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Figure 1: A Poisson-disk sampling of a non-convex domain (left). The gray-shaded disks show the sampling is maximal (right).

Abstract
We solve the problem of generating a uniform Poisson-disk sam-
pling that is both maximal and unbiased over bounded non-convex
domains. To our knowledge this is the first provably correct algo-
rithm with time and space dependent only on the number of points
produced. Our method has two phases, both based on classical dart-
throwing. The first phase uses a background grid of square cells
to rapidly create an unbiased, near-maximal covering of the do-
main. The second phase completes the maximal covering by calcu-
lating the connected components of the remaining uncovered voids,
and by using their geometry to efficiently place unbiased samples
that cover them. The second phase converges quickly, overcom-
ing a common difficulty in dart-throwing methods. The determin-
istic memory is O(n) and the expected running time is O(n logn),
where n is the output size, the number of points in the final sam-
ple. Our serial implementation verifies that the logn dependence
is minor, and nearly O(n) performance for both time and memory
is achieved in practice. We also present a parallel implementation
on GPUs to demonstrate the parallel-friendly nature of our method,
which achieves 2.4× the performance of our serial version.
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Graphics—Computational Geometry and Object Modeling; F.2.2
[Theory of Computation]: Analysis of Algorithms and Problem
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1 Introduction

Maximal Poisson-disk sampling distributions are useful in many
applications. In computer graphics these distributions are desir-
able because the randomness avoids aliasing, and they have the blue
noise property. Blue noise means the inter-sample distances follow
a certain power law, with high frequencies more common. The lack
of low-frequency noise produces visually pleasing results for ren-
dering, imaging, and geometry processing [Pharr and Humphreys
2004]. The bias-free property is crucial in fracture propagation
simulations. In this process, a random point cloud is required to
minimize the effect of the dynamic re-meshing on the direction of
the crack growth. “Regular geometries tend to form preferential
directions for crack propagation.” [Bolander and Saito 1998] “A
randomly generated particle system, on the other hand, approxi-
mates isotropic fracture properties well.” [Jirásek and Bazant 1995]
A maximal distribution improves the quality bounds and perfor-
mance of meshing methods such as Delaunay triangulation [Attali
and Boissonnat 2004].

Poisson-disk sampling is a process that selects a random set of
points, X = {xi}, from a given domain, D, in some K-
dimensional space. The samples are at least a minimum distance
apart, satisfying an empty disk criterion. In this work, we focus on
the two-dimensional uniform case, where the disk radius, r, is con-
stant regardless of location or iteration. Inserting a new point, xi,
defines a smaller domain, Di ⊂ D, available for future insertions,
where Do = D. The maximal condition requires that the sample
disks overlap, in the sense that they cover the whole domain leav-
ing no room to insert an additional point. This property identifies
the termination criterion of the associated sampling process. Bias-
free or unbiased means that the likelihood of a sample being inside
any subdomain is proportional to the area of the subdomain, pro-
vided the subdomain is completely outside all prior samples’ disks.
This is uniform sampling from the uncovered area. This definition
of “unbiased” is standard in the Poisson-disk context [Gamito and
Maddock 2009] and is equivalent to the Matérn second process in
statistics [1960]. (And it goes by other names in other sciences.)
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Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X,xi 6= xj : ||xi − xj || ≥ r (1b)
Maximal: ∀x ∈ D,∃xi ∈ X : ||x− xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexityE(n logn) time andO(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4× faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.



In Section 2 we describe the various steps of the two-dimensional
sequential algorithm, with proofs and analysis in Section 2.5. We
then present our parallel implementation in Section 3. Finally, we
describe application examples in Section 4 that demonstrate the ef-
ficiency of the proposed method and the quality of the output dis-
tributions.

2 Sequential Sampling

Our algorithm consists of the following steps:

1. Generate a background grid; mark interior and boundary cells.

2. Phase I. Throw darts into square cells; remove hit cells.

3. Generate polygonal approximations to the remaining voids.

4. Phase II. Throw darts into voids; update remaining areas.

While Phase I is not required for the correctness of the algorithm,
it is a significant time and memory optimization. In Phase I, suc-
cessful dart throwing is very fast initially, then slows down as more
darts are inserted. Phase II requires computing and storing the in-
tersection of geometric objects, and a dart is thrown into a polygon
selected using a binary search. This results in an additional cost
in the dart throwing procedure; however, it does not slow down as
darts are inserted. (It actually speeds up!)

Our two phase-algorithm utilizes an active pool of cells to guide
the dart throwing process. During Phase I, each cell in the active
pool is square-shaped and can accommodate a single sample. Once
a dart is thrown successfully into a randomly-selected cell, this cell
is invalidated and removed from the active pool. An invalid cell is
a cell that does not have any room for a new sample. If a thrown
dart violates the empty-disk condition or lies outside the domain,
the associated sample is rejected and that trial is considered a miss.
In Phase I, we throw A|C| darts where C is the set of initial cells
intersecting the interior of the domain. In addition, as a speedup,
after B|C| throws we terminate early if there are M consecutive
misses. A = 5, B = 1/16 and M = 400 works well for the serial
implementation. The running-time of Phase I is linear, O(|C|).

The regions of cells that remain uncovered by disks after Phase I
are called voids. They are usually small and scattered all over the
domain. We loop over the remaining valid cells and calculate their
intersection with prior darts to get a more accurate representation
of their remaining voids (if any). For simplicity we bound the voids
by chords of circles rather than the true circular arcs; this is a good
approximation since the circles are large compared to the squares.
A polygonal void is an outer approximation to an arc-bounded void.
A polygonal void is selected based on its area relative to the sum
of the areas of all the polygonal voids. A dart is thrown into the
selected void, based on a uniform sampling of the polygon. As
in Phase I, a dart is a miss if it is inside a prior sample, i.e. it is
inside the polygonal void but outside the arc-bounded void. The
chance of success is bounded below by a constant, because the area
of a polygonal void is at most a constant factor greater than the
arc-bounded void it approximates. Selecting a void and updating
selection probabilities can be done using a tree in O(logV) time,
where V is the set of remaining voids. For memory efficiency, in
our implementation we use a flat array and a lazy update of the
selection probabilities, updating only when many misses occur in
a row. This is called a stage. In practice, despite the non-linear
theoretical complexity, void selection is fast compared to the linear-
time geometric calculations. The expected run-time of Phase II is
O|V + V logV| with a larger constant in front of the linear term.

Virtually all the methods in the literature have a hard time select-
ing points from small voids, doing worse as voids get smaller. We

do not have this problem. Voids are selected proportional to their
polygonal area. If a void is selected, the chance of successfully
throwing a dart into it is actually better if its area is smaller, be-
cause the chord is a better approximation for shorter arcs.

2.1 Generation of a background grid

We generate the background grid using a variant of flood-fill (a.k.a.
seed-fill, boundary-fill), a ubiquitous technique in graphics.

The input to our algorithm is a set of edges defining a polygon with
holes. Boundary edges are oriented so the domain interior is to their
left. Our algorithm can also accommodate point set inputs and pre-
scribed sample points embedded in a bounded domain. Prescribed
internal edges have no relevance for sampling, but are allowed be-
cause they are useful for some mesh generation algorithms.

We start the algorithm by generating a uniform grid covering a
bounding box of the input domain. Cell sides are length r/

√
2 and

cell diagonals are length r, so each cell can only accommodate a
single sample. Each cell has two attributes. A valid cell is one
that might accept a sample, and a boundary cell intersects one or
more of the input edges. These two classifications are stored using
two boolean arrays to get the best performance. Sampling a million
points in a square takes three million cells, which consumes less
than 1.0 MB of memory.

After generating the uniform grid, we identify the boundary cells.
Along each edge we generate a uniform set of temporary points,
and locate the hit-cell containing each point. Some cells might not
have a point because an edge could graze its corner and have a short
length inside the cell. These missed cells are neighbors of hit cells,
and are recovered by checking the intersection of the edge with the
sides of the hit cell, using only integer operations. The cells that
are interior to the domain are distinguished from those exterior to
the domain using a flood-fill algorithm. Exterior cells are invalid,
interior and boundary cells are valid.

For the purposes of proving that we do not spend too much time
on external cells when building the background grid, we assume
that the number of external cells is bounded by a constant times the
number of internal cells. For the purposes of proving constant com-
plexity per void in Section 2.5.2, we assume that r is chosen small
enough that a cell contains at most one domain boundary vertex and
two domain boundary edges. These assumptions can be overcome
using known preprocessing techniques but we skip the tedious de-
tails.

2.2 Phase I. Throwing darts into square cells

Since all the cells have the same area, r2/2, the dart-throwing pro-
cedure selects a cell uniformly from the valid pool. We then draw
a uniform sample from its square. If the selected sample violates
the empty-disk condition or lies outside the domain boundary, that
iteration is a miss. Otherwise, the dart hits a still-uncovered region.
We accept the selected sample, and the cell is marked as invalid
since it can no longer accept a sample. The checks are executed in
constant time, since we only need to check for prior disks lying in a
constant number of nearby cells and the number of boundary edges
in a cell is at most two; see Section 2.5.2.

We iterate at least |C|/16 times, where C is the initial set of valid
cells. We continue iterating up to 5|C| times, stopping early if 400
consecutive misses occur. At this point, the chance of successfully
accepting a new sample is usually quite low, and we switch to Phase
II.



(a) Find the boundary cells (dark)

(b) Flood-fill to find valid cells (dark)

(c) Phase I darts (dots) land in many of the cells (light)

(d) Only the uncovered cells (dark) are passed to Phase II

Figure 2: Our algorithm through Phase I.

2.3 Polygonal approximations to arc-voids

After Phase I, for each valid cell we gather the connected compo-
nents of its disk-free region inside the domain. In Phase II these
components take the place of cells in Phase I. Each component is
a void, V . It is an arc-gon, Vr , a closed 2D region bounded by
straight segments and arcs of circles. We construct a polygonal
outer approximation to it, Vp, representing arcs by chords. We shall
prove in Section 2.5.2 that Vp is convex. A corner of Vp is a ver-
tex with interior angle < 180◦. We represent the polygon by an
ordered list of its corners. The following construction algorithm is
illustrated in Figure 3:

1. Initialize Vp to the cell’s square, then intersect it with any
boundary edges to retain just the domain interior.

2. For every disk d in a nearby cell, subtract it from Vp: for every
corner c of Vp it contains,

(a) Start from c and traverse the edges of Vp in both direc-
tions, to find the first two edges intersecting the disk’s
circle.

(b) If no edges intersect the circle, then Vr is completely
covered and the void is deleted.

(c) If the chord between the points of intersection separates
c from the center of d, then the disk cuts Vp into mul-
tiple connected components. Find the additional circle-
edge intersections and split Vp.

(d) Otherwise, insert two corners at the points of intersec-
tion, and remove all the intervening corners and edges
from Vp, since they are covered by the disk.

(e) Adjust the location of the new corners to be at the inter-
section of the arc-gon Vr and the circle.

3. If arcs of Vr intersect at any point other than a polygon corner,
split the polygon into connected components, as illustrated in
Figure 4.

We shall show in Section 2.5.2 that for each cell, the number of
nearby disks, corners and connected components are bounded by
constants. The running time of constructing each void is constant,
and the running time of constructing all voids is O(|V|). Because
of the geometric operations, the running time of this step is a sig-
nificant portion of the whole.

Figure 3: Generation of the polygonal void (dark) bounded by
three circles, from left to right. The polygon is initialized to the cell
boundary. The red, blue, then green disks are intersected with the
polygon. We get a polygon by using the chords instead of the arcs,
but we update vertices at circle-polygon intersections with circle-
circle intersections.

2.4 Phase II. Throwing darts into polygonal cells

Phase II is similar to Phase I, with polygonal voids taking the place
of square cells. When selecting a void we must take into account
the relative areas of voids to maintain the bias-free property. After
selecting a void, we choose a uniform random point inside it; see
Section 2.5.3 and Graphics Gems [Turk 1993]. We use the arc-gon
to determine if the selected point satisfies the empty-disk condition.



Figure 4: Generation of two voids (dark) entrapped between two
circles and a boundary edge. First the square is updated to respect
the boundary edge. Next it is intersected with the circles. We detect
overlapping circles containing no other polygon vertices and split
the polygon in Step 3.

If so, the process was a success, and we retain that sample. Updat-
ing the relative probabilities can be expensive, so we do that in a
lazy fashion. Let V0 be the initial set of voids, and Vi the set at
stage i. Similar to phase I, we throw at least |Vi|/16 darts. We
throw at most 3|Vi| darts, quitting earlier if 100 consecutive misses
occur. The expected number of hits will be a constant fraction of
|Vi|. We then update all the polygonal voids that the inserted disks
overlap, using the algorithm of Section 2.3. We then compress the
list of remaining voids by removing the covered ones, recomputing
the relative probabilities, and continuing with pool Vi+1. This con-
tinues until we have an empty pool, i.e. all voids are filled, and the
distribution is maximal.

We shall prove in Section 2.5.3 that, at each throw, the probability
of success is bounded below by a constant. At each stage we will
fill in a constant fraction of the remaining voids. This recursion
gives the total amount of work as a constant times the total amount
of work in the first stage, for |V0|. Placing a dart and checking if
it is disk-free is a constant-time operation. Updating the polygonal
voids is a linear amount of work in going from stage i to i + 1, so
this is an amortized constant. The only non-constant operation is
selecting which void to throw the dart in, which we next show is
O(logVi). Thus the total time is O(V logV) and the total space is
O(V).

Using a tree to keep track of the remaining uncovered regions as in
Dunbar and Humphreys [2006] and Jones [2006] is a good approach
if the areas are constantly updated. However, we use a simple array
with half the size of a tree, and that works well for our lazy updating
scheme. In practice, it appears that many cells and voids are com-
pletely covered over in the course of selecting new samples, so we
do not think it is worth the computational time to constantly update
voids.

Let ai be the area of the ith polygonal void, so pi = ai/A is the
probability we should select void i. Array entry i points to the ith
void, and stores fi =

∑i
j=1 pi, the sum of the probabilities of the

prior voids. At each iteration we select u ∈ [0, 1] uniformly. Using
binary search on the array, we find the cell with the ith percentile
relative area, i.e. the i such that fi ≥ u > fi−1. This binary
search takes O(logVi) time. If the dart throw is successful, we
mark the void as filled to avoid further geometric computations,
but leave it in the array to avoid bias. A practical heuristic is to
decide when to update the array dynamically, based on the hit rate.
Updating the array after 100 consecutive misses, or when the area
of the invalidated polygons exceeds 0.7A, seems to work well.

2.5 Correctness and complexity analysis

The uninterested reader may skip ahead to Section 3. We provide
some explicit values for the constants affecting the size of the data
structures. Knowing the worst case allowed us to use small, fixed-
size arrays in our implementation. For the constants affecting the
expected running time of the algorithm, we did not try to find ex-
plicit values because they are not very useful. Instead we tuned the

Figure 5: Maximal Poisson samples of a unit square at four densi-
ties: r = 0.1, 0.05, 0.01, 0.005. For the two coarsest densities we
also show their disks.

algorithm empirically.

Let n be the number of darts in the domain after the algorithm ter-
minates. We first show that we do not have too many cells.

Theorem 1 The total number of cells |C| intersecting the interior
of the domain is Θ(n) in any maximal Poisson sampling.

Proof |C| = Ω(n) because each cell contains at most one dart.
For the other direction, an empty cell can only be touched by a
constant number of disks, because the disks have constant radius.

2.5.1 Bias Free

In either phase, let Ck for k ∈ J denote a particular cell or polyg-
onal void. Let Ω be any domain subregion Ω ⊂ Di−1. Assume for
now Ω ⊂ Ck. The probability that the next point xi will be taken
from Ω is the probability of selecting Ck times the probability of
selecting Ω within Ck, compounded by re-throws if the dart misses
the remaining domain Di−1 entirely. Let A(·) denote area, so

P (xi ∈ Ω) =
A(Ck)∑
J A(Cj)

A(Ω)

A(Ck)
(1+P (miss)+P 2(miss)+. . .).

Since the miss probability is 1 − A(Di−1)/
∑
A(Cj), we have∑∞

m=0 P
m(miss) =

(∑
A(Cj)

)
/A(Di−1). Simplifying yields

P (xi ∈ Ω) =
A(Ω)

A(Di−1)
,



which is precisely the requirement for the bias-free equation
(1a). To extend to Ω 6⊆ Ck, i.e. Ω spanning several cells or
voids, simply partition subsets of Ω among cells. (For Phase I,
A(Ck)/

∑
A(Cj) = 1/|J |.)

2.5.2 Void complexity and convexity

For the purposes of assigning a disk center to a unique square,
squares are considered open on their minimal extremes, as in Fig-
ure 6. We call such squares half-open squares.

r 

! 

x y ! 
" 

" 

Figure 6: Left, any r-disk intersecting the central half-open square
is assigned to a unique square within this template. Right, some
chord-angle identities.

Lemma 2 (“Civilization” template) r-disks that intersect a half-
open square are assigned to one of 21 squares, up to two squares
away, within a 5 × 5 grid of squares with the corner squares re-
moved. See Figure 6 and the computer game Sid Meier’s Civiliza-
tion prior to version V.

This shows that checking if a dart is in any disk is a constant-
time operation, that any void is bounded by a constant number of
disks, and that any square contains a constant number of voids. The
bounds provided by Lemma 2 may be tightened by using area, an-
gle, and distance arguments. For linearity in Phase II, it remains to
show that a constant fraction of each polygonal void is outside any
circle.

Lemma 3 (disks in square by area) No more than 15 r-disks can
intersect a square.

Proof An empty-disk system of r-disks induces a system of non-
intersecting r/2-disks with the same centers but half radius. An
area argument shows that only 15 of these disks can have centers
close enough (< 3r/4) to touch the square.

For voids we will improve the 15-disk bound to 9. Figure 8 is a
construction showing that 8 disks can bound a void.

A void Vr is one connected component of the non-empty inter-
section of a square, together with the closed complement of some
radius-r disks. Vr is an arc-gon. A polygonal void Vp is the convex
hull of Vr . For convenience in the proofs, we retain flat vertices v
of Vr as vertices of Vp when the angle of Vp at v is 180◦. Note that
Vr is closed and bounded, and Vp is an outer approximation to Vr .
The polygonal angle at a vertex y of Vr will mean the interior an-
gle between segments xy and yz where x, y, and z are consecutive
vertices of Vr . xy denotes the line segment between x and y and
|xy| denotes the straight-line distance between x and y.

Our next series of lemmas shows that all the vertices of Vr appear
as vertices of Vp, and we bound the size and shape of voids. For
simplicity we assume that a square is completely interior to the do-
main. At the end we relax this assumption and note that the changes
to the results are slight.

Lemma 4 (kites) The angle subtended by a chord xy is twice the
angle α between the circle’s tangent at x and the chord. And α =
arcsin (|xy|/2r). See Figure 6.
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Figure 7: Left, an upper bound on chord lengths implies an upper
bound on polygonal angles. Right, only one circle bounding a void
can intersect a given square side twice.

Theorem 5 (convex corners) The polygonal angle at a vertex of
Vr is at most 180◦.

Proof We have two cases. In the first case vertex y is at the in-
tersection of a circle C and square edge e. At worst x and z are
also on e, in which case the angle is 180◦. In the second case y
is at the intersection of two circles Cx and Cz; see Figure 7. The
angle between the tangents of Cx and the line between the points of
intersection between the two circles is at most 60◦, achieved when
cx lies on Cz . The angle between the tangent of Cx at y and the
chord xy is arcsin(|xy|/4r) from Lemma 4. Since the chord must
lie inside the square, |xy| ≤ r, and this angle is at most 30◦. The
angles between the circles-intersection line and yz are also at most
90◦, so the sum of these angles is ≤ 180◦.

Corollary 6 (naturally convex) All vertices of Vr are on the
boundary of Vp. Boundary edges of Vp are chords of circles and
sub-segments of square sides.

Corollary 7 (one arc) A circle contributes at most one arc to Vr .

Lemma 8 (convex centers) The centers of circles bounding Vr

must be in convex position.

Proof See Figure 7 left. Suppose that three circles Cx, Cy, and Cz

touch Vr , but that center cy is not in convex position with respect to
centers cx and cz . That is, for some point p of Vr on Cy , ∠czcyp+
∠pcycx > 180◦. Assume Cy intersects both of the other circles.
Consider the arc of Cy between its intersection points touching Vr .
(This arc is unique by Corollary 7.) Then the arc’s chord is longer
than r, the diagonal of the square, a contradiction. Hence the other
two circles are too far away from one another to both intersect Vr .
If Cy does not intersect the other two circles, then they are even
farther away.

Lemma 9 (10 arc sides) Fewer than 10 circles bound Vr .

Proof We show that for r-disks bounding Vr , the distance between
the centers of the two farthest-apart circles cx and cy must be> 3r,
so not both can overlap a square with diagonal r. By symmetry and
Lemma 8, the closest cx and cy can be is if all circles are arranged
on a regular n-gon, with side length r. By Lemma 4 the circum-
scribed circle C for this n-gon has radius R = r/(2 sin(180/n)).
Checking distances between opposite vertices for odd and even n
completes the proof.

Figure 8 shows that 8 circles is possible.

Lemma 10 (8 square sides) The square contributes at most 8
sides to Vr , and only 4 if flat sides are ignored.

Proof Any circle intersecting a side exactly once (and non-tangent)
contains one of the corners of the square, and so does not increase
the number of subsegments of the side bounding Vr . There can only
be one circle that intersects one of the four square sides twice, or is
tangent to it; see Figure 7 right.



Putting the prior lemmas together we have the following theorem.

Theorem 11 (few arc-gon sides) The number of sides of Vr is at
most 17, and at most 13 if flat sides are removed. Figure 8 realizes
a void with 16 sides, and Figure 8 shows a void with 12 non-flat
sides.

Figure 8 shows that 8 circles is possible.

Lemma 6 (8 square sides) The square contributes at most 8 sides
to Vr , and only 4 if flat sides are ignored.

Proof Any circle intersecting a side exactly once (and non-tangent)
contains one of the corners of the square, and so does not increase
the number of subsegments of the side bounding Vr . There can only
be one circle that intersects one of the four square sides twice, or is
tangent to it; see Figure 7 right.

Putting the prior lemmas together we have the following theorem.

Theorem 3 (few arc-gon sides) The number of sides of Vr is at
most 17, and at most 13 if flat sides are removed. Figure 8 realizes
a void with 16 sides, and Figure 8 shows a void with 12 non-flat
sides.

Figure 8: Voids with 16 sides (left) and a closeup (top-left). A slight
tweak yeilds a void with 12 nonflat sides (bottom-left). (todo: put
the two close-ups into one pdf to get the layout I want)

The preceding considers only squares that did not contain the
boundary of the input domain, but most of the proofs only rely
on squares being contained in a circle of radius r/2. For bound-
ary squares, we note that they may have at most two edges of the
input domain (sharing a common vertex), and their segments on
the boundary of Vr are of length < r, so that the number of sides
increases by at most 2.

2.5.3 Phase II geometry and complexity

Area ratio of polygonal void to arc-gon void. We now consider
the ratio of the area of Vr to Vp, since that determines the expected
number of dart-misses in Phase II.

Theorem 4 A(Vr)/A(Vp) is at least a constant.

Proof Consider the circles bounding a void, including circles in-
tersecting a square side twice. Consider the weighted Voronoi re-
gion of the circles [Edelsbrunner and Shah 1992]. Assume for now
that the remainder region is bounded entirely by r-circles, and trun-
cate the Voronoi cells at the polygonal void Vp.

For any circle C, its Voronoi cell will contain the circle chord on the
polygon boundary χ, the arc-boundary s, and a part of the interior
of Vr . The reasons are as follows. Let VC be the circle’s truncated
Voronoi cell, and VSext its partition outside C, and VSint its part
inside C. Recall from Lemma 4 the circle centers are in convex
position and can be considered in order around the boundary of
the void. Since only the consecutive circles around the void may
overlap with C (else the void would not be connected), the chord
is not inside any other circle, so it is in VC. Also, the Voronoi
line of equal distances between C and a non-consecutive circle lies
strictly outside C. Since by Lemma 5 there are at most a constant
number of circles (< 10), there are a constant number of straight
sides bounding VC. All of these bounding sides lie outside VSext as
well. At worst these sides approach tangency with C, and form a 9-
sided polygonal outer approximation to the arc. Since the arc s has
constant curvature, the area of VSext is at least a constant fraction
of VSint. We do not work out the exact constant because this bound
is not very tight; for example, many fewer than 9 circles can be
packed close enough to be nearly tangent with C.

Now relax the assumption that the remainder region is bounded
entirely by circles. Treat the lines supporting the square sides or
domain boundary as infinite-radius circles centered at infinity, and
all the arguments of the prior paragraph still hold. The area ratio
bound constant can be reproduced by assigning the Voronoi regions
of the infinite-radius circles to the closest r-circle, since for the
infinite-radius circles the arc-gon and polygon are identical.

Constant fraction progress per stage. Theorem 4 proves that the
first dart thrown in a stage i has a constant probability of being a hit.
However, there is a technical difficulty for subsequent darts. The
first disk may cover other polygonal voids, perhaps completely. We
update the polygons lazily, so those voids reduce the probability of
a successful hit. This is resolved by recalling that any inserted disk
can affect only a constant number of other voids. After c1|Vi| hits,
c2|Vi| voids remain unchanged, so the probability of a dart being a
success is at least c2 times what it was at the start of stage i. Here
c1 is something smaller than 1/60, and c2 = (1 − 60c1). The 60
arises from Lemma 2 where each placed disk intersects at most 15
other cells, and by Theorem 9 each cell has at most 4 voids. Thus
a lower bound on the expected number of hits in stage i is c2 times
the constant from Theorem 4 times the number of throws c1|Vi|:
the point is this is O(|Vi|). In practice, many more voids are filled
than these constants suggest, but the above is sufficient to prove the
following theorem.

Figure 8: A void with 16 sides (left) and a closeup (top-right). A
slight tweak yields a void with 12 nonflat sides (bottom-right).

The preceding considers only squares that did not contain the
boundary of the input domain, but most of the proofs only rely
on squares being contained in a circle of radius r/2. For bound-
ary squares, we note that they may have at most two edges of the
input domain (sharing a common vertex), and their segments on
the boundary of Vr are of length < r, so that the number of sides
increases by at most 2.

2.5.3 Phase II geometry and complexity

Area ratio of polygonal void to arc-gon void. We now consider
the ratio of the area of Vr to Vp, since that determines the expected
number of dart-misses in Phase II.

Theorem 12 A(Vr)/A(Vp) is at least a constant.

Proof Consider the circles bounding a void, including circles in-
tersecting a square side twice. Consider the weighted Voronoi re-
gion of the circles [Edelsbrunner and Shah 1992]. Assume for now
that the remainder region is bounded entirely by r-circles, and trun-
cate the Voronoi cells at the polygonal void Vp.

For any circleC, its Voronoi cell will contain the circle chord on the
polygon boundary χ, the arc-boundary s, and a part of the interior
of Vr . The reasons are as follows. Let VC be the circle’s truncated
Voronoi cell, and VSext its partition outside C, and VSint its part
inside C. Recall from Lemma 8 the circle centers are in convex
position and can be considered in order around the boundary of
the void. Since only the consecutive circles around the void may
overlap with C (else the void would not be connected), the chord
is not inside any other circle, so it is in VC. Also, the Voronoi
line of equal distances between C and a non-consecutive circle lies
strictly outside C. Since by Lemma 9 there are at most a constant
number of circles (< 10), there are a constant number of straight
sides bounding VC. All of these bounding sides lie outside VSext as
well. At worst these sides approach tangency with C, and form a 9-
sided polygonal outer approximation to the arc. Since the arc s has
constant curvature, the area of VSext is at least a constant fraction
of VSint. We do not work out the exact constant because this bound
is not very tight; for example, many fewer than 9 circles can be
packed close enough to be nearly tangent with C.

Now relax the assumption that the remainder region is bounded
entirely by circles. Treat the lines supporting the square sides or
domain boundary as infinite-radius circles centered at infinity, and
all the arguments of the prior paragraph still hold. The area ratio
bound constant can be reproduced by assigning the Voronoi regions
of the infinite-radius circles to the closest r-circle, since for the
infinite-radius circles the arc-gon and polygon are identical.

Constant fraction progress per stage. Theorem 12 proves that the
first dart thrown in a stage i has a constant probability of being a hit.
However, there is a technical difficulty for subsequent darts. The
first disk may cover other polygonal voids, perhaps completely. We
update the polygons lazily, so those voids reduce the probability of
a successful hit. This is resolved by recalling that any inserted disk
can affect only a constant number of other voids. After c1|Vi| hits,
c2|Vi| voids remain unchanged, so the probability of a dart being a
success is at least c2 times what it was at the start of stage i. Here
c1 is something smaller than 1/60, and c2 = (1 − 60c1). The 60
arises from Lemma 3 where each placed disk intersects at most 15
other cells, and by Theorem 21 each cell has at most 4 voids. Thus
a lower bound on the expected number of hits in stage i is c2 times
the constant from Theorem 12 times the number of throws c1|Vi|:
the point is this is O(|Vi|). In practice, many more voids are filled
than these constants suggest, but the above is sufficient to prove the
following theorem.

Theorem 13 In each Phase II stage i, a constant fraction of the Vi
voids are filled with darts.

Success rate in practice. The constants given from the proofs of
Theorem 12 and Theorem 13 are not tight. These constants do not
affect any data structures in our algorithm, only the miss rate. Their
importance is in the tuning of the algorithm parameters for when to
move to the next stage. Our implementation shows the area ratio
as in Theorem 12 is usually large, about 1. It is about 0.93 in the
beginning stages of Phase II, and reaches about 0.999 in the last
stage. It tends to increase but is not monotonic. See Figure 9. Also,
the fraction of voids filled per stage is much better than the weak
constants from Theorem 13 might suggest, as many fewer than 60
voids are touched by a new disk on average. Also the fraction goes
up as the domain gets filled, as the voids become more isolated. See
Figure 10.
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Figure 9: The ratio of the polygon to arc-gon area is always large,
almost 1. The average ratio tends to increase by stage as voids
become smaller in area.

Running time. We now consider the running timeR(|Vi|) of Phase
II for stage i and all subsequent stages. We showed in Section 2.4
that R(|Vi|) = |Vi| log |Vi| + R(|Vi+1|). Since |Vi+1| < c|Vi| for

some constant c < 1, we haveR(|V0|) <
∑∞

i=0 c
i|V0| log

(
ci|V0|

)
<
(
|V0| log |V0|

)∑∞
i=0 c

i = 1
1−c
|V0| log |V0|. Combining this

with Theorem 1 we have
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Figure 10: The fraction of voids filled in each stage is usually large.

Theorem 14 Phase II running time is O(n logn).

Uniform sampling from polygons. Recall that we needed to sam-
ple uniformly from the polygonal voids. We recap the method we
use, adapted from Graphics Gems [Turk 1993]. We triangulate the
polygon. Since it is convex, we could simply pick any one vertex
and connect it to all the others. But for numerical reasons, it is bet-
ter to keep angles away from 180◦. We instead introduce a new
vertex inside the polygon, located at the average of all the other
vertices, and connect it to all the polygon vertices. We select one
of these triangles with probability proportional to its area relative
to the polygon area. Within4abc, we sample uniformly from it by
picking uniformly from a right triangle and linearly transforming
to our triangle. Pick u, v ∈ [0, 1] uniformly. This picks a point
from the square; if u+ v > 1, then reflect back into the triangle by
assigning u := 1 − u and v := 1 − v. The resulting sample point
p = u

−→
ab + v−→ac is uniform from4abc.

2.5.4 Constant number of voids per cell

Since at most a constant number of circles intersect a square, com-
binatorics implies the number of voids in a given cell is constant.
Improving it is interesting and allows some implementation effi-
ciencies, but is not essential. These observations also hint at the
observed separation distances between voids as the stage increases.

We first consider voids bounded entirely by circle arcs, then we
shall see that allowing voids to be bounded by the sides of the
square increases the number of voids per square by at most one.
Two voids are adjacent if they are bounded by the same pair of
circles Cx and Cy . The vertices of circle intersection are labeled
vertex axy and bxy , where b lies inside the reference void. Over-
lapping circles bounding a void are consecutive. We first consider
three-sided remainder regions, and label their features as in Fig-
ure 11. Consecutive adjacent voids are two voids in the same cell
adjacent to the third reference void through its adjacent consecutive
circles CxCy and CxCz: e.g. two voids inside regions Axy and
Axz in Figure 11, provided they and some part of V are in the same
square cell.

Lemma 15 For consecutive adjacent voids Vxy and Vxz to V , their
closest pair of points are no closer than the circle intersection
points, axy and axz.

Proof See Figure 11. Pick some point q of V in the cell. Since
q is in a void, its distance to cx is at least r. In particular, all of
Vxy and Vxz must be on the same side as q of the line through cx
perpendicular to qcx. All of Vxy and Vxz must be within r of q,
inside the red circle. The closest pair of points inside the red circle
are axy and axz.

Consider moving one of three pair-wise overlapping circles. We
observe the following inverse relationships about the distances be-
tween pairs of circle centers and pairs of void vertices.

txy 
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cy Cy 
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bxy 

axz = txz χxy 

α 

ayz 
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Vxy 

axz  
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Vxz 

!!

Figure 11: Top left, labeling of a three-sided void. If Cx and Cz

are tangent, then txz = axz = bxz coincide. Top right, the clos-
est points of consecutive adjacent voids sharing circle Cx are not
closer than |axyaxz|. Bottom left, the 3-sided void with smallest
distance between an adjacent pair of voids. Bottom center, the 3-
sided void with the smallest distance between the second-closest
pair of adjacent voids. Bottom left, four voids in a square.

Lemma 16 (circle void distances) If axy, ayz and axz are in the
same cell, then

|cycz| ↑ =⇒ |axyaxz| ↑, |axyayz| ↓, |axzayz| ↓

|cxcy| ↑ =⇒ |axzayz| ↑, |axzaxy| ↓, |ayzaxy| ↓
|cxcz| ↑ =⇒ |axyayz| ↑, |axyaxz| ↓, |ayzaxz| ↓

We omit the proof because of space limitations. The proof is based
on Lemma 4, Lemma 8, and bounding distances by r. Lemma 16
can now be used to prove the extreme cases in Figure 11 and the
following lemma.

Lemma 17 For three-sided voids, the distance between consecu-
tive adjacent voids is at least r/2. For other voids, the distance
between consecutive adjacent voids is at least r.

Corollary 18 For a void with four or more sides, only two adja-
cent voids can be in the same cell as the void, and only one strictly
inside.

Proof The square diagonal is r, so for three consecutive adjacent
voids, only one pair of consecutive adjacent voids can be placed
inside the square. For non-consecutive voids V12 and V34 adjacent
to the void V , consider the two pairs of circles separating them
from V, C1, C2 and C3, C4. If the length c1c2 and c3c4 are both
2r, and c1c4 and c2c3 are both r, then we have a parallelogram
and the distance between the circle-center midpoints t12 and t34 is
r. This is a slight variation of Figure 12 where the parallelogram
diagonals must be strictly greater than 2r.

We next argue that this parallelogram is the worst case. If |c1c3|
or |c2c4| is greater than r, this merely makes V12 and V34 further
apart. A variation of Lemma 16 and Lemma 17 shows that this is
the worst case. If t12 is close enough to t34 to be of interest, then
since the lengths |c1c2| and |c3c4| are bounded between r and 2r,
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Figure 12: The configuration minimizing the distance to an adja-
cent void for two voids simultaneously. The circle centers form a
parallelogram, with vertices from four voids along the diagonal of
a square. Only three circle-bounded voids can fit strictly inside a
cell.

the angle between lines c1c2 and c3c4 is small, meaning the lines
are close enough to parallel, so that decreasing |c3c4| makes a12
farther from a34 rather than closer.

Theorem 19 For a three-sided void, only two adjacent voids can
be strictly inside the same cell.

Proof We consider the configuration minimizing the second-
closest pair of adjacent regions, and show that this distance is large.
WLOG |axyaxz| ≤ |axzayz| ≤ |ayzaxy|. We seek to show the first in-
equality is equality by contradiction. Suppose the first inequality
is strict. Then Lemma 16 shows that increasing |cycz| increases
|axzayz| and decreases |axzayz| and |axyayz|, a contradiction to the
configuration being optimal. So |axyaxz| = |axzayz| ≤ |ayzaxy|.
Again Lemma 16 shows that increasing |cxcz| will decrease both
|axzaxy| and |axzayz|, so the optimal configuration has maximal
|cxcz|, or |cxcz| = 2r. Hence all the disks are at distance 2r from
one another, and each of the three adjacent cell vertex pairs are
distance r apart; see Figure 11. Since the square only has diagonal
length r, not all three of these vertices can fit.

Using Lemma 17 for three-sided voids and Corollary 18 for four-
or-more sided voids proves the following.

Theorem 20 A cell can contain at most three circle-bounded voids.

Theorem 21 A cell can contain at most four voids.

Proof In the prior theorems, at most two overlapping circle pairs
can separate the square into multiple connected components. The
main idea of this theorem’s proof is that a single circle can also
separate one connected component of a square into two, by over-
lapping with a square side. The square is too small compared to the
circle radius for there to be two such circles.

3 Parallel Algorithm

While our serial approach is fairly fast, a parallel implementation
provides the opportunity to speed up sample generation, and to de-
ploy our algorithm in GPU-based environments, where parallelism
is critical for performance. Fortunately, the approach is straightfor-
ward to parallelize. In this section we describe the parallel-specific
details and our GPU implementation. We use the same two phases
as in our serial algorithm.

Phase I Our first phase, the dart-throwing phase (Section 2.2),
requires special care to eliminate bias. Doing this in parallel with
no bias has many pitfalls; the use of phase groups by Wei [2008],
for instance, makes sample choices biased towards the simultane-
ous acceptance of cells in the same phase group, and hence picks
candidates non-uniformly from the input domain.

Our algorithm needs to allow samples to have an equal probabil-
ity of being selected everywhere. Thus we (must) allow samples
to be chosen in parallel such that conflicts between them are possi-
ble, but we then eliminate the conflicts in an unbiased fashion. In
our implementation, we achieve this through two sample buffers,
candidates and final, to store the locations of points. We also store
a state per cell, where each cell is either empty, test, accepted, or
done. All cells are initialized to empty. We then implement our
algorithm as three successive kernels, and repeatedly iterate over
these three steps until we move to Phase 2.

First, in parallel, we generate candidates by picking a random
point [Tzeng and Wei 2008] while checking for done points in its
vicinity. We check against all nearby cells that might contain a con-
flicting point. We check a 5× 5 neighborhood centered around the
point’s cell for other cells that are already marked as done. Our cell
is marked as test only if no conflicts are found in this neighborhood;
it then becomes a candidate for addition to the distribution.

Second, we test for conflicts again, this time for each test sample
against other test candidates. We look at all test cells in parallel,
looking for cells in the neighborhood with either test or accepted
states. If we find no conflicts with other candidates, we mark the
cell as accepted.

Third, again in parallel, we promote all accepted cells to done and
copy their positions from the candidate buffer to the final buffer,
and reset all remaining test (conflicted) cells to empty.

In summary, on each iteration, we first test against points already
in the final distribution; next test against candidate points generated
in this iteration; and finally add successful candidates to the final
distribution.

Both the serial and parallel algorithms share a similar criterion for
switching to Phase II. However, while the serial algorithm simply
casts one candidate point per iteration until it reaches this criterion,
the parallel algorithm must decide how many points to cast on each
iteration. Too few and the algorithm will take too many iterations
to converge; too many and many candidates will knock each other
out. For n grid cells, we have found a good balance by casting n/5
points on each iteration.

Phase II Phase II has a similar structure to Phase I, with four
steps: constructing void polygons, generating candidates in the void
polygons, testing conflicts, and updating states. For this Phase, we
also add an additional cell state, rejected, for cells that are com-
pletely covered by nearby disks and hence can never contain a point.
We iterate over these steps and terminate when no void polygons re-
main.

We construct void polygons by visiting all empty cells in parallel,
looping over their local neighborhood to find all points whose discs
intersect with this cell. The procedure is similar to the serial algo-
rithm: begin with a polygon that is the size of the cell, then suc-
cessively subtract covered areas. We split polygons if necessary. If
an unsplit polygon has zero area, the cell is labeled rejected and no
polygons are generated.

Since each polygon is convex, we convert it into triangles and add
it to a triangle buffer. We also store its area in another buffer. The



latter area buffer then undergoes a parallel exclusive prefix-sum op-
eration [Sengupta et al. 2007] to obtain the cumulative area for each
triangle. At the end of this step we also know the total area of all
void polygons.

In the second step, we generate test points in some of the void tri-
angles. This is similar to generating candidates in Phase I, but now
we must pick triangles with a probability proportional to their ar-
eas. We run several threads in parallel for this purpose. Each thread
picks a random number between 0 and 1, and performs a binary
search over the area and cumulative area buffers to identify the tri-
angle whose area fraction covers this number. The thread then tries
to insert a test sample uniformly in this triangle, but backs off if an-
other thread has already picked the associated grid cell. Each thread
performs several tries for different random numbers before giving
up.

The third and fourth steps are identical to Phase I’s second and
third steps, checking each test point against nearby ones. We iter-
ate Phase II until all polygons are consumed. Very small polygons
last many iterations because their areas are a small fraction of the
overall polygon area, but as larger polygons are removed, their area
fractions rise and they will all be visited before completion.

4 Implementation Performance

In this section we show the performance of our serial and paral-
lel implementations of the algorithm. The serial implementation
is tested using a Intel Core i7 CPU M620 with 4 GB of DRAM
running a 64-bit Windows 7 operating system. We start by show-
ing the significance of Phase II in achieving a maximal distribution
with reasonable performance. In our algorithm, Phase I mimics
an improved version of the classical dart throwing algorithm. This
provides a useful method to distribute an initial set of bias-free ran-
dom points covering most of the domain. However, the capability
of this phase to insert new points deteriorates as more points are
inserted. Hence such an approach cannot by itself achieve maximal
distributions. This fact is demonstrated in Figure 13, where 70,000
darts were thrown into a unit square domain during Phase I. At the
beginning of Phase I, the percentage of successful darts is close to
100%, and as more points are inserted, this percentage decreases
significantly. After Phase I ends, only 5940 points were distributed
in the domain, consuming about 30 ms and covering about 98% of
the total area of the domain. Phase II was able to reach a maximal
distribution by inserting an additional 2175 points in the remaining
2% of the area. Limiting the number of the darts thrown in Phase
I in a typical implementation of our algorithm achieves a similar
result in less than 10 ms.

We compare our times for maximal sampling to White’s [2007] and
Gamito and Mattock’s [2009] times for nearly-maximal sampling,
with truncated tree depth. Our sequential implementation samples
100k points/second, on par with White’s low-memory algorithm,
and our method does not slow down as much when the number of
points increases. Gamito reports 100k points in 1.9 seconds.

Figure 14 shows the memory consumption over the two phases
of the algorithm. The domain was a unit square. We generated
8,269,890 points. The memory required was 1.970 GB, of which
about 660 MB was for the output point cloud. The peak memory
was when we built the polygonal voids at the beginning of Phase II.
This suggests that memory could be reduced, at the cost of slower
performance, by forcing Phase I to throw more darts. The saw-tooth
in the figure arises because the memory jumps at the beginning of
a stage when we compute the void polygons, is mostly flat during
sampling, then drops at the end of a stage when we discard voids.
Voids are recomputed from scratch at the beginning of each stage.
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Figure 13: The capability of classic dart-throwing to insert a new
point deteriorates as the number of prior darts increases. At 70,000
darts thrown, 90% are rejected. 80% of the accepted darts were
thrown during the first 20,000 throws.
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Figure 14: Serial memory use while sampling 8 million points in a
square. The memory ramps up at the start of each Phase II stage
when the geometry of polygonal voids is calculated. Later stages
have fewer voids. In this example three teeth corresponding to the
first three Phase II stages are visible. The roughly-flat region after
the third tooth is actually comprised of about 10 stages that con-
sume little memory. This figure also illustrates that geometric void
calculations are a large part of the running time.

This avoids the cost of updating voids, many of which no longer
exist.

Compared to White [2007], we consume more memory. Polygo-
nal voids appear more expensive to represent than truncated-depth
quadtrees. Asymptotically, Gamito and Mattock [2009] require
O(n logn) space vs. our O(n).

Figure 15 shows the runtime of the algorithm. Note the binary
search in Phase II has a negligible effect on performance in practice.
The memory consumption in Phase II is proportional to the number
of the remaining voids after Phase I. As illustrated in this figure, the
relation between the number of voids and the number of points in
the final distribution is almost linear. Moreover, more than 70% of
the points are inserted during Phase I. Note that these results may
vary according to the input geometry as well as the termination cri-
terion of Phase I. Here we are using a unit square problem with no
holes, where Phase I terminates after 400 successive misses.

GPU Implementation. Our GPU implementation was built on
the NVIDIA CUDA platform and runs on an NVIDIA GeForce
GTX 460 with 1 GB of on-chip memory. The algorithms used
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Figure 15: CPU performance while sampling a square at different
densities. The upper figure shows near-linear runtime. The lower
figure shows that Phase I inserts about a constant fraction of the
total number of points, and Phase I creates nearly the same number
of points as voids.
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Figure 16: GPU performance. We obtain roughly linear perfor-
mance in the number of points, and a 2.4× speedup over our CPU
implementation. Peak performance is about 240K samples/second.
Due to memory constraints we were unable to generate more than
2 million points.

for Phases I and II are described in Section 3. Figure 16 shows
the obtained running times of our implementation for a varying
numbers of final samples. We observe a linear growth in the time
taken for the two phases, which is consistent with the algorithm
and the CPU implementation. We also observe a 2.4× speedup
over our CPU implementation, reaching a peak generation rate of
about 240k points per second. Although this is not a huge speedup,
our goal is to demonstrate a proof-of-concept approach that attains
reasonable performance. The obtained speedup demonstrates the
parallel-friendly nature of our approach.

Output Quality. Figure 17(b) shows the frequency spectrum of
a set of 10K samples, and figures 17(c) and 17(d) show the radial
mean and anisotropy of the spectrum across 10 trials. These mea-
sures match the expected unbiased behavior seen in previous litera-
ture [Lagae and Dutré 2008; Wei 2008], which clearly indicates the
absence of any noticeable bias in our approach.

(a) 10K samples in the square (b) Fourier spectrum
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Figure 17: A parallel sampling of the square (a) and its pair-wise
distance spectrum (b). There is no visible bias: the spectrum is
visually identical to the results of pure dart-throwing. The radial
power spectrum (c) and anisotropy (d) over ten trials also show no
bias.

5 Conclusions

We present an efficient algorithm for maximal Poisson-disk sam-
pling in two-dimensions. The algorithm is notable because it si-
multaneously achieves the following: (1) the final result is prov-
ably maximal, (2) the sampling is unbiased (in the sense of dart-
throwing), (3) it is O(n logn) in expected time, and (4) it is O(n)
in deterministic memory required. The algorithm is not limited to
convex domains, and has been efficiently implemented in both se-
quential and parallel forms.

Empirical investigations of the sequential algorithm suggests that
the order O(n logn) dependence is weak and that practical perfor-
mance is very close to order n. We are able to generate 100,000
samples/second on the unit square on a modern laptop.

In the parallel implementation, we must choose samples in parallel.
Conflicts that occur must be eliminated in an unbiased fashion.

We have begun the implementation of a 3D maximal Poisson-disk
sampling algorithm following the ideas in this work. We are opti-
mistic that similar results will hold for the 3D case. We are also
optimistic that the algorithm may be extended to non-uniform disk
radii.
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