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ABSTRACT OF THE THESIS 

Analysis of Biomarkers of Symptoms in Patients with Schizophrenia 

by 

Haorui Zhang 

Master of Applied Statistics 
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Professor Frederic R. Paik Schoenberg, Chair 

 

This paper aims to apply machine learning methods to analyze the biomarkers of symptoms in 

patients with schizophrenia. By reducing the dimension of brain patterns via random forest 

models and mapping brain patterns to symptoms of schizophrenia using multivariate regression 

models, we will explore the relationship between brain patterns and symptoms of schizophrenia 

and the association between different types of antipsychotic medication and brain patterns and 

symptoms.  
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CHAPTER 1 

Introduction 

 The functional magnetic resonance imaging (fMRI) is a dynamic imaging approach to 

measure the brain activity by detecting changes associated with blood flow. The introduction of 

fMRI into neuroscience has instigated a revolution in the magnitude and type of research relating 

brain function to behavior. For example, fMRI is widely used for detecting neural network 

problems in patients with schizophrenia. Schizophrenia is a mental illness characterized by 

relapsing episodes of psychosis [1]. Hallmark symptoms include hallucinations, delusions, and 

emotional withdrawal. This study, by examining the imaging measures of how 15 individual 

brain networks behave individually and how they correlate with other networks, explains the 

relationship among brain patterns, symptoms of schizophrenia, and brain patterns and symptoms 

of schizophrenia and the role different types of antipsychotic medication play in this. These 

measures were obtained from resting-state fMRI scans for patients with schizophrenia from two 

institutions, Centers of Biomedical Research Excellence (COBRE) at University of New Mexico 

(UNM) and Consortium for Neuropsychiatric Phenomics (CNP) at University of California, Los 

Angeles (UCLA). 
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CHAPTER 2 

Problem Defining 

 The Positive and Negative Syndrome Scale (PANSS) in COBRE dataset,  and Scale for 

the Assessment of Negative Symptoms (SANS) and Scale for the Assessment of Positive 

Symptoms (SAPS) in CNP dataset are well-established scales for evaluating symptom severity in 

Schizophrenia [2]. To examine the relationship between brain patterns and symptoms of 

schizophrenia, we apply machine learning tools to explore if the fMRI patterns map to the 

PANSS symptoms in COBRE dataset, and SANS and SAPS in CNP dataset. Besides, we notice 

that the patients in the COBRE study are taking different medications, so we would also like to 

know if there is an interaction between fMRI and medication in predicting symptoms of 

schizophrenia. To achieve this, we first research on whether the medications taken by each 

patient belong to first or second generation antipsychotic drugs, and then train some statistical 

models to study the effect of interactions between fMRI patterns and types of medications on the 

PANSS variables.
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CHAPTER 3 

Data 

3.1    Variables of the Study 

COBRE Dataset 

 Table 3.1   Structure of COBRE study 

Clarification of Variables: 

• The PANSS variables include a total of 30 symptoms rated for severity on a 7-point scale (min 

= 1, max = 7). They are grouped into 5 dimensions according to the 30-item Oblimin-rotated 

model appeared in prior analyses of the PANSS [3].  
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1. Negative = Blunted Affect + Emotional Withdrawal + Poor Rapport + Passive 

Apathetic Social Withdrawal + Lack of Spontaneity and Flow of Conversation + 

Motor Retardation + Active Social Avoidance + Disturbance of Volition 

2. Positive = Delusions + Hallucinatory Behavior + Grandiosity + Suspiciousness 

Persecution + Unusual Thought Content + Preoccupation 

3. Disorganized = Stereotyped Thinking + Lack of Judgment and Insight + Conceptual 

Disorganization + Difficulty in Abstract Thinking + Mannerisms and Posturing + 

Poor Attention + Disturbance of Volition + Preoccupation + Disorientation 

4. Excited = Poor Impulse Control + Excitement + Hostility + Uncooperativeness 

5. Anxiety = Anxiety + Depression + Tension + Guilt Feelings + Somatic Concern 

 The 5 variables of PANSS are all numerical variables with integer values. Higher PANSS 

scores always reveal more severe symptoms, regardless of the dimensions. 

• Between-network variables 

 The 91 between-network measurements are all numerical, informing us how individual 

brain networks correlate with other networks. 

• Within-network variables 

 The 70 within-network measurements are all numerical. They inform us how individual 

brain network work within itself. Within-network variables include fMRI measurements, such 

as small worlds and global efficiency.  
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CNP Dataset

Table 3.2   Structure of CNP study

Clarification of Variables: 

• Sum of SANS  

 This is the sum of 24 scales for the assessment of negative symptoms (SANS) for each 

individual. It is a numeric variable with a minimum value 0 and a maximum value 24. A 

patient with a higher value of sum of SANS has more severe symptoms of schizophrenia. 

• Sum of SAPS  

 This is the sum of 35 scales for the assessment of positive symptoms (SAPS) for each 

individual. It is a numeric variable with a minimum value 0 and a maximum value 27. A 

patient with a higher value of sum of SAPS has more severe symptoms of schizophrenia. 

• Between-Network and Within-Network Variables are the same as defined above. 

5



COBRE_Med Dataset

Table 3.3   Structure of COBRE_Med study

Clarification of Variables:

• Small-World fMRI Measurements

Small-world network is a highly clustered system but with small mean path length 

between networks which allow the information transferred with high efficiency. The human 

brain can be considered as a sparse, complex network modeled by the small-world properties. 

Once the brain network was disrupted by disease, the small-world properties would be altered 

to manifest that the information integration was inefficiency and the network was loosely 

organized [4]. Here we include the fMRI measurements for 14 small-world networks such as 

structural cerebellar network, dorsal attention network, fronto-parietal control network, 

cingulo-opercular network, etc. All of these measurements are numeric variables, with values 

ranging from 0.004167 to 3.9325. 
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• Medication Type 

 This variable indicates the type of medication the patient was taking. It is a factor with 

three levels, (1.0), (0.1) and (1.1) where (1.0) means the patient was taking 1st-generation 

antipsychotics, (0.1) means the patient was taking 2nd-generation antipsychotics, and (1.1) 

means the patient was taking both 1st-and 2nd-generation antipsychotics. 1st-generation 

antipsychotics refer to those developed in the 1950s, and the 2nd-generation antipsychotics 

refer to those developed since the 1980s. The medications are classified according to prior 

comparative effectiveness review (CER) of Food and Drug Administration (FDA)-approved 

first-generation and second-generation antipsychotic medications [5]. 

• Interaction between Small Worlds fMRI and Medication Type 

 14 interaction terms are added in the multivariate model showing the interaction between 

different medications and the 14 small world fMRI measurements.  

• 5-dimension PANSS variable is the same as defined for COBRE dataset.  

3.2    Exploratory Data Analysis 

3.2.1     Exploratory Data Analysis for COBRE 

 COBRE data has a total of 69 observations, 91 between-network predictors, 70 within-

network predictors, and 5 outcome variables – 5 dimensions of PANSS. 

• Exploring the predictors

Summary statistics of the 161 between and within-network predictors show that 

most of these predictors are numerical variables ranging from 0 to 1. The minimum 

value of between-network measurements is -0.2396064, and the minimum of within-
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network measurements is 0. The maximum value of between-network measurements is 

0.7352335, and the maximum of within-network measurements is 172.7878, which is 

an outlier. We noticed that the variable “Memory_retrieval.char_path_length” 

containing the outlier 172.7878 is not included in the final predictors selected by the 

random forest method. The second largest value of within-network measurements was 

6.69197, and the variable containing it – "Uncertain.char_path_length" is also excluded 

from the final predictors.  

• Exploring the outcomes 

   

Table 3.4   Summary Statistics of Outcome Variable (5-Dimensional PANSS Scores)
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Figure 3.1   Histogram of Outcome Variable (5-Dimensional PANSS Scores)  
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• Exploring the relationship between predictors and outcomes 

 

Table 3.5   Summary Statistics of Correlation Coefficients between Predictors and Outcomes  

 The table above shows that, on average, the correlation coefficients are quite low. 

Between-network measurements have the highest correlation coefficient with negative 

dimension of PANSS in the COBRE data. 

3.2.2   Exploratory Data Analysis for CNP 

 CNP data has a total of 42 observations, 91 between-network predictors, 70 within-

network predictors, and 2 outcome variables – sum of SANS and sum of SAPS. 

• Exploring the predictors

Summary statistics of the 161 between and within-network predictors shows that 

most these predictors are numerical variables ranging from 0 to 1. The minimum value 
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of between-network measurements is -0.2258408, and the minimum of within-network 

measurements is 0. The maximum value of between-network measurements is 

0.7976123, and the maximum of within-network measurements is 5.67975, which may 

be an outlier. We noticed that the variable “Cerebellar.char_path_length” containing the 

value 5.67975 is not included in the final predictors selected by the random forest 

model. 

• Exploring the outcomes

Table 3.6   Summary Statistics of Outcome Variable (Sum of SANS and SAPS Scores) 

  

Figure 3.2   Histogram of Outcome Variable (Sum of SANS and SAPS Scores)
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• Exploring the relationship between predictors and outcomes 

Table 3.7   Summary Statistics of Correlation Coefficients between Predictors and Outcomes 

The table above shows that, on average, the correlation coefficients are quite low. 

Between-network measurements have the highest correlation coefficient with SAPS in 

the CNP data.

3.2.3   Exploratory Data Analysis for COBRE_Med 

 The COBRE_Med has 69 observations. The minimum value of the 14 small world fMRI 

variables is 0.004167 and the maximum value is 3.9325.  

Table 3.8   Summary Table of Medications
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The table above suggests that there are 3 patients taking 1st-generation medications, 41 

patients taking 2nd-generation medications, and 23 patients taking both generations, while 2 

patients are not taking any kind of medications. This table also includes some demographic 

features of each group of patients. 
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CHAPTER 4 

Methodology 

4.1   Random Forest Feature Selection 

 Often in data science we have hundreds or even millions of features and we want a way 

to create a model that only includes the most important features. The process of identifying only 

the most relevant features is called “feature selection” [6]. In this study, because we have 161 

predictors (91 between-network and 70 within-network measurements) in both COBRE and CNP 

datasets, feature selection appear to be necessary. 

 Random forest, as one the most popular machine learning algorithms, is so successful 

because it provides in general a good predictive performance, low overfitting, and high 

interpretability. This interpretability is given by the fact that it is straightforward to derive the 

importance of each variable on the tree decision. In other words, it is easy to compute how much 

each variable is contributing to the decision. Feature selection using random forest comes under 

the category of embedded methods which have the benefits of high accuracy, good 

generalization, and high interpretability [7]. 

 Random forests consist of 4 –12 hundred decision trees, each of them built over a random 

extraction of the observations from the dataset and a random extraction of the features. Not every 

tree sees all the features or all the observations, and this guarantees that the trees are de-
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correlated and therefore less prone to over-fitting. Each tree is also a sequence of yes-no 

questions based on a single or combination of features. At each node, the tree divides the dataset 

into 2 buckets, each of them hosting observations that are more similar among themselves and 

different from the ones in the other bucket. Therefore, the importance of each feature is derived 

from how “pure” each of the buckets is [7]. 

 In this study, the feature selection process was completed using the package 

“randomForestSRC” in R which allows us to build multivariate random forest trees. We built 4 

random forest trees, mapping COBRE between-network to 5-dimensional PANSS, COBRE 

within-network to 5-dimensional PANSS, CNP between-network to SANS and SAPS, and CNP 

within-network to SANS and SAPS. 

Due to the random splitting of trees, each time we would get a different set of important 

predictors from the variable selection process. We repeat this process 5 times for each tree 

model. Common predictors which appear at least twice among the five trials, are selected as final 

predictors. Other predictors that appear once among five attempts are considered as potential 

predictors. 

4.2   Multivariate Regression 

 Multivariate regression is one of the simplest algorithm. It comes under the class of 

supervised learning algorithms i.e, when we are provided with training dataset. Multivariate 

analysis is used to address the situations where multiple measurements are made on each 

experimental unit and the relations among these measurements and their structures are important 

15



[8]. It attempts to determine a formula that can describe how elements in a vector of variables 

respond simultaneously to changes in others [9]. 

 The multivariate regression model has the form: 

 

where         is the k-th real-valued response for the i-th observation,         is the regression 

intercept for the k-th response,         is the j-th predictor’s regression slope for the k-th response, 

       is the j-th predictor for the i-th observation, and                                              is a multivariate 

Gaussian error vector.  

4.2.1   Brain Patterns vs. Symptoms of Schizophrenia 

 After selecting important features from the random forest models, we built a multivariate 

regression model to map significant predictors of brain patterns to 5-dimensional PANSS in 

COBRE dataset and SANS and SAPS in CNP dataset, respectively. A multivariate regression 

model was chosen because the variables we would like to predict, PANSS in COBRE dataset and 

SANS and SAPS in CNP dataset are both multi-dimensional, and all of our predictors and 

outcomes are numeric.  

 Four model building schemes, as shown below, were used. The model with the smallest 

MSE is selected. 

1) Common Predictor (Frequency >= 2)  

  2) Age + Gender + Common Predictor (Frequency >= 2) 

  3) Age + Gender + Common Predictor (Frequency >= 2) + Potential Predictors  
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  4) Common Predictor(Frequency >= 2) + Potential Predictors  

4.2.2   PANSS vs. Interactions between fMRI and Medication 

 In statistics, multiple linear regression is a linear approach to model the relationship 

between one dependent variable and multiple independent variables, while multivariate 

regression pertains to multiple dependent variables and multiple independent variables. Here, 

again, a multivariate regression model was chosen because the variable we would like to predict, 

PANSS, has 5 dimensions. It also helps us examine the interaction effects between fMRI and the 

medication types. We dropped all 3 observations with medication (1,0) — patients taking only 

1st-generation antipsychotics, because these observations have high collinearity. 

4.3   Cross-Study Validation 

 Cross-validation and related resampling methods are de facto standard for ranking 

supervised learning algorithms. They allow estimation of prediction accuracy using subsets of 

data that have not been used to train the algorithms. This avoids over-optimistic accuracy 

estimates caused by ‘re-substitution’. It is common to evaluate algorithms by estimating 

prediction accuracy via cross-validation for several datasets. This approach recognizes possible 

variations in the relative performances of learning algorithms across studies or fields of 

application. However, it is not fully consistent with the ultimate goal, in the development of 

models with applications of statistics in medical research, of providing accurate predictions for 

fully independent samples, originating from institutions and processed by laboratories that did 

not generate the training datasets. Therefore, another perspective was promoted: a good learning 
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algorithm should be a generalist, in the sense that it yields models that may be suboptimal for the 

training population, or not fully representative of the dataset at hand, but that perform reasonably 

well across different populations and laboratories employing comparable but not identical 

methods [10], which can be called cross-study validation. 

 In this study, performing a cross-study validation makes sense because SANS in CNP 

dataset is essentially measuring the same symptoms with the negative dimension of PANSS in 

COBRE dataset and SAPS in CNP dataset is equivalent to the positive dimension of PANSS in 

COBRE dataset. Moreover, all the brain pattern variables, including 91 between-network and 70 

within-network, are measured on the same scale. We train brain patterns, negative and positive 

dimensions of PANSS in the COBRE data, and test the model using brain patterns in the CNP 

data. We expect that the COBRE model could explain a good amount of variations in SANS and 

SAPS appeared in the CNP dataset. 

Nevertheless, PANSS and SANS/SAPS are not on the same scale (as shown in the data 

exploration part). Therefore, we need to scale these response variable in both COBRE and CNP 

data before conducting cross-study model validation. After scaling the response variables in both 

datasets to have means of 0 and standard deviations of 1, the PANSS in COBRE and SANS/

SAPS in CNP are now comparable.  

 For negative symptoms of schizophrenia, the R-squared value is calculated as:  

18



 For positive symptoms of schizophrenia, the R-squared value is calculated as:  
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CHAPTER 5 

Summary of Results 

5.1   Results of Multivariate Regression Model (Brain Patterns vs. Symptoms 

of Schizophrenia) 

 The final model is shown in the table below: 

Table 5.1   Final Models (Brain Patterns vs. Symptoms of Schizophrenia) 

20



 In this final model, the number of between-network variables exceeds the number of 

within-network variables in both COBRE and CNP, which suggests that between-network 

brain patterns may play a more important role in explaining the symptoms of schizophrenia 

than within-network brain patterns. This model explains 27.24% of variation in negative 

dimension of PANSS, 42.44% of variation in positive dimension of PANSS, 44.99% of 

variation in disorganized dimension of PANSS, 19.76% of variation in excited dimension of 

PANSS, and 26.07% variation in anxiety dimension of PANSS. Here the adjusted R-square 

value is preferable because the number of variables in our study is larger than the sample size.  

Table 5.2   Table of Adjusted R-squares

 Some significant brain patterns mapped to 5 dimensions of PANSS are listed in the table 

below: 

Red: High values of the brain pattern = More severe symptoms of schizophrenia 

Blue: Low values of the brain pattern = Less severe symptoms of schizophrenia 

21



 

Table 5.3   Significant Predictors

 We would like to know whether our model contains at least one useful predictor in 

predicting the 5-dimensional PANSS and the 2-dimensional SANS/SAPS.  
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- Null Hypothesis: All slope coefficients of the brain pattern predictors are zero. 

- Alternative Hypothesis: At least one of the slope coefficients of the brain pattern 

predictors is not zero. 

To predict the negative dimension of PANSS, the p-values associated with all predictors 

are greater than 0.05. Therefore, we fail to reject the null hypothesis, and conclude that none of 

the brain patterns is useful predictor of negative dimension of PANSS.

To predict the positive dimension of PANSS, the p-values associated with sensory hand 

fronto-parietal, sensory mouth fronto-parietal, sensory mouth auditory, sensory hand dorsal 

attention, sensory mouth dorsal attention, and visual dorsal attention are smaller than 0.05. We 

reject the null hypothesis. Keeping all other constant, if sensory mouth fronto-parietal/sensory 

mouth auditory/sensory hand dorsal attention increases, the patient will score higher on the 

positive dimension of PANSS. If sensory hand fronto-parietal/sensory mouth dorsal attention/ 

visual dorsal attention increases, the patient will score lower on positive dimension of PANSS. 

 To predict the disorganized dimension of PANSS, the p-values associated with sensory 

hand fronto-parietal, sensory mouth fronto-parietal, sensory hand dorsal attention, sensory 

mouth dorsal attention, visual dorsal attention, and cingulo-opercular task control global 

efficiency are smaller than 0.05. We reject the null hypothesis. Keeping all other constant, if 

sensory mouth fronto-parietal/ sensory mouth auditory/ sensory hand dorsal attention 

increases, the patient will score higher on the disorganized dimension of PANSS. If sensory 

hand fronto-parietal/sensory mouth dorsal attention/visual dorsal attention/cingulo-opercular 

task control global efficiency increases, the patient will score lower on disorganized dimension 

of PANSS. 
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 To predict the excited dimension of PANSS, the p-value associated with sensory hand 

fronto-parietal is smaller than 0.05. We reject the null hypothesis. Keeping all other constant, if 

sensory hand fronto-parietal increases, the patient will score lower on excited dimension of 

PANSS. 

To predict the anxiety dimension of PANSS, the p-values associated with sensory hand 

fronto-parietal and visual dorsal attention are smaller than 0.05. We reject the null hypothesis. 

Keeping all other constant, if sensory hand fronto-parietal or visual dorsal attention increases, 

the patient will score lower on the anxiety dimension of PANSS. 

To predict the sum of SANS, the p-values associated with all predictors are greater than 

0.05. Therefore, we fail to reject the null hypothesis, and conclude that none of the brain 

patterns is useful predictor of sum of SANS. 

To predict sum of SAPS, the p-values associated with all predictors are greater than 0.05. 

Therefore, we fail to reject the null hypothesis, and conclude that none of the brain patterns is 

useful predictor of sum of SAPS.

A cross-study model validation using COBRE as the training dataset and CNP as the 

testing dataset was also conducted to check the performance of the model we trained as well as 

guard against the possibility of overfitting. For negative symptoms of Schizophrenia, the R-

squared value is:  
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 For positive symptoms of schizophrenia, the R-squared value is:

The COBRE multivariate regression model explains 40.072% of variation in SANS of 

the CNP data, and explains 52.420% of variation in SAPS in the CNP data. 

5.2   Results of Multivariate Regression Model (PANSS vs. Interactions 

between fMRI and Medication) 

 Again, we use the adjusted R-square value to evaluate our model because the number of 

variables in our study is larger than the sample size. The multivariate regression model 

examining the interaction between medication and fMRI explains 41.17 % of variation in 

negative dimension of PANSS, 62.82 % of variation in positive dimension of PANSS, 58.05 % 

of variation in disorganized dimension of PANSS, 56.81 % of variation in excited dimension of 

PANSS, and 64.30 % variation in anxiety dimension of PANSS. 

Table 5.4   Table of Adjusted R-squares
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Some significant interactions between fMRI and Medication mapped to 5 dimensions of 

PANSS are listed in the table below: 

Table 5.5   Significant Predictors 

 We would like to know whether our model contains at least one useful predictor in 

predicting the 5-dimensional PANSS. 

- Null Hypothesis: All slope coefficients of the brain pattern predictors are zero. 

- Alternative Hypothesis: At least one slope coefficient of the brain pattern predictors 

is not zero. 

We reject the null hypothesis because the p-values associated with multiple interaction 

effects are smaller than 0.05. Further interpretations of the results will be provided along with 

the interaction plots in the following section.
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• Interpretation of Interaction Plots of Significant Interaction Effects 

  

Figure 5.1   Interaction Between Medication and Auditory Small World for Positive PANSS 

 The effect of auditory small world on positive PANSS is not similar for patients taking 

different medication types. When auditory small world is smaller than 0.9, patients taking the 

2nd-generation medications score higher on positive PANSS than patients taking both-generation 

medications. When auditory small world is larger than 0.9, patients taking both-generation 

medications score higher on positive PANSS with only a few exceptions. 
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Figure 5.2   Interaction Between Medication and Fronto-Parietal Task Control World for Positive PANSS

The effect of fronto-parietal task control world on positive PANSS is not similar for 

patients taking different medication types. When fronto-parietal task control world is smaller 

than around 0.53, patients taking 2nd-generation medications score higher on positive PANSS 

than patients taking both-generation medications. When fronto-parietal task control world is 

approximately between 0.53 and 0.9, patients taking both-generation medications score higher on 

positive PANSS. When parietal task control world is higher than 0.9, patients taking 2nd-

generation medications score higher again. 
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Figure 5.3   Interaction Between Medication and Memory Retrieval Small World for Positive PANSS

 The effect of memory retrieval small world on positive PANSS is not similar for patients 

taking different medication types. When memory retrieval small world is smaller than 1, patients 

taking the 2nd-generation medications generally score higher on positive PANSS. When memory 

retrieval small world is above 1, patients taking both-generation medications score higher on 

positive PANSS, with some exceptions when memory retrieval small world is around 1.8 and 

2.8. 
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Figure 5.4   Interaction Between Medication and Salience Small World for Positive PANSS

The effect of salience small world on positive PANSS is not similar for patients taking 

different medication types. When salience small world is smaller than 0.55, patients taking 2nd-

generation medications score higher on positive PANSS. When salience small world is above 

0.55, most patients taking both-generation medications score higher on positive PANSS. 
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Figure 5.5   Interaction Between Medication and Auditory Small World for Disorganized PANSS

 The effect of auditory small world on disorganized PANSS is not similar for patients 

taking different medication types. When auditory small world is smaller than around 0.97, 

patients taking 2nd-generation medications tend to score higher on disorganized PANSS, with 

three exceptions in which patients taking both-generation medications score higher. When 

auditory small world is between 0.97 to 1.25, patients taking both-generation medications 

generally score higher on disorganized PANSS. When auditory small world is larger than 1.25, 

patients taking 2nd-generation medications score higher on disorganized PANSS again.  
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Figure 5.6   Interaction Between Medication and Salience Small World for Excited PANSS 

 The effect of salience small world on excited PANSS is not similar for patients taking 

different medication types. When salience small world is smaller than 0.78, patients taking both-

generation medications score higher on excited PANSS, with two exceptions around 0.6. When 

salience small world is larger than 0.78, patients taking 2nd-generation medications score higher 

on excited PANSS, with two exceptions around 1 and 1.13.  
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Figure 5.7   Interaction Between Medication and Auditory Small World for Anxiety PANSS

 The effect of auditory small world on anxiety PANSS is not similar for patients taking 

different medication types. When auditory small world is smaller than 0.9, patients taking 2nd-

generation medications score higher on anxiety PANSS. When auditory small world is between 

0.9 and 1.1, patients taking both-generation medications score higher on anxiety PANSS. 

Patients taking 2nd-generation medications score higher on anxiety PANSS when auditory small 

world is between 1.1 and 1.2, but they score lower when auditory small world is above 1.2.  
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Figure 5.8   Interaction Between Medication and Fronto-Parietal Task Control World for Anxiety PANSS

 The effect of fronto-parietal task control world on anxiety PANSS is not similar for 

patients taking different medication types. When fronto-parietal task control world is smaller 

than 0.53, patients taking 2nd-generation medications score higher on anxiety PANSS. When 

fronto-parietal task control world is between 0.53 and 0.77, patients taking both-generation 

medications score higher on anxiety PANSS. When fronto-parietal task control world is above 

0.77, patients taking 2nd-generation medications score higher again. 
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Figure 5.9   Interaction Between Medication and Salience Small World for Anxiety PANSS

The effect of salience small world on anxiety PANSS is not similar for patients taking 

different medication types. When salience small world is smaller than 0.48, patients taking 2nd-

generation medications score higher on anxiety PANSS. When salience small world is larger than 

0.48, patients taking both-generation medications tend to score higher on anxiety PANSS, 

although one exception occurs when salience small world is around 0.75 and two exceptions 

occur when salience small around is larger than 1.05. 
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Figure 5.10   Interaction Between Medication and Uncertainty Small World for Anxiety PANSS

The effect of uncertainty small world on anxiety PANSS is not similar for patients taking 

different medication types. When uncertainty small world is smaller than 0.25, patients taking 

both-generation medications score higher on anxiety PANSS. When uncertainty small world is 

between 0.25 to 0.48, patients taking 2nd-generation medications generally score higher on 

anxiety PANSS, although there are three exceptions. When uncertainty small world is above 

0.48, patients taking both-generation medications score higher again. 
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CHAPTER 6 

Conclusion and Recommendation 

6.1   Conclusion 

 The objective of this paper is to train multiple supervised learning algorithms to explore 

the relationship between brain patterns and symptoms of schizophrenia and the role different 

types of antipsychotic medication play in this.  

 For the COBRE study, we found that sensory hand fronto-parietal, sensory mouth front 

parietal, sensory mouth auditory, sensory mouth dorsal attention, sensory hand dorsal attention, 

and cingulo-opercular task control global efficiency have significant effects on PANSS scores. 

Specifically, keeping all else constant, higher values of sensory mouth fronto-parietal, or sensory 

mouth auditory, or sensory hand dorsal attention will result in more severe symptoms of 

schizophrenia. On the other hand, keeping all else constant, higher values of sensory hand 

fronto-parietal or sensory mouth dorsal attention or cingulo-opercular task control global 

efficiency will result in less severe symptoms of schizophrenia.  

 For the CNP study, none of the brain patterns has significant effect on sums of SANS/

SAPS scores. Testing the COBRE model with CNP data shows that the COBRE model explains 

a good amount of variation in sums of SANS/SAPS, suggesting that our model is generalized 

enough to provide accurate predictions for fully independent samples.  
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 Besides, we examined the interaction effects between fMRI and medication types 

(whether it is 1st generation or 2nd generation) on the five dimensions of PANSS. It turns out 

that the interaction effects between medication types and auditory small world, fronto-parietal 

task control small world, salience small world were significant. Specifically, when auditory small 

words or fronto-parietal task control or salience small world has small values, patients taking 

2nd-generation medications tend to have more severe symptoms of schizophrenia than patients 

taking both-generation medications. When auditory small words or fronto-parietal task control or 

salience small world has large values, patients taking both-generation medications tend to have 

more severe symptoms of schizophrenia than patients taking 2nd-generation medications.  

6.2   Recommendation 

 Real data with high quality usually improves accuracy because we can go for more 

complex models without worrying about overfitting. Therefore, the next step of analysis should 

first include acquiring more data, especially data on patients who are not taking any medications 

as there are only 2 patients without medication in our dataset. 

 Besides, the interaction plots in Section 5.3 showed the comparison of different 

medication groups on their effect on small-world fMRI features for each symptom domain. 

Though we could observe clear difference from most of these plots, the results were merely 

observational and have not been tested using statistical methods. To get more powerful result, 

further statistical tests should be run. 
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