
UCLA
UCLA Electronic Theses and Dissertations

Title
Model Reduction and Parameter Estimation in Groundwater Modeling

Permalink
https://escholarship.org/uc/item/8xt8g3js

Author
Siade, Adam

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xt8g3js
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Model Reduction and Parameter Estimation in

Groundwater Modeling

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Civil Engineering

by

Adam John Siade

2012



c© Copyright by

Adam John Siade

2012



ABSTRACT OF THE DISSERTATION

Model Reduction and Parameter Estimation in Groundwater Modeling

by

Adam John Siade

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2012

Professor William W-G. Yeh, Chair

Water resources systems management often requires complex mathematical models whose

use may be computationally infeasible for many advanced analyses. The computational de-

mand of these analyses can be reduced by approximating the model with a simpler reduced

model. Proper Orthogonal Decomposition (POD) is an efficient model reduction technique

based on the projection of the original model onto a subspace generated by full-model snap-

shots. In order to implement this method, an appropriate number of snapshots of the full

model must be taken at the appropriate times such that the resulting reduced model is as

accurate as possible. Since confined aquifers reach steady state in an exponential manner,

a simple exponential function can be used to select snapshots for these types of models.

This selection method is then employed to determine the optimal snapshot set for a unit,

dimensionless model. The optimal snapshot set is found by maximizing the minimum eigen-

value of the snapshot covariance matrix, a criterion similar to those used in experimental

design. The resulting snapshot set can then be translated to any complex, real world model

based on a simple, approximate relationship between dimensionless and real-world times.

This translation is illustrated using a basin scale model of Central Veneto, Italy, where the

reduced model runs approximately 1,000 times faster than the full model. Accurate reduced
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modeling can be significantly beneficial for advanced analyses such as parameter estimation.

A new parameter estimation algorithm is proposed that is an extension of the quasilineariza-

tion approach where the governing system of differential equations is linearized with respect

to the parameters. The resulting inverse problem therefore becomes a quadratic program-

ming problem (QP) for minimizing the sum of squared residuals; the solution becomes an

update on the parameter set. This process of linearization and regression is repeated until

convergence takes place. POD is applied to reduce the size of the linearized model, thereby

reducing the computational burden of solving each QP. In fact, this study shows that the

snapshots need only be calculated once at the very beginning of the algorithm, after which

no further calculations of the reduced-model subspace are required. The proposed algorithm

therefore only requires one linearized full-model run per parameter at the first iteration fol-

lowed by a series of reduced-order QPs. The method is applied to a groundwater model with

about 30,000 computation nodes where as many as 15 zones of hydraulic conductivity are

estimated.
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Chapter 1

Introduction

Groundwater management requires the development and implementation of mathematical

models that, through simulation, evaluate the anthropogenic impacts on an aquifer system.

These models must exhibit a significant degree of accuracy in order to provide reliable results

that can be used for prediction and management purposes. The accuracy and reliability of a

model is predicated on many factors including the quality and quantity of observed data, the

complexity of the model parameterization, and correct identification of model parameters and

initial and boundary conditions. There are many well developed methods for dealing with

these factors; however, computing power limits some of them. For example, a groundwater

model with a coarse spatial discretization will yield inaccurate results, yet a model with too

fine of a discretization will require so much computer time that its use may be impractical.

Highly heterogeneous groundwater models require a degree of model complexity that

corresponds to that of the subsurface lithology. In other words, aquifers whose properties

change significantly within a certain distance are best represented using a model with a

discretization on that same order of magnitude. However, matching the model discretiza-

tion with the complexity of the aquifer can be impractical due to computational demand.

Therefore, there exists a trade-off between accuracy and model computation time. Even
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though current computing technology affords the use of complex models, there are many

cases where forward simulation is still inefficient. Even though a single forward simulation of

a groundwater model may seem effective, the computational expense resides in the need to

call the model numerous times depending on the analysis under consideration e.g., parameter

identification, management/optimization, data assimilation, and model uncertainty analysis

[18].

There exist a multitude of techniques designed to alleviate the computational demand

required of a numerical model. These techniques are known as model reduction techniques

where the objective is to develop a reduced model with a much smaller dimension for fast

execution. The reduced model is of course only an approximation of the full model and the in-

troduced model error must be closely examined. Model reduction can be classified into three

major categories: data driven, model driven and combined methods. Data driven methods

assume a black box model where the objective is only to match inputs with their respective

outputs. Model driven methods make use of the mathematical structure of the model itself

when developing the reduced model. Combined methods make use of input/output data

relationships as well as incorporate the physics of the model.

Artificial neural networks (ANNs) are an example of data driven methods. In this ap-

proach, the response of a full model is simulated explicitly by an ANN model based on

biological neural networks, which is much easier and faster to execute. A number of full

model simulations are conducted to generate an input and output data set, which is then

used to train a black box model. Rogers and Dowla [31] used an ANN model to replace a

groundwater flow and contaminant transport model in a management scenario in which the

objective was to prevent migration of a contaminant plume. However, in order to train the

ANN model, numerous calls to the full model must be evaluated to provide enough data for

an accurate surrogate model. Yan and Minsker [42] developed a methodology for reducing

the number of full-model calls using a dynamic learning technique. A technique similar to
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ANN modeling is a method proposed by Baú and Mayer [2] in which the objective functions

are approximated using kriging interpolation, resulting in surrogate functions which reduce

the computational burden of the management problem presented in their work.

Inverse eigenvalue methods are an example of model driven methods designed to exploit

the mathematical structure of the full model. The full numerical model often involves large,

general matrices. The inverse eigenvalue approach projects the model onto a subspace by

finding smaller matrices that share the same nonzero/significant eigenvalue spectrum as

their corresponding full-model matrices. The reader is referred to Chu [12] for a complete

introduction to inverse eigenvalue problems. Orbak et al. [1] evaluated the sensitivities of the

system parameters with respect to eigenvalues for some simple example problems. “Effect”

matrices were then developed allowing for physical model reduction via inverse eigenvalue

methods.

The third category of model reduction combines concepts from both the data and model

driven methods. The distribution of the state variables is sampled from the full model for

various values of the decision variables and time. These samples are called snapshots of the

full model and are used in an interpolation scheme to approximate the full model. The act of

interpolating reduces the dimensionality of the problem allowing for model reduction. This

is equivalent to considering only a subspace of the vector space where the full-model solution

resides. This subspace is evaluated so that it captures the majority of the variation in the

model solution. The entire model is then projected onto this subspace and solved, resulting

in a fast approximate solution to the original model. Depending on the application, the

method in which the spatial patterns (basis functions that define the reduced model space)

are developed has been called Proper Orthogonal Decomposition (POD) [10, 40], Principal

Component Analysis (PCA) or the discrete Karhunen Lòeve Transform [23, 49]. The spatial

basis functions have been called Principal Vectors, Empirical Orthogonal Functions (EOFs)

[39, 25], or Coherent Structures (CS) [26].
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The focus of this study is on the efficient development of combined model reduction

methods for groundwater flow models. Vermeulen et al. [39] and McPhee and Yeh [25]

developed reduced groundwater models by sampling hydraulic head distributions for some

constant, reference pumping rate at specified time intervals. These snapshots were then

used to determine the EOFs of the system. The evaluation of these snapshots, a phase

shared by all combined model reduction methods, requires one full-model run per stress

location (pumping/injection well) from early times to steady state. However, there is no

established method for determining a best snapshot selection scheme, i.e., at which time

steps the full-model solution is to be recorded and used to develop the reduced model. The

optimal selection strategy would yield the smallest set of full-model state variable snapshots

such that the resulting reduced-model solution achieves a predefined accuracy. However, in

order to optimally select snapshots, the dynamics of the system must be well understood

[39, 25]. Once a good snapshot set is obtained, the model can be reduced via POD and

time-varying extraction rates can be applied to the reduced model, i.e., the superposition

principle applies due to the linearity of the governing equations.

Snapshot selection for POD model reduction has received little attention and requires

further research. Kowalski and Jin [20] performed POD model reduction for Maxwells equa-

tions, used to model the performance of a medical device in the human body. They considered

three snapshot selection techniques: uniform in time, logarithmic with a focus on early time

steps and logarithmic with a focus on later time steps. The early-time logarithmic selec-

tion scheme produced the best results. They concluded that the optimal snapshot selection

scheme depends on the mathematical model under investigation and the parametric structure

of that model. The objective of the second chapter of this dissertation is to conduct POD

model reduction for confined groundwater aquifers and to develop a strategy for snapshot

selection based on both the governing equation and the parametric structure of the model.

As previously mentioned, a significant advantage associated with reducing the forward
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run time of a numerical model resides in the need to run the model many times. This need

arises in advanced analyses such as parameter identification, management/optimization, data

assimilation, predictive uncertainty analysis, etc. The third chapter of this dissertation fo-

cuses on the application of model reduction techniques in the field of parameter identification.

In order for a groundwater flow model to accurately simulate the response of a real world

aquifer, intrinsic model parameters and their structure must be identified. A multitude of

algorithms exist whose purpose is to adjust the parameter values of a model such that the

model output matches its associated measured values as closely as possible. This type of

problem is commonly referred to as the inverse problem. Yeh [44], Sun [33] and Oliver and

Chen [27] provide comprehensive reviews on the inverse problem as it applies to groundwater

hydrology. Currently, the most popular methods are based on the output error criterion,

where a starting estimate of the parameter vector is updated such that the norm of the differ-

ence between observed states and their corresponding model predicted values is minimized.

Methods based on the output error criterion require a significant number of model runs in

order to evaluate parameter updates from one iteration to the next. Therefore, the compu-

tational demand associated with a forward run of the numerical model has a large impact on

the overall CPU requirement of the parameter estimation algorithm. Cooley [14] provides

a comparison of four different nonlinear regression methods of parameter identification; the

most efficient methods were found to be the Marquardt [24] and quasilinearization [47, 46]

methods. Some current, popular software include PEST [15] and UCODE [30]. These soft-

ware applications employ algorithms that are largely based on Gauss-Marquardt-Levenberg

methods [24, 21].

The application of the POD model reduction technique can significantly reduce the com-

putational expense associated with parameter identification. However, the accuracy of the

reduced model via POD is dependent on the quality of the basis functions that span the

reduced model subspace. When the objective is to change the values of the parameters, such
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as hydraulic conductivity, these basis functions can begin to lose accuracy. This loss of accu-

racy is due to the nonlinear relationship between model parameters and model states. This

presents a problem for reduced-order parameter estimation, which requires iterative updates

of the parameter values. Park et al. [28] and Vermeulen et al. [38] present methodologies

for dealing with this issue. In both articles, the authors use the method of snapshots to de-

velop the basis functions that span the reduced model space. A snapshot set is collected for

each well, individually, given a constant unit forcing and a specific set of parameter values.

Snapshot sets are collected over a specific range of parameter values that adequately capture

parameter variability around their current estimates. Throughout the parameter estimation

algorithm, the current estimate of the parameters may “travel” outside this range, requiring

the re-evaluation of the reduced model using a new range of parameter values. However,

many snapshot sets are needed in order to adequately capture all possible combinations of

parameter ranges each time the reduced model is evaluated. For example, a snapshot set for

each extraction/injection well is needed when one of the parameters is at the upper end of

its range and the others are at their lower ends. Additional snapshot sets are required for

each of these combinations at each extraction/injection well. In particular, in the case of one

well and two parameters, four snapshot sets are needed; in the case of two wells and three

parameters, 16 snapshot sets are needed, etc. Additionally, snapshot sets may be required for

parameter values within their ranges rather than at the upper and lower bounds only. Each

snapshot set requires an original full-model run. Therefore, for highly parameterized systems

with a large number of extraction wells, the computational gain of the model reduction is

overcome by the computational burden of developing snapshot sets.

In this dissertation, a new methodology is proposed that no longer requires the develop-

ment of a “moving” parameter range when developing snapshots. The reduced model must

be developed once only; the resulting basis functions are accurate for the entire parameter

estimation procedure. The parameters under investigation are zonal hydraulic conductivity
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values. The parameter estimation procedure employed is based on quasilinearization and

quadratic programming. Bellman and Kalaba [5] originally developed quasilinearization for

parameter identification in a system of nonlinear ordinary differential equations. It involves

solving a series of linearized initial value problems such that the sequence of solutions con-

verges to the solution of the original nonlinear problem. Yeh and Tauxe [47, 46] applied

quasilinearization to parameter estimation in groundwater modeling while Park et al [28]

applied it to flow reactor modeling. Yeh [43] combined quasilinearization and quadratic

programming for parameter estimation in a partial differential equation. The algorithm es-

sentially consisted of solving a series of sequential quadratic programming (QP) problems.

However, in practice this algorithm suffers from the fact that each QP problem is so large

that the computational burden of solving it is near the same magnitude as that of current

Gauss-Newton type approaches. In the research presented in this dissertation, it is shown

that POD model reduction can dramatically reduce the computational requirement of the

individual QP problems, resulting in a drastic increase in overall inversion efficiency. The

method requires the evaluation of one snapshot set for each hydraulic conductivity zone in

order to build the reduced model. Snapshots are collected from the linearized full model

(where changes in conductivity become the forcing term) rather than the original full model

(where groundwater extraction/injection is the forcing term). The proposed method can

handle highly parameterized systems with a large number of extraction/injection wells and

still achieve significant reductions in CPU time.
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Chapter 2

Snapshot Selection for Groundwater

Model Reduction using Proper

Orthogonal Decomposition

2.1 Confined Aquifer Groundwater Flow Model

The following partial differential equation (PDE) describes threedimensional groundwater

flow for a confined, anisotropic aquifer with pumping [3],

∂

∂x

(

Kx
∂h

∂x

)

+
∂

∂y

(

Ky
∂h

∂y

)

+
∂

∂z

(

Kz
∂h

∂z

)

− q − Ss
∂h

∂t
= 0, (2.1)

with initial and boundary conditions:

h(x, y, z, 0) = f1(x, y, z);

h(x, y, z, t) = f2(x, y, z, t), (x, y, z, t) ∈ (Γ1);

qn(x, y, z, t) = f3(x, y, z, t), (x, y, z, t) ∈ (Γ2);

(2.2)
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where h is the hydraulic head (L), Kx, Ky, Kz are hydraulic conductivities in the x−, y−, and

z−directions, respectively (L/T), Ss is the specific storage (L−1), q is the specific volumetric

pumping rate (T−1), qn is the specific discharge normal to the flux boundary Γ2 (T−1), Γ1 is

the fixed head boundary, f1, f2 and f3 are known functions.

Application of the superposition principle followed by spatial discretization of the result-

ing PDE (e.g., by finite differences, finite elements, etc.) yields a system of linear ordinary

differential equations (ODEs) for the drawdown:

B
ds

dt
+ As = q (2.3)

where A is the n × n stiffness matrix, B is the n × n mass matrix, s and q are the

n−dimensional vectors of nodal (cell) drawdowns and sinks, respectively, and n is the num-

ber of spatial computational nodes (cells), which is generally very large. Drawdown is the

difference between the initial head and the head after pumping, i.e., s = H − h, where H is

the initial head (e.g., steady state or the natural system dynamics). In the majority of cases

of practical interest, matrices A and B are large, sparse, symmetric and positive definite.

2.2 Model Reduction via Proper Orthogonal Decom-

position

In this section, a summary of the method of POD model reduction is provided. This summary

is a culmination of many previous works, including those by Cazemier et al. [10], Willcox

and Peraire [40], Kowalski and Jin [20], Vermeulen et al. [39], and McPhee and Yeh [25].
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2.2.1 Subspace Projection

Model reduction via POD is achieved by projecting the state vector into an np−dimensional

subspace (np $ n) such that ŝ = Psr, where ŝ ∈ Rn is an approximation of the state vector

after subspace projection, P is a projection operator represented by a matrix whose columns

form an orthonormal basis spanning the subspace V ⊂ Rn, and sr ∈ Rnp is the state vector

of the reduced model. This can also be written as follows [39]:

ŝ = snat(t) +

np
∑

k=1

pksrk
(t) (2.4)

where, snat(t) is the natural system dynamics without forcing (e.g., the steady state solution)

and srk
indicates the k-th component of sr. Note here that generally, snat(t) = 0.

The definition of the np basis vectors that span the subspace V proceeds by selecting

from a full-model model run ns numerical solution vectors (snapshots) at predefined times.

This must be done for each well individually with constant pumping rates. These snapshots

(here identified by the n−dimensional vectors si, i = 1, . . . , ns) must be significantly different

and cover the overall range or variability of the full model. Note that ns ≥ np where ns is

often much greater than np. The basis vectors for V are then obtained via PCA as follows.

Once the snapshots have been taken, the so called covariance matrix [32] can be calculated

as C = XXT , where X = {s1, . . . , sns} and si is the i−th normalized snapshot [25, 39]. From

PCA, the eigenvectors (or principal vectors) pk of C are linearly independent and mutually

orthogonal. These principal vectors can be considered as candidates for the spatial basis

functions that are used to express the problem solution in the reduced space.

In practice, the length of each snapshot vector is large, as it is equal to the number of

nodes in the model; this will cause the eigenvalue decomposition of the resulting C matrix to

be computationally infeasible. This is remedied by calculating the eigenpairs of Cs = XTX,

that are related to the eigenpairs of C. It is easy to prove, in fact, that if (λk,gk) is the
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k−th eigenpair of Cs, then λk,uk = Xgk characterizes the eigenpair of C corresponding to

the k−th nonzero eigenvalue.

Once the eigenvalues of C are calculated, insignificant principal vectors can be removed

from the basis for further subspace dimension reduction. This is accomplished by normalizing

the eigenvalues to represent relative magnitudes as follows:

φj =
λj

ns
∑

i=1
λi

(2.5)

The largest np normalized eigenvalues and their corresponding eigenvectors are retained for

use in the reduced model and the rest are discarded. The parameter np is chosen such that
np
∑

i=1
≥ Φ where Φ is user-specified [25]. Finally, imposing PTP = I, the matrix of the basis

vectors for V is calculated as

P = XGΛ−1/2 (2.6)

where G and Λ are the rectangular and diagonal matrices that consist of the np retained

eigenvectors, gk, and the corresponding eigenvalues, λk, respectively.

In other words, the elements of the reduced state vector reflect the weight or importance

of each spatial basis function or principal vector at each time step. Some of these principal

vectors are insignificant for all times and can be excluded from the problem entirely, achieving

further model reduction. The “importance” of each principal vector depends on the relative

amount of variability the corresponding principal component captures within the snapshot

dataset. From PCA, the relative variance of each principal component is equivalent to the

eigenvalue associated with its principal vector (eigenvector). Therefore, one can control

the degree of accuracy by keeping only those eigenvalues whose sum encompasses a desired

amount of the variability within the snapshot dataset.

In summary, the determination of the matrix P and hence the subspace onto which the
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model is to be projected is as follows.

1. Perform a full-model run for each well with a constant unit flow rate. At the appropriate

time steps record the solution (i.e., drawdown distribution). These solutions are the

snapshots. Note that each run should only have one active well.

2. Normalize and group all the snapshots into the matrix, X. Conduct a spectral de-

composition of Cs = XTX and use Equation (2.6) to obtain the matrix of principal

vectors.

3. Omit any insignificant principal vectors to from the basis, P.

2.2.2 Galerkin Projection

Once the projection matrix, P, has been determined, the full model must be projected onto

the subspace V . Let L(s) ∈ Rn be the residual from Equation (2.3):

L(s) = B
∂s

∂t
+ As − q (2.7)

The problem of finding the solution of the full model (i.e., solving L(s) = 0) can be equiv-

alently written as finding the vector s ∈ Rn such that L(s)Tz = 0,∀z ∈ Rn. The Galerkin

projection step of POD is now easily defined as

find the vector ŝ such that :

L(ŝ)Tv = 0,∀v ∈ V
(2.8)

Since any vector, v ∈ V , can be written as some linear combination of the vectors in the basis,

P, the Galerkin projection is simply: PT L(ŝ) = 0. Applying this projection to Equation

(2.3) results in the following,

PTB
∂ŝ

∂t
+ PTAŝ = PTq (2.9)
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Figure 2.1: One-dimensional groundwater flow model.

Substituting the interpolation shown in Equation (2.4), Equation (2.9) becomes a system of

np, linearly independent, ODEs and np unknowns (assuming the natural system dynamics

have been removed):

PTBP
dsr

dt
+ PTAPsr = PTq (2.10)

Letting, B̃ = PTBP, Ã = PTAP and q̃ = PTq, we obtain

B̃
∂sr

∂t
+ Ãsr = q̃ (2.11)

This reduced system of ODEs can be solved by any stable time stepping technique, such as

Implicit Euler or Crank-Nicolson methods. However, because of its drastically reduced size

(np $ n), often by several orders of magnitude, the system can also be solved very efficiently

by analytical methods via matrix exponential.

2.2.3 One-Dimensional Test Case

A synthetic experimental setup, illustrated in Figure 2.1, from McPhee and Yeh [25] was

used to exemplify the use of POD. The specific storage is 1.0 m−1 and the width of each

column is 1.0 m. There are Dirichlet boundary conditions at columns 1 and 101. This test

case and all other experiments in this study were modeled by separating the natural system

dynamics from the drawdown due to pumping using the superposition principle [3]. Model
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Figure 2.2: (a) Drawdown results of both the full and reduced models after 3, 20 and 100 days
for the one-dimensional test case. (b) Sensitivity coefficient results of both the full and reduced
models after 3, 20 and 100 days for the one-dimensional test case.

reduction is applied to the groundwater model of drawdown. Therefore, the initial conditions

are 0 m everywhere and the Dirichlet boundary conditions at columns 1 and 101 are 0 m.

The extraction rate applied to column 51 is 1 m3/d. The reduced model was developed

using 10 snapshots taken at 0.6, 1.5, 2.9, 5.1, 8.5, 13.9, 22.4, 35.6, 56.4 and 89.1 days (ns

= 10). Figure 2.2a displays the drawdown results of both the full and reduced models of

the one-dimensional test case. The results of the reduced model are indistinguishable with

that of the full model. Note that the Dirichlet boundary conditions are met naturally when

drawdown is used as the dependent variable. McPhee and Yeh [25] applied POD model

reduction to head and reported difficulty in satisfying the boundary conditions.

The sensitivities of the heads with respect to pumping (i.e., the impact changes in pump-

ing will have on drawdown) were also calculated using a simple finite difference approach.

Figure 2.2b illustrates these sensitivities for both the full and reduced models. Again, the

results of the reduced model are indistinguishable with those of the full model. Note that

the time steps for which the results have been displayed do not coincide with those of the

snapshots used to develop the reduced model. In this example, the full model consists of

101 equations and the reduced model consists of 10 equations, creating a reduction in model
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dimension of one order of magnitude.

2.3 Snapshot Selection

The ability of a reduced model, obtained from POD, to accurately represent and, in practice,

replace the full model is based solely on the manner in which the full model snapshots are

obtained. Both the number of snapshots, as well as the time steps in which they are taken,

affect the accuracy of the reduced solution. However, a large number of snapshots will not

necessarily result in a high level of accuracy. Therefore, the goal is to find the best sampling

strategy for a given snapshot size such that the accuracy of the reduced model is maximized.

There are many ways to approach this problem. In this paper we define the “best”

sampling times for snapshots by requiring that all snapshots be significant in the amount of

information that they possess. In other words, after conducting PCA, the number of normal-

ized eigenvalues significantly different from zero should be maximized in order to maintain

the desired level of accuracy within the reduced model (provided the snapshot size, ns, is

large enough). The number of snapshots is optimal when the addition of another snapshot

does not add a significant amount of information to the reduced model. For example, the ad-

dition of one snapshot which, after PCA, results in the same number of significant principal

vectors as before the snapshot was added is indicative that increasing the snapshot size (i.e.,

the number of snapshots) was unnecessary. This can be thought of as adding a snapshot

which is approximately a linear combination of the other snapshots; thus, providing little

additional information. Of course, when the snapshot size is increased, the optimal times in

which all of the snapshots are taken must be reevaluated.
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2.3.1 Exponentially Distributed Snapshots

In order to determine the best snapshot times, for any POD model reduction, the dynamic

properties of the governing equation must be taken into consideration. In the case of satu-

rated groundwater flow, the governing equation is a parabolic PDE, indicating the system

is diffusive in nature. These types of transient models tend to exhibit rapid changes in the

state variable for early times and small changes for later times. In other words, these types

of systems reach steady state at an exponential rate [19]. Therefore, to fully capture the

dynamics of the system, one must acquire many snapshots early in time and fewer snapshots

later in time. For example, if many snapshots were taken near steady state, they would be

approximately equal and the corresponding covariances would be small, resulting in small

eigenvalues and insignificant principal vectors. If few snapshots were taken at early time

steps where the shape of the state variable distribution is changing rapidly, interpolations

between these snapshots (i.e., the reduced model) could be inaccurate.

To study these properties we look at the analytical solution of Equation (2.3), which can

be written as

s(t) = e−B−1At
[

s0 − A−1q
]

+ A−1q (2.12)

The above matrix exponential can be evaluated by means of the solution to the generalized

eigenproblem Au = λBu, where matrices A and B are symmetric and positive definite. The

drawdown vector is then given as

s(t) = Ue−MtUT
[

s0 − A−1q
]

+ A−1q (2.13)

where matrix U is the unitary matrix of the generalized eigenvectors and M is a diagonal

matrix containing the generalized eigenvalues µi > 0. Thus it is clear that only the smaller

eigenvalues and corresponding eigenvectors are necessary to capture the transient behavior
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of the solution. The question is then how can we select the times of the snapshots so that

the information contained in this set of vectors is maximized. The approach proposed in this

research is illustrated by working on a simple scalar ODE, whose solution can be directly

written as

y(t) = ce−αt + b (2.14)

Introducing the scaled time t∗ = e−αt the behavior of y(t∗) becomes linear. Thus, the interval

of the scaled time can be subdivided uniformly without loss of accuracy. Hence the times of

the snapshots are defined with the following function:

ts = βe−αtu + γ (2.15)

where α, β and γ are parameters to be determined on the basis of the equation properties

(i.e., hydraulic conductivity, elastic storage, etc.), while tu varies uniformly within an ap-

propriate interval of length T such that tu = uh, u = 0, . . . , ns − 1 where h = T/(ns − 1).

For example, we can choose T = 10 and ns = 5 such that tu = 0, 2.5, 5, 7.5, 10. We observe

that the snapshot time coincides with β+γ for u = 0, and with γ for large tu, i.e., “pseudo”

steady state conditions. Thus, given a fixed number of snapshots and values for α, β and γ,

we can determine a snapshot set with an exponential distribution in time.

We define the solution error of the reduced model at a particular time step tk as the

Euclidian norm of the error between the reduced-model and the full-model solutions:

τr(tk) =

√

√

√

√

n
∑

i=1

(pT
i sr(tk) − si(tk))

2
(2.16)

where pi is a vector consisting of the i-th row of the basis P. Using our snapshot selection

strategy, the solution error will depend only on the number ns of snapshots and the values
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of the parameters α, β and γ. Thus the “optimal” reduced model can be identified by the

following minimization problem:

min
ns,α,β,γ



ARMSE =
1

T

T
∫

0

τr(t)dt



 (2.17)

where ARMSE is the Average Root Mean Square Error and T is the ending time of the

simulation. The time integral in the formula is evaluated for ARMSE by means of a 3-

point Gaussian quadrature rule. Given that τr(tk) varies smoothly with time, this Gaussian

quadrature rule is sufficiently accurate to ensure that its error is always smaller than the

error being evaluated. It is obvious that the optimal ns, α, β and γ depend upon the hydro-

logical parameters, among other factors, and must be determined case by case. Extending

these results to the general case, we need to relax absolute optimality and look for a “subop-

timal” but still accurate reduced-model solution. To accomplish this, we apply our selection

procedure to a dimensionless model and translate this result to any real model using an ap-

proximation or averaging technique to account for heterogeneities and complex geometries

within the real model. This technique is described in subsequent sections.

2.3.2 Optimal Snapshot Set - Dimensionless Model

Equation (2.15) was applied to the one-dimensional test case in Figure 2.1. The preliminary

results of this experiment indicated that the best snapshot sets would include the very

first time step of the numerical model, i.e., a snapshot at a very early time. This makes

sense since having a snapshot as close to the initial condition as possible will accurately

capture the behavior of the system at early times. One may reasonably assume that the

optimal snapshot set would always include the drawdown distribution at early times and

the drawdown distribution representative of steady state conditions. Therefore, an effective
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exponential snapshot selection method will be one in which the initial and final snapshot

times are fixed accordingly. For a given value of γ, there is one value for α and one value

for β such that the initial and final snapshot times produced by equation (2.15) agree with

the corresponding desired values. Therefore, the optimal exponential snapshot set is found

by determining the optimal value for the parameter γ.

Even though this method will result in an accurate reduced model, determining the

optimal γ value for a large-scale model can be computationally demanding. One would have

to use a fine temporal discretization and record the solution for the entire model domain

at every time step, then construct the reduced model for every value of γ and compute

an error criterion that would be used to determine the optimal value for γ. This process

would have to be repeated for every well. However, if one were to use this process for

the dimensionless model and could then translate the result to any real-world model, the

computational requirement would be greatly reduced. Note that this translation can only

be approximated at best. Since the optimal snapshot set varies with the parameters of

the system (hydraulic conductivity, specific storage, etc.) and the physical geometry of the

system, in principle we cannot exactly translate the optimal snapshot set developed from a

dimensionless model to that of a heterogeneous model with a non-regular domain.

We address this problem as follows. Define the dimensionless time as [3]

ts =
K

SsL2
ts = Cts (2.18)

where ts is the snapshot time of the dimensionless model and L, K, and Ss are the characteris-

tic length, hydraulic conductivity, and specific storage of the real-world system, respectively.

This equation is exact only if the real-world model is homogeneous and has the same shape

as the dimensionless model. Using representative values for the parameters and system size

(e.g., average hydraulic conductivity, etc.), the optimal snapshot selection determined for
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s

Figure 2.3: Experimental setup for the threedimensional dimensionless model.

the dimensionless model can be translated, approximately, to any real-world model using

equation (2.18). However, instead of looking for representative values of the parameters,

we can proceed by noting that the ratio between the dimensionless times and real-world

time is a constant, ts/ts = C, encompassing the representative values of the parameters and

the geometry. Hence, we can evaluate this constant by looking at the pseudo-steady state

times for the dimensionless and the real-world model, and then all the snapshot times can be

translated using this constant. Of course, the resulting real-world snapshot set would only

be approximately optimal; however, we expect that slight deviations in snapshot times from

the optimal set would yield insignificant changes in the reduced-model accuracy.

This methodology was applied to the dimensionless, confined, homogeneous, isotropic,

aquifer in three dimensions (Figure 2.3). SAT3D, a linear threedimensional finite element,

saturated groundwater flow model was used to calculate drawdown given forcing [16]. All

parameters and spatial dimensions were set equal to 1.0 in the dimensionless model, which has

been uniformly discretized with a nodal arrangement of 65×65×11 resulting in 46,475 nodes

and 245,760 tetrahedral elements. Zero Dirichlet boundary conditions are applied across two

faces of the cube opposite one another. The initial conditions are s = 0 everywhere. To

determine the time of pseudo-steady state, the observation network depicted in Figure 2.4
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Figure 2.4: Locations of observation and pumping wells for the dimensionless model.
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Figure 2.5: Time behavior of the drawdown of the dimensionless model at well locations shown in
Figure 2.4.

was used. The results of a single forward simulation are shown in Figure 2.5. Accordingly,

the system reaches steady state quite rapidly near the pumping well, so rapidly that the

initial snapshot must be taken at t1 = 1.0 × 10−7. At this initial time step the drawdown is

on the order of 5.0× 10−3 at the location of the well, whereas at steady state, the drawdown

is on the order of 5.0. Based on Figure 2.5, the system is clearly at approximate steady state

conditions when t = 0.90. Therefore, the initial and final snapshots will be taken at these

times.

Equation (2.15) can be used to generate snapshot sets for various values of γ. Figure 2.6

displays the behavior of the snapshot times for different values of γ. We see that the smaller
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Figure 2.6: Behavior of snapshot times for different values of the parameter γ in Equation (2.15).

the value of γ, the heavier the emphasis on early time steps. When γ ≈ 1.80, the snapshot

selection is approximately linear between the initial and final snapshot times. Obtaining

the optimal snapshot set when using a numerical model presents some practical difficulties.

For example, the numerical model solves the system at discrete time steps, whereas the

exponential snapshot distribution, described by Equation (2.15), is continuous. Therefore,

the results of the continuous snapshot selection must be rounded to the corresponding nearest

model time steps. In addition, capturing snapshots at very early time steps requires variable

time stepping in the numerical model. For this exercise, the time stepping is variable and

consists of 2,075 time steps to ensure accuracy in the calculations. In practice, coarser time

steps can actually be used. We chose to work with ns = 10 snapshots. The initial snapshot

is fixed at t1 = 1.0 × 10−7 and the final snapshot is always t10 = 0.90. However, in between,

the snapshot times are rounded to the nearest model time step.

Optimality Criterion

The criterion needed to define optimality for the values of ns and γ must now be determined.

As mentioned before, in principle, we would like to find the snapshot set that minimizes the
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solution error, i.e., solves problem (2.17). However, the relationship between γ and ARMSE

is complicated, being strongly affected in particular by the PCA step of the POD algorithm.

Therefore, instead of using ARMSE as a criterion, one could employ experimental design

criteria in which the goal is to maximize the information contained in the snapshot covariance

matrix. The approach would be similar to using the E-optimality criterion where, in the

context of experimental design, the objective is to minimize the maximum eigenvalue of the

parametric covariance matrix [45]. We may think of the best snapshot set as being the one

that yields PCA principal components that are all significant in terms of variance accounted

for, i.e., for which all the values of φj of equation (2.5) are significant. Hence, our objective is

to maximize the minimum eigenvalue λmin of the state covariance matrix C generated from

the snapshots. The latter is the criterion of choice.

Numerical Results

This criterion is pplied to the dimensionless model described above. The best value for γ is

numerically obtained via exhaustive search. Snapshot sets of 10 snapshots each are generated

for 40 values of γ and the corresponding minimum eigenvalues are calculated. The results are

displayed in Figure 2.7, where the behavior of λmin versus γ is shown. The curve displays a

distinct maximum when γ = 3.87× 10−6, which is thus the optimal value. Some oscillations

and negative eigenvalues begin to appear when γ is large, due to numerical errors for very

small eigenvalues, a sign that the covariance matrix becomes ill-conditioned.

In addition to determining optimal snapshot times, one must also address the size of

the snapshot set, i.e., how large must the snapshot set be such that the reduced model is

sufficiently accurate. To explore this problem, we develop optimal snapshot sets, using the

aforementioned method and dimensionless model, for sizes of 4, 7 and 10 snapshots. To

compare each snapshot size, we need to ascertain the solution accuracy (ARMSE defined

in Equation (2.16)) with respect to the full model. Although, the ARMSE is not a good
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Figure 2.7: Relationship between γ and the minimum eigenvalue of the covariance matrix after
PCA.

criterion for snapshot determination, it can still be used to gauge model agreement. The

ARMSE values were 3.09× 10−3, 2.74× 10−5, and 3.36× 10−6 for snapshot sizes of 4, 7 and

10, respectively. Clearly, a snapshot size of 10 will produce a sufficiently accurate reduced

model. Figure 2.5 shows both the full and reduced-model results for 3 nodes at all time steps

using 10 snapshots and Table 2.1 lists the optimal snapshot times. Based on these results,

the 10-snapshot reduced model is in excellent agreement with the full model. Note that the

full-model system of 46,475 ODEs (n) has been reduced to a system of 10 ODEs (ns) for a

single well, creating a reduction in model dimension of more than three orders of magnitude.

This can be reduced even further by omitting insignificant principal vectors from the basis,

P; np is usually equal to 3 for a single well.

2.3.3 Dimensionless Versus Heterogeneous Models

In this section, we verify the proposed method of translating the snapshot times of the

dimensionless model to a real-world model. The real-world model is represented by a “re-

alistic” synthetic model with dimensions 5, 000 m × 3, 000 m × 100 m. The discretization
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Table 2.1: Optimal snapshot sets for the dimensionless and realistic models along with approximate
optimal snapshots for the realistic model determined from translating dimensionless times into
realistic times.

Optimal Snapshot Set Approximate Optimal
Snapshot Snapshot Set for
Number Dimensionless Realistic (d) Realistic Model (d)

1 1.00E-07 1.42E-04 1.42E-04
2 1.18E-05 8.06E-03 1.67E-02
3 5.76E-05 4.24E-02 8.18E-02
4 2.38E-04 1.91E-01 3.38E-01
5 9.49E-04 8.35E-01 1.35E+00
6 3.75E-03 3.62E+00 5.32E+00
7 1.48E-02 1.57E+01 2.10E+01
8 5.81E-02 6.81E+01 8.25E+01
9 2.29E-01 2.95E+02 3.25E+02
10 9.00E-01 1.28E+03 1.28E+03
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Figure 2.8: This diagram displays, in plan view, the zonation pattern and parameter values used
in the realistic model.

for this model is the same as that of the dimensionless model: 46,475 nodes and 245,760

tetrahedral elements. The model contains 10, uniformly spaced, layers and each layer has

4 zones. Figure 2.8 shows the zonation of each layer. A well is placed in the center of the

model domain with a constant extraction rate. The initial conditions are zero drawdown

throughout the model domain.

Upon running the simulation and observing the drawdowns at various locations within

the model domain, we conclude that the system reaches pseudo-steady state conditions after

approximately 3.5 years (1,278 days). The optimal snapshot set (ns = 10) was rigorously

determined for this realistic model by maximizing λmin; the optimal snapshot times are listed
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in Table 2.1. Using the pseudo-steady state times of both the realistic and dimensionless

models, the constant, C (equation (2.18)), can be determined, and the optimal snapshots of

the dimensionless model can be translated to approximate those of the realistic model. These

approximated snapshots are listed in Table 2.1. The snapshot set from the approximation

is very similar to that determined by numerically maximizing λmin. The ARMSE for the

approximation and the formally optimized snapshots sets, with respect to the full model, are

3.68×10−4 m and 5.52×10−4 m, respectively. Note that the ARMSE for the approximation

is slightly smaller than that determined from maximizing λmin. However, the ARMSE for

both cases is very small suggesting that the proposed translation of snapshot times from

the dimensionless model to any real-world model will likely yield a reduced model just as

accurate as if one were to conduct a formal optimization of snapshot times for the real-world

model itself. For this exercise, determining the optimal snapshot set for the realistic model by

maximizing λmin required 14 hours of CPU time using an Intel Pentium 4, 3.0 GHz, processor

with a 512 KB L2 cache; whereas, the proposed translation method requires less than a

second because the optimal snapshot times of the dimensionless model are predetermined.

2.4 Application: Central Veneto, Italy

The applicability of the proposed methodology is demonstrated on a large aquifer model

developed for management purposes. The aquifer is located in Northeast Italy and serves a

population of a few million people in addition to agricultural and industrial demands.

2.4.1 Site Description

The Upper and Central Veneto Plain in Northern Italy (Figure 2.9, top) is characterized by

abundant subsurface water resources that are heavily exploited for industrial, agricultural,

and civil uses, serving a population of about 3 million people. The area of interest is situated
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in the piedmont plain and is delimited on the west from the Lessini mountains and the

Berici hills, on the north from Asiago plateau, on the east from the Brenta river and on the

south from the Adriatic Sea. The aquifer system is characterized to the north-west by an

undifferentiated unconfined formation recharged directly by copious precipitation collected

by the Asiago Plateau. The area is characterized by the presence of spatially distributed

groundwater springs localized in an area overlying the transition zone from an unconfined

aquifer (in the north of the area) to confined aquifers (in the south) (Figure 2.9, top). The

multiaquifer system originating in this area is formed by five highly productive aquifers that

are the main source for potable water in the surrounding region. These aquifers extend

aerially towards the southeast until they are pinched out by the Santerno Formation, a thick

clay layer that confines from below the Quaternary deposits and surfaces on the eastern

boundary of the Adriatic Sea. The well-developed basement of the Central Veneto aquifer

system surfaces on the northern boundary and reaches about 500 m in depth on the southern

boundary [29].

In recent years, water extraction has exceeded recharge and as a result, most of the

observation wells in the area show a trend of decreasing head levels. For this reason, public

authorities have commissioned the development of a fully 3-dimensional groundwater flow

model to help in the determination of management strategies. The model, described in

detail by Passadore et al. [29], uses a finite element method based on linear tetrahedral

elements defined on a mesh of 143,496 nodes and 831,790 tetrahedral elements. The version

of the model used in this study was refined to 222,687 nodes and 1,289,570 tetrahedral

elements. The highly unstructured mesh and the large number of elements were dictated

by the need to accurately capture the behavior of the unconfined-confined transition zone.

This requires an accurate geometrical description of the pinch-outs in the low permeability

lenses. Calibration was performed by minimizing the squared difference between simulation

results and observation data collected at more than 100 wells in the area. The unconfined

27



Third aquifer layer 
     from the top

AB
Top 
of model 
domain

C

Bottom of 
model domain

Figure 2.9: (top) Planar view of the Central Veneto model domain. (bottom) Locations of the
pumping and observation wells for model reduction of the Central Veneto model.
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Table 2.2: Optimal Snapshot Set for the Dimensionless Model and Approximate Optimal Snapshot
Set for the Central Veneto Model.

Approximate Optimal
Snapshot Set for

Snapshot Optimal Snapshot Set Central Veneto
Number for Dimensionless Model Model (yrs)

1 1.00E-07 4.40E-07
2 1.18E-05 5.18E-05
3 5.76E-05 2.54E-04
4 2.38E-04 1.05E-03
5 9.49E-04 4.18E-03
6 3.75E-03 1.65E-02
7 1.48E-02 6.50E-02
8 5.81E-02 2.56E-01
9 2.29E-01 1.01E+00
10 9.00E-01 3.96E+00

aquifer was subdivided into 50 material zones to capture the highly heterogeneous structure

of a geological formation complicated by the presence of several paleoriverbeds.

2.4.2 Application of POD

To demonstrate the application of the aforementioned snapshot selection method, we consider

a single well located near the center of the model domain (Figure 2.9). The timing of

approximate steady state conditions is calculated using several observation wells located

throughout the model domain. After some experimentation, location C in Figure 2.9 was

determined to be an appropriate indicator as to when approximate steady state conditions

are reached for the entire model domain (i.e., drawdown at this location will take the longest

time to reach pseudo-steady state). After visual inspection of the drawdown curves in Figure

2.10, approximate steady conditions, similar to those in the dimensionless case, occur four

years after constant pumping has begun. Table 2.2 lists the optimal snapshot times of the

dimensionless model and those corresponding to the Central Veneto model.

The first time step of the Central Veneto numerical model was set to 4.4 × 10−7 years

(13.9 sec) and the length of each time step is multiplied by a factor of 1.03 until this length

29



0 2 4 6 8
Time (years)

-40

-30

-20

-10

0

D
ra

w
do

w
n 

(m
) Full Model

Reduced Model

0 2 4 6 8
Time (years)

-1.2

-0.9

-0.6

-0.3

0

0 2 4 6 8
Time (years)

-1.2

-0.9

-0.6

-0.3

0
Obs Well A Obs Well B Obs Well C

Figure 2.10: Time behavior of the calculated drawdowns at the well locations shown in Figure 9
for the Central Veneto Models.

Table 2.3: RMSE Values, Over the Entire Model Domain, for Comparison Between the Full and
Reduced Central Veneto Models.

Time(yrs) RMSE (m)
3.20E-04 2.15E-03
3.20E-02 2.02E-02
1.60E-01 1.82E-02
3.20E-01 8.31E-03
4.80E-01 1.18E-02
6.30E-01 7.80E-02
9.50E-01 1.08E-03
1.30E+00 1.47E-03
1.90E+00 8.41E-04
3.20E+00 5.56E-05

reaches 1 day, after which the time step is fixed at 1 day. The snapshots were then acquired

as closely to the times listed in Table 2.2 as possible. The CPU time required to solve the

system of equations at all time steps using a workstation with an Intel Pentium 4, 3.0 GHz,

processor with a 512 KB L2 cache was 15.3 hours. Using the snapshots acquired from this

simulation, the reduced model required only 56 seconds to run the same simulation on the

same machine. This is a reduction in CPU time of 1000 times. Note that the full-model

system of 222,687 ODEs (n) has been reduced to 10 ODEs (ns) with a single well, which

can be reduced even further to np ODEs by omitting insignificant principal vectors from

the basis, P. The results of both simulations are displayed in Figure 2.10 for the locations

depicted in Figure 2.9. The RMSE was also calculated for the entire domain at 10 time steps

and listed in Table 2.3.

The slightly larger ARMSE values in the early time steps are a result of some oscillations,
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on the order of a few millimeters, at locations far from the pumping well where the drawdown

is essentially 0 m. This phenomenon is also apparent in the dimensionless case as well.

However, these oscillations are so small as to be insignificant in practice. The reduced

model is an extremely accurate surrogate model that runs 1000 times faster than the full

model. Therefore, the reduced model now allows one to analyze scenarios that require several

hundreds or even thousands of model runs such as, optimization, data assimilation, Monte

Carlo uncertainty analysis, etc.
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Chapter 3

Reduced Order Parameter Estimation

using Quasilinearization and

Quadratic Programming

3.1 Confined aquifer groundwater flow model

The following PDE describes two-dimensional groundwater flow for a confined, anisotropic

aquifer with pumping [3]:

∂

∂x

(

bKx
∂h

∂x

)

+
∂

∂y

(

bKy
∂h

∂y

)

− q − bSs
∂h

∂t
= 0, (3.1)

with initial and boundary conditions:
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h(x, y, 0) = h0(x, y);

h(x, y, t) = hd(x, y, t), (x, y, t) ∈ (Γ1);
(

bKx
∂h

∂x
nx + bKy

∂h

∂y
ny

)

(x, y, t) = qn(x, y, z, t), (x, y, t) ∈ (Γ2),

(3.2)

where h is the hydraulic head (L); Kx(x, y), Ky(x, y) are spatially varying hydraulic conduc-

tivities in the x and y directions, respectively (L/T); Ss is the specific storage (L−1); b(x, y)

is the thickness of the aquifer (L); q is the specific volumetric pumping rate (LT−1); Γ2 is

the flux boundary; Γ1 is the fixed head boundary; and h0 , hd , and qn are known functions.

For simplicity and without loss of generality, we assume isotropic behavior of the aquifer,

i.e., Kx = Ky = k(x, y).

The application of the superposition principle to Equation (3.1) followed by spatial dis-

cretization of the resulting PDE (e.g., by finite differences, finite elements, etc.) yields a

system of linear ordinary differential equations (ODEs) for the drawdown, s:

B
ds

dt
= As + q = f(s,k), (3.3)

where A is the n × n stiffness matrix; B is the n × n mass matrix; s and q are the

n−dimensional vectors of nodal (cell) drawdowns and source/sinks, respectively; f(s,k) =

As + q is a vector-valued function depending on drawdown s and hydraulic conductivity k;

and n is the number – generally very large – of spatial computational nodes (cells). The

nz-dimensional vector k represents the spatially varying hydraulic conductivity, which is as-

sumed to be discretized into nz material zones. In the majority of cases of practical interest,

matrices A and B are large, sparse, symmetric and positive definite. Upon the application

of an Implicit Euler scheme, Equation (3.3) can be approximated as

(

A −
1

∆tj
B

)

sj = −
1

∆tj
Bsj−1 − qj, (3.4)
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where sj and qj are vectors of nodal drawdown and extraction rate values at time j, respec-

tively; and ∆tj is the length of the j-th time step.

3.2 Groundwater parameter estimation via quasilin-

earization and quadratic programming

3.2.1 Problem Formulation

The primary goal of parameter estimation is to identify the parameter vector that minimizes

some norm of the residuals, i.e., differences between the model-predicted state variable(s)

and those observed in the field. The most commonly used objective for this class of problems

is minimizing the sum of the squared residuals. The parameter vector of interest for this

study consists of the zonal hydraulic conductivity values, k . The state vector of interest

consists of the nodal (cell) drawdown values, s. Note that generally, matrix A in Equations

(3.3) and (3.4) is the only term that explicitly contains the vector k . Therefore, the general

problem statement can be written as

min
k

nt
∑

j=1

nj
∑

i=1

(

sKj(i) − s∗i,j
)2

subject to:
(

A −
1

∆tj
B

)

sj = −
1

∆tj
Bsj−1 − qj, j = 1, . . . , nt

kmin ≤ k ≤ kmax

(3.5)

where nt is the number of time steps; nj is the number of observation locations at time step

j; sKj(i),j and s∗i,j are the drawdown values, for measurement location i and time j, predicted

by the model and observed in the field, respectively; and Kj(i) maps the position of the
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appropriate computational node (cell) to its corresponding i−th observation at time j.

3.2.2 Quasilinearization and Quadratic Programming

The method of quasilinearization and quadratic programming, as it applies to parameter es-

timation, consists essentially of solving a series of quadratic programming (QP) sub-problems

such that the solution to these problems converges to the solution of the original nonlinear in-

verse problem. Yeh [43] provides a methodology in which the governing equation is linearized

about the current estimate of the parameter vector and the state vector using a Taylor series

expansion. This linearized equation replaces the original governing equation in the least-

squares parameter estimation problem resulting in a QP problem. The solution to this QP

problem then becomes the current estimate for a new Taylor series expansion resulting in a

new QP. This process is repeated in the linearized system until the solution converges to the

solution of the original nonlinear least-squares problem. Consider the governing equations

after spatial discretization and before temporal discretization, i.e., the system of ordinary

differential equations (ODEs) in Equation (3.3). Applying a Taylor series expansion about

some current estimate of the drawdown, sm, and hydraulic conductivity, km, retaining up to

the first order terms only, results in the following:

B
dsm+1

dt
= f(sm,km) + ∇sf(s

m,km)(sm+1 − sm)

+ ∇kf(s
m,km)(km+1 − km)

(3.6)

where sm+1 is an approximation of the drawdown, given some new parameter vector, km+1.

The Jacobian matrix of f with respect to s is

∇sf(s
m,km) = Am (3.7)
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where Am is the A matrix in Equation (3.3) comprised of the current estimate of hydraulic

conductivity, km. The Jacobian matrix of f with respect to k can be approximated numeri-

cally via finite difference as

[∇kf
m]i,j =

dfm
i

dkj
≈

fi (km
i + ∆kj) − fi

(

km
j

)

∆kj
= [Dm]i,j , (3.8)

where ∆kj is some relatively small increment of hydraulic conductivity for element j of km,

and Dm ≈ ∇kf
m contains the current estimate of sm. Substituting these Jacobian matrices

into Equation (3.6) results in the following equation:

B
dsm+1

dt
= Amsm + q + Am(sm+1 − sm) + Dm(km+1 − km), (3.9)

This equation can be rewritten such that it has the same form as the governing equation for

groundwater flow (Equation (3.3)), with an additional forcing term associated with changes

in hydraulic conductivity:

B
dsm+1

dt
= Amsm+1 + Dm(km+1 − km) + q, (3.10)

At the m−th iteration, the Implicit Euler scheme can be used to approximate the solution

to Equation (3.10) in time as follows:

(

Am +
1

∆tj
B

)

sm+1
j =

1

∆tj
Bsm+1

j−1 + Dm
j (km+1 − km) + q, (3.11)

Note that Dm is a function of time because it contains the current estimate sm, which is a

function of time. The QP sub-problem now can be solved using the linearized equations of
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the governing ODEs (equations (3.10) and (3.11)), yielding the following algorithm:

ALGORITHM QQP

Given the initial feasible estimates k0 and s0:

For m = 0, 1, . . . , until convergence, do:

find km+1 such that:

min
km+1

nt
∑

j=1

nj
∑

i=1

(

sm+1
Kj(i)

− s∗i,j

)2

subject to:
(

Am +
1

∆tj
B

)

sm+1
j =

1

∆tj
Bsm+1

j−1 + Dm
j (km+1 − km) + q,

kmin ≤ km+1 ≤ kmax j = 1, . . . , nt

(3.12)

We can consider convergence achieved if the change in conductivity is small, i.e., |km+1 − km| <

τ , where τ is a predefined tolerance, or if an insignificant change in the objective of equa-

tion (3.12) is observed. For convex programming problems, this process will converge to the

global optimum of the original nonlinear inverse problem (Equation (3.5)). However, it is

important to note that, in general, this algorithm only guarantees convergence to a local

optimum for non-convex problems [5].

The algorithm presented thus far has not been used widely in practice due to the diffi-

culty of solving each successive QP problem for real-world large-scale models. Depending

on the QP algorithm employed, the successive QP problems (Equation (3.12)) can be highly

computationally demanding and become impractical or even infeasible. Therefore, Gauss-

Marquardt-Levenberg methods (e.g., PEST [15] and UCODE [30]) have become more pop-

ular for solving inverse problems in groundwater flow. However, the linearization of the

governing equations does, in fact, result in a linear model whose order (i.e., number of

equations) can be reduced significantly with the application of modern POD technology.
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With a much smaller set of equations in the constraint set, the optimization problem (Equa-

tion (3.12)) can be solved very efficiently resulting in a more efficient and tractable overall

estimation procedure.

3.3 Model Reduction via POD

In order to apply POD as accurately as possible to the linearized equations (Equation (3.9)),

the natural system dynamics must be removed [39]. In other words, the model must be one

in which the state variable remains at rest, i.e., zero everywhere, unless some forcing is

applied. This is naturally true for models of drawdown where the superposition principle is

used to remove the natural system dynamics from the governing equations of groundwater

flow. However, in the case of parameter estimation, we are not interested in optimizing

pumping rates. Here we are interested in the manner in which drawdown changes given a

change in the hydraulic conductivity distribution. Accordingly, we must develop a linearized

model that relates changes in drawdown, δs, with changes in hydraulic conductivity, δk. This

model must remain at rest, i.e., δs = 0, when there is no forcing, i.e., δk = 0. We obtain

such a model by rewriting Equation (3.9), using the superposition principle, to yield

B
dδs

dt
= Amδs + Dmδk, (3.13)

where δs = sm+1 − sm and δk = km+1 − km. This equation has the same general form as

Equation (3.3); however, the state variable is now δs and the forcing term is now Dmδk.

Hence, the linearized model relates changes in drawdown (δs) to perturbations in zonal

hydraulic conductivity values (δk).

Since the linearized model has the same form as that in Equations (3.3) and Equation

(2.3), POD can be applied using the same POD methodology outlined in Section 2.2. Namely,
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the procedure listed at the end of Section 2.2.1 can be applied. With the natrual system

dynamics removed, the model can be approximated as follows

δs(t) ≈ δ̂s(t) =
ns

∑

i=1

uiδsri
(t) = Uδsr(t) (3.14)

where U is the n×ns matrix of spatial basis functions that span the reduced model space and

δsr is the vector of weighting functions which is considered the state vector in the reduced

model space. Equation (3.14) is similar to Equation (2.4) with a different state variable. The

matrix U can be calculated via PCA as described previously. The snapshots are collected,

normalized and formed as the columns of a matrix, X. U is then calculated by solving the

following eigenvalue problem,

XXT = UΛUT (3.15)

Based on the relative magnitude of the eigenvalues in Λ, basis functions within the matrix

U are discarded (Equation (2.5)). The resulting matrix spans the reduced-model subspace

and is analogous to the matrix P discussed previously.

Upon the application of the Galerkin Projection (Equation (2.8)), the reduced linearized

model is written as follows

B̃
dδsr

∂t
= Ãδsr + D̃mδk (3.16)

where B̃ = PTBP, Ãm = PTAmP and D̃m = PTDm

This reduced system of ODEs can be solved by any stable time stepping technique, such

as Implicit Euler:
(

Ãm +
1

∆tj
B̃

)

δsrj
=

1

∆tj
B̃δsrj−1

+ D̃m
j δk, (3.17)

However, because of Equation (3.17)’s drastically reduced size (np $ n), often by several

orders of magnitude, the system also can be solved very efficiently by analytical methods via
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matrix exponential [4, 41].

3.3.1 Reduced Order Quadratic Programming Formulation

The reduced linearized model now can be used to solve each successive quadratic program-

ming problem. Noting that sm+1
i,j = sm

i,j +pT
i δsrj

, substituting Equation (3.17) into Equation

(3.12) results in the following QP problem:

min
km+1

nt
∑

j=1

nj
∑

i=1

(

pT
Kj(i)δsrj

+ sm
Kj(i) − s∗i,j

)2

subject to:
(

Ãm +
1

∆tj
B̃

)

δsrj
=

1

∆tj
B̃δsrj−1

+ D̃m
j δk, j = 1, . . . , nt

δk = km+1 − km

kmin ≤ km+1 ≤ kmax

(3.18)

where pKj(i) is the Kj(i)-th row of the P matrix. It is important to note that from one QP

problem to the next (i.e., between outer iterations of the overall algorithm) the principal

vectors must be re-evaluated in order for the reduced model to achieve the greatest accuracy.

This is a result of changing values of hydraulic conductivity between successive QPs (i.e., A

is a function of k). However, as shown in this research, if the principal vectors are evaluated

using a reasonable initial guess, subsequent inaccuracies produced by the reduced models

throughout the algorithm become negligible. It is also important to note that the limita-

tion on the number of parameters to be estimated is no different from that of a quadratic

programming problem, which can be quite large.
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3.4 One-Dimensional Test Case

In this section, the proposed method is applied to the one-dimensional test problem, illus-

trated in Figure 2.1, with the same properties and definitions as previously discussed. First,

the performance of the POD model reduction methodology as applied to the linearized model

(Equation (3.16)) is investigated. Figure 3.1 illustrates the solution to the original full model

along with the results of both the linearized full model and linearized reduced model given

a change of hydraulic conductivity in each zone of 1.0 m/d (the initial values are those dis-

played in Figure 2.1). For this test case, the errors between the linearized full model and

the linearized reduced model are on the same order of magnitude as those shown for the

one-dimensional original full model in Chapter 2 (Figure 2.2). One can, therefore, conclude

that the solutions obtained from the linearized full model and the linearized reduced model

are essentially identical.

The parameter estimation algorithm presented in this dissertation was applied to the

one-dimensional test case. The algorithm was tested under three scenarios: (1) using the

linearized full model only; (2) using POD model reduction of the linearized model where

the reduced basis is updated at each iteration of the quasilinearization procedure; and (3)

using POD model reduction for the linearized model without updating the reduced basis,

i.e., the reduced basis is determined using the initial values or the initial “guess” of hydraulic

conductivity and never updated. A flow chart of the overall algorithm employed in this study

is shown in Figure 3.2.

Observations of drawdown were generated using the true parameter values of k1 = 15.0

m/d and k2 = 5.0 m/d and recorded at each time step at nine locations (x =20, 30, 40, 45, 51,

56, 61, 71, 81 m). The observations were also corrupted with normally distributed random

noise to test the effects of measurement noise. Ten snapshots were selected optimally using

the exponential function described in Section 2.3.1. Figure 3.3 illustrates the convergence

results for these three scenarios using an initial guess of k1 = 0.1 m/d and k2 = 0.1 m/d.
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Figure 3.2: Flow chart of the algorithm presented in this study for all three scenarios.
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The rate of convergence for the three scenarios was nearly identical until the least-squares

objective had fallen below 10−6. After this point, the algorithm using scenarios 1 and 2

proceeded to converge super-linearly, whereas the algorithm employing scenario 3 appeared

to converge linearly. Significant differences in convergence rates between scenarios 1 and 2

were not observed until the least-squares objective was very small. However, if a different

initial estimate of hydraulic conductivity were used, the relative rates of convergence for

the three scenarios could be quite different; “good” initial guesses could result in very little

difference in convergence between the three scenarios. In the case where measurement noise

was added, there were negligible differences between the convergence rates of the three

scenarios. This is due to the fact that errors associated with measurement noise dominated

those associated with model order reduction via POD. Aside from convergence rates, it

is also important to evaluate whether or not the algorithm actually converges (oscillatory

behavior is possible for scenario 3) or if it converges to the global optimum. Table 3.1

lists convergence results for a series of initial estimates of hydraulic conductivity (without

measurement noise); the algorithm was considered to have converged when the least-squares

objective had fallen below 10−16 or diverged when more than 80 iterations were realized

without convergence. The upper and lower bounds for each parameter were set to 103 m/d

and 10−8 m/d, respectively. Although scenario 3 has some potential for oscillation, the initial

guess 382 must be very poor for non-convergence to occur. In all cases tested, including those

listed in Table 3.1, the global optimum was achieved; however, this cannot be guaranteed in

the presence of insensitive and/or correlated parameters.

3.5 Two-Dimensional Application: Oristano, Italy

The algorithm presented in this study was used to solve the inverse problem for a two-

dimensional representation of a groundwater flow model in Oristano, Italy. The plain of
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Figure 3.3: Convergence results for the one-dimensional test case, with and without measurement
noise, using an initial estimate for hydraulic conductivity of k1 = 0.1 m/d and k2 = 0.1 m/d (note
that the vertical scales may differ).

Table 3.1: Convergence statistics for the one-dimensional test case using various initial estimates
of the parameters.

Converge? Iterations Required
Initial Estimate scenario: scenario:
k1 k2 1 2 3 1 2 3
0.1 0.1 yes yes yes 14 14 15
10 10 yes yes yes 6 6 6
17 17 yes yes yes 12 12 12
100 100 yes yes yes 18 18 16
0.15 50 yes yes no 16 16 –
50 0.15 yes yes yes 9 9 17
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Oristano is located in west-central Sardinia. The morphology of the territory is predomi-

nantly flat surrounded by the Monti Ferru and the Monti Arci hills on the east and by the

sea on the west. A heavily exploited multi-aquifer system provides the source of water for

agricultural and industrial uses. Approximately 25,000 wells are estimated to exist in the

study region, although the number of wells that are actively withdrawing water from the

aquifer system for agricultural and industrial uses is not known. Of these, 500 wells (some

located also in the confined aquifer) have been monitored during recent years. The thick-

ness of the multi-aquifer system ranges from a minimum of ∼ 28 m close to the hills and a

maximum of ∼ 218.5 m close to the sea. Three major units can be identified: a phreatic

aquifer with average thickness of ∼ 12 m, a confining layer with an average thickness of

∼ 4 m, and a confined aquifer with an average thickness of ∼ 110 m [9]. The focus of this

research was on the confined aquifer, where most of the groundwater withdrawals take place.

Since the major objective of this research is to test the proposed algorithm for models with

a large, realistic, number of computational nodes, synthetic, simplified data was assumed for

pumping, recharge, and boundary conditions.

The numerical model for groundwater flow is discretized using the finite element method.

The model contains 29,197 nodes and 57,888 elements and contains local grid refinement in

11 regions (Figure 3.4). For the purposes of this study, the model forcing was simplified

such that there are six extraction well clusters (with a constant rate of 5,000 m3/d each) and

the entire outer boundary of the model is represented with Dirichlet boundary conditions

(Figure 3.4). Specific storage is assumed constant throughout the model at 10−5 m−1. Three

different zonation patterns containing three, seven and 15 zones, respectively, were considered

for hydraulic conductivity (Figure 3.5). The “true” values of hydraulic conductivity (i.e.,

those used to generate the observations) are listed in Table 3.2 for each of the three zonation

patterns. The initial values of each zone were set to 1.0 m/d. The same three algorithm

scenarios used in the one-dimensional test case also were employed in the Oristano model.
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Dirichlet Boundary Conditions

Extraction Well

Figure 3.4: The model grid used as a two-dimensional “slice” of the Oristano, Italy, model.

Using the true parameter values, drawdown observations were generated at the locations

shown in Figure 3.5 for each time step.

Figure 3.6 shows the comparison between the linearized full model and linearized reduced

model for the three-zone hydraulic conductivity distribution (Figure 3.5). The differences

between the linearized full and linearized reduced model are indistinguishable and differences

at the locations of the wells (maximum drawdown) are usually less than 0.0001 m. The

impact of changing the hydraulic conductivity value of a zone is largely dependent on whether

or not significant forcing resides in that zone. For example, in Figure 3.6, changing the

hydraulic conductivity in zone 1 resulted in large changes in drawdown at the locations of the

wells within zone 1; the same is true for zones 2 and 3. The three scenarios listed in Section 3.4
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Table 3.2: True values of hydraulic conductivity by zone for the three zonation patterns considered
(m/d).

Zonation Pattern
Zone 3-zone 7-zone 15-zone

1 15.0 15.0 15.0
2 5.0 5.0 5.0
3 7.0 7.0 7.0
4 12.0 12.0
5 3.0 3.0
6 20.0 20.0
7 10.0 10.0
8 2.0
9 9.0
10 18.0
11 21.5
12 4.3
13 0.5
14 16.1
15 1.0
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Figure 3.5: Zonation patterns used for the Oristano, Italy model.
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both the linearized full and reduced models.
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Figure 3.7: Convergence results for the 3-zone case with and without measurement noise.

were conducted for the Oristano model using the procedure outlined in Figure 3.2. The effects

of measurement noise also were explored; random Gaussian noise (∼ N(0.0 m, 0.1 m)) was

added to the observation data. Figure 3.7 shows the convergence of the three-zone model with

and without measurement noise. Similar to the convergence results of the one-dimensional

test case, all three scenarios converge similarly (without noise) until the objective fell below

10−6, where scenarios 2 and 3 began to deviate from scenario 1. However, with measurement

noise, the least-squares objective cannot fall below approximately 20.0; therefore, there was

no significant difference in convergence between the three scenarios. This is more realistic

because, in practice, there always will be noise present in measured data.

The convergence results of the 7-zone and 15-zone models are shown in Figure 3.8. For
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Figure 3.8: Convergence results for the 7 and 15-zone models.

the seven-zone case, the convergence of the three scenarios is similar to that of the three-zone

Oristano model and the one-dimensional test model. However, the convergence of Scenarios

1 and 2 for the 15-zone case decreases around the fifth iteration. This is due to the fact

that since the hydraulic conductivity of zone 7 is relatively insensitive to the least-squares

objective, this value reaches its lower bound on the first iteration. Therefore, the remaining

zonal values must be adjusted to “compensate” for this constraint. Furthermore, due to

the insensitivity of zone 7, the impacts associated with the lower bound constraint are not

noticeable until the ninth iteration, when the objective starts to become small. At this

point, the algorithm convergence is reduced until the hydraulic conductivity of zone 7 gets

close to the true value, after which super-linear convergence is obtained. The convergence

of the hydraulic conductivities of zones 2, 3, and 7, as shown in Figure 3.9, confirms these

observations.
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The results associated with Scenario 3 do not demonstrate the same impacts on conver-

gence resulting from the parameters being constrained by their lower bounds. This is likely

due to the fact that the Jacobian matrices (Section 3.2.2) are projected onto a subspace

that is determined using the initial guess of hydraulic conductivity, which does not contain

parameters residing on their lower bounds, resulting in more robust or better-conditioned

Jacobian matrices. This is not true for Scenario 2 because the basis functions, and hence the

reduced-model subspace, are updated at each iteration using the current parameter values.

So, at the second iteration, the basis functions are reconstructed using snapshots generated

from a parameter set that is constrained by its lower bound. In summary, the results of

Scenario 3 may indicate a potentially unforeseen advantage associated with the proposed

algorithm, in addition to computational considerations (of which is the focus of this study),

and is a subject of further research.

Comparing, quantitatively, the computational improvements associated with the pro-

posed method is not straightforward. As shown previously, each scenario may require a

different number of iterations to achieve convergence. Additionally, each scenario may arrive

at different parameter values throughout the inverse problem, which, in turn, may lead to

different computational costs associated with iterative QP solvers. However, some compar-

isons are required. The linearized full model for the 15-zone case, at iteration 1, required

about 24.5 seconds of run time on an iMac quadcore computer with an INTEL 2.93 GHz i7

processor equipped with 12 GB RAM, 256 KB L2 cache (per core), 8 MB L3 cache, with

no hyperthreading and no automatic parallelization using GNU GFortran compiler with O3

automatic optimization. The same simulation with the linearized reduced model required

about 10.3 seconds. All 150 principal vectors were retained for this reduced-model simula-

tion; truncation of principal vectors will yield drastic reductions in the reduced-model run

time. The eigenvalue decomposition required very little effort (about 1.4 seconds). Solving

the QP problem at iteration 1 using the linearized full and reduced versions of the quasilin-
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Figure 3.9: Convergence behavior of hydraulic conductivity in zones 2, 3 and 7 and the objective
function for the 15-zone case. The dashed grey line indicates the iteration in which the objective
function for Scenario 3 diverges from that of Scenarios 1 and 2.

53



earization procedure (not including snapshot generation) required 37.7 and 15.35 minutes,

respectively. This comparison will be different for each iteration. The overall inverse problem

(15 zone case) for Scenarios 1, 2 and 3 required 20 hours 13 minutes, 7 hours 12 minutes and

3 hours 51 minutes, respectively, yielding a speedup of more than 5 times for the method

proposed in this study. Truncating principal vectors, exploiting the small size of the QPs,

and more efficient data storage will likely reduce the computational expense even further.
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Chapter 4

Discussion and Conclusions

The accuracy of a reduced model, developed via POD, depends strongly on the manner

in which full-model snapshots are taken in time. A snapshot selection technique has been

developed based on the fact that confined aquifers, subjected to constant pumping, reach

approximate steady state conditions in an exponential manner. This exponential selection of

snapshots assumes fixed initial and final snapshot times. Given a pre-selected fixed number

of snapshots to be used in the POD procedure, the optimal snapshot times are determined

by maximizing the smallest eigenvalue of the covariance matrix. This optimality criterion,

similar to the E-optimality criterion used in experimental design, ensures that all the snap-

shots in the computed set are as significant as possible after the PCA phase of POD. The

initial snap-shot is set small enough such that there is only a very slight change in drawdown

from the initial conditions. The final snapshot is fixed at a time representative of approx-

imate steady state conditions. A simple exponential function then defines the manner in

which snapshots are selected in between these time steps. There are three parameters in

this function; however, since the first and last snapshot is fixed, only one of the parameters

needs to be optimized, i.e., for a particular value of one parameter, the other two can be

calculated.
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Solving this problem of optimal snapshot selection for a large scale, real-world, problem

can be computationally demanding. This would require a very fine temporal discretization,

in which the details are not straight forward, and the solution must be recorded at each

time step. Then the exponential selection method developed in this study can be applied.

However, this method requires a search algorithm to determine the best parameter values

in the exponential snapshot selection function. This process would have to be repeated for

each well. In addition, this analysis would have to be conducted for each real-world model.

However, the optimal parameters of the exponential formula, for any real-world model, are

primarily a function of both the model parameters and model geometry. To approximate

the optimal snapshot set for any domain shape and heterogeneous porous media, we have

developed a simple protocol for snapshot selection based on the optimal snapshot set of a unit

cubic domain and a dimensionless equation. Since we are looking at selecting snapshot times,

we need to translate the dimensionless times into real-world times. The transformation from

dimensionless time to real-world time is approximately linear and is based on the properties of

the real-world model. The determination of the proportionality constant in this relationship

is obtained as the ratio between the lengths of time in which approximate steady state

conditions are reached for both the dimensionless and real-world models.

We have determined the optimal snapshot set for the dimensionless model in three dimen-

sions by determining the appropriate parameter values in the exponential snapshot selection

function via exhaustive search. The accuracy of the reduced model was assessed by eval-

uating the norm of the error between fullmodel and reducedmodel solutions. The results

have shown that this technique yields an accurate reduced model. The optimal snapshot

set was then used to evaluate the accuracy of a simple heterogeneous test problem defined

on a regular domain, mimicking a realworld model. Pseudosteady state times allowed the

determination of the transformation between the dimensionless and heterogeneous models.

The results showed that the suboptimality of the resulting snapshot set does not significantly
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influence the accuracy of the reduced model.

The applicability of the proposed snapshot selection approach was tested on a real aquifer

model. The resulting optimal snapshot times for the dimensionless model were mapped to

their equivalent times in a basin scale model of Central Veneto, Italy. This model consists

of 222,687 nodes and 1,289,570 elements with more than 50 zones each containing different

values for hydrogeologic properties. The reduced-model solution contains very small errors

when compared to the full model, and achieved a reduction in CPU time of approximately

1000 times. The full-model system, with a single well, was reduced from 222,687 ODEs to

10 ODEs which can be reduced even further by omitting insignificant principal vectors from

the basis spanning the reduced-model solution space. This result shows that the proposed

methodology can be used very effectively for groundwater simulation models, in particu-

lar when repeated runs with different forcings or different parameter values are required,

such as in the case of scenario evaluation, groundwater management models, Monte Carlo

simulations, etc.

POD is a very effective tool for reducing the computational burden of groundwater sim-

ulations for linear problems, although its applicability and robustness in nonlinear cases is

still debated and needs to be studied in more depth. Efficiency can be further enhanced

using matrix exponentiation algorithms as opposed to time-stepping strategies. Matrix ex-

ponentiation schemes using, for example, Leja polynomials [6, 8] allow for the evaluation of

the solution at selected times without the need to go through more commonly used time-

stepping schemes. This will significantly aid in snapshot selection as it can provide the model

solution at any specific time, thus alleviating problems associated with matching snapshot

times with the time steps of a time-stepping strategy.

The computational burden associated with solving the problem of parameter estimation is

dependent on both the number of times the model under investigation must be called as well

as the computational expense associated with calling this model. A new technique has been
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developed for solving the inverse problem in which the computational burden of solving the

model is dramatically reduced. The method proposed is an extension of the quasilinearization

technique where the governing system of differential equations is linearized with respect to

the parameters, resulting in a least-squares regression problem or a quadratic programming

(QP) problem. The solution becomes an update on the parameter set. This process is

then repeated until convergence takes place. Applying the POD method drastically reduces

the computational burden associated with these regression problems. This is achieved by

reducing the dimensionality of the linearized flow model embedded in the QP problem to be

solved at each iteration.

The proposed algorithm was used to solve the inverse problem for confined groundwater

flow models. First, a one-dimensional test case was used to illustrate the algorithm mechan-

ics. The methodology then was applied to a two-dimensional, finely discretized version of a

real model in the Oristano region of the island of Sardinia, Italy. The results obtained from

numerical experiments indicate that the convergence of the quasilinearization scheme was

nearly identical for the linearized full model and the POD reduced model derived from the

linearized full model. This suggests that the proposed method may be feasible for solving

real world large-scale inverse problems.

The implications associated with the reduced basis updates also were explored. Through

simulation, the results have shown that this basis, i.e., the reduced model subspace, does not

need to be updated between successive iterations of the quasilinearization procedure, so long

as the initial estimate of the parameter values is within the region of convergence, which may

be slightly smaller than that of the algorithm without POD model reduction. Removing the

need for updating the basis between iterations drastically reduces the computational burden

of solving the inverse problem since the snapshot set needs to be developed only once, at the

first iteration. In other words, the algorithm proceeds by calling the linearized full model

once per parameter at the first iteration only. Then the algorithm continues such that, at
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each iteration, the original full model is called once and a reduced-order QP problem is

solved.

Numerical experiments indicate that without updating the reduced basis between itera-

tions, the parameter estimation process may even become more stable and efficient. For the

15-zone case of the Oristano model, one of the parameter values was constrained by its lower

bound at the first iteration. This was likely a result of this parameter being insensitive to the

observation data. As a result, only the reduced-order algorithm for which the reduced basis

was not updated at every iteration continued to converge super-linearly. This is likely the

result of the subspace projection being based on the initial estimate and not on a parameter

vector containing a parameter at its lower bound. This phenomenon of added stability to

the inverse problem is beyond the scope of this paper and is a topic of further research.
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Chapter 5

Ongoing and Future Research

5.1 Reduced Order Experimental Design for Estimat-

ing Unknown Groundwater Forcing

This topic explores optimal observation well locations and sampling frequencies in order

to estimate unknown groundwater extraction. POD is used to reduce the groundwater flow

model, thus reducing the computation burden and data storage space associated with solving

this problem for heavily discretized models. This reduced model can store a significant

amount of system information in a much smaller reduced state vector.

Consider the following general nonlinear statistical model,

y = M(p) + ε ≈ JDp + ε (5.1)

where, y is the vector of model state outputs that correspond to observations of state (e.g.,

hydraulic head) and M is a nonlinear operator mapping the parameter vector, p, to model

60



outputs and can be approximated linearly with the Jacobian, JD. Along with the sensitivity

equation method, the proposed approach can efficiently prepare the Jacobian matrix, JD,

associated with some design network. It can be shown that the covariance matrix associated

with the estimated parameter vector (p̂) can be written as follows,

Var(p̂) = σ2
ε(J

T
DJD)−1 (5.2)

so long as the expected value of ε is 0 and the columns of JD are linearly independent. The

optimal design for an observation network is one that minimizes the norm of this covariance

matrix [13]. If the norm used for this analysis is the trace, the optimal experimental design

is known as A-optimality. If unknown pumping rates are the parameters to be estimated,

the optimal experimental design will then satisfy the following,

min
design

tr
(

JT
DJD

)−1
; [JD]i,j =

∂hi,t

∂Qj,τ
(5.3)

where index i is associated with the observation well location, index j the pumping well

location, index t the sampling time, and index τ the extraction stress period.

In the real-world, pump operation is based on the characteristics of the pump in question

and is a function of the lift required to remove the water. Therefore, the extraction rates

to be estimated are a function of the head in the system. As such, to estimate extraction

rates, one would need to incorporate functions that represent the wells’ operation; thus, the

parameters to be estimated are the operational condition of the extraction wells, e.g., energy

usage, pump speed, etc. This leads to some nonlinearities associated with the information

obtained from an observation network given different pumping distributions. However, the

flow model itself is linear and superposition holds with respect to forcing terms. Therefore, a

POD reduced model can replace the full model and only needs to be generated once, off-line,
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for unit values of extraction at each well (see Section 2.2).

Since pumping distributions can be widely variable, one must conduct a robust experi-

mental design procedure to account for all possible distributions that could exist. Therefore,

one would need to solve a series of experimental design problems and evaluate the design that

provides the most information for all possible pumping distributions. This can be carried

out as a Monte Carlo type analysis and would require many executions of the simulation

model. Hence, the application of POD for this type of problem will be quite beneficial.

A Generic Algorithm (GA) can be used to optimize the observation well locations and

sampling frequencies for maximizing the associated collected information given some feasible

pumping distribution. This is then repeated for each possible pumping distribution. This

approach can be easily applied to the proposed Oristano, Italy groundwater aquifer system.

One would need to study the relationship among the number of observation wells, observation

well locations, sampling frequency, and the collected information for estimating unknown

groundwater extraction. Furthermore, it is clear to see that the successful application of POD

for this problem indicates that it can be successfully extended to a groundwater management

problem, where the extraction rates (and hence the decision variables) are a function of the

hydraulic head.

5.2 Reduced Order Predictive Uncertainty Analysis us-

ing the Null-Space Monte Carlo Method

Groundwater models are essential for making predictions associated with how an aquifer sys-

tem will respond to anthropogenic factors. However, the accuracy and reliability of a model

is predicated on both the observations of state obtained in the field as well as any expert

knowledge associated with the hydrogeologic setting. Often, there are few observations avail-
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able and the hydrogeology is relatively unknown. In these cases, groundwater models must

be drastically simplified in order for the calibration process to be well-determined. Optimal

parameter dimensionality has been explored by Yeh and Yoon [48], Sun and Yeh [34], Sun

and Yeh [35] and Chiu et al [11].

The subsurface lithology and composition is very complex and in order for the model

to produce accurate predictions, the parameterization must also be equally complex and

known. However, adding this degree of complexity to the model without knowing the truth,

will result in a great deal of uncertainty in the parameter values and cannot produce a

more reliable prediction. However, with this complexity added, the overall model predictive

uncertainty, given the uncertainty in the parameter values (i.e., parameter error), can be

quantitatively explored via Monte Carlo techniques. Each randomly generated parameter

field becomes an initial value for the calibration process. Each calibration process will likely

yield different optimal parameter values and hence different model predictions. Therefore,

each member of the Monte Carlo ensemble calibrates the model, but produces a different

prediction. This type of analysis is known as calibration-constrained Monte Carlo analysis.

Calibration-constrained Monte Carlo analyses can be computationally demanding as they

require many (often thousands) of model calibrations. This computational burden can be

reduced immensely using the Null-Space Monte Carlo method proposed by Tonkin and Do-

herty [37] which has become part of the parameter estimation software known as PEST [15].

The method proceeds as follows [37].

For nonlinear regression, the update direction for each iteration is formulated as

∆p =
(

JTQJ
)−1

JtQr (5.4)

where ∆p is the nb × 1 parameter upgrade vector, J is the nb × nb Jacobian matrix of

sensitivities of the parameters with respect to the model-simulated equivalents of the obser-
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vations, Q is an nb × nb matrix of weights, and r is the residual vector [37]. However, if

the model is over-parameterized, many parameters will have the same relative impact on the

model-simulated equivalents of the observations, i.e., many columns of J will have nearly

the same “shape”. These redundancies can be dealt with systematically by conducting a

spectral decomposition of JTQJ,

JTQJ = VEVT =

[

V1 V2

]







E1 0

0 E2







[

V1 V2

]T

≈ V1E1V
T
1 (5.5)

where E1 is a diagonal matrix of eigenvalues considered to be statistically significant, E2 is

a diagonal matrix of zero or near zero eigenvalues, V1 and V2 are matrices of orthonormal

eigenvectors associated with E1 and E2, respectively. V1 is said to be a basis spanning the

“calibration solution space” and V2 is a basis spanning the “calibration null space” [15].

Therefore, the calibration search direction can be approximated as follows

∆p ≈
(

V1E1V
T
1

)−1
JtQr (5.6)

However, consider the projection of the upgrade vector in the direction of V which is equiv-

alent to shifting and rotating the parameter coordinate system [36],

∆p = ∆Vps ≈ ∆V1ps (5.7)

The inverse problem now becomes one in which the objective is to search for a ∆ps (nk × 1)

that minimizes the least-squares objective [36] where k is the truncation level determined in

Equation (5.5). Therefore, the problem is re-formulated in terms of estimating ps which are
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known as superparameters. Similarly, ∆ps is calculated as

∆ps =
(

JT
s QJs

)−1
Jt

sQr (5.8)

where, Js is the nk ×nk Jacobian matrix sensitivities of the superparameters with respect to

the model-simulated equivalents of the observations. Note that nk $ nb, thereby reducing

the computational effort of the inverse problem as well as converting an over-parameterized

under-determined inverse problem into a well-determined problem in which the superparam-

eters can be uniquely identified. However, the basis V1 is determined based on the starting

parameter values and never changes throughout the inverse problem.

This method, known as Truncated Singular Value Decomposition (TVSD) is solved in

PEST using the Gauss-Levenberg-Marquardt method. However, the projection of Equation

(5.7) can be thought of as an additional “level” of parameterization. Therefore, the reduced

order parameter estimation procedure proposed in this dissertation is capable of solving this

inverse problem. This is done by simply calculating V1 as in Equation (5.5) and rewriting

Equation (3.16) as

B̃
dδsr

∂t
= Ãδsr + D̃mδks (5.9)

where δks = V1(km+1
s − km

s ). Then, solve the inverse problem using the proposed reduced

order method for the superparameters, ks.

In addition to having defined a “calibration solution space” the TVSD method also defines

the “calibration null space”. It is in this null space that the majority of the parameter un-

certainty and hence model predictive uncertainty resides. Therefore, random perturbations

of the parameter values in a Monte Carlo framework can be projected into the calibration

null space as follows [37],

(p − prand)
′ = V2V

T
2 (p − prand) (5.10)
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These perturbations are then added to the current calibrated parameters. If the model

is linear, these randomly generated parameter values would exactly calibrate the model.

However, since in groundwater flow, the parameter estimation process is nonlinear, these

random parameter values may not calibrate the model. They are likely to be close enough

that the corresponding inverse solution can be achieved in a small number of iterations of

the calibration method used. However, for highly nonlinear models, several iterations of

the calibration method will be required, which can be computationally expensive in the

Monte Carlo framework. Currently, those who employ the Null-Space Monte Carlo method

usually drop random realizations of the parameter vector if they do not converge in one

or two iterations. However, if the Gauss-Levenberge-Marquardt algorithm in PEST can be

replaced with the reduced order method proposed in this dissertation, the computational

effort of conducting the Null-Space Monte Carlo method can be greatly reduced without

the need to discard random realizations of the parameter vector. This would be a great

contribution to model predictive uncertainty analysis.

5.3 Unconfined Groundwater Model Reduction via

Proper Orthogonal Decomposition

The problem of artificial-recharge operations for groundwater systems has been extremely

important in desert regions throughout California. These systems must be managed effec-

tively where the objective could be, for example, to achieve desired water levels throughout

the system while minimizing operational costs. The decision variables associated with this

problem can include pond size, location, stage, etc., as well as some additional decision vari-

ables such as extraction/injection rates at wells. Solving this problem would require many

model solutions subject to various values of the decision variables. Therefore, reducing the
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computational burden associated with running the groundwater flow model will provide a

significant benefit for solving this problem.

In order to evaluate the impacts of artificial recharge on a groundwater system, the

uppermost layer of the model must be an unconfined layer with a water table condition.

The governing equation for unconfined groundwater flow is as follows [3],

∇ · (Kh∇h) − q − Sy
∂h

∂t
= 0 (5.11)

where Sy is the specific yield. Upon spatial discretization via finite differences, Equation

(5.11) can be approximated as the following system of ordinary differential equations (ODEs)

B
dh

dt
+ A(h)h − q = 0 (5.12)

Equation (5.12) is similar to Equation (2.3) with state variable being hydraulic head and the

stiffness matrix, A, is now a function of the hydraulic head distribution. Therefore, Equation

(5.12) is nonlinear with an approximately quadratic relationship between changes in forcing

and changes in hydraulic head. As a result, iterative nonlinear solvers must be employed to

solve this system. For example, MODFLOW uses a standard Picard iteration to solve for

unconfined aquifers [17]. This method assumes an initial guess for head, h0, which is used

to form the A(h) matrix as A(h0). The system is then solved as a linear system for h. If

the difference between h0 and h is larger than some tolerance, h0 is set equal to h and the

process is repeated. This continues until convergence is achieved.

The use of POD for unconfined aquifers can be quite beneficial and needs to be explored.

Complications may arise due to the nonlinear relationship between forcing and hydraulic

head. However, at each Picard iteration, a “known” head distribution is used to determine

the system matrices resulting in a linear system of ODEs. Therefore, superposition is now
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upheld and the reduced model can return an accurate solution, given that the reduced basis

P is accurate. Hence, the success of this approach depends on the ability of the basis P

to produce an accurate reduced model over all possible distributions of hydraulic head, i.e.,

all possible values of h0. The range of possible h0 values is predicated on the possible (or

feasible) combinations of forcings that could exist. Therefore, one could explore snapshot

selection using the Greedy Algorithm [7, 22] by addressing the forcing distribution as though

it were a parameter to be estimated. This could potentially produce a robust P matrix for

this type of problem as it has been shown in the literature to provide robust P matrices for

capturing the variability of model parameters.
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