” section explores a few
ideas along these lines.

• Semantic data set augmentation: An important
way to (re)design ML models is to augment the
data set with carefully generated or selected data

so as to improve the dependability of the model
without losing much accuracy on the original data
set. We advocate for the use of data generated
via semantic adversarial analysis for such augmen-
tation. In particular, counterexample-guided data
augmentation, in which counterexamples gener-
ated via semantic adversarial analysis are utilized
for training and testing, shows a great deal of prom-
ise in improving ML models. We present some
ideas and results in the “Semantic training” section.

Compositional falsification
We discuss the problem of performing the

 system-level analysis of a deep learning component,
using recent work by Dreossi et al. [14], [15] to illus-
trate the main points. The material in this section is
mainly based on [16].

We begin with some basic notation. Let S denote
the model of the full system under verification, E
denote a model of its environment, and Φ denote
the specification to be verified. C is an ML model
(e.g., DNN) that is part of S. Let x be an input to C.
We assume that Φ is a trace property—a set of behav-
iors of the closed system obtained by composing
S with E, denoted as S ǁE. The goal of falsification is
to find one or more counterexamples showing how
the composite system S ǁE violates Φ. In this context,
the semantic analysis of C is about finding a modi-
fication δ from a space of semantic modifications Δ
such that C, on x + δ, produces a misclassification
that causes S ǁE to violate Φ.

1) Example problem: As an illustrative example, con-
sider a simple model of an automatic emergency brak-
ing system (AEBS) that attempts to detect objects in
front of a vehicle and actuate the brakes when needed
to avert a collision. Figure 1 shows the AEBS as a sys-
tem composed of a controller (automatic braking),
a plant (vehicle subsystem under control, including

Figure 1. AEBS in closed loop. An image
classifier based on DNNs is used to perceive
objects in the ego vehicle’s frame of view.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

12 IEEE Design&Test

Keynote

transmission), and an advanced sensor (camera
along with an obstacle detector based on deep learn-
ing). The AEBS, when combined with the vehicle’s
environment, forms a closed-loop control system. The
controller regulates the acceleration and braking of
the plant using the velocity of the subject (ego) vehi-
cle and the distance between it and an obstacle. The
sensor used to detect the obstacle includes a camera
along with an image classifier based on DNNs. In gen-
eral, this sensor can provide noisy measurements due
to incorrect image classifications, which in turn can
affect the correctness of the overall system.

Suppose we want to verify whether the distance
between the ego vehicle and a preceding obstacle
is always larger than 2 m. In STL, this requirement
Φ can be written as G0,T(ǁxego − xobs ǁ2 ≥ 2). Such
verification requires the exploration of a very large
input space comprising of the control inputs (e.g.,
acceleration and braking pedal angles) and the
ML component’s feature space (e.g., all the possi-
ble pictures observable by the camera). The latter
space is particularly large—for example, note that
the feature space of RGB images of dimension
1000 × 600 pixels (for an image classifier) contains
2561000 × 600 × 3 elements.

This case study has been implemented in MAT-
LAB /Simulink1 in two versions that use two different
convolutional neural networks (CNNs): the Caffe
[17] version of AlexNet [18] and the Inception-v3
model created with Tensorflow [19], both trained on
the ImageNet database [20]. Further details about
this example can be obtained from [14].

2) Approach: A key idea in our approach is to
have a system-level verifier that abstracts away the
component C while verifying Φ on the resulting

abstraction. This system-level verifier communicates
with a component-level analyzer that searches for
semantic modifications δ to the input x of C that
could lead to violations of the system-level specifica-
tion Φ. Figure 2 illustrates this approach.

We formalize this approach while trying to
emphasize the intuition. Let T denote the set of all
possible traces of the composition of the system with
its environment, S ǁE. Given a specification Φ, let
TΦ denote the set of traces in T satisfying Φ. Let UΦ

denote the projection of these traces onto the state
and interface variables of the environment E. UΦ is
termed as the validity domain of Φ, i.e., the set of
environment behaviors for which Φ is satisfied. Sim-
ilarly, the complement set U¬Φ is the set of environ-
ment behaviors for which Φ is violated.

Our approach works as follows:

1) The system-level verifier initially performs two
analyses with two extreme abstractions of
the ML component. First, it performs an opti-
mistic analysis, wherein the ML component
is assumed to be a “perfect classifier,” i.e., all
feature vectors are correctly classified. In situa-
tions where ML is used for perception/sensing,
this abstraction assumes perfect perception/
sensing. Using this abstraction, we compute
the validity domain for this abstract model of
the system, denoted as U Φ + . Next, it performs a
pessimistic analysis where the ML component
is abstracted by a “completely-wrong classi-
fier,” i.e., all feature vectors are misclassified.
Denote the resulting validity domain as U Φ − . It is
expected that U Φ + ⊇ U Φ − .

Abstraction permits the system-level verifier
to operate on a lower-dimensional search space
and identify a region in this space that may be
affected by the malfunctioning of component
C—a so-called “region of uncertainty” (ROU).
This region, U ROU C is computed as U Φ + \ U Φ − .

In other words, it comprises all environment
behaviors that could lead to a system-level failure
when component C malfunctions. This region
 U ROU C , projected onto the inputs of C, is commu-
nicated to the ML analyzer. (Concretely, in the
context of our example of the “Example problem”
section, this corresponds to finding a subspace of
images that corresponds to U ROU C .)

2) The component-level analyzer, also termed as
an ML analyzer, performs a detailed analysis of

Figure 2. Compositional verification approach.
A system-level verifier cooperates with a component-
level analysis procedure (e.g., adversarial analysis of
a ML component to find misclassifications).

1https://github.com/dreossi/analyzeNN

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

https://github.com/dreossi/analyzeNN

13 March/April 2020

the projected ROU U ROU C . A key aspect of the ML
analyzer is to explore the semantic modification
space efficiently. Several options are available for
such an analysis, including the various adversar-
ial analysis techniques surveyed earlier (applied
to the semantic space), as well as systematic sam-
pling methods [14]. Even though a component-
level formal specification may not be available,
each of these adversarial analyses has an implicit
notion of “misclassification.” We will refer to these
as component-level errors. The working of the ML
analyzer from [14] is shown in Figure 3.

3) When the component-level (ML) analyzer finds
component-level errors (e.g., those that trigger
misclassifications of inputs whose labels are
easily inferred), it communicates that infor-
mation back to the system-level verifier, which
checks whether the ML misclassification can
lead to a violation of the system-level prop-
erty Φ. If yes, we have found a system-level

 counterexample. If no, component-level errors
are found, and the system-level verification can
prove the absence of counterexamples, then
it can conclude that Φ is satisfied. Otherwise, if
the ML misclassification cannot be extended
to a system-level counterexample, the ROU is
updated and the revised ROU passed back to the
 component-level analyzer.

The communication between the system-level
verifier and the component-level (ML) analyzer thus
continues until we either prove or disprove Φ, or we
run out of resources.

3) Sample results: We have applied the above
approach to the problem of compositional falsifi-
cation of CPSs with ML components [14]. For this
class of CPS, including those with highly nonlin-
ear dynamics and even black-box components,
simulation- based falsification of temporal logic
properties is an approach that has proven effective

Figure 3. ML analyzer: searching the semantic modification space. A concrete semantic
modification space (top left) is mapped into a discrete abstract space. Systematic sampling,
using low-discrepancy methods, yields points in the abstract space. These points are
concretized and the NN is evaluated on them to ascertain if they are correctly or wrongly
classified. The misclassifications are fed back for system-level analysis.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

14 IEEE Design&Test

Keynote

in industrial practice [21], [22]. We present here a
sample of results on the AEBS example from [14],
referring the reader to more detailed descriptions in
the other papers on the topic [14], [15].

In Figure 4, we show one result of our analysis for
the Inception-v3 DNN. This figure shows both cor-
rectly classified and misclassified images on a range
of synthesized images where: 1) the environment
vehicle is moved away from or toward the ego vehi-
cle (along the z-axis); 2) it is moved sideways along
the road (along the x-axis); or 3) the brightness of
the image is modified. These modifications consti-
tute the three axes of the figure. Our approach finds
misclassifications that do not lead to system-level
property violations and also misclassifications that
do lead to such violations. For example, Figure 4
shows two misclassified images: one with an envi-
ronment vehicle that is too far away to be a safety
hazard, and another image showing an environment
vehicle driving slightly on the wrong side of the road,
which is close enough to potentially cause a viola-
tion of the system-level safety property (of maintain-
ing a safe distance from the ego vehicle).

For further details about this and other results with
our approach, we refer the reader to [14] and [15].

Semantic training
In this section, we discuss two ideas for semantic

training and retraining of DNNs. We first discuss the

use of hinge loss as a way of incorporating confidence
levels into the training process. Next, we discuss how
system-level counterexamples and associated mis-
classifications can be used in the retraining process
to both improve the accuracy of ML models and to
gain more assurance in the overall system contain-
ing the ML component. A more detailed study of
using misclassifications (ML component-level coun-
terexamples) to improve the accuracy of the neural
network, termed counterexample-guided data aug-
mentation, is presented in [23].

1) Experimental setup: As in the preceding sec-
tion, we consider an AEBS using a DNN-based object
detector. However, in these experiments, we use an
AEBS deployed within Udacity’s self-driving car sim-
ulator, as reported in our previous work [15].2 We
modified the Udacity simulator to focus exclusively
on braking. In our case studies, the car follows some
predefined way points, while accelerating and brak-
ing are controlled by the AEBS connected to a CNN.
In particular, whenever the CNN detects an obstacle
in the images provided by the onboard camera, the
AEBS triggers a braking action that slows the vehicle
down and avoids the collision against the obstacle.

We designed and implemented a CNN to predict
the presence of a cow on the road. Given an image
taken by the onboard camera, the CNN classifies the
picture in either “cow” or “not cow” category. The
CNN architecture is shown in Figure 5. It consists of
eight layers: the first six are alternations of convolu-
tions and max-pools with rectified linear unit (ReLU)
activations, the last two are a fully connected layer
and a softmax that outputs the network prediction
(confidence level for each label).

We generated a data set of 1,000 road images
with and without cows. We split the data set into
80% training and 20% validation data. Our model
was implemented and trained using the Tensor-
flow library with crossentropy cost function and the
Adam algorithm optimizer (learning rate 10−4). The
model reached 95% accuracy on the test set. Finally,
the resulting CNN is connected to the Unity simu-
lator via the Socket.IO protocol.3 Figure 6 depicts a

Figure 4. Misclassified images for Inception-v3
neural network (trained on ImageNet with
TensorFlow). Red crosses are misclassified
images and green circles are correctly classified.
Our system-level analysis finds a corner-case
image that could lead to a system-level safety
violation.

2Udacity’s self-driving car simulator: https://github.com/udacity/self-driving-car-sim
3Socket.IO protocol: https://github.com/socketio

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

https://github.com/udacity/self-driving-car-sim
https://github.com/udacity/self-driving-car-sim
https://github.com/socketio

15 March/April 2020

screenshot of the simulator with the AEBS in action
in proximity of a cow.

2) Hinge loss: In this section, we investigate the
relationship between multiclass hinge loss functions
and adversarial examples. Hinge loss is defined
as follows:

 l (y ̂) = max (0, k + max
i ≠l

 (y ̂ i) − y ̂ l) (3)

where (x, y) is a training sample, y ̂ = F(x) is a predic-
tion, and l is the ground truth label of x. For this sec-

tion, the output y ̂ is a numerical value that indicates
the confidence level of the network for each class. For

example, y ̂ can be the output of a softmax layer as
described in the “Background” section.

Consider what happens when we vary k. Suppose
there is an i ≠ l s.t. y ̂ i > y ̂ l. Pick the largest such i, call
it i∗. For k = 0, we will incur a loss of y ̂ i∗ − y ̂ l for the
example (x, y). However, as we make k more negative,
we increase the tolerance for “misclassifications”
 produced by the DNN F. Specifically, we incur no
 penalty for a misclassification as long as the asso-
ciated confidence level deviates from that of the
ground truth label by no more than |k|. The larger
the absolute value of k, the greater the tolerance.
Intuitively, this biases the training process toward
avoiding “high confidence misclassifications.”

In this experiment, we investigate the role of k and
explore different parameter values. At training time,
we want to minimize the mean hinge loss across
all training samples. We trained the CNN described
above with different values of k and evaluated its
precision on both the original test set and a set of
counterexamples generated for the original model,
i.e., the network trained with crossentropy loss.

Table 1 reports accuracy and log loss for different
values of k on both original and counterexamples
test sets (Toriginal and Tcountex, respectively).

Table 1 shows interesting results. We note that
a negative k increases the accuracy of the model
on counterexamples. In other words, biasing the
training process by penalizing high-confidence
misclassifications improves accuracy on counter-
examples! However, the price to pay is a reduction
of accuracy on the original test set. This is still a

Figure 5. CNN architecture.

Figure 6. Udacity simulator with a CNN-based AEBS
in action.

Table 1. Hinge loss with different k values.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

16 IEEE Design&Test

Keynote

preliminary result and further experimentation and
analysis is necessary.

3) System-level counterexamples: Counterexample-
guided data augmentation [23] is a technique for
augmenting an existing data set with carefully cho-
sen semantic adversarial examples that produce
incorrect output at the ML component level. In
this work, we show that a combination of seman-
tic modifications and analysis of the generated
 counterexamples can improve the accuracy of a
state-of-the-art DNN for object detection and classifi-
cation in autonomous vehicles by around 10% over
the original accuracy and in comparison with other
state-of-the-art augmentation methods. The question
we consider in this article is: Can we use such an
approach at the system level to completely eliminate
counterexamples?

By using the composition falsification framework
presented in the “Compositional falsification” sec-
tion, we identify orientations, displacements on the
x-axis, and color of an obstacle that leads to a colli-
sion of the vehicle with the obstacle. Figure 7 depicts
configurations of the obstacle that lead to specifica-
tion violations, and hence, to collisions.

In an experiment, we augment the original train-
ing set with the elements of Tcountex, i.e., images of
the original test set Toriginal that are misclassified by
the original model (see the “Hinge loss” section).

We trained the model with both crossentropy and
hinge loss for 20 epochs. Both models achieve a high
accuracy on the validation set (≈92%). However,
when plugged into the AEBS, neither of these models

prevents the vehicle from colliding against the obsta-
cle with an adversarial configuration. This seems to
indicate that simply retraining with some semantic
(system-level) counterexamples generated by analyz-
ing the system containing the ML model may not be
sufficient to eliminate all semantic counterexamples.

Interestingly, though, it appears that in both cases
the impact of the vehicle with the obstacle happens
at a slower speed than the one with the original
model. In other words, the AEBS system starts detect-
ing the obstacle earlier than the original model, and
therefore starts braking earlier as well. This means
that despite the specification violations, the coun-
terexample retraining procedure seems to help with
limiting the damage in case of a collision. Coupled
with a run-time assurance framework [24], semantic
retraining could help mitigate the impact of misclas-
sifications on the system-level behavior.

This arTicle inTroduced the idea of semantic
adversarial machine (deep) learning, where adver-
sarial analysis and training of ML models are per-
formed using the semantics and context of the over-
all system within which the ML models are utilized.
We identified several ideas for integrating semantics
into adversarial learning, including using a semantic
modification space, system-level formal specifica-
tions, and semantic training using counterexamples
and more semantic loss functions. Initial results
not only show the promise of these ideas, but also
indicate that much remains to be done. We outline
below some of the interesting directions for further
research; see [7] for more details.

Programmatic modeling of the semantic feature
space: High-dimensional semantic feature spaces
require more structured representations. A promis-
ing approach is to design domain-specific program-
ming languages to represent the semantic feature
space in a way that is easy to understand, modify,
and use to guide semantic adversarial learning. In
particular, probabilistic programming languages
such as Scenic [25] provide this capability while
also permitting a way to represent distributional
assumptions and enable tasks such as data genera-
tion, inference, and verification.

Efficient algorithms to search semantic space: In
addition to devising suitable representations of the
semantic space, we need efficient algorithms to
search the resulting high-dimensional space. The
VerifAI toolkit [26] is an initial step to develop such
algorithmic methods for the design and analysis

Figure 7. Semantic counterexamples:
obstacle configurations leading to
property violations (in red).

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

17 March/April 2020

of artificial intelligence (AI)/ML-based systems.
Another promising direction is the combination of
“standard” AML methods with differentiable render-
ers/simulators [27].

Formal specification for ML and deep learning: An
important direction is to develop formalisms to cap-
ture properties of the ML model and the ML-based
system that enable semantic adversarial analysis.
Although some initial progress has been made in this
regard [13], [12], much more remains to be done.

Exploring tradeoffs between semantic robust-
ness and resource-efficient implementation: As dis-
cussed in the “Introduction” section, a semantic
approach can help make an ML model robust in
a resource-efficient manner. In fact, evidence from
past work on error-resilient system design [28]
suggests that using semantic/system-level specifi-
cations can enable targeting scarce resources to
exactly those components that need to be made
robust. This offers a fruitful direction for further
research on robust ML implementations.

In summary, the field of semantic adversarial learn-
ing promises to be a rich domain for research at the
intersection of ML, formal methods, design automa-
tion, programming languages, and related areas.

Acknowledgments
We thank the anonymous reviewers for their

feedback. The work of Sanjit A. Seshia and Tom-
maso Dreossi was supported in part by NSF under
Grant 1545126 (VeHICaL), Grant 1646208, and Grant
1837132; in part by the DARPA BRASS Program
under Agreement FA8750-16-C0043; in part by the
DARPA Assured Autonomy Program; in part by the
iCyPhy Center; and in part by Berkeley Deep Drive.
The contributions of Tommaso Dreossi to this article
were made while he was affiliated with the Univer-
sity of California at Berkeley (UC Berkeley).

 References
 [1] NVIDIA, “NVIDIA tegra drive PX: Self-driving car

computer,” 2015. Accessed: Nov. 2019. [Online].

Available: http://www.nvidia.com/object/drive-px.html

 [2] E. Knorr, “How PayPal beats the bad guys with

machine learning,” 2015. Accessed: Nov. 2019.

[Online]. Available: http://www.infoworld.com/

article/2907877/machine-learning/howpaypal-reduces-

fraud-with-machine-learning.html

 [3] B. Alipanahi et al., “Predicting the sequence

specificities of DNA- and RNA-binding proteins by

deep learning,” Nature Biotechnol., vol. 33, no. 8,

pp. 831–838, 2015.

 [4] G. E. Dahl et al., “Large-scale malware classification

using random projections and neural networks,” in

Proc. IEEE Int. Conf. Acoust. Speech Signal Process.

(ICASSP), 2013, pp. 3422–3426.

 [5] E. A. Lee and S. A. Seshia, Introduction to Embedded

Systems: A Cyber-Physical Systems Approach, 2nd

ed. Cambridge, MA: MIT Press, 2016.

 [6] I. Goodfellow, P. McDaniel, and N. Papernot, “Making

machine learning robust against adversarial inputs,”

Commun. ACM, vol. 61, no. 7, pp. 56–66, 2018.

 [7] S. A. Seshia, D. Sadigh, and S. S. Sastry, “Towards

verified artificial intelligence,” Jul. 2016, arXiv:606.08514.

 [8] T. Dreossi, S. Jha, and S. A. Seshia, “Semantic

adversarial deep learning,” in Proc. 30th Int. Conf.

Comput.-Aided Verification (CAV), 2018, pp. 3–26.

 [9] I. Goodfellow, Y. Bengio, and A. Courville, Deep

Learning. MIT Press, 2016. Accessed: Nov. 2019.

[Online]. Available: http://www.deeplearningbook.org

 [10] O. Maler and D. Nickovic, “Monitoring temporal

properties of continuous signals,” in Proc.

Formal Modeling Anal. Timed Syst. (FORMATS), 2004,

pp. 152–166. Accessed: Nov. 2019. [Online]. Available:

https://doi.org/10.1007/978-3-540-30206-3_12

 [11] R. Koymans, “Specifying real-time properties with

metric temporal logic,” Real-Time Syst., vol. 2, no. 4,

pp. 255–299, 1990.

 [12] T. Dreossi et al., “A formalization of robustness for

deep neural networks,” in Proc. AAAI Spring Symp.

Workshop Verification Neural Netw. (VNN), Mar. 2019.

Accessed: Nov. 2019. [Online]. Available: https://arxiv.

org/abs/1903.10033

 [13] S. A. Seshia et al., “Formal specification for deep neural

networks,” in Proc. Int. Symp. Automated Technol.

Verification Anal. (ATVA), Oct. 2018, pp. 20–34.

 [14] T. Dreossi, A. Donze, and S. A. Seshia, “Compositional

falsification of cyber-physical systems with machine

learning components,” in Proc. NASA Formal Methods

Conf. (NFM), May 2017, pp. 357–372.

 [15] T. Dreossi, A. Donze, and S. A. Seshia, “Compositional

falsification of cyber-physical systems with machine

learning components,” J. Autom. Reason., vol. 63,

no. 4, pp. 1031–1053, 2019.

 [16] S. A. Seshia, “Compositional verification without

compositional specification for learning-based systems,”

EECS Dept., Univ. California, Berkeley, Tech. Rep. UCB/

EECS-2017-164, Nov. 2017. Accessed: Nov. 2019.

[Online]. Available: http://www2.eecs.berkeley.edu/

Pubs/TechRpts/2017/EECS-2017-164.html

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

http://www.nvidia.com/object/drive-px.html
http://www.infoworld.com/article/2907877/machine-learning/howpaypal-reduces-fraud-with-machine-learn
http://www.infoworld.com/article/2907877/machine-learning/howpaypal-reduces-fraud-with-machine-learn
http://www.infoworld.com/article/2907877/machine-learning/howpaypal-reduces-fraud-with-machine-learn
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-540-30206-3_12
https://arxiv.org/abs/1903.10033
https://arxiv.org/abs/1903.10033
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-164.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-164.html

18 IEEE Design&Test

Keynote

 [17] Y. Jia et al., “Caffe: Convolutional architecture for fast

feature embedding,” in Proc. ACM Multimedia Conf.

(ACMMM), 2014, pp. 675–678.

 [18] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet classification with deep convolutional

neural networks,” in Proc. Advances Neural Inf.

Process. Syst., 2012, pp. 1097–1105.

 [19] M. Abadi et al., “TensorFlow: Large-scale machine

learning on heterogeneous systems,” 2015. Accessed:

Nov. 2019. [Online]. Available: http://tensorflow.org/

 [20] “Imagenet.” Accessed: Nov. 2019. [Online]. Available:

http://image-net.org/

 [21] X. Jin et al., “Mining requirements from closed-loop

control models,” IEEE Trans. Comput.-Aided Design

Circuits Syst., vol. 34, no. 11, pp. 1704–1717, 2015.

 [22] T. Yamaguchi et al., “Combining requirement mining,

software model checking, and simulation-based

verification for industrial automotive systems,” in

Proc. IEEE Int. Conf. Formal Methods Comput.-Aided

Design (FMCAD), Oct. 2016, pp. 201–204.

 [23] T. Dreossi et al., “Counterexample-guided data

augmentation,” in Proc. Int. Joint Conf. Artifi. Intell.

(IJCAI), Jul. 2018, pp. 2071–2078.

 [24] A. Desai et al., “SOTER: A Runtime Assurance

Framework for Programming Safe Robotics Systems,”

in Proc. IEEE/IFIP Int. Conf. Dependable Syst. Netw.

(DSN), Jun. 2019, pp. 138–150.

 [25] D. J. Fremont et al., “Scenic: A language for scenario

specification and scene generation,” in Proc. 40th

Annu. ACM SIGPLAN Conf. Program. Lang. Design

Implementation (PLDI), Jun. 2019, pp. 63–78.

 [26] T. Dreossi et al., “VERIFAI: A toolkit for the formal

design and analysis of artificial intelligence-based

systems,” in Proc. 31st Int. Conf. Comput.-Aided

Verification (CAV), Jul. 2019, pp. 432–442.

 [27] L. Jain et al., “Generating semantic adversarial

examples with differentiable rendering,” CoRR, 2019,

arXiv:1910.00727.

 [28] S. A. Seshia, W. Li, and S. Mitra, “Verification-guided

soft error resilience,” in Proc. Conf. Design Autom.

Test Eur. (DATE), ACM Press, Apr. 2007,

pp. 1442–1447.

Sanjit A. Seshia is currently a Professor at the
Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley,
Berkeley, CA. His research interests are in formal
methods for dependable and secure computing,
with a current focus on the areas of cyber–physical
systems, computer security, machine learning, and
robotics. He is a Fellow of the IEEE.

Somesh Jha is currently a Lubar Professor at
the Computer Sciences Department, University of
Wisconsin—Madison, Madison, WI. His work focuses
on analysis of security protocols, survivability
analysis, intrusion detection, formal methods for
security, and analyzing malicious code. Recently, he
has also worked on privacy-preserving protocols and
adversarial machine learning (ML). He is a Fellow of
the ACM and IEEE.

Tommaso Dreossi is currently an Applied
Scientist at Amazon Search, Palo Alto, CA. His
research interests include formal verification of
cyber-physical systems, computer vision, and
natural language processing. Dreossi has a PhD in
computer science from the University of Grenoble,
Grenoble, France, and the University of Udine,
Udine, Italy (2016).

 Direct questions and comments about this
article to Sanjit A. Seshia, Department of Electrical
Engineering and Computer Sciences, University
of California at Berkeley, Berkeley, CA 94720-1770
USA; sseshia@eecs.berkeley.edu.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 22,2021 at 19:20:24 UTC from IEEE Xplore. Restrictions apply.

mailto:sseshia@eecs.berkeley.edu

