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Abstract

Rationale:The 17q12–21.1 locus is one of themost highly replicated
genetic associations with asthma. Individuals of African descent have
lower linkage disequilibrium in this region, which could facilitate
identifying causal variants.

Objectives:To identify functional variants at 17q12–21.1 associated
with early-onset asthma among African American individuals.

Methods:We evaluated African American participants from
SAPPHIRE (Study of Asthma Phenotypes and Pharmacogenomic
Interactions by Race–Ethnicity) (n=1,940), SAGE II (Study of African
Americans, Asthma, Genes and Environment) (n=885), and GCPD-A
(Study of the Genetic Causes of Complex Pediatric Disorders–Asthma)
(n=2,805). Associations with asthma onset at ages under 5 years
were meta-analyzed across cohorts. The lead signal was reevaluated
considering haplotypes informed by genetic ancestry (i.e., African vs.
European). Both an expression-quantitative trait locus analysis and a
phenome-wide association study were performed on the lead variant.

Measurements and Main Results: The meta-analyzed results
from SAPPHIRE, SAGE II, and theGCPD-A identified rs11078928
as the top association for early-onset asthma. A haplotype analysis
suggested that the asthma association partitioned most closely
with the rs11078928 genotype. Genetic ancestry did not appear to
influence the effect of this variant. In the expression-quantitative
trait locus analysis, rs11078928 was related to alternative splicing
of GSDMB (gasdermin-B) transcripts. The phenome-wide
association study of rs11078928 suggested that this variant was
predominantly associated with asthma and asthma-associated
symptoms.

Conclusions: A splice-acceptor polymorphism appears to be a
causal variant for asthma at the 17q12–21.1 locus. This variant
appears to have the samemagnitude of effect in individuals ofAfrican
and European descent.
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ORMDL3
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Asthma is a common condition affecting
over 300 million individuals worldwide
(1–3). Although asthma can occur at any
age, epidemiologic studies suggest that new
cases peak early in life and again in
adulthood (4–6). Therefore, the pathologic
mechanisms that contribute to asthma
development likely differ by age (7, 8). A
large twin study showed that the likelihood
of asthma cooccurring in monozygotic
twins decreased with age of disease onset,
implying that genetics play a larger role in
early-life asthma (9, 10). Similarly, London
and colleagues showed that family history
was significantly associated with asthma
onset at any age with the largest effect sizes
in early-onset persistent asthma (11).

Genome-wide association studies have
repeatedly identified a relationship between
chromosomal region 17q12–21.1 and asthma
status (12–16). Subsequent work suggests
that this area is associated with age of
asthma onset (17), specifically childhood-
onset asthma (18). However, fine mapping
the 17q12–21.1 locus to determine the
causative variant or gene has proven to be
difficult, especially among individuals of
European or East Asian descent in whom a
large stretch (z100–200 kb in length) of the
region is in strong linkage disequilibrium
(LD) (19). This LD structure results in a
high degree of correlation between variants,
such as SNPs. In contrast, LD between
genetic variants at 17q12–21.1 among
African Americans tends to be much lower,
suggesting that association studies in this
group may be more successful in uncovering
causal variants (19). Here we used whole-
genome sequencing (WGS) data and
transcriptomic data from African American
participants in three large cohort studies to

more fully evaluate the 17q12–21.1
locus.

Methods

Study Populations
This study included cohorts participating in
the Asthma Translational Genomics
Collaborative. As part of the NHLBI’s
Trans-Omics for Precision Medicine
program, WGS data were generated
on Asthma Translational Genomics
Collaborative cohorts. The studies included
in the current analysis are as follows:
SAPPHIRE (Study of Asthma Phenotypes
and Pharmacogenomic Interactions by
Race–Ethnicity), SAGE II (Study of
African Americans, Asthma, Genes and
Environment), and the GCPD-A (Study of
the Genetic Causes of Complex Pediatric
Disorders–Asthma). All of these studies were
approved by their respective institutional
review boards. Written informed consent
(and written assent for minors) was obtained
for each study participant before the
collection and use of their data. A description
of these cohorts can be found elsewhere and
in the in the online supplement (20–22).
Except when otherwise specified, individuals
included in this analysis were African
American by self-report. “European
American” refers to individuals who
identified as non-Hispanic white.

Population Structure and LD
DNA isolation, sequencing, read alignment,
and variant calls are discussed in the online
supplement. We used the R packages
PC-AiR and PC-relate (R Foundation
for Statistical Computing) to estimate
underlying population structure in our
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At a Glance Commentary

Scientific Knowledge on the
Subject: Attempts to identify causal
variants for asthma at the 17q12–21.1 locus
have been hindered by the high degree of
linkage disequilibrium among individuals
of European descent, who predominate
most genetic studies of asthma. It has
been postulated that lower linkage
disequilibrium at 17q12–21.1 among
individuals of African descent may assist
in identifying causal asthma variants.
Existing association studies in African
Americans have relied on candidate
genotyping or commercial arrays, thereby
requiring tagging or imputation to
characterize this region.

What This Study Adds to the Field:
This is the first study using whole-genome
sequence data to characterize the asthma
association signal at 17q12–21.1 by meta-
analyzing data from three large cohorts of
African American individuals. Asthma
risk was localized to a small intragenic
region in GSDMB (gasdermin-B). An
expression analysis using whole-blood
transcriptome data from African
Americans demonstrated that the top
SNP association, rs11078928, was
functionally related to alternative splicing
of GSDMB transcripts. A phenome-wide
association analysis provided further
support for the selective role of this variant
in asthma. This study provides strong
evidence for a causal variant underlying
the asthma association signal at
17q12–21.1 and thereby focuses the effort
to develop targeted asthma treatments.
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study population (23, 24). Principal
components (PCs) are axes of variation that
reflect underlying population structure
attributable to biogeographic ancestry and
admixture (25). Local ancestry (i.e., African or
European ancestry at each SNP location) was
estimated using the program RFMix (26). The
software package KING was used to estimate
relatedness between participants (27); we
randomly excluded one individual among
pairs in which the coefficient of relationship
was >0.088 (i.e., greater than or equal to a
second degree relationship). Scree plots were
used to determine the number of PCs
characterizing underlying population structure
in the study cohorts (28). These analyses
suggested no additional population structure
was captured after the first three PCs (data not
shown); therefore, only three PCs were
included in our analytic models. Figure E1 in
the online supplement shows the plots of the
first two PCs against the following reference
populations from the 1,000 Genomes Project:
the Yoruba population in Ibadan, Nigeria;
Utah residents with Northern and Western
European ancestry; and Han Chinese
population in Beijing, China (29).

LD plots were created using the
program Haploview 4.2 (Broad Institute)
(30), and haplotype blocks were defined
using the approach described by Gabriel
and colleagues (31) To distinguish the
different LD structures by ancestry, we
generated plots for the following groups:
African American individuals homozygous
for African ancestry across the 17q12–21.1
locus, African American individuals
homozygous for European ancestry across
the 17q12–21.1 locus, and European
American SAPPHIRE participants.

RNA-Sequence Pipeline
A portion of the blood collected from
SAPPHIRE participants at the time of
enrollment was stored in PAXgene Blood
RNA tubes (BD Biosciences) for later
transcriptomic analyses. Sequencing
libraries were constructed using TruSeq
Stranded Total RNA Library Prep Kit with
Ribo-Zero Globin (Illumina) on 417 African
American individuals with asthma and 427
healthy African American control subjects.
RNA libraries were sequenced on Illumina
HiSeq machines with v4 kits. The software
program HISAT2 2.1.0 was used to map
reads to human-genome build GRCh38.p5
(32, 33), and mapped reads were quantified
at the transcript level using StringTie v1.3.3
(34, 35). Gene and splice-variant expression

were measured as transcripts per kilobase
million. When using gene expression as an
outcome for the regression models,
transcripts-per-kilobase-million values
were natural log–transformed. We limited
our analysis to genes with one or more read
counts in at least 10% of study individuals.

Statistical Analysis
We performed a case–control meta-analysis
of the 17q12–21.1 region using case patients
and unaffected control subjects from the
SAPPHIRE, SAGE II, and GCPD-A
cohorts. Each cohort was adjusted for sex
and the first three PCs. Results were meta-
analytically combined assuming a fixed-
effect model and using the program
METAL (36). We focused on a 1-Mb region
bounded by positions 39,500,000 and
40,500,000 within the chromosomal
region 17q12–21.1 (Genome Reference
Consortium Human Build 38-17q12
positions 33,500,001–39,800,000 and
17q21.1 positions 39,800,001–40,200,000).
We limited our evaluation to biallelic
variants with a minor allele frequency> 1%
in control subjects. In total, 4,001 variants
were retained for analysis. Analyses
assumed an additive genetic model. Early
asthma cases were defined as an age of
onset ,5 years. This age range was found
to have the strongest association with
asthma in an earlier candidate-variant
study of the 17q21 region (37). Locus zoom
plots were created using the program
available at https://github.com/pgxcentre/
region-plot and used elsewhere (38).

Functional variants in the haplotype
block containing the lead variant from above
meta-analysis were used to construct
haplotypes that were assessed for their
association with asthma onset at age
,5 years. Haplotypes were assessed
within each cohort, and the results were
meta-analytically combined.

RNA-sequence (RNA-seq) data
generated from whole blood RNA in
SAPPHIRE participants were used to
determine if rs11078928 was an expression-
quantitative trait locus (eQTL) for regional
genes and transcript isoforms. Linear
regression was used to test the association
between expression and genotype adjusting for
patient age (at the time of sample collection),
sex, RNA-seq batch, and probabilistic
estimation of expression residuals (39).

The entire GCPD (Study of the Genetic
Causes of Complex Pediatric Disorders)
cohort was used for a phenome-wide

association study (PheWAS). Logistic and
linear regression was used to evaluate the
association between codified clinical
outcomes from the electronic medical record
and rs11078928 genotype. Analyses were
preformed within each population group
(adjusted for patient age, sex, type of
commercial array used, and the first 10 PCs)
and were then meta-analytically combined.

Association analyses were performed
using PLINK and R statistical software (40,
41). For single-variant association, we used
a P value threshold of ,2.863 1025, which
was derived using the genetic type I error
calculator GEC (42). For the haplotype
analysis, we used a P value threshold of
0.003 (0.05/16). The PheWAS meta-
analysis was performed using the R package
PheWAS. The P value thresholds among
African Americans, Asians, European
Americans, Latino individuals, and all
groups meta-analyzed were 4.303 1025,
1.163 1024, 3.813 1025, 1.143 1024,
and 3.673 1025, respectively. Statistical
significance for the eQTL and
expression analyses was derived using
the R package, fdrtool (43); associations
with a false discovery rate (FDR)-adjusted
P value, 0.05 were considered
statistically significant.

Results

Sample Characteristics
Table 1 shows the characteristics of
participants enrolled in the three study
cohorts: SAPPHIRE (1,143 case patients,
797 control subjects), SAGE II (393 case
patients, 492 control subjects), and
GCPD-A (1,042 case patients, 1,763
control subjects). Case patients were those
individuals with asthma onset at an age
,5 years. SAPPHIRE participants were
older at the time of study enrollment
when compared with SAGE II and
GCPD-A participants; the latter two
studies almost exclusively enrolled
children.

Meta-analysis of 17q12–21.1 Variants
Associated with Asthma Onset at
<5 Years of Age
We assessed genetic variants on
chromosome 17 between positions
39,500,000 and 40,500,000 for association
with asthma onset at the age of ,5 years
(i.e., case patients vs. healthy control
subjects); this region was selected because it
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encompasses the broad asthma signal first
identified in the 17q region by Moffatt and
colleagues (12). We evaluated associations in
the SAPPHIRE, SAGE II, and GCPD-A
cohorts separately and then meta-analytically
combined these results (Table 2; for full
results, see Table E1 in the online supplement).
The quantile-quantile plots for associations
at the 17q12–21.1 locus are shown in Figure
E2; the observed deviation is consistent
with the high degree of regional LD, as
demonstrated after LD pruning. The top 78
early asthma associations at the 17q12–21.1
locus were common variants (minor allele
frequency. 5%). The lead association
from the meta-analysis was rs11078928, a
purported intronic splice-acceptor variant.
A locus zoom plot of the 17q12–21.1 locus
of the meta-analysis results is shown in
Figure 1A; associations in this region were
markedly diminished after adjusting by
rs11078928 genotype (Figure 1B and
Table E1).

Population Group Differences at
17q12–21.1
The LD pattern at 17q12–21.1 for common
variants among African American

SAPPHIRE participants homozygous for
European ancestry (n= 174) is shown in
Figure 2A (Figure E3); the LD pattern for
African Americans homozygous for African
ancestry (n=507) is shown in Figure 2B
(Figure E4). The LD pattern for European
American SAPPHIRE participants (n=132)
is shown in Figure E5. Variants residing
within the transcribed portions of GSDMB
(gasdermin-B) and ORMDL3 are highlighted
in blue and yellow, respectively, in Figures
E3–E5. Differences in LD patterns between
the groups are shown graphically in Figures
E6–E8. These plots show the differences in
LD structure between European and African
ancestry (Figures E6 and E7) and show the
near-complete LD concordance between
individuals homozygous for European
ancestry at this locus, regardless of race
(Figure E8). The case–control associations
for rs11078928 and early-onset asthma in
these groups were as follows: odds ratio
(OR), 0.59 (P=0.163) in African Americans
homozygous for European ancestry at
17q12–21.1; OR, 0.57 (P=0.005) in African
Americans homozygous for African ancestry
at 17q12–21.1; and OR, 0.59 (P= 0.148) in
European Americans.

The haplotype block including
rs11078928 was similar for African
America individuals homozygous for
European ancestry and European American
participants (.100 kb) (Figures E3 and E5).
Among African American individuals, the
haplotype block was much smaller (z4 kb)
(Figure 2C), suggesting that the asthma
signal localized to a region spanning
introns 3–10 of GSDMB. The 4-kb block
included four potentially functional
polymorphisms: spice-acceptor variant
rs11078928, adjacent to exon 6, and three
missense mutations in exon 9 (rs2305479,
rs2305480, and rs16965388). Haplotypes
with these four variants were evaluated for
their association with asthma onset at the
age of ,5 years in SAPPHIRE, SAGE II,
and GCPD-A (Table 3). Haplotypes
containing the minor alleles for rs2305479,
rs2305480, and rs16965388 without the
minor allele for rs11078928 (i.e., haplotypes
2, 3, and 4 in Table 3) were not significantly
associated with early-onset asthma when
compared with the haplotype containing
the major allele for all 4 variants. The only
significant haplotype in all three cohorts
individually and combined contained the

Table 1. Characteristics of African American Study Participants Stratified by Cohort and Asthma Status

Variable

SAPPHIRE Cohort SAGE II Cohort GCPD-A P Value for the
Comparison of
Cases across

Cohorts*

Case
Patients
(n=1,143)

Control
Subjects
(n=797)

Case
Patients
(n= 393)

Control
Subjects
(n=492)

Case
Patients
(n= 1,042)

Control
Subjects
(n= 1,763)

Age at enrollment, yr† 25.57612.74 39.456 12.59 13.2863.58 15.8263.73 5.296 4.25 9.886 5.48 ,0.001
Sex, F 622 (54.4) 542 (68.0) 180 (45.8) 289 (57.3) 588 (56.4) 879 (49.4) ,0.001
Proportion of African

ancestry‡
0.8060.11 0.816 0.10 0.7760.13 0.7860.12 0.706 0.14 0.706 0.15 ,0.001

BMI, kg/m2† 30.5369.45 31.786 7.86 23.8066.56 24.8166.91 20.56 6.18 20.96 6.39 ,0.001
BMI percentilex — — 76.28624.15 70.64626.98 — — —
Percentage of

predicted FEV1, %
†

87.05619.75 96.266 15.34 98.86613.81 103.45613.16 89.456 18.92 99.106 8.75 ,0.001

Age of asthma onsetk

0–1 yr 740 (64.7) — 161 (41.0) — 219 (21) — ,0.001
2–4 yr 403 (35.3) — 232 (59.0) — 823 (79) —

Average age of
asthma onset, yr

1.4561.23 — 2.061.30 — 2.126 1.25 —

ACT score< 19¶ 574 (50.2) — — — — — —

Definition of abbreviations: ACT=Asthma Control Test; BMI =body mass index; GCPD-A=Study of the Genetic Causes of Complex Pediatric
Disorders–Asthma; SAGE II = Study of African Americans, Asthma, Genes and Environment; SAPPHIRE=Study of Asthma Phenotypes and
Pharmacogenomic Interactions by Race–Ethnicity.
Data are shown as mean6SD or n (%).
*Differences in patient characteristics among individuals with asthma from the three cohorts were assessed using a chi-squared test for categorical
variables and ANOVA for continuous variables.
†Measured at the time of study enrollment.
‡Proportion of African ancestry was estimated using genome-wide autosomal polymorphisms.
xBMI percentile was estimated using growth charts specific for age and sex.
kAvailable at http://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm. Age of asthma onset was based on patient or parent self-report.
¶A composite ACT score<19 indicates poorly controlled asthma.
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minor C-allele of rs11078928 (SAPPHIRE:
OR, 0.67; [P= 6.333 1025]; SAGE II: OR,
0.71 [P= 0.017]; GCPD-A: OR, 0.78
[P= 4.783 1024]; meta-analysis: OR, 0.73
[P= 8.943 1028]).

PheWAS of rs11078928
Longitudinal electronic-medical-record data
were available for children as part of the
larger GCPD study, including 19,433
African Americans, 1,329 Asian individuals,
20,667 European Americans, and 1,102
Latino individuals (Tables E2A–E2D).
“Asthma with exacerbation” was the
diagnosis most strongly associated with
rs11078928 genotype in African Americans
(OR, 0.80, P= 1.783 1028), whereas
“asthma” was the top diagnosis in

European Americans (OR, 0.85,
P= 4.483 10210). In Asian and Latino
individuals, “asthma with exacerbation”
was less significantly associated with the
rs11078928 genotype (OR, 0.64 [P= 0.014]
and OR, [P= 0.042], respectively). In the
meta-analysis, the top five clinical
associations were related to respiration, led
by asthma with exacerbation (OR, 0.81;
P= 7.813 10215) and asthma (OR, 0.86;
P= 1.083 10214) (Table E2E).

Association between Variant
rs11078928 and Gene Expression
RNA-seq data was available on 844
SAPPHIRE participants. The rs11078928
C-allele dosage was negatively associated
with overall expression of GSDMB

(P= 3.603 10212) and ORMDL3
(P= 7.003 1025) (Table E3). Because
rs11078928 immediately precedes exon 6
(44, 45), we evaluated the relationship
between genotype and transcript isoforms
(Table E4). The alternative transcripts of
GSDMB are shown in Figure 3. Some of
these spice isoforms correspond to the four
protein-encoding isoforms: GSDMB-1
missing exon 6, GSDMB-2 missing exons
6 and 7, GSDMB-3 containing all 11
exons, and GSDMB-4 missing exon 7.
The C-allele of the rs11078928 genotype
was significantly associated with lower
levels of Ensembl-spliced transcript
00000360317 (Figure 4 and Table E4)
and the combination of all transcripts
containing exon 6 (P= 6.863 10215;

Table 2. Meta-analysis of Associations with Early Asthma Age at the 17q12–21.1 Locus among Three Cohorts with African
American Participants (n=5,630)*

Association
Rank Variant

Chromosome 17
Position† Allele 1

Allele
2

Allele 1
Frequency‡

Odds
Ratio P Valuex

R2 with
rs11078928k

P Value,
Adjusted¶

1 rs11078928 39,908,216 C T 0.147 0.734 1.473 1027 1.000 NA
2 rs34120102 39,869,782 A G 0.151 0.737 1.753 1027 0.954 7.623 1021

3 rs12949100 39,900,936 A G 0.147 0.737 1.993 1027 1.000 3.753 1021

4 rs12232497 39,883,866 C T 0.152 0.739 2.183 1027 0.964 9.883 1021

5 rs35736272 39,876,427 C T 0.152 0.741 2.583 1027 0.964 8.443 1021

6 rs12939832 39,908,623 A G 0.146 0.739 2.673 1027 0.995 3.403 1021

7 rs2305480 39,905,943 A G 0.154 0.747 4.043 1027 0.950 9.683 1021

8 rs4795398 39,881,926 T C 0.154 0.747 4.333 1027 0.951 7.593 1021

9 rs35569035 39,879,371 T C 0.154 0.748 5.403 1027 0.951 6.313 1021

10 rs12936409 39,887,396 T C 0.154 0.749 5.623 1027 0.951 6.013 1021

11 rs10852935 39,875,421 T C 0.156 0.751 6.593 1027 0.938 6.643 1021

12 rs34189114 39,876,207 T C 0.164 0.762 1.413 1026 0.885 7.173 1021

13 rs34074973 39,879,513 G GAGA 0.164 0.763 1.603 1026 0.885 6.643 1021

14 rs11557466 39,868,373 T C 0.164 0.763 1.643 1026 0.882 6.663 1021

15 rs4795400 39,910,767 T C 0.169 0.770 1.643 1026 0.856 9.003 1021

16 rs11078925 39,868,955 C T 0.164 0.763 1.653 1026 0.885 6.563 1021

17 rs5820308 39,913,111 TCAAAA T 0.163 0.771 2.293 1026 0.868 9.563 1021

18 rs62067029 39,882,138 T A 0.154 0.686 2.583 1026 0.951 3.383 1021

19 rs17608925 39,926,578 C T 0.060 0.666 6.763 1026 0.340 6.373 1022

20 rs59716545 39,875,604 G T 0.164 0.706 9.043 1026 0.885 7.633 1021

21 rs36000226 39,907,676 C T 0.187 0.794 1.143 1025 0.752 9.183 1021

22 rs2305479 39,905,964 T C 0.187 0.795 1.203 1025 0.752 8.923 1021

23 rs883770 39,907,128 T C 0.187 0.795 1.263 1025 0.752 8.973 1021

24 rs8076131 39,924,659 G A 0.187 0.797 1.333 1025 0.737 9.443 1021

25 rs56750287 39,906,691 C A 0.179 0.794 1.423 1025 0.794 6.253 1021

26 rs62067034 39,907,485 T C 0.187 0.797 1.443 1025 0.752 8.443 1021

27 rs11651596 39,899,863 C T 0.255 0.818 1.493 1025 0.525 3.773 1021

28 rs907092 39,766,006 A G 0.174 0.792 1.533 1025 0.716 9.623 1021

29 rs4795399 39,905,186 C T 0.154 0.709 1.683 1025 0.950 4.873 1021

Definition of abbreviation: NA= not applicable.
*Associations meta-analyzed across GCPD-A (Study of the Genetic Causes of Complex Pediatric Disorders–Asthma), SAGE II (Study of African
Americans, Asthma, Genes and Environment), and SAPPHIRE (Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race–Ethnicity) using
fixed-effect model. Case patients were individuals with reported asthma onset at an age of ,5 years as compared with healthy control subjects.
Associations below the threshold of P,2.8631025 are listed.
†Positions based on Genome Reference Consortium Human Build 38.
‡Allele frequencies are based on results from the participants without asthma in SAPPHIRE cohort.
xGenotypes were analyzed using an additive model for the number of copies of allele 1 (coded as 0, 1, or 2); models were adjusted for patient sex and the
first three principal components for population structure.
kLinkage disequilibrium between given variant and rs11078928. Values of 1 imply perfect correlation between markers.
¶P value for the genotype association with asthma status after adjusting for rs11078928 genotype.

ORIGINAL ARTICLE

428 American Journal of Respiratory and Critical Care Medicine Volume 203 Number 4 | February 15 2021



Table E5). Only transcript Ensembl-spliced
transcript 00000394175, encoding GSDMB-2
(i.e., missing exons 6 and 7), was significantly
increased among rs11078928 C-allele carriers
(P=3.063 1027). The rs11078928 C-allele
was also associated with lower expression of
transcripts encoding the full-length ORMDL3
protein (P=8.323 1024; Table E5). Similar
transcript expression patterns were observed
when the analytic set was restricted to
individuals homozygous for African ancestry
at 17q12–21.1, although the only significant
relationships seen were for GSDMB and not
ORMDL3 (Table E5).

Assessing the relationship between
asthma status and transcript expression (Table

E5), we found asthma to be associated higher
expression in blood of transcripts encoding
GSDMB-3 and GSDMB transcripts
containing exon 6 (FDR-adjusted P=0.020
and P=0.007, respectively). Asthma was also
associated with higher expression of
transcripts encoding full-length ORMDL3
(FDR-adjusted P=0.020).

Discussion

Since it was first identified, the 17q12–21.1
locus has been considered a marker of
childhood asthma (12). However, with some
exceptions (16, 46), the studies evaluating

this region and its relationship with asthma
have almost exclusively included white
individuals of European descent (13, 15).

Using UK Biobank data (47), Ferreira
and colleagues showed that the genetic
correlation between childhood-onset
asthma and adult-onset asthma was 0.67,
suggesting that there are both shared and
independent genetic components in these
phenotypes (48). In their meta-analysis of
childhood-onset asthma among white
individuals of European descent, marker
rs4795399 within GSDMB was their
strongest genome-wide association
(P= 13 102257). This variant is located at
the edge of the 4-kb block that we defined
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Figure 1. Locus zoom plots of variants in the chromosome 17q12–21.1 region and the association with asthma onset at age ,5 years versus control
subjects among African American participants from the (A) three-cohort meta-analysis and (B) after conditioning on the rs11078928 genotype.
chr17= chromosome 17; GSDMB=gasdermin-B; ZPBP2= zona pellucida–binding protein 2.
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as containing the early asthma signal using
African ancestry. Other association studies
for age of asthma onset have also used
white individuals of European descent for
their discovery populations (17, 49), and
Sarnowski and colleagues identified
rs9901146 between genes GSDMB and
ZPBP2 (zona pellucida–binding protein 2)
as their most significant association with
time of asthma onset (49).

In large part, the high degree of LD
between markers at 17q12–21.1 among
European individuals precluded further fine
mapping of the region for causal variants
(19). This is the first study to employ WGS
data to evaluate the 17q12–21.1 region in
African American individuals. As a result,
we did not need to rely on imputation or
tagging SNPs to characterize this region.
Although large panels with WGS data
have markedly improved the quality of
imputation (50, 51), imputation is still less
effective in individuals of African descent,
which is due in part to the greater genetic
diversity in this group. We found that the
greater genetic diversity among individuals of
African ancestry permitted more precise
localizing of the early asthma signal at
17q12–21.1. Specifically, the signal was largely
restricted to a haplotype block extending
from introns 3–10 of GSDMB. Further
analysis of this haplotype block suggested that
asthma risk most closely partitioned with
rs11078928, a splice-acceptor variant located
just before exon 6 (44).

Interestingly, we found that asthma risk
associated with rs11078928 was similar
for individuals of African and European
descent. However, African American
individuals are much more likely to carry
the risk allele (T allele) when compared with
European American individuals (i.e., 78.7%
vs. 54.0% in the population with African
ancestry in Southwest United States and
population of Utah residents with Northern
and Western European ancestry from the
1000 Genomes Project, respectively) (52).
Allele frequency differences and LD
differences may explain why earlier array-
based genome-wide association studies
and candidate-variant analyses of the
17q12–21.1 locus have generally showed
different effect sizes by ancestry for alleles
falling outside of the 4-kb haplotype block
when compared with variants that are
inside this block (14, 16).

Ober and colleagues recently
performed an association analysis and eQTL
study in nine longitudinal cohorts, which
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Figure 2. Linkage disequilibrium (LD) between variants at the 17q12–21.1 locus among African American
SAPPHIRE (Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race–Ethnicity)
participants without asthma but (A) homozygous for European ancestry and (B) homozygous for African
ancestry. The haplotype block containing the most significant association for early-onset asthma is noted
(black circle) and (C) shown in greater detail. The degree of pairwise LD (r23100) between two markers is
shown in each square; darker shaded squares and higher numbers (range, 0–100) denote higher LD.
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make up the Children’s Respiratory and
Environmental Workgroup consortium
(53). This group consisted of 1,613
European American children (296 [36%]
with asthma) and 870 African American
children (319 [45%] with asthma).
They genotyped nine SNPs across the
17q12–21.1 locus for association with
asthma and then evaluated their top
associations for a relationship with gene
expression in blood and epithelial cells.
None of the nine SNPs were associated with
asthma among African Americans in the
Children’s Respiratory and Environmental
Workgroup, but two SNPs, rs2305480 and
rs80776131, were associated with asthma
when meta-analyzed with samples from the
EVE consortium (14). Variant rs2305480, a
nonsynonymous variant in GSDMB exon 9,
was associated with GSDMB expression in
both peripheral blood mononuclear cells
and upper airway epithelial cells; variant
rs11078928 was not evaluated. In our study,
we showed that rs2305480 was located in
the haplotype block that appeared to
contain the early asthma signal in African

Americans. Although variant rs2305480
was in high LD with both rs11078928 and
rs2305479 (another nonsynonymous
variant in GSDMB exon 9), our haplotype-
association analysis suggested that the
early-onset asthma signal traveled most
closely with the rs11078928 allele.
Disentangling the relative importance of
these variants on asthma development will
require additional functional studies.

In strong support for role of
rs11078928 in asthma development,
Panganiban and colleagues also found the
rs11078928 C-allele to have a protective
association with asthma status (45). The
effect estimate was similar across
population groups (i.e., European
Americans, Latino individuals, and African
Americans), despite the different minor
allele frequencies (0.45, 0.32, and 0.14,
respectively). Importantly, these researchers
also showed that inducing an aspartate-to-
alanine missense mutation at amino acid
236 (D236A) located in exon 7 abolished
caspase-1 cleavage of GSDBM into an N-
terminal and C-terminal fragment. When

expressed in human embryonic kidney
293T cell line cells, the N-terminal
fragment of GSDMB alone could induce
pyroptotic cell death, whereas the full-
length protein and the C-terminal fragment
did not. Coexpression of caspase-1 with
wild-type GSDMB resulted in cell death,
whereas coexpression of caspase-1 with
the D236A mutated form of GSDMB did
not. We did not observe, nor are we aware
of, a commonly occurring missense
mutation at residue 236. However, we did
find that individuals with the protective
rs11078928 C-allele had almost no
expression of transcripts containing exon
6, and they had increased expression of a
transcript missing both exons 6 and 7
(corresponding to missing amino acids
221–243).

Somewhat counter to the above
findings, Das and colleagues showed that
GSDMB-1, the isoform missing exon 6, was
highly expressed in bronchial epithelial
cells and that in vitro overexpression of
GSDMB-1 resulted in increased production
of other factors associated with airway
remodeling and inflammation, such as
transforming growth factor b-1, 5-lipoxygenase,
and matrix metalloproteinase 9 (54).
However, expression of full-length human
GSDMB in mice, which do not have a
naturally occurring GSDMB analog, resulted
peribronchial smooth-muscle thickening and
lung fibrosis. Increased expression of
GSDMB-2 has been observed in other disease
conditions. For example, Hergueta-Redondo
and colleagues found GSDMB-2 expression
in breast carcinomas to be associated with
decreased survival and an increased
likelihood of distant metastasis (55).

In addition to asthma (56–59), variants
in or near GSDMB have also been
associated with ulcerative colitis (60, 61),
primary biliary cirrhosis (62, 63), type 1
diabetes (64), and cervical cancer (65, 66).
However, in our PheWAS analysis in
children, the rs11078928 variant was
overwhelmingly associated with an asthma
diagnosis when compared with other
clinical diagnoses. DeBoever and colleagues
examined the relationship between known
protein-truncating variants and multiple
clinical phenotypes among 337,205
unrelated individuals from the UK Biobank
(67). A set of 3,724 protein-truncating
variants was assessed for its relation to 135
phenotypes derived from surveys and
clinical databases. Although the authors did
not specify time of disease onset, the most

ENST00000418519 †

ENST00000464556 §

ENST00000468820 ||

ENST00000477054 §

ENST00000479136 §

ENST00000486560 §

ENST00000519429 §

ENST00000520542 ¶

ENST00000522564 ||

ENST00000523371 ||

ENST00000524039 ||

Chromosome 17 position
39

90
50

00

39
90

70
00

39
90

90
00

39
91

10
00

39
91

30
00

39
91

50
00

39
91

70
00

39
91

90
00

Exon 11 10 9 8 7 6 5 4 3 2 1

ENST00000309481 *

ENST00000360317 †

ENST00000394175 ‡

ENST00000394179 *

Figure 3. Shown are the various GSDMB (gasdermin-B) transcript isoforms and their relationship to
their mapped genomic position on chromosome 17. GSDMB is transcribed from the reverse strand;
hence, the exons (labeled at the bottom of the figure) are numbered in order from right to left. The
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significant relationship that they observed
among all comparisons was between
rs11078928 and asthma status (OR, 0.90;
adjusted P=9.13 10245). The rs11078928
C-allele was also associated with a lower risk
of bronchitis (OR, 0.91; adjusted P=0.032);
however, hay fever and/or allergic rhinitis
(OR, 0.96), inflammatory bowel disease
(OR, 1.09), female genital-tract cancer (OR,
1.07), and cervical cancer (OR, 1.09) were

not significantly associated with the
rs11078928 genotype. The above findings
suggest that the strongest impact of the
rs11078928 variant is through its effect
on asthma.

Although rs11078928 has a functional
impact on GSDMB isoform expression, this
variant may also be an eQTL for ORMDL3.
We found significant associations between
rs11078928 genotype and both overall

ORMDL3 gene expression and the expression
of individual transcripts. GSDMB and ORMDL3
are adjacent to start codons located only 6.9 kb
apart. In the initial genome-wide association
study of asthma by Moffatt and colleagues, the
most significant variant, rs7216389, was
located in intron 2 of GSDMB—closer to
ORMDL3, but well within the large haplotype
block seen at 17q12–21.1 among Europeans
(12). The investigators found rs7216389 to be
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strongly associated with ORMDL3 expression.
The fact that we did not identify rs7216389 as
the top association for early-onset asthma may
relate to population group differences or our
ability to more finely map this region among
individuals of African descent. When we
restricted the eQTL analysis to individuals
homozygous for African ancestry at
17q12–21.1, we did not observe a significant
association between rs11078928 genotype and
ORMDL3 expression in blood. This lack of
association may be the result of limited power
in the smaller-sized group, or it could reflect
ancestry-dependent differences in LD with
ORMDL3 eQTL.

There have been multiple animal
models and in vitro studies of ORMDL3
that support its functional role in asthma
(68). These potential functions include
regulating calcium signaling and
contractility in airway smooth muscle (69),
affecting ICAM-1 surface expression and
sphingolipid metabolism in epithelial cells
(70) and influencing inflammatory
responses of type 2 T-helper cells (71).
Because we studied gene expression in
blood, we cannot comment on the effects of
our lead association in other tissue types;
however, some have speculated that
17q21 variants disproportionately affect
lymphocyte populations (72). Schmiedel
and colleagues identified two 17q12–21.1
variants, rs4065275 and rs12936231 (in the

genes ORMDL3 and ZPBP2, respectively),
that appear to affect CTCF (CCCTC-
binding factor) motifs and ORMDL3
promoter–enhancer interactions (72). In
our meta-analysis, neither variant was
independently associated with early-onset
asthma among African Americans (Table
E1), and neither variant was in high LD
with rs11078928 among individuals
homozygous for African ancestry at
17q12–21,1 (Figure E4). However, these
variants were in high LD among African
Americans homozygous for European
ancestry at 17q12–21.1 and European
American individuals (Figures E3 and E5,
respectively). Ancestry-based differences
may explain why the 17q12–21.1 locus
has been robustly associated with asthma
in genomic studies of European ancestry
populations in whom the large haplotype
block may summarize the effects of
multiple causal variants.

In summary, by studying a large
population of individuals of African descent,
we were able to localize an asthma
association signal at 17q12–21.1. The top
functional candidate, rs11078928, appeared
to affect splicing of GSDMB transcripts.
Expression levels of these transcript
isoforms in blood were associated with
asthma status. The PheWAS analysis
provided additional support that asthma
development and symptoms are the

primary clinical consequence of this
variant. Most importantly, the variant
appeared to have the same magnitude
of effect on asthma status in African
American and European American
individuals, suggesting that the mechanism
and consequence of this polymorphism
are not strongly influenced by ancestry.
As a result, future therapies targeting
this pathway are likely to prove equally
beneficial to risk allele carriers regardless
of racial or ethnic background. n
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38. Tardif JC, Rhéaume E, Lemieux Perreault LP, Grégoire JC, Feroz
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