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Abstract 

 
A set of eye movement data from a visual search task using 
realistically  complex and numerous stimuli was modeled 
with the EPIC architecture, which provides  direct support for 
oculomotor constraints and visual availability constraints due  
to retinal non-homogeneity. The results show how the  
quantitative details  of visual  search can be explained within 
an architectural framework, and have useful practical, 
methodological, and theoretical implications. 

Introduction 
Many everyday and work activities involve visual search, 
the process of visually scanning or inspecting the 
environment to locate an object of interest that will then be 
the target of further activity. For example, one might search 
the kitchen to locate a package of desired coffee beans 
which will then be grasped. This work concerns computer 
interaction tasks, in which a particular icon coded by color, 
shape, and other attributes is searched for on the screen and 
is then clicked on using a mouse. In this domain, although 
the visual characteristics of the searched-for objects are 
artificially simple compared to most everyday objects, the 
task is a natural one in the sense that such activities are very 
common in the use of modern technology; they are perhaps 
the major performance bottleneck in important systems such 
as military workstations with which humans are expected to 
monitor and comprehend displays containing hundreds of 
moving icons in time-stressed and potentially lethal 
situations, and do so over extended periods of time. Hence 
analyzing such tasks in order to improve how well they can 
be done presents an opportunity to study real and important 
tasks that nonetheless involve relatively simple aspects of 
vision.  

A currently developing approach to the design of systems 
that support such complex and high-performance tasks is to 
simulate human performance with a candidate design, using 
one of the computational cognitive architectures such as 
EPIC (Kieras & Meyer, 1997; see also Kieras, 2003, and 
Byrne, 2003). Any such effort will have to include 
reasonably accurate representations of the relevant aspects 
of human vision. In particular, the spatial and temporal 
extent of the tasks makes eye movements mandatory, but as 
argued forcefully by Findlay and Gilchrist (2003) in their 
presentation of active vision, mainstream cognitive 
psychology has under-represented this most salient feature 

of human vision as it works in natural environments and 
tasks, and thus has not developed the necessary theoretical 
components. These include the spatial non-homogeneity of 
the retina, which gives central and peripheral vision 
different roles, and the oculomotor mechanisms that move 
the eyes. The key cognitive activity in visual search is to use 
peripheral vision information to decide which object should 
be chosen to be the next target of central vision, and then to 
position the eyes accordingly, and repeat as needed.  

Thus retinal non-homogeneity leads to differences in what 
properties of objects are currently visible as a function of 
their eccentricity and other properties, and are thus available 
to cognition for use in guiding the visual search.  In general, 
the visual availability of a property of an object is a function 
not just of the eccentricity of the object, but also its size. An 
example is Anstis (1974) who showed that a letter can be 
recognized even in peripheral vision if it is large enough. A 
variety of other studies in the literature document similar 
effects for other properties, such as color (e.g. Gordon & 
Abramov, 1977).  A third factor affecting availability is 
crowding; an object is less available if it is closely 
surrounded by other objects. Results by Bouma (1978) and 
others (e.g. Toet & Levi, 1994) show that the effects of 
crowding increase with eccentricity.  However, these three 
factors combine in a complex way that appears to depend on 
the specific visual properties involved, and is not at all fully 
documented. 

The EPIC architecture, which was developed to model 
humans in high-performance tasks, was perhaps the first 
computational cognitive architecture to explicitly represent 
visual availability and the time course of programming and 
executing eye movements, making it a natural framework 
for realizing models based on active vision concepts. The 
purpose of this paper is to present some recent results in 
which EPIC was used to model a complex realistic search 
task. The model, while not yet fully refined, demonstrates 
some key features of visual search. 

The EPIC Cognitive Architecture 
The EPIC architecture for human cognition and 
performance provides a general framework for simulating a 
human interacting with an environment to accomplish a 
task. Due to lack of space, the reader is referred to Kieras & 
Meyer (1997), Meyer & Kieras (1997), or Kieras (2004) for 
a more complete description of EPIC. Figure 1 provides an 
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overview of the architecture, showing perceptual and motor 
processor peripherals surrounding a cognitive processor; all 
of the processors run in parallel with each other. To model 
human performance of a task, the cognitive processor is 
programmed with production rules that implement a strategy 
for performing the task. When the simulation is run, the 
architecture generates the specific sequence of perceptual, 
cognitive, and motor events required to perform the task, 
within the constraints determined by the architecture and the 
task environment.  

EPIC’s visual system follows the usual breakdown into a 
sensory store and a perceptual store, but there is also an eye 
processor that explicitly represents visual availability by 
determining which visual properties of objects are available 
in the sensory store as a function of the current position of 
the eye. The recognized objects and their relationships in the 
perceptual store are then available to the cognitive processor 
to match the conditions of production rules, whose actions 
can command the oculomotor processor to move the eyes.   

The eye processor applies availability functions to 

determine what visual properties of an object are available 
given its size and eccentricity. Unfortunately, the research 
literature does not include studies from which one can 
construct availability functions that include a range of object 
sizes and eccentricities for realistic and useful visual 
properties, even for the highly artificial but practically 
significant stimuli such as would be found on computer 
displays.  

The modeling work reported in this paper is part of an 
effort to arrive at useful visual availability parameters by 
constructing models for several visual search tasks and 
fitting them to the data, in hopes that the resulting parameter 
sets will be useful and generalizable. The data used in this 
work is a subset of the data described in St. John, Marshall, 
Knust, & Binning (2006). 

The Data 
The task. The experimental task required subjects to search 
for icons in a display that are identical to a probe icon. A 
sample display appears in Figure 2. A trial begins with a 
blank display and the appearance of the probe icon in the 
area at the left-hand edge of the display. After 2 sec, the to-
be-searched icons all simultaneously appear to the right of 
the probe icon. In Figure 2, there are 48 icons to be 
searched, two of which match the probe icon. The subject’s 
task is to click on each of the two matching icons. Once the 
second is clicked on, the display is blanked, and after an 
inter-trial-interval of approximately 2 sec, the next trial 
starts with the appearance of the probe icon.  
Stimuli. The icons themselves are based on a new standard 
symbology for military displays called MIL-STD-2525B 
(Department of Defense, 1999), which is a military standard 
icon set for designating the kinds of objects that would 
appear on a military radar or tactical display with redundant 
coding for their militarily important properties.  Each icon 
has a color, a shape, an internal symbol, and a “direction 
leader”. Because these are actual military symbols, the 
properties are not at all orthogonal, but rather represent 
redundant codings. A full description can be found in St. 
John, Marshall, Knust, & Binning (2006).  

Color represents the Origin of the object: red is hostile, 
blue is friendly, yellow is unknown, and green is neutral. 
Shape is redundant with the origin, but a certain feature of 
the shape also connotes the object’s category: aircraft, ship, 
or submarine. Surface icons are shown as full shapes, air 
icons are truncated at the bottom, and subsurface icons are 
truncated at the top. Each specific shape appears in 
combination with one of eight correlated internal symbols 
that represents the kind of object, the Platform, such as 
cruiser, helicopter, aircraft carrier. For example, the bow-tie 
symbol represents a helicopter, and it appears in a shape that 
is missing its bottom, which means the object is a flying 
vehicle. The leader is a line segment commonly used on 
such displays to show the direction and speed of a moving 
object. In these icons, it is always the same length and 
appears in one of only four orientations to indicate Direction 
(N, S, E, W). Thus, three of the basic visual properties—
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Figure 1.  The overall structure of the EPIC architecture. 
Perceptual-motor peripherals surround a cognitive processor.  

 
Figure 2. A sample display with 0% decluttering. The probe 
is at the left. One of the matching targets is immediately to 
the right; the other is third from the left in the bottom row. 
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color, overall shape, and internal symbol—are somewhat 
confounded; a particular internal symbol can appear with 
any color, but only with a certain shape for each color. 
Color and overall shape are highly correlated. Blue 
(friendly) icons are curvilinear, red (hostile) icons are based 
on a diamond shape, yellow (unknown) icons are clover-
leafed, and green (neutral) icons are square.  

This data set thus has a serious disadvantage in that key 
stimulus properties are not orthogonal, but a considerable 
advantage in that the stimuli are undoubtedly of realistic 
complexity and subtlety. The choice of color as the code for 
the most important Origin property was based on long-
standing results in human factors on the effectiveness of 
color coding in visual search; less salient properties are used 
for coding information that would be useful once an icon 
was fixated.  

Stimuli were presented on a 17” color monitor with a 
resolution of 1024 x 768. The stimulus display occupied an 
12.5" by 8.75" area. There were 48 possible positions for the 
searched-for icons on the display, each occupying a 0.5"  by 
0.5"  area (excluding directional leader), with the icon 
positioned within the area in a randomized manner to avoid 
forming a strict grid configuration.  The probe position was 
counted as a 49th position in the analysis.  

These data are a subset from a large study that compared 
different forms of display “decluttering” that should 
improve visual search performance. Some of the icons were 
replaced with symbols that would be less distracting, but 
still informative. The subset of the data used here 
represented a baseline condition in which the removed 
symbols were replaced with an uninformative grey dot. 
Because the declutter manipulation was intended to be a 
realistic one in which irrelevant icons would be removed, 
the icons remaining were relatively similar to the probe 
icon, having a specified number of features in common. 
There were always three distractors that differed in only one 
of the three features from the probe. Most of the remaining 
distractors differed in two features, and the remainder 
differed in all three. The four conditions were 75, 50, 25, 
and 0% of the icons being decluttered – removed -, leaving 
respectively 12, 24, 36, and 48 icons remaining to be 
searched, randomly distributed over the display.  Figure 2 is 
thus a 0% decluttered display containing 48 icons to be 
searched. 
Procedure. The eye-tracking system used to collect data 
was the EyeLink System (SR International), which consists 
of a lightweight headset with three cameras. Two cameras 
record left and right eye; the third camera monitors head 
movement. Observations of eye movement and pupil 
activity were sampled at 250 Hz, providing 15,000 
observations per minute for each eye. To record data, each 
undergraduate student participant underwent a short 
calibration procedure lasting 3-5 minutes, received 
instructions, and then proceeded to work through the task. 

During a trial, the position of the eye was recorded every 
4 milliseconds, and classified in which of the 49 regions of 
the display the current position was in. A duration of 80 ms 

or more in the same region was classified as a fixation on 
the display location. The location, start time, and end time 
of each fixation in each trial was computed, and combined 
with coded identity of the icon (or gray dot) at that location. 
After eliminating trials whose data were missing or 
ambiguous, the 21 participants with nine trials per declutter 
condition produced between 153 and 183 trials in each 
declutter condition. The fixations were then classified by 
type of match to the probe (e.g. Origin match, Platform 
match, Target (complete) match) and the mean number and 
duration of these classified fixations formed the basic data 
used in this study. Also calculated were mean latencies of 
the two responses in each condition.  

The Model 
Given the general machinery of the EPIC architecture, 
building a model for this task is relatively simple; task 
strategies and parameter values were explored iteratively to 
find one that fits the data reasonably well. Due to lack of 
space, details of this process are omitted, the task strategy 
implemented by the model’s production rules will be only 
verbally summarized, and specific parameter values 
mentioned only when especially important. 

At the beginning of the trial, the model fixates the probe 
position and waits for the probe to appear. It stores the color 
(Origin), shape and text label (Platform), and leader 
orientation (Direction) of the probe in working memory and 
waits for the main display to appear. It then begins the 
visual search process. This is implemented with sets of 
production rules that execute in two threads (see Kieras, in 
press). The first nominates objects to look at in anticipation 
of the next eye movement, and then moves the eye to a 
chosen candidate object as soon as possible. In the 
meantime, another thread evaluates the current candidate as 
soon as all of its necessary visual properties are available. 
An object is chosen as a candidate only if it has not been 
checked yet, and in the following order of descending 
priority:  Encoding failed on a previous fixation on the 
object; an object that matches all of the probe attributes; an 
object that matches the probe color; an object chosen at 
random. After the candidate is chosen, the eye is moved to 
it. When the properties of the candidate become fully 
available, the candidate-choosing process is suspended, the 
candidate object is marked as checked, and then if it 
matches the probe, a mouse point movement is launched, 
followed by a button punch movement. The candidate-
choosing process is then resumed. The result is that the 
model quickly and efficiently moves the eye from one 
candidate object to another, taking advantage of whatever 
properties about the objects are currently available.  

The overall shape, Platform, and Direction information 
was assumed to be available only if the icon was foveated, 
but the color is available over an area up to several degrees 
in radius, depending on the display density. A good fit was 
obtained with the availability of the icon color for the four 
levels of declutter set at 9, 8, 7.5, and 7 degrees radius 
respectively. Any single value that produced a good fit at 
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one declutter level produced gross misfits at the other levels. 
Thus color provided visual guidance depending on display 
density. 

The model assumed a large and reliable memory for 
which objects have been previously fixated or checked. This 
was motivated by the results in older eye movement studies  
such as Barbur, Forsyth, & Wooding (1993) , who reported 
a very low rate of repeat fixations on objects during visual 
search, and similar  newer results of Peterson, Kramer, 
Ranxiao, Irwin, & McCarley (2001). Peterson et al. 
explained these few repeat fixations as a result of occasional 
encoding failures; with some small probability, the 
properties of an fixated object would fail to be encoded; 
when this was noticed, which tended to be quite soon, an 
eye movement would be made back to the object. The above 
task strategy implements this suggestion in the model with 
an encoding failure probability for the most detailed 
property, Platform, of 0.1. 

Results 

Availability Effects 
Figure 3 shows the observed and predicted response times 
and number of fixations for each declutter condition; recall 
that decreasing declutter means increasing number of icons 
to be searched.  In all graphs, observed points are plotted 
with solid symbols and lines, predicted with open symbols 
and dashed lines; the vertical brackets are 95% confidence 
intervals. The number of fixations is predicted very closely, 
as is the time for the first response. Note that the fourfold 
increase in number of objects to be searched resulted in only 
about a twofold increase in the number of fixations required, 
and even less of an increase in the time required, especially 
for the first response. The second response is consistently 
overpredicted, suggesting that some correction is needed in 
the assumptions about how long the search for the second 
target must wait while the first response is being executed.  

As shown by the color availability parameter values, the 
effect of a more cluttered display is to reduce somewhat the 
area over which the most salient stimulus property is 
available. Note that decreasing the density of a display 
increases the average eccentricity between objects, making 
an object less available, but also decreases the average 
crowding, making an object more available.  The two effects 
of density might partially cancel each other out, resulting 
the observed relatively small effect. 

An additional timing result unnecessary to show 
graphically is that the fixation durations on non-targets were 
accurately predicted to be about 250 ms and essentially 
constant over conditions; for targets, the duration was 
substantially longer, because the icon would be pointed to, 
but the duration was not as long as would be expected from 
typical mouse movement times.  

For brevity, further results are mostly shown only for 
fixations on non-target objects, which are gray dots or icons 
that mismatch one or more features of the probe. Figure 4 
shows observed and predicted proportion of fixations of 

different types on non-target icons that have one or more of 
the probe features for each declutter condition. The 
observed proportion of fixations on non-target icons of the 
same Origin increases with display density, and is quite 
high, at an average of 32% of the fixations; if fixations on 
Target icons were included, an average total of 66% of the 
fixations would be to objects that match on Origin. 

However, the model overpredicts the proportion of non-
target Origin fixations by about 0.14 on the average; the 
color-based visual guidance in the model was too dominant 
compared to the data.  However, the proportion of fixations 
on non-target icons that match on one or more of the other 
target attributes (e.g. Platform) is correctly predicted to be 
low, about .12 on the average, and constant, showing that 
they do not guide the visual search significantly.  

Figure 5 shows the proportion of fixations on objects that 
match none of the probe features. Although the model is 
fairly close for the gray dots, it clearly underpredicts the 
proportion of fixations on non-matching icons, 
corresponding to the too-frequent fixations on Origin 
matches.  

Also shown in Figure 5 is the proportion of fixations on 
non-target objects that were previously fixated. The small 
proportion, 5%, of repeat fixations corresponds to the 
above-cited results, increases only slightly with the number 
of icons, and is fairly accurately predicted.  
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Figure 3. Response latency (RT, left axis) and number of 
fixations (right axis) for each decluttering condition. 
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Figure 4. Observed and prediction proportions of fixations in 
each declutter condition for icons matching on at least one of 
the probe features. 
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Figure 6 shows the saccade distance in degrees made to a 
fixation on icons that are a Target or match on Origin. 
Except for the least dense condition, the model makes 
saccades of about the same size as the data, reflecting how 
the availability of the color property in the model biases the 
next fixation to be nearby, where the color can be seen. 

However, the saccade distance to non-matching objects is 
seriously overpredicted, as shown in Figure 7. In these 
cases, the model has picked the next object at random from 
the whole display, while in the data, such saccades are only 
somewhat longer on average than color-guided ones. This 
suggests either that the selection should be biased by 
distance, even though there is no limited-available property 
to guide it, or that objects out in the periphery can not be 
distinguished well enough to act as a saccade  target; in 
other words, contrary to what the architecture assumes, 
perhaps “objectness” is also subject  to availability.  

Memory in visual search 
A key component of this visual search model is a memory 
for which objects have been previously fixated. Wolfe 
(2003, Horowitz & Wolfe, 1998) has argued that visual 
search has little or no memory, but rather than being based 
on eye movements, this claim was based on an RT paradigm 
in which the display was modified during the search, 
making memory useless even if present (see von Muhlenen, 
Muller, & Muller, 2003 for more discussion of the strategic 
aspects of the task). The present data shows that repeat 
fixations occur at a very low rate, even for a large number of 
objects and fixations, as also observed by Peterson et al. 
(2001), and the model used their suggestion that the 
repeated fixations were due to stimulus encoding failures, 
rather than an unreliable memory for previous fixations. To 
investigate the need for a reliable fixation memory, the 
model was modified so that it had neither encoding failures 
nor a memory for which objects had been previously 
fixated. However, it could not locate the targets in a 
plausible amount of time or number of fixations unless color 
was available almost everywhere to provide guidance to the 
search – in effect assuming a homogenous retina, contrary 
to the active vision concept. Interestingly, this model 

produced fairly accurate predictions of response times and 
number of fixations (see also St. John, et al., 2006), 
suggesting that these overall measures are not adequate to 
test different theories of visual search. But among other 
problems, the no-memory model predicted a 25% repeat 
fixation rate compared to the 5% observed in the data! This 
result disqualifies the no-memory model, meaning that a 
reliable memory for fixated objects is a critical component 
of a realistic model of visual search.  

Conclusion 
Practical conclusions. The data presented here are a useful 
case: although the stimulus properties are not ideally 
orthogonal, they are realistically complex, and the 
numerosity and density manipulations of the display are 
representative of the visual search problems in important 
practical tasks. Models based on a cognitive architecture 
that represents the visual availability and oculomotor 
mechanisms involved in visual search can account well for 
many important features of this data, meaning that the 
specific parameter values and architecture can be used in 
approximate models of human visual search performance 
for practical application in system design. 
Methodological conclusions. The results suggest that 
visual search researchers should focus more on accounting 
for details of the eye movements – the fact that the no-
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Figure 5. Observed and predicted proportions of fixations 
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Figure 6. Observed and predicted saccade distances to 
arrive at Target icons or icons matching on Origin. 
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memory model could do reasonably well  in predicting RT 
and overall number of fixations, and even the present model 
could do so quite well, even though some specific aspects of 
the fixations were incorrect, shows that these overall 
measures are not in fact sensitive enough to serve as a basis 
for testing theories of visual search.  
Theoretical conclusions. The model predictions had 
enough quantitative detail that some aspects of the model 
can be clearly identified as incorrect in ways that have 
interesting implications for revisions to the architecture of 
the visual system. But the most important theoretical 
implication is that the memory for previous fixations is 
highly reliable and capacious; current cognitive theory has 
to satisfactorily explain this long-observed but 
unacknowledged memory system – it does not fit into any 
current cognitive architecture, at least not in any obvious 
way. In the present model, this memory was represented in a 
purely ad-hoc way; further work is needed to determine 
whether it could be represented as simply retention of the 
properties of those objects that constantly remain in the 
visual field. For example, suppose that the foveally 
available properties of a fixated icon persisted in visual 
memory for a relatively long time after the eye was moved 
away, and the next saccade target is chosen from those with 
unknown values of these properties. The effect would be to 
eliminate repeat fixations without the need of a special-
purpose memory mechanism for which objects have been 
fixated.  
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