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A global database of soil nematode 
abundance and functional group 
composition
Johan Hoogen et al.#

As the most abundant animals on earth, nematodes are a dominant component of the soil 
community. They play critical roles in regulating biogeochemical cycles and vegetation 
dynamics within and across landscapes and are an indicator of soil biological activity. Here, 
we present a comprehensive global dataset of soil nematode abundance and functional group 
composition. This dataset includes 6,825 georeferenced soil samples from all continents and 
biomes. For geospatial mapping purposes these samples are aggregated into 1,933 unique 1-km 
pixels, each of which is linked to 73 global environmental covariate data layers. Altogether, 
this dataset can help to gain insight into the spatial distribution patterns of soil nematode 
abundance and community composition, and the environmental drivers shaping these patterns.

Background & Summary
To generate a global and quantitative understanding of the biogeography of soil organisms, critical players in 
global biogeochemistry, large and comprehensive datasets are needed. Due to methodological challenges and 
the labor-intensiveness of characterizing soil biota, many previous studies have focused on a relatively limited 
number of spatially distinct sampling sites. Whilst these studies are valuable to dissect local and regional scale 
patterns, they may not hold the depth of information that is needed to feed global-scale models1.

Soil nematodes are present in all trophic levels in the soil food web, play central roles in regulating carbon and 
nutrient dynamics, control soil microorganism populations2–4 and, consequently, are good indicators of biological 
activity in soils5. Here, we present a dataset of 6,825 spatially distinct soil nematode samples from all terrestrial 
biomes and continents, an updated version of the dataset that was originally used to create a global map of soil 
nematode abundance and community composition6. The original version contained 6,759 samples; the updated 
version that we present here contains 66 additional samples located in Ireland. This dataset can prove useful to 
disentangle the effects of environmental drivers of soil nematode abundance and community composition across 
broad spatial scales. The original version of this dataset was used to create a high-resolution map of soil nematode 
abundance, which revealed that nematodes are present in higher densities in sub-Arctic regions compared to 
tropical and temperate regions6. Soil properties are the primary drivers of soil nematode abundance, whereas cli-
matic conditions have an indirect effect by altering soil conditions6. The overall latitudinal gradient, with decreas-
ing abundance towards the equator, is the inverse of patterns often observed in aboveground organisms, but is in 
line with what has been shown for other belowground biota7,8.

Besides data on the total number of nematodes per sample, the dataset contains quantification of the abun-
dance of individuals in different functional groups of soil nematodes classified according to five feeding guilds9: 
bacterivores, fungivores, herbivores, omnivores, predators. For geospatial mapping, these sampling data were 
aggregated into 1,933 unique 30 Arc-seconds pixels (~1 km2 at the equator) and combined with 73 global covar-
iate layers including information on soil physiochemical properties, and vegetation, climate, and topographic, 
anthropogenic, and spectral reflectance information. We intend to continue expanding the dataset and are open 
to contributions of additional data.

Methods
Data collection.  The methods described here are expanded versions of descriptions in our related work6. 
The dataset encompasses georeferenced data on soil nematode abundances according to trophic groups, which 
were assigned according to Yeates et al.9. In total, the dataset contains 6,825 georeferenced samples collected in 

#A full list of authors and their affiliations appears at the end of the paper. 
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the top 15 cm of soils, including 66 additional samples compared to the dataset used in our related work6. Across 
all samples, 67.2% originate from natural sites and 32.8% from agricultural or managed sites. Nematodes were 
extracted from soil using standard elutriation methods, including the Baermann funnel method10, sugar-floata-
tion/centrifugation11,12, decanting and sieving13, Oostenbrink elutriation14, Whitehead tray15 and Seinhorst elutri-
ation16. These methods may include variations of the original methods. Most samples present in the dataset were 
obtained using the Baermann funnel method, followed by Oostenbrink elutriation and sugar-flotation (Jenkins/
Freckman) (Fig. 1). Per-sample method descriptions, sampling depth, and data provider information are available 
via figshare17. For previously published data, we provide references to the original publications of the respective 
samples.

Environmental metadata: soil, climate, topography, vegetation, anthropogenic characteristics.  
For all sampling locations we provide paired environmental metadata, which can be used to provide insight into 
the environmental drivers of soil nematode abundance and community composition across spatial scales. To do 
so, we first prepared a covariate stack of 73 layers, for which we downloaded the covariate layers as geotiff files. 
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Fig. 1  Nematode extraction methods used. The majority of the samples were processed using the Baermann 
funnel method and Oostenbrink elutriation.

Fig. 2  Data processing approach. 6,825 georeferenced samples are included in the raw dataset. These sampling 
locations represent 1,933 unique 30 arc-seconds pixels (~1 km at the equator), or 1,895 pixels excluding 
locations falling off the covariate grid. To gain mechanistic insights and discern the major environmental drivers 
of nematode abundance, these pixels were sampled across 73 global covariate layers.
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Next, all layers were resampled and reprojected to a unified pixel grid in EPSG:4326 (WGS84) at 30 arc-seconds 
resolution. Layers with a higher original pixel resolution were downsampled using a mean aggregation method; 
layers with a lower original resolution were resampled using simple upsampling (i.e. without interpolation) to 
align with the higher resolution grid. Next, all layers were converted into a multiband image, i.e. the covariate 
stack, that was used for pixel sampling.

To prepare the dataset for this purpose, we first need to match the resolution of the dataset to that of the global 
covariate layer stack that contains the environmental metadata: 30 arc-seconds, which corresponds to approxi-
mately 1-km2 at the equator. In this step, we aggregate all data points falling within the same pixel by taking the 
mean value, resulting in 1,933 unique pixels. We stress that the covariate layer stack has no coverage in Antarctica 
and therefore the 503 samples located in this region were dropped at the pixel aggregation step. Next, pixel values 
across the 73 layers were retrieved and stored as a csv file. This dataset is available via figshare17. We stress that, 
as some covariate layers were reprocessed since the publication of the nematode mapping study6, there are some 
slight differences in the sampled covariate data in this updated version. The approach is visualized in Fig. 2.

Full metadata, including descriptions, units, and source information of all global covariate layers are avail-
able via figshare17. In short, information about soil texture and physiochemical properties was obtained from 
SoilGrids18, limited to the upper soil layer (top 15 cm). Climate information was obtained from WorldClim19 
(version 2), which includes climate data averaged across 1970–2000 (http://www.worldclim.org/). Plant produc-
tivity data (i.e. EVI, NDVI, Gpp, Npp) and spectral reflectance data were obtained from Google Earth Engine 
(https://developers.google.com/earth-engine/datasets/). Aridity index and potential evapotranspiration lay-
ers were obtained from CGIAR20 (version 1) (http://www.cgiar-csi.org/data/global-aridity-and-pet-database). 
Anthropogenic information (i.e. human development, population density) was obtained from WCS21 (http://
wcshumanfootprint.org) and from Tuanmu and Jetz22. Aboveground biomass data was obtained from CDIAC23 

Group mean median n

Bacterivores 1052 250 6788

Fungivores 438 84 6782

Herbivores 656 171 6784

Omnivores 325 41 6787

Predators 119 6 6706

Total_Number 2653 857 6825

Table 1.  Mean and median nematode abundances, per trophic group. Values are reported as the number of 
nematodes per 100 g dry soil.
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Fig. 3  Nematode communities vary across biomes. The median and interquartile range of nematode 
abundances (n = 6,825) per biome from all continents.
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(https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html). Radiation data was 
obtained from CliMond24 (https://www.climond.org/BioclimRegistry.aspx#BioclimFAQ). WWF Ecoregion 
classifications were used to categorize sampling locations into biomes (https://www.worldwildlife.org/
biome-categories/terrestrial-ecoregions).

Data Records
All data are available via figshare17. Raw nematode abundance data (6,825 samples) are available as a csv file: 
“nematode_full_dataset_wBiome.csv”. Sample IDs 20001–20066 are samples not present in our related work6. 
Abundance data aggregated into 30 Arc-seconds pixels (1,933 unique locations), combined with environmental 
covariate data are available as a csv file: “nematode_abundance_aggregated_wCovar.csv”. Full metadata, including 
descriptions, units, and source information, of all global covariate layers are available as a csv file: “metadata.csv”.

Technical Validation
Soil nematode abundances are highly variable within and across terrestrial biomes6. On average, the number 
of nematodes per 100 g dry soil is in the few hundred – few thousand range (median = 859, mean = 2,671), 
although the highest recorded abundances exceed 20,000 nematodes per 100 g dry soil. Across biomes, bacteri-
vores are the most abundant trophic group and predatory nematodes the least abundant (Table 1). Overall, the 
highest abundances are observed in tundra (median = 2,695 nematodes per 100 g dry soil), temperate broadleaf 
forest (median = 2,119) and in boreal forest (median = 2,016) soils. The lowest abundances are observed in 
Mediterranean forest (median = 374), flooded grasslands (median = 124), Antarctic (median = 89) and hot desert 

Biome mean median n

Tundra 7298 2695 148

Temperate Broadleaf Forests 4465 2120 2175

Boreal Forests 3959 2016 669

Montane Grasslands 6096 1120 116

Tropical Coniferous Forests 1000 970 8

Temperate Conifer Forests 1800 670 158

Tropical Grasslands 863 657 272

Tropical Moist Forests 914 601 968

Temperate Grasslands 945 565 627

Tropical Dry Forests 430 431 11

Mediterranean Forests 619 374 704

Flooded Grasslands 183 124 7

Antarctica 2245 89 503

Deserts 193 44 361

Table 2.  Mean and median nematode abundances, per biome. Values are reported as the total number of 
nematodes per 100 g dry soil.

Percentage of pixels
within sampled range

75% 100%

Fig. 4  Environmental representativeness of the dataset. The sampled locations represent a wide range of 
environmental conditions. For illustrative purposes, ten environmental variables were chosen from the full set 
of 73.
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(median = 44) soils (Fig. 3, Table 2). We stress that these numbers slightly differ from the values reported in our 
accompanying paper6, where we reported the aggregated pixel median values.

As with any global ecological dataset, combining data from many researchers across the world, there is inher-
ent variation in the data. Also, the different nematode extraction methods may vary in their efficiencies25,26. This 
underscores the need for large datasets for global scale analyses of ecological patterns. When a sufficiently large 
sample size allows to detect strong patterns through this statistical noise, we can be confident that a biological 
pattern exists6. As a consequence, there may be limitations to the use of the dataset at finer scales. Yet, by subset-
ting the dataset by extraction method or region, for example, it can serve as a starting point for local scale studies.

Environmental representativeness of the dataset.  To evaluate the comprehensiveness of the data-
set, we explored the environmental conditions that the sampling locations represent. Across individual envi-
ronmental variables, the samples represent a wide range of environmental conditions (Fig. 4). To gain spatial 
insight into the environmental representativeness of the dataset, information that is important when comparing 
observations across spatial scales, we evaluated how the multidimensional environmental space covered by the 
dataset compares to the global environmental space. To do so, we used a similar approach as in our previous 
work6. First, we set out to reduce the computational load, as exploring the full stack of 73 global environmental 
covariate layers across ~210 million terrestrial pixels would require exorbitantly large computing power. To this 
end, we transformed the set of global environmental covariate layers into Principal Component (PC) space. We 
reduced the number of selected PCs to 17, collectively explaining more than 90% of variation. Next, we assessed 
the proportion of the world’s terrestrial pixels falling within convex hulls of the 136 bivariate combinations of the 
17 PCs. The resulting map provides a spatially-explicit depiction of the representativeness of the dataset, showing 
that the majority of the terrestrial pixels fall within these convex hulls, with most of the outliers existing in arid 
regions such as the Sahara and Arabian Deserts, and in sub-arctic regions such as the far north of Canada and 
Russia (Fig. 5).

Code availability
Code is available via https://github.com/hooge104/2020_global_nematode_dataset.
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