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Abstract

Understanding of the effects of in utero opioid exposure on neurodevelopment is a priority given 

the recent dramatic increase in opioid use among pregnant individuals. However, opioid abuse 

does not occur in isolation—pregnant individuals abusing opioids often have a significant history 

of adverse experiences in childhood, among other co-occurring factors. Understanding the specific 

pathways in which these frequently co-occurring factors may interact and cumulatively influence 

offspring brain development in utero represents a priority for future research in this area. We 

highlight maternal history of childhood adversity (CA) as one such co-occurring factor that is 
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more prevalent among individuals using opioids during pregnancy and which is increasingly 

shown to affect offspring neurodevelopment through mechanisms beginning in utero. Despite the 

high incidence of CA history in pregnant individuals using opioids, we understand very little 

about the effects of comorbid prenatal opioid exposure and maternal CA history on fetal brain 

development. Here, we first provide an overview of current knowledge regarding effects of opioid 

exposure and maternal CA on offspring neurodevelopment that may occur during gestation. We 

then outline potential mechanistic pathways through which these factors might have interactive 

and cumulative influences on offspring neurodevelopment as a foundation for future research in 

this area.

Keywords

maternal childhood adversity; prenatal opioid exposure; in ntero exposure; opioid epidemic; brain 
development; maternal-placental fetal biology

1 - Introduction

The marked increase in opioid misuse in recent decades (Cicero et al., 2014; Substance 

Abuse and Mental Health Services Administration (US) and Office of the Surgeon General 

(US), 2018), including high rates of usage among pregnant individuals (Desai et al., 2014; 

Maeda et al., 2014; Terplan et al., 2010), has raised concern regarding effects of in utero 
opioid exposure on offspring brain development. (Abdel-Latif et al., 2013; Camden et al., 

2021; Maeda et al., 2014). Advancing understanding of how in utero opioid exposure 

influences fetal brain development is of critical importance—the prenatal period is the most 

rapid period of brain development across the lifespan, and biological signaling mechanisms 

guiding embryonic and fetal brain development are highly sensitive to cues from the extra

uterine environment (Entringer et al., 2015). Furthermore, alterations to brain development 

during gestation have implications for adaptive potential in response to the postnatal 

environment (Hartman and Belsky, 2018) and long-term risk for psychiatric disorders 

(O’Donnell and Meaney, 2016). While there is some empirical evidence in support of 

poorer physiological and neurodevelopmental outcomes soon after birth in infants exposed 

to opioids in utero versus non-exposed peers (Beckwith and Burke, 2015; de Cubas and 

Field, 1993; McGlone and Mactier, 2015; Moe, 2002; Nygaard et al., 2016, 2015; Ornoy 

et al., 2001), these observations have not been consistently replicated (Baldacchino et al., 

2014), and long-term effects of prenatal opioid exposure on neurodevelopment remain 

poorly understood (Conradt et al., 2018).

A significant challenge in understanding the short- and long-term effects of prenatal 

opioid exposure lies in disentangling the potential influence of prenatal opioid exposure 

from the multiple, frequently co-occurring factors in the pre- and postnatal environment 

with potential to influence neurodevelopment. Previous literature in this area does not 

thoroughly account for the wide array of co-occurring factors prevalent in pregnant 

individuals using opioids (Conradt et al., 2019). Focusing on the potential mechanisms 

by which in utero opioid exposure and commonly co-occurring risk factors in the prenatal 

environment influence neurodevelopmental trajectories has potential to increase clarity into 
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the etiology of poor neurodevelopmental outcomes with implications for prevention and 

early intervention strategies.

Among pregnant individuals using opioids, there is an increased prevalence of exposure to 

childhood adversity (CA), which is a well-established risk factor for substance use (Brown 

and Shillington, 2017; Racine et al., 2020). Here we consider CA to include a range of 

negative experiences in childhood shown to have long-term consequences for psychiatric 

and other health outcomes. These include experiences involving threat (physical abuse, 

sexual abuse, exposure to domestic and community violence), deprivation (emotional or 

physical neglect), and instability (loss of a caregiver, caregiver transitions, family conflict 

and divorce) (Koss and Gunnar, 2018; McLaughlin et al., 2014). The number of CA 

exposures (also referred to as Adverse Childhood Experiences) proportionally increased 

the odds of opioid misuse in adulthood in a study of a large community sample while 

controlling for a variety of other sociodemographic factors (Merrick et al., 2020; Quinn et 

al., 2019). Additionally, childhood abuse and neglect were shown to increase the risk for 

adulthood prescription opioid misuse in a large nationally-representative sample (Austin and 

Shanahan, 2018). Among adults receiving treatment for opioid use disorder, CA is correlated 

with increased likelihood of relapse (Derefinko et al., 2019), younger age of opioid use 

initiation, more recent injection drug use, and increased likelihood of overdosing (Stein et 

al., 2017). The high co-occurrence of CA and opioid misuse is of particular relevance for 

advancing understanding of fetal brain development in the context of maternal opioid use 

given recent evidence for effects of maternal CA on maternal-placental-fetal (MPF) biology 

and fetal brain development (Buss et al., 2017; Hendrix et al., 2020; Lehrner and Yehuda, 

2018; Moog et al., 2018, 2016a).

The current review aims to provide a foundation for examining the potential cumulative 

and interactive influences of maternal history of CA and opioid use during pregnancy on 

offspring neurodevelopment. We note that neonatal opioid withdrawal syndrome (NOWS) 

is a common focus both in clinical settings and in prior research on in utero opioid 

exposure (Bakhireva et al., 2019; Kelty and Preen, 2019; Kocherlakota, 2014). However, 

NOWS is not a primary focus of this manuscript given the lack of understanding of its 

role in neurodevelopment and long-term outcomes (Conradt et al., 2019). Further, NOWS 

diagnoses are variable, and a sizable portion of infants exposed to opioids in utero do 

not receive a NOWS diagnosis (Jones et al., 2018)—we aim to include all opioid-exposed 

neonates in this review to ensure a comprehensive examination of in utero opioid exposure. 

We first provide a brief review of current knowledge regarding the effects of prenatal 

opioid exposure and maternal CA on the developing brain in utero. We highlight research 

with potential to disentangle prenatal versus postnatal effects of prenatal opioid exposure 

and maternal CA, given that transmission of these risk factors may occur prenatally via 

alterations to MPF biology and epigenetic mechanisms, as well as through alterations to 

the postnatal environment. This literature is then contextualized with a discussion of the 

candidate mechanistic pathways by which opioids and sequelae related to maternal CA 

can influence offspring brain development in utero. Finally, we make recommendations for 

future research with the aim of increasing clarity regarding the implications of maternal 

opioid use during pregnancy on offspring neurodevelopment in the context of accompanying 

risk factors. We speak to the potential relevance of such research for eventually informing 
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public health messaging and the stigma related to opioid use during pregnancy, in addition to 

prevention and intervention efforts for individuals at risk for misusing opioids.

2 – Neurodevelopmental outcomes associated with in utero opioid 

exposure and preconception maternal CA

2.1 – Long-term neurodevelopmental outcomes associated with in utero opioid exposure 
and maternal preconception CA

Given the focus of this review on mechanistic pathways for the in utero effects of 

opioid exposure and maternal CA on human offspring neurodevelopment, clinical research 

examining the effects of both factors on neonatal human brain outcomes represent a 

primary interest due to enhancing capacity for distinguishing pre- versus postnatal effects. 

However, it is worth noting that research with animal models, which allows for experimental 

control to isolate effects of specific exposures during certain developmental windows, has 

identified long-term impacts of in utero opioid exposure and maternal CA on a range 

of outcomes beyond the neonatal period. While it is challenging to differentiate the 

role of the pre- versus post-natal environment in clinical studies investigating long-term 

neurodevelopmental outcomes of in utero opioid exposure and maternal CA, these studies 

suggest the potential for neurodevelopmental alterations related to these exposures to persist 

well beyond infancy into later childhood and adulthood. We therefore provide a brief 

review of literature examining long-term neurodevelopmental alterations in relation to these 

factors to contextualize the impetus for advancing understanding of the relevant mechanistic 

pathways leading to these alterations.

Pre-clinical studies suggest that long-term neurodevelopmental alterations in offspring 

exposed to opioids in utero include increased risk for behaviors analogous to symptoms 

of mood and anxiety disorders (Ahmadalipour et al., 2015; Hung et al., 2013; Wu et al., 

2020), altered social and reward processing (Buisman-Pijlman et al., 2009b; Hol et al., 

1996; Niesink et al., 1996; Vanderschuren et al., 1995; Vathy and Katay, 1992), cognitive 

differences (Ahmadalipour et al., 2015; Niu et al., 2009; Šlamberová et al., 2003; Wang et 

al., 2017; Wang and Han, 2009), in addition to increased seizure potential and alterations 

in endogenous opioid system and endocrinal stress-response functioning (Boggess and 

Risher, 2020; Byrnes and Vassoler, 2018). These studies primarily employ rodents (rats 

or mice), with the exception of one study which used chicks (Wang et al., 2017). Despite 

significant differences in brain morphology and the timing of neurodevelopment between 

rodents and humans (Ohmura and Kuniyoshi, 2017), there is some evidence to support 

potential translation to humans. This includes reports of emotional challenges and cognitive 

deficits in toddlers and school-aged children exposed to opioids during gestation (Levine 

and Woodward, 2018; Nelson et al., 2020; Nygaard et al., 2016, 2015; Yeoh et al., 2019), 

although these findings have not been consistently replicated (Bakhireva et al., 2019; 

Conradt et al., 2019).

Several factors require consideration in translating findings from animal models of prenatal 

opioid exposure. First, the role of the postnatal environment on offspring development 

can be challenging to model in animal studies. Animal models that include variation 
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in the postnatal environment indicate that the role of the postnatal environment plays a 

significant role in developmental trajectories of offspring exposed to opioids in utero. Some 

evidence suggests that effects of prenatal opioid exposure on offspring neurodevelopment 

may not persist in a beneficial postnatal environment—adult rodents exposed to opioids 

during pregnancy showed depressive-like behaviors that were prevented with postnatal 

environmental enrichment (Ahmadalipour et al., 2015) and exercise (Wu et al., 2017). 

These rodent models suggest an important modulatory role of the postnatal environment on 

neurodevelopment in offspring exposed to opioids in utero, although studies examining the 

role of the early postnatal environment on rodent development must be translated to human 

findings with caution. Rodents are born at the equivalent of about mid-gestation in human 

fetuses (Clancy et al., 2007), implying that early postnatal factors may have differential 

effects on brain development in rodents than in humans.

Evidence from clinical research also emphasizes the need to consider postnatal 

environmental influences on neurodevelopment in offspring exposed to opioids in utero. 

Compared to children without prenatal substance exposure, children exposed to opioids in 
utero are more likely to experience a range of adversities in the postnatal environment, 

including abuse, neglect, housing instability, low socioeconomic status (SES), poor nutrition, 

parental psychopathology, low access to healthcare, and caregiver disruptions (Conradt et 

al., 2018; Levine et al., 2021). While consideration of such co-occurring adversities is rare 

in studies examining the effects of prenatal opioid exposure on long-term neurodevelopment 

in humans (Conradt et al., 2018), those that attempt to control for factors such as low SES, 

maternal education level, and the quality of the home environment have found that the 

detrimental effects of prenatal opioid exposure on cognitive and psychomotor development 

were no longer evident (Hans and Jeremy, 2001; Messinger et al., 2004). A recent study 

by Levine et al. (2021) similarly reported that deficits in motor development, cognitive 

development, and emotional and behavioral dysregulation found in 2-year-old children with 

prenatal methadone exposure were mediated by gestational age at birth, and aspects of the 

postnatal environment, including, breastfeeding participation, maternal stress, and punitive 

parenting. They also found that the children exposed to methadone in utero demonstrated 

deficits in language development at 2 years old that did not remain significant after 

controlling for maternal education and polysubstance use during pregnancy (Levine et al., 

2021). This work highlights the role of the postnatal environment in the developmental 

trajectories of offspring exposed to opioids in utero.

Similar to human studies of children exposed to opioids in utero (Boggess and Risher, 

2020; Conradt et al., 2019; Kirkegaard et al., 2020; Skumlien et al., 2020; Winklbaur et al., 

2009), offspring of mothers who experienced CA are at increased risk for a myriad of poor 

neurodevelopmental and physiological outcomes (Buss et al., 2017). In childhood, offspring 

with maternal CA exposure show increased physiological anxiety markers (Jovanovic et 

al., 2011), higher rates of obesity and smoking behaviors (Roberts et al., 2014), increased 

externalizing behaviors (Miranda et al., 2013; Myhre et al., 2014; Plant et al., 2017; 

Rijlaarsdam et al., 2014), increased negative emotionality (Bouvette-Turcot et al., 2015), and 

increased risk for autism (Roberts et al., 2013). While several of these studies identified 

postnatal mediators of the relationship between maternal CA and offspring outcomes 

(Collishaw et al., 2007; Miranda et al., 2013; Plant et al., 2017; Rijlaarsdam et al., 2014; 
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Roberts et al., 2014), others also indicated co-occurring factors in the prenatal environment 

that modulate the association between poorer long-term neurodevelopmental outcomes and 

maternal CA history, such as antenatal depression (Collishaw et al., 2007; Plant et al., 2017) 

and genetic variation (Bouvette-Turcot et al., 2015). Limited pre-clinical studies examining 

the effect of parental early life adversity on offspring neurodevelopment partially support 

findings from clinical studies, suggesting either maternal or paternal early life adversity 

may increase the risk for biological and behavioral stress phenotypes in mice and primate 

offspring (Cowan et al., 2016). These findings further emphasize the need to examine 

offspring neurodevelopmental alterations at birth in order to identify alterations related to 

prenatal opioid exposure and maternal CA that truly occur before exposure to the postnatal 

environment.

2.2 – Offspring neonatal brain outcomes associated with in utero opioid exposure and 
maternal preconception CA

2.2.1 – Whole-brain outcome measures—In utero opioid exposure and maternal CA 

have both been associated with altered neonatal head circumference, which is thought to 

be associated with smaller intracranial, or brain, volume (Cheong et al., 2008; Lindley 

et al., 1999), suggesting that these exposures may impede or alter fetal brain growth 

during gestation. Head circumference at birth is often utilized as a predictor for later 

neurodevelopment—neonates with head circumferences at the top or bottom 2% are at 

significantly greater risk for neurodevelopmental disorder diagnosis later in life (Wright and 

Emond, 2015).

Prenatal opioid exposure has been associated with reduced neonatal head circumference 

(Craig et al., 2020; Monnelly et al., 2018; Peterson et al., 2020; Towers et al., 2019; 

Visconti et al., 2015). Additionally, two studies directly examining intracranial volume 

using MRI techniques identified global volumetric reductions in brains of neonates exposed 

to opioids in utero compared to unexposed controls (Peterson et al., 2020) and previous 

literature documenting normative neonatal brain development (Yuan et al., 2014). However, 

consideration of co-occurring factors has been limited in these studies. Additionally, the type 

of opioid exposure is likely to influence fetal head growth. Methadone and buprenorphine 

are two opioid maintenance treatments that are currently the frontline treatments for 

pregnant individuals with opioid dependence (World Health Organization, 2014). Both 

drugs have affinity for the μ-opioid receptor (MOR), and reduce mortality rates and risk 

of relapse associated with opioid misuse due to their long half-life (methadone) and 

partial agonist (buprenorphine) properties (Bonhomme et al., 2012). Of these two opioid 

maintenance treatments, only methadone appears to be associated with smaller neonatal 

head circumference (Jones et al., 2014, 2010; O’Connor et al., 2019; Pritham et al., 

2012; Zedler et al., 2016). Poly-substance use during pregnancy, which is very common 

among opioid-using pregnant individuals, may exacerbate reductions in offspring head 

circumference associated with prenatal opioid exposure—among prenatally opioid-exposed 

infants, additional exposure to tobacco has been associated with further reduced head 

circumference (Winklbaur et al., 2009). Limited evidence from clinical literature suggests 

that reduction in neonatal head circumference related to prenatal opioid exposure does not 

appear to be dose-dependent (Gray et al., 2010; O’Connor et al., 2019), although this will 
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need to be replicated in future studies. Smaller cerebral size at birth is associated with poorer 

intellectual and executive functioning outcomes, particularly when subsequent postnatal 

head growth does not catch up to peers (Aagaard et al., 2018; Bilder et al., 2013; Ferrer et 

al., 2019; Gale et al., 2006; Heinonen et al., 2008; Kirkegaard et al., 2020; Langridge et al., 

2013; Wright and Emond, 2015).

Maternal CA has also been associated with alterations in global cerebral development at 

birth, however interpretation of findings is limited by the sparsity of research in this area. 

One study reported an association between maternal CA history and a higher cephalization 

index (ratio of head circumference to body weight) at birth when adjusting statistically 

for factors related to maternal demographics, maternal health, delivery, infant sex assigned 

at birth, and infant gestational age at delivery (Appleton et al., 2019). These findings 

are consistent with reports of a higher offspring cephalization index linked to earlier age 

of maternal menarche (Holdsworth and Appleton, 2020), given that exposure to CA is 

associated with earlier pubertal onset (Colich et al., 2020; Holdsworth and Appleton, 2020; 

Lei et al., 2018; Noll et al., 2017). Another group demonstrated positive correlations 

between maternal CA and offspring head circumference and weight at birth, while 

accounting for multiple maternal psychosocial, health, and nutritional factors (Apanasewicz

Grzegorczyk et al., 2020). Additionally, maternal CA has been associated with reduced 

neonatal cortical gray matter, which contributed to an overall smaller intracranial volume 

(Moog et al., 2018). These results persisted after adjusting for multiple potential confounds 

frequently associated with maternal history of CA, including SES, complications during 

pregnancy, obesity, recent exposure to interpersonal violence, stress throughout pregnancy 

and in the early postpartum period, and length of gestation (Moog et al., 2018).

Overall, there appears to be potential for both prenatal opioid exposure and maternal CA to 

influence fetal cerebral growth, suggesting potential for cumulative or interactive influences 

to be examined in future studies. In addition, future research would benefit from examining 

trajectories of postnatal intracranial growth to see if differences persist over time, with 

consideration of additional moderating factors (including environmental risks and weight at 

birth).

2.2.2 – Outcomes in large-scale brain networks and global connectivity—
Examining connectivity both with resting state functional MRI and diffusion tensor imaging 

is of great interest for understanding the long-term effects of fetal neurodevelopment, as key 

aspects of adult brain organization, such as small worldness (component of brain network 

organization consisting of close and highly interconnected nodes) and nacent forms of 

large-scale brain networks, are detectable during the neonatal period and are predictive of 

neurodevelopment throughout childhood (De Asis-Cruz et al., 2020; Graham et al., 2021; 

Schneider et al., 2004; Smyser et al., 2010; van den Heuvel et al., 2015). Some evidence 

suggests that prenatal opioid exposure is related to altered maturation of white matter fiber 

tracts in the neonatal brain. Monnelly et al. (2018) reported decreased fractional anisotropy 

(FA), a measure of white matter integrity and connection orientation, in the neonatal 

white matter skeleton, which represents the center of each white matter tract common to 

the sample. Additionally, Walhovd et al., (2012) found increased mean diffusivity (MD), 

indicative of reduced white matter integrity, in the superior longitudinal fasciculi of neonates 
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exposed to opioids during pregnancy. Furthermore, Merhar et al., (2019) found preliminary 

evidence of increased risk of white matter lesions and abnormalities in neonates prenatally 

exposed to opioids. In contrast, while controlling for gestational age, offspring sex, tobacco 

and alcohol use, maternal age, SES, race/ethnicity, depression, anxiety, and prenatal stress, a 

small cohort study found that frontal and parietal white matter in prenatally opioid-exposed 

neonates showed increased FA and reduced MD (Peterson et al., 2020). These studies have 

attempted to account for key pre- and post-natal environmental covariates, but maternal CA 

history has not been considered either as a covariate or moderator. Moreover, small sample 

sizes (ranging from 20 to 60 participants) and lack of replication in independent datasets 

decrease confidence in these findings, particularly in light of the expected small effect sizes 

and recent literature highlighting the lack of reproducibility in neuroimaging studies (Boekel 

et al., 2015; Kharabian Masouleh et al., 2019; Ks et al., 2013; Marek et al., 2020).

Utilizing resting state functional connectivity MRI has become increasingly popular in 

neonatal brain development research, as it takes advantages of brain activity at rest and 

can reveal neonatal functional brain network activity with potential implications for long

term neurodevelopment. Recent work by Salzwedel et al. (2020) employing resting state 

functional connectivity included a larger sample size relative to prior studies (n=133), 

although only 18 infants in the study had in utero opioid exposure. However, examining 

the potential link between alterations in neonatal brain connectivity and subsequent 

cognitive development, and employing multivariate modeling to account for co-occurring 

prenatal influences (including polysubstance exposure and maternal depression, although 

not maternal CA history) represent significant strengths of the study. The findings indicate 

an association between prenatal opioid exposure and alterations in neonatal resting state 

functional connectivity of the left middle frontal and right angular gyrus, as well as the 

cingulo-opercular network. These alterations in the neonatal brain were not associated with 

cognitive, language, or motor composite scores at 3 months of age. Thus, while this study 

suggests that prenatal opioid exposure may be associated with alterations in developing 

brain systems involved in cognition and executive functioning, it is unclear if these effects 

persist long after birth.

Maternal CA has not been examined in relation to offspring neonatal global brain 

connectivity. Alterations in region-specific connectivity (Hendrix et al., 2020) and global 

gray matter differences (Moog et al., 2018) in neonates exposed to maternal CA, in addition 

to functional connectivity differences in school-aged children with maternal CA (Zhang et 

al., 2021), suggest that the effects of maternal CA on neonatal functional connectivity may 

be an area of interest for future research.

2.2.3 – Region-specific volume and connectivity outcomes—Additional 

findings from neonatal brain imaging reveal that prenatal opioid exposure is associated 

with volumetric alterations of multiple cortical and subcortical brain regions with potential 

implications for basic motor and sensory processing and integration, as well as higher-order 

cognitive and emotional processing. One pilot study demonstrated decreased volume of the 

basal ganglia and larger volume of the lateral ventricle in neonates exposed to buprenorphine 

or methadone during pregnancy (Yuan et al., 2014). Additionally, research employing mid

pregnancy ultrasounds (18-22 weeks gestation) identified increased thalamic diameters in 
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fetuses exposed to opioids in utero (Schulson et al., 2014). A pilot study utilized MRI in 

fetuses at approximately 33 weeks of gestation to identify reduced anteroposterior diameter 

of the cerebellar vermis in fetuses exposed to opioids in utero compared to unexposed 

fetuses (Radhakrishnan et al., 2021a). Peterson et al. (2020) also found alterations in brain 

volume across multiple cortical regions, with increases observed in the middle temporal 

and inferior frontal gyri, posterior cingulate cortex, and inferior medial prefrontal cortex 

(mPFC), and decreases in the middle frontal gyrus, orbitofrontal cortex, and some dorsal and 

lateral regions of the prefrontal cortex. A recent pilot study identified that prenatally opioid

exposed neonates showed increased right amygdala-mPFC connectivity and decreased 

amygdala connectivity to other regions within the medial temporal lobe while controlling for 

maternal depression and infant sex (Radhakrishnan et al., 2021b). These findings indicate 

potential alterations in the cerebellum, multiple subcortical brain regions involved in sensory 

processing, movement, arousal, stress and emotion processing and reactivity, and distributed 

cortical brain regions, including those involved in higher level cognitive processes. However, 

limitations in sample size and a lack of replication in independent samples again hamper the 

generalizability of these findings.

The literature examining maternal CA in relation to specific brain volumes and connectivity 

in the neonatal period is even more limited. However, one recent study observed an 

association between maternal childhood emotional neglect and stronger offspring neonatal 

functional connectivity between the amygdala and dorsal anterior cingulate cortex, as well as 

between the amygdala and ventromedial prefrontal cortex (Hendrix et al., 2020). Increasing 

sample sizes, testing for replication in independent data sets, and considering potential 

cumulative and interactive effects of maternal CA and opioid use, among other co-occurring 

factors, represent important next steps in advancing understanding of whether coordinated 

functioning of the amygdala with regions of the prefrontal cortex, and other early neural 

phenotypes, play a role in mediating effects of these prenatal exposures on subsequent 

development.

2.2.4 – Summary of neonatal brain outcomes associated with in utero opioid 
exposure and maternal preconception CA—The findings to date indicate that both 

maternal CA and opioid use during pregnancy have potential to influence offspring brain 

development in utero. Prenatal opioid exposure appears to be associated with several 

neurodevelopmental alterations at birth, including smaller cerebral size, white matter 

abnormalities, alterations to functional connectivity networks, and volumetric changes 

to various brain regions. However, there are substantial limitations to existing literature 

examining the neurodevelopmental effects of prenatal opioid exposure during the fetal and 

neonatal period, including small sample sizes and lack of replication of findings, making it 

particularly difficult to draw conclusions about specific functional connectivity or volume 

changes. A significant challenge in studying the effects of prenatal opioid exposure in 

humans is how varying dosages, timings, frequencies, and specific opioid compounds will 

alter fetal neurodevelopment, given the substantial variability of each of these factors in 

the population of pregnant individuals using opioids. Furthermore, we continue to lack 

understanding of long-term neurodevelopmental consequences of prenatal opioid exposure 

in humans, and our review did not identify evidence to support the commonly held belief 
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that alterations at birth associated with prenatal opioid exposure will persist into later 

childhood and adulthood.

Additionally, studies examining potential neonatal brain alterations associated with maternal 

CA are currently very rare. To our knowledge, only four studies examine how maternal CA 

influences offspring brain outcomes at birth: two studies indicating a higher cephalization 

index (Apanasewicz-Grzegorczyk et al., 2020; Appleton et al., 2019), one reporting smaller 

gray matter and overall intracranial volumes (Moog et al., 2018), and one showing 

altered frontoamygdala connectivity (Hendrix et al., 2020). While understanding the 

specific effects of maternal CA on fetal neurodevelopment will be challenging without 

replication of this work, the current evidence does suggest that maternal CA alters offspring 

neurodevelopmental trajectories during gestation, and this is a compelling area for further 

research. Beyond increasing sample sizes to increase likely reproducibility of findings, 

future investigations into the effects of both prenatal opioid exposure and maternal CA 

on offspring neurodevelopment would benefit from study designs which carefully balance 

major potential confounds and provide sufficient statistical power to model cumulative and 

interactive influences.

3 - Pathways by which in utero opioid exposure and maternal 

preconception CA influence fetal brain development

3.1 – Endogenous opioid system

The endogenous opioid system is a complex neuromodulatory system that consists of several 

families of peptides and receptors that influence a wide range of behavioral and biological 

processes, including pain, reward processing, stress responsivity, cell survival, respiratory 

depression, ionic homeostasis, digestion, euphoria, cardiovascular health, and sedation 

(Fricker et al., 2020; Shenoy and Lui, 2020). Opioid peptides, including enkephalins, 

endorphins, dynorphins, nociceptin and endomorphins, have distinct effects depending 

on the regional and developmental context, as well as their differential affinities for the 

opioid receptors, including the μ-opioid receptor (MOR), δ-opioid receptor (DOR), κ-opioid 

receptor (KOR), nociceptin receptor (NOR), and zeta opioid receptor (ZOR) (Dhaliwal and 

Gupta, 2021; Fricker et al., 2020). The endogenous opioid system is distributed throughout 

the body, although it is particularly active in the central and peripheral nervous systems 

(Fricker et al., 2020).

During the prenatal period, the endogenous opioid system is thought to play a unique 

modulatory role in fetal brain development. Rodent studies suggest that developing neural 

cells begin to produce opioid receptors and opioid peptides early in gestation (Farid et al., 

2008; Hauser and Knapp, 2018), while limited studies in humans verify endogenous opioid 

system activity by 11 (Tripathi et al., 2008) and 20 (Kinney et al., 2008; Magnan and Tiberi, 

1989; Wang et al., 2006) weeks of gestation. Endogenous opioids modulate a range of early 

fetal neurodevelopmental processes involved with neuronal and glial maturation, and some 

opioid peptide activity appears to be reserved for developmental processes alone (Farid et 

al., 2008; Hauser and Knapp, 2018). While there are exceptions, opioid receptor activation 

tends to suppress fetal brain growth via inhibition of neuronal and glial proliferation 
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and differentiation, in addition to increased neuronal cell death, although specific activity 

differs by brain region and type of opioid receptor involved (Hauser and Knapp, 2018). 

One significant exception is the association of endogenous opioid activity with growth 

of oligodendrocytes, glial cells responsible for myelination. MOR activation during the 

prenatal period leads to increased mitosis of immature oligodendrocytes, which do not yet 

produce myelin (Knapp et al., 1998; Knapp and Hauser, 1996), while KOR agonists promote 

embryonic myelin production and mature oligodendrocyte differentiation and proliferation 

(Knapp et al., 2009, 2001; Mei et al., 2016), at the cost of neuron and astrocyte genesis 

(Hahn et al., 2010).

Opioid drugs (also referred to as exogenous opioids) with addiction potential take effect by 

mimicking endogenous opioid peptides and acting on opioid receptors throughout the body, 

both prenatally via placental transfer (Hauser and Knapp, 2018) and postnatally (Davis and 

Pasternak, 2005). When used during pregnancy, exogenous opioids travel across the placenta 

in significant amounts, reaching drug equilibrium between the pregnant individual and the 

fetus (Gerdin and Lindberg, 1990; Griffiths and Campbell, 2015). While developing fetal 

brain cells often appear to transiently express opioid receptors at different concentrations 

throughout gestation (Hauser and Knapp, 2018), some evidence suggests that certain neural 

cells are more sensitive to exogenous opioids during parts of the prenatal period than 

in adulthood—rat fetal neurons have been found to bind to methadone at a rate 2-14 

times higher than in adults (Pertschuk et al., 1977). The potential for exogenous opioids 

to exaggerate the differential endogenous opioid activity on the development of various 

neural cell types, including promotion of oligodendrocyte growth and inhibition of neuron 

and astrocyte growth, suggests a potential pathway for reduced overall head circumference 

(Craig et al., 2020; Monnelly et al., 2018; Peterson et al., 2020; Towers et al., 2019; Visconti 

et al., 2015) and intracranial volume (Peterson et al., 2020; Yuan et al., 2014), in addition to 

altered white matter structure in opioid-exposed neonates (Merhar et al., 2019; Monnelly et 

al., 2018; Peterson et al., 2020; Walhovd et al., 2012).

Additionally, animal models suggest that prenatal opioid exposure may have specific 

programing effects on the rapidly developing fetal endogenous opioid system (Byrnes and 

Vassoler, 2018). The effects of prenatal opioid exposure on postnatal endogenous opioid 

system functioning appear to vary depending on the brain region of interest, postnatal age, 

and hormonal factors (Byrnes and Vassoler, 2018). Overall, the majority of literature in 

this area suggests that rodent offspring chronically exposed to exogenous opioids during 

fetal development show reduced opioid receptor binding across specific brain regions in 

the early postnatal period, but increased receptor binding in the same regions in adulthood 

(Byrnes and Vassoler, 2018). However, this does not appear to be consistent across brain 

regions—adult animals prenatally exposed to morphine showed reduced MOR binding in 

the bilateral amygdala (Šlamberová et al., 2005) and the medial preoptic area (Vathy et 

al., 2003). Prenatal opioid exposure may also be associated with increased endogenous 

opioid release in brain regions important for reward processing (substantia nigra, piriform 

cortex, and septum) in adulthood (Buisman-Pijlman et al., 2009a). Additionally, whole-brain 

analyses in rats exposed to opioids in utero showed increased MOR expression and binding 

during the neonatal period, but not in adulthood (Bhat et al., 2006), further suggesting 
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that opioid receptor alterations induced by prenatal opioid exposure appear to vary across 

developmental periods.

Direct CA exposure has also been shown to permanently alter the endogenous opioid 

system, which may in turn alter offspring development during pregnancy (Vazquez et al., 

2005). To our knowledge, there is only one study that examined the intergenerational 

effects of adversity on offspring endogenous opioid system functioning—non-stressed 

male offspring of female rats exposed to chronic stress (beginning post-weaning through 

adulthood) showed significantly decreased spinal cord MOR gene expression compared to 

non-stressed male rats without parental stress exposure (Hormozi et al., 2018). Spinal cord 

MOR gene expression in male offspring exposed to only paternal stress or both maternal 

and paternal stress did not significantly differ from unexposed male rats (Hormozi et al., 

2018). These findings verify that maternal chronic stress, including stress over the course of 

development, does influence offspring endogenous opioid system functioning.

Direct exposure to early adversity in rodents is associated with alterations in mRNA 

expression of brain opioid receptors in a time-, region- and sex-specific manner (Nakamoto 

et al., 2020). In mice exposed to maternal separation and social isolation, an animal model 

of CA, expression of KOR, MOR and DOR mRNA in the periaqueductal gray area was 

reduced, but KOR mRNA in the amygdala was significantly increased (Nakamoto et al., 

2020). Chronic lifetime stress was associated with decreased MOR mRNA in the spinal 

cord of adult male rats (Hormozi et al., 2018). Additionally, chronic stress in mice is 

associated with increased dynorphin release and subsequent increased KOR activation in the 

basolateral amygdala, nucleus accumbens (NAc), dorsal raphe, and hippocampus (Land et 

al., 2008). Increased KOR activation of serotonergic neurons in the dorsal raphe nucleus 

projecting to the NAc appear to mediate the aversive stress response (Land et al., 2009). 

A rat model of early life adversity reported alterations to KOR and dynorphin activity in 

the lateral habenula, a brain region associated with reward- and aversion-related learning 

and depression (Simmons et al., 2020). They reported that juvenile, adolescent, and adult 

rats exposed to early life adversity exhibited increased dynorphin levels and significantly 

decreased KOR mRNA expression in the lateral habenula compared to rats unexposed 

to early life adversity. Karkhanis et al. (2016) observed that compared to unexposed 

controls, adult rats exposed to chronic early life stress demonstrated differences in KOR 

and dynorphin activity in the NAc, including decreased dynorphin levels, increased KOR 

agonist-mediated inhibition of dopamine, and increased dopamine levels in response to a 

KOR antagonist. Chang et al. (2019) observed reductions in KOR and MOR mRNA in the 

NAc of neonatal female rats recently exposed to predator odor, but increased MOR and 

DOR mRNA in juvenile females exposed to predator odor during the neonatal period. In 

humans, postmortem brain tissue of individuals with a history of abuse who died by suicide 

revealed that KOR expression was significantly decreased in the anterior insula compared to 

controls—an effect that was not observed in suicide victims without CA exposure and that 

was associated with decreased DNA methylation in an intron of the KOR gene (Lovallo et 

al., 2018; Lutz et al., 2018).

Findings from both animal and human literature indicate that direct CA exposure appears 

to alter endogenous opioid system functioning, particularly KOR and dynorphin functioning 
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in brain regions associated with reward processing. If carried forward into pregnancy, these 

alterations have implications for fetal neurodevelopment via the mechanisms previously 

discussed. Moreover, among pregnant individuals using opioids, these alterations may 

interact with the dysregulating effects of exogenous opioids on the endogenous opioid 

system and thereby exacerbate effects on the developing fetal brain. Future research will 

need to examine how CA-induced alterations to endogenous opioid system functioning may 

alter offspring neurodevelopment during pregnancy, although preliminary evidence suggests 

that MOR gene expression in the spinal cord may be downregulated in offspring with 

maternal chronic lifetime stress exposure.

Alterations to the maternal endogenous opioid system related to preconception CA 

have potential to subsequently alter maternal hypothalamic-pituitary-adrenal (HPA) axis 

functioning (Areda et al., 2005; Bilkei-Gorzo et al., 2008; Brunton, 2019; Hale et al., 2003; 

Jaschke et al., 2021; Kudryavtseva et al., 2004; Marinelli et al., 2004; Yamamoto et al., 

2003). In adults assigned female at birth (AFAB)1 without CA exposure, administration of 

an opioid receptor antagonist, naltrexone, typically causes a strong increase in HPA axis 

activity; however this activation was suppressed in adults AFAB exposed to CA, suggesting 

that endogenous opioid modulation of the HPA axis is reduced in CA-exposed individuals 

AFAB (Lovallo et al., 2018). During pregnancy, the neurosteroid allopregnanolone, a 

metabolite of progesterone that increases in concentration during pregnancy, potentiates 

endogenous opioid inhibition of HPA axis reactivity (Brunton et al., 2009; Kammerer et al., 

2002; Russell et al., 2008). Individuals that experienced CA show an exaggerated blunting 

of the HPA axis during pregnancy compared to pregnant individuals without preconception 

CA (Morrison et al., 2017), which can be mimicked in non-pregnant mice when they 

are administered allopregnanolone (Morrison et al., 2020). This provides further evidence 

that maternal CA alters endogenous opioid modulation of the HPA axis during pregnancy. 

Alterations in HPA axis functioning during pregnancy in turn have significant implications 

for fetal neurodevelopment, which is discussed further below.

3.2 – HPA axis

The HPA axis directs the body’s physiological response to acute and chronic stress through 

the sequential release of corticotropin-releasing hormone (CRH), adrenocorticotropic 

hormone (ACTH), and glucocorticoids (cortisol in humans). During pregnancy, maternal 

cortisol levels stimulate placental corticotropin releasing hormone (pCRH) (Rehman et al., 

2007; Sandman et al., 2006), which acts on the fetal adrenal gland to stimulate cortisol 

synthesis in utero (Sandman et al., 2012). Maternal cortisol also passes through the placenta, 

particularly in adverse contexts (Benediktsson et al., 1997). Cortisol plays an obligatory 

role in fetal neurogenesis, gliogenesis, synaptogenesis, and growth of axons and dendrites, 

creating ample opportunity for alterations in cortisol levels during pregnancy to exert an 

influence on fetal neurodevelopment (Matthews, 2000).

1The terminology “assigned female at birth” (AFAB) and “assigned male at birth” (AMAB) are utilized in this review to acknowledge 
that human sex is a composite of many traits (i.e. chromosomes, genes, hormones, sex organs, and sex characteristics) that vary 
between individuals and may not align with sex assigned at birth (de Vries and Södersten, 2009; Keevil et al., 2017; Montañez, 2017). 
References may not have used these terms in their studies.
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There has been increasing interest in the co-occurrence of opioid use and dysregulated HPA 

axis in pregnant individuals, as both factors may influence offspring development through 

overlapping and interacting pathways (Lester and Padbury, 2009; Pastor et al., 2017). 

Some evidence suggests that opioid use during pregnancy may increase glucocorticoid 

release—pregnant rats administered daily morphine had significantly elevated glucocorticoid 

levels compared to pregnant controls (Kazemi et al., 2011). A recent pilot study found 

that higher levels of hair cortisol concentrations in pregnant individuals using opioids 

were associated with less severe withdrawal symptoms in offspring at birth (Wachman et 

al., 2020). Given that chronic stress and extensive opioid use have been associated with 

blunted HPA axis activity, the authors hypothesized that lower maternal cortisol levels in 

this sample may correspond to increased chronic stress and adversity history, which may 

contribute to worse opioid withdrawal symptoms at birth (de Vries et al., 2020; Wachman 

et al., 2020; Zhou et al., 2010; Zhou and Leri, 2016). Additionally, if exogenous opioid 

use exaggerates endogenous opioid inhibition of the HPA axis during pregnancy, higher 

rates of opioid use would likely correspond to both decreased cortisol and worse offspring 

withdrawal symptoms at birth. Thus, while the evidence to date is relatively mixed, it 

suggests that opioid use during pregnancy impacts the maternal HPA axis with implications 

for programming the fetal brain and HPA-axis. Future studies will be needed to advance 

understanding of this topic.

CA is well-known to produce long-term alterations in endocrine stress physiology, including 

greater HPA axis reactivity as well as hypocortisolism, and current literature suggests that 

HPA alterations related to preconception CA carry forward into pregnancy (Heim et al., 

2019). Pregnant individuals with CA history have been found to have lower baseline levels 

of cortisol immediately after waking, an elevated cortisol awakening response (the rapid 

increase in cortisol levels occurring shortly after waking), and a flattened diurnal slope 

(slope of decreasing cortisol levels throughout the day) (Bublitz et al., 2014; Bublitz and 

Stroud, 2012a; Shea et al., 2007; Thomas et al., 2018; Thomas-Argyriou et al., 2020), as 

well as increased concentrations of cortisol in hair during mid- to late-pregnancy compared 

to pregnant individuals without a history of CA (Schreier et al., 2015a; Swales et al., 

2018). Additionally, childhood sexual abuse may have more pronounced effects on HPA 

axis alterations than other adversities—pregnant individuals with a history of childhood 

sexual abuse showed increasing cortisol awakening responses throughout pregnancy when 

compared to pregnant individuals with histories of non-sexual childhood abuse and neglect, 

but diurnal slope did not significantly differ between groups (Bublitz and Stroud, 2012a). 

Maternal exposure to CA has also been associated with a steeper increase of pCRH during 

the third trimester of pregnancy (Moog et al., 2016b; Steine et al., 2020).

HPA axis functioning alterations during pregnancy frequently observed in relation to CA 

and opioid use are likely to mediate offspring developmental alterations. Elevated cortisol 

levels early in pregnancy are associated with a greater increase in pCRH during the third 

trimester of pregnancy (Sandman et al., 2006), and high concentrations of pCRH during 

the third trimester of pregnancy are associated with preterm birth and a more difficult 

infant temperament (Davis et al., 2005; Wadhwa et al., 2004). Furthermore, infants exposed 

to elevated maternal cortisol in late pregnancy show increased behavioral challenges and 

negative temperament beginning at 1 week old (de Weerth et al., 2003) and increased parent
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reported infant negative reactivity at 2 months of age (Davis et al., 2007). Interestingly, 

elevated maternal cortisol levels early in gestation were associated with slower and poorer 

offspring cognitive development throughout the first year of life, while elevated maternal 

cortisol levels late in gestation were associated with accelerated and more advanced 

cognitive development over the first year of life (Davis and Sandman, 2010). In one 

recent study, a flatter diurnal slope during the first and second trimesters of pregnancy 

was predictive of internalizing behavior in children AFAB and externalizing behavior in 

children AMAB at 4 years of age (Thomas-Argyriou et al., 2020). Additionally, higher 

average cortisol awakening response in individuals at any point in pregnancy mediated 

the association of maternal CA history with offspring internalizing, but not externalizing, 

problems at 4 years of age. Alterations to HPA axis activity that are typically observed 

in pregnant individuals with CA histories, particularly elevated cortisol levels and high 

late-gestation pCRH, appear to alter offspring developmental trajectories. Some evidence 

suggests that elevated cortisol during early-, mid-, and late-gestation differentially alters 

offspring development, but further research in this area will be needed to clarify these 

findings.

While it is challenging to definitively predict how maternal CA and opioid use during 

pregnancy may interact to alter maternal HPA axis functioning and subsequent offspring 

outcomes, both factors do appear to independently and uniquely alter maternal HPA 

axis activity. Given that the maternal HPA axis plays a prominent role in offspring 

neurodevelopment during pregnancy (Matthews, 2000), it will be important to investigate 

how prenatal opioid exposure may differentially alter fetal brain development in 

combination with frequently co-occurring factors, such as maternal CA, through alterations 

to maternal HPA axis fetal programming.

3.3 - Inflammation

Both opioid use and CA have repeatedly been shown to influence immune system 

functioning, and specifically to contribute to a pro-inflammatory phenotype in adulthood 

(Baumeister et al., 2016; Buchanan et al., 2010; Hutchinson et al., 2011; Lacagnina et al., 

2017; Wang et al., 2012; Zhang et al., 2020), which appears to persist during pregnancy 

(Boeck et al., 2016; Moog et al., 2016a). Emerging preclinical data have shown non

neuronal actions of opioids on glial cells that activate pro-inflammatory cascades, including: 

elevated tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interleukin 1 beta 

(IL1-β), interleukin 6 (IL-6), chemokine ligand 4 (CCL4), chemokine ligand 16 (CCL16) 

(Buchanan et al., 2010; Hutchinson et al., 2007; Wang et al., 2012; Zhang et al., 2020). 

Furthermore, heightened systemic inflammation secondary to exogenous opioids may create 

a feedback loop with neuroinflammation leading to increased opioid-seeking behavior. 

Specifically, opioid-induced activation of glial cells appears to enhance the analgesic and 

rewarding effects of opioids, and contribute to opioid tolerance (Arezoomandan et al., 2016; 

Bachtell et al., 2015; Hutchinson et al., 2012; Narita et al., 2006; Song and Zhao, 2001; 

Zhang et al., 2012).

In pregnant individuals, CA is associated with higher IL-6 and of CRP concentrations 

(Finy and Christian, 2018; Mitchell et al., 2018). These associations are partially moderated 
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by nutritional factors (Hantsoo et al., 2019a; McCormack et al., 2020) and depressive 

symptoms (McCormack et al., 2020; Walsh et al., 2016) and may be mediated by pre

pregnancy body-mass index (BMI) (Finy and Christian, 2018; Mitchell et al., 2018). A small 

study in pregnant individuals with gestational diabetes observed elevated IL-15 levels in 

association with a history of CA (Bublitz et al., 2017).

The potential for opioid use and maternal CA to independently lead to heightened maternal 

inflammation both preconception and during pregnancy has significant implications for 

programming offspring neurodevelopment. A host of animal and increasingly human 

literature have demonstrated the effects of heightened maternal inflammation during 

pregnancy on the developing fetal brain (Graham et al., 2018; Hantsoo et al., 2019b; Jantzie 

et al., 2020; Rasmussen et al., 2019; Rudolph et al., 2018; Yoon et al., 1997), infant and 

toddler socioemotional and cognitive development (Graham et al., 2018; Gustafsson et 

al., 2018; Rudolph et al., 2018), and subsequent risk for higher rates of neuropsychiatric 

disorders including schizophrenia, autism, ADHD, and obsessive-compulsive disorder 

(Gustafsson et al., 2020; Hantsoo et al., 2019b). While direct transfer of pro-inflammatory 

cytokines across the placenta seems to be limited (Aaltonen et al., 2005), maternal immune 

activation may indirectly increase cytokine concentrations in the fetal compartment via 

placental cytokine production (Ashdown et al., 2006; Urakubo et al., 2001). Importantly, 

the same pro-inflammatory cytokines activated by exogenous opioids (IL-6 and TNF-α) and 

maternal CA (IL-6 and CRP) have been identified in studies linking maternal inflammation 

during pregnancy to offspring neurobehavioral development (Coelho et al., 2014; Graham et 

al., 2018; Gustafsson et al., 2018; Rudolph et al., 2018).

Beyond pathways involving maternal inflammation during pregnancy, exogenous opioid 

transfer across the placenta and the fetal blood-brain-barrier may influence fetal 

neuroinflammation through similar pathways as adults after the initial development of opioid 

receptors at 9-10 weeks of gestation (Byrnes and Vassoler, 2018; Farid et al., 2008; Gerdin 

and Lindberg, 1990; Griffiths and Campbell, 2015). In rodents, prenatal methadone exposure 

has been associated with heightened levels of systemic inflammation (TNF-α, IL-1β, IL-6, 

and chemokine CXC ligand 1 (CXCL1)) in pups at postnatal day 10 (roughly 40-42 weeks 

of postconceptional age in human neurodevelopment), but the majority of these markers 

returned to baseline at postnatal day 21 (roughly 9 months old in human neurodevelopment) 

(Jantzie et al., 2020). However, heightened inflammation specifically in 21-day-old offspring 

brains prenatally exposed to methadone was evidenced by elevated cytokine levels (TNF-α, 

IL-6, toll-like receptor 4 (TLR4), and myeloid differentiation primary response protein 

(Myd88)), reduced glial cell branching, and differences in structural tract formation (Jantzie 

et al., 2020). While further research is needed in animal models and humans to better 

understand the pathways through which opioid use may influence maternal inflammation, 

MPF biology and ultimately offspring brain and immune system functioning, findings to 

date indicate multiple potential pathways for such effects.

Overall, these findings indicate the potential for a history of CA combined with both 

pre-pregnancy and pregnancy opioid use to result in a significantly heightened inflammatory 

state during pregnancy (Table 1). Although evidence of inflammatory changes in fetuses 

with maternal CA and exposed to opioids in utero is limited, findings of heightened 
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maternal inflammation during pregnancy and heightened offspring inflammation postnatally 

may imply heightened offspring inflammation during gestation as well. If fetal offspring 

exhibit increased inflammation during gestation, neurodevelopment in utero may be 

altered, including increased oligodendrocyte proliferation and differentiation (Filipovic and 

Zecevic, 2008). Given the strong evidence for effects of heightened inflammation during 

pregnancy on offspring neurodevelopment and risk for psychiatric disorders, future research 

investigating the cumulative and interactive effects of maternal CA and opioid use on 

maternal inflammation during pregnancy represents a priority for future research.

3.4 - Oxidative stress

Given that oxidative stress and pro-inflammatory processes are highly interconnected 

mechanisms of pathology, it is not surprising that alterations in mitochondrial biology 

and increased oxidative stress markers have been observed in individuals exposed to CA 

and prenatal opioid exposure. Oxidative stress is a term used to describe a pronounced 

imbalance in oxidation-reduction homeostasis beyond normal redox signaling (Sies et 

al., 2017). Under typical physiological conditions, the mitochondrion produces a small 

amount of reactive oxygen species (ROS) which are counteracted by enzymatic defense 

mechanisms. Mitochondrial damage (e.g. fragmentation) may lead to an imbalance in ROS 

production and antioxidant defense capacity resulting in further cell-damaging oxidative 

stress (Gyllenhammer et al., 2020; Hoffmann and Spengler, 2018). The deleterious 

consequences of oxidative stress may include an increase in nucleic acid mutations, amino 

acid and protein damage, endoplasmic reticulum (ER) stress, and cell death, as well as 

numerous pathologies including cardiovascular disease, cancer, neurodegenerative disease, 

inflammatory disease, and viral infections (Sies et al., 2017). Individuals using opioids 

demonstrate evidence of oxidative stress (Awadalla and Salah-Eldin, 2016; Fan et al., 

2015; Faria et al., 2016; Zhuo et al., 2012), likely resulting from mitochondrial impairment 

(Cunha-Oliveira et al., 2008; Faria et al., 2016; Mohamed et al., 2015; Zhuo et al., 2012).

Preclinical studies show a direct link between prenatal opioid exposure and elevated markers 

of oxidative stress in offspring brains throughout development (Aboulhoda and Hassan, 

2018; Guzmán et al., 2006; Hung et al., 2013). Similarly, animals administered opioids were 

found to have increased ROS production, oxidative stress, and mitochondrial activity and 

density (Cunha-Oliveira et al., 2008; Faria et al., 2016; Mehdizadeh et al., 2017; Mohamed 

et al., 2015; Zhuo et al., 2012). Human adults AFAB with direct CA exposure showed 

increased ROS production, oxidative stress, and mitochondrial activity and density outside 

of the perinatal period (Boeck et al., 2016).

Similar signs of elevated oxidative stress were observed in association with preconception 

CA. The amount of mitochondrial DNA (mtDNA) in peripheral blood mononuclear cells 

or buccal cells is an indicator of the quality or health of mitochondria when considered 

with mitochondrial functional capacity, which has implications for oxidative stress (Picard 

et al., 2018). In two studies, mtDNA levels were observed to be increased in association 

with CA (Cai et al., 2015; Tyrka et al., 2016), but in one of these the alterations in mtDNA 

were contingent on presence of depressive state (Cai et al., 2015), and another study did not 

replicate these findings (Cai et al., 2020). During pregnancy, maternal stress and particularly 
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lifetime stress have been associated with reduced placental mtDNA content (Brunst et al., 

2017) and differential expression of protein-coding mitochondrial genes in the placenta, 

which, in turn was associated with a more difficult infant temperament (Lambertini et al., 

2015). However, the amount of mtDNA alone may not be a good indicator of mitochondrial 

quality or health without any information on mitochondrial functional capacity (Picard et 

al., 2018). Boeck et al. (2016) investigated mitochondrial functioning in individuals AFAB 

exposed to CA and observed a dose-response association with higher ROS production, 

higher oxidative stress and increased mitochondrial activity. Extending on this work, the 

same group demonstrated increased mitochondrial activity and density in individuals with 

CA shortly after parturition compared to controls (Gumpp et al., 2020), an association 

that was also observed 3 months postpartum, however, only in participants with high 

concentrations of cortisol (Boeck et al., 2018).

Animal studies demonstrate multiple deleterious brain outcomes associated with prenatal 

exposure to stress-induced oxidative stress, including cognitive impairment, dopamine 

D1 receptor dysfunction (D1DR), dysregulated N-Methyl-D-aspartate (NMDA) synaptic 

currents, neural apoptosis (especially in the hippocampus), and impaired long-term 

potentiation in CA1 (Cao et al., 2014; Giussani et al., 2012; Lu et al., 2013; Wang 

et al., 2014). Maternal oxidative stress appears to be indirectly associated with fetal 

oxidative stress through the reduction of placental perfusion and intrauterine increases in 

glucocorticoids and cytokines (Rakers et al., 2017). The increases in fetal oxidative stress, 

inflammation, and HPA axis activity all appear to contribute to the increased chances 

of offspring neurodevelopmental impairments associated with maternal oxidative stress 

and mitochondrial dysfunction (Buss, 2021; Graham et al., 2019, 2018). In addition to 

indirect effects of maternal mitochondrial biology on the developing fetus via alterations in 

placental function, stress hormone concentration, or pro-inflammatory processes, maternal 

mitochondria are physically passed from the oocyte to the zygote and thus directly influence 

offspring mitochondrial biology which may confer long-term effects on health and disease 

risk (Gyllenhammer et al., 2020). Thus elevations in oxidative stress during pregnancy, to 

which both maternal CA and opioid use may contribute, represent an important potential 

pathway for influencing offspring neurodevelopment.

3.5 – Epigenetics

Prenatal opioid exposure and maternal CA both have potential to influence offspring brain 

development via epigenetic mechanisms. Epigenetics refers to environmentally-induced 

alterations to gene expression through modification of DNA methylation and histone tails, 

chromatin structure, non-coding RNAs (i.e. microRNAs), and transposable elements (Jirtle 

and Skinner, 2007; Murrell et al., 2005; Slotkin and Martienssen, 2007, 2007; Wolffe and 

Matzke, 1999). While parental epigenetic marks are almost fully erased after fertilization 

(Seisenberger et al., 2012), some gene loci survive this methylation reprogramming, 

introducing the possibility of intergenerational and transgenerational transmission of 

epigenetic changes (Anway et al., 2005; Branco et al., 2016; Lane et al., 2003; Morgan 

et al., 1999; Radford, 2018; Rakyan et al., 2003; Sanchez-Delgado et al., 2016; Smallwood 

et al., 2011; Smith et al., 2012). As previously discussed, gestation represents a critical 

window in which developmental trajectories are more susceptible to changes in response to 
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environmental conditions through multiple pathways, including via epigenetic modifications 

(Jirtle and Skinner, 2007). Here we first discuss direct epigenetic alterations, which 

may occur in the fetus during gestation in response to biological cues from an MPF 

environment affected by opioid exposure and maternal CA. Second, we examine potential 

intergenerational inheritance of parental epigenetic changes in response to opioid use and 

preconception CA that may survive zygotic reprogramming and persist in offspring.

In utero opioid exposure is associated with offspring epigenetic modifications with 

implications for withdrawal symptoms shortly after birth (NOWS) and long-term 

development. Maternal exposure to morphine during the preconception, prenatal, and 

lactation periods in rats was associated with reduced hippocampal synaptic plasticity in rat 

offspring, with potential implications for offspring learning and memory abilities (Sarkaki 

et al., 2008). In humans, opioid-exposed neonates have increased methylation of adenosine 

triphosphate (ATP)-binding cassette sub-family B member 1 (ABCB1), cytochrome P450 

family 2 subfamily D member 6 (CYP2D6), and the MOR gene in comparison to 

opioid-naïve neonates (McLaughlin et al., 2017). These genes are important for basic 

cellular and neurological function, in addition to the metabolism of opioids and other 

substances (Gaedigk, 2013; Hodges et al., 2011; Valentino and Volkow, 2018). Additionally, 

hypermethylation patterns on the MOR gene of human neonates exposed to opioids in utero 
were associated with greater severity of withdrawal symptoms at birth (Wachman et al., 

2014), but this finding has not been consistently replicated (McLaughlin et al., 2017). These 

alterations reported in offspring with prenatal opioid exposure do demonstrate epigenetic 

modifications in this population. However, the exact mechanisms of these epigenetic 

alterations remain unclear. Additionally, the role of co-occurring prenatal environmental 

influences continues to complicate clinical studies in this area and will need to be considered 

in future research.

Telomeres, DNA-protein complexes which prevent chromosomal damage and maintain 

genomic stability (Blackburn, 2005), are of particular interest for tracking intrauterine 

epigenetic alterations and intergenerational epigenetic inheritance associated with offspring 

neurodevelopment. Telomere length is epigenetically altered throughout the lifespan in 

response to aging and environmental exposures, and shorter telomere length is associated 

with multiple psychiatric disorders (Lindqvist et al., 2015) and other health conditions (Zhu 

et al., 2011). The epigenetic regulation of fetal telomere length appears to begin in utero 
with input from stress-sensitive oxidative, immune, endocrine, and metabolic pathways in 

the MPF environment, and shorter telomere length at birth appears to increase risk for long

term adverse outcomes (Entringer et al., 2018). These findings suggest that both prenatal 

opioid exposure and maternal CA have potential to alter offspring telomere length in utero 
through several of the MPF pathways previously discussed.

Furthermore, epigenetically-altered parental telomere length appears to program zygote 

telomere length through both parental germ lines, suggesting that preconception parental 

exposures may alter offspring telomere length through intergenerational epigenetic 

inheritance (Bauch et al., 2019; Delgado et al., 2019; Factor-Litvak et al., 2016; Olsson et 

al., 2011). CA in particular is associated with shorter telomere length throughout the lifespan 

(Blaze et al., 2015; Kiecolt-Glaser et al., 2011; Li et al., 2017; Ridout et al., 2018), which 
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may be transmitted to offspring. Telomere length was shorter in 4-, 12-, and 18-month-old 

infants with maternal CA history, which corresponded to offspring externalizing problems 

at 18 months while controlling for prenatal stress and maternal depression (Esteves et al., 

2019). While prenatal opioid exposure has not been examined in association with offspring 

telomere length, one study found that heroin use was associated with shorter telomere 

length in adults while controlling for psychiatric and physical comorbidities, stressful event 

exposures, age, sex, and smoking (Yang et al., 2013). This suggests a potential pathway 

through which preconception opioid use may alter offspring telomere length through 

intergenerational epigenetic inheritance. Future research will be needed to directly examine 

this pathway.

The majority of other studies investigating epigenetic inheritance through the germ line 

have been conducted in paternal germ cells. Limited evidence suggests that both adulthood 

opioid use and CA history may epigenetically alter human sperm (Chorbov et al., 2011; 

Roberts et al., 2018), but it is unclear if these alterations would survive post-fertilization 

methylation reprogramming. Additionally, several studies demonstrate that stress and fear 

may initiate epigenetic alterations to paternal germ cells in mice that are associated with 

offspring behavioral and physiological alterations (Dias and Ressler, 2014; Gapp et al., 

2020; Rodgers et al., 2015, 2013).

While there is increasing evidence for true epigenetic inheritance via the paternal germ line, 

to our knowledge there is no study to date directly showing the inheritance of epigenetic 

marks of parental opioid use or CA via the maternal germ line. However, some animal 

studies provide indirect evidence for an epigenetic contribution to intergenerational effects 

of preconception maternal opioid use, demonstrating that offspring epigenetic alterations 

were associated with preconception maternal opioid administration (Byrnes et al., 2013; 

Vassoler et al., 2016). Several studies also indirectly suggest that epigenetic sequelae 

associated with maternal CA may be transmitted through oocyte alterations. Female rats 

that underwent chronic unpredictable stress in adulthood showed an increase in corticotropin 

releasing factor type 1 (CRF1) mRNA in the frontal cortex as well as in mature oocytes. The 

effects on brain CRF1 expression persisted into the next generation and were associated with 

behavioral abnormalities (Zaidan et al., 2013).

There does appear to be evidence that both prenatal opioid exposure and maternal (and 

paternal) CA have implications for epigenetic modifications in offspring, but much of the 

current evidence is not able to identify mechanisms for these modifications. Additionally, 

many of these findings lack a direct connection between epigenetic pathways of prenatal 

opioid exposure and maternal CA. However, epigenetic pathways of intergenerational 

CA appear to interact with other mechanisms influenced by prenatal opioid exposure, 

such as differential HPA axis functioning (Yehuda et al., 2014; Zaidan et al., 2013), 

highlighting the likelihood of complex, interactive effects with potential to influence 

offspring neurodevelopment. See Table 1 for a summary of findings related to pathways 

reviewed in Section 3.
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4 – Conclusions and future directions

A substantial amount of research has been dedicated to understanding how in utero opioid 

exposure influences neurodevelopment due to the considerable increase in opioid use in 

recent decades. Our interpretation of the literature to date indicates some subtle alterations 

evident soon after birth following in utero opioid exposure, which may confer vulnerability 

to mood and anxiety disorders, differential social and reward processing, and learning and 

memory impairments. However, there is limited evidence that these behavioral and cognitive 

differences persist into early childhood or adulthood given that many of the findings 

appear to be completely or partially mitigated by differences in the postnatal environment 

(Ahmadalipour et al., 2015; Hartman and Belsky, 2018; O’Donnell and Meaney, 2016; 

Salzwedel et al., 2020). These findings are of particular interest because recent research in 

the area of prenatal programming has suggested that prenatal adversity does not program 

neurodevelopmental disorders, rather exposure to poorer circumstances during gestation 

may alter susceptibility to the influences of the postnatal environment, for better or for 

worse (Hartman and Belsky, 2018; O’Donnell and Meaney, 2016). However, much of 

our understanding comes from well-controlled animal research, which has acknowledged 

limitations, including cross-species differences in drug metabolism and gestational and 

neurodevelopmental timing, and challenges in approximating the multiple co-occurring 

risk factors typically accompanying opioid use during pregnancy in humans (Byrnes 

and Vassoler, 2018). Research in humans addressing effects of in utero opioid exposure 

on offspring neurodevelopment is limited due to small sample sizes and the challenges 

of addressing myriad commonly co-occurring pre- and postnatal factors with significant 

potential to influence offspring neurodevelopment.

Examining candidate mechanistic pathways by which opioids and commonly co-occurring 

factors may influence offspring brain development represents an important direction for 

future research in this area. We highlight maternal CA history as a common yet understudied 

potential influence on offspring neurodevelopment in the context of maternal opioid use 

during pregnancy. Our review identifies multiple overlapping mechanistic pathways for the 

influence of maternal opioid use during pregnancy and maternal CA history on offspring 

neurodevelopment. These are aspects of MPF biology with evidence supporting sensitivity 

to both exogenous opioids and maternal CA history, and potential for programming fetal 

neurodevelopmental processes. The identified mechanistic pathways include the endogenous 

opioid system, the HPA axis, the immune system, epigenetics, and oxidative stress (Table 

1). We also note that this review is not exhaustive, and other shared candidate mechanisms 

for effects of prenatal opioid exposure and maternal CA history likely include metabolic and 

other endocrine pathways (Buss et al., 2017; de Vries et al., 2020). The existence of these 

overlapping mechanistic pathways has important implications for research and policy.

From a research perspective, the existence of multiple shared mechanistic pathways for 

effects of in utero opioid exposure and maternal CA history on neurodevelopment suggests 

strong potential for cumulative and interactive influences, which call into question the 

utility and meaning of research focusing exclusively on effects of opioid exposure on 

neurodevelopment. A more fruitful approach will likely involve assessment of opioid use 

during pregnancy along with maternal CA history and other historical, environmental, and 

Allen et al. Page 21

Neurotoxicol Teratol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demographic factors. Examination of these factors in relation to candidate shared biological 

mechanisms for effects on fetal neurodevelopment represents an important first step in 

this research. Such work will require interdisciplinary expertise to facilitate assessment 

of maternal substance use, CA history, psychological and physical health, environment 

and demographics, as well as MPF biology. A second critical step in this work will 

involve use of neuroimaging tools that can be used to assess brain structure and function 

shortly after birth, including structural and functional MRI and electroencephalograms, to 

minimize confounding effects of postnatal environmental influences on neurodevelopment. 

More generally, but also particularly important in the case of multivariate analyses and 

neuroimaging research, larger sample sizes (up to several thousands (Marek et al., 2020)) 

will be needed to identify reproducible findings. Furthermore, longitudinal studies assessing 

a wide variety of potentially co-occurring factors during pregnancy that follow offspring into 

childhood and beyond will be important for better understanding the roles of co-occurring 

risk factors and predictive pathways to offspring outcomes in childhood.

Implications for future directions include the need to facilitate and support collaborative 

science, changing public policy for individuals using opioids, and improving the treatment 

and prevention of opioid use in this population. Bringing together the necessary resources 

and expertise to recruit large samples of high risk, frequently stigmatized populations, while 

thoroughly assessing complex environmental, psychological, and biological systems, will be 

important next steps in this area of research. The heterogeneity of factors affecting offspring 

brain development in pregnant individuals using opioids, and the difficulty of disentangling 

these factors with the current scientific literature, also has implications for public policy, 

treatment, and prevention in this population. Many individuals are still penalized for using 

opioids during pregnancy and face high levels of societal pressure and stigma (Krans 

and Patrick, 2016; Patrick et al., 2017). Further, we acknowledge that the opioid crisis 

has received increasing resources, attention, public sympathy, and decriminalization as its 

demographics have shifted toward a primarily white population (Cicero et al., 2014; Hansen 

et al., 2020; Santoro and Santoro, 2018). White individuals are overrepresented in the 

opioid-misusing population because of two primary factors: 1) opioid prescriptions have 

fueled increasing nationwide opioid use in recent decades (Volkow and Blanco, 2021), 

and 2) Black, Indigenous, and People of Color (BIPOC) are less likely to receive opioid 

prescriptions due to racial biases among prescribers and reduced access to healthcare 

(Hansen et al., 2020; Om, 2018; Santoro and Santoro, 2018). The opioid epidemic is a 

great public health concern deserving of the resources it has been given; however, we 

acknowledge that many other current and historical public health crises primarily affecting 

marginalized populations in the United States have not received appropriate public and 

legislative support (Hardeman et al., 2018; Montoya-Barthelemy et al., 2020; Tester, 2017).

This review highlights findings indicating that individuals with CA experience long-lasting 

consequences that not only increase their risk of opioid abuse (Austin and Shanahan, 2018; 

Derefinko et al., 2019; Merrick et al., 2020; Savulich et al., 2017), but have implications 

for offspring neurodevelopment, and potential to exacerbate effects of in utero opioid 

exposure through shared mechanistic pathways. Further research in this area has potential 

to inform policy focused on ameliorating the negative sequelae of the opioid epidemic 

for the next generation by elucidating the biological programming potential of factors 
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co-occurring with opioid use, which may frequently be conceptualized as less relevant 

for offspring neurodevelopment. Such work has important implications for determining 

the extent to which resources will be devoted to making evidence-based trauma treatment 

readily available and increasing accessibility of trauma-informed treatment for pregnant 

individuals using opioids (SAMHSA, 2016). Long-term goals include increasing community 

resources and access to appropriate care, while supporting the most vulnerable members of 

our population.
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Highlights

• Opioid-using pregnant individuals are often affected by many co-occurring 

risk factors

• Disentangling effects of prenatal opioid use from co-exposures is challenging

• Prenatal opioid use and maternal CA affect fetal brains through similar 

pathways
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Table 1.

Common mechanistic pathways of influence for maternal opioid use during pregnancy and maternal CA on 

offspring brain development.

Pathways

Prenatal opioid exposure Maternal CA

Main Findings
Population
studied Main findings Population studied

Endogenous 
opioids

↓ MOR expression in 
midbrain

Rats on PND1 prenatally exposed 
to oxycodone (Vassoler et al., 

2018)

↓ MOR expression 
in spinal cord and 

hyperalgesia

Non-stressed male offspring of 
female rats exposed to chronic 
stress post-weaning through 

adulthood (Hormozi et al.,2018)

↓ MOR binding in 
spinal cord Rats in early postnatal period 

prenatally exposed to opioids 
(Chiou et al., 2003; Kirby, 1983)

↓ MOR expression in 
spinal cord

Adult male rats exposed to 
chronic stress post-weaning 

through adulthood (Hormozi et 
al., 2018

↓ MOR mRNA in NAc
Neonatal rats exposed to 

predator odor (Chang et al., 
2019)

↓ MOR density in 
striatum, thalamus, 

amygdala

↓ MOR mRNA in PAG Adult mice exposed to CA 
(Nakamoto et al., 2020)

↓ MOR binding and 
expression in whole 

brain

↓ MOR binding in 
MPOA

Adult rats prenatally exposed to 
morphine (Vathy et al., 2003)

↑ MOR mRNA in NAc
Juvenile rats exposed to 

neonatal predator odor (Chang 
et al., 2019)

↓ MOR binding in 
BLA

Adult male rats prenatally 
exposed to morphine (Šlamberová 

et al., 2005)

↓ expression of KOR 
in the PAG and lateral 

habenula

Adult rodents exposed to 
CA (Nakamoto et al., 2020; 

Simmons et al., 2020)

↑ MOR binding in 
spinal cord

Adult rats prenatally exposed to 
morphine (Bhat et al., 2006; 

Kirby, 1983; Vathy et al., 2003)

↓ expression of KOR in 
NAc

Neonatal rats exposed to 
predator odor (Chang et al., 

2019)

↑ MOR binding in 
CeA, PMCoA, and 

NAc

↑ expression of KOR in 
amygdala

Adult mice exposed to CA 
(Nakamoto et al., 2020)

↑ MOR binding and 
expression in whole 

brain

↑ dynorphin-dependent 
KOR activation in the 
basolateral amygdala, 
NAc, dorsal raphe, and 

hippocampus

Adult mice exposed to chronic 
stress (Land et al., 2008)

↑ MOR density in 
hippocampus

Female adult rats prenatally 
exposed to morphine 

(Šlamberová et al., 2003)

↑ inhibition of DA 
release (suggesting ↑ 

KOR sensitivity)

Adult rats exposed to CA 
(Karkhanis et al., 2016)

↑ KOR binding in 
POA

Adult ovariectomized female rats 
prenatally exposed to morphine 

(Rimanóczy et al., 2001)
↓ DOR mRNA in PAG Adult mice exposed to CA 

(Nakamoto et al., 2020)

↑ endogenous opioid 
release (substantia 

nigra, piriform cortex, 
septum)

Adult rats exposed to 
morphine during gestation 

(Buisman-Pijlman et al., 2009b)

↑ DOR mRNA in NAc
Juvenile rats exposed to 

neonatal predator odor (Chang 
et al., 2019)

↑ dynorphin levels in 
lateral habenula

Rats across development that 
were exposed to CA (Simmons 

et al., 2020)

↓ cortisol increase 
in response to 

naltrexone (suggesting 
↓ endogenous opioid 

signaling)

Adult individuals AFAB 
exposed to CA (Lovallo et al., 

2018)

Neurotoxicol Teratol. Author manuscript; available in PMC 2022 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Allen et al. Page 45

Pathways

Prenatal opioid exposure Maternal CA

Main Findings
Population
studied Main findings Population studied

↓ morphine 
antinociception

↓ HPA axis response to 
naltrexone

Adult mice exposed to 
CA (Nakamoto et al., 

2020) Humans AFAB with 
preconception

CA compared to humans AFAB 
unexposed to CA (Lovallo et al., 

2018)

HPA axis

↑ glucocorticoid levels
Pregnant rats administered daily 
morphine compared to opioid

naïve pregnant rats

↓ baseline cortisol 
immediately after 

waking
Pregnant humans with CA 

history (Bublitz et al., 
2014;Bublitz and Stroud, 
2012b; Shea et al., 2007; 

Thomas et al., 2018; Thomas
Argyriou et al., 2020)

↑ cortisol awakening 
response

Flattened diurnal 
cortisol slope

↑ hair cortisol 
concentrations

Individuals in mid- to late
pregnancy (Schreier et al., 
2015b; Swales et al., 2018)

↑ maternal cortisol 
correlated with ↓ 
offspring NOWS

Pregnant humans using opioids 
(Wachman et al., 2020)

Steeper increase of 
pCRH during third 

trimester of pregnancy

Pregnant humans in third 
trimester (Moog et al., 2016a; 

Steine et al., 2020)
Mixed effects of 
prenatal opioid 

exposure on offspring 
HPA axis activity

Animals
prenatally exposed to opioids 
(Byrnes and Vassoler, 2018)

Immune ↑ systemic TNF-α, 
IFN-γ, IL1-β, IL-6, 

IL-10, CCL4, CCL16 
via opioid interaction 
with TLR4-MD2-LPS 

complex

Animals administered opioids 
(Buchanan et al., 2010; 

Hutchinson et al., 2007; Wang et 
al., 2012; Zhang et al., 2020)

↑ serum CRP

Pregnant
individuals with CA (Finy and 
Christian, 2018; Mitchell et al., 

2018)
↑ opioid-seeking 

behavior after opioid 
activation of glial cells

Adult rodents administered 
opioids (Arezoomandan et al., 

2016; Bachtell et al., 2015; 
Hutchinson et al., 2012; Narita et 
al., 2006; Song and Zhao, 2001; 

Zhang et al., 2012)

↑ serum IL-6

↑ systemic TNF-α, 
IL-1β, IL-6, CXCL1

10-day-old rats prenatally 
exposed to morphine (Jantzie et 

al., 2020)

↑ serum IL-15

Pregnant individuals with 
gestational diabetes and a 

history of CA (Bublitz et al., 
2017)

↑ systemic IL-1β, no 
difference in TNF-α, 

IL-6, CXCL1 21-day-old rats prenatally 
exposed to morphine (Jantzie et 

al., 2020)↑ brain TNF-α, IL-6, 
TLR4, and Myd88

↓ glial cell branching

Oxidative 
stress

↑ oxidative stress

Offspring prenatally exposed 
to opioids across development 
(Aboulhoda and Hassan, 2018; 

Guzmán et al., 2006; Hung et al., 
2013)

↑ ROS production 
associated with ↑ 

oxidative stress and ↑ 
mitochondrial activity

Non-pregnant individuals with 
CA exposure compared to 

unexposed controls (Boeck et 
al., 2016)

↑ oxidative stress and 
mitochondrial damage

Animals administered opioids 
(Cunha-Oliveira et al., 2008; 

Faria et al., 2016; Mehdizadeh et 
al., 2017; Mohamed et al., 2015; 

Zhuo et al., 2012)

↑ mitochondrial activity 
and density

Individuals with CA exposure 
shortly after parturition 

compared to unexposed controls 
(Gumpp et al., 2020)

↓ reduced placental 
mtDNA content 

associated with ↑ stress 

Pregnant individuals (Brunst et 
al., 2017)
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Pathways

Prenatal opioid exposure Maternal CA

Main Findings
Population
studied Main findings Population studied

during pregnancy and ↑ 
lifetime stress

No changes found 
in mitochondrial 

respiration or density

Neonates with maternal 
CA exposure compared to 

unexposed controls (Gumpp et 
al., 2020)

Epigenetics

↓ hippocampal 
synaptic plasticity

Rat offspring during 
puberty exposed to maternal 
preconception, prenatal, and 

lactation morphine (Sarkaki et al., 
2008)

Epigenetic alterations 
to paternal germ lines

(methylation and 
sncRNA)

Paternal germ lines of male 
mice exposed to chronic stress/
odor-paired fear conditioning 

(Dias and Ressler, 2014; 
Rodgers et al., 2013), and 

humans exposed to childhood 
abuse (Roberts et al., 2018)

↑ methylation of 
ABCB1, CYP2D6, 

MOR mRNA

Human neonates prenatally 
exposed to opioids (McLaughlin 

et al., 2017)

Lower glucocorticoid 
receptor sensitivity Adult offspring of AMAB 

Holocaust survivors (Yehuda et 
al., 2014)

↑ methylation of 
the NR3C1 promotor 

region

↓ telomere length Human adults with chronic 
heroin exposure (Yang et al., 

2013)
↓ telomere length

4-, 12-, and 18-month-old 
infants with maternal CA 

history (Esteves et al., 2019)

↑ CRF1 mRNA in the 
frontal cortex

Offspring of female rats 
that underwent chronic 
unpredictable stress in 

adulthood (Zaidan et al., 2013)

↑ CRF1 expression
Female rats exposed to chronic 
unpredictable stress and their 
offspring (Zaidan et al., 2013)

Abbreviations: adenosine triphosphate (ATP)-binding cassette sub-family B member 1 (ABCB1), assigned male at birth (AMAB), assigned 
female at birth (AFAB), bilateral amygdala (BLA), childhood adversity (CA), chemokine ligand 4 (CCL4), chemokine ligand 16 (CCL16), 
central amygdaloid nuclei (CeA), corticotropin releasing factor type 1 (CRF1), corticotropin releasing hormone (CRH), chemokine CXC 
ligand 1 (CXCL1), cytochrome P450 family 2 subfamily D member 6 (CYP2D6), Dopamine (DA), δ-opioid receptor (DOR), early life stress 
(ELS), hypothalamic-pituitary-adrenal (HPA), interferon gamma (IFN-γ), interleukin 1 beta (IL1-β), interleukin 6 (IL-6), interleukin 10 (IL-10), 
interleukin 15 (IL-15), κ-opioid receptor (KOR), lipopolysaccharide (LPS), medial preoptic area (MPOA), mitochondrial DNA (mtDNA), μ-opioid 
receptor (MOR), myeloid differentiation protein 2 (MD2), myeloid differentiation primary response protein (Myd88), nucleus accumbens (NAc), 
nuclear-factor kappa-B (NF-κB), neonatal opioid withdrawal syndrome (NOWS), nuclear receptor subfamily 3 group C member 1 (NR3C1), 
periaqueductal gray (PAG), placental corticotropin releasing hormone (pCRH), posteromedial cortical amygdaloid nuclei (PMCoA), postnatal day 
(PND), preoptic area (POA), reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), toll-like receptor 4 (TLR4).
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