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Abstract
The assembly of large, multi-cofactor membrane protein complexes like photosystem II (PSII) requires a high level of coor-
dination. The process is facilitated by a large network of auxiliary proteins that bind transiently to unassembled subunits, 
preassembled modules or intermediate states of PSII, which are comprised of a subset of subunits. However, analysis of these 
immature, partially assembled PSII complexes is hampered by their low abundance and intrinsic instability. In this study, 
PSII was purified from the thermophilic cyanobacterium Thermosynechococcus elongatus via Twin-Strep-tagged CP43 and 
further separated by ion exchange chromatography into mature and immature complexes. Mass spectrometry analysis of the 
immature Psb27-PSII intermediate revealed six different Psb27 proteoforms with distinct lipid modifications. The maturation 
and functional role of thylakoid localized lipoproteins are discussed.
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Abbreviations
Chl  Chlorophyll
CID  Collision-induced dissociation
IEC  Ion-exchange chromatography
IMAC  Immobilized metal affinity chromatography
MS  Mass spectrometry
PDM  PratA-defined membrane
PG  Phosphatidyl glycerol
RP-LC  Reversed-phase liquid chromatography
PSII  Photosystem II
TIC  Total ion count
TS  Twin-Strep

Introduction

Photosystem II (PSII), the water-splitting enzyme of oxy-
genic photosynthesis, is a large membrane protein complex 
that consists of more than 20 subunits and many cofactors 
(Umena et al. 2011). Biogenesis of PSII and its repair in 
cyanobacteria involve a stepwise assembly process facili-
tated by numerous auxiliary protein factors, which are not 
part of the active, dimeric protein complex (Heinz et al. 
2016; Komenda et al. 2012; Mabbitt et al. 2014). Psb27, one 
of these auxiliary factors, was identified in partially assem-
bled PSII complexes of cyanobacteria (Kashino et al. 2002; 
Nowaczyk et al. 2006). It binds to an inactive PSII assem-
bly intermediate, which is almost fully assembled except for 
binding of the extrinsic subunits (PsbO, PsbU and PsbV). 
Psb27 plays a role in PSII assembly as well as repair, par-
ticularly under stress conditions (Chen et al. 2006; Grasse 
et al. 2011; Roose and Pakrasi 2008). Two orthologues of 
Psb27 are present in Arabidopsis thaliana (At1g03600, 
At1g05385) and both are involved in PSII assembly or 
repair, with the latter (also referred to as LPA19) being 
more related to assembly (Chen et al. 2006; Wei et al. 2010). 
Although genes encoding similar proteins are also present 
in other photosynthetic eukaryotes like red and green algae, 
as well as diatoms, their function has not been studied yet.

The structure of isolated cyanobacterial and plant Psb27 
has been solved four times in total, two times by NMR 
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spectroscopy (Cormann et al. 2009; Mabbitt et al. 2009) and 
two times by X-ray crystallography (Michoux et al. 2012; 
Xingxing et al. 2018). All structures revealed a four-helix 
bundle with a right-handed up-down-up-down topology. The 
exact binding position of Psb27 on partially assembled PSII 
complexes and its structural function was a matter of debate 
for some time. Sequence analysis revealed the presence of 
a signal sequence that indicated a binding position at the 
PSII lumenal side, which was supported by in vitro recon-
stitution experiments (Nowaczyk et al. 2006). The Psb27 
structural models enabled in silico docking (Cormann et al. 
2009) as well as mass spectrometry (MS)-based methods for 
the identification of its binding position on PSII (Cormann 
et al. 2016; Liu et al. 2013, 2011), however with contradic-
tory results (see also Heinz et al. (2016)). Very recently, 
two groups solved structures of Psb27-containing PSII com-
plexes by cryo-electron microscopy, which show the Psb27 
binding position on PSII with atomic resolution (Huang 
et al. 2021; Zabret et al. 2021). Psb27 is oriented with helix 
2 and helix 3 towards PSII and forms specific contacts with 
the CP43 lumenal loop regions between helix 3 and helix 4, 
as well as with the E-loop between helix 5 and 6.

Association of Psb27 with free CP43 was shown previ-
ously based on biochemical data (Komenda et al. 2012) and 
its specific localization might indicate a general stabilizing 
function of Psb27 for the large lumenal E-loop of CP43 
– e.g. chaperoning the association of free CP43 to the reac-
tion center complex with CP47 (RC47)—and an indirect 
role for the assembly and photoactivation of the  Mn4CaO5 
cluster, the water-splitting center of PSII. Psb27 is – as most 
of the analyzed assembly factors – not essential for PSII 
biogenesis and repair, at least under optimal growth con-
ditions (Grasse et al. 2011; Roose and Pakrasi 2008) and 
its binding does not induce obvious structural differences 
(Zabret et al. 2021). The structure of the CP43 E-loop is 
almost identical in all available structures – at least from 
thermophilic cyanobacteria—independent of the presence 
or absence of Psb27 or the extrinsic proteins (Zabret et al. 
2021). However, in Spinach this domain seems to be more 
flexible without the extrinsic proteins according to a recent 
high-speed atomic force microscopy study (Tokano et al. 
2020) and in the mesophilic cyanobacterium Synechocystis 
sp. PCC 6803 (in the following Synechocystis), binding of 
Psb27 supports PSII photoactivation, probably by stabiliz-
ing CP43 in a specific conformation (Avramov et al. 2020). 
Psb27 has only little overlap with the binding position of 
PsbO but its presence might still lower the binding affinity 
of PsbO, which would support the initial idea that Psb27 
may prevent the premature binding of PsbO to keep the site 
of cluster assembly in a more open conformation for the 
incorporation of ions (Becker et al. 2011; Nowaczyk et al. 
2006). Interestingly, a density was found in the Psb27-PSII 
structure, which might correspond to the first manganese 

atom bound to the high-affinity site in the process of PSII 
photoactivation (Zabret et  al. 2021). Moreover, the D1 
C-terminus, which is important for the coordination of the 
 Mn4CaO5 cluster in mature PSII, was resolved and it clearly 
adopts a different conformation, which opens the cluster 
binding site (Zabret et al. 2021).

Another striking feature of cyanobacterial Psb27 is its 
N-terminal lipid modification. Psb27 is translated with an 
N-terminal signal sequence, which is cleaved off at a spe-
cific site during transfer through the thylakoid membrane. 
The mature protein starts with an N-terminal cysteine resi-
due, which is modified by a thioether linked diacyl-glycerol 
moiety and a single acyl chain attached to the N-terminus 
(Nowaczyk et al. 2006). Although the Psb27 amino acid 
chain was traced to the N-terminal cysteine residue, the 
actual lipid modification is not visible in the current struc-
ture of the complex (Zabret et al. 2021).

In the present study, a novel method for the isolation of 
highly purified (intermediate) complexes from T. elongatus 
via TwinStrep-tagged PSII is described. This method ena-
bled detailed mass spectrometry analysis of an intermediate 
Psb27-PSII complex, revealing six Psb27 proteoforms with 
different lipid modifications.

Experimental procedures

Generation and cultivation of T. elongatus strains

The PsbC-subunit (CP43) of the Thermosynechococcus 
elongatus (T. elongatus) BP-1 wild-type was extended at the 
C-terminus by a Twin-Strep(TS)-Tag (Schmidt et al. 2013) 
with the sequence GSSAWSHPQFEKGGGSGGGSGG-
SAWSPQFEK as described previously (Zabret et al. 2021). 
For the isolation of His-tagged PSII, the same strain and 
conditions were used as described before (Grasse et al. 2011; 
Nowaczyk et al. 2006). Cultures were cultivated in BG-11 
medium at 45 °C in 25 L-photobioreactors (Bioengineering) 
supplied with 5%  CO2. Light intensity was adjusted to cell 
density from 50 to 300 µmol photons·m−2·s−1 (Kuhl et al. 
2000).

Purification of photosystem II and sample 
preparation

Thylakoid membranes and proteins samples were prepared 
based on previous work (Kuhl et al. 2000; Nowaczyk et al. 
2006; Zabret et al. 2021). In brief, isolated membranes were 
resuspended and homogenized in a Dounce homogenizer 
for three times in 80 ml Buffer B (20 mM Tris pH 7.5, 
10 mM  MgCl2, 10 mM  CaCl2, 0.5 M mannitol). After sec-
ond homogenization, 0.05% (w/v) n-dodecyl-β-D-maltoside 
(β-DDM) were added. After centrifugation (22,000 rcf, 
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15 min, 4 °C) in a JLA16.250 rotor, pellets were resus-
pended in extraction buffer (Buffer B supplied with 1.2% 
n-dodecyl β-D-maltoside, 0.5% (w/v) Na-chelate and a spat-
ula tip DNase I) and the chlorophyll content was adjusted to 
1 mg·ml−1. After incubation for 30 min at 20 °C, the sample 
was ultracentrifuged for 1 h at 4 °C (Beckmann Type 45 
Ti Fixed-Angle Titanium Rotor, 102,800 rcf). The resulting 
supernatant was filtered and applied on the corresponding 
affinity chromatography columns. For the purification with 
the His-Tag, all buffers were used with 20 mM MES, pH 6.5 
instead of Tris-Buffers. To prevent any photodamage, all 
steps were performed in the dark or under dim green light.

Streptactin affinity chromatography was performed with 
IBA Lifescienes streptactin Superflow hc cartridges (5 ml) 
in TS-Equilibration Buffer (Buffer B with 150 mM NaCl, 
0.03% (w/v) β-DDM). Proteins were eluted in TS-Elution 
Buffer (TS-Equilibration Buffer supplied with 2.5 mM 
desthiobiotin). Immobilized  Ni2+-Chelate affinity chro-
matography (IMAC) was performed as described before 
(Nowaczyk et al. 2006). After affinity chromatography, the 
elution buffers were exchanged to IEC-Equilibration Buffer 
(20 mM MES pH 6.5, 10 mM  MgCl2, 10 mM  CaCl2, 0.5 M 
mannitol, 0.03% (w/v) β-DDM) and proteins were further 
separated by anion exchange chromatography (IEC) (Kuhl 
et al. 2000). Samples were applied onto UNOQ6 columns 
(Bio-Rad) and eluted with IEC-Elution Buffer (IEC-Equili-
bration buffer with 100 mM  MgSO4).

Analysis of proteins with polyacrylamide gel 
electrophoresis

The oligomeric state of the protein complexes was deter-
mined with Blue Native PAGE (Schägger and Jagow 1991) 
with a gradient from 3.5 to 16% polyacrylamide. Proteins 
were separated by denaturing SDS-PAGE in an 12% poly-
acrylamide gel with 5 M urea (Schägger and Jagow 1987). 
As a size standard, PageRuler #26614 (Thermo Scientific) 
was used.

Oxygen evolution measurements

Oxygen evolution was measured under continuous illumina-
tion with strong white light (Schott Fiber Optics™ KL 2500 
LCD Illuminator, 1,300 lm, color temperature: 3,300 Kelvin) 
at 30 °C in a home-made setup using a Fibox 3 system with 
an oxygen sensitive optode (DP-PSt3-L2.5-ST10-YOP, Pre-
Sens Precision Sensing GmbH). The system was calibrated 
using air-bubbled (100%  O2) and sodium dithionite saturated 
(0%  O2) water.

PSII samples were diluted in 1 ml of activity buffer 
(20 mM MES pH 6.5, 1 M betaine, 10 mM  CaCl2, 10 mM 
 MgCl2, 0.03% (w/v) β-DDM) to a final concentration of 
2–5 µg Chl·ml−1, supplied with 5 mM potassium ferricyanide 

and 1 mM 2,6-dichloro-1,4-benzoquinone (DCBQ) as artifi-
cial electron acceptors and incubated in the dark until a sta-
ble baseline was reached. After turning on the light, oxygen 
evolution was monitored for at least 20 s in the linear range.

Mass spectrometry analysis

Samples were analyzed as described previously (Thanga-
raj et al. 2010). Purified proteins were precipitated in 80% 
acetone for 1 h at − 20 °C to remove salts, detergent and 
most pigments. Proteins were resuspended in 90% formic 
acid and the different subunits of the PSII complexes were 
separated at a flow rate of 100 µl·min−1 via reversed-phase 
liquid chromatography (RP-LC) by a PLRP-S column (par-
ticles: 5 µm, pores: 300 Å, 2·100 mm; Agilent) on a 140B 
Solvent Delivery System; Applied Biosystems. The columns 
were heated to 45 °C. Proteins were eluted by a discontinu-
ous gradient from 0–90% (mobile phase: 0.05% TFA in 1:1 
1-propanole/acetonitrile; stationary phase 0.05% TFA in dis-
tilled water) over 180 min. Eluates were split, one part ana-
lyzed by ESI–MS with a low-resolution mass spectrometer 
(LTQ, Thermo Finnigan) and the other collected in a fraction 
collector and later used for high-resolution top-down FTICR 
MS (7 T LTQ FT; Thermo Scientific). There, the total ion 
count (TIC) of the protein spectra was detected in a mass 
range of 700–2,000 m/z. Analysis of the spectra was done 
with MagTran (Version 1.03. (Zhang and Marshall 1998)). 
Fractions were stored at −80 °C until usage.

Top-down MS with selected fractions from the LC–MS 
runs was performed in a FTICR MS mass spectrometer 
(Thermo Scientific) with nanospray ionization at 1.7–1.9 kV 
in metal-steamed emitter tips (Proxeon) at a flow rate of 
20–50  nl·min−1. TIC was analyzed at a mass range of 
300–2,000 m/z with a resolution of 60,000 and isolated ions 
were separated via collision-induced dissociation (CID) at 
15–20%. MS3 spectra were obtained for Psb27 via an addi-
tional ion isolation and CID. Obtained data were analyzed 
with ProSightPC (Version 2.0, Thermo Scientific) against a 
database of T. elongatus proteins.

Results

A T. elongatus mutant line with a Twin-Strep-Tag (TS-Tag) 
fused to the PsbC (CP43) C-terminus was created (Fig. 1) 
and native PSII complexes of high purity were isolated by 
Strep-Tag affinity chromatography. Further separation of 
different (intermediate) PSII complexes was achieved by 
anion exchange chromatography (IEC). The results were 
compared with a previously established PSII preparation 
via His-tagged CP43 (Grasse et al. 2011; Nowaczyk et al. 
2006) (Fig. 2a). With both techniques, two monomeric and 
three dimeric protein complexes were separated during IEC, 
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showing the same, expected subunit composition (Fig. 2b 
and c, Table 1): All isolated complexes contain the core 
subunits D1, D2, CP43 and CP47, as well as several small 
subunits. The first IEC peak corresponds to monomeric PSII 
containing the auxiliary factor Psb27, whereas the extrinsic 
subunits PsbU and PsbV are missing. PsbO is not completely 
absent in this sample, most likely due to the overlap between 
the first and the second IEC peak fraction. The fractions 2–4 
contain complexes with the protein composition of mature 
PSII. These complexes show oxygen evolution rates as 
reported before (Table 1), even though the pH was changed 
from 6.5 to 7.5 during affinity chromatography to comply 
with the requirements of the streptactin column material. 
The fifth fraction corresponds to a dimeric PSII complex 
with Psb27, but without the extrinsic subunits (Grasse et al. 
2011). In comparison, the amount of co-isolated proteins is 
clearly reduced in the PSII TS-preparation. Particularly, the 
purity of the inactive, monomeric Psb27-PSII complex is 
increased by completely removing photosynthetic complex 
I (aka NDH-1), which is usually co-purified during IMAC 
purification of His-tagged PSII (Fig. 2). However, several 
subunits of the very high abundant cyanobacterial light har-
vesting complexes (phycobilisomes) are still present in this 
PSII fraction.

Due to the high purity of the Psb27-PSII complex, it was 
an ideal candidate for further characterization by top-down 
mass spectrometry to gain novel insights into post trans-
lational protein modifications, particularly into the lipid 
modification of Psb27. In contrast to a bottom-up approach, 

where proteins are cleaved into peptides by site-specific 
enzymes (e.g. trypsin), top-down MS is focused on intact 
proteins. The method is challenging, particularly for mem-
brane proteins, as larger (and often hydrophobic) entities 
must be separated by RP-LC and subsequently analyzed 
by mass spectrometry. However, it enables precise assign-
ment of post translational modifications based on the mass 
of the intact protein and it provides also information about 
the amino acid sequence, as peptide bonds within the intact 
protein can be cleaved by collision-induced dissociation 
(CID) in a subsequent MS/MS experiment.

Consequently, proteins of the Psb27-PSII complex were 
separated in the first step by RP-LC and analyzed by MS 
to acquire low-resolution m/z values for each component. 
An aliquot of the eluates was collected, and specific frac-
tions were used for subsequent analysis by high-resolution 
MS/MS. In the primary LC–MS dataset, Psb27 was found 
in six different proteoforms (a-f) with very similar reten-
tion times (Fig. 3) and masses (Fig. 4a, 5a and 6). The 
presence of Psb27 was confirmed by high-resolution MS/
MS analysis of the different fractions (Fig. 4b and 5b), 
where initially only y-ions (those including the protein’s 
C-terminus), but no b-ions could be assigned to Psb27. 
The assignment of spectra is limited by unknown modifi-
cations due to the lack of knowledge about the exact posi-
tion, mass and quantity. Based on previous data on Psb27 
(Nowaczyk et al. 2006), the lack of N-terminal ions can 
be traced back to the lipid modification of the N-terminal 
cysteine of Psb27. The small mass differences between 

Fig. 1  Construction of the CP43-TS-Tag mutant and amino acid 
sequence of the Psb27 N-terminus. a Schematic view of the construct 
that was used to generate the CP43-TS-Tag mutant  (CmR: chloram-
phenicol-resistance cassette) and b segregation analysis by PCR with 
genomic DNA from T. elongatus wild-type (WT) and mutant (MT) 
as template. c Amino acid sequence of Psb27 with its signal septide 

(underlined), the lipobox motif (grey) and the conserved N-terminal 
cysteine residue (light grey), which is  modified by lipidation after 
cleavage of the signal peptide (consensus sequence of the lipobox: 
 [LVI]−3[ASTVI]−2[GAS]−1[C]1). Cleavage occurs directly before the 
cysteine (vertical line)
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the Psb27 proteoforms indicate typical variations of the 
diacyl-glycerol moiety due to heterogeneity of the fatty 

acid composition (Fagerlund and Eaton-Rye 2011). The 
first ion at the N-terminus, called b1-ion, consists of only 

Fig. 2  Purification of PSII complexes via tagged CP43 by IMAC 
chromatography (left) or purification with the TS-Tag (right). a IEC-
Chromatograms of affinity purified PSII. b Subunit composition of 

the isolated PSII complexes by SDS-PAGE and c confirmation of 
mono- and dimeric states by BN-PAGE. * and # were assigned to 
phycobilisome subunits

Table 1  Characteristics of 
isolated PSII complexes

PSII activities were determined by measuring the  O2 evolution rates of isolated protein complexes

IEC Peak P1 P2 P3 P4 P5

Oligomeric state Monomeric Monomeric Dimeric Dimeric Dimeric
Relative amount (%) 11 9 50 23 7
Activity
(µmol  O2·mg  Chl−1·h−1)

112 2,814 4,900 2,120 0

Complex Psb27-PSII PSIIM(act) PSIID(act) PSIID(low) PSIID(inac)
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the (modified) cysteine and therefore is the most interest-
ing ion to detect. To enable the assignment of b-ions, the 
total protein mass of the different Psb27 species was cal-
culated from the m/z values acquired in the initial LC–MS 
experiment (Table 2, Fig. 4a, 5a and 6) and compared to 
the theoretical mass of the unmodified Psb27 sequence. 
Appropriate combinations of known lipids/fatty acids from 
cyanobacterial membranes (Allakhverdiev et al. 2001) 
were examined to explain the observed mass difference. 
Only by increasing the mass by 842.76 Da  (C55O5H102), 
N-terminal b-ions could be assigned to species d in the 
MS/MS spectra (Fig. 4b, red ions). The detected y-ions 
(blue) remained unchanged. This mass corresponds to the 
substitution mass of a cysteine modification with glyc-
erol, two oleic acids [C18:1] and one palmitic acid [C16:0] 
(Fig. 4b, box). By applying this modification, the b1-ion 
(944.773 m/z, Fig. 4c) and the b4-ion  (CmodANV, mass: 
1,228.92 m/z) were identified, suggesting a modification 
of Psb27 species d by this lipid-combination. Other fatty 
acids did not yield any comparable cross-correlations. The 
b1-ion itself was further cleaved by CID to acquire MS3 
spectra that resulted in a loss of 28 Da (Fig. 4d), which 
corresponds most likely to a dissociation of the carboxy 
group (Tabb et al. 2003), yielding the a1-ion, instead of 
further cleavage of peptide bonds.    

Similar as for species d, only y-ions were detected for 
Psb27 species c (Fig. 5b, blue). The N-terminal b-ions of 
the Psb27 species c, including the b1-  (Cmod) and b4-ion 
(Fig. 5c and d, respectively), were successfully assigned 

after addition of  C53O5H100 (817.35 Da), which corresponds 
to a modification of the N-terminal cysteine with two C16:0 
and one C18:1 fatty acid (Fig. 5b, box).

Based on the successful identification of the lipids of 
Psb27 species c and d, the modifications of the remaining 
species a, b, e and f were assigned by comparing the mass 
differences of the detected intact ions (Fig. 6a–d) with the 
theoretical mass of Psb27. Only specific combinations of the 
masses of stearic acid (C18:0), oleic acid (C18:1), palmitic 
acid (C16:0) and palmitoleic acid (C16:1), together with the 
diacyl-glycerol moiety, fit to the calculated mass differences 
and were therefore assigned as modifications of the Psb27 
N-terminus (Table 2). The presence of five different fatty 
acids reveals a high variability of the Psb27 lipid modifica-
tion. However, our data does not distinguish, which fatty 
acid residue is at the N-terminal amine, or the sn1 or sn2 
position of the glycerol sidechain residue.

Discussion

Achieving high protein purity is one important goal in pro-
tein biochemistry, as all further steps of characterization 
depend on sample quality. Integrity of the sample and its 
homogeneity are for example important criteria for structural 
or spectroscopic investigations. Large, multi-subunit mem-
brane protein complexes, like PSII, are particularly chal-
lenging to isolate due to their high complexity and hydro-
phobic nature. Moreover, PSII assembly intermediates are 
even more challenging to isolate due to their low abundance 
and intrinsic instability, as reviewed in Heinz et al. (2016). 
Therefore, highly specific affinity purification methods are 
of great importance for these approaches.

Here, we compared the isolation of PSII complexes from 
T. elongatus by two different affinity chromatography meth-
ods: immobilized metal affinity chromatography with His-
tagged CP43 and streptactin affinity chromatography by use 
of Strep-tagged CP43, respectively. Based on our previous 
experience with Strep-tagged membrane protein complexes 
(Schuller et al. 2019, 2020) we selected the sequence of two 
Strep-Tag II affinity markers (WSHPQFEK) separated by a 
spacer sequence (GGGSGGSGGSA). This Double- or Twin-
Strep-Tag (TS-Tag) increases the affinity towards the strep-
tactin affinity matrix, as it binds to two of the four Strep-Tag 
binding sites within the streptactin tetramer (Schmidt et al. 
2013). The affinity purification step was followed by IEC to 
separate five different PSII species, which differ in protein 
composition and oligomeric state (Grasse et al. 2011). The 
first IEC fraction represents a PSII assembly intermediate 
with bound Psb27 and particularly the purity of this frac-
tion was improved by use of the TS-Tag/streptactin system. 
Photosynthetic complex I, which is the main contaminant 
of Psb27-PSII isolated via CP43-His from T. elongatus is 

Fig. 3  LC–MS TIC (basepeak) of Psb27 species a to f of inactive, 
monomeric PSII (Peak 1,  PSII(M,inac)) after separation by RP-HPLC. 
The masses of the Psb27 species are shown in Table 1
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absent if CP43-TS-Tag is used. Moreover, the TS-Tag has 
no negative effect on the growth of the culture, the oxy-
gen evolution rate or the stability of the isolated complex. 
The isolated Psb27-PSII complex was further analyzed by 
top-down mass spectrometry to investigate the Psb27 lipid 
modification in detail.

An estimated amount of 1%–3% of all bacterial genes 
encode lipoproteins and for T. elongatus, 0.44%–0.81% of all 
proteins are predicted lipoproteins (Babu et al. 2006). They 
are targeted to lipidation by the lipobox sequence motive, 
which is part of the cleavage site of an N-terminal signal 

peptide (Fig. 1c). After cleavage of the signal sequence by 
signal peptidase II during transport through the membrane, 
the conserved N-terminal cysteine residue is modified by 
diacyl-glyceryl transferase with the diacylglycerol moiety 
of a phosphatidyl glycerol (PG) molecule (Gan et al. 1993). 
Finally, the processed N-terminus is additionally acylated 
with a single acyl chain by N-acyl transferase (Tokunaga 
et al. 1982).

The role of lipoproteins in cyanobacteria may be under-
estimated because detailed knowledge about their structure 
and function is often missing. In Syncechocystis, at least 40 

Fig. 4  Top-down MS of Psb27 
proteoform d. a Distribu-
tion of intact ions of Psb27d 
proteoform. b MS2-spectrum 
at 1,043.40 m/z after CID. 
b-ion series are labelled in red, 
y-ion series in blue. *indicates 
b-ions found after addition of 
the proposed modification at the 
N-terminus by a specific lipid 
modification with a mass of 
842.76 Da. Box: Modification 
(black) of the cysteine (light 
blue) of the b1-ion. Brack-
ets (grey): additional amino 
acids of the b4-ion. c Closer 
view of the b1-ion from b and 
its isotopic pattern. d MS3-
spectrum of the Psb27d b1-ion 
at 945.00 m/z. The reduced 
mass (− 28 Da) results from 
the loss of the carboxy group of 
Psb27 by cleavage. The possible 
remaining a1-ion is shown on 
the top-right (box)
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lipoproteins have been identified, and at least four of these 
are related to photosynthesis, as reviewed by Wada and 
Murata (2007). However, the precise function of the lipid 
modification itself is still elusive. Proteins might be tethered 
to the membrane just to limit diffusion in a two-dimensional 
space, which can be also mediated by a transmembrane helix 
(e.g. evolved from a former signal peptide) or the lipid moi-
ety might play an additional role in the localization of the 
protein in a specific membrane or part of a membrane (Fer-
guson 1991; Okuda and Tokuda 2011; Juneau et al. 2016). 
For photosynthesis associated CyanoQ, the lipidation is 
essential for processing and accumulation of the protein 
in the thylakoids, independent of the signal peptide itself, 

which emphasizes the importance of the process (Juneau 
et al. 2016).

In general, the observed variance of the Psb27 lipid modi-
fication is typical for cyanobacterial lipoproteins since these 
proteins tend to bind lipids with different fatty acids (Fager-
lund and Eaton-Rye 2011; Knoppová et al. 2021; Nowac-
zyk et al. 2006; Ujihara et al. 2008), which originate from 
membrane phospholipids (Chattopadhyay and Wu 1977; 
Lai and Wu 1980). Therefore, the type of lipid modification 
is determined by the fatty acid composition of the mem-
brane, which in turn changes depending on environmental 
conditions (Allakhverdiev et al. 2001; Gombos et al. 1997; 
Mironov et al. 2012).

Fig. 5  Top-down MS of Psb27 
proteoforms. a Distribution of 
intact ions of Psb27c pro-
teoform. b MS2-spectrum at 
1,040.72 m/z after CID. b-ion 
series are labelled in red, y-ion 
series in blue. *indicates b-ions 
found after addition of the 
proposed modification at the 
N-terminus by a specific lipid 
modification with a mass of 
814.76 Da (box). Box: Modi-
fication (black) of the cysteine 
(light blue) of the b1-ion. 
Brackets (grey): additional 
amino acids of the b4-ion. c 
Examples of assigned ions. 
Closer view of the b1-ion (left) 
and b4-ion (right) and their 
isotopic pattern
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Cyanobacterial lipoproteins have been reported both 
in thylakoid and cytoplasmic membranes (Liberton et al. 
2016), but in contrast to the Sec-pathway itself (Liberton 
et al. 2016; Nakai et al. 1993; Srivastava et al. 2005), a 
maturation pathway for lipidation was not yet identified 
in cyanobacterial thylakoid membranes (Agarwal et al. 
2010; Liberton et  al. 2016), apart from low abundant 
apolipoprotein N-acyltransferase. If the maturation sys-
tem is not present in the thylakoid membrane, Psb27 and 

other photosynthesis related lipoproteins must be trans-
ferred efficiently after lipidation to the thylakoid mem-
brane, as they are absent or only in low abundance in the 
plasma membrane (Ishikawa et al. 2005; Knoppová et al. 
2021; Selão et al. 2016). Alternatively, lipoproteins might 
be specifically modified in the PratA-defined membrane 
(PDM) region at the interface between plasma and thyla-
koid membrane (Rast et al. 2016) and the transfer could be 
mediated by maturation centers, where both membranes 

Fig. 6  Distribution of intact ions from different Psb27 species acquired from LC–MS: Spectra of intact ions correspond to the elution peaks a, b, 
e and f in Fig. 3. Labels indicate the detected m/z and charge state of the ions
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are supposed to interact (Rast et al. 2019; Stengel et al. 
2012). Interestingly, lipidation of Ycf48, another auxiliary 
protein involved in early PSII assembly, occurs during or 
after its association with the D1 precursor protein (Knop-
pová et al. 2021; Zak et al. 2001), most likely within the 
PDM (Komenda et al. 2008; Rast et al. 2016), which would 
further support a localization of the lipidation machinery 
in the PDM.

A more complex role of the lipidation might be indi-
cated by a recent study, which investigated the effect of 
externally supplied free fatty acids on cyanobacterial 
photosynthesis (Jimbo et al. 2020). The addition of 16:0 
and 18:0 fatty acids, which are important components of 
the lipid modification as shown here for Psb27, increased 
protein – and particularly D1 – synthesis, as well as the 
rate of PSII repair (Jimbo et al. 2020). In contrast, addi-
tion of polyunsaturated fatty acids like 18:3 had an oppo-
site effect (Jimbo et al. 2020) or hampered overall growth 
(Berlepsch et al. 2012). These effects might be, at least 
partially, related to the altered function or deregulation of 
photosynthetic lipoproteins.

Detailed investigations of the protein network involved 
in PSII assembly and repair in the past several years have 
led to comprehensive knowledge of the spatial–temporal 
organization of the process. Particularly, technical develop-
ments in the field of structural biology in combination with 
molecular dynamics simulations are now the main driver 
for a molecular-mechanistic understanding of the assembly 
process and the involved assembly factors. However, integra-
tion of the lipid or small molecule sphere is still missing due 
to experimental limitations and further studies are needed 
to investigate the protein-lipid interplay and its role in PSII 
assembly.
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