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ABSTRACT OF THE THESIS

Machine Learning-Based Modeling and Operation of Plasma-Enhanced Atomic Layer Deposition

of Hafnium Oxide Thin Films

by

Ho Yeon Chung

Master of Science in Chemical Engineering

University of California, Los Angeles, 2020

Professor Panagiotis D. Christofides, Chair

Plasma-enhanced atomic layer deposition (PEALD) has demonstrated its superiority at coating

ultra-conformal high dielectric thin-films, which are essential to the fin field-effect transistors

(FinFETs) as well as the advanced 3D V-NAND (vertical Not-AND) flash memory cells. Despite

the growing research interest, the exploration of the optimal operation policies for PEALD remains

a complicated and expensive task. Our previous work has constructed a comprehensive 3D

multiscale computational fluid dynamics (CFD) model for the PEALD process and demonstrated

its potential to enhance the understanding of the process. Nevertheless, the limitation of

computational resources and the relatively long computation time restrict the efficient exploration

of the operating space and the optimal operating strategy. Thus, in this work, we apply a 2D

axisymmetric reduction of the previous 3D model of PEALD reactors with and without the

showerhead design. Furthermore, a data-driven model is derived based on a recurrent neural

network (RNN) for process characterization. The developed integrated data-driven model is

demonstrated to accurately characterize the key aspects of the deposition process as well as the

gas-phase transport profile while maintaining computational efficiency. The derived data-driven

model is further validated with the results from a full 3D multiscale CFD model to evaluate model
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discrepancy. Using the data-driven model, an operational strategy database is generated, from

which the optimal operating conditions can be determined for the deposition of HfO2 thin-film

based on an elementary cost analysis.
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Chapter 1

Introduction

The rapid growth of the semiconductor industry is backed by the increasing demand for highly

compact microelectronic devices. In order to meet the design challenges of constant device

miniaturization, high dielectric constant (high-κ) materials are introduced to resolve the quantum

tunneling effects associated with extremely thin gate oxides [1], like TiO2 [2], HfO2 [3], and ZrO2

[4]. In particular, one of the most adopted high-κ thin-film materials is HfO2 due to its high thermal

stability, extraordinary gate capacitance, good charge mobility, and very large dielectric constant,

which is four to six times higher than that of SiO2. Nevertheless, the reactions associated with

the deposition process often have high energy barriers, which reduces the production throughput,

increases the energy footprint, and introduces design challenges for the traditional thermal atomic

layer deposition (ALD) operation policies, especially for temperature-sensitive materials [5].

Therefore, plasma-enhanced atomic layer deposition (PEALD) has been invented to overcome

the aforementioned problems by taking advantage of the active plasma species [6].

Derived from the traditional thermal ALD, PEALD follows the scheme of sequential precursor

pulsing and inert gas purging. Conventionally, each precursor pulsing stage is called a

half-cycle, during which the precursor deposits the corresponding element in a self-limiting

manner under appropriate operating conditions. Purge steps follow the pulsing half-cycles,

where an inert species is introduced into the reactor to clean the unreacted precursor species and
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by-products [7]. With the aid of high energy plasma species, ultra-uniform high-κ dielectric

thin-films can be produced under relatively low operating temperatures in a layer-by-layer

manner with high controllability [8]. Therefore, many novel precursors for the deposition

of HfO2 using PEALD, together with their reaction mechanisms and the associated PEALD

reactor design, have been investigated. For the hafnium (Hf) half-cycle precursors, amino-based

metal-organic compounds have reaction mechanisms facilitated by H-N bonds. Materials including

tetrakis(dimethylamino)hafnium (TDMAHf) [9], tetrakis(ethylmethylamino)hafnium (TEMAHf)

[2], tetrakis(diethylamino)hafnium (TDEAHf) [10] have been extensively studied. For the oxygen

(O) half-cycle, which involves plasma species, typical candidates include O3 plasma [11], H2O

plasma [12], and O2 [11] plasma. In addition to precursor selection, the reactor design also

critically affects the PEALD throughput and effectiveness. Remote plasma reactors have been

designed as a balanced solution for the PEALD process, in which plasma species are generated

from a remote chamber at an appropriate distance from the substrate surface [13]. As high energy

species travel across the reactor, their energy is reduced to the desired level where sputtering can

be avoided, while still being high enough to overcome the reaction energy barrier [14]. Thus, in

this work, the discussion will focus on the operation of PEALD of HfO2 thin-film using TDMAHf

and oxygen plasma in a remote plasma reactor.

Due to the great potential of PEALD, various experimental efforts have been carried out to

explore, understand, and optimize the operating policies of the PEALD process to maximize

its economical benefits. However, the PEALD process is often associated with high operating

costs, complicated process components, and the absence of efficient monitoring techniques. For

example, a PEALD reactor requires ultra-precise gas flow controllers, complex radio-frequency

(RF) power sources, and sophisticated pumping systems [15, 16]. Also, the deposition speed

and the properties of the deposited thin-film are highly dependent on both gas-phase transport

phenomena and microscopic surface dynamics. Such relationships are reactor design-specific and

highly complicated to be determined experimentally [15, 17]. Moreover, despite the existence

of in-situ analysis techniques such as quartz crystal microbalance (QCM) and spectroscopic

2



ellipsometry, the amount of data that can be obtained in real-time is limited [18]. Also, ex-situ

microstructure analysis methods such as scanning tunneling microscopy (STM) and scanning

electron microscope (SEM) are often destructive to the deposited film [19]. These difficulties

restrict the effective exploration of PEALD operating conditions.

As an alternative to the experimental methods, simulation model is often a low-cost solution

and can provide insights on the entire process operating domain. A variety of attempts have been

made to capture the PEALD dynamics. To model the plasma generation and transport, [20]

created a simulation model for O2 plasma in a simplified remote inductively coupled plasma

(ICP) reactor configuration, and [21] demonstrated a comparison between the experimental and

simulation results of the similar plasma source. For the macroscopic gas-phase transport domain,

computational fluid dynamics (CFD) softwares are widely utilized [22, 23]. For example, [24]

constructed a CFD model to capture the chemical vapor deposition of amorphous silicon thin-films,

and [25] designed a CFD characterization of the SiO2 ALD and optimized the showerhead reactor

geometry. For the microscopic surface reaction domain, [26] developed a small-scale, high

accuracy kinetic Monte Carlo (kMC) model for the ALD of HfO2 accounting for the complete set

of reactions. Adding the plasma half-cycle and adopting reduced reaction sets, [27] extended the

kMC model to be used for PEALD. In addition, [28] recently formulated a brand-new multiscale

CFD model that comprehensively captures all three individual domains for an industrial-scale

PEALD process. Although the developed model is able to accurately describe the PEALD

process, the time required to perform the simulation is much longer than the actual PEALD

process time-scale and the computational resource needed is not locally obtainable, thus making it

infeasible to be applied in the context of industrial on-line operational optimization.

In response to the aforementioned difficulty, data-driven modeling has been demonstrated as

one of the most promising solutions by taking advantage of machine learning methodologies,

especially neural networks. Attempts have been made to utilize feedforward neural network (FNN)

to characterize the result of kMC simulation [29, 30]. The previous work by [31] developed a

multiscale data-driven model using a decoupled linear parameter-varying model for the gas-phase
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domain and an FNN model for the microscopic domain. Although the FNN model was able to

accurately characterize the steady-state input-output relationship, the dynamic system provides

more information because of the transient change of the flow field and key thermodynamic and

fluid mechanical properties. Several deep learning formulations like recurrent neural network

(RNN) and convolutional neural network (CNN) are utilized to model sequential and temporal

systems [32]. Among those deep neural network models, RNN is intuitively more suitable

and has demonstrated its outstanding performance in text summarization and natural language

processing [33]. Recently, it has also been applied in modeling many industrial systems [34]. For

example, [35] investigated Phthalic Anhydride Synthesis based on CFD simulation and constructed

a computationally efficient RNN characterization of the process. [36] utilized RNN to characterize

a general nonlinear system under cyber-attack threats. Nevertheless, until this point, such a

data-driven model has not yet been developed for thin film deposition processes and especially

for the industrial-scale PEALD system.

Motivated by the above considerations, in this work, we first construct a database using the

previously developed multiscale CFD model [28]. Then, based on the collected data sets, a

data-driven model is developed to incorporate the gas-phase transport profiles and the microscopic

surface dynamics. Fully integrating both two domains into a unified model, the RNN-based

data-driven model can accurately capture the interaction of both domains within each timestep.

In this way, the data-driven model is able to fully preserve the input-output relationships between

operating conditions and the deposition profile, while reducing the computational demand by

taking advantage of existing data sets. As a result, the proposed integrated data-driven model

allows both fast prediction of necessary cycle-time to achieve full coverage, and online estimation

of film quality through the embedded information of transient dynamics. A significant amount

of economic benefit can be potentially realized by the developed model. For example, the cost

of precursor and operation to explore feasible operation conditions, estimated to be millions of

dollars, could be substantially avoided. More importantly, such a method can serve as a general

framework and is easily modifiable and extendable for other deposition processes.
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Chapter 2

Multiscale CFD Modeling of PEALD

While details can be found in [28], this section will briefly introduce each component of the

developed HfO2 thin-film PEALD multiscale CFD model. The simulations of ICP plasma

generation in the remote plasma domain, gas-phase transport phenomena in the main ALD reactor

chamber, and microscopic surface film deposition using kinetic Monte-Carlo (kMC) are reviewed.

2.1 Plasma Chamber CFD Model

The remote plasma system constructed in [28] is an inductively coupled plasma (ICP)-source,

which utilizes alternative current (AC)-induced magnetic field to produce high purity and density

plasma. The geometry of the simulated plasma generator is based on the Gaseous Electronics

Conference (GEC) cell, a standard experimental and modeling prototype, proposed by the National

Institute of Standards and Technology (NIST). For better connectivity to the main reactor, the outlet

is modified as shown in Figure 2.2.

The AC generator operates at a power of 2000 W, and the current radio-frequency (RF) is

13.56 MHz. The changes in the electric field and the current density caused by the AC generate a

magnetic field, which can be described by the Ampere-Maxwell equation as follows:

~∇(ε f~B) = ~J+ ε0
∂~E
∂ t

(2.1)
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Figure 2.1: Integration of the multiscale computational fluid dynamics model, dataset generation
and recurrent neural network development.

where ε f is the electric permeability of materials, ~B is the magnetic field, ~J is the current density,

ε0 is the electric permeability of free space, and t is the time.

Inside the plasma chamber, a constant flow of argon is used to maintain the baseline pressure.

Oxygen is injected through an inlet valve and the AC circuit is activated right before the initiation

of the oxygen cycle. Three types of reactions are associated with the Ar/O2 plasma generation:

the electron impact reactions, the heavy particle reactions, and the surface reactions. The detailed

reaction sets and rate characterization can be found in [28]. The developed plasma domain model

is simulated in COMSOL Multiphysics, which integrates the AC/DC module, the laminar flow

module, the heat-transfer-in-fluid module, and the plasma reaction module. A frequency-transient

solution is obtained to investigate the plasma reaction and generation, and it provides the ion

and radical profiles throughout the plasma chamber, which is then used as the inlet profile of the
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Figure 2.2: (a) Plasma generation chamber axis-symmetry. A - gas inlet, B - gas outlet, C - coil
circuits, D - circuit wall, E - reactor chamber, and F - relevant surrounding. (b) Example of number
density distribution of O radical, an important plasma species involved in the deposition reaction.

subsequent macroscopic gas-phase domain. Due to the difference in model time-scales, the plasma

generation simulation can be decoupled from the gas transport in the main reactor chamber.

2.2 Macroscopic CFD Model

The macroscopic transport phenomena in the main reactor chamber directly affect the dynamics

of surface reactions as well as the surface configuration of the deposited HfO2 thin-film. The

bulk reactor geometry used in this work is an optimized design based on the ASM International

EmerALD XP reactor [15]. Specifically, as shown in Figure 2.3 [37], the reactor chamber design

is modified to enhance the uniformity of the gas profile and is scaled up to allow the adoption of

300-mm diameter wafers. Precursors carried by inert argon gas are injected into the reactor from

a 1-cm diameter inlet located on the top of the reactor. These gases first enter the upstream of

the reactor, where the horn-shaped design facilitates the uniform flow distribution. Then, the gas

species move downward and potentially encounter a showerhead panel, if used. After crossing the

reactor downstream, precursors reach the substrate surface and deposition reactions occur. Finally,
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leftover precursors and carrier gas are pumped out of the reactor through the outlet channel. More

details regarding meshing and reactor geometry are included in [28].

Figure 2.3: (a) 2D axisymmetric PEALD reactor geometry. (b) 3D PEALD reactor geometry. (c)
Indication of the inner, middle, and outer regions of the wafer.

Twelve gas-phase species are characterized in the model: argon is the purging and carrier

gas; TDMAHf is the Hf-cycle precursor; oxygen and its ionic and excited states are the O-cycle

precursors. Volumetric and surface reaction sets involving all species are defined in the model, and

the relevant reaction sets and parameters are reported by [28]. A 60 Pa base operating pressure

is used, which is maintained through a constant flow of 300 sccm Ar and outlet pumping. The

absolute pressure in each half-cycle may fluctuate due to precursor injection in each cycle. The
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baseline precursor feed flowrate at the inlet is equivalent to the feed from a gas-delivery bubbler

at 348.15 K, which is the required temperature for TDMAHf vapor pressure to reach 1 Torr [38].

Using this setup, the governing transport equations are solved to obtain the profiles of velocity,

pressure, and molar fraction of species in the gas-phase [39].

In addition, we use ANSYS Fluent for macroscopic domain simulation, which applies the

finite volume method to solve the coupled governing equations, utilizing previously developed

hybrid mesh [40]. Simulation accuracy and efficiency are greatly affected by the chosen calculation

timestep [41]. The timestep size can be related to the number of cells that the fluid information

travels in each timestep, known as the Courant number, C, the length of the spatial interval ∆x, and

the speed that information travels through the cells, u, according to the Courant-Friedrichs-Lewy

(CFL) condition [42]:

∆t =
C∆x

u
(2.2)

CFD computation time can be largely reduced when advanced CFD software is used [42].

Specifically, the pressure-based solver in this work uses a Courant number of 50.

2.3 Microscopic Surface Model

Besides reactor design and gas-phase transport, substrate surface reactions are necessary to be

discussed at a microscopic level. The microscopic kMC model developed in [27] accurately

characterizes the key surface reaction mechanisms and the developed HfO2 thin-film structures.

In the following subsections, HfO2 structure, reaction kinetics and pathways, and the 3D kMC

model are briefly presented, while more details can be found in [27].

A monoclinic-alike structure, reported in [43], is adopted for the simulation of low-temperature

PEALD application. The hydroxyl-terminated (111) surface is assumed to be the starting surface,

as shown in Figure 2.4. A 3D triangular on-lattice approximation developed in [44] is used

to efficiently represent this surface as shown in Figure 2.4. The approximated lattice retains

the connectivities between atoms and the cycle repetition pattern that are observed in the real
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lattice structure. The simulated lattice dimensions are set to be 1200×1200×Nlayer to ensure

size-independence [45].

Figure 2.4: Surface slab and approximated lattice. Top: hydroxyl-terminated HfO2 slab. Bottom:
The approximated lattice with examples of adsorbed species. PsHf and CsHf represent the
physisorbed and chemisorbed precursor, respectively, HfL2 represents the deposited Hf terminated
with two dimethylamino ligands, and PsO1 and PsO2 represent two distinctively physisorbed
oxygens, respectively.

Within each half-cycle, precursors associated with the cycle undergo surface reactions and
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deposit a layer of atoms of the desired element. Similar to the thermal ALD process, TDMAHf

serves as the precursor for the Hf-Cycle. However, for the O-cycle, in addition to molecular

oxygen, atomic oxygen and their excited and ionized derivatives from the macroscopic scale

simulation are also involved in the deposition reactions. A simplified reaction set, selected

from the complete mechanism reported in [26] and [46], is used to model the key surface

dynamics while neglecting the proton diffusion, ligands rotation, and other detailed features. This

simplification dramatically decreases the computational load, enabling industrial-sized wafer-scale

simulation, and preserving key fidelity to the reaction mechanisms. The resulting mechanisms

are demonstrated in Figure 2.5. Specifically, in the Hf-Cycle, TDMAHf goes through two steps

of dissociative chemisorption, binding the hafnium atoms onto surface oxygen atoms with two

terminating dimethylamine (DMA) groups and releasing two remaining DMA groups. In the

O-Cycle, ground state O2 particles and radicals go through their respective reaction pathways and

eventually bind the O atoms with terminating hydroxyl groups, releasing different byproducts.

The transition state theory (TST) [47] and the collision theory are used to characterize the rates

of these reactions. The general Arrhenius-type equation from the TST can be used to describe

thermodynamically activated reactions as follows:

rrxn = Aexp
(−Ea

RT

)
(2.3)

where Ea is the transition state complex activation energy, A is the pre-exponential factor, R is

the gas constant, and T is the substrate temperature. In contrast to the TST, the collision theory

is used to describe the gas-surface athermal barrierless reactions such as physisorption. The rate

formulation provided by the collision theory is shown as follows:

rphs =
p

RT

√
8RT
πm

scNaσ (2.4)

where m is the molar weight of the precursor, σ is the unit cell surface area, Na is the Avogadro

number, and sc is the sticking coefficient, as reported in [48].
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Figure 2.5: Illustration of reaction mechanisms for the precursor surface reactions. The black
arrows denote the reaction pathways, and the red arrows denote potential proton diffusion.

The reaction selection and time evolution are then determined using the modified n-fold hybrid

kMC algorithm by [44] to simulate the film growth and the deposition profile. The total reaction
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rate rtotal can be calculated as the sum of each rate:

rtotal =
N

∑
i=1

ri (2.5)

where ri represents the respective rate of N individual events. The reaction selection uses a random

number γ1 ∈ (0,1] to locate the event according to its normalized indicator, li ∈ (0,1], which is the

sum of the normalized probabilities of the previous events:

li =
∑

i
j=1 r j

unweightedC j

∑
N
k=1 rk

unweightedCk
, i = 1, ...,N (2.6)

where the rate of reaction, runweighted , will be adjusted with respect to the availability of reactant, C,

in each reaction, as explained in the previous work by [27]. In the case where the selected random

number is between li−1 to li, the i-th event will be executed. For the time evolution, a second

random number γ2 ∈ (0,1] is used to calculate the elapsed time for each event:

∆t =
− lnγ2

rtotal
(2.7)

2.4 Multiscale CFD Model Customization, Workflow and Data

Generation

Figure 2.1 shows the automated workflow of the CFD simulation and RNN development and

provides an overview of how information is relayed through each domain in this work. The

simulation starts at COMSOL, if it is in the O-cycle, to solve for the plasma profile. Next, Fluent

solves for macroscopic solution for one timestep. The surface partial pressure and temperature

conditions are collected for each surface region and then transferred to the microscopic domain.

Next, the kMC model will simulate the surface reaction and store the evolution of surface structure

within the prescribed time interval. The synchronized kMC results will then be fed into Fluent

to update the boundary condition for the next timestep. The simulation time clock continuously
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adds ∆t to itself after each event until it reaches the designated half-cycle time. The subsequent

half-cycle specification will then be updated for all domains. After each timestep, the macroscopic

partial pressure of each important gas-phase species, as well as the surface site information (the

amount of Hf physisorption sites and O physisorption sites), are collected in the database.

The aforementioned methodology serves as a general-purpose guideline for the multiscale

model construction for the PEALD process, and it is subject to customization under various

accuracy requirements and computational limitations. In this work, due to a large amount of

potential operating conditions to explore, 2D axisymmetric CFD models are constructed for

reactors with and without the showerhead. Moreover, surface kMC models are executed on the

concentric rings at the wafer surface in the 2D multiscale CFD domain, instead of the grids as in

the 3D multiscale CFD model, which is shown in Figure 2.6. Details regarding the 3D grid partition

can be found in [27]. As we will demonstrate in the latter sections, the reduction from 3D to 2D

will not affect the accuracy of the domain profile without the showerhead due to its axisymmetric

nature. Moreover, for the reactor with showerhead, despite the existence of noticeable profile

deviation, the results are consistent throughout the operating domain. Therefore, the 2D multiscale

CFD model results for the showerhead reactor can provide general insights on the realistic 3D

operation.
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Figure 2.6: Comparison of 2D and 3D surface region partition. Color from yellow to blue
represents the distance between the center of the region to the center of the wafer. (a) 2D surface
concentric rings region representation. Each ring represents a separate kMC model. (b) 3D surface
grid region representation. Each grid represents a separate kMC model.
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Chapter 3

Machine Learning-based Integrated

Data-driven Model

Utilizing the data generated by the multiscale CFD model, an integrated data-driven model can

be developed to describe and predict both the dynamic surface profile evolution as well as the

transient gas-phase profile development. Because of the non-linearity involved with the PEALD

process, traditional machine learning methods fail to provide satisfying performance [31]. Thus,

more advanced machine learning techniques need to be used to characterize the dynamic time

series. The recurrent neural network model (RNN) and its variations are tailored for the prediction

of time sequences and can be utilized to capture the complicated input-output relationship between

operating conditions and deposition profiles. According to the universal approximation theorem, it

can be proved that an RNN model with enough neurons can capture any given nonlinear dynamic

system over finite time [49]. A simplistic view of the standard RNN structure is a stack of

feedforward neural networks (FNN), where the output of the FNN is used repeatedly, along with

additional real-time information, as the input to the network. The reused information is the hidden

state, h, and the information fed in real-time is the input, x. Both values are used to predict the state
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of the system for the next timestep, of which the mathematical formulation is shown as follows:

h(t) = f (h(t−1),x(t−1),θ) (3.1)

where θ is the model parameter/weights, and the function f is the linear combination of hidden

state, input, and weights, adjusted by the transfer functions, which provide the ability to capture

non-linearity. The formulation of the RNN is very similar to a state-based model, with the state

matrix replaced by a set of network neurons. The unrolling of the RNN shows that the cycled

formulation forwards the hidden states, h(t), and input information, x(t), from the current timestep

to the next timestep. This configuration makes it a perfect candidate to model the industrial

time-series data, and thus it is selected in this work.

3.1 Long and Short Term Memory (LSTM) Method

Figure 3.1: Long short-term memory (LSTM) recurrent neural network (RNN) structure. Left:
general RNN formulation with LSTM cell. Right: detailed manifestation of the LSTM cell. Ni are
input neurons, No is the output neuron, Ct and Ct−1 are the cell state memory for training iteration
t and t−1, and ht and ht−1 are the hidden state for training iteration t and t−1. Merging is simple
matrix stacking, + denotes the element-wise addition, and circle denotes the element-wise product.

Despite the intuitive compatibility, a typical challenge encountered in the training of RNN
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is the exploding or vanishing gradient, which happens because of the rolling vanilla structure.

As we can see from the unrolling of the RNN, not only the forward information is cycled, the

back-propagation is also repeated and passed through the activation functions multiple times.

Therefore, this repetition leads to a significant accumulated input squeezing in the activation

function, which further leads to the vanishing or explosion of the gradient and drastically decreases

the validity of RNN. In addition, the traditional RNN treats all input information equally, while in

reality, long term and short term information can provide quite different insights to the prediction

of the new state.

To deal with these challenges, the long and short term memory (LSTM) is introduced. In

the LSTM structure, the process characteristic parameter, θ , in the recurrent cell is replaced with

four regulators: an input modulation gate (G), an input gate (I), an output gate (O), and a forget

gate (F). These regulators selectively weight the long and short term memory (gradient) to avoid

ill-conditioned propagation. Specifically, the LSTM weight matrix is comprised of four parts: the

output gate controls the weights that reveal the cell state, the input gate and the input modulation

gate control the weights that modify the cell state, and the forget gate controls the weights that

erase the cell. In addition, the sigmoid activation is applied to the O, I, F gates, and the tanh

activation is applied to the G gate and the final output. It is demonstrated that the LSTM functions

perfectly for processing and making predictions for time-series data. The exemplary configuration

of an LSTM-based RNN is shown in Figure 3.1, and the model can be mathematically formulated

as follows:

g = tanh(xtUg +ht−1V g) (3.2)

i = σ(xtU i +ht−1V i) (3.3)

f = σ(xtU f +ht−1V f ) (3.4)

st = st−1 ◦ f +g◦ i (3.5)

o = σ(xtUo +ht−1V o) (3.6)
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ht = tanh(st)◦o (3.7)

During the training step, all input and hidden state information will be provided as training data

to the model, while the memory states are processed internally. Specifically, in order to capture

the dynamic profile development in the reactor and on the substrate surface, three hidden states

are selected from the simulation outputs: surface precursor partial pressure, the number of Hf

physisorption sites and the number of O physisorption sites. Moreover, to correctly characterize

the spatial difference of profiles in various wafer locations, each variable will be examined at the

inner, middle, and outer regions of the wafer, which are shown in Figure 2.3. The precursor inlet

flowrate, v, is used as the input to the model. Thus, in total ten states are included in the generated

model.

To implement and train this LSTM-structured RNN, we adopt a high-level application

programming interface (API), Keras, based on the Tensorflow backbend. The Adam optimizer is

selected to adaptively minimize the loss function given a momentum estimation method by using

exponentially moving averages from the gradients evaluated on the current mini-batch:

mt = β1mt−1 +(1−β1)gt

vt = β2mt−1 +(1−β2)g2
t

(3.8)

where t − 1 indicates the last mini-batch and t indicates the current mini-batch, v and m are the

moving averages, g is the gradient, and the two betas are the hyperparameters of the model for

learning rate, which are often selected to be 0.9 and 0.999, respectively. Then, these moving

averages are used to scale the learning rates for all the parameters as follows:

wt = wt−1−η
mt√
vt + ε

(3.9)

where w is the model weight, η is the step size of the learning and ε is the bias. In addition,

to measure the deviation of the prediction from the provided CFD data, the least square error is

chosen to be the loss function, which is the common choice in the regression application.
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Chapter 4

Integrated Data-driven Model Result and

Validation

In the following sections, the training specifications and the performance of the developed

RNN-based data-driven model are presented. The data-driven model is trained based on the data

generated from the 2D multiscale CFD model for the reactor without the showerhead. The model

accuracy is first validated by examining the alignment of model prediction with the original 2D

multiscale CFD model result. Next, it is further compared with the 3D multiscale CFD model

under the same operating parameters and reactor geometry.

4.1 2D Integrated Data-driven Model for PEALD Reactor

According to the formulation discussed in Section 3, an RNN model is trained based on the

LSTM structure. The final configuration of the RNN is determined through a grid search, where

a two-layer structure consisting of 80 and 50 neurons, respectively, is chosen for the Hf-Cycle

RNN model, and one layer of 100 neurons is chosen for the O-Cycle RNN model. The training

dataset consists of the aforementioned transient deposition profiles for a range of inlet operating

flowrates between 2.5×10−6 kg/s and 1.0×10−4 kg/s. In total, the training process takes around

three to four hours on an Intel i7-8700 CPU with 64 GB of RAM, and the final normalized training
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performance, measured in terms of the mean standard error, reaches below 1.0× 10−6 for both

half-cycles. In addition, one full prediction for an entire time-series is demonstrated to take

less than a minute to execute, which is a substantial reduction from the multiscale CFD model

that takes about a day to run using 36 CPU cores on a powerful computational cluster. Also,

the computational time involved is in line with the actual process operation time, thus making it

feasible to be applied for on-line optimization and control purposes like model predictive control

(MPC). Moreover, the prediction time can be even further shortened by taking advantage of cloud

computing and other high-performance computational resources.

After the training is completed, the resulting models are validated with a set of test conditions.

One of the most important indicators of the overall deposition progress is the availability of the

physisorption sites. During the Hf-Cycle, Hf physisorption sites are the candidates for Hf precursor

physisorption, while O physisorption sites are the product of the Hf-Cycle reactions and will be

physisorbed in the following O-Cycle. Therefore, throughout the Hf-Cycle, the number of Hf

physisorption sites will decrease while the number of O physisorption sites will increase, and

vice versa in the O-cycle. The RNN accuracy for the prediction of the physisorption sites is

demonstrated by comparing the RNN outputs with the multiscale CFD model results, as shown

in Figure 4.1. A random flowrate, 2.3×10−6 kg/s, is chosen for testing and demonstration of the

radially distributed thin-film growth profile of the Hf-Cycle. It can be seen from Figure 4.1 that, the

model successfully predicts the surface deposition profile at all wafer regions. Specifically, for Hf

precursor physisorption sites, all regions are accurately captured by the model. For the O precursor

physisorption sites, the prediction of the inner and middle wafer regions closely corresponds to

the CFD results. Although the prediction of the dynamic profile for the outer wafer region has

some deviations, the steady-state achieving time is accurately captured, as indicated by the top

intersection of the green and red labels in Figure 4.1.

Additionally, the prediction of the average partial pressure and physisorption sites are

demonstrated in Figure 4.2, which corresponds to the profiles of Hf-Cycle at 6.8×10−5 kg/s and

O-Cycle at 4.3×10−5 kg/s. As shown in Figure 4.2, the RNN predictions and CFD results closely
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Figure 4.1: Comparison between RNN prediction and CFD simulation result without the
showerhead for Hf-Cycle at inner, middle, and outer wafer regions, corresponding to (a), (b),
and (c), respectively. The x-axis represents the time in a half-cycle, and the y-axis represents the
fraction of sites. The blue and orange dashed lines represent the fraction of available sites for
Hf precursor physisorption from CFD simulation and RNN prediction, respectively. The green
and red triangles represent the fraction of available sites for O precursor physisorption from CFD
simulation and RNN prediction, respectively.

match with each other, especially for O-Cycle. Due to the more complicated reaction routes in

Hf-Cycle, the RNN model for Hf-Cycle has a slightly higher deviation. However, the model is

able to capture the overall trend and accurately determine the steady-state achieving times for both

the Hf physisorption sites and the precursor partial pressure. In addition, it is worth noting that,

compared to the linear parameter-varying model developed in [31], this RNN-based data-driven

model fully integrates the microscopic domain and the macroscopic domain and is able to achieve

higher accuracy.
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Figure 4.2: Comparison of RNN for two half-cycles in the reactor without the showerhead: (a)
Hf-Cycle (b) O-Cycle. The x-axis represents the time within a half-cycle and the y-axis represents
the normalized property value (partial pressure and physisorption sites availability). The blue and
orange dashed lines represent the averaged precursor surface partial pressure from CFD simulation
and RNN prediction, respectively. The green and red triangles represent the averaged surface
physisorption sites availability from CFD simulation and RNN prediction, respectively.

4.2 Validation using 3D Multiscale Model

Although the RNN-based integrated data-driven model shows a good match with the 2D multiscale

CFD model results, it is desirable to further validate the data-driven model with results computed

from a full 3D multiscale CFD model. Thus, in this section, the data-driven model is compared

with the computation result from the previously developed 3D multiscale CFD model by [28]. As

shown in Figure 2.3, the 3D multiscale model geometry can be viewed as the rotation of the 2D

geometry around the central axis, and all the characteristic dimensions (wafer diameters, reactor

size, outlet shape, etc.) are preserved.

For the O-Cycle, the average pressure and surface profiles are compared between the 3D

multiscale CFD model and the RNN-based integrated data-driven model at a randomly chosen

inlet flowrate of 1.25×10−5 kg/s. The starting point of both models is assumed to be the saturated
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surfaces after one complete Hf-Cycle. The deposition profiles of the inner, middle, and outer

regions of the wafer over five seconds are presented in Figure 4.3. According to the CFD

model result, film deposition steady-state is achieved around 4 s, which is also captured by the

RNN model. Again, the RNN model prediction closely resembles the trend described by the

3D multiscale CFD model results. The normalized mean standard errors for the prediction of

deposition profile at the inner, middle, and outer region and the prediction of the overall pressure

are 2.54%, 1.19%, 2.85%, and 1.19%, respectively. Moreover, the error between the computed and

predicted half-cycle time is 6.18%.

For the Hf-Cycle, the results are compared at another randomly chosen inlet flowrate at

4.0×10−5 kg/s. The starting surface profiles for both models are assumed to be the fully

hydroxylated surface. Similar to the O-Cycle, the results over five seconds are demonstrated

in Figure 4.4. RNN prediction accurately observes the trend computed by the multiscale CFD

model. The normalized mean standard errors for the prediction of deposition profile in the inner,

middle, outer region, and the prediction of the overall pressure are 1.85%, 4.60%, 1.50%, and

1.53%, respectively. Additionally, the error between the computed and predicted half-cycle time is

4.86%. Such performance is also quantitatively much better than the previously developed linear

parameter-varying model, of which the errors range around 10%. Therefore, with validation by

the 3D multiscale CFD model results, we can conclude that the developed RNN-based integrated

data-driven model is capable of accurately characterizing the dynamic deposition profile and the

transient gas-phase development in the PEALD reactors.
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Figure 4.3: Comparison of 3D multiscale CFD model O-Cycle result with RNN-based data-driven
model prediction under the inlet flowrate of 1.25×10−5 kg/s. Surface profiles over a duration of
5 s are demonstrated and surface steady-state is achieved towards the end of the cycle. x-axis
represents the time, and y-axis represents the predicted profile. (a), (b), and (c) correspond to
the profile development of physisorption sites at inner, middle, and outer regions of the wafer,
respectively. (d) corresponds to the overall averaged pressure profile.
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Figure 4.4: Comparison of 3D multiscale CFD model Hf-Cycle result with RNN-based data-driven
model prediction under the inlet flowrate of 4.0×10−5 kg/s. Surface profiles over a duration of
5 s are demonstrated and surface steady-state is achieved towards the end of the cycle. x-axis
represents the time, and y-axis represents the predicted profile. (a), (b), and (c) correspond to
the profile development of physisorption sites at inner, middle, and outer region of the wafer,
respectively. (d) corresponds to the overall averaged pressure profile.
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Chapter 5

Operation Strategy Optimization

Now that the developed data-driven model has been validated, we can adopt the prediction

capability of the data-driven model to identify the optimal operating strategy. In order to optimize

the production throughput of PEALD processes, cycle-times need to be minimized, while the

required film qualities need to be maintained at ideally the best achievable coverage. To satisfy

both requirements, the data-driven model is used to predict the system dynamics for a wide

range of input flowrates from 2.5× 10−6 kg/s to 9.75× 10−4 kg/s, which is the common range

of operating flowrates used in the experiments. By extracting the final film quality and the required

cycle-time from the predicted film deposition profile, the range of feasible operating conditions can

be summarized. Based on the feasible operating range, an elementary cost analysis is performed

to determine the optimal operating condition.

For the O-Cycle, a database of deposition profiles for 200 flowrates uniformly distributed in

the range of 2.5× 10−6 kg/s to 9.75× 10−4 kg/s is generated using the integrated data-driven

model. The generated operating database is visualized in Figure 5.1 (a), (b), and (c) for the inner,

middle, and outer wafer regions, respectively. Based on the predicted deposition profiles, the time

to achieve steady-state and the final cycle progress are identified for each operating flowrate. The

conventional half-cycle time for the PEALD process is taken to be five seconds. Therefore, only

flowrates that allow the film to achieve full half-cycle coverage within five seconds are considered
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to be feasible, which are marked with blue dots at the steady-state achieving time in Figure 5.1

(a), (b), and (c). For O-Cycle, most flowrates in the given range are feasible except for the few

lowest operating flowrates. After the feasible flowrates have been identified, an elementary cost

analysis is performed to evaluate the optimal operating flowrate that minimizes the precursor usage.

To evaluate precursor usage, the inlet flowrate are multiplied by their corresponding steady-state

achieving times, which are shown in Figure 5.1 (d), (e), and (f) for the inner, middle, and outer

wafer regions, respectively. Due to the nonlinear relationship between flowrate and deposition

profile, the dependency of precursor usage on flowrate is also nonlinear, and the corresponding

flowrates for minimal precursor usage at various wafer locations are marked with red diamonds in

Figure 5.1 (d), (e), and (f), which is around 2.2× 10−5 kg/s for all wafer regions. The reported

trend of precursor usage over operating flowrates can also be applied in the more advanced cost

analysis to customize the optimal operating condition, where additional concerns, such as overall

expected throughput, specific wafer region quality, and exact precursor costs, are accounted for.

Similarly, for the Hf-Cycle, a database of deposition profiles for inlet operating flowrates

within the range of 2.5× 10−6 kg/s to 9.75× 10−4 kg/s is collected from the data-driven model

prediction. The result is demonstrated in Figure 5.2 (a), (b), and (c) for the inner, middle, and outer

wafer regions, respectively. The notations are similar as in the O-Cycle result and only feasible

flowrates, marked with blue dots, are picked to identify the required half-cycle time and precursor

usage. A flowrate of at least 2.5×10−5 kg/s is required for full half-cycle coverage. The precursor

usage is then computed, and a non-linear relationship is observed between precursor usage and

inlet flowrate. As shown in Figure 5.2 (d), (e), and (f), for all wafer regions, precursor usage

increases with the flowrate until 5× 10−5 kg/s, and then decreases as flowrate further increases.

This nonlinear behavior can be attributed to the combination of gas-phase precursor transport and

reaction kinetics in the Hf-Cycle, which is explained in more detail in [27] and [28]. Therefore, the

optimal operating condition to minimize precursor usage for Hf-Cycle occurs either at low or high

flowrate, and it is subject to further cost and throughput analysis to determine the best operating

flowrate in specific scenarios.
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Figure 5.1: (a), (b), (c) Dynamic profiles for O-Cycle for flowrates between[
2.50×10−6,9.75×10−4] kg/s for inner, middle, outer wafer regions, respectively. Each

line corresponds to the profile of a specific flowrate. The x-axis is the time and the y-axis is the
O-Cycle deposition progress. The blue dots represent the identified steady-state achieving time
for valid flowrates. (d), (e), (f) Precursor usage profiles for all valid flowrates. The x-axis is the
flowrate and the y-axis is the amount of precursor required to finish the O-Cycle. The red diamond
denotes the optimal operating flowrate to minimize the precursor usage.

5.1 Integrated Data-driven model for PEALD Reactors with

the Showerhead

Despite the intrinsic physical difference between 2D and 3D models for reactors with the

showerhead, the 2D model result can still provide some insights for a general operating guideline.

Similar to the integrated data-driven model built for reactor without the showerhead, CFD

simulations are performed to collect the operating profile for showerhead reactors, and the collected

results are used to generate an RNN-based data-driven model, of which the training results are

demonstrated in Figure 5.3 and Figure 5.4. The O physisorption site characterizations and the final
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Figure 5.2: (a), (b), (c) Dynamic profiles for Hf-Cycle for flowrates between[
2.50×10−6,9.75×10−4] kg/s for inner, middle, outer wafer regions, respectively. Each

line corresponds to the profile of a specific flowrate. The x-axis is the time and the y-axis is the
O-Cycle deposition progress. The blue dots represent the identified steady-state achieving time
for valid flowrates. (d), (e), (f) Precursor usage profiles for all valid flowrates. The x-axis is the
flowrate and the y-axis is the amount of precursor required to finish the O-Cycle. The red diamond
denotes the optimal operating flowrate to minimize the precursor usage.

steady-state achieving time for both half-cycles, as well as the partial pressure characterization

for O-Cycle, are very accurate. Due to the complicated geometry of the showerhead reactor and

the more complex reaction sets in the Hf-Cycle, the prediction of the Hf physisorption sites for

Hf-Cycle demonstrates an offset from the CFD result. However, the RNN prediction captures the

exact trend reported by CFD simulation and can be adjusted by further post-processing.

Using the built data-driven model, a range of deposition profiles under various operating

flowrates are shown in Figure 5.5 and Figure 5.6. Similar to the reactor without the showerhead,

the precursor usages under various flowrates are computed using the steady-state achieving time

determined from the operating database. The trend of O-Cycle precursor usage versus operating
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Figure 5.3: Comparison between RNN prediction and CFD simulation result with the showerhead
for O-Cycle at inner, middle, and outer wafer regions, corresponding to (a), (b), and (c),
respectively. The x-axis represents the time in a half-cycle, and the y-axis represents the fraction
of sites. The blue and orange dashed lines represent the fraction of available sites for Hf precursor
physisorption from CFD simulation and RNN prediction, respectively. The green and red triangles
represent the fraction of available sites for O precursor physisorption from CFD simulation and
RNN prediction, respectively.

flowrate for showerhead reactors is very similar to reactors without the showerhead, despite a

nonlinear region for low operating flowrates. For the Hf-Cycle precursor usage, due to the

resistance caused by the showerhead panel, the minimal flowrate required to achieve full coverage

is higher than the reactor without the showerhead. As observed in Figure 5.6, the minimal precursor

usage occurs around 9.0× 10−5 kg/s for all wafer regions, and increases for both lower and

higher flowrates. This nonlinearity could be potentially due to the complex competition between

gas-phase precursor transport and the surface reaction kinetics. Moreover, despite the alignment of
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Figure 5.4: Comparison of RNN for two half-cycles in the reactor with the showerhead: (a)
Hf-Cycle (b) O-Cycle. The x-axis represents the time within a half-cycle and the y-axis represents
the normalized property value (partial pressure and physisorption sites availability). The blue and
orange dashed lines represent the averaged precursor surface partial pressure from CFD simulation
and RNN prediction, respectively. The green and red triangles represent the averaged surface
physisorption sites availability from CFD simulation and RNN prediction, respectively.

the result between the RNN model and the 2D multiscale CFD model, due to the limitation of the

2D showerhead reactor geometry, the showerhead reactor result does not perfectly reflect the full

3D transport and deposition behaviors. Therefore, the integrated data-driven model should only be

used as a general guideline for the operation of PEALD showerhead reactors.
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Figure 5.5: (a), (b), (c) Dynamic profiles for O-Cycle for flowrates between[
2.50×10−6,9.75×10−4] kg/s for inner, middle, outer wafer regions, respectively, in a

showerhead reactor. Each line corresponds to the profile of a specific flowrate. The x-axis is the
time and the y-axis is the O-Cycle deposition progress. The blue dots represent the identified
steady-state achieving time for valid flowrates. (d), (e), (f) Precursor usage profiles for all valid
flowrates. The x-axis is the flowrate and the y-axis is the amount of precursor required to finish
the O-Cycle. The red diamond denotes the optimal operating flowrate to minimize the precursor
usage.
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Figure 5.6: (a), (b), (c) Dynamic profiles for Hf-Cycle for flowrates between[
2.50×10−6,9.75×10−4] kg/s for inner, middle, outer wafer regions, respectively, in a

showerhead reactor. Each line corresponds to the profile of a specific flowrate. The x-axis is the
time and the y-axis is the Hf-Cycle deposition progress. The blue dots represent the identified
steady-state achieving time for valid flowrates. (d), (e), (f) Precursor usage profiles for all valid
flowrates. The x-axis is the flowrate and the y-axis is the amount of precursor required to finish
the Hf-Cycle. The red diamond denotes the optimal operating flowrate to minimize the precursor
usage.
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Chapter 6

Conclusion

In this work, an integrated data-driven model based on RNN is constructed using the previously

developed multiscale CFD model for a PEALD process. Based on the datasets generated from

CFD, the developed RNN is able to accurately predict the film deposition profile using the inlet

feed flowrate. Although the built data-driven model is developed based on 2D axisymmetric CFD

computation results, it is validated with the results from a full 3D CFD simulation. Specifically, for

each half-cycle, an RNN model has been tailored to capture the deposition behavior with less than

or around 5% deviation from the CFD simulation results. Compared to the multiscale CFD model,

which takes about a day to compute the profiles for one flowrate, the integrated data-driven model

only takes a few seconds to predict the film growth, and thus can be incorporated in real-time

process control and process monitoring. Moreover, an operation database is generated using

the predictions from the integrated data-driven model. Using the operation database and based

on industrial standard, a feasible operating region is determined in terms of the inlet flowrates.

Furthermore, an optimal operating strategy is identified in the feasible operating domain for each

half-cycle based on the precursor usage analysis. Additionally, for the showerhead PEALD reactor,

a similar methodology has been adopted to generate its corresponding integrated data-driven

model. Despite the fundamental geometric difference of showerhead between 2D and 3D, the

data-driven model can still provide a general guideline for the operation of showerhead reactors.
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In closing, it is worth mentioning that the LSTM based data-driven modeling strategy presented in

this work is suitable for many other similar semiconductor fabrication processes. The challenges

for the desired in-situ monitoring and the complexity of an exact on-line simulation representation

can be avoided by extracting valuable information from combined experimental and simulated data

at different conditions. In addition, with the developed data-driven model, an optimal operating

strategy can be established based on the specific industrial need (e.g., optimal manufacturing

throughput), and on-line control schemes can be explored, which can further enhance the process

operational performance.
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