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ABSTRACT OF THE DISSERTATION 

 

High-performance computational techniques for x-ray imaging and micromagnetic analysis of 

periodic arrays 

 

 

 

by 

 

Fangzhou Ai 

 

Doctor of Philosophy in Electrical Engineering (Applied Physics) 

 

University of California San Diego, 2024 

 

Professor Vitaliy Lomakin, Chair 
 

High-performance computing (HPC) has shown a great transformation in the capability to 

address complex scientific and engineering challenges. As hardware and software advances 

continue to push the boundaries of what is computationally feasible, the pursuit of enhanced 

performance and cost efficiency remains a driving force. In this dissertation, we develop advanced 

high-performance computational techniques for x-ray imaging and micromagnetic simulations, 

and present results related to our proposed approaches. 

We begin by introducing fundamental concepts in parallel computing and micromagnetics, 

laying the groundwork for the subsequent methods and analyses. An efficient algorithm is then 
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presented for reconstructing data in coherent X-ray diffraction imaging (CXDI), enabling real-

time data processing and thereby facilitating a deeper understanding of experimental results. We 

subsequently examine a novel micromagnetic model comprising multiple spin-transfer-torque 

nano-oscillators (STNOs), demonstrating that collective synchronization across large arrays can 

be achieved through the propagation of spin waves. 

Furthermore, building on these foundations, the dissertation introduces interpolation-based 

methods for handling periodicities in micromagnetics and related domains. These methods 

seamlessly extend existing non-periodic frameworks with minimal adjustments and only marginal 

computational overhead. Finally, by integrating these techniques with the Landau–Lifshitz–

Gilbert (LLG) solver and eigenvalue solver, we address micromagnetic problems of solving for 

the magnetization dynamics both in time and frequency domains involving periodic conditions. 

The presented results demonstrate the versatility and efficiency of the presented approaches, 

offering new avenues for advancing our understanding of magnetic phenomena and their 

computational exploration. 

 



1 

INTRODUCTION 
 

In recent decades, our understanding of complex physical systems has been propelled 

forward by increasingly sophisticated mathematical models and computational approaches. From 

micromagnetics, where the behavior of magnetic materials down to the nanoscale demands 

accurate and efficient numerical simulations, to the inversion of high-resolution experimental 

datasets in techniques like coherent X-ray diffraction imaging (CXDI), the interplay between 

advanced theory and cutting-edge computation has become essential. These problems often 

involve intricate differential equations, large parameter spaces, and subtle boundary conditions 

that challenge both mathematical ingenuity and computational capability. 

While high-performance computing (HPC) techniques—such as exploiting massively 

parallel architectures, GPUs, and scalable algorithms—provide the raw computational power to 

handle these complex tasks, the core difficulty remains deeply rooted in mathematical and physical 

principles. Designing algorithms that can faithfully capture the underlying physics while 

maintaining accuracy, stability, and efficiency is at the heart of this dissertation. The work 

presented here emphasizes the theoretical foundations of these methods, demonstrating how 

careful formulation, discretization, and numerical optimization can yield simulations and data 

analyses that are both reliable and insightful. 

In micromagnetics, understanding the magnetization dynamics governed by the Landau–

Lifshitz–Gilbert (LLG) equation requires delicate balance: we must ensure accuracy in 

representing the physical interactions and also find computational strategies to handle large-scale 

models, complex geometries, and various time scales. Similarly, in CXDI, reconstructing images 

and extracting meaningful physical insights from raw diffraction data calls for algorithms that 
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combine robust mathematical techniques with efficient implementations, ensuring real-time 

processing of massive datasets. 

This dissertation brings these themes together, introducing algorithms and enhancements 

that bridge the gap between theory and experiment. We discuss how these algorithms can be 

implemented and optimized on modern computing platforms—employing HPC strategies, when 

necessary, to achieve performance gains. Yet, the narrative remains focused on the mathematical 

formulations and physical models that make these computational advances meaningful. By starting 

from fundamental principles, building accurate models, and then carefully tailoring computational 

strategies to the structure of the underlying equations, we aim to highlight not just the utility of 

HPC, but the fundamental mathematical and physical reasoning that drives progress in 

computational science. The dissertation is divided into 8 chapters. 

Chapter 1 delivers a brief introduction for parallel computing, one of the most important 

components of HPC, with three major approaches, single Central Processing Unit (CPU), multiple 

CPUs, and Graphics Processing Unit (GPU). We rely on these approaches for the later 

implementation of our techniques. 

Chapter 2 introduces the fundamentals of micromagnetics evolving around the Landau–

Lifshitz–Gilbert equation. We also present the theory and simulation results of spin wave 

generation and propagation from the micromagnetic perspective. 

Chapter 3 presents a high-performance algorithm that can be applied to processing CXDI 

experimental data at real-time speed. We include both formulation, implementation, and results 

with experimental data to verify the validity and performance. 

Chapter 4 presents micromagnetic simulations of a structure that can synchronize a large 

array of spin-transfer torque nano-oscillators (STNOs). 
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Chapter 5 introduces a fast interpolation-based approach that can handle arbitrary types of 

periodicities using the finite element method (FEM) approach, that can be incorporated on top of 

current existing methods without major modification with a small computational overhead. 

Chapter 6 combines the algorithms introduced in Chapter 5 with an LLG solver to handle 

periodic micromagnetic problems in the time domain. 

Chapter 7 combines the algorithms introduced in Chapter 5 with an eigenvalue solver to 

handle linearized periodic micromagnetic problems in the frequency domain. 

Finally, chapter 8 gives conclusion and remarks. 
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Chapter 1 Introduction to parallel computing 

 

Parallel computing is a crucial component of high-performance computing (HPC), 

fundamentally transforming the way complex computations and data processing tasks are handled. 

At its core, parallel computing involves the simultaneous use of multiple processing elements to 

solve computational problems more efficiently than possible with a single processor. It is vital in 

HPC, where the goal is to achieve peak performance and handle vast amounts of data at high 

speeds. By dividing large tasks into smaller sub-tasks that can be processed concurrently, parallel 

computing significantly accelerates the computation time and enhances the overall performance 

of HPC systems. The ability to process data and perform calculations at high speeds opens new 

ways for research and development, making parallelization indispensable. 

In this chapter we focus on three common methods of parallelization on different hardware 

architectures. It starts with the introduction of parallelization on a single multi-core CPU utilizing 

the Open Multi-processing (OpenMP). It then extends the topic to multiple CPUs via Open 

Message Passing Interface (OpenMPI), that can cooperate with OpenMP to form two level 

hierarchy for best hardware usage. Next, it addresses parallelization on GPU with Compute 

Unified Device Architecture (CUDA), the mainstream toolkit for GPU programming. Finally, it 

gives an overview of hybrid methods by blending all these techniques together for the best 

performance on different heterogenous architectures. These parallel techniques are the foundation 

of the high-performance algorithms in this dissertation. 
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1.1 Open Multi-Processing: parallel computing on multi-core CPU 

OpenMP is an industry-standard application programming interface (API) that supports 

multi-platform shared-memory parallel programming in C, C++, and Fortran. Designed to 

facilitate the development of parallel applications, OpenMP provides a straightforward and 

flexible approach to harness the power of multi-core processors, allowing developers to write 

parallel code more efficiently and with greater portability. By offering a set of compiler directives, 

library routines, and environment variables, OpenMP enables programmers to parallelize their 

code incrementally, making it an ideal choice for both new applications and the parallelization of 

existing serial code. 

OpenMP simplifies the creation and management of parallel regions in a program. It uses 

pragma directives to specify parallel regions, which are blocks of code that can be executed by 

multiple threads concurrently. These directives are inserted into the code, guiding the compiler on 

how to generate parallel executable code. This approach allows developers to maintain a single 

code base that can run on both parallel and serial systems, facilitating easier debugging and testing. 

One of the key advantages of OpenMP is its ease of use and scalability. With minimal 

changes to existing code, developers can achieve significant performance improvements by 

leveraging the capabilities of modern multi-core processors. OpenMP supports a wide range of 

parallel programming features, including parallel loops, sections, tasking, and synchronization 

constructs. These features provide fine-grained control over thread creation, workload distribution, 

and data sharing, enabling developers to optimize performance and resource utilization effectively. 

OpenMP's portability is another major benefit. It is supported by most major compilers and 

runs on a variety of platforms, from desktop computers to large-scale supercomputers. This 

widespread support ensures that OpenMP programs can be deployed across different systems with 

minimal modifications, making it a versatile tool for parallel programming. 
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1.2 Open Message Passing Interface: parallel computing on multiple CPUs 

OpenMPI, short for Open Message Passing Interface, is a prominent Message Passing 

Interface (MPI) library specifically designed for high-performance computing (HPC). It facilitates 

efficient communication between nodes in a parallel computing environment, making it 

indispensable for tasks that require the coordination of multiple processors. OpenMPI supports a 

wide set of computer architectures and network interconnects, making it highly adaptable to 

different HPC setups. 

The primary objective of OpenMPI is to provide a portable and scalable MPI standard that 

can be used on all sorts of computing systems, from single-node desktops to thousands of nodes 

in supercomputers. It implements the full MPI-3 standards and is continually updated to support 

advancements in computing technology and networking. 

Key features of OpenMPI include its robust fault tolerance, its ability to support complex network 

topologies, and its efficient use of available hardware to optimize performance. It also provides 

various tools and diagnostic utilities to facilitate development and debugging of parallel 

applications. 

For developers and researchers, OpenMPI offers an extensive toolkit for building and 

executing distributed applications that can leverage the power of parallel processing to handle 

complex computations and large data sets more effectively. Whether it is for scientific research, 

simulations, or data analysis, OpenMPI provides a foundation that enables users to maximize the 

capabilities of modern HPC environments. 

1.3 Compute Unified Device Architecture: parallel computing on GPU 

CUDA (Compute Unified Device Architecture) is a parallel computing platform and 

programming model developed by NVIDIA for harnessing the power of its GPU for general 

purpose computing. CUDA enables dramatic increases in computing performance by allowing 
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developers to utilize the many cores of a GPU to perform general-purpose mathematical and 

computational tasks in a much faster way compared to traditional sequential programming on 

CPUs. 

Introduced by NVIDIA in 2007, CUDA provides a comprehensive development 

environment and toolkit that includes a compiler, libraries, and debugging and optimization tools. 

This ecosystem allows developers to write software for GPUs in a variety of programming 

languages, including C, C++, and Fortran. The key advantage of CUDA is its ability to efficiently 

distribute computing tasks across thousands of GPU cores, enabling significant performance 

improvements for applications involving large-scale mathematical computations, such as 

simulations, analytics, and machine learning. 

The CUDA model extends the C programming language with specific extensions that allow 

direct manipulation of GPU resources. It organizes the computation in terms of grids, blocks, and 

threads, which helps in scaling processing tasks across multiple cores effectively. By minimizing 

data transfer times between the CPU and GPU and maximizing concurrent execution, CUDA 

enables developers to achieve high computational throughput across a wide range of applications. 

CUDA has been widely adopted in both academia and industry for research and 

development in fields such as bioinformatics, fluid dynamics, quantum chemistry, and machine 

learning, where large datasets and complex calculations are common. Its success has propelled the 

use of GPUs from strictly graphics rendering devices to mainstream 

1.4 Hybrid methods on heterogenous architectures 

In the domain of parallel computing, the adoption of hybrid computational methods across 

heterogeneous architectures stands as a strategy for achieving optimal efficiency and scalability. 

This approach integrates the distinct capabilities of OpenMP, OpenMPI, and CUDA to exploit the 

combined strengths of CPUs and GPUs within complex, multi-node environments. OpenMP is 
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primarily usdsed to harness parallelism on shared-memory processors, effectively distributing 

compute-intensive tasks across the multiple cores of CPUs within a single node. CUDA targets 

the powerful parallel processing capabilities of GPUs, significantly enhancing performance for 

tasks that involve large-scale data computations, such as deep learning models and scientific 

simulations. 

Further extending the computational framework, OpenMPI allows for inter-node 

communications in distributed systems, facilitating efficient data transfer and task coordination 

across a network of computers. To enhance this capability, particularly in GPU-accelerated 

environments, NVIDIA’s NCCL (NVIDIA Collective Communications Library) plays an 

important role. NCCL optimizes communication patterns that are commonly found in deep 

learning models, providing highly efficient multi-GPU and multi-node communication. This 

allows OpenMPI to more effectively manage and synchronize GPU-centric tasks, ensuring 

operations across distributed systems. 

By leveraging this hybrid approach, each component of the HPC ecosystem can be utilized 

to its fullest potential - OpenMP for intra-node efficiency, CUDA for intensive data processing on 

GPU, and OpenMPI combined with NCCL for robust inter-node communication and management. 

Blended combinations between these technologies enable developers to tailor their use of 

computing resources to match the specific requirements of their computational tasks. This not only 

maximizes performance but also optimizes resource utilization across diverse computing 

environments, making it possible to tackle more complex, data-intensive problems with greater 

speed and accuracy. As such, hybrid methods on heterogeneous architectures represent the 

forefront of current HPC capabilities, blending multiple forms of computational power to address 

the ever-growing demands of modern scientific and engineering challenges. 
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Chapter 2 Brief overview of micromagnetics 

 

Micromagnetics [1] is a branch of physics that studies the magnetization behaviors at 

nanometer to close to sub-millimeter length scales. The length scales are large enough to average 

out the atomic structure of the material, but small enough to resolve complex magnetization states, 

such as domain walls or vortices. It is also a theoretical approach that describes the magnetization 

process at this intermediate scale between the quantum mechanical scale of individual atoms and 

the macroscale.  It seeks to understand and predict the complex interactions between magnetic 

moments in a material, which are influenced by both intrinsic properties, such as the magnetic 

anisotropy, exchange stiffness, and extrinsic factors, such as geometrical constraints and external 

magnetic fields. Based on the theory, the corresponding micromagnetic simulations are essential 

tools for this field, providing detailed insights into the magnetization configurations and dynamics. 

These simulations help in designing and optimizing various magnetic devices, such as sensors, 

memory devices, and actuators, which are crucial components in modern technology. 

This chapter presents the foundation of the micromagnetic theory. It first introduces the 

core concept, i.e. LLG equation [2], that governs the dynamics of magnetization. It then discusses 

the modeling of various kinds of interactions in the micromagnetic framework within a continuum 

representation. Finally, it describes the theory and micromagnetic model of spin waves as a 

practical example of micromagnetics. 

2.1 Landau-Lifshitz-Gilbert equation   

The Landau-Lifshitz-Gilbert (LLG) equation is a fundamental mathematical model used in 

the field of micromagnetics to describe the dynamics of magnetization in ferromagnetic materials. 

Developed initially by Lev Landau and Evgeny Lifshitz (1935), and later augmented by T. L. 

Gilbert, the LLG equation provides a comprehensive framework for understanding how the 
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magnetization vector M (yellow arrow in Fig. 2.1) in a material responds to the total effective field 

effH (blue arrow in Fig. 2.1). Mathematically, the LLG equation is expressed as: 

 eff eff2
( )

1 st M

 




= −  +  

 +

M
M H M M H  (2.1) 

The   is the gyromagnetic ratio, sM  is the saturation magnetization and   is the 

phenomenological damping constant [3] determined by the material property. Here, Eq. (2.1) is 

often referred to as the explicit form of LLG equation. 

 There are two terms in the right-hand-side (RHS) of Eq. (2.1). The first term is effM H  

(green arrow in Fig. 2.1), and it describes a precessional torque that is perpendicular to both M  

and effH , leading to an energy non-dissipative precession motion of M  precessing around the axis 

with the same direction of effH . The second term eff M M H  (red arrow in Fig. 2.1) is a 

dissipative damping term pointing from the M  to the effH , as the direction suggests this term is 

trying to align the M  with the effH  by damping. 

2.2 Principal interactions in continuum representation 

The total field effH  in Eq. (2.1) is the net interaction coming from various interactions, 

expressed as   

 ms ex an ap ...eff = + + + +H H H H H  (2.2) 

The first four RHS interactions are magnetostatic interaction msH , exchange interaction exH , 

magneto-crystalline anisotropy interaction anH , and Zeeman, also called applied field, interaction 

apH . These fields can be derived from the partial derivative of the magnetic energy E  with respect 

to the M  
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Figure 2.1: Illustration of how effH  (blue arrow) interacts with M , the precession term effM H  

is the green arrow that keeps the M  revolving, and the damping term eff M M H  is the red 

arrow that tries to align the M  with effH . For most practical magnetic materials damping effect 

always exists.  

 

We first give an introduction to the four most common interactions that broadly exist in 

many kinds of magnetic systems. We then give an overview of other kinds of interactions that may 

exist in certain types of magnetic systems. 

2.2.1 Magnetostatic interaction 

To understand the Magnetostatic interactions [4], we first introduce the concept of a 

magnetic monopole. It is also known as magnetic charge, a similar concept as a counterpart of 

electric charge. Just like the electric charge, we can define the volumetric magnetic charge and 

surface magnetic charge 

 
( ) ( )

ˆ( ) ( ) ( )

q



= 

= − 

r M r

r n r M r
 (2.3) 

Here, n̂  is the normal direction to the surface of the magnetic domain. These charges, then, result 

in the so-called magnetic scalar potential that is similar to the electric scalar potential  



12 

 
' '

( ') ( ')
( ) ' '

4 | ' | 4 | ' ' |
V S

q
u dV dS



 
= +

− − 
r r

r
r r r r

 (2.4) 

With the magnetic potential, the magnetostatic field can be calculated as 

 ms ( ) ( )u= −H r r  (2.5) 

Combining Eq. (2.3), Eq. (2.4) and Eq. (2.5), we have the complete form of msH  with respect to 

M  as 

 
ms

' '
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( ) ( ' ')
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 
= − −
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M r n r' M r

H r
r r r r

 (2.6) 

A special care needs to take in Eq. (2.3), as indicated in Maxwell equation that there is no 

standalone magnetic monopoles, neutrality condition has to be enforced in Eq. (2.3), namely 

 
' '

( ) ' ( ) ' 0
V S

q dV dS+ = r r  (2.7) 

The neutrality condition must (2.7)hold for any magnetic systems as an intrinsic constraint. 

 For many practical micromagnetic problems, evaluating msH  is computationally 

expensive, as the time complexity of superposition sum in Eq. (2.4) scales quadratically with 

growing problem size. Consequently, it has a major impact on the overall micromagnetic 

simulation performance. There exist a set of approximate methods to handle the superposition sum 

efficiently with a desired error level, e.g., fast multipole method (FMM), non-uniform fast Fourier 

transform (NUFFT) and so on. We adopt the NUFFT method as our core for evaluating msH   [5]. 

2.2.2 Exchange interaction 

The exchange interactions appear due to a quantum effect that originates from the Pauli 

repulsion  [6]. In the Heisenberg model  [7], the energy ,i jE  arises from the exchange interaction 

between spin iS  and jS  can be denoted as 
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 , exi j i jE J= −  S S  (2.8) 

The 
exJ  is the exchange integral that determines the coupling strength through its module and spin 

configuration through the sign. A positive 
exJ  means the parallel alignment is preferred between 

spin 
iS  and jS , and a negative 

exJ  signals preference over anti-alignment. In magnetism, the 

parallel alignment indicates the ferromagnetism as shown in Fig. 2.2(a), and the anti-parallel 

configuration can either represent the anti-ferromagnetism or ferrimagnetism, shown in Fig. 2.2(b) 

and Fig. 2.2(c), respectively, depending on whether the net magnetization is 0 or not. 

 

Figure 2.2: Illustration of magnetization with different exJ . (a) Ferromagnetism with ex 0J  , (b) 

anti-ferromagnetism with ex 0J  , the net magnetization is equal to 0 and (c) ferrimagnetism with 

ex 0J  , the net magnetization is larger than 0. 

 

In micromagnetics, the exchange interactions are calculated via the divergence of the 

gradient of the magnetization, i.e. Laplacian operator, denoted as  [8] 

 
2ex

ex 2

2
( ) ( )

( )s

A

M
= H r M r

r
 (2.9) 



14 

Here exA  is the exchange constant related to the previous 
exJ  in Eq. (2.8). It is an important 

parameter that reflects the coupling strength within the magnetic material. Based on that we can 

defined an exchange length as  [9] 

 ex

ex

2

s

A
l

M
=  (2.10) 

The exchange length characterizes the geometry scale at which we can assume the magnetization 

in Eq. (2.9) to vary slowly. In micromagnetic simulations, the mesh size of the model must be at 

least of this scale, namely this value determines the lowest bound for mesh size from the 

perspective of exchange interaction. 

 The above exchange interaction is the bulk exchange interaction that comes from 

Pauli repulsion.  There is another kind of exchange interaction that comes from the Ruderman-

Kittel-Kasuya-Yosida (RKKY) interaction, often referred to as surface exchange interaction  [10]. 

 

2.2.3 Magneto-crystalline anisotropy interaction 

Magneto-crystalline anisotropy interaction refers to the dependence of a material's 

magnetic properties on its crystallographic structure. This interaction is critical for understanding 

and designing materials where directional magnetic properties are essential.  

The origin of magneto-crystalline anisotropy interaction lies in the spin-orbit coupling 

(SOC) in a crystal lattice, which causes the energy of the system to depend on the direction of the 

magnetization relative to the crystal axes. This interaction significantly impacts the magnetization 

behavior, influencing its coercivity, remanence, and overall magnetic stability. Materials with high 

anisotropy are often used in applications requiring stable magnetic states, such as permanent 

magnets and magnetic storage devices. 
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One of the most common magneto-crystalline anisotropy is the uniaxial anisotropy, which 

defines a uniaxial preferred direction for magnetization. Such a direction is also called as soft axis. 

Such anisotropy can be roughly described as  [11] 
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Here, UK  is the uniaxial anisotropy energy density and V  is the volume,   is the angle between 

M , and soft axis defined by k̂ .  We can observe 
uni

anH  has its maximum when M  is parallel to k̂  

and its minimum when M  is perpendicular to k̂ . 

 Another common anisotropy is cubic anisotropy with three easy axes ˆ ˆ ˆ, ,x y z . We 

use , ,x y z    to denote the angles between M  and each easy axis, then we can express the cubic 

anisotropy as  [11] 
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Similar to Eq. (2.11), the CK  is the cubic anisotropy energy density. 

 Another kind of anisotropy arises from the object shape, which is described by a 3 3  

shape tensor dN . This shape anisotropy is significant for certain type of shapes, e.g. thin film, long 

cylinders etc. 
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2.2.4 Zeeman interaction 

The Zeeman interactions represent the influence of an externally applied magnetic field. 

This fundamental micromagnetic interaction is critical in manipulating and controlling the 

magnetic properties of a system. 

Zeeman interactions involve the energy coupling between the magnetization and an 

external applied field. The energy associated with the Zeeman interaction can be expressed as: 

 zee apE = − M H  (2.13) 

This interaction tends to align the magnetic moments with the external field, minimizing the 

system energy. It is easy to see that the zeeE  arrives at its minimum when M  is parallel to apH . 

The alignment of magnetic moments due to the Zeeman effect is critical in applications 

such as magnetic recording, where external fields are used to set the orientation of magnetic 

domains. In simpler terms, the Zeeman interaction can dictate the direction of the magnetization, 

making it an important tool in data storage technologies. 

2.2.5 Other interactions 

Apart from the four common interactions discussed above, there are other kinds of 

interactions that may be important in certain kinds of magnetic systems. Examples are the 

Dzyaloshinskii-Moriya Interaction (DMI), spin-transfer torque, thermal effects, magnetoelastic 

coupling and so on. This section briefly introduces these additional interactions as a supplement 

to the above four interactions. 

DMI is a result of SOC in systems with a broken inversion symmetry. This interaction is 

critical in the formation of chiral magnetic structures, such as skyrmions. DMI leads to a preference 

for non-collinear alignment of neighboring magnetic moments, which can stabilize complex 

magnetic textures with unique rotational senses. This interaction is particularly significant in thin 

films and multilayer structures where interface-induced symmetry breaking is prevalent. 
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Spin-transfer torque (STT) is a phenomenon where the angular momentum of conduction 

electrons is transferred to local magnetic moments, thereby exerting a torque on them. This effect 

is fundamental in spintronic devices and has applications in magnetic random-access memory 

(MRAM) and spin-torque oscillators. STT allows for the manipulation of magnetic states without 

the need for external magnetic fields, instead using spin-polarized electric currents, which can lead 

to more energy-efficient magnetic storage technologies. STT can be modeled within LLG equation 

by adding an extra Slonczewski term, which often is referred as LLGS equation  [12]. An extended 

method is Zhang-Li model  [13] that accounts for both adiabatic and non-adiabatic contributions 

to the torque, capturing more complex dynamics of magnetization, especially in structures with 

non-uniform geometries and current distributions.  

Thermal fluctuations play a crucial role in micromagnetic dynamics, particularly in 

nanoscale systems  [14]. Temperature affects the stability of magnetic configurations and can 

induce transitions between different magnetic states. The random thermal motion of spins, 

quantified by the stochastic LLG equation, is essential for understanding phenomena, such as 

thermal magnetization reversal and the behavior of magnetic materials at finite temperatures. 

Magnetoelastic interactions describe the coupling between magnetic and elastic properties 

of a material  [15]. Strain in magnetic materials can influence their magnetic anisotropy, and 

conversely, the magnetic state can affect the mechanical strain state. This interaction is crucial in 

magnetostrictive materials, where magnetic fields can induce strains, and in applications like 

sensors and actuators, where the mechanical response to magnetic fields is utilized. 

Other less common but still noteworthy interactions include magneto-optical effects, where 

the magnetic state influences the optical properties of materials, and vice versa. Such interactions 

are essential in devices like isolators and circulators in optical communication systems. 
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In conclusion, while the primary micromagnetic interactions form the backbone of 

understanding magnetic behavior, these additional interactions enrich the complexity and 

functional possibilities of magnetic materials in advanced technological applications. 

2.3 Spin waves in magnetic materials 

Spin waves are collective excitations of the spins in a magnetic material  [16], representing 

a wave-like magnetization perturbation propagating through the medium. Spin waves arise due to 

the exchange interaction and magnetic dipole, i.e., magnetostatic, interaction between neighboring 

spins, leading to oscillations around their equilibrium states. Spin waves play a critical role in 

various applications, such as magnetic storage, spintronics, and magnonic devices, as they can 

carry energy and information without electrical currents, thus reducing heat dissipation. 

Spin waves can be described by the LLG equation (Eq. (2.1)), which governs the dynamics 

of the magnetization. For small deviations from equilibrium, the linearized LLG equation leads to 

the description of spin wave phenomena, including their propagation characteristics, dispersion 

relations, and interaction with external fields  [16]. 

2.3.1 Categories of spin waves 

Spin waves can be categorized based on their propagation modes, excitation mechanisms, 

and their interaction with the material’s structure and geometry. Each category offers unique 

characteristics, making them suitable for specific applications in spintronics, magnonics, and 

microwave devices  [17]. 

2.3.1.1 Bulk Spin Waves 

Bulk spin waves propagate through the entire volume of the magnetic material and are 

primarily characterized by their excitation source and the dominant interactions  [16]. 

Exchange spin waves arise due to the short-range exchange interaction between 

neighboring spins. These waves exhibit: 
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Short Wavelengths: The wavelength may be on the order of atomic spacings, resulting in 

high spatial resolution for potential applications. 

High Frequencies: Exchange interaction generates spin waves with frequencies in the 

gigahertz to terahertz range. 

Strong Localization: The short wavelength and high-frequency nature make them highly 

localized within the material, ideal for high-density magnonic devices. 

Exchange spin waves are leveraged in high-speed magnonic processors and nanoscale 

communication devices. 

Dipolar spin waves are governed by long-range magnetic dipole-dipole interactions. They 

exhibit: 

Long Wavelengths: Their wavelengths can range from micrometers to millimeters, making 

them suitable for macroscopic wave manipulation. 

Lower Frequencies: Frequencies are typically in the megahertz to low gigahertz range, 

enabling efficient coupling with microwave systems. 

Weaker Localization: The longer wavelength ensures their propagation over larger 

distances within the material. 

Dipolar spin waves are used in non-volatile memory and magnon-based interconnects for 

long-range signal transfer. 

2.3.1.2 Surace Spin Waves 

Surface spin waves (SSW) are confined to the surface or interface of a magnetic material. 

They decay exponentially as they penetrate the bulk, making them highly sensitive to surface 

conditions  [16]. Key characteristics include: 

Exponential Decay: The amplitude of these waves decreases with depth from the surface, 

providing unique confinement properties. 
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Enhanced Sensitivity: Surface spin waves are particularly sensitive to surface defects, external 

fields, and changes in boundary conditions. 

Directional Propagation: Their propagation direction can be influenced by the magnetic 

anisotropy and external field. 

Surface spin waves are employed in sensors, magnonic crystals, and edge-mode magnonics 

for efficient waveguiding. 

2.3.1.3 Backward volume spin waves 

Backward volume spin waves (BVSW) are a category where the group velocity (the energy 

propagation direction) and phase velocity (the wavefront propagation direction) are opposite  [16]. 

Key features include: 

Non-Reciprocal Behavior: This characteristic is particularly useful in isolators and 

circulators where unidirectional wave propagation is required. 

Geometrical Dependence: The properties of backward volume spin waves strongly depend 

on the material geometry and the orientation of the applied magnetic field. 

Backward volume spin waves find applications in designing magnonic waveguides and isolators, 

enabling energy-efficient wave transmission. 

2.3.1.4 Other spin waves 

There are other kinds of spin waves, e.g., localized spin waves, which can be seen in the 

spin-Hall oscillator (SHO) or spin-torque oscillator (STO) devices  [18]. In real-world scenarios, 

multiple types of spin waves may coexist or interact. For example, exchange and dipolar spin 

waves can hybridize, leading to mixed modes with unique properties. The ability to understand 

and control these interactions is critical for designing advanced spintronic and magnonic devices. 

This detailed categorization lays the foundation for exploring the rich physics of spin wave 

phenomena and their applications in emerging technologies. 
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2.3.2 Dispersion relationship 

In this section we introduce the dispersion relationship of magnetostatic spin wave (MSW), 

more specifically, we focus on three fundamental types of MSW: Magnetostatic Surface Spin 

Waves (MSSW), Magnetostatic Backward Volume Waves (MSBVW), and Magnetostatic 

Forward Volume Waves (MSFVW), arise depending on the relative orientation of the 

magnetization vector ( M ), the wavevector ( k ), and the geometry of the system  [17]. 

2.3.2.1 MSSW 

MSSWs occur when M  is perpendicular to k , and both lie in the plane of a thin magnetic 

film. These waves propagate along the surface of the material, with their amplitude decaying 

exponentially into the bulk. The dispersion relationship can be shown as  [17] 
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appH  is the external applied magnetic field along the direction of M . 

2.3.2.2 MSBVW 

MSBVWs occur when the M  is parallel to k , and both lie in the plane of a thin magnetic 

film. This configuration allows these waves to propagate through the bulk of the material. The 

dispersion relationship can be expressed as 
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2.3.2.3 MSFVW 

MSFVWs occur when k  is perpendicular to M   [17]. The difference is that the M  is 

perpendicular to the film and k  lies within the film. This configuration allows these waves to 

propagate through the bulk, similar to MSBVWs. The dispersion relationship of MSFVW is  [16] 



22 

2 2 2 2 2

0 app ex app ex

1
( ) [( ) ] [( ) (1 )].

kd

s s s s s

e
k M M k M M k M

kd
    

−−
= − +  − + + −H H  (2.16) 

 

Magnetostatic spin waves offer diverse propagation characteristics determined by the 

relative orientation of the magnetization vector and wavevector. MSSWs can be used in surface-

constrained, non-reciprocal applications, while MSBVWs and MSFVWs enable bulk propagation 

with backward and forward dispersion, respectively. The unique properties of these modes, 

including their dispersion relationships and field-dependent behaviors, provide a foundation for 

designing magnonic devices. By leveraging the propagation dynamics of each mode, we can 

develop technologies for signal processing, logic circuits, and next-generation spintronic systems. 
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Chapter 3 Real time 3D coherent X-ray diffraction imaging 

 

Coherent X-ray Diffraction Imaging (CXDI) is an approach that uses a set of X-ray images 

to reconstruct 3D objects at a nanoscale resolution [19]. CXDI can resolve volume information of 

an object thus offering a non-invasive way to identify the object’s interior  [20]. CXDI finds many 

applications in physics, chemistry, and biology  [21–28]. With refined experiment 

techniques  [29,30] and algorithms  [31,32], CXDI is expected to play an increasingly important 

role across different disciplines. 

 

Figure 3.1: (A) A sample holder containing a cell rotated to different angles with coherent X-ray 

beam impinges on this cell, diffraction patterns are measured. (B) A three-dimensional diffraction 

pattern was assembled from two-dimensional diffraction patterns. The three-dimensional structure 

of the cell (C) was iteratively reconstructed. 

 

During an experiment, a coherent X-ray beam is diffracted by the object and a charge-

coupled device (CCD) sensor collects the diffraction patterns as 2D images. For 3D object 

imaging, the object is rotated by a set of angles and the corresponding set of 2D images is collected. 

This procedure can be treated as a Fourier transform (FT) of the object as Fraunhofer’s diffraction 

(Fig. 3.1). In principle, the object can be reconstructed by an inverse FT. However, the CCD sensor 
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only collects the intensity whereas the phase information is lost. CXDI uses an iterative procedure 

based on forward and inverse FTs, which allows extracting the phase information from the 

intensity measurements. The ability to obtain both the intensity and phase leads to a high-resolution 

reconstruction  [33]. 

Typically, 3D CXDI reconstruction is based on interpolating the 3D image (reciprocal) 

domain to create a 3D image in a regular set of pixels and then performing a 3D iterative phase 

retrieval algorithm  [33,34]. Often, many iterations are required. Each iteration involves 3D 

forward and inverse FTs, which are computationally intensive. For large images, CXDI 

computational time can be large, e.g., it can take several days. Additionally, for large images, 

CXDI can require much memory, which complicates implementations on massively parallel 

systems, such as Graphics Processing Units (GPUs). These factors make it nearly impossible to 

reconstruct objects in real time during the experiment. While with the improving experimental 

techniques and apparatus, the available collected data becomes larger, the CXDI reconstruction 

procedure becomes a bottleneck. Highly efficient CXDI algorithms and their numerical 

implementations are essential to allow for real-time CXDI. 

In this chapter, we introduce a “carousel” phase retrieval algorithm (CPRA). Instead of the 

direct 3D reconstruction, CPRA first retrieves the phases of the collected 2D diffraction patterns 

and then uses this information to reconstruct the 3D object. CPRA resolves shortcomings of 

inconsistencies of the 2D diffraction pattern reconstructions of related to approaches, and thus 

allows for a rapid convergence. CPRA addresses the diffraction pattern inconsistency by a two-

level iterative algorithm. In the first iteration level, the 2D patterns are pre-reconstructed starting 

from the first 2D pattern, such that each adjacent 2D pattern is reconstructed based on the previous 

patterns until the last pattern returns to the first one, hence the name “carousel”. In the second 
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level, the iterations are over mixed 2D patterns obtained in the first iteration level. The phase 

reconstruction of the 2D diffraction patterns is much more efficient than the direct 3D 

reconstruction and it can be accomplished in parallel. The final 3D reconstruction is highly 

efficient and accurate because of the availability of the phase information. The benefits of CPRA 

include a major reduction of the number of iterations needed for convergence, use of 2D rather 

than 3D FTs, a major reduction of the computational time and memory consumption, amenability 

to massive parallelization, increased accuracy, and improved robustness. CPRA is well-suited for 

implementations on GPUs with major a performance enhancement. CPRA allows for a high-

resolution reconstruction in real time during experiments. 

3.1 Formulation of algorithm 

For 3D CXDI reconstruction, to acquire sufficient information for the 3D image domain, 

an object is rotated during the experiment at a sequence of angles n  corresponding to incident 

wave vectors ,i nq , where 1,..., pn N=  and pN  is the total number of the angles chosen to be large 

enough for sufficient angular resolution (Fig. 3.1). For each incident wave vector ,i nq , a scattered 

intensity map , ,( , )t n i nI q q  of N N  pixels are collected. The map corresponds to a set of 

transverse wave vector components , ,t n i n= −q q q . Each , ,( , )t n i nI q q  is related to complex-valued 

spectral content , , )( ,t n i nE q q  via 2

, , , ,( , ) ( )| , |t n i n t n i nI E=q q q q . The result of the measurement is pN  

intensities, each for N N  pixels. A high reconstruction resolution requires pN  and N  to be 

large. The goal is to reconstruct the object ( )O r  in the real space, where r  is the real space vector 

and ( )O r  is the electron density of the sample or spin densities of magnetic domain. The object 

can be reconstructed since it is related to the inverse FT of the measured intensities. However, the 
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measured intensities do not contain the phase information and, therefore, it needs to be recovered 

via a phase retrieval algorithm. 

We now present an alternative greatly efficient CPRA with the aid of Fourier slice theorem. 

We represent the measured 2D intensity for a given incident wavevector ,i nq  as 

 
22

, , , , ,
ˆ( , ) ( , ) ( ) i

t n i n t n i n i nI E O e d d = = 
  

q r
q q q q q r r q ,  (3.1)  

where we have two integrals: an integral inside the square bracket is a 3D FT transforming the 

object ( )O r  into its spectral content ( )E q  and an outside integral over ˆ ˆ ˆ
x y zd dq dq dq= + +q x y z , 

which is projected along the unit vector ,
ˆ

i nq  of ,i nq . 

Based on Eq. (3.1), we can use the Fourier slice theorem, which, in this case, states that a 

3D FT followed by a 3D to 2D dimension projection in the reciprocal space is equivalent to 3D to 

2D dimension projection in the real space followed by a 2D FT. Hence, we can rewrite Eq. (3.1) 

as 

 , ,
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, , , , , ,
ˆ( , ) ( , ) ( ) t n t ni

t n i n t n i n i n t nI E O d e ds
 = = 

  
q r

q q q q q r r , (3.2) 

where , , ,
ˆ ˆ( )t n i n i n= − r r q r q  is the coordinate and ,t nds  is the surface differential in the plane 

transverse to the ,
ˆ

i nq  direction. Equation (3.2) now has a 3D to 2D real-space projection inside the 

brackets, which is followed by a 2D FT. Let us regard the result in the square bracket as a new 2D 

projected object , , ,
ˆ( , ) ( )t n i n i nO O d =  r q q r r  and formulate Eq. (3.2) in a 2D form as 

 , ,
22

, , , , , , ,( , ) ( , ) ( , ) t n t ni

t n i n t n i n t n i n t nI E O e ds


= = 
q r

q q q q r q . (3.3) 
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It follows that we can reconstruct a set of 2D projected objects , ,( , )t n i nO r q  representing the 

projection of the object at the nth angle along ,
ˆ

i nq , which correspond to the discrete set of incident 

directions of ,i nq  for the measured angles ,i n . The reconstruction of each projected object can be 

accomplished via the conventional CXDI procedure for the 2D case. 

Once , ,( ),t n i nO r q  are obtained, the corresponding spectral contents , ,( , )t n i nE q q  can be 

used for reconstructing the 3D object via tomography. The tomography procedure is similar to the 

conventional approach. An important difference is that unlike in CXDI, where the intensity ( )I q  

is used as the constraint, here, ( )E q , including its recovered phase is used. The wavevectors 

required for the 3D reconstruction are obtained via interpolation from the set of reconstructed 

spectral contents , ,( , )t n i nE q q . The extra phase information in ( )E q  provides a much better 

constraint, which leads to a much faster convergence and a small number of required initial random 

guesses. 

A major difficulty of using CPRA, is that the 2D reconstructed projected objects for 

different angles can be inconsistent. The projected objects are obtained from the same object, so 

they are naturally required to point to the same object, while this is not guaranteed. For example, 

the projected objects may have slightly different positions. While each reconstructed projected 

object may be accurate, these displacements between the projected objects may introduce errors 

when the 2D projected objects are combined for 3D reconstruction. Even if we had a feasible 

alignment method, the reconstruction error or noise may, often unavoidably, have a detrimental 

effect on the reconstruction quality. Another even more severe factor is within the iterative phase 

retrieval algorithm itself. The algorithm requires many different random initial guesses, which are 

averaged for the final result. Different projected objects may converge to different local optima. 
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Such different projected objects cannot be combined for the final 3D reconstruction. Maintaining 

the image consistency within a set of 2D reconstructed projected objects is a key factor for enabling 

the introduced CPRA. A related approach was presented earlier, which suffered from these 

inefficiencies  [35]. 

To resolve the 2D projected objects consistency challenge, we use the fact that the 2D 

projected objects correspond to a set of angles with small consecutive changes and the nearby 2D 

projected objects are similar. Therefore, we can maintain the reconstruction projected object 

consistency and quality of an nth projected object by using the n-1th, n+1th, n-2th, n+2th, etc., 

projected objects.  

 

Figure 3.2: Illustration of our routine. The green region represents the step A, pre-reconstruct one 

projected object. The dark region representing step B, reconstruct multiple episodes sequentially. 

The yellow region is step C, we repeated step A and B   times and merge some best of them. The 

pink region is step D, where we interpolate spectral contents to reconstruct the object. 

 

This idea leads to CPRA. Let us define the reconstructed projected objects as , , ),( tn n i nO O = r q  

corresponding to the intensity , ,( , )n t n i nI I= q q  and spectral content , ,( , )n t n i nE E q= q . Let us call a 

set of projected objects for all 1,..., pn N=  as an episode. The n -th intensities and spectral contents 

of an episode are periodic, such that , 1, ,1,2,p pn N N= −  correspond to consecutive incident 
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angles. CPRA proceeds with an iterative process, in which an episode 
1mW +
 is obtained based on 

the previous episode 
mW  via the following four steps, illustrated in Fig. 3.2: 

A. Pre-reconstruction. Initialize an episode 
0W . Pre-reconstruct a single projected object, e.g., 

for 1n = , starting with a random initial guess. The pre-reconstruction is accomplished via the 

conventional algorithm. This pre-reconstruction requires a relatively large number of iterations 

(
pre

iN ), similar to the conventional 2D reconstruction. The rest of the projected objects are 

initialized randomly. This initialization results in a set of projected objects 
(0)

nO  for the first 

episode 0W . The computational time of this step scales as 
2( log )pre

iO N N N and the memory 

comsumption scales as 2( )O N .  

B. Iterative reconstructions of episodes. Reconstruct a set of episodes mW  for 1,..., em N= , 

where eN  is the number of episodes. For each episode mW , the projected objects are 

reconstructed via the conventional algorithm for the 2D case consecutively, from 1n =  to 

pn N= , with the initial guess for each projected object obtained based on the combination of 

the objects from episode 1mW − : 

 

2

( ) ( 1)
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p

N n
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n k k n N
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 =  , (3.4) 

where k  represents weight coefficients that are periodic with respect to the range of pN , 

satisfy 
2

2 1
1

p

p

N

kk N


=− +
= , and are chosen such that they decrease with an increase of | |k . An 

example choice can be 0 1 10.6, 0.2  −= = =  and 0k = , otherwise. The fact that the 

coefficients are periodic implies that each reconstructed object at a certain episode iteration is 
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obtained based on adjacent objects from the previous episode iteration in a carousel (circular) 

manner. The reconstruction of the projected objects in all the episodes requires a small number 

of iterations eiN  since this reconstruction is based on an approximation from the previous 

iteration, which is much better than a random guess. The dominant time-consuming part here 

is the 2D phase retrieval iterations. The computation time scales as 2 2( log )D

p iO N N N N  and 

the memory consumption scales as 2( )O N , where 
2D

i e eiN N N=   is the total number of 2D 

iterations for one episode. 

C. Repeating and merging. Repeat step A and B multiple times, each for different random 

guesses in step A for the total number of random guesses rN . We select a certain number 

rlN N  of the best reconstructed episodes, which have the lowest reconstruction error. The 

projected objects with the same number may be inconsistent between episodes with different 

random guesses, caused by two factors. The first factor is because the projections of an object 

rotated along two parallel axes and displaced in the projected plane are the same. The 

displacement in the projected plane is proportional to the distance between the two axes. To 

address this issue, we move the mass center of each projected object by ( )n nO dv = − r r r . 

The second factor comes from the property of FT that the intensity of an object’s FT is the 

same as the centrally inversed object, i.e., | ' ( ) | | ' ( ) |i i

n nO e d O e d = − 
q r q r

r r r r . To address this 

issue, we use the episode with the lowest reconstruction error among the lN  episodes. Then, 

we calculate the Euclidean distance between one of the projected objects in this best episode 

and the same number projected object in other episodes. We also calculate the Euclidean 

distance for the centrally inverted version of the projected objects in the episodes. We select 

the version with the lowest Euclidean distance, thus accomplishing the task of selecting the 
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proper central symmetry. After obtaining the properly corrected episodes, we average between 

them to create the final episode, which is used as a set of the complex spectral contents nE  for 

the final 3D reconstruction. The most time-consuming part is repeating steps A and B 
rN  times. 

Selecting and averaging episodes is only related to elementwise operations. Therefore, the 

computational time complexity of this step scales as 2 2( ( ) log )pre D

r i p iO N N N N N N+ . All 

parts within this step are 2D operations, thus the memory consumption scales as 2( )O N . 

D. Final 3D object reconstruction. Interpolation and the final 3D reconstruction. We interpolate 

the final reconstructed spectral content nE  to create a 3D spectral content ( )E q  required for 

3D reconstruction. We, proceed with the conventional CXDI algorithm but using the complex 

data constraints of ( )E q  obtained via the steps A-C of CPRA; this procedure can also be 

regarded as tomography. The phase information in ( )E q  leads to a rapid convergence and 

small number of required initial random guesses. Typically, only a single random guess and 

3D

iN  (around 50) iterations are sufficient. The dominant part of this step is the 3D phase 

retrieval. The time complexity is of 
3 3( log )D

iO N N N  and the memory comsumption scales as 

of 3( )O N , if 3D FTs are used directly. 

The overall computational time of CPRA is given by step C, and it scales as 

2 2( ( ) log )pre D

r i p iO N N N N N N+ . The computational time of the conventional approach is due to 

3D FTs at each iteration and it scales as 
3( log )conv

r iO N N N N , where 
conv

iN  is the number of 3D 

iterations, which may be on the order of 
310  or even greater. Therefore, CPRA can be much more 

efficient by having 2pre D conv

i p i iN N N N N+  especially when the object size N  is large. In steps 

A-C, the memory consumption scales only as 2( )O N . Compared with the conventional approach, 
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for which the memory consumption scales as 3( )O N , CPRA is more suitable for GPU computing 

architectures, in which less memory is available. While step D requires 3( )O N  memory, it requires 

a small computational time as compared to the rest of CPRA and it scales as 
3 3( log )D

iO N N N . 

The memory consumption of the final 3D reconstruction may be reduced by performing 3D FTs 

as a set of 2D FTs, and the corresponding possible increase of the computational time associated 

with the need for the memory transfers is still insignificant compared to the rest of the CPRA. It 

shows that we can greatly accelerate CPRA by utilizatiung GPUs even if N  is large.  

3.2 Validation and performance 

For numerical validation, we start by considering an object that is uniformly sampled by 

N N N   pixels in the object domain. This object contains a lithium-rich layered oxide particle 

that occupies less than / 2N  pixels in each dimension to meet the oversampling requirements. 

The intensities corresponding to what is typically obtained from a synchrotron experiment are 

simulated by projecting and FT transforming these pixels along different rotating angles. Each 2D 

intensity map is of size N N . The number of rotation angles pN  is chosen to scale with N , such 

that 16 9pN N = . The 3D intensity map is of size N N N  . We use these intensities to 

reconstruct the object via CPRA and conventional method. 

We first compare the CPRA with the conventional Shrinkwrap algorithm (CSWA) when 

reconstructing the 3D object for a relatively small N , such that CSWA can be used. We, then, 

present the performance of the CPRA for large N , which is impossible to accomplish with CSWA. 

For the result verification, we choose 160N =  and 90pN = . We use the 2D CSWA method in 

steps A and B of CPRA, which makes the iterative algorithm identical for CPRA and CSWA. We 

remove pixels whose values are below a 0.1 relative defogging threshold. For assessing the 
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reconstruction quality, we employ the Phase Retrieval Transfer Function (PRTF)  [35], which 

evaluates the stability for different initial random guesses, and the Fourier Shell Correlation 

(FSC)  [36]between the original and reconstructed objects, which can be done because we have 

the ground truth original object. From both PRTF and FSC, we can estimate the resolution, denoted 

as R , of the reconstruction object by taking the cutoff spatial frequency at a threshold value. 

Similar to other works, we set this threshold as 0.5  [36].  

 

Figure 3.3: Resolution determined by PRTF(A) and FSC(B) of CSWA and CPRA. The dashed 

lines here are the determined resolutions of CSWA with 500CSWA

iN =  and 1000  respectively, the 

solid lines are determined resolutions of CPRA with different eN  and eiN . CPRA’s resolution 

from FSC are all equal or above CSWA except 1eN = , 1eiN =  configuration. 

 

Figures 3.3A and 3.3B show PRTF and FSC as a function of the number of iterations in 

CPRA. These CPRA results are compared to those from CSWA for 500 and 1000 iterations. 

Similar to 
conv

iN , this number can be defined as 
CSWA

iN . We find that for CSWA with 1000CSWA

iN =

, we can have more reasonable PRTF and FSC, which is consistent with other publication. CPRA, 

however, requires a much smaller number of iterations (
2D

iN ) and has a much better performance. 

For instance, CPRA achieves the same resolution even when 1eN = , 2eiN = , and it achieves a 
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much better resolution with 1eN = , 10eiN = . The resolution generally increases with increasing 

eiN , whereas iN  has a less significant effect. 

 

Figure 3.4: Volume density of original object (A), reconstructed object from CSWA (B), CPRA 

method with 1eN = , 2eiN = (C) and 1eN = , 10eiN =  (D). (D) exhibits detached density cloud in 

the top right corner while (B) and (C) are not. Here (C) is slightly better than (B) since the 

connection of two density cloud is weaker. 

 

To further compare the reconstruction qualities, we show 3D results (Fig. 3.4) and central 

slices through x-y, y-z, and z-x planes (Fig. 3.5) for the original and reconstructed objects obtained 

via the CSWA and CPRA for 1eN = , 2eiN =  and 1eN = , 10eiN = . It is evident that CSWA is 

significantly less accurate, even visually, and that CPRA with 1eN = , 10eiN =  provides a better 

quality.  
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Figure 3.5: Central slices through x-y), y-z , z-x  plane, (A) original object, (B) reconstructed object 

from CSWA, (C) reconstructed object from CPRA with 1eN = , 2eiN = , (D) reconstructed object 

from CPRA with 1eN = , 10eiN = . (D) looks most like (A) with many similar features, and (C) is 

still slightly better than (B) for there’re clear boundaries of density. 
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Figure 3.6: Reconstruction of S. aureus cell. (A-C) Reconstructed 2D object. (D) PRTF of all 2D 

reconstructions (gray lines), mean values (blue line), minimum values (red line) and maximum 

values (green line). The horizontal line is the 1/e criterion. (D) Reconstructed surface morphology 

of S. aureus. Black circles indicate the two representative depressions. 

 

We, then, use CPRA with experimental data imaging Staphylococcus aureus (SA) 

cell  [27]. Each 2D intensity map is cropped to size N N , where 700N = , with a beamstop in 

the center, and there are 27pN =  maps. The space constraints are pre-calculated by the HIO 

algorithm with the oversampling ratio of 4. To be consistent with the original reconstruction 

method, we adopt the RAAR algorithm with hyperparameter 0.9 = . For the pre-reconstruction 

step (step A), we perform 500RAAR

iN =  RAAR iterations on the first intensity map, half of the 

originally suggested number. We then set 2eN = , 10eiN =  for step B to iteratively reconstruct the 

rest of the 2D intensity maps. At the end of each episode, we perform an extra 2D CSWA iteration 
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to obtain a tighter space constraint for each 2D image. We start from 100rN =  sets of random 

initial guesses and pick 10 best sets to merge. We project the 2D space constrains back to 3D space 

to form a relatively tight 3D space constraint and perform 3D reconstruction via GENFIRE 

package with 50 iterations in total. We shrink the 3D space constraint every 5 iterations, leading 

to a tighter 3D space constraint close to the shape of the object in the end. We present the 2D 

reconstructions in Fig. 3.6 (A-C), and the corresponding PRTF curve in Fig. 3.6 (D) with the 1/ e  

criterion. In the Fig. 3.6 (D), the mean value (blue line) of all 2D PRTFs suggests a very high 

resolution close to the achievable limit. The 3D reconstructed object surface morphology is 

presented in Fig. 3.6 (E), where we find two representative depressions inside the black circles that 

agree with.  

Finally, we compare the computational performance of CPRA and CSWA on CPU and 

GPU computing architectures. We first consider the computational performance for reconstructing 

the object in Figs. 3.4-3.5. The computations were performed on a desktop equipped with a 16-

core 4.9 GHz AMD R9-5950X CPU and NVIDIA RTX 3080Ti GPU. The system had 128 GB 

DDR4 memory, and the GPU had 12 GB GDDR6X memory. The shown CPU results were 

obtained on a single core. The multi-core CPU parallelization efficiency is above 90% for up to 8 

cores on this CPU, so multi-core performance can be assessed based on the presented single-core 

results. The results are shown for N =160, 256, 512, and 1024 with corresponding 90pN = , 144, 

288, and 576. For CSWA the number of iterations 
CSWA

iN  was fixed at 1000, which is required for 

good reconstruction, and for CPRA, we set 1eN = , 2eiN = , which, according to the results in Fig. 

3.3, gives a similar reconstruction quality. For both CSWA and CPRA, we set 100rN = . For large 
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N , CSWA can take too much time, hence we run CSWA for only one random initial guess and 

then multiply this result by rN .  

 

Figure 3.7: Performance of CSWA and CPRA method on different devices. (A) computational 

time of different methods on CPU and GPU, (B) acceleration ratio across different methods on 

CPU and GPU, defined by CSWA time consumption over that of CPRA. 

 

Figure 7A presents the computational time for CPU and GPU computations using CPRA 

and CSWA, and Fig. 7B shows the acceleration ratio of time consumption using CPRA versus 

CSWA on CPU and GPU. It is evident that CPRA is much faster for any N . The CPRA speed-up 

is in the range of 100-300 times on GPU and 30-120 times on CPU. The acceleration ratio increases 

with the problem size, which is related to better parallelization and hardware utilization. As an 

example, reconstructing a case with 1024N =  takes 670s , which means that such a reconstruction 

can be performed in real-time during experiment. 

We also compared the computational performance of CPRA for reconstructing the SA cell 

of Fig. 6. This case only required 100 initial guesses and 39 iterations for each 2D intensity map 

on average. CPRA took less than 20 seconds on Nvidia RTX 3080 Ti, which can be considered as 
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a real time reconstruction. CPRA was around 300 times faster than the conventional method when 

comparing on the same computing (CPU or GPU) architecture. 

3.2 Summary 

In this chapter we introduced a highly efficient CPRA for 3D CXDI. CPRA is based on 

defining episodes of reconstructed 2D projected objects and iterating over the episodes, such that 

each projected object in an iteration is obtained based on a mixture of the projected objects 

reconstructed in the previous iteration. Each 2D projected object reconstruction corresponds to a 

2D image slice obtained experimentally, and its reconstruction is highly efficient. The final set of 

the reconstructed 2D objects corresponds to images that contain phase information, so that the 

final 3D object reconstruction can be accomplished efficiently and accurately via tomographic 

techniques. 

CPRA requires a small number of iterations to achieve a high-quality reconstruction, and 

even 1-2 iterations may be sufficient. CPRA also uses a significantly smaller amount of memory, 

which is important to consider large objects and to implement it on GPUs. The numerical 

comparisons demonstrate that CPRA achieves 100-300 fold speed-ups on GPU, and 30-120 fold 

speed-ups on CPU with equal reconstructing qualities. Moreover, CPRA allows obtaining a much 

higher resolution, still being significantly faster. For example, it takes 1.6s , 4.3s , 24.1s  and 

670s  to reconstruct 3D objects with images of linear size of 160, 256, 512, and 1024, respectively. 

These speeds allow performing 3D CXDI in real time, concurrent with experimental procedures. 

CPRA has several benefits that can allow future extensions. CPRA allows concurrent 

partial reconstruction during the experiment. By noticing that Steps A and B of CPRA are 2D 

operations that do not require collecting a full episode, reconstructing only a part of the 2D 

projected objects is possible. Additionally, CPRA can be efficiently implemented on multi-GPU 
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computing systems to provide further speed-ups and to reconstruct larger objects. As an example, 

the maximal object size can be addressed on a single GPU with 12 GB of memory is 1024. A larger 

size requires either a greater GPU memory or frequent CPU-GPU data exchange, with an increased 

computational time. Currently, the largest available single-GPU memory is 80 GB (Nvidia A100) 

would allow reconstructing images of size around 2000. However, a single-GPU memory is always 

limited. To handle larger size cases, CPRA can be implemented on multi-GPU systems. A major 

benefit of CPRA is the ability to reconstruct the 2D objects separately and that only information 

of a few 2D images is needed for each 2D image. It allows reducing possible cross-GPU 

communications. For a system contains GN  GPUs, only 2 GN  communications are required for 

loading the 2D images. The size of the data transferred between GPUs scales and the corresponding 

time consumption scale as the projected 2D object size, i.e., 2( )O N , which is negligible compared 

to the reconstruction itself. 

Given the benefits of CPRA and its demonstrated computational efficiency, it can become 

a part of experimental apparatus in synchrotron facilities, where a desktop computer with a GPU 

can be used to reconstruct objects during the experiment, and thus allow conducting the 

experiments more efficiently. The real-time CXDI reconstruction can be combined with using 

numerical simulators to assist performing experiments. For example, micromagnetic modeling 

tools can be used to predict and assist in choosing experimental procedures for CXDI of magnetic 

nanostructures. 
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Chapter 4 Spin-wave assisted synchronization in 2D arrays of spin torque oscillators 

 

Spin-transfer nano-oscillators (STNOs) are non-linear oscillators that can convert a DC 

input current into a microwave voltage output  [18,37]. These nanoscale devices have gained 

significant attention in recent years due to their potential applications in fields such as microwave 

communications  [38,39], signal processing  [40,41], and energy-efficient computing  [42–44]. 

One common challenge in these applications is how to synchronize a large number of STNOs to 

achieve better performance  [45–47]. While the theoretical model of mutual synchronization 

between two STNOs has been well established and confirmed through various experiments, the 

development of synchronization over more than a pair of STNOs remains a challenging topic in 

the field. The inherent non-linearity and complicated interactions among a large number of coupled 

STNOs result in rich and complex dynamical behavior that is difficult to precisely describe  [18]. 

Despite some analysis towards special structures such as a ring structure  [48], a comprehensive 

understanding of the collective behavior of a large 2D array of STNOs is still lacking. There are a 

quite few experiments based on STNOs  or spin-hall nano-oscillators (SHNOs)  have demonstrated 

the emergence of global synchronization over the entire array  [47,49], yet they are either of 

relatively small sizes and lack scalability, or require certain geometry shape to function that do not 

offer much flexibility in design, resulting in a gap between theory (e.g. a ring of oscillators) and 

actual tested device (e.g. a square matrix of oscillators). Hence a more comprehensive design that 

can address these issues is in desperate need. 

In this chapter, we present an approach to achieve synchronization in a large 2D array of 

STNOs using micro-magnetic simulations. Specifically, we designed a honeycomb pattern 

consisting of a low-damping permalloy hexagonal base plate with a high-damping embedded 

triangle plate. A STNO is placed at each narrow neck of this pattern, and the spin wave generated 
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by the STNO could propagate smoothly within the hexagonal base plate while being absorbed by 

the triangle plate. The narrow neck's width was comparable with the spin wave's wavelength, 

effectively limiting the propagation of spin waves to only the nearest neighbors. Through our 

simulations, we observed global synchronization across the entire array. Our design created a 

network of interactions among the oscillators that only involved nearest neighbors, allowing for 

the emergence of collective behavior. This approach overcomes the challenges posed by the 

inherent non-linearity and complicated interactions and provides a new pathway towards achieving 

synchronization in large arrays of STNOs. 

4.1 Problem formulation 

We consider synchronization in arrays of N  STNOs formed in a 3nmd =  thick soft 

magnetic film with the saturation magnetization 
56.37 10 A/msM =   and exchange constant 

111.4 10 J/mexA −=   with no anisotropy (Fig. 4.1). The magnetization is initialized along the +z 

direction and is relaxed to its equilibrium state under an external perpendicular applied field appH

. STNOs are formed by STT set via a point contact of 50nmSTNOr =  radius with the current of  sttI  

with -z polarization direction with the polarization efficiency of 0.3p = . 

The vertical applied field sets the STNO frequency and leads to magnetostatic forward 

volume wave (MSFVW) spin waves  [16] that are isotropic with respect to the in-plane 

propagation and whose lowest mode wavelength is given by the following dispersion relation[ref]: 

 2

MSFVW

1
( ) [ (1 )]

k d

ex ex M

e
k

kd
   

⊥−

⊥

−
= + −  (4.1) 

Where 0M sM =  and ( ) 2

0 app 2 /ex s ex sM A k M   ⊥= − +H , k⊥  is the in-plane wave vector of 

MSFVW and d  is the thickness of the film, in our case 3nmd = . One thing to notice is that for 
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the thin film, only the lowest mode without perpendicular component can exist [ref], namely the 

z -direction wave vector 0zk  . The STNOs are driven by STT currents that ensures their 

operation with a large-angle precession, leading to equal-strength interactions among all pairs of 

STNOs. 

The synchronization is manifested via frequency and phase locking on the STNO auto-

oscillations, i.e., a stable phase difference between any two oscillators. To quantify the 

synchronization, let ( , , )i i i t m  be the spatial averaged magnetization of the 
thi  STNO, i  be the 

corresponding azimuthal angle, and i  be the elevation angle. The phase difference can then be 

expressed as 1

, ( ) cos [ ( , , ) ( , , )]i j i i i j j jt t t   − = m m . If , ( )i j t  is independent of time, then the 

thi  and thj  STNOs are phase locked. If this holds for all pairs of STNOs, then global 

synchronization is achieved. The case of all , 0i j =  corresponds to a global in-phase 

synchronization. A measure of synchronization is the output power averaged over a time period 

0T :  

 
0

2

10 0

1
T N

ix

i

P m dt
T =

 
=  

 
 . (4.2) 

Such an output power corresponds to the total current generated by the array if an in-plane layer 

is added to each STNO to generate an electric signal via magnetoresistance. For a non-

synchronized array in which a single STNO produced power 
0 2

0 0
0

( ) /
T

xP m dt T=  , the total power 

is 0nsP NP=  because of the arbitrary phase differences, whereas for a synchronized array, 

2

0sP N P=  because of the phase-locking. Based on the total output power scaling we can define 

the synchronization efficiency as 1sP P =  . 
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4.2 Device structure design 

Synchronization between a pair of STNOs by means of spin waves can be readily achieved. 

However, synchronizing a large 2D array of STNOs by means of spin waves is challenging. As a 

larger array, we first consider synchronization in an array of 3N =  STNOs arranged at vertices of 

a triangle (Fig. 4.1(a), (d)). The applied field and current are chosen as ˆ1.32app T=H z  and 

ˆ22.5stt mA= −I z , respectively. Via Eq. (4.1), these parameters correspond to the STNO oscillating 

frequency / 2 30GHz    with spin wave wavelength of 60nm  , and the elevation angle of 

the STNO precession is 30e  . The separation between the STNOs is chosen as 

420nm=7eed =  such that it corresponds to an integer number of spin wave wavelengths, so that 

in-phase synchronization is obtained. Global synchronization is achieved in this case, similar to 

the case of two STNOs (Fig. 4.1(d)). We then extend the structure to a hexagonal array of 12N =  

STNOs (Fig. 4.1 (b), (e)). In this case, a chaotic behavior is obtained with no synchronization (Fig. 

4.1(e)). Trying to move the STNO locations or making arranging them in a different, e.g., square, 

array still leads to a similar chaotic behavior. This lack of synchronization is attributed to the fact 

that the spin waves generated by each STNO interact with other STNOs at different phases, thus 

leading to hectic, out of phase interaction patterns. The interactions carry varying phase differences 

originating from neighbor STNOs at different distances. Furthermore, the strength of these 

interactions also varies with the distance, contributing to non-uniform effects across the array. 

These factors result in accumulated discrepancies that significantly disrupt global synchronization. 

The interplay of inconsistent phase shifts and variable interaction strengths results in a complex 

dynamic, where the collective behavior deviates from the expected synchronized order, leading to 

the chaotic patterns observed in larger arrays.  
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Figure 4.1: Illustration of the model without high damping region for (a) 3N =  (b) 12N =  and 

with high damping region (c) 12N = . Grey substrate here is of  low damping constant, black 

congruent triangles are of high damping constant, and the small dots spin torque oscillators. The 

corresponding y-magnetization are shown below.  

 

In exploring the synchronization pattern further with various geometry configurations, we 

find that global synchronization is determined by the presence of next-nearest-neighbor and further 

interactions and possibly unequal separations between STNOs. An approach to limit the chaotic 

behavior caused by the long-range interactions is to block/absorb the propagation of spin wave. 

This understanding leads to introducing the honeycomb structure in Fig. 4.1(c). In this structure, 

the STNOs are positioned in a hexagonal pattern in a magnetic film. The magnetic properties of 

the film, except the damping constant, are homogeneous across the film. The damping constant on 

the other hand has triangular regions of high values (black color in Fig. 4.1(c)) and low values 

(grey color in Fig. 4.1(c)). The low- and high-damping values can be either determined by ion 

irradiation or by defining additional nano-contacts with polarized current, which would either 
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increase or decrease the effective damping constant as set by the strength and direction of the STT 

current. The large and low damping regions have short- and long-range spin wave propagation, 

respectively. The size of the neck (formed by the high damping regions) 
neckd  is comparable to the 

spin wave wavelength  , effectively preventing a strong spin wave transmission through the neck, 

such that the spin wave excitation in the neck is determined by the corresponding STNO. 

Additionally, the hexagonal array ensures that the nearest-neighbor distances are the same, which 

leads to the array symmetry with equal spin phase propagation phases enabling global 

synchronization. In this particular structure, 80nm 1.33neckd =  , the higher damping constant is 

0.2 =  and lower damping constant is 0.01 = . With this high-/low-damping structure, we 

obtain a global synchronization for the same 12N =  STNOs, as is evident via the high 

synchronization efficiency in Fig. 4.1(f). 

We, then, consider larger STNO arrays, up to 48 STNOs, and perform simulations at zero 

and (300 K) room temperatures with all STNOs driven by the same appH  and sttI  (Fig. 4.2(a)). 

Global synchronization is again achieved with a high synchronization efficiency  . The linewidth 

is below 0.2 GHz even for the room temperature cases, which is much smaller the linewidth of a 

single STNOs, where the Full width at half maximum (FWHM) is 1.8GHz , which is another 

indication of global synchronization. Fig. 4.2(b) further shows the spin wave and STNOs phase 

patterns with 48N =  under 300K when there is global synchronization. In the figure we observed 

a phase shift across the array due to thermal fluctuation and the minor mismatch between eed  and 

 , resulting in slight drop of    compared with array with smaller sizes and zero temperature 

simulation. The results demonstrate the same spin wave interference patterns in all low damping 

regions and strong absorption at the edges of each high damping region. These consistent spin 
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wave patterns provide evidence that the honeycomb design effectively limits long-range spin wave 

propagation and achieves nearest-neighbor-only interactions among the STNOs. 

 

Figure 4.2: (a) The simulated total output power under 0K (blue dashed line) and 300K (red dashed 

line) vs theoretical maximum (black solid line), at both temperature the result indicates global in-

phase synchronization is achieved. (b) Snapshot of y-magnetization under 300K, 48 STNOs in 

total. Phase shift can be observed via visual inspect. 
 

To find such best combination of appH  and sttI , we first choose a set of sttI  from 22.0 mA 

to 23.0 mA with 0.1 mA stride. Then for each fixed sttI , we sweep the appH  from ˆ1Tz  to ˆ2Tz  with 

1000 ns duration. We calculate the synchronization efficiency   by integrating all the 

, [1, ]ixm i N  with a time period 0 1nsT = , and find under what appH  and sttI   the best 

synchronization efficiency   can appear.  Our sampling frequency is 100sampf GHz= , namely the 

maximum frequency we can detect is max / 2 50sampf f GHz= =  according to Nyquist theorem [ref], 

which is sufficient in this case where STNOs are working at around 30 GHz. The number of STNO 

3,12,27,48N = , and the resulting total output power averaged over the last 10 ns in each 

simulation is shown in Fig. 4.2(a). 
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We note synchronization is achieved only in a certain range of the parameters. To characterize 

such a range, Fig. 4.3 shows the synchronization efficiency different STNO array sizes as a 

function of appH , keeping the rest of the paramters the same. We observe a sharp transition from 

a low and irregular efficiency, indicating a lack of synchronization, to a stable high efficiency for 

a proper range of appH . Smaller N  has a wider synchronization range whereas for larger N , only 

a narrow range of  appH  and sttI  leads to synchronization. The lack of synchronization for smaller 

appH  is a higher spin wave magnitude, so that the spin waves can break through the neck barriers, 

and they thus reach the next-nearest neighbors, leading to the aforementioned chaotic behavior. 

With a stronger appH , the spin wave magnitude decreases preventing the next-nearest-neighbor 

interactions, resulting in synchronization. Too large appH  also may destroy synchronization, 

which is attributed to the weak spin wave excitation, resulting in too weak coupling between the 

STNOs. Other parameters, e.g., sttI , affect the synchronization range in a similar way, so that 

various ranges of parameters can be tuned. The synchronization range for very large arrays is 

narrower because the phase differences between the STNOs accumulates eventually resulting in 

destroying the global synchronization. 
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Figure 4.3: Calculated synchronization efficiency   of the whole array under different applied 

field appH . A sharp transition from low output power to nearly 100% output power indicates the 

emergence of global in-phase synchronization. And the synchronization efficiency  is maintained 

well above 90% after this transition. 

 

The synchronization range also is reduced at elevated temperatures due to stochastic 

(Brownian-like) effects as well as random distributions of the material properties. To characterize 

the effects of the parameter distributions, Fig. 4.4(a) shows the synchronization efficiency for an 

STNO array of 48N =  with the saturation magnetization of uniform distribution with the mean 

value of 56.37 10 A/m =  and deviations of 0,1,5,10% = , i.e. / 2sM  =  . We find that   

slightly drops from around 98% to 96.5%, which is still well above 90%. Fig. 4.4(b) exhibits a 

snapshot of comparison between the averaged ym  over all 48 STNOs as ym  and the ym  of the 1st  

STNO at the top left corner for the largest   we test. The ym  overlaps with ym  tightly and has 

no significant difference in between, showing a robust global synchronization is still well 

maintained with distributed material parameter. The minor decline in synchronization efficiency 

  is mostly attributed to the resulting distribution in the STNO frequencies, which leads to extra 
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phase shifts between the STNOs. However, the synchronization is still achieved for reasonable 

ranges of the parameters. 

 

Figure 4.4: Synchronization with mean value 56.37 10 A/m =   and deviation 0,1,5,10% =  for 

saturation magnetization / 2sM  =   and 48N = . (a) The synchronization efficiency   

slightly drops from 98.5% to 96.5. (b) A snapshot of average of ym  over all 48 STNOs vs ym  

from two well-separated corners with 10% = .  

 

The ideas leading to global synchronization also allow creating synchronization in 

subarrays of the entire large array, providing flexibility for various application requirements. For 

example, by turning on and off some STNOs at certain position by locally reducing or extending 

the spin wave propagation length, we can create a synchronized STNO ring by only activating the 

outermost shell of the array (Fig. 4.5(a)), or concentric loops by activating more inner shells (Fig. 

4.5(b)).  
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Figure 4.5: Magnetization along y-direction of synchronized (a) ring and (b) concentric loops. 

These two structures are built by turning off some STNOs on the model of size 27N = . 

 

4.3 Summary 

In conclusion, synchronization of large arrays of STNOs by spin waves is possible when a 

mechanism restricting long range interactions between the STNOs is chosen together with properly 

tuned parameters. The mechanism chosen here was based on controlling the magnetic damping, 

which controls the spin wave propagation length. Adaptive control of the spin wave propagation 

length also allows defining synchronization in selected subarrays of the entire array with tuned 

paths of synchronization. Additional mechanisms may also be possible, e.g., a network of 

nanowires connecting the STNOs may result in a similar behavior, albeit without an easy potential 

of adaptive tuning offered by tuning the spin wave propagation length. Potentially, additional 

tunning mechanisms may also be introduced, e.g., if the current in each STNO is tuned separately. 

The presented ideas may find applications in creating microwave generators with increased output 

power as well as in neuromorphic computing and signal processing. In particular, synchronized 

subarrays of large arrays of STNOs demonstrate diverse synchronization patterns, akin to the 

dynamics observed in a reservoir computing framework. These patterns can be leveraged to 
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perform complex computational tasks, making them highly relevant for next-generation adaptive 

systems that require real-time processing capabilities. 
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Chapter 5 Fast periodic interpolation method for superposition sums in a periodic unit cell 

 

A common category of problem in computational physics is calculating the potential, 

referred to as periodic scalar potential (PSP), that is generates by a non-uniform distribution of 

sources arranged in a unit cell that is extended to an infinite periodic array (Fig. 5.1). Examples of 

such problems are phased-array antennas, crystals, periodic gratings, periodically modulated 

waveguides, to name a few [50–53]. These problems may present challenges for obtaining accurate 

and rapid solutions. For a non-periodic unit cell, this task can be accomplished via a standard 

superposition sum involving free-space Green's function as its kernel. Such sums can be evaluated 

rapidly in ( )O N  or ( log )O N N  computational cost for N  sources and observers using several 

fast methods, such as fast multipole like method [54,55], H-matrix method [56] , interpolation-

based methods [57–59], and FFT-based methods  [5,60–62]. However, for the periodic case, the 

superposition sums involve infinite number of images, which poses additional challenges to the 

slow converge or even divergence as well as a potentially high computational cost. 

Several existing methods can address such periodic problems with certain assumptions and 

limitations [63–66] . Periodic Green's function (PGF) can be defined in terms of an infinite sum 

over periodic images. In dynamic problems, e.g., in computational electromagnetics, PGF is 

assumed to be defined with a phase shift or non-vanishing wavenumber  [67–69]. However, for 

static problems with no phase shift, even in the 1D case, the PGF diverges. In molecular dynamics 

problems [70], a special form of static PGF assumes uniformly arranged sources [71], such as a 

cubic lattice. Although various methods have been proposed to address static and dynamic periodic 

unit cell problems with non-uniform sources, they often focus on specific problem types, such as 

addressing only 1D or 2D periodicity, addressing only static problems [72] , requiring lattice 

structure or relying on finite difference methods [73]. There is a need in a general approach capable 
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of effectively handling all types of these problems regardless of the periodicity type, distribution 

of sources, with or without phase shift, and for static and dynamic cases. 

 

Figure 5.1: Illustration for a 2D periodic problem consisting of an infinite 2D array of 

cubes. The central red cube is the zeroth unit cell. Surrounding it along the x  and y  axes are the 

1st  order image cubes in green and the 2nd  order image cubes in blue. 

 

In this chapter, we proposed a general approach, referred to as Fast Fourier Transform 

Periodic Interpolation Method (FFT-PIM) that is applicable to all these types of problems under a 

unified framework, including 1D, 2D, and 3D periodicities for static and dynamic problems with 

and without periodic phase shifts. The FFT-PIM separates the PSP into a near-zone component 

involving a small number of images near the periodic unit cell of interest, and a spatially slowly 

varying far-zone component involving the rest of an infinite number of images. The evaluation of 

the near-zone PSP component is based on the box adaptive integral method [5], which is modified 

to allow for the rapid computations with multiple near-zone images. The evaluation of the far-zone 

PSP component is based on the sparse periodic interpolation method [69], which is adapted to 

allow handling dynamic and static problems with arbitrary phase shifts. The computational cost of 

the FFT-PIM is of ( log )O N N  and the memory consumption is of ( )O N . 
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The chapter is organized as follows. Sec. 5.1 presents the problem formulation. Sec. 5.2 

presents the algorithmic foundations of the FFT-PIM, including near- and far-zone representations 

of PGF and PSP as well as efficient ways of their evaluation. Sec. 5.3 shows results for the use of 

the FFT-PIM, its error analysis, and computational performance. Finally, Sec. 5.4 presents 

summary and conclusions. 

5.1 Problem formulation 

Consider an infinite periodic array of unit cells residing in free space (see Fig. 5.1 for a 2D 

periodicity example). Within each unit cell there are N  source points located at nr . In the zeroth 

unit cell, the source amplitudes are nq , where 1...q N= . In each unit cell, there is the same number 

of coinciding observer points at which the periodic scalar potentials (PSPs) ( )iu r  are to be found. 

The periodic array can be 1D, 2D or 3D with the periodicity of ,x yL L , and zL  in three possible 

directions ,x y and z , respectively. The amplitudes of the sources may be periodically phase 

shifted with a linear, possibly complex, phase shift determined by the wavenumbers 0 0,x yk k  and 

0zk  along the ,x y and z  directions. A free space wavenumber  0k  describes the propagation of 

the waves in the free space for the dynamic case. For 0 0k = , the problem is static, and for 

0 0 0 0x y zk k k= = = , the sources are not phase shifted. 

The PSP in the zeroth unit cell can be written as 

 ( ) ( ) ( )p

m m n nu G q= −r r r r  (5.1) 

Here the 1...m N=  and the 
pG  represents the scalar periodic Green's function (PGF), given for 

the 1D, 2D, and 3D cases as: 

 0 ( )

1 0
ˆ( ) ( )x x x

x

jk i Lp

D x x

i

G e G i L


−

=−

= −r r x  (5.2) 
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 

− +
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D x x y y z z

i i i

G e G i L i L i L
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− + +
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= − − −  r r x y z  (5.4) 

respectively. Here, 
0G  is the free space scalar Green's function given by 

0 0( ) exp( | |) / 4 | |G jk = −r r r . 

The series in Eq. (5.1) for the PSP is important in multiple computational physics problems. 

For example, the evaluation of the superposition integrals appearing in electromagnetic integral 

equation or micromagnetic solvers [74] can be represented as a product of sparse matrices 

describing the mesh of the geometry and the result of the superposition sum of Eq. (5.1). The sum 

of Eq. (5.1) can also be directly apply to a discrete set of sources and observers, e.g., when 

considering a set of point sources. 

The series of Eq. (5.2), Eq. (5.3) and Eq. (5.4) for the PGF is slowly convergent or even 

divergent depending on the wavenumbers, which is because of a slow spatial decay of 0G . An 

alternative spectral representation of the PGF of Eq. (5.2), Eq. (5.3) and Eq. (5.4)  can be based on 

the Floquet mode expansion [69]: 

 (2) 2 2

1 0
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xmjk xp
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where 
(2)

0H  is the zeroth order Hankel function of the second kind, 
0 2 /xm x xk k m L= + , 

0 2 /ym y zk k n L= + , 2 2 1/2

0( )m xmk k k = −  and 2 2 2 1/2

0( )zmn xm ynk k k k= − − , and the square roots are 

chosen such that their imaginary parts are non-positive. The spectral series of Eq. (5.5), Eq. (5.6) 

and Eq. (5.7) converge exponentially fast when 2 2 1/2( )y z+  is non-vanishing and 0 0 0 0, , ,x y zk k k k  

are not all vanishing. The series may diverge or not be defined for certain parameter combinations 

with 0zmnk = , 0mk = , which are related to so called Rayleigh-Wood anomalies [75–78] . For 

scattering electromagnetic or acoustic problems, such anomalies correspond to the transition 

between evanescent and propagating Floquet modes. Additional types of Wood anomalies may be 

of resonant type [78], e.g., when Green's function is defines in the presence of a layered 

medium [69]. When such anomalies occur, they may require a special treatment, e.g., Ref. [75] or 

by defining the phase shift in the complex plane with the integration path deformation [77,79]. 

 A special attention needs to be paid to the no phase static periodic (NPSP) case where 

0 0 0 0 0x y zk k k k= = = = . This case is important as it corresponds to several practical problem, such 

as using periodic extensions to represent infinite 1D, 2D, and 3D domains in various static 

problems, e.g., to characterize micromagnetic [80] or in molecular dynamics problems. In this 

NPSP case, the PGF calculated via series of Eq. (5.2), Eq. (5.3) and Eq. (5.4) or Eq. (5.5), Eq. (5.6) 

and Eq. (5.7)  diverges and the PSP for a general source distribution diverges as well. However, a 

finite PSP can be obtained for the special case of a neutral source, i.e., under the condition Eq. 

(2.7) . This neutrality condition corresponds to various physical problems, e.g., when computing 

the magnetic scalar potential generated by a magnetized objects or electrostatic potential in 

polarized objects [81]. In this case, the PSP converges and we can neglect any non-relevant 
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components (e.g., constant terms) in the PGF, so that it is convergent as well. The result is that the 

PGF for the neutral NPSP case can be calculated via: 
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where 0K  is the zeroth order modified Bessel function of the second kind. 

It can be shown that Eq. (5.8) is obtained from Eq. (5.5) under the assumption of Eq. (2.7). 

In this case, by taking the limit of ( 0 00, 0xk k→ → ) for all 0n  , the Hankel function becomes 

the modified Bessel function and the symmetric n  terms can be combined into the positive n  

terms. For the 0n =  term, the Hankel function exhibits a logarithmic behavior but it is summed 

up to 0 due to the source neutrality of Eq. (2.7). The PGF for the 2D and 3D cases can be then 

obtained by a spatial sum of 1D PGFs. When the sources are arranged on a lattice, the PGF for the 

NPSP case sometimes is also referred to as the lattice Green's function [71]. 
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Figure 5.2: Convergence of PGFs, , , 1x y zL L L = , 0.5x y z= = = . (a) The relative error of 

the sum of the first m  terms from Eq. (5.5), Eq. (5.6) and Eq. (5.7), with 0 1k j= − −  and 

0 0 01 , 1 , 1x y zk j k j k j= − = + = − + , (b) The relative error of the sum of the first m  terms from Eq. 

(5.8), Eq. (5.9) and Eq. (5.10). Exponential convergence is achieved in both cases. 

 

 The PGFs converge exponentially fast provided the 2 2 1/2( )y z+  is not too small. For a 

desired error of , the number of terms required Eq. (5.5)  and Eq. (5.8) scales as 
1log( ) /xL z−

 

for the 1D case and 2 1 2log ( ) /x yL L z−  for the 2D and 3D cases. To demonstrate the convergence, 

Fig. 5.2 shows the PGFs and their convergence when using Eq. (5.5), Eq. (5.6) and Eq. (5.7) or 

Eq. (5.8), Eq. (5.9) and Eq. (5.10) for _ , _ , _ 1L x L y L z = , _ 0 1k j= − −  and 

0 0 01 ,  1 ,  1x y zk j k j k j= − = + = − +  in Fig. 5.2 (a) and the NPSP case in Fig. 5.2 (b). 

5.2 FFT-PIM algorithm 

In this section we describe the FFT-PIM algorithm that allows rapidly computation of the 

PSP in Eq. (5.1).  

5.2.1 Representation of PGF and PSP 

We start by representing the PGF in terms of its near-zone component 
p

nearG  and far-zone 

component p

farG : 
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 p p p

near farG G G= +  (5.11) 

Here, the near-zone component 
p

nearG  is given by Eq. (5.2), Eq. (5.3) and Eq. (5.4) but with the 

sums over xi , yi , and zi  in the range of  , ,  , ,xd xd yd ydi i i i−  − and  , ,zd zdi i−   respectively, where 

, ,xd yd zdi i i  are small integer numbers. These components represent the contribution from a small 

number of images around the zeroth unit cell of interest. Assuming that the periodic lengths are 

close to each other, we can use the same value of di  for , ,xd yd zdi i i . For the sake of clarity, we 

assume this case in the following discussions. 
p

nearG  includes the self-term and a few terms from 

the surrounding images (see Fig. 5.1 showing the near-zone images for the case of 1xd ydi i= =  as 

green boxes). Therefore,  
p

nearG  may be spatially singular and rapidly varying. The evaluation of 

p

nearG  involves only a small number of the sum terms. 

The far-zone component p

farG  is the rest of the images from far-away unit cells and can be 

evaluated as p p p

far nearG G G= −  (blue boxes in Fig. 5.1). The far-zone PGF p

farG  is smoothly varying 

in space because it corresponds to large source-observer spatial separations. The rate of the 

variations is reduced by using a greater di . 

Following the near- and far-zone decomposition of the PGF, the potential is also expressed 

in terms of its near- and far-zone components: 

 ( ) ( ) ( )m near m far mu u u= +r r r  (5.12) 

 
1,

( ) ( )
N

p

near m near m n n

n n m

u G q
= 

= −r r r  (5.13) 

 
1,

( ) ( )
N

p

far m far m n n

n n m

u G q
= 

= −r r r  (5.14) 
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where, again, the far-zone potential faru  is a spatially slowly varying function. These potential and 

PGF decompositions lead to a fast approach for the numerical evaluation of the PSP.  

5.2.2 Evaluation of the far-zone PSP 

The far-zone PGF and PSP components vary slowly in space, which enables us to calculate 

the far-zone PGF and PSP on a uniform grid within the observation domain and subsequently 

interpolate to the required observer points. For a target object of size , ,x y zD D D , we construct a 

sparse uniform grid of observation points 
( , , ) }{ , ,o o o o

n l p q l p qx y z=r  (red grid in Fig. 5.3) and a spatially 

shifted uniform grid of source points 
( , , ) }{ , ,s s s s

n l p q l p qx y z=r  (black grid in Fig. 5.3): 

 ( , , ) ( , , ) ( , , )

( 1)( )( 1)( ) ( 1)( )
, ,

1 1 1

y ys s sx x z z
n l p q n l p q n l p q

gx gy gz

p Dl D q D
x y z

N N N

− −− − − −
= = =

− − −
(5.15) 

 ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ), ,
2 2 2

yo s o s o sx z
n l p q n l p q n l p q n l p q n l p q n l p qx x y y z z

 
= + = + = +  (5.16) 

 , , ;
yx z

x y z gz gy gz

gx gy gz

DD D
n lN N pN q

N N N
 =  =  = = + +  (5.17) 

Here, , ,gx gy gzN N N  are the number of the grid points in the , ,x y z  dimensions, g gx gy gzN N N N=  

is the total number of the grid points, which is of  (1)O ,  with [1, ]gn N , and , ,x y z    are grid 

spacing on  in the , ,x y z  dimensions. The source grid is shifted from the observer grid by 

/ 2, / 2, / 2x y z    to make the grids non-overlapping, which results in a fast convergence of the 

sum in Eq. (5.5), Eq. (5.6) and Eq. (5.7) or Eq. (5.8), Eq. (5.9) and Eq. (5.10) when calculating 

PGF. 
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Figure 5.3: Illustration of the source (black) and observer (red) grids for the far-zone PSP 

component. Black and red circles are source/observer grid points on the Cartesian lattices. With 

on-grid black/red circles and random black/red dots. Black/red/green arrows are projections, 

interpolations and interactions among grid sources. 

 

zeroth unit cell can be calculated by interpolation: 

 

( ) ( )

1 1

( ) ( , ) ( ) ( , )
go m gs nN N

p o o p o s s s

far m n m m far m n n n

m n

G G    

 = =

− = − 
r r

r r r r r r r r  (5.18) 

Here, ( , )s s

n n r r  represents the interpolation coefficients from the source grid points 
s

nr   to 

original non-uniform source points nr  and ( , )o o

m m r r  represents the interpolation coefficients 

from the observer grid points 
o

mr  to the original non-uniform observer points mr . The number of 

the source interpolation points ( )gs nN r  and observer interpolation points ( )go nN r  represents the 

number of the grid points that need to be used for the interpolation. For example, we can choose 

the thq  order Lagrange interpolation such that all grid points participate in the interpolation for 

any of the non-uniform points. For this choice, 3( 1)qN q= + , go gs qN N N= = , and the coefficients 

o  and 
s  are the same for the same points. For a more general case of a grid with qN  greater 
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than goN  and gsN , the interpolation for each non-uniform point involve only a subset of the grid 

points, and the coefficients 
o  and 

s  can be represented as sparse matrices. The corresponding 

sparse matrices are generally transpose versions of each other. 

 We can substitute ( )p

far m nG −r r  from Eq. (5.18) into Eq. (5.1) and re-arrange the sums to 

obtain an alternative representation: 

 

( ) ( )

1 1 1

( ) ( , ) ( ) ( , ) ( )

s
go m g s n

N N N
o o p o s s s

m m m far m n n n n

m n n

u G q 


   

 = = =

= −  
r r

r r r r r r r r  (5.19) 

Here, sN  is the number of the non-uniform source points that participate in the process of 

interpolations with a source grid point 
s

nr . These grid points can be found from the interpolation 

procedure of Eq. (5.18). For example, when choosing the thq  order Lagrange interpolation with 

3( 1)qN q= + , sN N= . For a more general choice of a greater qN , sN  is found from the sparse 

matrix representation of the interpolation coefficients 
o  and 

s . 

Based on this grid construction in Eq. (5.15), Eq. (5.16), Eq. (5.17) and PSP representation 

in Eq. (5.19), we can first pre-compute the coefficients 
o  and 

s , e.g., as a sparse matrix, and 

pre-compute ( )p o s

far m nG  −r r  table at the grid points. The computation of 
o  and 

s  involves 

( )O N  operations since the interpolations are spatially local. The computation of ( )p o s

far m nG  −r r  

involves ( )gO N  operations since the grid is uniform and p

farG  is shift invariant in term of the 

differences 
o s

m n −r r . The computation of ( )p o s

far m nG  −r r  can be done via the rapidly convergent 

sums of Eq. (5.5), Eq. (5.6) and Eq. (5.7) or Eq. (5.8), Eq. (5.9) and Eq. (5.10) due to the choice 

of the source and observer grid in Eq. (5.15), Eq. (5.16) and Eq. (5.17) with a spatial separation. 
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The far-zone PSP faru  can, then, be evaluated via the following three steps, which are illustrated 

in Fig. 5.3. 

Step 1, Projection from the source points to the source grid: This step calculates effective 

charges at the uniform source grid. Substituting the representation of Eq. (5.19) for p

farG  into Eq. 

(5.1) for the far-zone PGF and potential components allows obtaining an expression for the 

effective charge at the source grid points as projections from the original non-uniform sources 

(black arrows in Fig. 5.3 represent a contribution of a single non-uniform source to its relevant 

source grid points): 

 
( )

1

( ) ( , ) ( ),

s
s nN

s s s

g n n n n

n

q q


 

=

= 
r

r r r r  (5.20) 

where [1, ]sn N . 

 Step 2, Evaluation of the PSP at the observer grid: This step calculates the far-zone PSP at 

the sparse observer grid points from the sparse source effective charges via the following 

convolution (green arrows in Fig. 5.3): 

 
1

( ) ( ) ( ),
gN

g o p o s s

far m far m n g n

n

u G q   

=

= −r r r r  (5.21) 

which can be evaluated rapidly directly since (1)gN O= . 

 Step 3, Interpolation from the observer grid to the observer points: The far-zone component 

of the PSP at the original non-uniform points can be finally calculated by interpolation, which can 

be viewed as an inverse procedure of step 1 (red arrows in Fig. 5.3): 

 
1

( ) ( , ) ( ),
goN

o o g o

far m m m far m

m

u u  

=

=r r r r  (5.22) 

where [1, ]m N . 
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5.2.3 Evaluation of the near-zone PSP 

To evaluate the near-zone PSP component, 
nearu , we note that for 0di = , we only consider 

the zeroth order unit cell, which is equivalent to a non-periodic problem. The evaluation of 
nearu  

for a free-space non-periodic problem can be efficiently handled using various fast computational 

approaches, such as the fast multipole like methods [54,55] or interpolation-based 

approaches  [57–59]. For 0di  , neighbor images in the near-zone evaluation are included and 

they require modifying the fast evaluation algorithms. Here, we use the box-adaptive integral 

method of [5,82], which is also related to the pre-corrected FFT method [62]  and adaptive integral 

method [60,61]. We modify this approach to efficiently account for the inclusion of the periodic 

images. The idea is similar to the far-zone procedure in Sec. 5.2.2 in its first three steps, but it also 

adds another modified correction step. 

Similar to the grid construction in Sec. 5.2.2, we construct uniform grids. However, there 

are two notable differences. The first difference is that the source and observer uniform grids 

coincide, i.e., there is a single uniform grid }{ }, , } { , , { , ,o o o o s s s s

m m m m m m m m n n n nx y z x y z x y z== = = =r r r  

by  removing , ,x y z    in Eq. (5.15) and Eq. (5.16). The reason for using a single grid is that the 

near-zone PGF only involves a small number of terms in its evaluation and does not need to have 

a spatial separation between source and observer points. The second difference is that the number 

of the grid points gN  is significantly larger than what is used in the far-zone evaluation. Typically, 

gN  is comparable to the number of the non-uniform points N  for the optimal performance. This 

large gN  is required to have sN  (as defined in Eq. (5.19)) to be of (1)O  to result in a reduced 

number of computations in the correction step 4. Based on this grid definition, the near-zone 

evaluation proceeds in the following four steps. 
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Step 1, Projection from the source points to the source grid: This step is similar to step 1 in 

Sec. 5.2.2, where p

farG  is replaced with 
p

nearG . Here, gN  is typically much larger than 
sN , and the 

matrices of the interpolation coefficients are sparse. The resulting computational cost is of 

( ) ( )gO N O N= . 

Step 2, Evaluation of the PSP at the observer grid: This step is similar to step 2 in Sec. 

5.2.2, where p

farG  is replaced with 
p

nearG . However, because gN  is large, the convolution sum of 

Eq. (5.21) is computed via FFT, which is allowed because the grids are uniform. Since 
p

nearG  is not 

periodic, using FFT requires making the equivalent matrix circular, which involves doubling its 

size in each periodicity dimension. For performing FFTs in the computation stage, 
p

nearG  is 

tabulated in the pre-processing stage. The tabulation computational cost is of ( ) ( )gO N O N=  and 

the FFT computational cost is of  ( log )O N N . 

Step 3, Interpolation from the observer grid to the observer points: The interpolation step 

for nearu  is identical to step 3 in Sec. 5.2.2 for faru  and it can be viewed as an inverse of step 1 

using the same sparse matrix for the interpolation coefficients. The resulting computational cost is 

of ( ) ( )gO N O N= . 

Step 4: Error correction: The ability to perform the projection/interpolation in steps 1 and 

3 rely on the assumption of slow variations of the Green's function. For the far-zone evaluation, 

p

farG  indeed varies slowly in the domain of the zeroth unit cell because it excludes the direct and 

near-zone image interactions between the sources and observers. The near-zone component with

p p

near nearG G , however, involves direct and near-image interactions, which result in rapid spatial 

variations, e.g., the rate of such spatial variations is unbounded when the source and observer 
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coincide. Therefore, the interpolations for the nearby source-observer pair contributions are highly 

inaccurate, and they need to be corrected. To eliminate these errors, we define an error correction 

range ERD  for each box (defined by , ,x y z    in Eq. (5.17)), determined by the uniform grid. 

This range is of the same order as max{ , ,x y z   }. For all observer points in a box, the corrections 

are performed in the error-correction region, ( )ER

m r , for all the non-uniform sources in the same 

box and a certain number of surrounding boxes that are withing the ERD  distance from the box. 

The correction involves subtracting the contributions due to steps 1-3 and adding the exact point-

to-point superposition sums via appropriate contributions in Eq. (5.1). The error correction 

procedure can be expressed as 

 
( )

( ) ( ) [ ( ) ( )] ( )

ER
n m

p

near m near m near m n grid m n n

n

u u G G q


= + − − −
r r

r r r r r r r  (5.23) 

 
( , ) 0 ( , ) 0

' '

( , ) ( , ) ( ) ( , )

o s
m m n n

o p s

grid m n nufft m m near m n nufft n n

m n

G G
 

 
  

   = − 
r r r r

r r r r r r r r  (5.24) 

where the error is corrected in the region ( )ER

m r , i.e., for any point r  within this region,

| | ER

m D− r r . Similar to Eq. (5.20) and Eq. (5.22), the s

nufft  and o

nufft  correspond to the 

interpolation matrices containing the weights for the above step 1 and 2. The function gridG  

represents the near-zone Green's function between the source and observer points obtained via the 

grid interactions with interpolation, which needs to be subtracted in the error correction process. 

 While the procedure in Eq. (5.23) and Eq. (5.24) can be efficient, it still can significantly 

increase the computational cost due to the need to account for all the near-zone images via
p

nearG . 

For example, in the 3D periodicity case, when including 2 surrounding boxes per each dimension 
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( 2di = ), there are 125 (
3(2 1)di + ) images in total, which leads to a high additional computational 

cost. 

 

Figure 5.4: The error correction step 4 for the near-zone PSP component. The black dot is a source 

point and red dot is an observer point. The green region is the error-correction region ER . The 

black circles are grid points. Direct calculation within this region is done by subtracting the grid 

interaction inside the green region and adding the direct interactions.  

  

This computational cost can be much reduced by including only a single extra periodic 

image per periodicity dimension. This is possible due to the fact that { , , }x y z    are typically 

much smaller than { , , }x y zD D D , so that most of the images correspond to a large spatial separation. 

For example, in Fig. 5.4 showing an example for a 1D x -dimension periodicity case, for the 

sources in the internal boxes of the zeroth (middle) unit cell, only the 0( )m nG −r r  component of 

the ( )p

near m nG −r r  can be used for the near-zone correction. On the other hand, for the left box, 

which is next to the left edge of the zeroth unit cell (the left green box with red dot and arrows), in 



69 

addition to the 0( )m nG −r r  component, the component of 0
ˆ( )m n xG L− −r r x  of ( )p

near m nG −r r  needs 

to be accounted for. The latter component corresponds to the sources from the right box (right 

green box with a black dot and arrows) contributing to the left box observers via the 1xi =  image. 

These sources are equivalent to the sources in the right box of the left image cell (the dashed green 

box with a grey dot) contributing to the left box observers via the image Green's function 

0( )m nG −r r , i.e., they are equivalent to the geometrically close boxes. This procedure is 

generalized to 2D and 3D periodicities by including corresponding required images. The 

computational cost of this procedure is only slightly higher than that for a non-periodic case, in 

which only the 0( )m nG −r r  contribution is required. The cost increase is associated with the need 

to include additional images at the sources associated with the boxes located at the corners, edges, 

and sides of the computational domain. There is a small number of such boxes as compared to the 

total number of near-zone images, so that the computational cost increase is insignificant. The 

overall computational cost of this step is of ( )O N . 

5.3 Numerical results 

We implemented FFT-PIM both in a Central Processing Unit (CPU) and Graphics 

Processing Unit (GPU) based code. This section presents numerical test results demonstrating the 

accuracy and performance of the FFT-PIM. Sec. 5.3.1 presents error analysis, comparing the 

results from the FFT-PIM with results obtained via the direct sum of Eq. (5.1) with Eq. (5.8) for 

different problem sizes, uniform grid sizes, and interpolation orders. Sec. 5.3.2 examines the 

computational speed of the FFT-PIM for different parameters, such as problem size, uniform grid 

size, and the periodicity dimension. 
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Figure 5.5: Potential on the x  axis of a coaxial structure. (a) Coaxial structure unit cell ( 1L = ) 

and potential of the non-periodic unit cell. Inner radius 1 1r =  with negative line charge density 

1 1 = − , outer radius 2 2r =  with positive line charge density 2 1/ 2 = . (b) PSP with a 1D 

periodicity along the x  axis with 1xL =  for 0 0 0xk k= =  and a 0 1k = , 0 1xk j= − . 

 

We start by showing results for the calculated potential due to a source distribution (Fig. 

5.5). The structure is 1D periodic in the x -direction with the periodicity of 1xL =  and the unit cell 

comprises a section of coaxial cable along the x -axis that extends through the entire period. The 

inner and outer radius is 1 1r =  and 2 2r = , respectively. Negative and positive sources (e.g., 

charges) are distributed uniformly on the inner surface with charge density 1 1 = −  and 2 1/ 2 = , 

respectively, resulting in a neutral unit cell. We first calculate the potential on the central x  axis 

for a  non-periodic case, as shown in Fig. 5.5 (a) and we observe significant edge effects in terms 

of the potential spatial dependence. We then use the FFT-PIM with a 1D periodicity, making it 

into an infinitely long coaxial source distribution. For the NPSP case, we find that the potential 

becomes near zero everywhere (blue curve in Fig. 5.5 (b)), the edge effect is eliminated, which 

agrees with the analytical result. We also calculate the potential for the dynamic case with the 

wavenumber 0 1k =  and a complex phase shift 0 1xk j= − , in which case the potential becomes 
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complex with non-zero magnitude and corresponding real/imaginary parts (black, red, and green 

curves in Fig. 5.5 (b)). 

We, then, proceed with showing results for the error analysis and computational 

performance. 

5.3.1 Error analysis 

To test the error of the FFT-PIM, we use an infinite long 1D bar along the x  axis, and the 

target object is a cube of the size , , 50x y zD D D =  with 1D x -direction periodicity with

50x xL D= = . We assume a NPSP case, i.e., 0 0xk k= = . We mesh the cube with a tetrahedral 

mesh and the total number of the mesh points (vertices) is 7189N = . In order to calculate the error, 

we randomly set 7000 mesh points with finite values as source points while the rest 189 points are 

set to 0, and make sure that 
1

0
N

l

l

q
=

= . The 189 mesh points set to 0 are considered as observer 

points, and the locations of these observer points are chosen such that they are spatially shifted as 

compared to the source points such that the PGF in Eq. (5.8) converges for all source-observer 

pairs when the direct superposition sum is used. We compare the results for relative errors between 

the FFT-PIM and the direct computation via Eq. (5.8), which is equivalent to Eq. (5.5) as shown 

in Sec. 5.2. We tested the relative errors at the observer points with different interpolation orders, 

uniform grid size, and number of subtracted near-zone images. The results are shown in Fig. 5.6. 

We find that with cubic interpolation order and a uniform grid of size , , 10gx gy gzN N N = , by 

subtracting the zeroth order and only the nearest neighbors ( 1di = ), we can achieve an error at the 

level of 
310−
, which is sufficient for many practical cases. The relative error is further reduced by 

increasing the number of grid points, order, and the near-zone images. 
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Figure 5.6: Relative error of the far-zone PSP for a NPSP case with a 1D periodicity along the x -

axis. (a) Relative error for 1st, 3rd, and 6th order interpolation with varying uniform grid sizes 

with 1di = . (b) Relative error of cubic interpolation with 1000 sparse grid points and different 

numbers of subtracted near-zone unit cells. 

 

5.3.2 Computational Performance analysis 

To benchmark the performance of the FFT-PIM, we conducted a set of tests on Purdue 

Anvil cluster at Rosen Center for Advanced Computing (RCAC) in Purdue University. CPU tests 

were run on eight cores of AMD Epyc "Milan" processors and GPU tests were run on Nvidia A100. 

The results are shown for a 3D NPSP problem. The target object is a cube with dimensions 

, , 100x y zD D D =  and , , , , 1x y z x y zL D= + . This problem has , , , ,x y z x y zL D  and it represents the 

maximal computational complexity as compared to 1D and 2D periodicity cases. The 

configuration of the far-zone calculation is set as cubic interpolation with uniform grid size of 

, , 10gx gy gzN N N = , and 1di = . The near-zone is handled using the procedures from the FastMag 

micromagnetic simulator [74,82] for non-periodic and periodic cases. When periodicity presents, 

it is modified to allow for an efficient handling of periodicities, as outlined in Sec. 5.2.3. 
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Figure 5.7: Prepossessing time for the non-periodic case, NPSP case with 3D periodicity, and for 

their difference. 

 

Fig. 5.7 shows the computational time on CPU for pre-processing needed for computing 

the interpolation coefficients and PGF tables. We compare the CPU time with the case of the same 

source - observer distributions but without any periodicity, which demonstrates the overhead due 

to the periodicity. The predominant additional time complexity arises from substituting the original 

free-space Green's function, 0G , with a more complicated nearG . Specifically in this 3D case with 

1di = , nearG  is 3(2 1 1) +  times slower than 0G . However, the overall discrepancy is marginal, 

resulting in only a 15% overhead. This small impact is due to the fact that tabulating the Green's 

function constitutes only a small part of the pre-processing time, and the time complexities of other 

segments do not increase as the periodicity is introduced. We also evaluated 1D and 2D periodic 

cases and obtained similar performance with a reduced overhead. 



74 

 

Figure 5.8: Execution time versus N of evaluating the non-periodic potential and NPSP PSP with 

3D periodicity on (a) eight-core CPU and (b) on GPU. 

 

 Fig. 5.8 shows the execution time for a single evaluation of PSP on CPU and GPU. When 

compared to a non-periodic problem, the major execution time increase is due to the evaluation of 

the far-zone PSP component, which can be performed separately from the near-zone evaluation. 

The presence or absence of periodicity has minimal impact on the near-zone evaluation since all 

Green's function values are tabulated during the pre-processing step. Consequently, in the eight-

core CPU benchmark, only a minor difference (< 15%) is observed between configurations with 

and without periodicity for moderately large case where 
410N  . Furthermore, in the GPU 

benchmark, NVIDIA CUDA multi-stream concurrency enables simultaneous implementation of 

both near-zone and far-zone evaluations. This approach effectively eliminates the overhead 

induced by the far-zone evaluation, which is already marginal in eight-core CPU execution, 

resulting in a small difference (< 5%) between cases with and without periodicity, including the 

3D periodicity cases. The execution performance on GPU is generally 20-30X faster than that on 

eight-core CPU for the tested sizes, which is equivalent to around ~200X speedup between GPU 

and single CPU core. The 1D and 2D periodicity cases exhibit a similar performance, indicating a 

highly efficient implementation for all 1D, 2D, 3D periodicity types. To further present differences 
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between the near-zone and far-zone component, we show the grid size of the near-zone PSP 

component in Table 5.1. For most practical problem sizes, the near-zone grid in Table 5.1 is much 

denser than the far-zone grid. 

 

Table 5.1: Grid size for near-zone PSP component evaluation. The near-zone grid is much larger 

than the far-zone grid when the problem size N  is large. Second-order projection/interpolation for 

near-zone evaluation is used. 

 

N Near-zone grid size 

3096 317  

12175 325  

53601 341  

92233 349  

177973 359  

418308 377  

1391742 3111  

   

From Fig. 5.8 we observe that the near-zone component PSP dominates the computational 

load for the 1D, 2D, and 3D periodicity cases. Similarly, Fig. 5.6 reveals that the error associated 

with the far-zone PSP component can be reduced with minimal adjustments to the parameters and 

limited overhead. This observation suggests that the near-zone PSP component is a critical factor 

in determining the balance between overall performance and error rates. To further explore this 

relationship, we conducted a series of benchmarks with a cube meshed in its volume, containing 

53601N = points for a coarser mesh and 510643N =  for a finer mesh. The results are shown in 
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Fig. 5.9. The performance shown here demonstrate a good performance compared to available 

solutions [64]. 

 

Figure 5.9: Execution time versus the relative error for the near-zone PSP component on 

CPU and GPU for a 3D NPSP case with 53N K=  and 510N K= . 

 

Fig. 5.10 compares the preprocessing and computational time of the NPSP and dynamic 

cases for a 3D periodicity of 101xL = , 101yL = , 101zL =  for relative errors of 
310−
 and 

510−
. 

The NPSP case parameters are as those in Fig. 5.8 and Table 5.1 for error level 
310−
, and we 

double the near-zone grid size for error level 
510−

. The dynamic cases have phase shifts of 

0 0.01 0.01xk j= − , 0 0.01 0.01yk j= − , 0 0.01 0.01zk j= − . For the dynamic case, the wavenumber 

0k  was chosen such that the average distance between the sources/observers was / 20 . This 

choice is typical when considering high-frequency dynamic problems and it allows resolving the 

wave process spatial variations. For the largest considered N , this choice results in the domain 

size of 5x y zL L L = = = . We find that the computational time for the low- and high-frequency 

cases are close to each other, and they scale similarly as that for the non-periodic static case. The 
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computational time of the dynamic cases is around 2 times greater, which is related to performing 

complex-valued versus real-valued operations. 

 

Figure 5.10: (a)Preprocessing time and (b) execution time versus N  of evaluating the PSP for a  

3D NPSP and high-frequency dynamic cases for the relative errors of 1 3e−  and 1 5e− . 

 

5.4 Summary 

We introduced an efficient and flexible FFT-PIM for computing PSP in this chapter. FFT-

PIM can be used for a wide variety of problem types with the same numerical implementation. It 

allows computing PSP for a non-uniform source distribution, works for arbitrary 1D, 2D, and 3D 

periodicities, can operate with or without a phase shift between the periodic boundaries, and is 

applicable to dynamic and static problems. A requirement is imposed for using FFT-PIM for NPSP 

problems, which is that the source must be neutral within the unit cell. Such a requirement is 

natural to many practical problems, such as problems dealing with electric dipoles, magnetization, 

and molecular structures. 

FFT-PIM is based on a superposition sum between the source distribution and PGF. PGF, 

which originally is defined as an infinite sum that does not have a rapid convergence, can be 

represented as an exponentially convergent sum in terms of spectral series expansions, which are 

given for the dynamic case and static case with and without a periodic phase shift. The expansions 
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converge under the assumption of a sufficient separation between the source and observer points. 

To lead to a fast superposition sum computation, PGF and the corresponding PSP are represented 

in terms of the near- and far-zone components. The near-zone component includes a finite, 

typically small, number of periodic images, whereas the far-zone component includes all the rest 

of an infinite number of images. The far-zone component is recognized as a slowly varying 

function of the spatial coordinates, which allows computing the far-zone PSP component by first 

computing it on a sparse uniform grid, i.e., at a small number of points, and then interpolating it to 

all the required non-uniform observation points by local interpolation. This process involves 

defining shifted source and observer grids to allow for a rapidly convergence of the spectral sums 

for PGF. This process requires a small number of operations and low computational cost, while 

allowing for a rapid converge. The near-zone PSP component can be evaluated by any fast method, 

but it required accounting for the additional near-zone images, which may substantially increase 

the computational cost and memory consumption. An approach based on the box-adaptive adaptive 

integral method is presented that allows evaluating the superposition sum for the far-zone 

component rapidly based on including essential images only at the required locations near the 

periodic boundaries. The result is an approach that has an overall computational cost of 

( log )O N N  and memory consumption of ( )O N . The presented results demonstrate the high 

convergence, accuracy, and computational performance of the FFT-PIM. 

We note that FFT-PIM can be regarded as an extension of the fast periodic interpolation 

method [68] and the non-periodic box-adaptive integral method [82] or pre-corrected FFT 

method [62]. With respect to the fast periodic interpolation method [68], the extensions are in 

enabling both dynamic and static cases with any phase shifts or no phase shift as well as in enabling 

the complete fields computation, including fast near-zone computations via an FFT-based method 
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without a need of extending the computational domain. With respect to the non-periodic box-

adaptive integral method [82] or pre-corrected FFT method [62], FFT-PIM allows considering 

problems with 1D, 2D, and 3D periodicities with almost the same computational cost as the non-

periodic approaches. We also note that the approach of separating the computations into the near- 

and far-zone components is related to other fast evaluation techniques [62–66,68,82] for periodic 

and non-periodic domains. Contributions of this work are in the efficient evaluation of the far-zone 

component via the properly chosen uniform grids and Green's function evaluation as well as in the 

adaptation of the near-zone component computation via an FFT-based method. 

FFT-PIM can be used in several problems in electromagnetics, acoustics, and quantum 

mechanics. The evaluation of the periodic sums with dynamic (Helmholtz potential) PGF can be 

used in the context of electromagnetic and acoustic integral equations for characterizing wave 

propagation, radiation, scattering, and dispersion diagrams for periodic arrays. The evaluation of 

the periodic sums with NPSP PGF can be used for modeling infinite periodic arrays or mimic 

infinite domains in electro-/magneto-statics, micromagnetics, and density functional theory. The 

evaluation of the periodic sums with static PGF with a phase shift can be used to calculate 

dispersion diagrams in micromagnetics, e.g., spin waves or linearized density functional theory. 

While FFT-PIM is a powerful method, it also has some limitations. In particular, for high-

frequency problems with electrically large periodicities, the computation of PGF may become slow. 

This time may be reduced by using alternative methods for computing PGF, e.g., see Refs. [69] 

and  [83]. Additionally, using FFTs mean that the computations are done on the entire FFT grid, 

which may be inefficient for problems of curved linear or surface domains or in cases of highly 

non-uniform domains with dense constellations of sources and observers in certain locations. For 

such problems using methods such as Fast Multiple Method  [54],  [84] or Non-Uniform Grid 
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Interpolation method [58] can be efficient. These methods can substitute the FFT-based approach 

for the near-zone component and the ideas presented here can be adapted to extend these methods 

to account for the additional images required due to periodicity. 

 We open-sourced our far-zone component code package Periodic Unit Far Field (PUFF) 

under Apache-2.0 license on GitHub (https://github.com/UCSD-CEM/PeriodicUnitFarField). 
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Chapter 6 Periodic micromagnetic finite element method 

 

Periodic structures are common in many fields of study, such as crystals  [85,86], molecular 

dynamics  [87,88], electromagnetics among others. Periodic structures are also of a high 

importance in micromagnetics  [89,90]. For magnetic structures, periodicity can be used to mimic 

infinite domains, e.g., infinite wires, films, or bulk. Periodicity can be used to account for spin 

wave propagation. It also can be used to approximate structures that are large in one of their 

dimensions. 

There is a range of methods used in various fields of study to account for periodicity, or 

specific algorithms customized for micromagnetics  [63,68,76,79,91]. In Micromagnetics, 

approaches accounting for periodicity are based on finite difference method (FDM) based domain 

discretization schemes with uniform grids  [73]. For a uniform grid with N  grid points, the 

magnetostatic field accounting for periodicity can accomplished using the Fast Fourier Transform 

(FFT) method in ( log )O N N  computational cost. Even for the FDM, one needs to be careful in 

the approaches of computing the periodic superposition kernel, referred to as periodic Green's 

function (PGF) as such computational can become slow or even lead to improper results  [92]. The 

situation is more complicated when using micromagnetic codes based on the finite element method 

(FEM)  [93]. For FEM, the structure to be modelled is meshed into a generally non-uniform mesh, 

which is often tetrahedral or hexahedral. Such meshing allows for a great flexibility in modeling 

complex materials and devices. However, the mesh non-uniformity makes it more complicated to 

account for general periodicities. Currently, there are no reported numerical methods or codes for 

micromagnetics that can handle general periodic structures. 

Here, we introduce a formulation, referred to as periodic micromagnetic finite element 

method (PM-FEM) to handle periodicities in complex micromagnetic simulations using FEM. 
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PM-FEM offers a unified framework incorporating 1D, 2D, and 3D periodicities. For the 

computation of the exchange field, the PM-FEM modifies the exchange matrix to make use of the 

corresponding (1D, 2D, 3D) PBC. For the computation of the magnetostatic field, the PM-FEM 

adapts the Green's function to PGF with a modified pre-corrected Fast Fourier Transform or 

adaptive integral method to calculate the periodic scalar potential (PSP) followed by using a 

periodized gradient operator. Additionally, PM-FEM allows accounting for periodic unit cells of 

different configurations, including cases of touching and non-touching boundaries as well as cases 

of contained and protruding unit cells. In this chapter we first present the formulation of the 

problem, followed by the implementation details for the localized and non-localized interactions. 

We then show results obtained using the PM-FEM method, including its performance and error 

analysis. Finally, we give the summary and conclusion. 

6.1 Problem formulation 

6.1.1 Continuous formulation 

We consider a magnetic structure characterized by the magnetization ( )M r , where r  is 

the location vector defined in a periodic unit cell with 1D, 2D, or 3D PBC (Fig. 6.1). For the 3D 

PBC the periodic unit cell has periodic dimensions (periods) of  xL , yL  and zL . For the 2D PBC, 

the periodic dimensions are xL , yL  whereas the other z  dimension is non periodic. For the 1D 

PBC, the periodic dimension is xL , whereas the other ( y  and z ) dimensions are non-periodic. 

The magnetization satisfies the following periodic condition: 

 

ˆ( ) ( ),

ˆ ˆ( ) ( ),

ˆ ˆ ˆ( ) ( ).

n x n

n x y n

n x y z n

L x

L x L y

L x L y L z

+ =

+ + =

+ + + =

M r M r

M r M r

M r M r

 (6.1) 

 There are two orthogonal PBC categories that require a special attention in numerical 

treatment, touching-(T-)/non-touching-(NT-)PBC and protruding (P-)/non-protruding (NP-)PBC. 
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For T-PBC, such cases occur when for a point at location , [1, ]i i Nr , one of its periodic images 

ˆ ˆ ˆ
i x y zL x L y L z  + + +r  can still be found within the 0th

 unit cell, namely we can find another 

point located at ( , , ), [1, ],j i x i y i zx L y L z L j N j i  = + + +  r , Here,  ,   and   are zero if no 

periodicity is present at the x̂ , ŷ  or ẑ  direction, and they can be 1 if a periodicity is present. We 

also have 0  + +   to avoid j i= , if for any ir , we can't find the corresponding jr , then it is 

NT-PBC. Regarding of the P-PBC, it is defined as the unit cell is tightly confined by the periodic 

length, namely the unit cell size is strictly less or equal than periodic length on all directions, and 

NP-PBC is defined if the condition does not hold. These two categories are orthogonal to each 

other, and all periodic problems can be classified as arbitrary combination of these two categories, 

e.g. T-NP-PBC, NT-P-PBC etc. Here we show some 1D PBC examples for illustration purpose.  

 

Figure 6.1: Categories of 1D PBC unit cell (solid black) and its nearest images (shadowed), 

(a) non-touching, non-protruding case, (b) touching, non-protruding case, (c) non-touching, 

protruding case and (d) touching, protruding case. 

 

Fig. 6.1(a) shows a NT-NP-PBC unit cell, it can be represented as an infinite array of 

spheres, Fig. 6.1(b) shows a T-NP-PBC, it can be used to model an infinite wire, and Fig. 6.1(c) 

and Fig. 6.1(d) shows the NT-P-PBC and T-P-PBC respectively. All these cases can be met in 
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micromagnetic simulations and need to be addressed. Specifically, T-PBC (either protruding or 

non-protruding) requires a special treatment for handling relevant differential operators whereas 

the protruding PBC (either touching or non-touching) requires special handling of the long-range 

superposition integrals / sums. 

The magnetization dynamics is governed by the Landau-Lifshits-Gilbert equation as shown 

in Eq. (2.1) and the total effective field can be decomposed into several sub-components as 

indicated in Eq. (2.2). The effective field and all its sub-components satisfy the periodicity 

conditions, as in Eq. (6.1). 

6.1.2 Discrete formulation 

For numerical calculations, we utilize the finite element method (FEM), in which the unit 

cell is meshed into a set of elements. We choose tetrahedrons as the discretization elements for a 

broad availability of meshers but also hexahedrons can be a good choice. The magnetization is 

represented as   

 
1

( ),
N

n n

n


=

=M M r  (6.2) 

where ( )n n=M M r  and ( )n r  are basis functions chosen as linear interpolatory polynomials. The 

solutions for the magnetization nM  are obtained at points nr  and the magnetization at any other 

point can be found via Eq. (6.2).  

 The discretization in Eq. (2.2) leads to a a unit cell that contains N  coinciding source 

(magnetizations) / observer (effective fields) points. Each point is located at 

( , , ), [1, ]n n n nx y z n N= r  and has magnetization ( ) ( , , )x y z

n n n nM M M=M r   with an infinite number 

of images in the corresponding periodic dimensions. The magnetization in each image satisfies the 

following periodic conditions: 
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ˆ( ) ( ),

ˆ ˆ( ) ( ),

ˆ ˆ ˆ( ) ( ).

n x x n

n x x y y n

n x x y y z z n

i L x

i L x i L y

i L x i L y i L z

+ =

+ + =

+ + + =

M r M r

M r M r

M r M r

 (6.3) 

The integer indices xi , yi  and [ , ]zi  −   if the periodicity is present at that specific direction, 

representing the image's order with respect to the original 0th
 unit cell ( 0x y zi i i= = = ). 

Cases of T-PBC (Fig. 6.1(b) and Fig. 6.1(d)) need to be given a special care of as we 

mentioned before. In these T-PBC cases, the jM  , as a periodic image of iM  on the PBC, is 

defined by Eq. (6.3) that solely depends on the value of its periodic counterpart iM , thus 

reducing the numerical problem size to less than N . The ( , )i j   index pairs that satisfy these 

requirements are referred to as PBC pairs, and we also refer the 
thi  point as the parent of the thj  

point, and thj  point as the child of the 
thi  point. Furthermore, we merge these pairs to their 

lowest common ancestors (LCA)  [94] by the union-find algorithm. Namely, for two PBC pairs 

( , )i j  and ( , )j k , they are merged to ( , )i j  and ( , )i k . These can be proven by adding up their 

coordinates. A single LCA can have multiple children, e.g., a corner point of a cubic unit cell 

with 3D PBC can have up to 7 children. Hence, the number of all unique LCAs LCAN  is equal or 

less than the number of PBC pairs PBCN , i.e. LCA PBCN N . For a problem of size N  with PBCN  

PBC pairs, only PBCN N−  points are unknown, reducing the actual problem size down to 

' - PBCN N N= , so that N N  . For simplicity, we assume that the first 'N  points are within the 

0th
 unit cell, and the rest 'N N−  points are images due to the PBC. 

Note that T-PBC can only appear at the direction with periodicity, yet this is not always 

true when periodicity is present. For example, consider the 3D periodic case with only x−  or 
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y −   direction having T-PBC while the z −  direction having a NT-PBC, e.g., an infinite set of 

infinite x y−  plane films of thickness d  stacking over the z −  direction, with a gap of zL d− . 

The discretized LLG equation is written similar to its continuous counterpart: 

 eff,n eff,n2

,n

,
1

n
n n

st M

 



 
= −  +     +  

M
M H M M H  (6.4) 

where the solutions are obtained for nM  and eff ,nH  are obtained at the locations nr  based on the 

FEM representation of M  via the basis functions in Eq. (6.2). The time integration can be 

accomplished via various techniques. We implemented implicit time step adaptive predictor-

corrector schemes based on explicit second order Adams-Moulton (midpoint) approach as well 

as time step and order adaptive backward differentiation formulas, both approaches having 

absolute stability up to the second-order time integration. 

6.2 Implementation 

In this section, we introduce methods to handle periodicity for computing the effective 

magnetic field components. The anisotropy field an ( )nH r  and applied field ap ( )nH r  are local in 

that they are solely determined by their location, so that their computation is straightforward. 

Approaches for computing the exchange and magnetostatic fields are described next. 

For exchange interaction, modification is only required when PBC present, i.e. '   N N . 

For long-range magnetostatic interaction, the periodic scalar potential (PSP) is via a modified 

pFFT which employs periodic Green's function as the kernel. This can later be further accelerated 

by reducing the FFT size due to the periodicity of the kernel. 
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6.2.1 Exchange interaction 

The exchange interactions are due to quantum mechanics effects that originates from Pauli 

repulsion. In the continuous micromagnetic representation, the exchange field is given by Eq. (2.9). 

The numerical representation of the exchange field is given by 

 ( ) ( ),
m n

ex n mn m


= 
r

H r M r  (6.5) 

where [1, ], [1, ]n N m N  , mn  are elements of a sparse matrix that has band of non-zero values 

defined via n , such that each point is connected to the surrounding points through their 

connecting mesh edges  [74]. For the NP-PBC case, the calculation of the exchange matrix is 

identical to that of the conventional case of non-periodic problems. 

For the case of T-PBC, the sparse matrix construction needs to be modified for several 

cases. 

Case 1: This case is for the interior points, such that the point at nr  is not the LCA of any 

other points and all the neighboring points within n  are not LCA of any other points, i.e., 

( ) , [1, ],LCA i n i N i n    and nm    we have ( ) , [1, ],LCA j m j N j m   . Namely, both n  

and [1, ]nm N    . This case represents the majority of the sparse matrix construction since 

most points within the unit cell volume that are not close to a PBC boundary fall within this 

category. The resulting sparse matrix elements of Eq. (6.5) are the same as for the non-periodic 

case. 

Case 2: In this case, the point at nr  is not the LCA of any other points, and some of the 

points within n  have different LCAs other than themselves. We need to map these points at mr  

to their LCAs and Eq. (6.5) can be extended as 
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( )( ) ( ).

m n

ex n mn LCA m


= 
r

H r M r  (6.6) 

To retrieve the magnetization on the PBC from within 0th
 unit cell. The weight mn  is not mapped, 

since though the magnetization is from the ( )LCA mr  , the location should still stay within 
n  . Note 

that if m  is not a child in a PBC pair, then its LCA  is itself, i.e., ( ) , [1, ]LCA m m m N =   , which 

falls back to the original form of Eq. (6.5). 

 Case 3: In this case, the point at nr  is the LCA of some points on the boundary, i.e., 

, [ 1, ]n n N N    +  and ( ')LCA n n=  . Following the same approach, for each 'n  we can define its 

surrounding region as n  . Then, the completed surrounding region of nr  is n n n     , denoted 

as { }n n . Here, { '}n  represent the union set of all 'n  . We can see that such new region falls back 

to the original n  if { }n =   . Similar to Eq. (6.5), we define all the points inside the { }n n  with 

index m . We further note that an edge can occur multiple times in this object of size N , hence 

direct computations via Eq. (6.6)  would introduce duplicated calculations. To avoid such 

duplication, we first defined a new set of indices 'm  and corresponding coordinates mr . For any 

{ }n nm  , a new 'm  and mr  can be generated as 

 
( ') ( ),

.m m n n

LCA m LCA m

 − = −

=

r r r r
 (6.7) 

Combining all mr  and 'm  together, we obtain a new location set { }mr  and the corresponding 

indices set { '}m . Then, the desired locations and indices set represent a unique set of all mr , 

written as 
†{ }mr  and their corresponding indices, denoted as †{ '}m . Here, 

†{ }mr  and †{ '}m  

satisfies 
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{ }, { }    , { }
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,

m m

i j i j m

m m

i m j m
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 



  

      = 

    

r r

r r r r r

r r

 (6.8) 

This new location set can, then, form a new region as 
†

m , which, combined with the original 

region 
n , determines a generalized surrounding region defined as 

†

n n m =   . Finally with 

this new region, we can rewrite the Eq. (6.6) as 

 
( )( ) ( ).

k n

ex n kn LCA k


= 
r

H r M r  (6.9) 

A fast implementation to construct the above generalized surrounding region defined in Eq. (6.8) 

is to place a filter in Eq. (6.7). Such filter rejects the indices between ' 1N +  and N , i.e., we only 

map the non-PBC location. In this case, the equality 
† †{ } { },{ } { }m m m m 

 = =r r  holds directly. 

 By combining Eq. Error! Reference source not found., Eq. (6.5), Eq. (6.6) and Eq. (6.9), 

we can handle the exchange field when T-PBC is present. 

6.2.2 Magnetostatic interaction 

The magnetostatic field is due to long-range interactions, and it can be calculated either by 

solving the Poisson equation or by evaluating the superposition integrals  [95]. Here, we evaluate 

the magnetostatic field using superposition integrals via the following formulation 

 ( ) ( ),  ( ) ( ),s = = − r M r r n M r  (6.10) 

 ( ) ( ) ( ) ( ) ( ) ,p p

s
V S

u G d G d    = − + − r r r r r r r r r  (6.11) 

 ( ) ( ).ms u= −H r r  (6.12) 

Here,   is the volumetric magnetic charge density, s  is the surface magnetic charge density, . . 

is the magnetic scalar potential, and pG  is the 3D periodic Green's function (PGF), which can be 
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1D, 2D, or 3D periodic  [71,96]. A discrete FEM representation of  Eq. (6.10), Eq. (6.11) and Eq. 

(6.12) can be given as 

 ( )( ) ( ),
k n

q

n kn LCA kq 


= 
r

r M r  (6.13) 

 
[1, ]

( ) ( ) ( ),p

n n k k

k N

u G q


= −r r r r  (6.14) 

 
near

near( ) ( ) ( ),

k n

n n kn ku u 


= + 
r

r r M r  (6.15) 

 
grad

( )( ) ( ).
k n

ms n kn LCA ku


= −
r

H r r  (6.16) 

Here, ( )nq r  are nodal magnetic charges assigned to each point nr  , i.e., nodes of the FEM mesh. 

These charges are found via an FEM representation of the divergence operator in the volume and 

additional surface related charge components on the surfaces of the magnetization discontinuities, 

e.g., boundaries of the magnetized domain or boundaries between material of different saturation 

magnetization. The nodal charges are given as a sparse matrix-vector products with the sparse 

matrix elements q

kn  . Similarly, grad

kn  are elements of the sparse matrix representing the gradient 

operator. For the NT-PBC cases, the charge and gradient sparse matrices are constructed 

identically to non-periodic cases. For the T-PBC cases, the construction of these sparse matrices 

is modified similarly to the modifications in the Laplace matrix construction, as outlined in Sec. 

6.2.1 to generalize the regions surrounding each point. 

In Eq. (6.11), ( )nu r  is the magnetic periodic scalar potential (PSP) at the mesh points and 

it is given as a standard superposition sum over the charges ( )kq r  in the periodic unit cell, where 

( )p

n kG −r r  is the periodic Green's function (PGF) defined for the 1D, 2D, and 3D periodicities 

and can be found in Eq. (5.8), Eq. (5.9) and Eq. (5.10). The PSP can be calculated efficiently for 
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the NP-PBC case and these approaches can be adapted to account for the P-PBC cases as discussed 

next. 

For a given charge used for the calculation of the PSP, the PSP values are calculated 

accurately only at distances substantially distant from the charge, specifically, for distances greater 

than the surrounding element size. For smaller distances, the result is inaccurate, and it needs to 

be corrected. In Eq. (6.15), ( )nu r  is the corrected PSP (C-PSP), which includes a correction term, 

where near

kn  are elements of the sparse correction matrix. The correction matrix has non-zero 

elements for a range of points near

n  in the proper vicinity of nr  . The correction sparse matrix 

elements are found through exact integrals of Eq. (6.14) performed over the relevant elements 

(tetrahedrons in our case).  

Here we present an approach to account for the PBCs in the computations of msH . With 

such a correction, the C-PSP can be computed with a controllable error. 

Eq. (6.14) includes a superposition sum and if computed directly it has its computation cost 

scaling as 
2( )O N  , which is high for large N  . We use a modified version of the pFFT method, 

also referred to as box-adaptive integral method (BAIM) that has a computational complexity of 

( log )O N N  . We define a Cartesian grid of size x y zN N N   over the domain size of ,  ,  x y zD D D  

as 

 

, , , , , ,( 1) , ( 1) , ( 1)

1 1 1

i j k x i j k x i j k x

yx z
x y z

x y z

x i y j z k

DD D

N N N

= −  = −  = − 

 =  =  =
− − −

 (6.17) 

with [1, ], [1, ], [1, ]x y zi N j N k N    and denote the grid points as , , , , , , , ,( , , )i j k i j k i j k i j kx y z=r  . The 

BAIM procedure follows the following four steps. 



92 

 Step 1: Project non-uniformly distributed sources ( )nq r  of Eq. (6.10) from locations nr  to 

the charges , ,i j kq  defined at the uniform Cartesian grid at , ,i j kr . 

 Step 2: Calculate the PSP on all Cartesian grid points , ,i j kr  as a convolution between PGF 

on , ,( )p i j kG r  and changes , ,i j kq  on the grid, obtaining the PSP , ,i j ku  on the grid. 

 Step 3: Interpolate the grid PSP , ,i j ku  to the PSP at the non-uniform points nr . 

The result from Steps 1-3 provide a PSP at the non-uniform points that has errors due to 

the fact that the projection and interpolation procedures are inaccurate from the PSP generated by 

sources that are located near the observers. To correct these inaccuracies, we implement a 

correction Step 4. 

Step 4: Correct the errors introduced by projection and interpolation from Steps 1 and 3 to 

obtain the desired PSP ( )nu r  with a controllable error level. 

Compared with the non-periodic problems, two major modifications are made in these four 

steps. 

First, in the original BAIM, Green's function in step 2 is the free space Green's function

0 1/ | |G = r . To adapt the PBCs, the free-space Green's function is replaced with the PGF pG  and 

it can be computed efficiently. 

The second major modification is for the error correction in Step 4. In general, the 

projection and interpolation only introduce large errors when projected/interpolated functions vary 

drastically within the region of interest. For the free-space Green's function 0G  it occurs when the 

separation between source and observer is small. We define a threshold | |ERr  such that for all 

neighboring sources within this range, contributions from these sources are calculated directly 
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instead of the convolution in step 2. This can be done by subtracting the contributions from step 2 

and adding the accurate contributions computed via a direct contribution. 

For the free-space case, the threshold | |ERr  is found simply based on the source-observer 

distance. For the PBC cases, the periodic source images result in additional periodically copied 

points that also need to be included in the threshold | |ERr  range. Although we replace 0G  with pG  

in Step 2, only 0G  varies drastically within nearby region. Therefore regardless of the periodicity 

configuration, the error correction is always calculating the contributions from sources through 0G

, namely we only subtract contributions of 0G  in step 2 and add them back still using 0G . 

The | |ERr  here defines a correction region for each point as ER

n  that includes all qualified 

neighboring source points, this is usually defined based on the box size , ,x y z   , e.g. 

| | ( , , )ER x y zmax=   r . This region needs to be expanded when periodicity presents. Similar to 

Sec. 6.2.1 we have different scenarios. We first define a symbol   to represent the periodic 

direction, e.g.   can be x  for 1D periodicity, ,x y for 2D periodicity and , ,x y z  for 3D periodicity. 

Then for a specific point at location nr  we have 

Case 1: ˆ | | ( , )n ER D L L       −r r . This is the major case for all source points that are 

sufficiently far away from the boundary of periodic direction. In this case ER

n  is unchanged. 

Case 2: ˆ | |n ER L   + r r  or ˆ | |n ER D L  −  −r r . This means that the error correction 

region is including source points from nearest neighboring images. The error correction region 

then needs to be expanded. The original ER

n  is defined within a region that satisfies 

ˆ ˆ ˆ, [ | |, | |]ER

k n k n ER n ER       − +r r r r r r . We here defined a expanded error correction as ER

n

. For each scenario we have  
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ˆ ˆ ˆ ˆ, [ | |, | |] [0, | | ],

ˆ ˆ ˆ ˆ, [ | |, | |] [ | |, ].

ER

k n k n ER n ER n ER

ER

k n k n ER n ER n ER

L

L D



 

    

    

    − +  + −

    − +  + −

r r r r r r r r

r r r r r r r r
 (6.18) 

In BAIM, the source points within each range can be easily found by searching "boxes" constructed 

by grid points of size , ,x y z   . And all these source points' corresponding box index are pre-

tabulated. 

 The construction of the sparse matrix ( )n0Z r  in Eq. (6.16) also involves very similar 

modification, except that the error correction range | |ERr  is typically defined based on the 

tetrahedron size instead of the box size, i.e. the average edge length. Otherwise, we also need to 

expand the region searching for neighbor following the same style defined in in Eq. (6.18). 

 Here we first assume that the case is NP-PBC. This assumption naturally holds for most 

regular shapes, e.g. a cube, a cylinder and etc. However, this property is not guaranteed to be held 

with an irregular shape. In this case the judging condition in case 1 and 2 are not working anymore. 

 To fix these issues, here we propose a very simple solution. When calculating the msH  

over the unit cell that D L    . We define a new unit cell based on the original first N  points 

specifically for msH  that 

 
0

ˆ ˆargmin | |,

( ) ( )

n n

ms n ms n

L

H H


 

   



= − + 

=

r r r

r r

 (6.19) 

 This equation defines a new unit cell with new coordinates nr . The coordinates are shifted 

by arbitrary periodic length along each periodic direction to minimize the Manhattan distance with 

respect to a fixed point 0r . For convenience we typically choose the geometry center of the original 

unit cell, namely 0 /n

n

N =r r . The new unit cell defined by Eq. (6.19) satisfies the condition 
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that D L    . Since 0
ˆ ˆ ˆmod( , ) [0, )n n L L     − r r r . After solving the msH  on each 

shifted point, we can map all the values from nr  back to nr  to restore the original unit cell. 

6.3 Results 

PM-FEM was implemented as a part of the FastMag micromagnetic simulator to allow 

modeling of complex magnetic materials and devices. The updated FastMag components include 

the magnetostatic and exchange field modules as well as the mesh construction module for 

touching and protruding unit cell types. In addition to these modules, FastMag implements 

implicite time stepping schemes, including time step and order adaptive backward differentiation 

formulas and time step adaptive second-order midpoint rule. In these implicit time stepping 

schemes, at each time step, a non-linear equation is solved via iterative Newton's method assisted 

with a linear solver at each non-linear iteration. The convergence of the linear solver is assisted 

with a preconditioner, such as ILU or block inverse preconditioners  [97,98]. 

We first show a transformation of a 1D periodic protruding touching unit cell as in. We 

then present examples of micromagnetic simulations for 1D/2D/3D periodic problems. Finally, we 

show the computational performance of PM-FEM. We do not show results for computing the 

periodized exchange field since the computational time for the periodic and non-periodic cases of 

computing the exchange field is nearly the same and this time is significantly below that of the 

magnetostatic field. 

6.3.1 Protruding unit cell 

The protruding unit cell is defined such that there is at least one periodic direction where 

the structure size exceeds the periodic length. In Fig. 6.2, the structure is a parallelogram with a 

1D x− direction T-P-PBC. The cell size along the x− direction is one and a half of the periodic 

length, e.g., 2, 3x xL D= = . By utilizing Eq. (6.19) with 0r  set to the geometry center of the unit 

cell (the black dot in Fig. 6.2(b)). , we shift the green and blue part in Fig. 6.2(b) via Eq. (6.19), 
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and obtain a new unit cell with a regular shape, i.e., a rectangular unit cell with T-NP-PBC (Fig. 

6.3(c)). This step is only needed once in the preprocessing stage to map the coordinates, and it 

has no effect on the rest of the computations. 

 

Figure 6.2: Illustration of (a) Protruding unit cell; (b) its geometry center (black dot) and 

its protruding parts in green and blue; (c) Regular unit cell after shifting the protruding parts. 

 

6.3.2 1D periodicity 

 

Figure 6.3: Hysteresis loop along ẑ −  direction of infinite long periodic rod along ẑ −

direction, the inset is the unit cell. The loop is of square shape and coercive field is around 3050 

Oe, close to theoretical value 3085 Oe. 

 

Fig. 6.3 shows a calculated M-H hysteresis loop for an infinitely long cylindrical rod with 

79.604 10  erg/cmexA −=  , 3490 emu/cmsM = , 0.5 = , and no anisotropy. The corresponding 

exchange length is 2 7/ 2 8 10  cmex ex sA M  −=   . The prediction is a mostly square hysteresis 

loop and T-PBC is required especially for the case where the radius of the rod R  is close to the 
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normalized length 6

0 2 2 10  cmexR R  −= =    due to the buckling reversal mechanism. We 

choose the height of the unit cell twice of the radius, i.e., 2h R=  (shown as the inset of Fig. 6.3), 

as indicated in expecting accurate results. We impose a 1D T-NP-PBC along the height ( z − ) 

direction. The switching is via buckling mode and the coercive field is 3085 OecH == , which 

agrees with solutions in literature  [99,100]. 

6.3.3 2D periodicity 

Here, we present results for an infinite Permalloy film, modelled as a 2D T-NP-PBC square 

unit cell of the side length of  52 10x yD D −= =   cm and thickness 62 10zD −=   cm (Fig. 6.4(a)) . 

The material parameters are 6637 emu/cc, 1.4 10  erg/cms exM A −= =  , zero anisotropy, and

0.02 = . We impose a 2D T-PBC in the x̂  and ŷ  directions, i.e., x y x yL L D D= = = . We 

compare the results for the cases with and without the PBC. Without the PBC, the equilibrium is 

a vortex state, related to the magnetostatic effects of the edges (Fig. 6.4(a)). With the PBC, the  

equilibrium state is uniform in the x y−  plane (e.g., magnetization aligned along the y − direction 

in Fig. 6.4(b)). 

We then use a line source (bright yellow line in Fig. 6.4(b)) in the middle of the film along 

the y −  direction parallel to the equilibrium magnetization. The line source represents a radio 

frequency (RF) excitation 0( , ) cos( | | )H t H t y= −r k  of width 610d −= cm 2 / | | k . We fix 

the driving frequency 0 4.85 2 =   GRad/s and tune wavelength 2 / | | k . Due to the phase 

matching, excited propagating spin waves (Fig. 6.4(c)) share the same wavenumber with tilted 

angle   between the wave vector swk  and magnetization M  that satisfy cossw  =k k . Therefore, 

by sweeping the k , we can extract the dispersion relationship of the spin wave for the wavelength 
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2 / | |sw sw = k  versus the angle  . We compare the calculated dispersion relationship with a 

theoretical result  [101]: 

 

2 2

2 2
2

2
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| | cos | | (2 | | )sin
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sw ex M sw

sw z sw z sw z
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 (6.20) 

where grM sM = , 2 2/ 2ex ex ex sA M  = = . By fixing 0( )sw =k  in Eq. (6.20) and solving its 

implicit counterpart with a desired  , we obtain the dispersion relationship in [ / 2, / 2]   −  . 

The comparison between the numerical (circle marks) and analytical (dashed line) results are 

shown in Fig. 6.4(d). The results match each other well. 

 

Figure 6.4: Example of 2D T-NP-PBC case. (a) Equilibrium vortex state without PBC and 

(b) the uniform state when with 2D T-NP-PBC. The yellow dashed line is the location of the line 
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excitation. (c) Angles between wave vector of propagating spin wave and magnetization. (d) 

Simulated wavelength (circle marks) and theoretical prediction (blue dashed line). 

 

6.3.4 3D periodicity 

 
Figure 6.5: Example of 3D T-NP-PBC case.  (a)  Multi-grain structure (the unit cell is 

marked as a yellow cube); (b) multi-grain structure folded into the unit cell; (c) hysteresis loop for 

the periodic multi-grain structure. The unit cell size is 6 m , the average grain size is 2.5 m . The 

structure was meshed in a tetrahedral mesh with 70 million elements and 12 million nodes. 

 

For a 3D periodicity problem example, we use a complex multi-grain structure representing 

a granular soft magnetic material. The structure consists of 30 unique grains (Fig. 6.5(b)). The 

grains are configured to be periodic in terms of the corresponding dimensions. The structure is 

classified as both touching and protruding (Fig. 6.5(a)). After folding the protruding parts, the 

resulting unit cell is a cube with 3D PBC. The side length of the unit cell is 6 Dx Dy Dz m= = =  . 

The unit cell has 3200 emu/cmsM = , 61 10  erg/cmexA −=   , and cubic anisotropy of 

4 3

1 3 10  erg/cmK =   with a random axis direction per grain. Additionally, the grains are separated 

by a small (nm-length) randomly variable distance, and they have an interfacial exchange coupling 

with the surface energy density of 20.05 erg/cmiexA =  . The corresponding exchange length is 

2/ 2 20 nmex ex sA M =  , and the mesh size is set to 0.5 ex . We impose the 3D T-NP-PBC 

along all directions and set [ , , ]x y zL  to be same as [ , , ]x y zD  to mimic an infinite domain and eliminate 

undesired magnetostatic field edge effects that are present without PBC. The simulation is to obtain 
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a M H−  hysteresis loop. As seen from Fig. 6.5(c) , the non-PBC case has a significantly lower 

remanence magnetization and higher saturation field due to the magnetic charges at the boundary 

of the unit cell, which signifies the necessity of applying the PBC condition in soft material 

analysis. 

6.3.5 Performance 

To demonstrate the computational performance, Fig. 6.6 shows the computational time of 

a one-time evaluation of the magnetostatic field for the PM-FEM and its corresponding non-

periodic case with the original BAIM-based method. The magnetostatic field evaluation is shown 

since it is often one of the important computational bottlenecks. To best demonstrate the 

performance, we choose to compare the 3D T-NP-PBC case that possesses maximal complexity 

as 1D/2D cases require a lower computational time. The unit cell is a cube of size 

100x y zD D D= = =  with periodicity settings of , ,x x y y z zL D L D L D= = = . We mesh the cube with 

a tetrahedral mesh. By changing the tetrahedron size, we generate models with different numbers 

of vertices N . We use the PM-FEM method and the original non-PBC method on one core of 

AMD 5950X CPU and on NVIDIA RTX 3080 Ti GPU with single precision and relative error 

level of 310− . The results show that the periodic case may be even faster than the non-periodic 

case. The performance gain is from the step 2 in which the FFT-based convolution is utilized to 

calculate the potential on the grid. Thanks to PGF, we avoid the extra zero-padding and mirroring, 

which leads to a higher performance. The computational time on CPU scales nearly linearly with 

N . On GPU, for smaller N , the computational time scales less than linearly because the GPUs 

are underutilized. For larger sizes, with a full GPU utilization, the computational time scaling is 

also linear with N . 
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Figure 6.6: Performance comparison of calculation of magnetostatic field between the PM-

FEM on 3D T-NP-PBC case and non-periodic case with original method on single-thread CPU 

and GPU. 

 

 Finally, Fig. 6.7 shows the computational time of computing the magnetization dynamics 

in the 3D PBC case of the granular structure of Fig. 6.5(a), which can be used to calculate the core 

loss and permeability of soft magnetic materials. The excitation was by a uniformly applied 

magnetic field of 1.0 Oe at the frequency of 5 MHz. The computational time is given for a 1 ns 

simulation. The simulations were done on a NVIDIA A100 GPU. For the 1 ns simulation, it took 

101 time steps, 112 non-linear iterations, and 888 linear iterations used for the implicit BDF time 

stepping. The results show a mostly linear computational time scaling with N  . For the largest 

considered case of 11.7 MN =  , the computational time is 216 s, which allows doing a design of 

experiment for such complex structures in real time. The computational time for a non-periodic 

case for the same structure was nearly the same. The achievable limit on N  is set by the available 

GPU memory, which is related not only to the periodic code components, such as the exchange 

and magnetostatic field, but also to other components, such as preconditioners for the linear solver 

used for implicit time stepping as well as data structure required for outputs. 
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6.4 Summary 

In this chapter we introduced an efficient PM-FEM approach to account for periodicity in 

micromagnetic simulations. PM-FEM is applicable to all 1D/2D/3D periodic problems within a 

uniform framework. PM-FEM implementation is based on the non-periodic FastMag 

micromagnetic framework, which is updated in several aspects to include PBC. The main 

modifications are in handling the exchange and magnetostatic fields. Handling the exchange field 

is based on modifying the construction of the sparse matrix representing the Laplace operator to 

include elements corresponding the periodic extension in the case of touching periodic unit cells. 

Handling the magnetostatic field includes the local operators, such as the gradient, divergence, and 

surface magnetic charges as well as the long-range superposition operator. The local operators for 

the magnetostatic field computation are handled similar to the Laplace operator for the exchange 

field. The long-range superposition operator involved a rapidly convergent approach for 

computing the PGF as well as an updated FFT-based BAIM approach to compute the PSP in  

( log )O N N computational cost. The modifications allow for the BAIM extension are based on the 

identification of the local error correction range that is based on the periodic extensions of the 

sources from the proper sides of the periodic unit cell. 

Numerical examples demonstrate the efficiency and generality of PM-FEM. It is shown 

that FM-FEM can handle any 1D, 2D, and 3D periodicities with the speed that is comparable or 

even higher than that for similar non-periodic problems. The results also show that the updated 

FastMag simulator can handle large complex meshes of tens of millions of elements. PM-FEM 

can be used for many micromagnetic problems, including those requiring large meshes. Examples 

of using PM-FEM with FastMag are the study of the magnetization dynamics in periodic structures, 

mimicking infinite domains, such as wires, films, and bulks, and the study of spin wave 

propagation. 
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Chapter 7 Periodic phase diagrams in micromagnetics with an eigenvalue solver 

 

From Chapter 5, we introduced the way to solve the PSP in a neutral system when no phase 

shift / free-space wave propagation. Furthermore, in Chapter 6 we propose a systematic method to 

solve the LLG equation in time domain for periodic system without phase shift. In this chapter, we 

propose an approach to solve eigenvalue problems using the linearized LLG equation with periodic 

boundary conditions in the FEM framework. We consider general 3D periodic problems possibly 

with 1D, 2D, and 3D periodicities (Fig. 7.1). A key aspect of our methodology is the precise 

computation of the periodic fields, which ensures compatibility with the micromagnetic 

framework while preserving the periodicity of the system. By employing this approach, we aim to 

construct periodic phase diagrams that capture the stability and dynamic (spin wave propagation) 

properties of micromagnetic systems under various conditions. 

 

Figure 7.1: Illustration for a periodic problem consisting along x̂  (yellow), ŷ  (blue) and 

ẑ  (green) direction with 0th  unit cell (red) and its periodic images (grey). 

 

We validate our method through applications to well-studied periodic micromagnetic 

systems, demonstrating its efficiency and accuracy in calculating the periodic problem with 

phase shift. We then demonstrate the power of the approach by calculating dispersion diagrams 

of 1D and 2D periodic problems. This work contributes a new computational framework for 
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analyzing periodic micromagnetic structures, offering potential insights for researchers in 

dynamic magnetism, spintronics, and materials science. 

7.1 Problem formulation 

We consider a 3D domain (Fig. 7.1) with the a magnetic structure of an arbitrary shape that 

is infinitely periodic in 1D, 2D, or 3D directions with periodicities of ,x yL L  and zL , respectively. 

We develop a formulation that allows calculating the dispersion diagrams for the periodically 

modulated magnetization with the same periodicities as the domain.  

This section presets the formulation of the periodic linearized LLG equation  [12,102] and 

field with phase-shifted periodic boundary condition (PBC), leading to the ability to set up a 

periodic eigenvalue problem. 

7.1.1 Periodic linearized LLG equation 

We have introduced the LLG equation and its total effective field effH  in Eq. (2.1) and Eq. 

(2.2). Under the assumption of a weak excitation, the magnetization can be considered as a weak 

perturbation v  around the  equilibrium state 0M , i.e., 0= +M M v . The effective field also can be 

written similarly: eff eff ,0= +H H h , where eff ,0 eff 0( )=H H M  is the effective field for the 

magnetization equilibrium state and eff ( )=h H v  is the corresponding field perturbation. The 

equilibrium state satisfies Brown's condition 0 0 0 =M H  subject to a PBC with no periodic phase 

shift as indicated in Eq. (6.1) for the 1D, 2D, or 3D periodicity, respectively. The equilibrium 

effective field eff ,0H  satisfies the same PBC with no phase shift as 0M . The equilibrium state 0M  

is found by satisfying the Brown condition by energy minimization or solving the dynamic LLG 

equation (Eq. (2.1)) with high damping until no significant time variations are obtained. 

The magnetization perturbation v  satisfies the following phase-shifted PBC: 
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 (7.1) 

for the 1D, 2D, or 3D periodicity, respectively. Here, 0 0,x yk k , and 0zk  are periodic phase shift 

wave numbers in the ,x y  and z  direction, respectively. These phase shift wave numbers can be 

combined into a phase shift wave vector 0 0 0 0x y zk k k= + +k x y z , which is defined depending on 

the dimensionality of the periodicity.  The perturbation field h  satisfies the same PBC as v , and 

it is linear in v , i.e., it can be written as: 

 0( ) ,=h k v  (7.2) 

where 0( )k  is a linear operator that includes the linear operators corresponding to the effective 

field components. This operator depends on the wave vector 0k 。 

Keeping only terms that are linear in the small perturbation v  in the LLG equation Eq. 

(2.1), we obtain a linearized LLG equation 

 
( ) ( )0 eff ,0 0 0 eff ,02 2
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1 (1 )
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s

d

dt M

 

 
= −  −  −   − 

+ +

=

v
M h H v M M h H v

k v

 (7.3) 

where  is a linear operator representing the right hand side of the equation and this operator 

accounts for the fact that the field perturbation h  is linear with respect to v  via Eq. (7.2). The 

operator  is a function of the phases shift wave vector 0k . 

For finding the dispersion diagrams, we define v  in the form of ( , ) ( )j tt e =v r r  and 

assume no external excitation, i.e., ap 0=H , which allows writing the linearized equation Eq. (7.3) 

as an eigenvalue problem: 

 0( ) .j = k  (7.4) 
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Here,   is the eigen frequency corresponding to the eigenstate ( ) r  that satisfies the PBC as in 

Eq. (7.1). Since the operator  is a function 0k , solving this eigenvalue problem result in 

calculating a dispersion diagram, i.e., the dependence of the eigen frequency of the wave vector

0k . This dispersion diagram can be considered from two points of view. One can obtain a 

dependence of generally complex   versus 0k  by solving the explicit eigenvalue problem of Eq. 

(7.4) for a range of given real 0k . Alternatively, one can obtain generally complex 0k for a set of 

given real  . The latter approach may require solving an implicit eigenvalue problem because 0k  

appears in the operator  implicitly. While being more complex problem to solve, this approach 

allows directly calculating not only the real but also imaginary parts of the wave numbers, thus 

providing the spin wave propagation length. 

7.1.2 Field under periodic boundary condition with phase shift 

Only the magnetostatic and exchange fields need special care in terms of PBCs since they 

come from non-localized interactions. For the exchange field, changes are needed when touching 

periodic boundary condition (T-PBC) is present, namely the object size is equal to the periodic 

length.  

The exchange fields corresponding to the dynamic perturbation is given by 

 2

ex 2

2
( ) ( ),

( )

ex

s

A

M
= h r v r

r
 (7.5) 

where 2  is the Laplacian operator and exA  is the exchange constant. In typical FEM in 

micromagnetics, the structure is meshed into a mesh, that often is based on tetrahedral tessellation. 

The solution is obtained as the magnetization states at the vertices of the mesh. Inside the mesh 

elements, the magnetization is interpolated via polynomials, which often are chose as linear. The 

Laplacian operator is implemented as a sparse matrix with the matrix band determined by the 



108 

connectivity of the mesh vertices to the surrounding vertices connected via common elements. 

When the computational domain is smaller than the periodicity, there is no need to modify the 

conventional sparse matrix representation. When the computational domain extends through the 

periodic boundaries, the PBC of  Eq. (7.1) needs to be accounted for by properly updating the 

sparse matrix. The exchange field corresponding to the equilibrium state ex,0H  is given by the right 

hand side of Eq. (2.9), where v  is replaces with 0M  and the PBC of Eq. (6.1) is used. 

 The perturbation magnetostatic field msh is due to long-range interactions, and it can be 

calculated either by solving the Poisson equation or by evaluating the superposition integrals. We 

evaluate the magnetostatic field efficiently using superposition integrals that is introduced in 

chapter 6.2.2. 

7.2 Results 

Here we demonstrate results obtained using the periodic eigenvalue LLG solver. The 

structure is meshed via a tetrahedral mesh and linear nodal elements are used. The dispersion 

diagrams are calculated by solving the eigenvalue problem for the eigen frequencies   using the 

periodic eigenvalue LLG solver for a set of prescribed wave numbers. The results include a 

validation example and examples of calculating the dispersion diagrams for 3D problems with 1D 

and 2D periodicities. 

We first validate the presented approach by calculating the dispersion relation of 

magnetostatic backward volume wave (MSBVW) in an infinitely large permalloy film. 

7.2.1 MSBVW dispersion relationship 

As we introduced in chapter 2.3.2.2, the theoretical dispersion relationship of the MSBVW 

can be found in Eq. (2.15). In the numerical solution, we set the unit cell of size 200 200 20   

nm, with the mesh edge length of 8 nm. The material parameters are 637 emu/ccsM = , 
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61.4 10  erg/cmexA −=  , no anisotropy, and 0.02 = . We impose a 2D PBC in the x and y 

directions, i.e., 200x yL L= = nm. The equilibrium magnetization is aligned along the x−

direction. By sweeping 0xk k=  and keeping 0 0yk = , the corresponding eigen-frequency related to 

the MSBVW of wave vector xk is calculated. For further comparison, we also calculate the 

dispersion relationship using the time-domain LLG solver. All these results are present in Fig. 7.2 

and the eigen state of the MSBVW with the wave vector / xk L=  is also plotted. We observe all 

methods agree well with each other validating the presented solver. We note that running the time 

domain LLG equation is much slower and has various issues, such as a possible non-linearity in 

the behavior. 

 

Figure 7.2: The left figure is the phase diagram (dispersion relationship) calculated from 

theoretical equation (black circles), LLG time-domain solver (green circles), eigenvalue solver 

(red line) and its relative error with respect to the theoretical values. The right figure is the y  

component of the magnetization perturbation v  from the eigenstate of /x xk L= . 

 

7.2.2 1D periodicity with a hole 

We then show a 1D periodic phase diagram for the same film with a periodic array of holes 

in the x  direction with the same periodicity of 200 nm, which is of a width of 200 nm in the y −

direction. The equilibrium state, which is calculated via the periodic LLG time-domain solver, is 
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found to be slightly different than that for the case of the uniform film. The eigen state of the lowest 

branch with 0 /x xk L=  and the periodic phase diagram of the first 4 branches with the lowest 

energy are shown in Fig. 7.3. The eigen state exhibits a butterfly feature which is very different 

from that in Fig. 7.2. 

 

Figure 7.3: The left figure is the 1D phase diagram of the film with a hole in the middle from the 

periodic LLG eigen value solver (red dashed line). The right figure is the y -component of the 

magnetization perturbation v  from the eigen state of 0 /x xk L= . 

 

7.2.3 2D periodicity with a hole 

Finally, we calculate a periodic phase diagram of the above example with both x  and  y

periodicities. The eigen state of the lowest branch with 0 /x xk L=  and the periodic phase diagram 

of the first 3 branches with the lowest energy are shown in Fig. 7.4. The eigenstate here is very 

different from that in Fig. 7.2. 
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Figure 7.4: The left figure is the 2D phase diagram of the film with a hole in the middle from the 

periodic LLG eigenvalue solver (red dashed line). The right figure is the y  component of the 

magnetization perturbation v  from the eigen state of 0 /x xk L= . 

 

7.3 Conclusion 

In this chapter We presented a computational framework for calculating periodic phase 

diagrams in micromagnetic systems by solving a linearized LLG equation with an eigenvalue 

solver. A critical aspect of the presented approach is the calculation of the periodic field, which 

ensures the compatibility of PBCs with the micromagnetic formalism. By addressing the 

challenges associated with periodic systems, the presented approach offers an efficient and 

accurate means to analyze the stability and dynamic properties of micromagnetic structures. 

The results demonstrate the validity and generality of the approach in capturing the key 

features of periodic micromagnetic systems, including resonance behaviors and phase behavior 

under varying conditions. Case studies illustrate the utility of the proposed method for 

investigating nanostructured materials and patterned magnetic systems, providing valuable 

insights into their dynamic properties. 

This work not only advances the computational tools available for micromagnetic analysis 

but also lays the foundation for further exploration of periodic systems in nano-magnetism and 
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materials science. Future studies could extend this methodology to include nonlinear dynamics, 

thermal effects, and more complex geometries, broadening its applicability to a wider range of 

micromagnetic phenomena. 
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Chapter 8 Conclusion 

 

In this dissertation, we have explored a series of topics including high-performance 

algorithms in CXDI, a novel design of STNO based device that can achieve global 

synchronization, fast calculation of PSP in the periodic structures, and a specific application in 

periodic micromagnetic problems. We further present methods to solve the LLG equation in the 

time domain and frequency domains. 

Through the chapters presented, we made several contributions. In the context of 

micromagnetics, we developed techniques to handle large-scale simulations governed by the 

Landau–Lifshitz–Gilbert (LLG) equation. We implemented these techniques in an efficient 

micromagnetic framework. By introducing interpolation-based approaches and addressing 

periodic boundary conditions, we enabled efficient FEM-based simulations for time- and 

frequency-domain problems. Furthermore, the integration of our methods enabled the study of 

novel magnetic structures, such as arrays of spin-transfer torque nano-oscillators (STNOs) and 

offered insights into their synchronization behavior. In the domain of CXDI, we achieved real-

time processing capabilities by proposing a high-performance algorithm tailored for experimental 

data, thereby broadening the impact of HPC techniques in areas where massive datasets must be 

processed. 

Taken together, our work demonstrates how methodical algorithmic foundations, efficient 

use of computing hardware, and domain-specific optimizations can unlock major performance 

gains and deepen our understanding of physical phenomena. The techniques and frameworks 

developed in this dissertation contribute to the ongoing evolution of hardware, not only 

accelerating current scientific and engineering tasks but also empowering researchers to address 

increasingly complex, data-intensive challenges. As hardware technology and computational 
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models continue to advance, the methodologies presented here offer a foundation on which future 

work can build, driving forward progress in fields ranging from micromagnetic simulations to 

high-throughput experimental analyses, and shaping the role of HPC in solving the grand 

challenges of tomorrow’s computational science. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



115 

REFERENCES 

 

[1] A. Friedman, Micromagnetics, 182 (1992). 

 

[2] L. LANDAU and E. LIFSHITZ, On the theory of the dispersion of magnetic permeability 

in ferromagnetic bodies, Perspectives in Theoretical Physics 51 (1992). 

 

[3] T. L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE 

Trans Magn 40, 3443 (2004). 

 

[4] Handbook of Magnetism and Advanced Magnetic Materials, Handbook of Magnetism and 

Advanced Magnetic Materials (2007). 

 

[5] B. Livshitz, A. Boag, H. N. Bertram, and V. Lomakin, Nonuniform grid algorithm for fast 

calculation of magnetostatic interactions in micromagnetics, J Appl Phys 105, 07D541 

(2009). 

 

[6] J. A. Rackers and J. W. Ponder, Classical Pauli repulsion: An anisotropic, atomic 

multipole model, J Chem Phys 150, 084104 (2019). 

 

[7] M. E. Fisher, Magnetism in One-Dimensional Systems—The Heisenberg Model for 

Infinite Spin, Am J Phys 32, 343 (1964). 

 

[8] E. B. Poulsen, A. R. Insinga, and R. Bjørk, Direct exchange calculation for unstructured 

micromagnetic meshes, J Magn Magn Mater 551, 169093 (2022). 

 

[9] G. S. Abo, Y. K. Hong, J. Park, J. Lee, W. Lee, and B. C. Choi, Definition of magnetic 

exchange length, IEEE Trans Magn 49, 4937 (2013). 

 

[10] T. Kim, I. H. Cha, Y. J. Kim, G. W. Kim, A. Stashkevich, Y. Roussigné, M. Belmeguenai, 

S. M. Chérif, A. S. Samardak, and Y. K. Kim, Ruderman–Kittel–Kasuya–Yosida-type 

interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet 

heterostructures, Nature Communications 2021 12:1 12, 1 (2021). 

 

[11] D. Azuma, Magnetic materials, Wide Bandgap Power Semiconductor Packaging: 

Materials, Components, and Reliability 97 (2018). 

 

[12] Z. Lin and V. Lomakin, Linearized frequency domain Landau-Lifshitz-Gilbert equation 

formulation, AIP Adv 13, (2023). 

 

[13] S. Zhang and Z. Li, Roles of Nonequilibrium Conduction Electrons on the Magnetization 

Dynamics of Ferromagnets, Phys Rev Lett 93, 127204 (2004). 

 

[14] C. Ragusa, M. D’Aquino, C. Serpico, B. Xie, M. Repetto, G. Bertotti, and D. Ansalone, 

Full micromagnetic numerical simulations of thermal fluctuations, IEEE Trans Magn 45, 

3919 (2009). 



116 

[15] W. F. Brown, Magnetoelastic Interactions, 9, (1966). 

 

[16] A. Prabhakar and D. D. Stancil, Spin waves: Theory and applications, Spin Waves: 

Theory and Applications 1 (2009). 

 

[17] S. O. Demokritov and A. N. Slavin, Spin Waves, Handbook of Magnetism and Magnetic 

Materials: Volume 1,2 1, 281 (2021). 

 

[18] A. Slavin and V. Tiberkevich, Nonlinear auto-oscillator theory of microwave generation 

by spin-polarized current, IEEE Trans Magn 45, 1875 (2009). 

 

[19] J. Miao, R. L. Sandberg, and C. Song, Coherent X-Ray Diffraction Imaging, IEEE Journal 

on Selected Topics in Quantum Electronics. 

 

[20] T. Latychevskaia, Iterative phase retrieval in coherent diffractive imaging: practical 

issues, (2018). 

 

[21] K. S. Raines, S. Salha, R. L. Sandberg, H. Jiang, J. A. Rodríguez, B. P. Fahimian, H. C. 

Kapteyn, J. Du, and J. Miao, Three-dimensional structure determination from a single 

view, Nature 463, 214 (2010). 

 

[22] M. A. Pfeifer, G. J. Williams, I. A. Vartanyants, R. Harder, and I. K. Robinson, Three-

dimensional mapping of a deformation field inside a nanocrystal, (2006). 

 

[23] Y. Nishino, Y. Takahashi, N. Imamoto, T. Ishikawa, and K. Maeshima, Three-

Dimensional Visualization of a Human Chromosome Using Coherent X-Ray Diffraction, 

(n.d.). 

 

[24] J. A. Rodriguez et al., Three-dimensional coherent X-ray diffractive imaging of whole 

frozen-hydrated cells, 2, 575 (2015). 

 

[25] C.-C. Chen, C.-H. Lu, D. Chien, J. Miao, and T. K. Lee, Three-dimensional image 

reconstruction of radiation-sensitive samples with x-ray diffraction microscopy, Phys Rev 

B 84, 24112 (2011). 

 

[26] H. Jiang et al., Three-Dimensional Coherent X-Ray Diffraction Imaging of Molten Iron in 

Mantle Olivine at Nanoscale Resolution, Phys Rev Lett 110, 205501 (2013). 

 

[27] T. Li et al., Three-Dimensional Quantitative Coherent Diffraction Imaging of 

Staphylococcus aureus Treated with Peptide-Mineralized Au-Cluster Probes, Anal Chem 

94, 13136 (2022). 

 

[28] J. Miao, C.-C. Chen, C. Song, Y. Nishino, Y. Kohmura, T. Ishikawa, D. Ramunno-

Johnson, T.-K. Lee, and S. H. Risbud, Three-Dimensional GaN-Ga 2 O 3 Core Shell 

Structure Revealed by X-Ray Diffraction Microscopy, (2006). 



117 

[29] J. Miao, T. Ishikawa, I. K. Robinson, and M. M. Murnane, Beyond crystallography: 

Diffractive imaging using coherent X-ray light sources, Science (1979) 348, 530 (2015). 

 

[30] T. Hatsui and H. Graafsma, X-ray imaging detectors for synchrotron and XFEL sources, 

Urn:Issn:2052-2525 2, 371 (2015). 

 

[31] V. Elser, Phase Retrieval by Iterated Projections, 2003. 

 

[32] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, Phase 

Retrieval with Application to Optical Imaging: A contemporary overview; Phase Retrieval 

with Application to Optical Imaging: A contemporary overview, IEEE Signal Process 

Mag 32, (2015). 

 

[33] J. Miao, T. Ishikawa, B. Johnson, E. H. Anderson, B. Lai, and K. O. Hodgson, High 

Resolution 3D X-Ray Diffraction Microscopy, (n.d.). 

 

[34] J. R. Fienup, Phase retrieval algorithms: a comparison, Appl Opt 21, 2758 (1982). 

 

[35] H. N. Chapman et al., High-Resolution Ab Initio Three-Dimensional x-Ray Diffraction 

Microscopy, 2006. 

 

[36] M. Van Heel and M. Schatz, Fourier shell correlation threshold criteria, J Struct Biol 151, 

250 (2005). 

 

[37] A. N. Slavin and P. Kabos, Approximate theory of microwave generation in a current-

driven magnetic nanocontact magnetized in an arbitrary direction, IEEE Trans Magn 41, 

1264 (2005). 

 

[38] A. Litvinenko, A. Sidi El Valli, V. Iurchuk, S. Louis, V. Tyberkevych, B. Dieny, A. N. 

Slavin, and U. Ebels, Ultrafast GHz-Range Swept-Tuned Spectrum Analyzer with 20 ns 

Temporal Resolution Based on a Spin-Torque Nano-Oscillator with a Uniformly 

Magnetized “Free” Layer, Nano Lett 22, 1874 (2022). 

 

[39] H. S. Choi et al., Spin nano–oscillator–based wireless communication, Sci Rep 4, 5486 

(2014). 

 

[40] V. H. González, A. Litvinenko, A. Kumar, R. Khymyn, and J. Åkerman, Spintronic 

devices as next-generation computation accelerators, Curr Opin Solid State Mater Sci 31, 

101173 (2024). 

 

[41] H. Farkhani, T. Bohnert, M. Tarequzzaman, D. Costa, A. Jenkins, R. Ferreira, and F. 

Moradi, Spin-torque-nano-oscillator based neuromorphic computing assisted by laser, 

Proceedings - 2019 14th IEEE International Conference on Design and Technology of 

Integrated Systems In Nanoscale Era, DTIS 2019 (2019). 



118 

[42] T. Böhnert, Y. Rezaeiyan, M. S. Claro, L. Benetti, A. S. Jenkins, H. Farkhani, F. Moradi, 

and R. Ferreira, Weighted spin torque nano-oscillator system for neuromorphic 

computing, Communications Engineering 2023 2:1 2, 1 (2023). 

 

[43] T. Kanao, H. Suto, K. Mizushima, H. Goto, T. Tanamoto, and T. Nagasawa, Reservoir 

computing on spin-torque oscillator array, Phys Rev Appl 12, 024052 (2019). 

 

[44] M. romera et al., Vowel recognition with four coupled spin-torque nano-oscillators, 

Nature (2018). 

 

[45] A. N. Slavin and V. S. Tiberkevich, Theory of mutual phase locking of spin-torque 

nanosized oscillators, Phys Rev B Condens Matter Mater Phys 74, (2006). 

 

[46] T. Kendziorczyk, S. O. Demokritov, and T. Kuhn, Spin-wave-mediated mutual 

synchronization of spin-torque nano-oscillators: A micromagnetic study of multistable 

phase locking, Phys Rev B Condens Matter Mater Phys 90, 54414 (2014). 

 

[47] A. A. Awad, P. Dürrenfeld, A. Houshang, M. Dvornik, E. Iacocca, R. K. Dumas, and J. 

Åkerman, Long-range mutual synchronization of spin Hall nano-oscillators, Nat Phys 13, 

292 (2017). 

 

[48] D. Nikitin, C. Canudas-De-Wit, P. Frasca, and U. Ebels, Synchronization of Spin-Torque 

Oscillators via Continuation Method, (n.d.). 

 

[49] M. Zahedinejad, A. A. Awad, S. Muralidhar, R. Khymyn, H. Fulara, H. Mazraati, M. 

Dvornik, and J. Åkerman, Two-dimensional mutually synchronized spin Hall nano-

oscillator arrays for neuromorphic computing, Nat Nanotechnol 15, 47 (2020). 

 

[50] R. J. Mailloux, Phased Array Antenna Handbook (Artech house, 2017). 

 

[51] D. Kalkstein and P. Soven, A Green’s function theory of surface states, Surf Sci 26, 85 

(1971). 

 

[52] Y. K. Sirenko and S. Strom, Modern theory of gratings, Resonant Scattering: Analysis 

Techniques and Phenomena (2010). 

 

[53] S. T. Peng, T. Tamir, and H. L. Bertoni, Theory of periodic dielect waveguides, IEEE 

Trans Microw Theory Tech 23, 123 (1975). 

 

[54] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J Comput Phys 

73, 325 (1987). 

 

[55] A. D. Baczewski, D. L. Dault, and B. Shanker, Accelerated Cartesian Expansions for the 

Rapid Solution of Periodic Multiscale Problems, IEEE Trans Antennas Propag 60, 4281 

(2012). 



119 

[56] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: application to 

multi-dimensional problems, Computing 64, 21 (2000). 

 

[57] A. Boag, E. Michielssen, and A. Brandt, Nonuniform polar grid algorithm for fast field 

evaluation, IEEE Antennas Wirel Propag Lett 1, 142 (2002). 

 

[58] S. Li, B. Livshitz, and V. Lomakin, Fast evaluation of Helmholtz potential on graphics 

processing units (GPUs), J Comput Phys 229, 8463 (2010). 

 

[59] J. Meng, A. Boag, V. Lomakin, and E. Michielssen, A multilevel Cartesian non-uniform 

grid time domain algorithm, J Comput Phys 229, 8430 (2010). 

 

[60] C. Liu, K. Aygün, and A. E. Yılmaz, A parallel FFT-accelerated layered-medium integral-

equation solver for electronic packages, International Journal of Numerical Modelling: 

Electronic Networks, Devices and Fields 33, e2684 (2020). 

 

[61] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, AIM: Adaptive integral method for 

solving large-scale electromagnetic scattering and radiation problems, Radio Sci 31, 1225 

(1996). 

 

[62] J. R. Phillips and J. K. White, A precorrected-FFT method for electrostatic analysis of 

complicated 3-D structures, IEEE Transactions on Computer-Aided Design of Integrated 

Circuits and Systems 16, 1059 (1997). 

 

[63] R. Pei, T. Askham, L. Greengard, and S. Jiang, A fast method for imposing periodic 

boundary conditions on arbitrarily-shaped lattices in two dimensions, J Comput Phys 474, 

111792 (2023). 

 

[64] D. S. Shamshirgar, J. Bagge, and A.-K. Tornberg, Fast Ewald summation for electrostatic 

potentials with arbitrary periodicity, J Chem Phys 154, 164109 (2021). 

 

[65] L. af Klinteberg, D. S. Shamshirgar, and A.-K. Tornberg, Fast Ewald summation for free-

space Stokes potentials, Res Math Sci 4, 1 (2017). 

 

[66] J. Bagge and A.-K. Tornberg, Fast Ewald summation for Stokes flow with arbitrary 

periodicity, J Comput Phys 493, 112473 (2023). 

 

[67] F. Capolino, D. R. Wilton, and W. A. Johnson, Efficient computation of the 3D Green’s 

function for the Helmholtz operator for a linear array of point sources using the Ewald 

method, J Comput Phys 223, 250 (2007). 

 

[68] S. Li, D. A. Van Orden, and V. Lomakin, Fast Periodic Interpolation Method for Periodic 

Unit Cell Problems, IEEE Trans Antennas Propag 58, 4005 (2010). 

 



120 

[69] D. Van Orden and V. Lomakin, Rapidly Convergent Representations for Periodic Green’s 

Functions of a Linear Array in Layered Media, IEEE Trans Antennas Propag 60, 870 

(2012). 

 

[70] Z. Hu, Infinite Boundary Terms of Ewald Sums and Pairwise Interactions for 

Electrostatics in Bulk and at Interfaces, J Chem Theory Comput 10, 5254 (2014). 

 

[71] S. L. Marshall, A periodic Green function for calculation of coloumbic lattice potentials, 

Journal of Physics: Condensed Matter 12, 4575 (2000). 

 

[72] K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, Periodic boundary conditions for 

demagnetization interactions in micromagnetic simulations, J Phys D Appl Phys 41, 

175005 (2008). 

 

[73] A. and H. P. and A. C. and S. D. Bruckner Florian and Ducevic, Strayfield calculation for 

micromagnetic simulations using true periodic boundary conditions, Sci Rep 11, 9202 

(2021). 

 

[74] R. Chang, S. Li, M. V Lubarda, B. Livshitz, and V. Lomakin, FastMag: Fast 

micromagnetic simulator for complex magnetic structures (invited), J Appl Phys 109, 

07D358 (2011). 

 

[75] L. Barnett Alex and Greengard, A new integral representation for quasi-periodic scattering 

problems in two dimensions, BIT Numer Math 51, 67 (2011). 

 

[76] V. Lomakin and E. Michielssen, Enhanced transmission through metallic plates perforated 

by arrays of subwavelength holes  and sandwiched between dielectric slabs, Phys. Rev. B 

71, 235117 (2005). 

 

[77] V. Lomakin and E. Michielssen, Beam Transmission Through Periodic Subwavelength 

Hole Structures, IEEE Trans Antennas Propag 55, 1564 (2007). 

 

[78] A. Hessel and A. A. Oliner, A New Theory of Wood’s Anomalies on Optical Gratings, 

Appl. Opt. 4, 1275 (1965). 

 

[79] V. Lomakin and E. Michielssen, Transmission of transient plane waves through perfect 

electrically conducting plates perforated by periodic arrays of subwavelength holes, IEEE 

Trans Antennas Propag 54, 970 (2006). 

 

[80] A. Bagnérés‐Viallix and P. Baras, On a method to calculate the demagnetizing field in a 

micromagnetic structure, J Appl Phys 69, 4599 (1991). 

 

[81] J. Stöhr and H. C. Siegmann, Magnetism, Solid-State Sciences. Springer, Berlin, 

Heidelberg 5, 236 (2006). 

 



121 

[82] S. Li, R. Chang, A. Boag, and V. Lomakin, Fast Electromagnetic Integral-Equation 

Solvers on Graphics Processing Units, IEEE Antennas Propag Mag 54, 71 (2012). 

 

[83] D. Van Orden and V. Lomakin, Rapidly Convergent Representations for 2D and 3D 

Green’s Functions for a Linear Periodic Array of Dipole Sources, IEEE Trans Antennas 

Propag 57, 1973 (2009). 

 

[84] W. C. Chew, J.-M. Jin, C.-C. Lu, E. Michielssen, and J. M. Song, Fast solution methods in 

electromagnetics, IEEE Trans Antennas Propag 45, 533 (1997). 

 

[85] P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project 

for quantum simulations of materials, J Phys Condens Matter 21, (2009). 

 

[86] J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and 

beyond, J Comput Chem 29, 2044 (2008). 

 

[87] D. Bostick and M. L. Berkowitz, The implementation of slab geometry for membrane-

channel molecular dynamics simulations, Biophys J 85, 97 (2003). 

 

[88] W. Weber, P. H. Hünenberger, and J. Andrew McCammon, Molecular Dynamics 

Simulations of a Polyalanine Octapeptide under Ewald Boundary Conditions:  Influence 

of Artificial Periodicity on Peptide Conformation, Journal of Physical Chemistry B 104, 

3668 (2000). 

 

[89] V. Subramanian and A. E. Yilmaz, An EM-CKT simulator for analyzing transient 

scattering from nonlinearly loaded periodic structures, 2014 USNC-URSI Radio Science 

Meeting (Joint with AP-S Symposium), USNC-URSI 2014 - Proceedings 71 (2014). 

 

[90] S. T. Peng, T. Tamir, and H. L. Bertoni, Theory of Periodic Dielectric Waveguides, IEEE 

Trans Microw Theory Tech 23, 123 (1975). 

 

[91] A. L. Wysocki and V. P. Antropov, Micromagnetic simulations with periodic boundary 

conditions: Hard-soft nanocomposites, J Magn Magn Mater 428, 274 (2017). 

 

[92] D. Berkov and N. Gorn, Quasistatic remagnetization processes in two-dimensional 

systems with random on-site anisotropy and dipolar interaction: Numerical simulations, 

Phys Rev B 57, 14332 (1998). 

 

[93] K. H. . Huebner, The finite element method for engineers, 720 (2001). 

 

[94] R. E. Tarjan, Efficiency of a Good But Not Linear Set Union Algorithm, Journal of the 

ACM (JACM) 22, 215 (1975). 

 

[95] B. Livshitz, A. Boag, H. N. Bertram, and V. Lomakin, Nonuniform grid algorithm for fast 

calculation of magnetostatic interactions in micromagnetics, Citation: Journal of Applied 

Physics 105, 7 (2009). 



122 

[96] F. Ai and V. Lomakin, Fast Fourier Transform periodic interpolation method for 

superposition sums in a periodic unit cell, Comput Phys Commun 304, 109291 (2024). 

 

[97] S. Fu, R. Chang, I. Volvach, M. Kuteifan, M. Menarini, and V. Lomakin, Block Inverse 

Preconditioner for Implicit Time Integration in Finite Element Micromagnetic Solvers, 

IEEE Trans Magn 55, (2019). 

 

[98] J. Scott and M. Tuma, Incomplete Factorizations, Necas Center Series 2023, 185 (2023). 

 

[99] E. H. Frei, S. Shtrikman, and D. Treves, Critical Size and Nucleation Field of Ideal 

Ferromagnetic Particles, Physical Review 106, 446 (1957). 

 

[100] A. Aharoni and S. Shtrikman, Magnetization Curve of the Infinite Cylinder, Physical 

Review 109, 1522 (1958). 

 

[101] B. A. Kalinikos and A. N. Slavin, Theory of dipole-exchange spin wave spectrum for 

ferromagnetic films with mixed exchange boundary conditions, Journal of Physics C: 

Solid State Physics 19, 7013 (1986). 

 

[102] Z. Lin, I. Volvach, X. Wang, and V. Lomakin, Eigenvalue-Based Micromagnetic Analysis 

of Switching in Spin-Torque-Driven Structures, Phys Rev Appl 17, 034016 (2022). 

  




