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Abstract

Topics in the Theory of Learning

By

Jonathan Shafer

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Shafi Goldwasser, Chair

AI applications have seen great advances in recent years, so much so that the people who
design and build them often have difficulty understanding, predicting and controlling what
they do. To make progress on these fundamental challenges, I believe that developing a solid
mathematical foundation for AI is both beneficial and possible. The research presented in
this dissertation is an attempt to chip away at a few small aspects of that endeavor.

The dissertation is divided into three parts.

Part I addresses a question at the core of learning theory: “how much data is necessary for
supervised learning?” Concretely, Chapter 2 considers statistical settings, in which training
data is drawn from an unknown distribution. Here, we answer a question posed by Antos
and Lugosi (1996) concerning the shape of learning curves. To do so, we define a new
combinatorial quantity, which we call the Vapnik–Chervonenkis–Littlestone dimension, and
show that it characterizes the rate at which the learner’s error decays. Our result has a
number of additional benefits: it refines the trichotomy theorem of Bousquet, Hanneke,
Moran, van Handel, and Yehudayoff (2021); qualitatively strengthens classic ‘no free lunch’
lower bounds; and establishes that, in the distribution-dependent setting, semi-supervised
learning is no easier than supervised learning. Chapter 3 considers adversarial settings, in
which few or no assumptions are made regarding the source of the training data. Specifically,
we chart the landscape of transductive online learning, showing how it compares to the
standard setting in online learning, and how it relates to combinatorial quantities such as the
VC and Littlestone dimensions.

Part II investigates whether it is possible to verify the optimality of a machine learning
outcome offered by an untrusted party, such that verification would be significantly cheaper
(in terms of compute, or the quantity or quality of training data) compared to the cost of
running a trusted machine learning system. This question has many parallels in the theory
of computation, and it also has tangible implications to the economics of selling machine
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learning as a service. Our first contribution is to introduce a notion of interactive proofs
for verifying machine learning. Here, the entity running the learning algorithm proves to
the verifier that a proposed hypothesis is competitive with some benchmark, for instance,
is sufficiently close to the best hypothesis in a reference class of hypotheses. Our primary
focus is verifying agnostic supervised machine learning. Within this framework, we show a
host of verification protocols and lower bounds, establishing that in some cases, verification
can be significantly cheaper than learning, while in other cases it cannot. In particular, our
results include: (1) for supervised learning, the sample complexity gap between learning
and verifying is quadratic in some (natural) cases, and furthermore it can never be greater
than quadratic; (2) whereas learning the class of Fourier-sparse boolean functions using i.i.d.
samples is LPN-hard, we show that there exists an efficient protocol for verifying this class,
wherein the verifier only uses i.i.d. samples.

Part III studies notions of stability in machine learning. We offer a taxonomy that can
help make sense of an assortment of seemingly-unrelated stability definitions that have
appeared in the learning theory literature. Our starting point is an observation that many of
these definitions actually follow a similar abstract formulation. We call this the Bayesian
formulation of stability, and we ask, to what extent are the various Bayesian definitions in
the literature actually different from one another. To answer this question, we distinguish
between two variants: distribution-dependent Bayesian stability, and distribution-independent
Bayesian stability. Putting together results from a number of recent publications shows that
many distribution-dependent Bayesian definitions, including approximate differential privacy,
are in fact weakly equivalent to each other. To complete the picture, we investigate the family
of distribution-independent Bayesian definitions. We show that here too, many definitions,
including pure differential privacy, are weakly equivalent to each other. Our proof involves
developing a boosting algorithm that simultaneously improves the accuracy and the stability
of a learning algorithm.

The dissertation consists of five chapters, each of which is self-contained and can be read
independently. However, a small number of basic notions crop up repeatedly in different
guises. Taken together, the dissertation showcases the richness, versatility and unity of
learning theory.
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Preface

Cryptography used to be a very risky business. Mary, Queen of Scots, was beheaded
after a cipher she trusted was broken, revealing her involvement in a conspiracy against
the English monarch. Generally, the pattern has been an endless game of cat-and-mouse
between the makers and breakers of codes: new ciphers were devised, deemed secure (or even
“unbreakable”), and subsequently cracked — often with disastrous consequences. The fate of
any particular cipher was highly uncertain.1

But modern cryptography offers a greater degree of certainty. The advent of computer
science in the twentieth century provided a precise mathematical language for analyzing the
security of ciphers. Rather than relying solely on intuition and practical experience, the
security of modern ciphers rests to a large extent on solid mathematical proof. Just as the
proofs in Euclid’s Elements are no less valid today than they were in Alexandria circa 300
B.C.E., the proofs underlying modern cryptography will remain valid into the future. Every
day, ordinary people transfer billions of web pages, messages and dollars electronically —
secured by cryptography. The ubiquity of cryptography in modern life bears witness to the
success of this new, proof-based paradigm.

Around the same time that cryptography was finally starting to find a solid foundation
in mathematics, a new mercurial field was born: artificial intelligence. It started off with
great optimism: “It is expected by IBM [...] that within a few years there will be a number
of ‘brains’ translating all languages with equal aplomb and dispatch” (news report, 19542);
“Machines will be capable, within twenty years, of doing any work a man can do” (future
Nobel and Turing laureate Herbert Simon, writing in 19603). But by the mid 1970s, the mood
was changing: “Most workers in AI [...] confess to a pronounced feeling of disappointment.
[...] In no part of the field have the discoveries made so far produced the major impact that
was then promised” (Lighthill, 1973, p. 8). This led to the first ‘AI winter’, where funding
dried up and research slowed. Since then, the field has gone through a series of boom-and-bust

1Some examples: the Vigenère cipher was touted in the early modern period as le chiffre indéchiffrable,
but was occasionally broken by contemporaries (and was decisively broken by Kasiski, 1863); the German
diplomatic codes in World War I are infamous for the Zimmermann Telegram, compromised by the British
Admiralty; and, of course, the cracking of the Enigma influenced the outcome of World War II. See Dooley
(2018); Kahn (1996); Singh (1999) for accounts of this tumultuous history.

2See Hutchins (2004), p. 5.
3Simon (1960), p. 38; reproduced on p. 96 of Simon (1965), which also espouses a similar position in the

introduction, under the name “technological radicalism”.
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cycles, with expectations oscillating wildly.
AI has come a long way since the early years, but its unpredictable nature remains. In

June 2023, two Manhattan lawyers were fined $5,000 for submitting a legal brief replete with
“bogus judicial decisions, with bogus quotes and bogus internal citations” (Weiser, 2023a;
2023b). The lawyers used ChatGPT for their legal research, unaware of its uncanny penchant
for fabrication. In August 2023, San Francisco “filed motions asking the utilities commission
to halt the expansion [of autonomous taxis] altogether,” following “dozens of incidents in
which a driverless car interfered with emergency vehicles,” including an autonomous vehicle
that “collided with a fire truck in the city, injuring a passenger” (Lu, 2023). Disturbingly,
the possibility that AI poses an existential risk to humanity at large is widely discussed
(Bostrom, 2014; Russell, 2019). In March 2023, leading academics and practitioners called
for a moratorium on developing larger AI models, stating that AI labs are “locked in an
out-of-control race to develop and deploy ever more powerful digital minds that no one — not
even their creators — can understand, predict, or reliably control” (Future of Life Institute,
2023).

There are many reasons why AI systems can fail, or be hard to predict or control. One
major reason is that AI, like early cryptography, lacks a solid mathematical foundation.
Progress is made by tinkering, in a process of trial-and-error. Even in hindsight, practitioners
cannot fully explain why certain designs work and others fail — let alone derive those
outcomes mathematically. There is a fundamental paucity of understanding.

I believe that developing a solid mathematical theory of AI is both beneficial and possible.
The research presented in this dissertation is an attempt to chip away at a few small aspects
of this problem.

The 2012 Turing Award was presented to Goldwasser and Micali for “pioneer[ing] the field
of provable security, which laid the mathematical foundations that made modern cryptography
possible” (Association for Computing Machinery, 2013). The transformation from a practice-
driven field to a proof-based one has made cryptography safer and more useful. I am
hopeful that in the future, scientific understanding of the fundamental information-processing
phenomena of learning will undergo a similar transformation.
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Chapter 1

A Brief Overview

This chapter offers a synopsis of our main contributions. For a more gentle and comprehensive
introduction to each topic, see the introductory section in each of the subsequent chapters.

1.1 Learning

Fine-Grained Distribution-Dependent Learning Curves
The starting point for Chapter 2 is an observation by Antos and Lugosi (1996), who noted
that classic VC lower bounds are somewhat unsatisfactory: people often face a specific
unknown population distribution, and want to know how many i.i.d. samples they would
need to collect from this distribution to guarantee an error of at most ε, for various choices
of ε. But VC lower bounds do not fully answer this question, because the ‘hard’ distribution
that witnesses the lower bound might be different for each value of ε.

This lead Antos and Lugosi to pose the question of ‘strong minimax lower bounds’: for a
given VC class, what is the ‘worst’ rate function f(n) such that for every learning algorithm
there exists a realizable distribution for which the expected 0-1 loss after observing n i.i.d.
samples is at least f(n) for infinitely many values of n?1

We answer this question, showing in Theorem 2.3.1 that for any hypothesis class H, the
optimal learning rate satisfies

Ω(d)
n
≤ Opt ≤ O(d)

n
+ C · e−c·n,

where d = VCL(H), the Vapnik–Chervonenkis–Littlestone dimension, is a combinatorial
quantity we define.2

1See Question 2.1.1 for a more careful formulation.
2The lower bound holds for infinitely many n, the upper bound holds for all n, d depends only on H,

while C and c may depend also on the population distribution.
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This characterization of the optimal learning rate answers the question of strong minimax
lower bounds (up to universal multiplicative constants), qualitatively strengthening classic
‘no free lunch’ lower bounds. It offers some further benefits as well, including:3

• Refining the upper bound of Bousquet et al. (2021). They showed a bound of c/n, where
c depends on the hypothesis class and on the distribution. In contrast, our expression
offers a decomposition of the error rate into a linear component that depends only on
the class, and an exponential component that depends also on the distribution.

• Quantitatively strengthening the lower bound of Bousquet et al. (2021). We show a
lower bound of Ω(d/n), distinguishing between different linear rates with different values
of d, whereas they show a lower bound of Ω(1/n) for all linear-rate classes.

• Showing that, in the setting of distribution-dependent learning curves, semi-supervised
learning is no easier than supervised learning.

The proofs use tools from the theory of infinite (Gale–Stewart) games, a simple theorem
from Ramsey theory, and a careful application of Fatou’s lemma.

A Trichotomy for Transductive Online Learning
Chapter 3 studies the transductive online learning setting of Ben-David, Kushilevitz, and
Mansour (1997). This setting is similar to the standard online learning setting (Littlestone,
1988), except that the adversary reveals to the learner the full sequence of instances to be
labeled at the start of the game. Prediction tasks of this type arise in many real-world
situations where an agent has a schedule or a to-do list, known in advance, consisting of
specific decisions to be made in order.

We show four main results, elucidating how the optimal number of learner mistakes is
governed by well-known combinatorial quantities like the VC and Littlestone dimensions:

1. A trichotomy for the realizable case (Theorem 3.4.1): for any hypothesis class, the
optimal number of mistakes on a sequence of length n is either n, Θ(log(n)), or Θ(1);
this is determined by the finiteness of the VC and Littlestone dimensions.

2. For classes with a finite Littlestone dimensions dL, the optimal number of mistakes in
the realizable setting is Ω(log(dL)) (Theorem 3.3.1). This improves upon a lower bound
of Ω

(√
log(dL)

)
due to Ben-David et al. (1997).

3. A trichotomy for the realizable multiclass setting with a finite number of labels (The-
orem 3.5.1), which is analogous to the binary-label trichotomy in Item 1. Here, the
Natarajan dimension takes the place of the VC dimension. However, we also show that
in the case of an infinite number of labels, the analogous trichotomy (employing the DS
dimension) does not hold.

3See Section 2.1 (Benefits of the New Characterization) for further discussion.
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4. For the agnostic setting, we show a regret bound of Θ̃
(√

dV C · n
)
, where dV C is the VC

dimension (Theorem 3.6.1).

The proofs use a connection to the threshold dimension, a novel multi-class generalization of
the threshold dimension, a finite variant of the result from Ramsey theory mentioned above,
as well as a potential-based argument of a type that, to our knowledge, hasn’t been used
before in online learning.

1.2 PAC Verification
Chapters 4 and 5 explores the possibilities and limitations of using interactive proofs to verify
machine learning. The main idea is that while machine learning systems are often expensive
to run, they might in some cases be amenable to cheap verification of their outputs. In these
cases, a party with fewer computational resources (e.g., a small business, or an individual
citizen) can delegate a machine learning task to a computationally more powerful party (e.g.,
a large corporation, or a government), and then easily verify that the purported result is valid.
This would enable weaker parties to hold stronger parties to account, and would facilitate
smooth interactions in conditions of imperfect trust.

We introduce a mathematical formulation of this idea. We focus on verification of
supervised probably approximately correct (PAC) learning, but also consider verification of
other types of statistical computations. In this setting, we show multiple upper and lower
bounds for supervised learning, including:

1. The number of i.i.d. samples used by the verifier can never be less than the square root
of the number of samples required for learning (Theorem 5.2.1). Furthermore, there
exist natural hypothesis classes where such a quadratic gap is attained (Theorem 5.2.2).

2. For some hypothesis classes, there is no significant sample complexity gap between proper
learning and proper verification (Theorem 4.4.1).

3. Whereas learning the class of Fourier-sparse boolean functions using i.i.d. samples is
computationally hard under the learning parities with noise (LPN) assumption, we show
that there exists an efficient protocol for verifying this class in which the verifier only
uses i.i.d. samples (Theorem 4.2.6).

The proofs feature the probabilistic method, reductions to and from distribution testing,
and an interactive version of the Goldreich–Levin algorithm, among other tools.

1.3 Stability
Stability is a central notion in learning theory, having strong connections to generalization.
Furthermore, recent research has uncovered connections between stability and other aspects
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of learning including privacy, fairness, and replicability. Consequently, quit a number of
definitions of stability have been proposed in recent years, with different motivations and
contexts. To help make sense of this wealth of definitions, we study equivalences between them.
By dividing the definitions into equivalence classes, we can simplify the picture, and create a
clean taxonomy of definitions. Equivalences also enables cross-pollination, transferring (some)
results from one subfield to another.

Our taxonomy considers Bayesian notions of stability, under which an algorithm is
considered stable if its prior and posterior distributions are close to each other. We distinguish
between two such types of definitions, named distribution-dependent Bayesian stability, and
distribution-independent Bayesian stability.

A survey of exiting literature reveals that the family of distribution-dependent Bayesian
definitions contains many important definitions, including approximate differential privacy —
and these definitions are weakly equivalent to each other!

To complete the picture, we ask: are there also interesting distribution-independent
definitions that are weakly equivalent to each other? And what equivalences does pure
differential privacy satisfy?

We answer these questions by showing equivalences between a number of distribution-
independent Bayesian definitions of interest, including pure differential privacy. Along the way,
we prove a boosting result, stating that there exists a boosting algorithm that simultaneously
improves both the accuracy and the stability of a learning algorithm. Our proofs use recent
results on the fractional clique dimension (Alon, Moran, Schefler, and Yehudayoff, 2023),
among other tools.
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Learning
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Chapter 2

Fine-Grained Distribution-Dependent
Learning Curves

2.1 Introduction
The most fundamental question in learning theory is arguably “what can be learned, and
what quantities of resources (such as data and computation) are necessary for learning when
learning is possible?” The classic and definitive mathematical treatment of this question for
supervised learning has traditionally been provided by the PAC framework, due to Vapnik
and Chervonenkis (1968, 1971) and Valiant (1984). However, it has become increasingly
clear that the PAC model does not accurately capture the reality of learning; VC bounds are
overly pessimistic, and modern machine learning algorithms routinely outperform them. This
is partially because the PAC model constitutes a worst-case analysis over all distributions.
In contrast, machine learning practitioners are typically faced with one (or a few) target
distributions, they are interested in optimizing performance only with respect to these specific
distributions, and therefore they can vastly outdo the worst-case analysis.

Indeed, Antos and Lugosi (1996, 1998) observed that while the classic PAC bounds decay
like Ω(d/n) for a class of VC dimension d, there exist hypothesis classes with arbitrarily large
VC dimension that are learnable such that for every realizable distribution the expected loss
decays exponentially fast.

They wrote:

“[I]n some sense, these [VC] lower bounds are not satisfactory. They do not tell
us anything about the way the error decreases as the sample size is increased for
a given classification problem. These bounds, for each n, give information about
the maximal error within the class, but not about the behavior of the error for a
single fixed [distribution] as the sample size n increases. In other words, the ‘bad’
[distribution], causing the largest error for a learning rule, may be different for
each n.”1

1From Antos and Lugosi (1996), edited for clarity.
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This lead them to study the following question:

Question 2.1.1 (Strong Minimax Lower Bound). For a VC class, what is the largest
d′ ≥ 0 such that for every learning algorithm there exists a realizable distribution for
which the expected 0-1 loss after observing n i.i.d. samples is at least d′/n infinitely
often?

They were able to answer this question for a number of specific hypothesis classes.
Furthermore, they showed that “it is neither the VC dimension, nor the rate of increase of
the shatter coefficients of the class” that determine the answer. The general case, however,
has remained open.

In this chapter we solve Question 2.1.1. We do so in a principled manner, by contributing
to the nascent study of distribution-dependent learning curves. We build upon the recent
results of Bousquet et al. (2021), who offered a characterization of these curves.

For each instance, consisting of a hypothesis class and a target distribution, the distribution-
dependent learning curve is the expected 0-1 loss of a learning algorithm as a function of the
number of i.i.d. samples from the distribution (see Section 2.2 for formal definitions).

n (Number of i.i.d. examples)

Ex
pe

ct
ed

Lo
ss

∼ 1
n

∼ e−c(D)·n

Figure 2.1: Illustration of the difference between distribution-dependent and PAC rates. Each
red curve shows exponential decay of the error Opt = ES∼Dn [L0-1

D (ĥS)] for a different data
distribution D; but the PAC rate only captures the pointwise supremum of these curves (the
blue curve) which decays linearly at best.

Source: Bousquet et al. (2021), adapted with permission.

The lay of the land when viewed from the perspective of distribution-dependent learning
curves is remarkably structured, and remarkably different from that of the PAC model, as
captured by the following crisp trichotomy.

Theorem 2.1.2 (Bousquet et al. (2021), Theorem 1.6). For every concept class H with
|H| ≥ 3, exactly one of the following holds:

• H is learnable with optimal rate e−n.
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• H is learnable with optimal rate 1
n
.

• H requires arbitrarily slow rates.

This differs markedly from PAC learning bounds because, for example, it is possible for
a class H to have infinite VC dimension but still be learnable with an exponential rate;
and ERM algorithms, which are optimal in the PAC setting, can perform arbitrarily worse
than the best learning algorithm in the distribution-dependent setting (see Example 2.3 and
Example 2.6 respectively in Bousquet et al., 2021). Bousquet et al. (2021) also provide a
combinatorial characterization (via infinite trees) that determines for each hypothesis class
H which of the three prongs of the trichotomy it belongs to.

While the trichotomy of Theorem 2.1.2 is an important characterization, it is far from
constituting a complete distribution-dependent theory of supervised learning. To see this, we
recall the definition of learning at rate R(n) for some function R : N→ [0, 1], as used in the
trichotomy. Roughly (see Definition 2.2.15 below), a class H is learnable at rate R if there
exists a learning algorithm such that for any realizable distribution there exist parameters
C, c ≥ 0 (that depend on the distribution) such that the 0-1 loss of the algorithm after seeing
n i.i.d. samples from the distribution is at most C ·R(c · n). In other words, each instance,
consisting of a hypothesis class and a distribution, determines a pair of parameters C, c ≥ 0
which together specify the shape of the learning curve.

The characterization of Theorem 2.1.2 explains the general shape of the learning curve
(exponential, linear, or arbitrarily slow decay), but it is silent with regard to the parameters
C, c that specify its precise shape. In particular, it is not clear in what manner the class and
the distribution ‘interact’ to produce these parameters. This is where the present chapter
comes in.

Main Results
Our main contributions are:

1. We solve the main question left open by Antos and Lugosi (1998, 1996). We define a new
combinatorial dimension that we call the Vapnik–Chervonenkis–Littlestone dimension, or
VCL, and show that it characterizes the magnitude of the strong minimax lower bound
up to universal constants, as follows.
There exist universal constants α, β > 0 such that for any VC class H, the dimension
d = VCL(H) ≤ VC(H), and the number d′ defined in question Question 2.1.1 satisfies
α · d ≤ d′ ≤ β · d.

2. More generally, we introduce a more refined characterization of distribution-dependent
learning curves. For any class H, if the dimension d = VCL(H) ≥ 0 is finite, then the
optimal expected loss Opt can be bounded by

Ω(d)
n
≤ Opt ≤ O(d)

n
+ C · e−c·n, (2.1)
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where n ∈ N is the number of i.i.d. samples used, and the inequalities hold as follows:
for any learning algorithm there exists a distribution such that the lower bound holds
for infinitely many values of n; the upper bound holds for a learning algorithm that we
present, for all distributions and all n ∈ N; the parameters C, c ≥ 0 depend on H and
the distribution, and the Ω(·) and O(·) notations hide universal multiplicative constants
that are independent of H and of the distribution.
This bound captures both linear rates (when d > 0) and exponential rates (when d = 0).
We call this type of bound the fine-grained rate of H, to distinguish it from the notion of
coarse rate used in Theorem 2.1.2. See Definition 2.2.16 and Theorem 2.3.1 for a formal
statement of this result.

3. Furthermore, for the hard distribution that satisfies the lower bound in Eq. (2.1), the
marginal on the domain X depends only on the class H. In particular, in contrast to the
lower bounds of Bousquet et al. (2021), the marginal on the domain does not depend
on the learning algorithm. Conceptually, this means that in the distribution-dependent
learning curve setting, access to unlabeled data is not helpful for learning classes with
finite VCL dimension. Namely, semi-supervised learning and supervised learning require
the same number of labeled samples.
We note that this is a non-trivial result, employing a sophisticated application of Fatou’s
lemma which enables reversing the order of quantifiers, as well as an argument from
Ramsey theory.

4. For any class H, if VCL(H) = ∞ and H does not shatter an infinite strong VCL tree
(see Definitions 2.2.12 and 2.2.13 below), then H has a strongly distribution-dependent
linear rate. Namely, for every c ≥ 0 there exists a distribution such that Opt ≥ c/n for
infinitely many n ∈ N (see Definition 2.2.18 and Theorem 2.3.1).2

5. We offer an equivalent formulation of our results in a language that is closer to the
traditional PAC framework. This provides another viewpoint on our work and how it
compares to traditional PAC bounds. See Theorem 2.3.5.

6. As a special case, we recover the lower bound of Antos and Lugosi (1998) for half-
spaces. We do so by introducing a technique for proving strong lower bounds via a
‘fractal’ argument, which may be useful for other classes as well. (See Theorem 2.3.3
and Section 2.5.)

Benefits of the New Characterization
Our upper bound in Eq. (2.1) offers a refinement and reinterpretation of Theorem 2.1.2:

2In the remaining case where VCL(H) =∞ and H has an infinite strong VCL tree, H requires arbitrarily
slow rates, as shown by Bousquet et al. (2021).
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• Upper bound refinement. For the case of linear rates, Bousquet et al. (2021) showed
an upper bound of c

n
, where c ≥ 0 depends both on the class and on the distribution. In

contrast, our expression in the upper bound constitutes a decomposition of the error rate
into a linear component that depends only on the class, and an exponential component
that depends on the class and on the distribution. We view this as a step towards
a complete characterization of the optimal distribution-dependent learning rate for
supervised learning.

• Upper bound reinterpretation. Whereas Theorem 2.1.2 depicts exponential rates
and linear rates as being two entirely different beasts, Eq. (2.1) presents them in a more
unified light, with exponential rates constituting the special case of d/n where d = 0.

Our lower bound in Eq. (2.1) offers meaningful improvements over both the previous
distribution-dependent lower bound and over the classic ‘no free lunch’ lower bounds from
PAC learning, and also constitutes a partial unification of these two results.

• Quantitative strengthening of distribution-dependent lower bounds. For classes
with linear learning rates, the best previously known distribution-dependent lower bound
that applies to general classes was Ω(1/n) (Bousquet et al., 2021). This applies equally
to all classes that have linear rates, and does not distinguish between different degrees of
hardness within that broad set of classes. In contrast, we are able to prove a lower bound
of Opt ≥ Ω(d/n), for d that depends only on the class and is tight up to a universal
multiplicative constant (independent of the class and of the distribution).

• Qualitative strengthening of distribution-dependent lower
bounds. Classic PAC lower bounds (discussed further in the next bullet) have the
following formulation:

There exists a distribution DX ∈ ∆(X ) such that for any learning algorithm
A there exists a hard distribution D ∈ ∆(X × {0, 1}) such that the marginal
distribution of D on X equals DX , and the loss of A on distribution D is large.3

(⋆)

In contrast, the linear lower bound of Bousquet et al. (2021) offered a weaker statement:

For any learning algorithm A there exists a hard distribution D ∈ ∆(X × {0, 1})
such that the loss of A on distribution D is large.

In particular, this weaker formulation left open the possibility that an algorithm that
has access to unlabeled samples (as in the semi-supervised learning setting) could beat
the lower bound. We show that that is not the case. We strengthen the lower bound of
Bousquet et al. (2021), obtaining the stronger formulation as in (⋆).

3The marginal distribution DX is simply a uniform distribution over a subset of the domain of cardinality
VC(H) that is shattered by H in the VC sense.
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• Qualitative strengthening of PAC lower bounds. Classic PAC learning theory
features ‘no free lunch’ lower bounds (e.g., Shalev-Shwartz and Ben-David, 2014, Theorem
5.1), which imply the VC lower bound appearing in the fundamental theorem of PAC
learning (e.g., Shalev-Shwartz and Ben-David, 2014, Theorem 6.8, Item 3). These lower
bounds leave something to be desired.
To see this, fix a hypothesis class of VC dimension d. The VC bound states that for every
ε > 0 there exists a hard (worst-case) distribution Dε such that achieving loss at most
ε with high probability requires at least Ω(d/ε) i.i.d. samples from Dε. Namely, for a
fixed hypothesis class and a sequence of positive values ε1, ε2, . . . there exists a sequence
of distinct hard distributions D1,D2, . . . such that each Di is a hard distribution for
achieving loss εi — but it is typically not a hard distribution for other values of ε.
Clearly, the type of lower bound studied in VC bounds is strictly weaker than the
distribution-dependent lower bounds studied in this chapter, where there exists a specific
hard distribution such that the lower bound holds for infinitely many values of ε. And as
we argued above, instance specific lower bounds are a better match to the reality of most
machine learning practitioners, who typically face a specific (fixed) unknown distribution,
and would like to calculate how many samples are necessary for obtaining loss ε1, or loss
ε2, or loss ε3, etc. — all with respect to the same fixed unknown distribution.
Thus, an interesting open question is “for which VC classes is it possible to obtain
distribution-dependent linear lower bounds of Ω(d/n)?” (where d = VC(H) and the
bound holds for a single distribution for infinitely many n ∈ N). This question, which
was studied by Antos and Lugosi (1996, 1998), is answered by our characterization as
follows. Let H be a VC class with 0 ≤ d′ = VCL(H) ≤ VC(H) = d. If d′ > 0 then H has
a distribution-dependent linear lower bound of Ω(d′/n). Otherwise, if d′ = 0 then H does
not have a distribution-dependent linear lower bound; rather, each learning curve decays
exponentially and the upper envelope of all the learning curves decays linearly as Θ(d/n).
In this sense, our results offer a unified perspective of PAC and distribution-dependent
lower bounds.

Related Works
Universal Learning. Our work explores the distribution-dependent setting, also called the
universal learning setting, which was recently formalized by Bousquet et al. (2021). However,
it is worthwhile to note that this framework has been studied by earlier works as well.

Schuurmans (1997) revealed the distinction between exponential and linear rates in the
universal setting. In more detail, Schuurmans (1997) characterized the optimal learning rate
for classes that are concept chains, namely, classes H such that for every h1, h2 ∈ H, either
h1 ≤ h2 everywhere or h2 ≤ h1 everywhere.

van Handel (2013) studied the uniform convergence property via the universal lens. He
characterizes those hypothesis classes H satisfying that the empirical losses of all hypotheses
in the class simultaneously and uniformly converge to the corresponding population losses as
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the number of examples tends to infinity. The difference with the (more common) distribution-
free uniform convergence is that in the universal variant, the rate of the uniform convergence
can depend on the source distribution.

Universal learning is related to universal consistency. A learning rule is universally
consistent if its expected loss converges to the Bayes optimal risk for every target distribution.
In other words, such algorithms learn every distribution (but at a distribution-dependent
rate). Stone (1977) showed that such learning is possible, and in particular he established
the universal consistency of several algorithms, including histogram, kernel and k-nearest
neighbor rules. See Devroye, Györfi, and Lugosi (1996); Bousquet et al. (2021) for further
discussion.

No Free Lunch. One of the technical contributions in this work is the identification of the
VCL dimension as the combinatorial parameter which characterizes when a strong form of
the ‘no free lunch’ theorem holds. That is, for which classes is it the case that there exists
a single fixed distribution which witnesses the strongest lower bound on the error rate for
infinitely many sample sizes n.

The work by Antos and Lugosi (1998) explored this question for VC classes; that is, they
asked for which VC classes such a strong ‘no free lunch’ theorem holds. Antos and Lugosi
(1998) showed that d-dimensional half-spaces satisfy such a strong ‘no free lunch’ theorem
by proving a lower bound of d/n on the learning rate. (Schuurmans, 1997 also established
such a bound in the 1-dimensional case.) However, a characterization of VC classes with
this property remained open; in fact, Antos and Lugosi (1998) explicitly concluded that it is
“neither the VC dimension nor the rate of increase of shatter coefficients that determine the
asymptotic behavior of the concept class”. Our work resolves this question by showing that
the VCL dimension determines this behavior.

Strong Minimax. A recent work by Ben-David and Blais (2020) studies a similar type of
lower bounds for the task of computing boolean functions up to error ε. They introduce a
new type of minimax theorem which provides a single hard distribution for arbitrarily small ε.

2.2 Preliminaries
Notation 2.2.1. N = {1, 2, 3, . . . }, i.e., 0 /∈ N. For any n ∈ N, we denote [n] =
{1, 2, 3, . . . , n}.

Notation 2.2.2. Let X be a set. We write X ∗ = ∪∞
t=0X t to denote the set of all finite strings

or finite vectors with elements from X . X ∗ includes the empty string, which we denote by λ.

Notation 2.2.3. For a set X , we write ∆(X ) to denote the set of all distribution with
support contained in X (with respect to some fixed σ-algebra).
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Notation 2.2.4. For a (finite or infinite) vector x = (x1, x2, . . . ), we write x≤t to denote
the finite prefix (x1, x2, . . . , xt);

(
(xt, yt)

)
t∈N

denotes an infinite sequence of pairs of vectors,
where for each t, (xt, yt) is a pair of vectors; for a (finite or infinite) sequence of pairs of
vectors, we denote a finite prefix of the sequence by (x, y)≤t =

(
(x1, y1), (x2, y2) . . . , (xt, yt)

)
.

Traditional Learning Theory
Definition 2.2.5. Let X be a set, and let H ⊆ {0, 1}X be a set of functions. Let k ∈ N,
X = {x1, x2, . . . , xk} ⊆ X . We say that H shatters X if for any y1, y2, . . . , yk ∈ {0, 1} there
exists h ∈ H such that h(xi) = yi for all i ∈ [k]. The Vapnik–Chervonenkis (VC) dimension
of H, denoted VC(H), is the largest d ∈ N for which there exist a set X ⊆ X of cardinality
d that is shattered by H. If H shatters sets of cardinality arbitrarily large, we say that
VC(H) =∞.

Definition 2.2.6. Let X be a set. A learning algorithm for functions X → {0, 1} is an
algorithm ĥ that takes a sample S ∈ (X × {0, 1})∗ and outputs a function ĥS : X → {0, 1}.
The mapping S 7→ ĥS may be randomized.

Definition 2.2.7. Let X be a set, let D ∈ ∆(X × {0, 1}), and let h : X → {0, 1} be a
function. The 0-1 loss of H with respect to D is L0-1

D (H) = P(x,y)∼D[h(x) ̸= y].

Definition 2.2.8. Let X be a set, and let H ⊆ {0, 1}X be a class of functions. The set of
realizable distributions for H is

Realizable(H) =
{
D ∈ ∆(X × {0, 1}) : inf

h∈H
L0-1

D (h) = 0
}

.

The VCL Dimension
Definition 2.2.9. Let X be a set, let d ∈ N and ℓ ∈ N ∪ {0,∞}. A d-VCL tree of depth ℓ
with respect to X is a set

T =
{
xu ∈ X d : u ∈ {0, 1}ds, s ∈ N ∪ {0}, s ≤ ℓ

}
. (2.2)

We say that T is infinite if it has depth ℓ =∞.

Note that a d-VCL tree of depth 0 is not empty, rather it contains a single node xλ where
λ denotes the empty string.

Definition 2.2.10. Let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let d ∈ N. For
each s ∈ N, let xs = (x1

s, . . . , xd
s) ∈ X d and ys = (y1

s , . . . , yd
s) ∈ {0, 1}d. Let h ∈ H. For any

t ∈ N, we say that the finite sequence (x, y)≤t =
(
(xs, ys)

)t

s=1
is consistent with h if

∀s ∈ [t] ∀i ∈ [d] : h(xi
s) = yi

s. (2.3)
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We say that the infinite sequence
(
(xs, ys)

)
s∈N

is consistent with H if for any t ∈ N there
exists h ∈ H such that (x, y)≤t is consistent with h.

Definition 2.2.11. Let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let T be a
d-VCL tree as in Eq. (2.2). We say that H shatters T if for every t ∈ N, t ≤ ℓ, and every
y ∈ {0, 1}dt there exists a hypothesis h ∈ H that is consistent with

(
(xy≤s−1 , ys)

)t

s=1
in the

sense that
∀s ∈ [t] ∀j ∈ [d] : h(xj

y≤s−1
) = yj

s, (2.4)
where we use the notation

y≤s =
((

y1
1, . . . , yd

1

)
, . . . ,

(
y1

s , . . . , yd
s

))
∈ {0, 1}ds

to denote a prefix of y, and

xy≤s
=
(
x1

y≤s
, . . . , xd

y≤s

)
∈ {0, 1}d

to denote the members of xy≤s
.

The d-VCL trees used in this chapter are a variant of the trees used in Bousquet et al.
(2021). To distinguish the two, we call their construction strong VCL trees.

Definition 2.2.12. Let X be a set, let d ∈ N. An infinite strong VCL tree with respect to X
is a set

T =
{
xu ∈ X s+1 : s ∈ N ∪ {0} ∧ u ∈ {0, 1}1 × {0, 1}2 × · · · × {0, 1}s

}
.

Definition 2.2.13. Let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let T be an
infinite strong VCL tree as in Definition 2.2.12. We say that H shatters T if for every t ∈ N,
and every y ∈ {0, 1}1×{0, 1}2×· · ·×{0, 1}t there exists a hypothesis h ∈ H that is consistent
with

(
(xy≤s−1 , ys)

)t

s=1
in the sense that

∀s ∈ [t] ∀j ∈ [s] : h(xj
y≤s−1

) = yj
s, (2.5)

where we use the notation

y≤s =
((

y1
1

)
,
(
y1

2, y2
2

)
,
(
y1

3, y2
3, y3

3

)
, . . . ,

(
y1

s , . . . , ys
s

))
∈ {0, 1}(

∑s

k=1 k)

to denote a prefix of y, and

xy≤s
=
(
x1

y≤s
, . . . , xs+1

y≤s

)
∈ {0, 1}s+1

to denote the members of xy≤s
.

Definition 2.2.14. Let X be a set and let H ⊆ {0, 1}X . The Vapnik–Chervonenkis–Little-
stone dimension of H, denoted VCL(H), is the largest integer d ≥ 0 such that H shatters an
infinite d-VCL tree. If H does not shatter any infinite 1-VCL tree, we say that VCL(H) = 0.
If H shatters infinite d-VCL trees for d arbitrarily large, we say that VCL(H) =∞.



CHAPTER 2. LEARNING CURVES 15

Learning Rates
Bousquet et al. (2021) used the following definition of distribution-dependent learning rates.

Definition 2.2.15 (Bousquet et al., 2021, Definition 1.4). Let H be a concept class, and let
R : N→ [0, 1] with R(n)→ 0 be a rate function.

• H is learnable at rate R if there exists a learning algorithm ĥ such that for every
D ∈ Realizable(H), there exist C, c ≥ 0 such that ES∼Dn

[
L0-1

D

(
ĥS

)]
≤ C ·R(c · n) for all

n ∈ N.

• H is learnable with rate no faster than R if for every learning algorithm ĥ, there exists a
D ∈ Realizable(H) and C, c > 0 for which ES∼Dn

[
L0-1

D

(
ĥS

)]
≥ C ·R(c · n) for infinitely

many n ∈ N.

• H is learnable with optimal rate R if H is learnable at rate R and H is not learnable
faster than R.

• H requires arbitrarily slow rates if, for every R(n)→ 0,H is learnable at rate no faster
than R.

In this chapter we refine the notion of learning rates, introducing the following more
nuanced expressions for linear rates, as follows. Note that our definitions are strictly special
cases in the sense that if a class is learnable at rate (learnable at rate no faster than) d/n

according to our definition, then it is learnable at rate (learnable at rate no faster than) d/n

according to Definition 2.2.15 as well.

Definition 2.2.16. Let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let d ≥ 0 and
γ ≥ 1. We say that:

• H is learnable with fine-grained rate d/n if there exists a learning algorithm ĥ such that
for any distribution D ∈ Realizable(H) there exist real numbers C, c ≥ 0 such that for
all n ∈ N:

ES∼Dn

[
L0-1

D

(
ĥS

)]
≤ d

n
+ C · exp(−cn).

• H is learnable with fine-grained rate no faster than d/n if for any learning algorithm ĥ
there exists a distribution D ∈ Realizable(H) such that the inequality

ES∼Dn

[
L0-1

D

(
ĥS

)]
≥ d

n

holds for infinitely many n ∈ N.

• H is learnable with optimal fine-grained rate d/n with gap factor γ if H is learnable with
rate no faster than d/n, and is learnable with rate d′/n, where d′ ≤ γd.
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To distinguish the two notions of rate, we will refer to the rates of Definition 2.2.15 as
coarse rates.

Remark 2.2.17. Ideally, we would like to obtain a gap factor γ that is as close as possible
to 1, so that d = d′ (see Definition 2.2.16). The extent to which this is possible is a topic for
further research. Throughout this chapter we use γ = 800.

Definition 2.2.18. Let X be a set, let H ⊆ {0, 1}X be a hypothesis class. We say that H is
learnable with a strongly distribution-dependent linear rate if for any (possibly randomized)
learning algorithm ĥ and any c ≥ 0 there exists D ∈ Realizable(H) such that the inequality

c

n
≤ ES∼Dn

[
L0-1

D

(
ĥS

)]
(2.6)

holds for infinitely many n ∈ N.

Remark 2.2.19. There are various technical issues related to measure theory that arise in
the distribution-dependent learning setting and are germane to our results. We use the same
assumptions as Bousquet et al. (2021), and refer the interested reader to their work for an
in-depth discussion (e.g., Section 3.3 and Appendices B and C).

Gale–Stewart Games
We will use some basic concepts and results concerning infinite games. We refer the reader
to Appendix A.1 of Bousquet et al. (2021) for additional references and discussion. Briefly,
we consider infinite full information two-player games, in which there exists a set Ω and a
subset W ⊆ ΩN, and at each time t = 1, 2, 3, . . . , Player 1 selects an item xt ∈ Ω, and then
Player 2 selects an item yt ∈ Ω. Player 1 wins if and only if the resulting infinite sequence
z = (x1, y1, x2, y2, . . . ) satisfies z ∈ W ; otherwise, Player 2 wins.

We say that Player i has a winning strategy if there exists a function f : Ω∗ → Ω such
that if in every time t ∈ N, Player i selects item f(z′) where z′ is the finite sequence of
all items selected so far (by both players), then Player i wins the game (regardless of the
selections made by the other player).

A game is called determined if precisely one of the players has a winning strategy. An
infinite game is called Gale–Stewart (or finitely-decidable) if for every w ∈ W there exists
t ∈ N such that for any infinite suffix \ ∈ ΩN, w≤t ◦ \ ∈ W , where ‘◦’ denotes concatenation.
Namely, every member of W has a finite prefix that certifies its membership in W . We will
use the following result.

Theorem 2.2.20 (Gale and Stewart, 1953). Every Gale–Stewart game is determined.

2.3 Technical Overview
Our first result is the characterization of fine-grained learning rates via the VCL dimension.
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Theorem 2.3.1. There exist constants α, β > 0 as follows. Let X be a set, let H ⊆ {0, 1}X

be a hypothesis class, and let d = VCL(H).

1. If d <∞ then H is learnable with optimal fine-grained rate d/n with gap factor γ = β/α;
furthermore, the marginal of the hard distribution on X depends only on H. Namely,
there exists DX ∈ ∆(X ) such that for any (possibly randomized) learning algorithm ĥ
there exists D ∈ Realizable(H) such that the marginal distribution of D on X is DX , and
the inequality

α · d

n
≤ ES∼Dn

[
L0-1

D

(
ĥS

)]
holds for infinitely many n ∈ N; and there exists a learning algorithm h∗ such that for
any D ∈ Realizable(H) there exist parameters C, c > 0 such that

∀n ∈ N : ES∼Dn

[
L0-1

D (h∗
S)
]
≤ β · d

n
+ C · e−c·n.

2. Otherwise, if H does not shatter an infinite strong VCL tree, then H is learnable with
a strongly distribution-dependent linear rate. Namely, for any (possibly randomized)
learning algorithm ĥ and any c > 0 there exists D ∈ Realizable(H) such that the inequality

c

n
≤ ES∼Dn

[
L0-1

D

(
ĥS

)]
holds for infinitely many n ∈ N; and there exists a learning algorithm h∗ such that for
any D ∈ Realizable(H) there exists c > 0 such that

∀n ∈ N : ES∼Dn

[
L0-1

D (h∗
S)
]
≤ c

n
.

3. Otherwise, H requires arbitrarily slow rates.

Remark 2.3.2. Our proofs use α = 1/100, β = 8, and γ = 800.

All proofs appear in Sections 2.4 and 2.5. Additionally, we provide a brief overview of the
main ideas in each proof.
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(b) The first few layers of an infinite d-VCL tree. Every arc represents 2d children, one for each possible
labeling of the d points in the preceding node. Introduced in this chapter, d-VCL trees form the basis for our
novel characterization.
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(c) The first few layers of an infinite strong VCL tree. (In Bousquet et al. (2021) this structure was called an
infinite VCL tree. We add the modifier strong to distinguish it from d-VCL trees.)

Figure 2.2: VCL trees. Every finite branch is consistent with a concept h ∈ H. This is illustrated here for
one branch in each tree, shown in red.

Source: Bousquet et al. (2021), adapted with permission.

The proof of Theorem 2.3.1 is similar to the proof of Theorem 2.1.2 from Bousquet et al.
(2021). One of the main differences is that we use d-VCL trees for the characterization.
Our d-VCL trees (introduced in this chapter, see Definition 2.2.9 and Figure 2.2b), are an
intermediary refinement that lies between the 1-VCL trees and the strong VCL trees that
were used in their proof. Identifying that this particular combinatorial structure characterizes
the fine-grained rate is a non-trivial contribution of this chapter.

Proving the lower bound of Theorem 2.3.1 requires some technical improvements upon
the technique of Bousquet et al. (2021). For each learning algorithm, they constructed a
hard distribution that is concentrated on an infinite ‘target’ branch chosen at random in the
d-VCL tree, and argued that if a test point is deeper in the tree than all points in the training
set, then the leaner will make an incorrect prediction on that test point with probability 1/2.
That approach is not suitable for constructing a single marginal distribution DX ∈ ∆(X ) that
is hard for all learning algorithms (because for every target branch there exists an algorithm
that returns a hypothesis with low loss on that branch). Instead, we choose a marginal DX
that is distributed roughly evenly over all branches in the tree, and construct a distribution
D ∈ Realizable(H) that has marginal DX , and has labels corresponding to an infinite target
branch in the tree.

In a general d-VCL tree, our approach would be problematic, because even if a test point
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is deeper in the tree than all the points in the training set, the labels for points in the training
set that do not belong to the target branch could provide information about the target branch.4
We overcome this problem as described in the following proof idea.

Proof idea for Theorem 2.3.1. For the upper bound, we show that the nonexistence of d-VCL
trees is equivalent to the existence of a winning strategy for the learner in an infinite two-player
game called the ‘forbidden pattern game’. The equivalence is established via an intermediary
online-learning game that is easier to analyze because it is a Gale-Stewart game (whereas the
forbidden pattern game is not). A winning strategy for the learner in the forbidden pattern
game can be converted into a learning algorithm for the distribution-dependent learning
setting, by way of the one-inclusion algorithm of Haussler, Littlestone, and Warmuth (1994).
The resulting algorithm has the desired rate of at most d/n.

For the lower bound, we use an elementary lemma from Ramsey theory to show that if H
shatters an infinite d-VCL tree, then it also shattered an infinite d-VCL tree that satisfies an
additional indifference property that we define. This property implies that for any infinite
branch in the d-VCL tree, labels for points that do not belong to the branch provide no
information about the labels for points that appear lower down in the tree along the branch.
Therefore, when the target branch is chosen randomly, we can argue that if the test point
appears on the target branch and is lower than all the training samples, then the learner will
make an incorrect prediction with probability 1/2. The lower bound also involves a specific
choice of parameters for the hard marginal distribution that enables a delicate application of
Fatou’s lemma.

As a corollary of our characterization, we recover the lower bound of Antos and Lugosi
(1998) for half-spaces in Rd, up to a constants factor.

Theorem 2.3.3 (Antos and Lugosi, 1998, Corollary 1). There exists a constant α > 0 as
follows. Let d ∈ N and X = Rd. Let Hd ⊆ {0, 1}X be the set of closed half-spaces in Rd.
For any learning algorithm ĥ there exists a distribution D ∈ Realizable(Hd) such that the
inequality

ES∼Dn

[
L0-1

D

(
ĥS

)]
≥ α · d

n

holds for infinitely many values n ∈ N.

Proof idea. It suffices to show that VCL(Hd) = d. We consider the dual class for Hd, and
show via a neat ‘fractal’ argument that one can construct an infinite d-VCL tree for Hd.

We believe that the ‘fractal’ argument from this proof could be used to construct d-VCL
trees for other classes as well.

4Consider the case where for some x ∈ X there exist infinite branches y(0) and y(1) in the tree, both
of which do not contain x, such that for all b ∈ {0, 1}, it holds that all h ∈ H that are consistent with y(b)

satisfy h(x) = b. Then knowing the label for x allows the learner to eliminate one of the branches.
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Finally, we present another, mostly equivalent viewpoint on our results. Stated in a
language that is closer to standard PAC learning, it enables a comparison between PAC
bounds and distribution-dependent bounds.

Definition 2.3.4. Let X be a set and let H ⊆ {0, 1}X be a hypothesis class. Let m : (0, 1)2 →
N and k : Realizable(H) → N be functions. We say that H is eventually PAC learnable
with sample complexity m and kick-in time k if there exist an algorithm ĥ such that for any
distribution D ∈ Realizable(H) and for any ε, δ ∈ (0, 1) the inequality

PS∼Dn

[
L0-1

D

(
ĥS

)
≤ ε

]
≥ 1− δ

holds for all n ≥ max{m(ε, δ), k(D)}.

Theorem 2.3.5. There exist constants α, β > 0 as follows. Let X be a set, let H ⊆ {0, 1}X

be a hypothesis class, and let d ∈ N.

1. If d = VCL(H) < ∞ then H is eventually PAC learnable with sample complexity
m(ε, δ) ≤ αd log(1/δ)/ε.

2. If H is eventually PAC learnable with sample complexity

m(ε, δ) = d log(1/δ)/ε,

then VCL(H) ≤ βd.

Proof idea. This follows from Theorem 2.3.1, together with a standard amplification argument
for converting an algorithm with bounded expected error to a PAC learner.

2.4 Proof of the Fine-Grained Characterization

Upper Bound
Throughout this section, let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let d ∈ N.

Definition 2.4.1. The online learning game for H of size d, denoted Gonline
d (H), is an infinite

full information game played between two players, a learner and an adversary. At each time
step t = 1, 2, 3, . . . :

1. The adversary chooses xt = (x1
t , . . . , xd

t ) ∈ X d.

2. The learner chooses yt = (y1
t , . . . , yd

t ) ∈ {0, 1}d.

For each t ∈ N, the version space is defined by

Ht = Hx1,y1,...,xt,yt =
{
h ∈ H :

(
∀s ∈ [t] ∀i ∈ [d] : h(xi

s) = yi
s

)}
.

If there exists a time step t ∈ N such that Ht = ∅ then the learner wins the game. Otherwise,
the adversary wins the game.
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Definition 2.4.2. The forbidden pattern game for H of size d, denoted Gforbidden
H (d), is an

infinite full information game played between two players, a learner and an adversary. At
each time step t = 1, 2, 3, . . . :

1. The adversary chooses xt ∈ X d.

2. The learner chooses ŷt ∈ {0, 1}d.

3. The adversary chooses yt ∈ {0, 1}d.

The adversary wins the game if the adversary’s infinite sequence
(
(xt, yt)

)
t∈N

is consistent
with H and ŷt = yt for infinitely many t ∈ N. Otherwise, the learner wins the game.

In other words, the learner wins the forbidden pattern game if ŷt is eventually a ‘forbidden
pattern’ that is not consistent with H.

We show that the existence of d-VCL trees characterizes the winner in the forbidden
pattern game. Note that while the online game is a Gale-Stewart game, the forbidden
pattern game is not. This makes the online game a convenient stepping stone towards this
characterization, as in the following claim.

Lemma 2.4.3. The following conditions are equivalent:

1. There does not exist an infinite d-VCL tree with respect to X that is shattered by H.

2. There exists a winning strategy for the leaner in the online game Gonline
d (H).

3. There exists a winning strategy for the leaner in the forbidden pattern game Gforbidden
d (H).

The proof of Lemma 2.4.3 is divided between Claims 2.4.4 to 2.4.7.

Claim 2.4.4. There exists an infinite d-VCL tree with respect to X that is shattered by H if
and only if there exists a winning strategy for the adversary in Gonline

d (H).

Proof. Assume that there exists an infinite d-VCL tree

T =
{
xu ∈ X d : u ∈

(
{0, 1}d

)∗ }
(2.7)

that is shattered by H. This implies the existence of a winning strategy for the adversary
as following. At each time step t ∈ N, the adversary selects xt = xy≤t−1 . For any choice
yt ∈ {0, 1}d made by the learner the version space remains not empty, i.e., Ht ̸= ∅. This holds
because H shatters T , and so in particular there exists a hypothesis h ∈ H that is consistent
with

(
(xy≤s−1 , ys)

)
s∈[t]

. Hence, the adversary wins the game when playing according to this
strategy.

Conversely, assume that there exists a winning strategy for the adversary defined by
a function f : {0, 1}∗ → X d such that at any time step t ∈ N, the adversary chooses
xt = f(y≤t−1), where y≤t−1 is the sequence of choices the learner has made so far. The
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function f defines an infinite d-VCL tree T as in Eq. (2.7) given by xu = f(u). Seeing as
this is a winning strategy for the adversary, Ht ̸= ∅ for all t ∈ N and all possible choices of
y≤t, and this implies that the tree T is shattered by H.

Claim 2.4.5. In the context of Lemma 2.4.3, Item 1 ⇐⇒ Item 2.

Proof.
(Item 1) ⇐⇒

(
∄ winning strategy for the adversary in Gonline

d (H)
)

⇐⇒ (Item 2) ,

where the first equivalence is by Claim 2.4.4, and the second equivalence states that
the online learning game is determined, which is true by Theorem 2.2.20 because it is a
Gale–Stewart game.

Claim 2.4.6. In the context of Lemma 2.4.3, Item 2 =⇒ Item 3.

Assumption: f :
(⋃∞

s=1X ds
)
→ {0, 1}d is a function that defines a winning strategy

for the learner in the online game Gonline
H (d).

ForbiddenPatternLearner:
ξ ← empty sequence
η ← empty sequence
for t← 1, 2, . . . :

Receive xt from the adversary
Choose ŷt ← f(ξ ◦ xt)
Receive yt from the adversary
if ŷt = yt:

ξ ← ξ ◦ xt

η ← η ◦ yt

Algorithm 2.1: A reduction from a winning strategy for the forbidden pattern game to a
winning strategy for the online game.

Proof idea. Use Algorithm 2.1. A winning strategy for the learner in the online game empties
the version space. So eventually, for any xt chosen by the adversary, the learner can choose a
yt such that (x, y)≤t is not consistent with H.

Proof. Let f :
(⋃∞

s=1X ds
)
→ {0, 1}d be a function that defines a winning strategy for the

learner in the online game Gonline
H (d). Namely, in the online game, if in each time step t ∈ N
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the adversary chooses xt and the learner chooses yt = f(x1, . . . , xt), then after a finite number
of steps Ht = ∅.

Given such a function f , Algorithm 2.1 defines a winning strategy for the learner in
the forbidden pattern game. To see this, assume for contradiction that the strategy of
Algorithm 2.1 is not a winning strategy for the learner, namely, assume that there exists a
sequence

(
(xt, yt)

)
t∈N

that is consistent with H and also ŷt = yt for infinitely many t when
ŷ is chosen by the learner according to Algorithm 2.1. This implies that the sequences ξ and
η defined by the algorithm are infinite.

We show that if the adversary in the online game plays this infinite sequence ξ and the
learner plays according to the strategy f , then the adversary wins the game, in contradiction
to the assumption that f defines a winning strategy for the learner in the online game.

Let ξ = ξ1, ξ2, . . . and η = η1, η2, . . . where ξt ∈ X d and ηt ∈ {0, 1}d for all t ∈ N. By
construction,

(
(ξt, ηt)

)
t∈N

is consistent with H because it is a subsequence of
(
(xt, yt)

)
t∈N

. In
particular, for any finite prefix (ξ, η)≤t there exists a hypothesis h ∈ H that is consistent with
(ξ, η)≤t. This implies that for any t ∈ N, the version space Ht = Hξ1,η1,...,ξt,ηt is not empty.
However, the sequence

(
(ξt, ηt)

)
t∈N

is constructed by playing according to the strategy f ,
namely ηt = f(ξ1, . . . , ξt) for all t ∈ N. We conclude that when the adversary in the online
game plays ξ and the learner plays according to f , then Ht ≠ ∅ for all t ∈ N, yielding the
desired contradiction to the choice of f .

Claim 2.4.7. In the context of Lemma 2.4.3, Item 3 =⇒ Item 1.

Proof. We show the contrapositive, namely, if there exists an infinite d-VCL tree shattered
by H then there does not exist a winning strategy for the leaner in the forbidden pattern
game Gforbidden

d (H) (this is similar to one of the directions in Claim 2.4.4). Indeed, let T be an
infinite shattered tree as in Eq. (2.7). Then there exists a winning strategy for the adversary:
at each time step t ∈ N, the adversary chooses xt = xy≤t−1 , and chooses yt ∈ {0, 1}d to be
any value such that yt ̸= ŷt. Because the tree is shattered, for every t ∈ N and every possible
yt ∈ {0, 1}d there exists h ∈ H that is consistent with (x, y)≤t. Hence, the resulting sequence(
(xt, yt)

)
t∈N

is consistent with H while also satisfying yt ≠ ŷt for all t ∈ N, and therefore the
adversary wins the game.

Notation 2.4.8. Fix a function f as in Algorithm 2.1, and consider an execution of that
algorithm using f in which the adversary plays the sequence

(
(xt, yt)

)
t∈N

. For each t ∈ N let
ξ(t) denote the value of ξ at the beginning of time step t. We write

ŷt : X d → {0, 1}d

to denote the function given by

ŷt(x) = ŷ(x,y)≤t−1(x) = f(ξ(t) ◦ x)

that determines the learner’s choice at time t, such that ŷt = ŷt(xt) for all t ∈ N.
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Definition 2.4.9. Let D ∈ ∆(X d × {0, 1}d) be a distribution, and let g : X d → {0, 1}d be a
function. The forbidden pattern loss of g with respect to D is

Lforbidden
D (g) = P(X,Y )∼D[g(X) = Y ] = 1− L0-1

D (g).

The forbidden pattern loss simply captures the learners objective in the forbidden pattern
game, which is to avoid having ŷt = yt.

Claim 2.4.10. Assume VCL(H) < ∞. Let D ∈ Realizable(H) be a distribution, and let
S =

(
(X1, Y1), (X2, Y2), . . .

)
be an infinite sequence of i.i.d. samples from D. Consider an

instance of the forbidden pattern game where the adversary plays the sequence S, and the
learner plays according to the function ŷt = ŷS≤t−1 as in Notation 2.4.8. Then the forbidden
pattern loss satisfies

lim
t→∞

P
S∼DN

[
Lforbidden

D (ŷt) > 0
]

= 0.

Proof. By the proof of Lemma 2.4.3 and the assumption that VCL(H) <∞, the strategy ŷt

is a winning strategy for the learner in the forbidden pattern game.
First, assume that S is consistent with H. Then there exists a random variable T ∈ N

that depends on S, such that

P[∀t ≥ T : ŷt(Xt) ̸= Yt] = 1. (2.8)

This is true because ŷt is a winning strategy for the learner. Furthermore, by construction of
the strategy ŷ, the function ŷt(x) only changes if the learner made a mistake, namely

P[∀t, t′ ≥ T ∀x ∈ X : ŷt(x) = ŷt′(x)] = 1. (2.9)

Hence,

lim
t→∞

P
S∼DN

[
Lforbidden

D (ŷt) = 0
]

= lim
t→∞

P
[(

lim
K→∞

1
K

K∑
k=1

1 (ŷt(Xt+k) = Yt+k)
)

= 0
]

≥ lim
t→∞

P
[(

lim
K→∞

1
K

K∑
k=1

1 (ŷt(Xt+k)) = Yt+k

)
= 0 ∧ t ≥ T

]

= lim
t→∞

P
[(

lim
K→∞

1
K

K∑
k=1

1 (ŷt+k(Xt+k)) = Yt+k

)
= 0 ∧ t ≥ T

]
(By Eq. (2.9))

= lim
t→∞

P[t ≥ T ] = 1. (By Eq. (2.8))

So
lim
t→∞

P
S∼DN

[
Lforbidden

D (ŷt) > 0
]

= 1− lim
t→∞

P
S∼DN

[
Lforbidden

D (ŷt) = 0
]

= 0
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as desired.
It remains to show that P[S is consistent with H] = 1. This is a consequence of the

Borel–Cantelli lemma. Seeing as D ∈ Realizable(H), there exists a sequence h1, h2, . . . ∈ H
such that L0-1

D (hk) ≤ 2−k for all k ∈ N. For every t, k ∈ N let Gt,k = {∀i ∈ [t] : hk(Xi) = Yi}
be the event in which S≤t is consistent with hk. Then for every t ∈ N,∑

k∈N
PS∼DN [¬Gt,k] ≤

∑
k∈N

t · L0-1
D (hk) ≤ t <∞.

By Borel–Cantelli, this implies that

∀t ∈ N : PS∼DN [∃k ∈ N : Gt,k] = 1.

In words, for every t ∈ N, with probability 1 over the choice of S, there exists k ∈ N such
that hk is consistent with S≤t. Finally,

PS∼DN [S is consistent with H] ≥ PS∼DN

⋂
t∈N
{∃k ∈ N : Gt,k}

 = 1,

because a countable intersection of probability 1 events has probability 1.

Definition 2.4.11. In the context of Claim 2.4.10, let

t∗ = t∗(D) = inf
({

t ∈ N : P
S∼DN

[
Lforbidden

D (ŷt) > 0
]
≤ 1

8

}
∪ {∞}

)
.

The set of good sample sizes for D is

T good
D =

{
t ∈ [t∗] : P

S∼DN

[
Lforbidden

D (ŷt) > 0
]
≤ 1

4

}
.

Claim 2.4.12. There exists a function t̂ : (X × {0, 1})∗ → N as follows. Let D ∈
Realizable(H). There exist parameters C, c ≥ 0 such that for any n ∈ N,

PS∼Dn

[
t̂(S) ∈ T good

D

]
≥ 1− Ce−cn.

Proof. Fix D ∈ Realizable(H). We show that Algorithm 2.2 satisfies the requirements of the
claim. By Claim 2.4.10, t∗ = t∗(D) is finite and T good

D ̸= ∅.
For each t ∈ N let et = PS∼DN

[
Lforbidden

D (ŷt) > 0
]
. Hoeffding’s inequality implies that there

exist Ct, ct ≥ 0 such that P[|êt − et| > 1/16] ≤ Ct · e−ct·n. By a union bound,

P
S∼DN

[∃t ∈ [t∗] : |êt − et| > 1/16] ≤
∑

t∈[t∗]
Ct · e−ct·n ≤ C ′ · e−c′·n, (2.10)

for some suitable C ′, c′ ≥ 0.
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Assumption:

• S =
(
(X1, Y1), . . . , (Xn, Yn)

)
∼ Dn is a labeled training set.

• ŷt = ŷS≤t−1 is as in Notation 2.4.8.

• m = ⌊n/2⌋.

SampleSizeEstimator:
Strain, Stest ← independent disjoint subsets of S of size m
for t ∈ [m]:

k ← ⌊m/t⌋
Strain

1 , . . . , Strain
k ← independent disjoint subsets of Strain of size t

for i ∈ [k]:
êt,i ← 1

(
∃(X, Y ) ∈ Stest : ŷStrain

i
(X) = Y

)
êt ← 1

k

∑
i∈[k] êt,i

t̂← inf ({t ∈ [m] : êt ≤ 3/16} ∪ {∞})
output t̂

Algorithm 2.2: An algorithm for finding t̂ such that with high probability, t̂ ∈ T good
D .

Assume that m ≥ t∗ and ∀t ∈ [t∗] : |êt − et| ≤ 1/16. Then in particular, êt∗ ≤ et∗ + 1/16 ≤
1/8 + 1/16 = 3/16, and therefore the output t̂ selected by Algorithm 2.2 satisfies t̂ ≤ t∗.
Additionally, the selected output satisfies et̂ ≤ êt̂ + 1/16 ≤ 3/16 + 1/16 = 1/4.

Combining the last paragraph with Eq. (2.10), we conclude that there exist C, c ≥ 0 such
that with probability at least 1− Ce−cn, t̂ satisfies t̂ ≤ t∗ and et∗ ≤ et̂ ≤ 1/4, so in particular
t̂ ∈ T good

D , as desired.

Theorem 2.4.13 (Haussler et al., 1994, Theorem 2.3). Let F ⊆ {0, 1}X be a hypothesis
class. There exists a function

A : (X × {0, 1})∗ ×X → {0, 1}

such that for any target function f ∈ F , any n ∈ N, and any (x1, . . . , xn) ∈ X n, A satisfies
1
|Sn|

∑
σ∈Sn

Lσ,f (A) ≤ VC(F)
n

,

where Sn is the set of all permutation functions [n]→ [n], and Lσ,f(A) is the 0-1 loss of A
with respect to f and the permutation σ, namely,

Lσ,f (A) = 1

(
A
(
xσ(1), f(xσ(1)), . . . , xσ(n−1), f(xσ(n−1)), xσ(n))

)
̸= f(xσ(n))

)
.



CHAPTER 2. LEARNING CURVES 28

Claim 2.4.14. For any pattern avoidance function g : X d → {0, 1}d there exists a function
Ag given by

Ag : (X × {0, 1})∗ → {0, 1}X

such that for any distribution D ∈ ∆
(
X d × {0, 1}d

)
for which Lforbidden

D (g) = 0 and for any
n ∈ N,

ES∼Dn

[
L0-1

D (Ag(S))
]
≤ d

n
.

Proof. This follows from Theorem 2.4.13, along with an appropriate definition of a VC class
from g.

Let
F =

{
f ∈ {0, 1}X :

(
∀x ∈ X d :

(
f(x1), . . . , f(xd)

)
̸= g(x)

)}
be the set of all functions that avoid the pattern g(x) for all x ∈ X d. Note that VC(F) ≤ d
because there does not exist a shattered subset of X of cardinality d. Let Ag be the function
A corresponding to F whose existence is guaranteed by Theorem 2.4.13. Then

ES∼Dn

[
L0-1

D (Ag(S))
]

= ES∼Dn,(X,Y )∼D[1 ((Ag(S))(X) ̸= Y )]
= E(

(X1,Y1),...,(Xn+1,Yn+1)
)

∼Dn+1,σ∼U(Sn+1)
[Lσ,f (Ag)] (2.11)

= E(
(X1,Y1),...,(Xn+1,Yn+1)

)
∼Dn+1

 1
|Sn+1|

∑
σ∈Sn+1

Lσ,f (Ag)


≤ VC(F)
n + 1 ≤

d

n + 1 . (By Theorem 2.4.13)

In Eq. (2.11), f a function in F that is consistent with (X1, Y1), . . . , (Xn+1, Yn+1). f is
chosen deterministically as a function of (X1, Y1), . . . , (Xn+1, Yn+1). Such an f exists because
Lforbidden

D (g) = 0, and F contains all functions that avoid g. In Eq. (2.11), we have used the
fact that (

S, (X, Y )
)

d=
(
(Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1))

)
.

Lemma 2.4.15. If there exists a winning strategy for the leaner in the forbidden pattern
game Gforbidden

d (H), then H is learnable with rate d/n.

Proof of Lemma 2.4.15. Let D ∈ Realizable(H). We need to show that there exist C, c ≥ 0
as follows. For any n ∈ N, let ĥS = OptimalRateLearner(S) with S ∼ Dn. Then

ES∼Dn

[
L0-1

D

(
ĥS

)]
≤ d/n + Ce−cn.

This is established via the following analysis of Algorithm 2.3. By Claim 2.4.12, there
exist C0, c0 ≥ 0 such that

PS∼Dn

[
t̂ ∈ T good

D

]
≥ 1− C0 · e−c0·n. (2.12)
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Assumptions:

• n ∈ N, m =
⌊

n
2

⌋
.

• D ∈ Realizable(H).

• S =
(
(X1, Y1), . . . , (Xn, Yn)

)
∼ Dn is a labeled training set.

• x is the input that needs to be labeled.

• t̂ is a function as in Claim 2.4.12.

• For any sequence z ∈
(
X d × {0, 1}d

)∗
, ŷz : X d → {0, 1}d is a pattern avoidance

function as in Notation 2.4.8.

• Ag is a learning algorithm that uses pattern avoidance function g, as in
Claim 2.4.14.

OptimalRateLearner(S):
t̂← t̂(S)
k ← ⌊m/̂t⌋
Sg, Sa ← partition of S into two disjoint sets of size at least m
S1, . . . , Sk ← partition of Sg into k disjoint sets of size at least t̂
for i ∈ [k]:

gi ← ŷSi

ai ← Agi
(Sa)

ĥ←
(

x 7→ Majority(a1(x), . . . , ak(x))
)

▷ Defining a function ĥ : X → {0, 1}

output ĥ

Algorithm 2.3: An algorithm that achieves the optimal learning rate for any class with finite
VCL dimension.

From the definition of T good
D , if t̂ ∈ T good

D then for every i ∈ [k],

P
S∼Dn

[
Lforbidden

D (gi) > 0
]
≤ 1

4 .

By Hoeffding’s inequality, there exist C1, c1 ≥ 0 such that

P
S∼Dn


∣∣∣{i ∈ [k] : Lforbidden

D (gi) > 0
}∣∣∣

k
≥ 3

8

∣∣∣∣ t̂ ∈ T good
D

 ≤ C1 · e−c1·n, (2.13)
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where we have used the fact that if t̂ ∈ T good
D then k = Ω(n). Applying the inequality

P[E] ≤ P[E|F ] + P[¬F ] to Eqs. (2.12) and (2.13) implies that there exist C, c ≥ 0 such that

P
S∼Dn


∣∣∣{i ∈ [k] : Lforbidden

D (gi) > 0
}∣∣∣

k
≥ 3

8

 ≤ Ce−cn, (2.14)

From Claim 2.4.14, for any i ∈ [k], if Lforbidden
D (gi) = 0 then

ES∼Dn

[
L0-1

D (Agi
(S))

]
≤ d

n
. (2.15)

Let B be the bad event whose probability is bounded by Eq. (2.14). Then

ES∼Dn

[
L0-1

D

(
ĥS

)]
= ES∼Dn

[
L0-1

D

(
ĥS

)
· 1(B)

]
+ ES∼Dn

[
L0-1

D

(
ĥS

)
· 1(¬B)

]
≤ PS∼Dn [B] + ES∼Dn

[
L0-1

D

(
ĥS

)
· 1(¬B)

]
≤ Ce−cn + ES∼Dn

[
L0-1

D

(
ĥS

)
· 1(¬B)

]
, (2.16)

where the final inequality follows by Eq. (2.14).
The expectation in the previous line can be bounded by

ES∼Dn

[
L0-1

D

(
ĥS

)
· 1(¬B)

]
= ES∼Dn,(X,Y )∼D[1 (Majority(a1(X), . . . , ak(X)) ̸= Y )1(¬B)]
≤ PS∼Dn,(X,Y )∼D[Majority(a1(X), . . . , ak(X)) ̸= Y ∧ ¬B]

≤ P
[(
|{i : ai(X) ̸= Y }|

k
≥ 1

2

)
∧
(
|{i : Lforbidden

D (gi) = 0}|
k

≥ 5
8

)]

≤ P
[(
|{i : (ai(X) ̸= Y ) ∧ (Lforbidden

D (gi) = 0)}|
k

≥ 1
8

)]

≤ 8
k
· E
[
|{i : (ai(X) ̸= Y ) ∧ (Lforbidden

D (gi) = 0)}|
]

(Markov’s inequality)

= 8
k
·
∑
i∈[k]

P
[
(ai(X) ̸= Y ) ∧ (Lforbidden

D (gi) = 0)
]

≤ 8
k
·
∑
i∈[k]

d

n
= 8d

n
, (2.17)

where the last inequality follows from Eq. (2.15).
Finally, plugging the bound of Eq. (Markov’s inequality) into Eq. (2.16) yields

ES∼Dn

[
L0-1

D

(
ĥS

)]
≤ Ce−cn + 8d

n
,

as desired.
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Lower Bound
Lemma 2.4.16. For any set X and any hypothesis class H ⊆ {0, 1}X satisfying d = VCL(H)
with 1 ≤ d <∞, there exists a distribution DX ∈ ∆(X ) such that for any (possibly randomized)
learning algorithm ĥ there exists D ∈ Realizable(H) such that the marginal distribution of D
on X is DX , and the inequality

ES∼Dn

[
L0-1

D

(
ĥS

)]
≥ d

100 · n (2.18)

holds for infinitely many n ∈ N.

Ingredients

The proof employs a claim about indifferent d-VCL trees, which is proved using a simple
lemma from Ramsey theory.

Notation 2.4.17. For any u ∈
(
{0, 1}d

)∗
, let index(u) ∈ N denote the index of u in the

lexicographical ordering of
(
{0, 1}d

)∗
.

Definition 2.4.18. Let d ∈ N, let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let

T =
{
xu ∈ X d : u ∈

(
{0, 1}d

)∗}
be an infinite d-VCL tree that is shattered by H. Recall that this implies the existence of a
collection

HT =
{
hu ∈ H : u ∈

(
{0, 1}d

)∗}
of consistent functions, namely, for each u ∈

(
{0, 1}d

)∗
, hu is consistent with the path from

the root to node u, as in the definition of shattering a VCL tree (Definition 2.2.11).
We say that such a collection HT is indifferent if for every v, u, w ∈

(
{0, 1}d

)∗
, if

index(v) < index(u), and w is a descendant of u in the tree T , then hu(xj
v) = hw(xj

v) for
every j ∈ [d]. In words, the functions for all the descendants of a node that appears after v
agree on v.

We say that T is indifferent if it has a set HT of consistent functions that are indifferent.

Intuitively, if T is indifferent, then the labels for a node v provide no information on the
labels of a node u that appears after v in the lexicographical order.

The claim about indifferent d-VCL trees is as follows.

Claim 2.4.19. Let d ∈ N, let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let T be
an infinite d-VCL tree that is shattered by H. Then there exists an infinite d-VCL tree T ′

that is shattered by H that is indifferent.
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Following is the lemma from Ramsey theory used for proving Claim 2.4.19, and a
generalized notion of a trees and subtrees used in that lemma.

Definition 2.4.20. Let (X,⪯) be a partial order relation. For a, b ∈ X, we say that b is a
child of a if a ⪯ b and there does not exist c ∈ X such that a ⪯ c ⪯ b. For k ∈ N, we say that
(X,⪯) is an infinite k-ary tree if every a ∈ X has precisely k distinct children. We say that a
partial order (X ′,⪯′) is a subtree of (X,⪯) if X ′ ⊆ X, and ∀a, b ∈ X ′ : a ⪯′ b ⇐⇒ a ⪯ b.

Lemma 2.4.21. Let T = (X,⪯) be an infinite k-ary tree, and let g : X → {0, 1} be
a two-coloring of T . Then T has a monochromatic infinite k-ary subtree T ′ = (X ′,⪯′),
namely there exists T ′ such that T ′ is a subtree of T , T ′ is an infinite k-ary tree, and
|g(X ′)| = |{g(a) : a ∈ X ′}| = 1.

Proof of Lemma 2.4.21. If there exists a ∈ X such that the set X ′ consisting of a and all its
descendants satisfies g(X ′) = {1}, then we are done (take T ′ to be the subtree consisting of a
and all its descendants). Otherwise, every a ∈ X has a descendant b ∈ X such that g(b) = 0.
This implies that one can construct an infinite k-ary subtree that is 0-monochromatic using
the following recursive procedure. Let r be any member of X such that g(r) = 0. Let T ′ be
an empty tree, and add r to T ′. Subsequently, for each node n added to T ′ (including r), for
each child a of n, add to T ′ an arbitrary descendant b of a such that g(b) = 0.

Proof of Claim 2.4.19. First, observe that if T =
{
xu : u ∈

(
{0, 1}d

)∗}
is an infinite d-VCL

tree that is shattered by H with a collection {hu : u ∈
(
{0, 1}d

)∗
} of consistent functions,

then for any x ∈ X there exists an infinite d-VCL tree that is shattered by H that is a subtree
of T and has a collection of consistent functions that agree on x. Indeed, this follows from
Lemma 2.4.21 by choosing a two-coloring g :

(
{0, 1}d

)∗
→ {0, 1} of T given by g(u) = hu(x).

Second, we use the above observation to construct an infinite d-VCL tree

T ′ =
{
x′

u : u ∈
(
{0, 1}d

)∗}
that is shattered by H and is indifferent. The construction works by starting with T ′ := T
and then repeatedly modifying T ′, as specified in Algorithm 2.4. Each modification step
replaces a subtree T ′

u of T ′ with one of its own infinite d-VCL subtrees, which is obtained by
invoking the above observation on T ′

u and x = xj
v for some j ∈ [d] and some v that precedes

u. In each step, the set of nodes of T ′ decreases (is replaced by one of its subsets), and the
collection of consistent functions can be decreased in a corresponding manner (be replaced
by a subset of itself that corresponds to the new set of nodes).
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T ′ ← T
for u ∈

(
{0, 1}d

)∗
in lexicographic order:

for v ∈
(
{0, 1}d

)∗
such that index(v) < index(u):

for j ∈ [d]:
replace T ′

u with an infinite 2d-ary subtree of T ′
u that has

a collection of consistent functions that agree on xj
v

Algorithm 2.4: Construction of an indifferent d-VCL tree. (T ′
u denotes the infinite 2d-ary

subtree of T ′ rooted at node u.)

Algorithm 2.4 never terminates, but it defines an infinite d-VCL tree T ′. T ′ is well-defined
because for every r ∈

(
{0, 1}d

)∗
, the value of x′

r never changes after the outer loop advances
past r (i.e., index(u) > index(r)), and so x′

r is eventually fixed. T ′ is an infinite 2d-ary subtree
of T (each replacement maintains that T ′ is an infinite 2d-ary subtree of T , so the resulting
tree defined by this process is also an infinite 2d-ary subtree of T ). This implies that it is
a d-VCL tree that is shattered by H. T ′ is indifferent by construction, because for each
q, r, \ ∈

(
{0, 1}d

)∗
and k ∈ [d], if index(q) < index(r), and \ is a descendant of r, then during

the iteration of the innermost loop in which u = r, v = q, and j = k, the subtree T ′
r was

replaced with a subtree that has a collection of consistent functions that agree on (x′
q)k. In

particular this implies that hr((x′
q)k) = h\((x′

q)k). This agreement continues to hold from
that point onwards, because the collection of consistent functions for descendants of hr can
only decrease at each step.

When a tree is indifferent, it admits a notion of branch functions, as follows.

Notation 2.4.22. Y =
(
{0, 1}d

)N
.

Definition 2.4.23. Let d ∈ N, let X be a set, let H ⊆ {0, 1}X be a hypothesis class, and let

T =
{
xu ∈ X d : u ∈

(
{0, 1}d

)∗}
be an infinite d-VCL tree that is shattered by H with a collection

HT =
{
hu ∈ H : u ∈

(
{0, 1}d

)∗}
of consistent functions that are indifferent. Let

XT = {xi
u : u ∈

(
{0, 1}d

)∗
∧ i ∈ [d]}.

For every y ∈ Y, the branch function for y is the unique function fy : XT → {0, 1} such
that for each v ∈

(
{0, 1}d

)∗
and j ∈ [d],

fy(xj
v) = hu(xj

v)
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for a node u such that y≤|u| = u and index(u) > index(v). In words, fy(xj
v) is the value

assigned to xj
v by the consistent function of any node on the infinite branch y that appears

after v in lexicographic order. (Due to the indifference property, hu(xj
v) is the same for any

such node u.)

We note some consequences of the definitions of indifference and branch functions.

Claim 2.4.24. Let T be an indifferent infinite d-VCL tree with a collection of branch functions
{fy}y∈Y . Then:

1. Every branch function fy is finitely realizable, meaning that for any finite set {x1, . . . xm}
⊆ XT , there exists a function h ∈ H such that for all i ∈ [m], fy(xi) = h(xi).

2. Each element in T is unique. Namely, for every u, v ∈
(
{0, 1}d

)∗
and every i, j ∈ [d], if

u ̸= v or i ̸= j then xi
u ̸= xj

v.

3. Let v, u ∈
(
{0, 1}d

)∗
. If index(u) > index(v) then there exists b ∈ {0, 1}d such that for

any y ∈ Y, if u = y≤|u| then fy(xj
v) = bj for all j ∈ [d]. In words, if v precedes u in

lexicographical order, then all the branch functions for branches that pass through node u
agree on node v.

We think of Item 3 as an indifference property for branch functions. Intuitively, it means
that knowing the labels for v does not provide any information on which of the branch
functions for branches that pass through u is more likely to be the correct labeling function.
The branch functions that pass through u are indifferent to the labels of v.

Proof of Claim 2.4.24. Item 1 is immediate from the definition of fy. For Item 2, clearly if
u = v then xi

u ̸= xj
v, since otherwise node u could not have 2d children, in contradiction to T

being a d-VCL tree. Assume for contradiction that index(v) < index(u) and xi
u = xj

v. Then
all consistent functions for the children of u must agree on xj

v, but that implies that they
agree on xi

u as well, which is again a contradiction to u having 2d children. Finally, Item 3 is
immediate from the definition of fy and from the indifference of T .

The proof of the lower bound also employs the reverse Fatou’s lemma.

Lemma 2.4.25 (Reverse Fatou; e.g., Theorem 10.17 in Browder 1996, and ProofWiki). Let
(Ω,F , µ) be a measure space. Let g : Ω → R be a non-negative measurable function such
that

∫
Ω g dµ < ∞. For each n ∈ N let fn : Ω → R be a measurable function such that

∀ω ∈ Ω : fn(ω) ≤ g(ω). Then∫
Ω

lim sup
n→∞

fn dµ ≥ lim sup
n→∞

∫
Ω

fn dµ.
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Proof of Lower Bound

Proof of Lemma 2.4.16. We will define a set of distributions

{Py}y∈Y ⊆ Realizable(H)

that depends onH such that all the distributions in the set have the same marginal distribution
over X . The proof uses the probabilistic method to show that for every learning algorithm
ĥ for H there exists y∗ ∈ Y (that depends on ĥ) such that Py∗ is a hard distribution for ĥ,
namely, that Eq. (2.18) holds for D = Py∗ for infinitely many values of n.

The set {Py}y∈Y is defined as follows. By Claim 2.4.19 and the assumption that VCL(H) =
d, there exist an indifferent infinite d-VCL tree

T =
{
xu ∈ X d : u ∈

(
{0, 1}d

)∗}
with a corresponding collection of branch functions

F =
{
fy ∈ {0, 1}XT : y ∈ Y

}
.

Fix such a pair (T,F). For each y ∈ Y let

Py
(
(x, y)

)
=

∑
u∈({0,1}d)∗

(d− 1)d−index(u)−1
d∑

i=1
1
(
x = xi

u ∧ y = fy
(
xi

u

))
.

In words, Py corresponds to the following sampling procedure:

1. Sample an index k ∈ N such that ∀s ∈ N : P[k = s] = (d− 1)d−s.5

2. Let u ∈
(
{0, 1}d

)∗
be the k-th string in the lexicographical ordering of

(
{0, 1}d

)∗
.

3. Sample j ∈ [d] independently and uniformly at random.

4. Output (xj
u, fy(xj

u)).

Note that the marginal distribution of Py on X (the distribution of xi
u) is the same for

all y ∈ Y ; this is the marginal distribution DX mentioned in the statement.
To see that Py is realizable, note that for every ε > 0 there exists kε ∈ N such that in Step 1

of the sampling procedure, P[k > kε] ≤ ε. fy is finitely-realizable byH (Item 1 in Claim 2.4.24),
so in particular there exists hε ∈ H that is consistent with Zε =

{
(xj

u, fy(xj
u)) : index(u) ≤

kε ∧ j ∈ [d]
}
. Hence, L0-1

Py (hε) ≤ P(x,y)∼Py [(x, y) /∈ Zε] ≤ P[k > kε] ≤ ε.
For a fixed algorithm ĥ and for each n ∈ N, consider the following experiment:
5Recall that for a geometric series,

∑∞
s=1 d−s = 1

d−1 when d > 1, and therefore
∑∞

s=1 P[k = s] =∑∞
s=1(d− 1)d−s = 1.
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• A value y ∈ Y is sampled from the uniform distribution U(Y), namely each bit in y is
chosen independently and uniformly at random.

• An i.i.d. training set S =
(
(X1, Y1, K1), (X2, Y2, K2), . . . , (Xn, Yn, Kn)

)
∼ P n

y is generated
according to the sampling procedure of Steps 1 to 4, where for each i ∈ [n], Ki ∈ N is
the index selected at Step 1, and (Xi, Yi) is the output at Step 4.

• An additional test sample (X, Y, K) ∼ Py is generated in the same manner.

• A randomness value ρ is sampled for the algorithm ĥ, and then ĥ is executed with
training set S and randomness ρ and produces a hypothesis ĥS.

• ĥS is used to predict a label ĥS(X) for X.

This experiment defines a joint distribution

(y, S, X, Y, K, ρ) (2.19)

that is used throughout the remainder of the proof.
For any κ ∈ N, let G(κ) denote the event in which the following conditions hold:

• K = κ ≥ max{K1, . . . , Kn}.

• |{i ∈ [n] : Ki = κ}| < d/2.

• X /∈ {Xi : i ∈ [n]}.

We make two observations concerning G(κ). The first observation is that

P[G(κ)] ≥ (d− 1)d−κ/4 (2.20)

when n = nκ =
⌊

dκ+1

8(d−1)

⌋
. To see this, let

C=κ = |{i ∈ [nκ] : Ki = κ}| , C>κ = |{i ∈ [nκ] : Ki > κ}| .

Then

E[C=κ] = nκ · (d− 1)d−κ ≤ dκ+1

8(d− 1) · (d− 1)d−κ = d

8 ,

and

E[C>κ] = nκ ·
∞∑

s=κ+1
(d− 1)d−s

≤ dκ+1

8(d− 1) · 2(d− 1)d−κ−1 = 1
4 .
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By Markov’s inequality,

P
[
C=κ ≥

d

2

]
≤ 1

4 , and P[C>κ ≥ 1] ≤ 1
4 .

By a union bound,

P
[
C=κ <

d

2 ∧ C>κ = 0
]
≥ 1

2 . (2.21)

Hence, for any η ∈ Y ,

Py,S,X,Y,K [G(κ) | y = η]

= P[K = κ | y = η] · P
[
C=κ <

d

2 ∧ C>κ = 0 | y = η

]

· P
[
X /∈ {Xi : i ∈ [nκ]}

∣∣∣∣ C=κ <
d

2 ∧ C>κ = 0 ∧ K = κ ∧ y = η

]

≥ (d− 1)d−κ · 12

· P
[
X /∈ {Xi : i ∈ [nκ]}

∣∣∣∣ C=κ <
d

2 ∧ C>κ = 0 ∧ K = κ ∧ y = η

]
(By Eq. (2.21), (C=κ, C>κ)⊥y)

≥ (d− 1)d−κ · 12 ·
1
2 .

For the last inequality, recall that the elements in T are unique (Item 2 in Claim 2.4.24).
Consequently, for every i ∈ [nκ], if Ki < κ = K then Xi ̸= X. The conditions C=κ < d/2 and
K = κ, and the sampling of j ∼ U([d]) in Step 3 imply that with probability at least 1/2,
X /∈ {Xi : i ∈ [nκ] ∧ Ki = κ}. This establishes Eq. (2.20), which is our first observation
about G(κ).

Our second observation is that for any κ corresponding to a node on the branch y, if G(κ)
occurs then ĥ makes an incorrect prediction with probability 1/2.

Formally, for any t ∈ N, let κy,t = index(y<t), where y = (y1, y2, . . . ) and y<t =
(y1, y2, . . . , yt−1). In words, κy,t is the index in the lexicographic ordering of ({0, 1}d)∗

corresponding to the t-th node in the branch y. Let ny,t = nκy,t . The second observation
states that for any t ∈ N,

Ey∼U(Y)
[
PS∼P

ny,t
y ,(X,Y,K)∼Py,ρ

[
ĥS(X) ̸= Y | G(κy,t)

]]
= Py∼U(Y),S∼P

ny,t
y ,(X,Y,K)∼Py,ρ

[
ĥS(X) ̸= Y | G(κy,t)

]
= 1

2 . (2.22)

This probability pertains to the special case of the experiment of Eq. (2.19) in which the
number n of samples in S depends on y, satisfying n = ny,t. It is a conditional probability given
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that G(κy,t) occurred, where G(κy,t) is an event involving (y, X, X1, . . . , Xn, K, K1, . . . , Kn).
To establish Eq. (2.22), it suffices to show that for any t ∈ N,

Py∼U(Y),S∼P
ny,t
y ,(X,Y,K)∼Py,ρ

[
Y = 1 | X, {Xi, Yi}i∈[ny,t], G(κy,t)

]
= 1

2 , (2.23)

because the prediction ĥS(X) depends only on (X, {Xi, Yi}i∈[ny,t], ρ). Roughly, Eq. (2.23)
follows from the indifference of {fy}y∈Y (Item 3 in Claim 2.4.24), which states that if X is
a member of the K-th node in the tree T , then for any Xi with Ki < K there exists a bit
b ∈ {0, 1} such that for all branches y ∈ Y that contain node K, fy(Xi) = b. In particular,
Y = fy(X) is a uniformly random bit independent of {Xi, Yi = fy(Xi)}i∈[ny,t] ∪ {X} given
G(κy,t).

To flesh out the argument for Eq. (2.23) in further detail, fix κ ∈ N, (κ1, . . . , κnκ) ∈ Nnκ ,
(ξ, ξ1, . . . , ξnκ) ∈ X nκ+1, and (η1, . . . , ηnκ) ∈ {0, 1}nκ . Consider the following conditional
probability of Y for a fixed t ∈ N, assuming the event being conditioned upon has a positive
probability.

P

Y = 1
∣∣∣∣∣∣

κy,t = κ
∀i ∈ [ny,t] : Xi = ξi ∧ Yi = ηi ∧ Ki = κi

K = κy,t ≥ max{Ki : i ∈ [ny,t]}
X = ξ /∈ {Xi : i ∈ [ny,t]}



= P

fy(X) = 1
∣∣∣∣∣∣

κy,t = κ
∀i ∈ [ny,t] : Xi = ξi ∧ fy(Xi) = ηi ∧ Ki = κi

K = κy,t ≥ max{Ki : i ∈ [ny,t]}
X = ξ /∈ {Xi : i ∈ [ny,t]}


(Choice of Y and Yi)

= P

fy(X) = 1
∣∣∣∣∣∣

κy,t = κ
∀i ∈ [ny,t] : Xi = ξi ∧ Ki = κi

K = κy,t ≥ max{Ki : i ∈ [ny,t]}
X = ξ /∈ {Xi : i ∈ [ny,t]}


(Indifference of {fy}y∈Y – Item 3 in Claim 2.4.24)

= P

yj
t = 1

∣∣∣∣∣∣
κy,t = κ

∀i ∈ [ny,t] : Xi = ξi ∧ Ki = κi

K = κy,t ≥ max{Ki : i ∈ [ny,t]}
X = ξ /∈ {Xi : i ∈ [ny,t]}

 = 1
2 ,

where j is the index of X in the K-th node in the tree. In the last line we have used
the fact that K = κy,t implies that X is on the branch corresponding to y, and the final
equality holds because yt is a vector of uniformly random bits chosen independently of
{Xi, Ki}i∈[ny,t]∪{X, K, κy,t} (note that κy,t and ny,t are fully determined by t and y<t). This
establishes Eq. (2.22), our second observation.
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The first observation is used as follows. For every y ∈ Y ,

lim sup
n→∞

n · Eρ,S∼P n
y

[
L0-1

Py

(
ĥS

)]
≥ lim sup

t→∞
ny,t · Eρ,S∼P

ny,t
y

[
L0-1

Py

(
ĥS

)]
(If bj is a subsequence of aj then lim sup aj ≥ lim sup bj)

= lim sup
t→∞

ny,t · Pρ,S∼P
ny,t
y ,(X,Y,K)∼Py,ρ

[
ĥS(X) ̸= Y

]
≥ lim sup

t→∞
ny,t · Pρ,S∼P

ny,t
y ,(X,Y,K)∼Py

[(
ĥS(X) ̸= Y

)
∧ G(κy,t)

]
= lim sup

t→∞
ny,t · P[G(κy,t)] · P

[
ĥS(X) ̸= Y | G(κy,t)

]
≥ lim sup

t→∞

dκy,t+1

9(d− 1) ·
(d− 1)d−κy,t

4 · P
[
ĥS(X) ̸= Y | G(κy,t)

]
(By Eq. (2.20) and choice of ny,t)

= lim sup
t→∞

d

36 · Pρ,S∼P
ny,t
y ,(X,Y,K)∼Py

[
ĥS(X) ̸= Y | G(κy,t)

]
. (2.24)

To complete the proof we use our second observation and Fatou’s lemma as follows.

Ey∼U(Y)

[
lim sup

n→∞
n · Eρ,S∼P n

y

[
L0-1

Py

(
ĥS

)]]
≥ d

36 · Ey∼U(Y)

[
lim sup

t→∞
Pρ,S∼P

ny,t
y ,(X,Y,K)∼Py

[
ĥS(X) ̸= Y | G(κy,t)

]]
(By Eq. (2.24))

≥ d

36 · lim sup
t→∞

Ey∼U(Y)
[
Pρ,S∼P

ny,t
y ,(X,Y,K)∼Py

[
ĥS(X) ̸= Y | G(κy,t)

]]
(Fatou’s lemma (Lemma 2.4.25), P[·] ≤ 1)

= d

36 ·
1
2 = d

72 . (By Eq. (2.22))

This implies that there exists y ∈ Y such that

lim sup
n→∞

n · ES∼P n
y

[
L0-1

Py

(
ĥS

)]
≥ d

72 .

By the definition of lim sup, the inequality

ES∼P n
y

[
L0-1

Py

(
ĥS

)]
≥ d

73 · n
holds for infinitely many values of n ∈ N, as desired.

2.5 Result for Half-Spaces
Notation 2.5.1. Let d ∈ N. We write Sd−1 = {x ∈ Rd : ∥x∥2 = 1} to denote the unit sphere
in Rd.
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Definition 2.5.2. Let d ∈ N. For any w ∈ Sd−1, let hw : Rd → {0, 1} be the half-
space given by hw(x) = 1 (⟨w, x⟩ > 0). The class of homogeneous half-spaces in Rd is
Hd =

{
hw : w ∈ Sd−1

}
.

Definition 2.5.3. Let d ∈ N, let H ⊆ Sd−1 be a set. We say that a set of points
{x1, . . . , xm} ⊆ Rd is openly shattered by H if for every vector y = (y1, . . . , ym) ∈ {0, 1}m,
there exists an open set Wy ⊆ H such that

∀w ∈ Wy ∀i ∈ [m] : hw(xi) = yi. (2.25)

Lemma 2.5.4. Let d ∈ N, and let H ⊆ Sd−1 be an open set. Then there exists a set X ⊆ Sd−1

such that |X| = d− 1 and X is openly shattered by H.

Proof. Fix a point x0 in the interior of the H. Let x1, . . . , xd−1 ∈ Sd−1 be points such that
x0, x1, . . . , xd−1 is an orthonormal basis of Rd.

For each y = (y1, . . . , yd−1) ∈ {0, 1}d−1, let

w′
y = x0 + ε ·

∑
i∈[d−1]

sign(yi − 1/2) · xi

be a point with ε > 0 small enough such that wy is in the interior of H, where wy is the
projection of w′

y onto Sd−1. From the orthogonality of {x0, . . . , xd−1},

∀i ∈ [d− 1] : hwy(xi) = yi.

For each i ∈ [d− 1] and y ∈ {0, 1}, let Qi,y ⊆ Sd−1 be the set of w such that hw(xi) = y.
Because we use open half-spaces, Qi,y is open. Observe that for each y ∈ {0, 1}d−1,

Wy = H ∩
⋂

i∈[d−1]
Qi,yi

is open (as a finite intersection of open sets), and is non-empty because it contains wy.

Lemma 2.5.5. Let d ∈ N. Then VCL(Hd) ≥ d− 1.

Proof. We recursively construct an infinite (d− 1)-VCL tree that is shattered by Hd. Let
Hλ = Sd−1. For every s ∈ 0, 1, 2, ... do the following. For every u ∈ {0, 1}ds, note that
Hu ⊆ Sd−1 is open. Therefore, by Lemma 2.5.4, there exists xu = (x1

u, . . . , xd−1
u ) ⊆ Sd−1 of

cardinality d− 1 that is openly shattered by Hu. Namely, for each y ∈ {0, 1}d there exists an
open set Wy ⊆ Hu such that Eq. (2.25) holds (for xi = xi

u and m = d). For each y ∈ {0, 1}d,
define Hu◦y = Wy.

We claim that T = {xu : u ∈
(
{0, 1}d

)∗
} is a (d− 1)-VCL tree that is shattered by Hd.

Indeed, fix t ∈ N and y ∈ {0, 1}td. Let w ∈ Hu. Then the choice of xu and Hu implies that

∀s ∈ [t] ∀j ∈ [d] : hw(xj
y≤s−1

) = yj
s,

as desired.
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2.6 Directions for Future Work
We have shown a characterization of fine-grained learning rates in the instance specific
setting. Directions for future work include characterizing the precise parameters C, c ≥ 0 in
Eq. (2.1), and obtaining an optimal gap factor (or equivalently, optimal parameters α, β ≥ 0
in Theorem 2.3.1).

Like the results of Bousquet et al. (2021), our results describe the asymptotic rate at
which learning curves decay – but the results are silent as to the properties of learning curves
for any finite number of samples. Devising a theory of learning curves that explains both
asymptotic and non-asymptotic behavior in a unified way would be valuable.

Our result on semi-supervised learning (Item 3 in Section 2.1, Main Results) suggests
that unlabeled data is not helpful in the setting of distribution-dependent learning curves.
However, there are good reasons to believe that unlabeled data is helpful for learning in some
real-world scenarios. We wonder how this tension could be resolved.
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Chapter 3

A Trichotomy for Transductive Online
Learning

3.1 Introduction
In classification tasks like PAC learning and online learning, the learner simultaneously
confronts two distinct types of uncertainty: labeling-related uncertainty regarding the best
labeling function, and instance-related uncertainty regarding the instances that the learner
will be required to classify in the future. To gain insight into the role played by each type of
uncertainty, researchers have studied modified classification tasks in which the learner faces
only one type of uncertainty, while the other type has been removed.

In the context of PAC learning, Ben-David and Ben-David (2011) studied a variant of
proper PAC learning in which the true labeling function is known to the learner, and only the
distribution over the instances is not known. They show bounds on the sample complexity
in this setting, which conceptually quantify the instance-related uncertainty. Conversely,
labeling-related uncertainty is captured by PAC learning with respect to a fixed (e.g., uniform)
domain distribution (Benedek and Itai, 1991), a setting which has been studied extensively.

In this chapter we improve upon the work of Ben-David et al. (1997), who quantified the
label-related uncertainty in online learning. They introduced a model of transductive online
learning,1 in which the adversary commits in advance to a specific sequence of instances,

1Ben-David et al. (1997) call their model ‘off-line learning with the worst sequence’, but in this chapter we
opt for ‘transductive online learning’, a name that has appeared in a number of publications, including Kakade
and Kalai (2005); Pechyony (2008); Cesa-Bianchi and Shamir (2013); Syrgkanis, Krishnamurthy, and Schapire
(2016). We remark there are at least two different variants referred to in the literature as ‘transductive
online learning’. For example, Syrgkanis et al. (2016) write of “a transductive setting (Ben-David et al., 1997)
in which the learner knows the arriving contexts a priori, or, less stringently, knows only the set, but not
necessarily the actual sequence or multiplicity with which each context arrives.” That is, in one setting, the
learner knows the sequence (x1, . . . , xn) in advance, but in another setting the learner only knows the set
{x1, . . . , xn}. One could distinguish between these two settings by calling them ‘sequence-transductive’ and
‘set-transductive’, respectively. Seeing as the current chapter deals exclusively with the sequence-transductive
setting, we refer to it herein simply as the ‘transductive’ setting.
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thereby eliminating the instance-related uncertainty.

The Transductive Online Learning Model
The model of learning studied in this chapter, due to Ben-David et al. (1997), is a zero-sum,
finite, complete-information, sequential game involving two players, the learner and the
adversary. Let n ∈ N, let X and Y be sets, and let H ⊆ YX be a collection of functions
called the hypothesis class.

The game proceeds as follows (see Section 3.2 for further formal definitions). First,
the adversary selects an arbitrary sequence of instances, x1, . . . , xn ∈ X . Then, for each
t = 1, . . . , n:

1. The learner selects a prediction, ŷt ∈ Y .

2. The adversary selects a label, yt ∈ Y .

In each step t ∈ [n], the adversary must select a label yt such that the sequence
(x1, y1), . . . , (xt, yt) is realizable by H, meaning that there exists h ∈ H satisfying h(xi) = yi

for all i ∈ [t]. The learner’s objective is to minimize the quantity

M(A, x, h) = |{t ∈ [n] : ŷt ̸= h(xt)}| ,

which is the number of mistakes when the learner plays strategy A and the adversary
chooses sequence x ∈ X n and labels consistent with hypothesis h ∈ H. We are interested in
understanding the value of this game,

M(H, n) = inf
A∈A

sup
x∈X n

sup
h∈H

M(A, x, h),

where A is the set of all learner strategies. Note that neither party can benefit from using
randomness, so without loss of generality we consider only deterministic strategies.

A Motivating Example
Transductive predictions of the type studied in this chapter appear in many real-world
situations, essentially in any case where a party has a schedule or a to-do list known in
advance of specific tasks that need to be completed in order, and there is some uncertainly
as to the precise conditions that will arise in each task. As a concrete example, consider the
logistics that the management of an airport faces when scheduling the work of passport-control
officers.

Example 3.1.1. An airport knows in advance what flights are scheduled for each day.
However, it does not know in advance exactly how many passengers will go through passport
control each day (because tickets can be booked and cancelled in the last minute, and entire
flights can be cancelled, delayed or rerouted, etc.). Each day can be ‘regular’ (the number of
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passengers is normal), or it can be ‘busy’ (more passengers than usual). Correspondingly,
each day the airport must decide whether to schedule a ‘regular shift’ of passport-control
officers, or an ‘extended shift’ that contains more officers.

If the airport assigns a standard shift for a busy day, then passengers experience long
lines at passport control, and the airport suffers a loss of 1; if the airport assigns an extended
shift for a regular day, then it wastes money on excess manpower, and it again experiences a
loss of 1; If the airport assigns a regular shift to a regular day, or an extended shift to a busy
day, then it experiences a loss of 0.

Hence, when the airport schedules its staff, it is essentially attempting to predict for each
day whether it will be a regular day or a busy day, using information it knows well in advance
about which flights are scheduled for each day. This is precisely a transductive online learning
problem.

Our Contributions
I. Trichotomy. We show the following trichotomy. It shows that the rate at which

M(H, n) grows as a function of n is determined by the VC dimension and the Littlestone
dimension (LD).

Theorem (Informal Version of Theorem 3.4.1). Every hypothesis class H ⊆
{0, 1}X satisfies precisely one of the following:

1. M(H, n) = n. This happens if VC(H) =∞.
2. M(H, n) = Θ(log(n)). This happens if VC(H) <∞ and LD(H) =∞.
3. M(H, n) = Θ(1). This happens if LD(H) <∞.

The Θ(·) notations in Items 2. and 3. hide a dependence on VC(H), and LD(H),
respectively.

The proof uses bounds on the number of mistakes in terms of the threshold dimension
(Section 3.3), among other tools.

II. Littlestone classes. The minimal constant upper bound in the Θ(1) case of The-
orem 3.4.1 is some value C(H) that depends on the class H, but the precise map-
ping H 7→ C(H) is not known in general. Ben-David et al. (1997) showed that
C(H) = Ω

(√
log(LD(H))

)
. In Section 3.3 and Appendix A.1 we improve upon their

result as follows.
Theorem (Informal Version of Theorem 3.3.1). Let H ⊆ {0, 1}X such that
LD(H) = d <∞. Then M(H, n) = Ω(log(d)).
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III. Multiclass setting. In Section 3.5, we generalize Theorem 3.4.1 to the multiclass
setting with a finite label set Y , showing a trichotomy based on the Natarajan dimension.
The proof uses a simple result from Ramsey theory, among other tools.
Additionally, we show that the DS dimension of Daniely and Shalev-Shwartz (2014) does
not characterize multiclass transductive online learning.

IV. Agnostic setting. In the standard (non-transductive) agnostic online setting, Ben-
David, Pál, and Shalev-Shwartz (2009) showed that Ronline(H, n), the agnostic online
regret for a hypothesis class H for a sequence of length n satisfies

Ω
(√

LD(H) · n
)
≤ Ronline(H, n) ≤ O

(√
LD(H) · n · log n

)
. (3.1)

Later, Alon, Ben-Eliezer, Dagan, Moran, Naor, and Yogev (2021) showed an improved
bound of Ronline(H, n) = Θ

(√
LD(H) · n

)
.

In Section 3.6 we show a result similar to Eq. (3.1), for the transductive agnostic online
setting.

Theorem (Informl Version of Theorem 3.6.1). Let H ⊆ {0, 1}X , such that
0 < VC(H) <∞. Then the agnostic transductive regret for H is

Ω
(√

VC(H) · n
)
≤ R(H, n) ≤ O

(√
VC(H) · n · log n

)
.

Related Works
The general idea of bounding the number of mistakes by learning algorithms in sequential
prediction problems was introduced in the seminal work of Littlestone (1988). That work
introduced the online learning model, where the sequence of examples is revealed to the learner
one example at a time. After each example x is revealed, the learner makes a prediction,
after which the true target label y is revealed. The constraint, which makes learning even
plausible, is that this sequence of (x, y) pairs should maintain the property that there is an
(unknown) target concept in a given concept class H which is correct on the entire sequence.
Littlestone (1988) also identified the optimal predictor for this problem (called the SOA, for
Standard Optimal Algorithm), and a general complexity measure which is precisely equal to
the optimal bound on the number of mistakes: a quantity now referred to as the Littlestone
dimension.

Later works discussed variations on this framework. In particular, as mentioned, the
transductive model discussed in the present work was introduced in the work of Ben-David
et al. (1997). The idea (and terminology) of transductive learning was introduced by Vapnik
and Chervonenkis (1974); Vapnik (1982); Kuhlmann (1999), to capture scenarios where
learning may be easier due to knowing in advance which examples the learner will be tested
on. Vapnik and Chervonenkis (1974); Vapnik (1982); Kuhlmann (1999) study transductive
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learning in a model closer in spirit to the PAC framework, where some uniform random subset
of examples have their labels revealed to the learner and it is tasked with predicting the labels
of the remaining examples. In contrast, Ben-David et al. (1997) study transductive learning in
a sequential prediction setting, analogous to the online learning framework of Littlestone. In
this case, the sequence of examples x is revealed to the learner all at once, and only the target
labels (the y’s) are revealed in an online fashion, with the label of each example revealed just
after its prediction for that example in the given sequential order. Since a mistake bound
in this setting is still required to hold for any sequence, for the purpose of analysis we may
think of the sequence of x’s as being a worst case set of examples and ordering thereof, for a
given learning algorithm. Ben-David et al. (1997) compare and contrast the optimal mistake
bound for this setting to that of the original online model of Littlestone (1988). Denoting by
d the Littlestone dimension of the concept class, it is clear that the optimal mistake bound
would be no larger than d. However, they also argue that the optimal mistake bound in
the transductive model is never smaller than Ω(

√
log(d)) (as mentioned, we improve this to

log(d) in the present work). They further exhibit a family of concept classes of variable d for
which the transductive mistake bound is strictly smaller by a factor of 3

2 . They additionally
provide a general equivalent description of the optimal transductive mistake bound in terms
of the maximum possible rank among a certain family of trees, each representing the game
tree for the sequential game on a given sequence of examples x.

In addition to these two models of sequential prediction, the online learning framework
has also been explored in other variations, including exploring the optimal mistake bound
under a best-case order of the data sequence x, or even a self-directed adaptive order in which
the learning algorithm selects the next point for prediction from the remaining x’s from the
given sequence on each round (Ben-David et al., 1997; Ben-David, Eiron, and Kushilevitz,
1995; Goldman and Sloan, 1994; Ben-David and Eiron, 1998; Kuhlmann, 1999).

Unlike the online learning model of Littlestone, the transductive model additionally allows
for nontrivial mistake bounds in terms of the sequence length n (the online model generally
has min{d, n} as the optimal mistake bound). In this case, it follows immediately from the
Sauer–Shelah–Perles lemma and a Halving technique that the optimal transductive mistake
bound is no larger than O(v log(n)) Kakade and Kalai (2005), where v is the VC dimension
of the concept class Vapnik and Chervonenkis (1971, 1974).

3.2 Preliminaries
Notation 3.2.1. Let X be a set and n, k ∈ N. For a sequence x = (x1, . . . , xn) ∈ X n,
we write x≤k to denote the subsequence (x1, . . . , xk). If k ≤ 0 then x≤k denotes the empty
sequence, X 0.

Definition 3.2.2. Let k ∈ N, let X and Y be sets, and let H ⊆ YX . A sequence
(x1, y1), . . . , (xk, yk) ∈ (X × Y)k is realizable by H, or H-realizable, if

∃h ∈ H ∀i ∈ [k] : h(xi) = yi.
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Definition 3.2.3. Let X be a set, let H ⊆ {0, 1}X , let d ∈ N, and let X = {x1, . . . , xd} ⊆ X .
We say that H shatters X if for every y ∈ {0, 1}d there exists h ∈ H such that for all i ∈ [d],
h(xi) = yi. The Vapnik–Chervonenkis (VC) dimension of H is VC(H) = sup {|X| : X ⊆
X finite ∧ H shatters X}.

Definition 3.2.4 (Littlestone, 1988). Let X be a set and let d ∈ N. A Littlestone tree of
depth d with domain X is a set

T =
{

xu ∈ X : u ∈
d⋃

s=0
{0, 1}s

}
. (3.2)

Let H ⊆ {0, 1}X . We say that H shatters a tree T as in Eq. (3.2) if for every u ∈ {0, 1}d+1

there exists hu ∈ H such that

∀i ∈ [d + 1] : h(xu≤i−1) = ui.

The Littlestone dimension of H, denoted LD(H), is the supremum over all d ∈ N such that
there exists a Littlestone tree of depth d with domain X that is shattered by H.
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∃h ∈ H :
h(xλ) = 1

h(x1) = 0

h(x10) = 1

Figure 3.1: A shattered Littlestone tree of depth 2. The empty sequence is denoted by λ.
Source: Bousquet et al. (2021).

Theorem 3.2.5 (Littlestone, 1988). Let X be a set and let H ⊆ {0, 1}X such that d =
LD(H) <∞. Then there exists a strategy for the learner that guarantees that the learner will
make at most d mistakes in the standard (non-transductive) online learning setting, regardless
of the adversary’s strategy and of number of instances to be labeled.

Theorem 3.2.6 (Sauer–Shelah–Perles; Shelah, 1972; Sauer, 1972). Let n, d ∈ N, let X be a
set of cardinality n, and let H ⊆ {0, 1}X such that VC(H) = d. Then |H| ≤ ∑n

i=0

(
n
i

)
≤
(

en
d

)d
.
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3.3 Quantitative Bounds

Littlestone Dimension: A Tighter Lower Bound
The Littlestone dimension is an upper bound on the number of mistakes, namely

∀n ∈ N : M(H, n) ≤ LD(H) (3.3)
for any class H. This holds because LD(H) is an upper bound on the number of mistakes
for standard (non-transductive) online learning (Littlestone, 1988), and the adversary in the
transductive setting is strictly weaker.

The Littlestone dimension also supplies a lower bound. We give a quadratic improvement
on the previous lower bound of Ben-David et al. (1997), as follows.

Theorem 3.3.1. Let X be a set, let H ⊆ {0, 1}X such that d = LD(H) <∞, and let n ∈ N.
Then

M(H, n) ≥ min {⌊log(d)/2⌋, ⌊log log(n)/2⌋} .

Proof idea for Theorem 3.3.1. Let T be a Littlestone tree of depth d that is shattered by
H, and let H1 ⊆ H be a collection of 2d+1 functions that witness the shattering. The
adversary selects the sequence consisting of the nodes of T in breadth-first order. For each
time step t ∈ [n], let Ht denote the version space, i.e., the subset of H1 that is consistent
with all previously-assigned labels. The adversary’s adaptive labeling strategy at time t is as
follows. If Ht is very unbalanced, meaning that a large majority of functions in Ht assign the
same value to xt, then the adversary chooses yt to be that value. Otherwise, if Ht is fairly
balanced, the adversary forces a mistake (it can do so without violating H-realizability). The
pivotal observation is that: (1) under this strategy, the version space decreases in cardinality
significantly more during steps where the adversary forces a mistake compared to steps where
it did not force a mistake; (2) let xt be the t-th node in the breadth-first order. It has distance
ℓ = ⌊log(t)⌋ from the root of T . Because T is a binary tree, the subtree T ′ of T rooted at
xt is a tree of depth d − ℓ. In particular, seeing as Ht contains only functions necessary
for shattering T ′, |Ht| ≤ 2d−ℓ+1, so Ht must decrease not too slowly with t. Combining (1)
and (2) yields that the adversary must be able to force a mistake not too rarely. A careful
quantitative analysis shows that the number of mistakes the adversary can force is at least
logarithmic in d.

The full proof of Theorem 3.3.1 appears in Appendix A.1.

Threshold Dimension
We also show some bounds on the number of mistakes in terms of the threshold dimension.

Definition 3.3.2. Let X be a set, let X = {x1, . . . , xk} ⊆ X , and let H ⊆ {0, 1}X . We say
that X is threshold-shattered by H if there exist h1, . . . , hk ∈ H such that hi(xj) = 1(j ≤ i)
for all i, j ∈ [k]. The threshold dimension of H, denoted TD(H), is the supremum of the set
of integers k for which there exists a threshold-shattered set of cardinality k.
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The following connection between the threshold and Littlestone dimensions is well-known.

Theorem 3.3.3 (Shelah, 1990; Hodges, 1997). Let X be a set, let H ⊆ {0, 1}X , and let
d ∈ N. Then:

1. If LD(H) ≥ d then TD(H) ≥ ⌊log d⌋.

2. If TD(H) ≥ d then LD(H) ≥ ⌊log d⌋.

Item 1 in Theorem 3.3.3 and Eq. (3.3) imply that

∀n ∈ N : M(H, n) ≤ 2TD(H)

for any class H. Similarly, Item 2 in Theorem 3.3.3 and Theorem 3.3.1 imply a mistake lower
bound of Ω(log log(TD(H))). However, one can do exponentially better than that, as follows.

Claim 3.3.4. Let X be a set, let H ⊆ {0, 1}X such that d = TD(H) < ∞, and let n ∈ N.
Then

M(H, n) ≥ min {⌊log(d)⌋ , ⌊log(n)⌋} .

One of the ideas used in this proof appeared in an example called σworst in Section 4.1 of
Ben-David et al. (1997).

q1: xN
2

q2: xN
4

x 3N
4

q3: xN
8

x 3N
8

x 5N
8

x 7N
8

...
...

Figure 3.2: Construction of the sequence q in the proof of Claim 3.3.4. q is a breadth-first
enumeration of the depicted binary tree.

Proof of Claim 3.3.4. Let k = min {⌊log(d)⌋ , ⌊log(n)⌋} and let N = 2k. Let

X = {x1, . . . , xN−1} ⊆ X

be a set that is threshold-shattered by functions h1, . . . , hN−1 ∈ H and hi(xj) = 1(j ≤ i) for
all i, j ∈ [N − 1]. The strategy for the adversary is to present X in dyadic order, namely

xN
2

, xN
4

, x 3N
4

, xN
8

, x 3N
8

, x 5N
8

, x 7N
8

, . . . , x (2k−1)N

2k

.
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More explicitly, the adversary chooses the sequence q = q1 ◦ q2 ◦ · · · ◦ qk, where ‘◦’ denotes
sequence concatenation and

qi =
(

x 1
2i N , x 3

2i N , x 5
2i N , x 7

2i N , . . . , x (2i−1)
2i N

)
for all i ∈ [k]. See Figure 3.2.

We prove by induction that for each i ∈ [k], all labels chosen by the adversary for
the subsequences prior to qi are H-realizable, and additionally there exists an instance
in subsequence qi on which the adversary can force a mistake regardless of the learners
predictions. The base case is that the adversary can always force a mistake on the first
instance, q1, by choosing the label opposite to the learner’s prediction (both labels 0 and 1
are H-realizable for this instance). Subsequently, for any i > 1, note that by the induction
hypothesis, the labels chosen by the adversary for all instances in the previous subsequences
are H-realizable. In particular there exists an index a ∈ [N ] such that instance xa has already
been labeled, and all the labels chosen so far are consistent with ha. Let b be the minimal
integer such that b > a and xb has also been labeled. Then xa and all labeled instances
with smaller indices received label 1, while xb and all labeled instances with larger indices
received label 0. Because the sequence is dyadic, subsequence qi contains an element xm such
that a < m < b. The adversary can force a mistake on xm, because ha and hm agree on all
previously labeled instances, but disagree on xm.

Claim 3.3.4 is used in the proof of the trichotomy (Theorem 3.4.1, below).
Finally, we note that for every d ∈ N there exists a hypothesis classH such that d = TD(H)

and
∀n ∈ N : M(H, n) = min{d, n}.

Indeed, take X = [d] and H = {0, 1}X . The upper bound holds because |X | = d, and the
lower bound holds by Item 2 in Theorem 3.4.1, because VC(H) = d.

3.4 Trichotomy
Theorem 3.4.1. Let X be a set, let H ⊆ {0, 1}X , and let n ∈ N such that n ≤ |X |.

1. If VC(H) =∞ then M(H, n) = n.

2. Otherwise, if VC(H) = d <∞ and LD(H) =∞ then

max{min{d, n}, ⌊log(n)⌋} ≤M(H, n) ≤ O(d log(n/d)). (3.4)

Furthermore, each of the bounds in Eq. (3.4) is tight for some classes. The Ω(·) and O(·)
notations hide universal constants that do not depend on X or H.

3. Otherwise, there exists an integer C(H) ≤ LD(H) (that depends on X and H but does
not depend on n) such that M(H, n) ≤ C(H).
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Proof of Theorem 3.4.1. For Item 1, assume VC(H) = ∞. Then there exists a set X =
{x1, . . . , xn} ⊆ X of cardinality n that is shattered by H. The adversary can force the learner
to make n mistakes by selecting the sequence (x1, . . . , xn), and then selecting labels yt = 1− ŷt

for all t ∈ [n]. This choice of labels is H-realizable because X is a shattered set.
To obtain the upper bound in Item 2 the learner can use the halving algorithm, as follows.

Let x = (x1, . . . , xn) be the sequence chosen by the adversary, and letH|x denote the collection
of functions from elements of x to {0, 1} that are restrictions of functions in H. For each
t ∈ {0, . . . , n}, let

Ht =
{
f ∈ H|x : (∀i ∈ [t] : f(xi) = yi)

}
be a set called the version space at time t. At each step t ∈ [n], the learner makes prediction

ŷt = arg max
b∈{0,1}

∣∣∣{f ∈ Ht−1 : f(xt) = b
}∣∣∣ .

In words, the learner chooses ŷt according to a majority vote among the functions in version
space Ht−1, and then any function whose vote was incorrect is excluded from the next version
space, Ht. This implies that for any t ∈ [n], if the learner made a mistake at time t then

|Ht| ≤
1
2 · |Ht−1|. (3.5)

Let M = M(H, n). The adversary selects H-realizable labels, so Hn cannot be empty. Hence,
applying Eq. (3.5) recursively yields

1 ≤ |Hn| ≤ 2−M · |H0| ≤ 2−M ·O
(
(n/d)d

)
,

where the last inequality follows from VC(H0) ≤ VC(H) = d and the Sauer–Shelah–Perles
lemma (Theorem 3.2.6). Hence M = O(d log(n/d)), as desired.

For the min{d, n} lower bound in Item 2, if n ≤ d then the adversary can force n mistakes
by the same argument as in Item 1. For the logarithmic lower bound in Item 2, the assumption
that LD(H) =∞ and Theorem 3.3.3 imply that TD(H) =∞, and in particular TD(H) ≥ n,
and this implies the bound by Claim 3.3.4.

For Item 3, the assumption LD(H) = k < ∞ and Theorem 3.2.5 imply that for any n,
the learner will make at most k mistakes. This is because the adversary in the transductive
setting is strictly weaker than the adversary in the standard online setting. So there exists
some C(H) ∈ {0, . . . , k} as desired.

Remark 3.4.2. One can use Theorem 3.3.1 to obtain a lower bound for the case of Item 2
in Theorem 3.4.1. However, that yields a lower bound of Ω(log log(n)), which is exponentially
weaker than the bound we show.
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3.5 Multiclass Setting
The trichotomy of Theorem 3.4.1 can be generalized to the multiclass setting, in which the
label set Y contains more than two labels. In this setting, the VC dimension is replaced by
the Natarajan dimension (Natarajan, 1989), denoted ND, and the Littlestone dimension is
generalized in the natural way. The result holds for finite sets Y .

Theorem 3.5.1 (Informal Version of Theorem A.2.3). Let X be a set, let Y be a finite set,
and let H ⊆ YX . Then H satisfies precisely one of the following:

1. M(H, n) = n. This happens if ND(H) =∞.

2. M(H, n) = Θ(log(n)). This happens if ND(H) <∞ and LD(H) =∞.

3. M(H, n) = O(1). This happens if LD(H) <∞.

The proof of Theorem 3.5.1 appears in Appendix A.2, along with the necessary definitions.
The main innovation in the proof involves the use of the multiclass threshold bounds
developed in Appendix A.4, which in turn rely on a basic result from Ramsey theory, stated
Appendix A.3.

The Case of an Infinite Label Set
It is interesting to observe that the analogy between the binary classification and multiclass
classification settings breaks down when the label set Y is not finite.

Example 3.5.2. There exists a class G ⊆ YX such that Y is countable, LD(G) is infinite,
but the class is learnable with a mistake bound of M(G, n) = 1. To see this, let X be
countable, and let H ⊆ {0, 1}X be a class with LD(H) = ∞. For each i ∈ N, let Ti be a
Littlestone tree of depth i that is shattered by H, and let {hi

1, . . . , hi
2i+1} ⊆ H be a subset

that witnesses the shattering. Let G = {gi
j : i ∈ N ∧ j ∈ [2i+1]} be a set of functions such

that gi
j(x) = (hi

j(x), i, j) for all i, j. Let Y = {0, 1} × N × N. Observe that G ⊆ YX is a
countable set of functions with a countable set of labels. Furthermore, LD(G) =∞ because
G shatters a sequence of suitable Littlestone trees corresponding to T1, T2, . . . . However, G
can be learned with mistake bound 1, because a single example of the form

(
x, (hi

j(x), i, j)
)

reveals the correct labeling function hi
j.

Recent work by Brukhim, Carmon, Dinur, Moran, and Yehudayoff (2022) has shown that
multiclass PAC learning with infinite Y is not characterized by the Natarajan dimension,
and that instead it is characterized by the DS dimension (introduced by Daniely and Shalev-
Shwartz, 2014). It is therefore natural to ask whether the DS dimension might also characterize
multiclass transductive online learning with infinite Y. We show that the answer to that
question is negative.

Recall the definition of the DS dimension.
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Definition 3.5.3. Let d ∈ N, let X and Y be sets, and let H ⊆ YX . For an index i ∈ [d] and
vectors y = (y1, . . . , yd) ∈ Yd, y′ = (y′

1, . . . , y′
d) ∈ Yd, we say that y and y′ are i-neighbors,

denoted y ∼i y′, if {j ∈ [d] : yj ̸= y′
j} = {i}. We say that C ⊆ Yd is a d-pseudocube if C is

non-empty and finite, and

∀y ∈ C ∀i ∈ [d] ∃y′ ∈ C : y ∼i y′.

For a vector x = (x1, . . . , xd) ∈ X d, we say that H DS-shatters x if the set

H|x :=
{(

h(x1), . . . , h(xd)
)

: h ∈ H
}
⊆ Yd

contains a d-pseudocube.
Finally, the Daniely–Shalev-Shwartz (DS) dimension of H is

DS(H) = sup
{
d ∈ N :

(
∃x ∈ X d : H DS-shatterd x

)}
.

See Brukhim et al. (2022) for figures and further discussion of the DS dimension.
The following claim shows that the DS dimension does not characterize transductive

online learning, even when Y is finite.

Claim 3.5.4. For every n ∈ N, there exists a hypothesis class Hn such that DS(Hn) = 1 but
the adversary in transductive online learning can force at least M(Hn, n) = n mistakes.

Proof. Fix n ∈ N and let X = {0, 1, 2, . . . , n}. Consider a complete binary tree T of depth n
such that for each x ∈ X , all the nodes at depth x (at distance x from the root) are labeled
by x, and each edge in T is labeled by a distinct label. Let H be a minimal hypothesis class
that shatters T , namely, H shatters T and there does not exist a strict subset of H that
shatters T .

Observe that M(Hn, n) = n, because the adversary can present the sequence 0, 1, 2, . . . , n−
1 and force a mistake at each time step. To see that DS(Hn) = 1, assume for contradiction
that there exists a vector x = (x1, x2) ∈ X 2 that is DS-shattered by Hn, namely, there exists
a 2-pseudocube C ⊆ H|x. Note that x1 ̸= x2, and without loss of generality x1 < x2 (H
DS-shatters (x1, x2) if and only if it DS-shatters (x2, x1)).

Fix y ∈ C. So y = (h(x1), h(x2)) for some h ∈ H. Because C is a 2-pseudocube, there exists
y′ ∈ C that is a 1-neighbor of y. Namely, there exists g ∈ H such that y′ = (g(x1), g(x2)) ∈ C,
y′

1 ̸= y1 and y′
2 = y2. However, because each edge in T has a distinct label, and H is minimal,

it follows that for any x ∈ X ,

g(x) = h(x) =⇒
(
∀x′ ∈ {0, 1, . . . , x} : g(x′) = h(x′)

)
.

In particular, g(x2) = y′
2 = y2 = h(x2) implies y′

1 = g(x1) = h(x1) = y1 which is a
contradiction to the choice of y′.
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3.6 Agnostic Setting
The agnostic transductive online learning setting is defined analogously to the realizable
(non-agnostic) transductive online learning setting described in Section 3.1. An early work
by Cover (1965) observed that it is not possible for a learner to achieve vanishing regret in
an agnostic online setting with complete information. Therefore, we consider a game with
incomplete information, as follows.

First, the adversary selects an arbitrary sequence of instances, x1, . . . , xn ∈ X , and reveals
the sequence to the learner. Then, for each t = 1, . . . , n:

1. The adversary selects a label yt ∈ Y .

2. The learner selects a prediction ŷt ∈ Y and reveals it to the adversary.

3. The adversary reveals yt to the learner.

At each time step t ∈ [n], the adversary may select any yt ∈ Y, without restrictions.2 The
learner, which is typically randomized, has the objective of minimizing the regret, namely

R(A,H, x, y) = E[|{t ∈ [n] : ŷt ̸= yt}|]−min
h∈H
|{t ∈ [n] : h(xt) ̸= yt}| ,

where the expectation is over the learner’s randomness. In words, the regret is the expected
excess number of mistakes the learner makes when it plays strategy A and the adversary
chooses the sequence x ∈ X n and labels y ∈ Yn, as compared to the number of mistakes
made by the best fixed hypothesis h ∈ H. We are interested in understanding the value of
this game, namely

R(H, n) = inf
A∈A

sup
x∈X n

sup
y∈Yn

R(A,H, x, y),

where A is the set of all learner strategies. We show the following result.

Theorem 3.6.1. Let X be a set, let H ⊆ {0, 1}X , and let n ∈ N such that n ≤ |X |. Assume
0 < VC(H) <∞. Then the agnostic transductive regret for H on sequences of length n is

Ω
(√

VC(H) · n
)
≤ R(H, n) ≤ O

(√
VC(H) · n · log (n/VC(H))

)
.

The upper bound in Theorem 3.6.1 follows directly from the Sauer–Shelah–Perles lemma
(Theorem 3.2.6), together with the following well-known bound on the regret of the Mul-
tiplicative Weights algorithm (see, e.g., Theorem 21.10 in Shalev-Shwartz and Ben-David,
2014).

Theorem 3.6.2. Let X be a set and let H ⊆ {0, 1}X be finite. There exists an algorithm for
the standard (non-transductive) agnostic online learning setting that satisfies

Ronline(H, n) ≤
√

2 log (|H|).
2Hence the name ‘agnostic’, implying that we make no assumptions concerning the choice of labels.
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Theorem 3.6.2 implies the upper bound of Theorem 3.6.1, because the adversary in the
transductive agnostic setting is weaker than the adversary in the standard agnostic setting.

We prove the lower bound of Theorem 3.6.1 using an anti-concentration technique from
Lemma 14 of Ben-David et al. (2009). The proof appears in Appendix A.5.

Remark 3.6.3. Additionally:

1. If VC(H) = 0 (i.e., classes with a single function) then the regret is 0.

2. If VC(H) < ∞ and LD(H) < ∞ then the regret is R(H, n) = O
(√

LD(H) · n
)
, by

Alon et al. (2021) (as mentioned above). Namely, in some cases the log(n) factor in
Theorem 3.6.1 can be removed.

3. If VC(H) =∞ then the regret is Ω(n).

3.7 Directions for Future Work
Some remaining open problems include:

1. Showing a sharper bound for the Θ(1) case in the trichotomy (Theorem 3.4.1). Currently,
there is an exponential gap between the best known upper and lower bounds for Littlestone
classes.

2. Showing sharper bounds for the Θ(log n) cases in the trichotomy (Theorem 3.4.1) and
multiclass trichotomy (Theorem A.2.3).

3. Showing a sharper bound for the agnostic case (Theorem 3.6.1).

4. Characterizing the number of mistakes in the multiclass setting with an infinite label set
Y (complementing Theorem A.2.3).
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Chapter 4

Fundamentals: Interactive Proofs for
Verifying Machine Learning

A simple idea underpins science: “trust, but verify”. Results should always be
subject to challenge from experiment. That simple but powerful idea has generated
a vast body of knowledge. Since its birth in the 17th century, modern science has
changed the world beyond recognition, and overwhelmingly for the better. But
success can breed complacency. Modern scientists are doing too much trusting and
not enough verifying – to the detriment of the whole of science, and of humanity.

The Economist, “How Science Goes Wrong” (2013)

4.1 Introduction
Data and data-driven algorithms are transforming science and society. State-of-the-art ma-
chine learning and statistical analysis algorithms use access to data at scales and granularities
that would have been unimaginable even a few years ago. From medical records and genomic
information to financial transactions and transportation networks, this revolution spans
scientific studies, commercial applications and the operation of governments. It holds trans-
formational promise, but also raises new concerns. If data analysis requires huge amounts
of data and computational power, how can one verify the correctness and accuracy of the
results? Might there be asymmetric cases, where performing the analysis is expensive, but
verification is cheap?

There are many types of statistical analyses, and many ways to formalize the notion of
verifying the outcome. In this work we focus on interactive proof systems Goldwasser, Micali,
and Rackoff (1989) for verifying supervised learning, as defined by the PAC model of learning
Valiant (1984). Our emphasis throughout is on access to the underlying data distribution as
the critical resource: both quantitatively (how many samples are used for learning versus for
verification), and qualitatively (what types of samples are used). We embark on tackling a
series of new questions:
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Suppose a learner (which we also call prover) claims to have arrived at a good hypothesis
with regard to an unknown data distribution by analyzing random samples from the distribu-
tion. Can one verify the quality of the hypothesis with respect to the unknown distribution
by using significantly fewer samples than the number needed to independently repeat the
analysis? The crucial difference between this question and questions that appear in the
property testing and distribution testing literature is that we allow the prover and verifier
to engage in an interactive communication protocol (see Section 4.1 for a comparison). We
are interested in the case where both the verifier and an honest prover are efficient (i.e.,
use polynomial runtime and sample complexity), and furthermore, a dishonest prover with
unbounded computational resources cannot fool the verifier:

Question 4.1.1 (Runtime and sample complexity of learning vs. verifying).
Are there machine learning tasks for which the runtime and sample complexity of
learning a good hypothesis is significantly larger than the complexity of verifying a
hypothesis provided by someone else?

In the learning theory literature, various types of access to training data have been
considered, such as random samples, membership queries, and statistical queries. In the
real world, some types of access are more costly than others. Therefore, it is interesting to
consider whether it is possible to verify a hypothesis using a cheaper type of access than is
necessary for learning:

Question 4.1.2 (Sample type of learning vs. verifying). Are there machine
learning problems where membership queries are necessary for finding a good hypoth-
esis, but verification is possible using random samples alone?

The answers to these fundamental questions are motivated by real-world applications. If
data analysis requires huge amounts of data and computational resources while verification
is a simpler task, then a natural approach for individuals and weaker entities would be to
delegate the data collection and analysis to more powerful entities. Going beyond machine
learning, this applies also to verifying the results of scientific studies without replicating the
entire experiment. We elaborate on these motivating applications in Section 4.1 below.

PAC Verification: A Proposed Model
Our primary focus in this work is verifying the results of agnostic supervised machine learning
algorithms that receive a labeled dataset, and aim to learn a classifier that predicts the
labels of unseen examples. We introduce a notion of interactive proof systems for verification
of PAC learning, which we call PAC Verification (see Definition 4.1.22). Here, the entity
running the learning algorithms (which we refer to as the prover or the learner) proves the
correctness of the results by engaging in an interactive communication protocol with a verifier.
One special case is where the prover only sends a single message constituting an (NP-like)
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certificate of correctness. The honest prover should be able to convince the verifier to accept
its proposed hypothesis with high probability. A dishonest prover (even an unbounded one)
should not be able to convince the verifier to accept a hypothesis that is not sufficiently good
(as defined below), except with small probability over the verifier’s random coins and samples.
The proof system is interesting if the amount of resources used for verification is significantly
smaller than what is needed for performing the learning task. We are especially interested in
doubly-efficient proof systems Goldwasser, Kalai, and Rothblum (2015), where the honest
prover also runs in polynomial time.

More formally, let X be a set, and consider a distribution D over samples of the form
(x, y) where x ∈ X and y ∈ {0, 1}. Assume there is some hypothesis class H, which is a set
of functions X → {0, 1}, and we are interested in finding a function h ∈ H that predicts the
label y given a previously unseen x with high accuracy with respect to D. To capture this we
use the loss function LD(h) = P(x,y)∈D[h(x) ̸= y]. Our goal is to design protocols consisting
of a prover and verifier that satisfy: (i) When the verifier interacts with an honest prover,
with high probability the verifier outputs a hypothesis h that is ε-good, meaning that

LD(h) ≤ LD(H) + ε, (4.1)

where LD(H) = inff∈H LD(f); (ii) For any (possibly dishonest and unbounded) prover, the
verifier can choose to reject the interaction, and with high probability the verifier will not
output a hypothesis that is not ε-good.

Observe that in the realizable case (or promise case), where we assume that LD(H) = 0,
one immediately obtains a strong result: given a hypothesis h̃ proposed by the prover, a
natural strategy for the verifier is to take a few samples from D, and accept if and only if h̃
classifies at most, say, a 9

10ε-fraction of them incorrectly. From Hoeffding’s inequality, taking
O
(

1
ε2

)
samples is sufficient to ensure that with probability at least 9

10 the empirical loss1 of
h̃ is ε

10 -close to the true loss. Therefore, if LD(h̃) ≤ 8
10ε then h̃ is accepted with probability

at least 9
10 , and if LD(h̃) > ε then h̃ is rejected with probability at least 9

10 . In contrast,
PAC learning a hypothesis that with probability at least 9

10 has loss at most ε requires Ω
(

d
ε

)
samples, where the parameter d, which is the VC dimension of the class, can be arbitrarily
large.2 That is, in the realizable case there is a sample complexity and time complexity
separation of unbounded magnitude between learning and verifying. Furthermore, this result
holds also under the weaker assumption that LD(H) ≤ ε

2 .
Encouraged by this strong result, we focus on the agnostic case, where no assumptions

are made regarding LD(H). Here, things become more interesting, and deciding whether a
proposed hypothesis h̃ is ε-good is non-trivial. Indeed, the verifier can efficiently estimate
LD(h̃) using Hoeffding’s inequality as before, but estimating the term LD(H) on the right-
hand side of (4.1) is considerably more challenging. If h̃ has a loss of say 15%, it could be an
amazingly-good hypothesis compared to the other members of H, or it could be very poor.

1I.e., the fraction of the samples that is misclassified.
2See preliminaries in Section 4.1 for more about VC dimension.
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Distinguishing between these two cases may be difficult when H is a large and complicated
class.

Related Models

We discuss two related models studied in prior work, and their relationship to the PAC
verification model proposed in this work.

Property Testing. Goldreich, Goldwasser, and Ron (1998) initiated the study of a
property testing problem that naturally accompanies proper PAC learning: Given access
to samples from an unknown distribution D, decide whether LD(H) = 0 or LD(H) ≥ ε for
some fixed hypothesis class H. Further developments and variations appeared in Kearns
and Ron (2000) and Balcan, Blais, Blum, and Yang (2012). Blum and Hu (2018) consider
tolerant closeness testing and a related task of distance approximation (see Parnas, Ron,
and Rubinfeld, 2006), where the algorithm is required to approximate LD(H) up to a small
additive error. As discussed above, the main challenge faced by the verifier in PAC verification
is approximating LD(H). However, there is a crucial difference between testing and PAC
verification: In addition to taking samples from D, the verifier in PAC verification can also
interact with a prover, and thus PAC verification can (potentially) be easier than testing.
Indeed, this difference is exemplified by the proper testing question, where we only need to
distinguish the zero-loss case from large loss. As discussed above, proper PAC verification is
trivial. Proper testing, on the other hand, can be a challenging goal (and, indeed, has been
the focus of a rich body of work). For the tolerant setting, we prove a separation between
testing and PAC verification: we show a hypothesis class for which the help of the prover
allows the verifier to save a (roughly) quadratic factor over the number of samples that are
required for closeness testing or distance approximation. See Section 4.3 for further details.

Proofs of Proximity for Distributions. Chiesa and Gur (2018) study interactive proof
systems for distribution testing. For some fixed property Π, the verifier receives samples from
an unknown distribution D, and interacts with a prover to decide whether D ∈ Π or whether
D is ε-far in total variation distance from any distribution in Π. While that work does not
consider machine learning, the question of verifying a lower bound ℓ on the loss of a hypothesis
class can be viewed as a special case of distribution testing, where Π = {D : LD(H) ≥ ℓ}.
Beyond our focus on PAC verification, an important distinction between the works is that in
Chiesa and Gur’s model and results, the honest prover’s access to the distribution is unlimited
– the honest prover can have complete information about the distribution. In this chapter,
we focus on doubly-efficient proofs, where the verifier and the honest prover must both be
efficient in the number of data samples they require. With real-world applications in mind,
this focus seems quite natural.3

We survey further related works in Section 4.1.
3In Chiesa and Gur’s setting, it would also be sufficient for the prover to only known the distribution

up to O(ε) total variation distance, and this can be achieved using random samples from the distribution.
However, the number of samples necessary for the prover would be linear in the domain size, which is typically
exponential, and so this approach would not work for constructing doubly-efficient PAC verification protocols.
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Applications
The P vs. NP problem asks whether finding a solution ourselves is harder than verifying a
solution supplied by someone else. It is natural to ask a similar question in learning theory:
Are there machine learning problems for which learning a good hypothesis is harder than
verifying one proposed by someone else? We find this theoretical motivation compelling in
and of itself. Nevertheless, we now proceed to elaborate on a few more practical aspects of
this question.

Delegation of Learning

In a commercial context, consider a scenario in which a client is interested in developing
a machine learning (ML) model, and decides to outsource that task to a company P that
provides ML services. For example, P promises to train a deep neural net using a big server
farm. Furthermore, P claims to possess a large amount of high quality data that is not
available to the client, and promises to use that data for training.

How could the client ascertain that a model provided by P is actually a good model?
The client could use a general-purpose cryptographic delegation-of-computation protocol, but
that would be insufficient. Indeed, a general-purpose delegation protocol can only ensure
that P executed the computation as promised, but it cannot provide any guarantees about
the quality of the outcome, and in particular cannot ensure that the outcome is ε-good: If P
used skewed or otherwise low-quality training data (whether maliciously or inadvertently), a
general-purpose delegation protocol has no way of detecting that. Moreover, even if the data
and the execution of the computation were both flawless, this still provides no guarantees on
the quality of the output, because an ML model might have poor performance despite being
trained as prescribed.4,5

A different solution could be to have P provide a proof to establish that its output is
indeed ε-good. In cases where the resource gap between learning and verifying is significant
enough, the client could cost-effectively verify the proof, obtaining sound guarantees on the
quality of the ML model it is purchasing from P .

Verification of Scientific Studies

It has been claimed that many or most published research findings are false (Ioannidis, 2005).
Others refer to an ongoing replication crisis (Pashler and Wagenmakers, 2012; Fidler and
Wilcox, 2018), where many scientific studies are hard or impossible to replicate or reproduce
(e.g., Prinz, Schlange, and Asadullah, 2011; Begley and Ellis, 2012). Addressing these issues
is a scientific and societal priority.

4E.g., a neural network might get stuck at a local minimum.
5Additionally, note that state-of-the-art delegation protocols are not efficient enough at present to make

it practicable to delegate intensive ML computations. See the survey by Walfish and Blumberg (2015) for
progress and challenges in developing such systems.
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There are many factors contributing to this problem, including: structural incentives
faced by researchers, scientific journals, referees, and funding bodies; the level of statistical
expertise among researchers and referees; differences in the sources of data used for studies
and their replication attempts; choice of standards of statistical significance; and norms
pertaining to the publication of detailed replicable experimental procedures and complete
datasets of experimental results.

We stress that the current chapter does not touch on the majority of these issues, and
our discussion of the replication crisis (as well as our choice of quotation at the beginning
of the chapter) does not by any means suggest that adoption of PAC verification protocols
will single-handedly solve all issues pertaining to replication. Rather, the contribution of
the current chapter with respect to scientific replication is very specific: we suggest that for
some specific types of experiments, PAC verification can be used to design protocols that
allow to verify the results of an experiment in a manner that uses a quantitatively smaller
(or otherwise cheaper) set of independent experimental data than would be necessary for
a traditional replication that fully repeats the original experiment. In Appendix B.1 we
list four such types of experiments. We argue that devising PAC verification protocols that
make scientific replication procedures even modestly cheaper for specific types of experiments
is a worthwhile endeavor that could help increase the amount of scientific replication or
verification that occurs, and decrease the prevalence of errors that remain undiscovered in
the scientific literature.

Our Setting
In this chapter we consider the following form of interaction between a verifier and a prover.

Let H ⊆ {0, 1}X be a class of hypotheses, and let D be a distribution over X × {0, 1}.
The verifier and the prover each have access to an oracle, denoted OV and OP respectively.
In the simplest case, both oracles provide i.i.d. samples from D. That is, each time an oracle
is accessed, it returns a sample from D taken independently of all previous samples and
events. In addition, the verifier and prover each have access to a (private) random coin value,
denoted ρV and ρP respectively, which are sampled from some known distributions over
{0, 1}∗ independently of each other and of all other events. During the interaction, the prover
and verifier take turns sending each other messages w1, w2, . . . , where wi ∈ {0, 1}∗ for all i.
Finally, at some point during the exchange of messages, V halts and outputs either ‘reject’
or a hypothesis h : X → {0, 1}. The goal of the verifier is to output an ε-good hypothesis,
meaning that

LD(h) ≤ LD(H) + ε.

A natural special case of interest is when the prover’s and verifier’s oracles provide sample
access to D. The prover can learn a “good” hypothesis h̃ : X → {0, 1} and send it to the
verifier as its first message, as in Figure 4.1 above. The prover and verifier then exchange
further messages, wherein the prover tries to convince the verifier that h̃ is ε-good, and the
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Verifier

Oracle OV

[

h̃ or ‘reject’

Prover

Oracle OP

[
w1 = h̃

w2

. . .

. . .

wt

Figure 4.1: The verifier and prover each have access to
an oracle, and they exchange messages with each other.
Eventually, the verifier outputs a hypothesis, or rejects the
interaction. One natural case is where the prover suggests a
hypothesis h̃, and the verifier either accepts or rejects this
suggestion.

verifier tries to assess the veracity of that claim. If the verifier is convinced, it outputs h̃,
otherwise it rejects.

We proceed with an informal definition of PAC verification (see full definitions in Sec-
tion 4.1). Before doing so, we first recall a relaxed variant of PAC learning, called semi-agnostic
PAC learning, where we allow a multiplicative slack of α ≥ 1 in the error guarantee.

Definition (α-PAC Learnability – informal version of Definition 4.1.24). A class of hypothesis
H is α-PAC learnable (or semi-agnostic PAC learnable with parameter α) if there exists an
algorithm A such that for every distribution D and every ε, δ > 0, with probability at least
1− δ, A outputs h that satisfies

LD(h) ≤ α · LD(H) + ε. (4.2)

PAC verification is the corresponding notion for interactive proof systems:

Definition (α-PAC Verifiability – informal version of Definition 4.1.22). A class of hypothesis
H is α-PAC verifiable if there exists a pair of algorithms (P, V ) that satisfy the following
conditions for every distribution D and every ε, δ > 0:

• Completeness. After interacting with P , V outputs h such that with probability at
least 1− δ, h ̸= reject and h satisfies (4.2).

• Soundness. After interacting with any (possibly unbounded) prover P ′, V outputs h
such that with probability at least 1− δ, either h = reject or h satisfies (4.2).
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Remark 4.1.3. We insist on double efficiency; that is, that the sample complexity and
running times of both V and P must be polynomial in 1

ε
, log

(
1
δ

)
, and perhaps also in some

parameters that depend on H, such as the VC dimension or Fourier sparsity of H.

Overview of Results
In this chapter, we start charting the landscape of machine learning problems with respect to
Questions 4.1.1 and 4.1.2 mentioned above. First, in Section 4.2 we provide evidence for an
affirmative answer to Questions 4.1.2. We show an interactive proof system that efficiently
verifies the class of Fourier-sparse boolean functions, where the prover uses an oracle that
provides query access, and the verifier uses an oracle that only provides random samples. In
this proof system, both the verifier and prover send and receive messages.

The class of Fourier-sparse functions is very broad, and includes decision trees, bounded-
depth boolean circuits and many other important classes of functions. Moreover, the result
is interesting because it supplements the widely-held learning parity with noise (LPN)
assumption, which entails that PAC learning this class from random samples alone without
the help of a prover is hard (see Blum, Kalai, and Wasserman, 2003; Yu and Steinberger,
2016).

Theorem (Informal version of Theorem 4.2.6). Let H be the class of boolean functions
{0, 1}n → R that are t-sparse, as in Definition 4.1.20. Then H is 1-PAC verifiable with
respect to the uniform distribution using a verifier that has access only to random samples of
the form (x, f(x)), and a prover that has query access to f . The verifier in this protocol is
not proper; the output is not necessarily t-sparse, but it is poly(n, t)-sparse. The number of
samples used by the verifier, the number of queries made by the prover, and their running
times are all bounded by poly

(
n, t, log

(
1
δ

)
, 1

ε

)
.

Proof Idea. The proof uses two standard tools, albeit in a less-standard way. The first
standard tool is the Kushilevitz–Mansour algorithm Kushilevitz and Mansour (1993), which
can PAC learn any t-sparse function using random samples, but only if the set of non-zero
Fourier coefficients is known. The second standard tool is the Goldreich–Levin algorithm
Goldreich and Levin (1989); Goldreich (2007, Section 2.5.2.3), which can identify the set
of non-zero Fourier coefficients, but requires query access in order to do so. The protocol
combines the two tools in a manner that overcomes the limitations of each of them. First, the
verifier executes the Goldreich–Levin algorithm, but whenever it needs to query the target
function, it requests that the prover perform the query and send back the result. However,
the verifier cannot trust the prover, and so the verifier engineers the queries in such a way
that the answers to a certain random subset of the queries are known to the verifier based
on its random sample access. This allows the verifier to detect dishonest provers. When
the Goldreich–Levin algorithm terminates and outputs the set of non-zero coefficients, the
verifier then feeds them as input to the Kushilevitz–Mansour algorithm to find an ε-good
hypothesis using its random sample access.
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In Section 4.3 we formally answer Question 4.1.1 affirmatively by showing that a certain
simple class of functions (generalized thresholds) exhibits a quadratic gap in sample complexity
between learning and verifying:

Theorem (Informal version of Theorem 4.3.8). There exists a sequence of classes of functions

T1, T2, T3, ... ⊆ {0, 1}R

such that for any fixed ε, δ ∈ (0, 1
2):

(i) The class Td is proper 2-PAC verifiable, where both the verifier and prover have access
to random samples, and the verifier requires only Õ

(√
d
)

samples. Moreover, both the
prover and verifier are efficient.

(ii) PAC learning the class Td requires Ω(d) samples.

At this point, a perceptive reader would be justified in raising the following challenges.
Perhaps 2-PAC verification requires fewer samples than 1-PAC learning simply because of
the multiplicative slack factor of 2? Alternatively, perhaps the separation follows trivially
from property testing results: maybe it is possible to achieve 2-PAC verification simply by
having the verifier perform closeness testing using random samples, without needing the help
of the prover except for finding the candidate hypothesis? The second part of the theorem
dismisses both of these concerns.

Theorem (Informal version of Theorem 4.3.8 – Continued). Furthermore, for any fixed
ε, δ ∈ (0, 1

2):

(iii) 2-PAC learning the class Td requires Ω̃(d) samples. This is true even if we assume that
LD(Td) > 0, where D is the underlying distribution.6

(iv) Testing whether LD(Td) ≤ α or LD(Td) ≥ β for any 0 < α < β < 1
2 with success

probability at least 1−δ when D is an unknown distribution (without the help of a prover)
requires Ω̃ (d) random samples from D.

Proof Idea. (ii) follows from a standard application of Theorem 4.1.15, because VC(Td) = d.
(iii) follows by a reduction from (iv). We prove (iv) by showing a further reduction from the
problem of approximating the support size of a distribution, and applying a lower bound for
that problem (see Theorem 4.3.21).

For (i), recall from the introduction that the difficulty in designing a PAC verification
proof system revolves around convincing the verifier that the term LD(H) in Equation (4.1)
is large. Therefore, we design our class Td such that it admits a simple certificate of loss,
which is a string that helps the verifier ascertain that LD(H) ≥ ℓ for some value ℓ.

6In the case where LD(Td) = 0, 2-PAC learning is the same as PAC learning, so the stronger lower bound
in (ii) applies.
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To see how that works, first consider the simple class T of monotone increasing threshold
functions R→ {0, 1}, as in Figure 4.2a on page 94 below. Observe that if there are two events
A = [0, a)×{1} and B = [b, 1]×{0} such that a ≤ b and D(A) = D(B) = ℓ, then it must be
the case that LD(T ) ≥ ℓ. This is true because a ≤ b, and so if a monotone increasing threshold
classifies any point in A correctly it must classify all point in B incorrectly. Furthermore, if
the prover sends a description of A and B to the verifier, then the verifier can check, using a
constant number of samples, that each of these events has weight approximately ℓ with high
probability.

This type of certificate of loss can be generalized to the class Td, in which each function is
a concatenation of d monotone increasing thresholds. A certificate of loss for Td is simply
a set of d certificates of loss {Ai, Bi}d

i=1, one for each of the d thresholds. The question
that arises at this point is how can the verifier verify d separate certificates while using only
Õ
(√

d
)

samples. This is performed using tools from distribution testing: the verifier checks
whether the distribution of “errors” in the sets specified by the certificates is close to the
prover’s claims. I.e., whether the “weight” of 1-labels in each Ai and 0-labels in each Bi in
the actual distribution, are close to the weights claimed by the prover. Using an identity
tester for distributions this can be done using O(

√
d) samples (note that the identity tester

need not be tolerant!). See Theorem B.5.1 for further details.

In contrast, in Section 4.4 we show that verification is not always easier than learning:

Theorem (Informal version of Theorem 4.4.1). There exists a sequence of classes H1,H2, . . .
such that:

• It is possible to PAC learn the class Hd using Õ(d) samples.

• For any interactive proof system that proper 1-PAC verifies Hd, in which the verifier
uses an oracle providing random samples, the verifier must use at least Ω(d) samples.

Remark 4.1.4. The lower bound on the sample complexity of the verifier holds regardless of
what oracle is used by the prover.

Proof Idea. We specify a set X of cardinality Ω(d2), and take Hd to be a randomly-chosen
subset of all the balanced functions X → {0, 1} (i.e., functions f such that |f−1(0)| = |f−1(1)|).
The sample complexity of PAC learning Hd follows from its VC dimension being Õ(d). For the
lower bound, consider proper PAC verifying Hd in the special case where the distribution D
satisfies P(x,y)∈D[y = 1] = 1, but the marginal of D on X is unknown to the verifier. Because
every hypothesis in the class assigns the incorrect label 0 to precisely half of the domain,
a hypothesis achieves minimal loss if it assigns the 0 labels to a subset of size |X |

2 that has
minimal weight. Hence, the verifier must learn enough about the distribution to identify
a specific subset of size |X |

2 with weight close to minimal. We show that doing so requires
Ω
(√
|X |

)
= Ω(d) samples.
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Finally, in Section 4.5, we show that in the setting of semi-supervised learning, where
unlabeled samples are cheap, it is possible to perform PAC verification such that the verifier
requires significantly less labeled samples than are required for learning. This verification uses
a technique we call query delegation, and is efficient in terms of time complexity whenever
there exists an efficient ERM algorithm that PAC learns the class using random samples.

Further Related Works
The growing role of data and predictive algorithms in a variety of fields has made the analysis
of semi-unreliable data into a central research focus of the theoretical computer science
(TCS) community. Recent research efforts that (broadly) fall into this theme include: (1)
parameter estimation with greater emphasis on high dimensional data in the presence of
partially unreliable data; (2) consideration of new corruption models such as list-decoding
notions where some data is guaranteed to be properly sampled and the rest is subject to high
error rate; (3) testing general properties of distributions beyond parameter estimation; and (4)
analysis of machine learning algorithms with access to partially unreliable data. See Charikar,
Steinhardt, and Valiant (2017); Diakonikolas, Kamath, Kane, Li, Moitra, and Stewart (2019,
2018); Ilyas, Jalal, Asteri, Daskalakis, and Dimakis (2017); Daskalakis, Gouleakis, Tzamos,
and Zampetakis (2018). In contrast to all these directions, our focus is on interactive proof
systems (or non-interactive certificates) by which an untrusted prover can convince a verifier
that claimed results of a statistical analysis are correct, where the verifier is only allowed
bounded access to the underlying data distribution.

A large body of work spanning the TCS and secure systems communities studies protocols
for delegating computation to be performed by an untrusted prover (see e.g. Babai, Fortnow,
Levin, and Szegedy, 1991; Micali, 1994; Goldwasser et al., 2015; Walfish and Blumberg, 2015).
There are two significant differences between that line of work and the present chapter. First,
in these protocols the input is fixed and known to the prover and the verifier. The question is
whether a computation was performed correctly on this (fixed and known) input. In contrast,
in our setting there is no fixed and known input: the distribution D is unknown to the verifier,
and can only be accessed by sampling. Second, we are interested in guaranteeing that a certain
statistical conclusion is valid with respect to this unknown distribution, regardless of whether
any specific algorithm was executed as promised. That is, if some known learning algorithm
was executed by the prover and happened to produce a poor result (e.g. a neural network
got stuck in a local minimum), this result should be rejected by the verifier despite being
the outcome of a correct computation. One final contrast with the literature on delegating
computations is that the focus there is on verifying general computations, and this generality
often results in impractical protocols. One benefit of our focus on specific and structured
machine learning problems is that this focus may result in tailored protocols (for important
problems) with improved efficiency.

The setting we investigate bears some similarity to sublinear proof verification (see e.g.
Ergün, Kumar, and Rubinfeld, 2004; Rothblum, Vadhan, and Wigderson, 2013), where the
verifier cannot read the entire input. However, in that setting the verifier enjoys query access
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to its input, whereas in our setting the verifier only gets random samples (a much more
limited form of access).

Another related result, in the area of parameter estimation, is due to Diakonikolas, Kane,
and Stewart (2017, Appendix C). They proved a gap between the sample complexity of
estimating and verifying the center of a Gaussian. The verifier is given a parameter θ̃ ∈ Rn

and access to samples from an n-dimensional Gaussian distribution N (θ, I). The verifier can
distinguish between the case θ̃ = θ and the case ∥θ̃ − θ∥2 > ε using O(

√
n/ε2) samples. This

contrasts with estimating θ up to an ε error from samples alone (without access to θ̃), which
requires Ω(n/ε2) samples. They show that the result is sharp, and also can be generalized to
a setting of tolerant testing.7

Finally, Axelrod, Garg, Sharan, and Valiant (2020) investigates a setting somewhat
resembling ours. They consider the task of “amplifying” a set of samples taken from some
unknown target distribution, that is, producing an additional synthetic dataset that appears
as if it was drawn from the target distribution. The authors show that generating a dataset
close in total variation distance to the target distribution can be done using fewer samples
from the distribution than are necessary for learning the distribution up to the same total
variation distance.

Preliminaries
Probability

Notation 4.1.5. For any probability space (Ω,F), let ∆(Ω,F) denote the set of all probability
distributions over (Ω,F). We will often simply write ∆(Ω) to denote this set when the σ-
algebra F is understood.

Definition 4.1.6. Let P ,Q ∈ ∆(Ω,F). The total variation distance between P and Q is

TV(P ,Q) = sup
X∈F

∣∣∣∣P(X)−Q(X)
∣∣∣∣ = 1

2

∥∥∥∥P −Q∥∥∥∥
1
.

PAC Learning

We use the Probably Approximately Correct (PAC) definition of learning, introduced by
Valiant (1984). See Shalev-Shwartz and Ben-David (2014) for a textbook on learning theory.
Let X be a set, and let H ⊆ RX be a class of functions, i.e. H is a subset of the functions
X → R. In this chapter, we use the ℓ2 loss function, which is popular in machine learning.

Definition 4.1.7. Let h ∈ H, and let D ∈ ∆(X × {0, 1}). The loss of h with respect to D is
LD(h) = E(x,y)∼D

[
(h(x)− y)2

]
. Furthermore, we denote LD(H) = infh∈H LD(h).

Remark 4.1.8. In the special case of boolean labels, where y ∈ {0, 1} and h : X → {0, 1},
the ℓ2 loss function is the same as the 0-1 loss function: LD(h) = P(x,y)∼D[h(x) ̸= y].

7That is, distinguishing between the case d ≥ ε and d ≤ ε/2 for d = TV
(
N (θ̃, I),N (θ, I)

)
.



CHAPTER 4. PAC VERIFICATION FUNDAMENTALS 69

Definition 4.1.9. We say that H is agnostically PAC learnable if there exist an algorithm
A and a function mH : [0, 1]2 → N such that for any ε, δ > 0 and any distribution
D ∈ ∆(X × R), if A receives as input a tuple of mH(ε, δ) i.i.d. samples from D, then A
outputs a function h ∈ H satisfying

P[LD(h) ≤ LD(H) + ε] ≥ 1− δ.

In words, this means that h is probably (with confidence 1− δ) approximately correct (has
loss at most ε worse than optimal). The point-wise minimal such function m is called the
sample complexity of H.

Definition 4.1.10. Let h ∈ H and let S = ((x1, y2), . . . , (xm, ym)) ∈ (X × {0, 1})m. The
empirical loss of h with respect to S is LS(h) = 1

m

∑
i∈[m](f(xi)− yi)2.

Definition 4.1.11. An empirical risk minimization algorithm (ERM) for class H is an
agnostic PAC learning algorithm that takes m = mH(ε, δ) i.i.d. random samples from D,
denoted S, and outputs a hypothesis h ∈ arg minf∈H LS(f).8

Definition 4.1.12. We say that H has the uniform convergence property if there exists a
function mUC

H : [0, 1]2 → N such that for any ε, δ > 0 and any distribution D ∈ ∆(X × R), if S
is a tuple of mUC

H (ε, δ) i.i.d. samples from D, then PS[∀h ∈ H : |LS(h)− LD(h)| ≤ ε] ≥ 1−δ.

The following definitions and result apply for the special case of boolean labels, where
H ⊆ {0, 1}X , and we only consider distributions D ∈ ∆(X × {0, 1}).

Definition 4.1.13. Let h ∈ H and C ⊆ X . We denote by h|C the function C → {0, 1} that
agrees with h on C. The restriction of H to C is H|C := {h|C : h ∈ H}, and we say that H
shatters C if H|C = {0, 1}C.

Definition 4.1.14 (Vapnik and Chervonenkis, 1968, 1971). The VC dimension of H denoted
VC(H) is the maximal size of a set C ⊆ X such that H shatters C. If H can shatter sets of
arbitrary size, we say that the VC dimension is ∞.

Theorem 4.1.15 (Vapnik and Chervonenkis, 1968, 1971; Blumer, Ehrenfeucht, Haussler,
and Warmuth, 1989). The following are equivalent:

1. VC(H) <∞.

2. H has the uniform convergence property.

3. H is agnostically PAC learnable.

4. Any ERM algorithm agnostically PAC learns H using mH(ε, δ) random samples.

Furthermore, if d = VC(H) <∞ then mH(ε, δ) = Θ
(

d+log( 1
δ )

ε2

)
and mUC

H (ε, δ) = Θ
(

d+log( 1
δ )

ε2

)
.

8Assuming that the minimum always exists for H.
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Fourier Analysis of Boolean Functions

To formulate and prove Theorem 4.2.6 below, we need several basic notions from the Fourier
analysis of boolean functions. For a comprehensive introduction, see O’Donnell (2014).

Consider the linear space F of all functions of the form f : {0, 1}n → R.

Fact 4.1.16. The operator ⟨·, ·⟩ : F2 → R given by ⟨f, g⟩ := Ex∈{0,1}n [f(x)g(x)] constitutes
an inner product, where x ∈ {0, 1}n denotes sampling from the uniform distribution.

Notation 4.1.17. For any set S ⊆ [n], χS : {0, 1}n → {0, 1} denotes the function
χS(x) := (−1)

∑
i

xi.

Fact 4.1.18. The set {χS : S ⊆ [n]} is an orthonormal basis of F . In particular, any f ∈ F
has a unique representation f(x) = ∑

S⊆[n] f̂(S)χS(x), where f̂(S) = ⟨f, χS⟩.

Fact 4.1.19 (Parseval’s identity). Let f ∈ F . Then ⟨f, f⟩ = ∑
S⊆[n] f̂(S)2. In particular, if

f : {0, 1}n → {0, 1} then ∑
S⊆[n] f̂(S)2 = Ex[f(x)] ≤ 1.

Definition 4.1.20. Let t ∈ N. A function f : {0, 1}n → R is t-sparse if it has at most t

non-zero Fourier coefficients, namely |{S ⊆ [n] : f̂(S) ̸= 0}| ≤ t.

Definition of PAC Verification
In Section 4.1 we informally described the setting of this chapter. Here, we complete that
discussion by providing a formal definition of PAC verification, which is the main object of
study in this chapter.

Notation 4.1.21. We write
[V OV (xV ), P OP (xP )]

for the random variable denoting the output of the verifier V after interacting with a prover
P , when V and P receive inputs xV and xP respectively, and have access to oracles OV

and OP respectively. The inputs xV and xP can specify parameters of the interaction, such
as the accuracy and confidence parameters ε and δ. This random variable takes values in
{0, 1}X ∪ {reject}, namely, it is either a function X → {0, 1} or it is the value “reject”. The
random variable depends on the (possibly randomized) responses of the oracles, and on the
random coins of V and P .

For a distribution D, we write V D (or P D) to denote use of an oracle that provides i.i.d.
samples from the distributions D. Likewise, for a function f , we write V f (or P f) to denote
use of an oracle that provides query access to f . That is, in each access to the oracle, V (or
P ) sends some x ∈ X to the oracle, and receives the answer f(x).

We also write
[V (SV , ρV ), P (SP , ρP )] ∈ {0, 1}X ∪ {reject}
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to denote the deterministic output of the verifier V after interacting with P in the case where
V and P receive fixed random coin values ρV and ρP respectively, and receive fixed samples
SV and SP from their oracles OV and OP respectively.

We are interested in classes H for which an ε-good hypothesis can always be verified
with high probability via this form of interaction between an efficient prover and verifier, as
formalized in the following definition. Note that the following definitions include an additional
multiplicative slack parameter α ≥ 1 in the error guarantee. This parameter does not exist
in the standard definition of PAC learning; the standard definition corresponds to the case
α = 1.

Definition 4.1.22 (α-PAC Verifiability). Let H ⊆ {0, 1}X be a class of hypotheses, let
D ⊆ ∆(X × {0, 1}) be some family of distributions, and let α ≥ 1. We say that H is α-PAC
verifiable with respect to D using oracles OV and OP if there exists a pair of algorithms (V, P )
that satisfy the following conditions for every input ε, δ > 0:

• Completeness. For any distribution D ∈ D, the random variable h := [V OV (ε, δ),
P OP (ε, δ)] satisfies

P
[
h ̸= reject ∧

(
LD(h) ≤ α · LD(H) + ε

)]
≥ 1− δ.

• Soundness. For any distribution D ∈ D and any (possibly unbounded) prover P ′, the
random variable h := [V OV (ε, δ), P ′OP (ε, δ)] satisfies

P
[
h ̸= reject ∧

(
LD(h) > α · LD(H) + ε

)]
≤ δ.

Definition 4.1.23 (Interactive Proof System for PAC Verification). A pair of algo-
rithms (V, P ) satisfying soundness and completeness as above, is called an interactive proof
system that α-PAC verifies H with respect to D using oracles OV and OP .

Definition 4.1.24 (α-PAC Learnability). Similarly, H is α-PAC learnable with respect
to D using oracle O if there exists an algorithm A that for every input ε, δ > 0 and every
D ∈ D, outputs h := AO(ε, δ) such that P[LD(h) ≤ α · LD(H) + ε] ≥ 1− δ.

Remark 4.1.25. Some comments about these definitions:

• The behavior of the oracles OV and OP may depend on the specific underlying distribution
D ∈ D, which is unknown to the prover and verifier. For example, they may provide
samples from D.

• We insist on double efficiency; that is, that the sample complexity and running times of
both V and P must be polynomial in 1

ε
, log

(
1
δ

)
, and perhaps also in some parameters

that depend on H, such as the VC dimension or Fourier sparsity of H.
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• If for every ε, δ > 0, and for any (possibly unbounded) prover P ′, the value h :=
[V OV (ε, δ), P ′OP (ε, δ)] satisfies h ∈ H∪ {reject} with probability 1 (i.e., V never outputs
a function that is not in H), then we say that H is proper α-PAC verifiable, and that
the proof system proper α-PAC verifies H.

Remark 4.1.26. An important type of learning (studied e.g. by Angluin, 1987 and Kushilevitz
and Mansour, 1993) is learning with membership queries with respect to the uniform
distribution. In this setting, the family D consists of distributions D such that: (1) the
marginal distribution of D over X is uniform; (2) D has a target function f : X → {1,−1}
satisfying P(x,y)∼D[y = f(x)] = 1.9 In Section 4.2, we will consider protocols for this type of
learning that have the form [V D, P f ], such that the verifier has access to an oracle providing
random samples from a distribution D ∈ D, and the prover has access to an oracle providing
query access to f , the target function of D. This type of protocol models a real-world scenario
where P has qualitatively more powerful access to training data than V .

Organization of this Chapter
In Section 4.1 we formally define interactive proofs for PAC verification. In Section 4.1 we
provide an overview of our results and their respective proof ideas.

Our first result appears in Section 4.2, where we answer Question 4.1.2 above affirmatively,
showing that the broad and important class of Fourier-sparse boolean functions admits a
doubly-efficient verification protocol in which the prover has query access, but the verifier
only uses random samples. Note that according to the widely-held LPN assumption, learning
this class is not possible without query access (see Section 4.1 for more about Fourier analysis,
and Blum et al., 2003; Yu and Steinberger, 2016 for more about the LPN assumption).

In Section 4.3 we answer Question 4.1.1 above affirmatively by showing that a certain
simple class of functions (generalized thresholds) exhibits a quadratic gap in sample complexity
between learning and verifying. The verifier for this class is an NP-like verifier, in the sense
that it takes as input a succinct witness string that helps it reach a decision.

Interestingly, however, verification is not always more efficient. In Section 4.4 we show a
lower bound for a class of randomly-chosen functions, entailing that for this class, verification
requires as many samples as learning does, up to a logarithmic factor.

Finally, in Section 4.5, where we show that, in the semi-supervised setting, PAC verification
can reduce the number of labeled samples required compared to learning.

4.2 Efficient Verification for the Class of
Fourier-Sparse Functions

The class Td of multi-thresholds (discussed in Section 4.3 below) shows that in some cases
verification is strictly easier than learning and closeness testing. The verification protocol

9Note that f is not necessarily a member of H, so this is still an agnostic (rather than realizable) case.
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for Td has a single round, where the prover simply sends a hypothesis and a proof that
it is (approximately) optimal. In this section, we describe a multi-round protocol that
demonstrates that interaction is helpful for verification.

The interactive protocol we present PAC verifies the class of Fourier-sparse functions. This
is a broad class of functions, which includes decision trees, DNF formulas with small clauses,
and AC0 circuits.10 Every function f : {0, 1}n → R can be written as a linear combination
f = ∑

T ⊆[n] f̂(T )χT .11 In Fourier-sparse functions, only a small number of coefficients are
non-zero.

Remark 4.2.1. According to the learning parity with noise (LPN) assumption (see Blum
et al., 2003; Yu and Steinberger, 2016), it is not possible to learn the Fourier-sparse functions
efficiently using random samples only. Therefore, the query delegation protocols discussed
below in Section 4.5 cannot be used to obtain a doubly-efficient PAC verification protocol for
this class, as we do in the current section.

An important technicality is that throughout this section we focus solely on PAC verifica-
tion with respect to families of distributions that have a uniform marginal over {0, 1}n, and
have a target function f : {0, 1}n → {1,−1} such that P(x,y)∼D[y = f(x)] = 1. See further
discussion in Remark 4.1.26 on page 72. One of the advantages of this setting is that in order
to learn f , it is sufficient to approximate its heavy Fourier coefficients.

Notation 4.2.2. Let f : {0, 1}n → R, and let τ ≥ 0. The set of τ -heavy coefficients of f is

f̂≥τ = {T ⊆ [n] : |f̂(T )| ≥ τ}.

Furthermore, approximating a single coefficient is easy given random samples from the
uniform distribution (Claim 4.2.11). There are, however, an exponential number of coefficients,
so approximating all of them is not feasible. This is where verification comes in. If the set of
heavy coefficients is known, and if the function is Fourier-sparse, then one can efficiently learn
the function by approximating that particular set of coefficients. The prover can provide the
list of heavy coefficients, and then the verifier can learn the function by approximating these
coefficients.

The challenge that remains in designing such a verification protocol is to verify that the
provided list of heavy coefficients is correct. If the list contains some characters that are not
actually heavy, no harm is done.12 However, if a dishonest prover omits some of the heavy
coefficients from the list, how can the verifier detect this omission? The following result
provides an answer to this question.

10See Mansour (1994, Section 5.2.2, Theorems 5.15 and 5.16). (AC0 is the set of functions computable by
constant-depth boolean circuits with a polynomial number of AND, OR and NOT gates.)

11The real numbers f̂(T ) are called Fourier coefficients, and the functions χT are called characters.
12The verifier can approximate each coefficient in the list and discard of those that are not heavy.

Alternatively, the verifier can include the additional coefficients in its approximation of the target function,
because the approximation improves as the number of estimated coefficients grows (so long as the list is
polynomial in n).
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Lemma 4.2.3 (Interactive Goldreich–Levin). There exists an interactive proof system
(V, P ∗) as follows. For every n ∈ N, δ > 0, every τ ≥ 2− n

10 , every function f : {0, 1}n → {0, 1},
and every prover P , let

LP = [V (S, n, τ, δ, ρV ), P f (n, τ, δ, ρP )]

be a random variable denoting the output of V after interacting with the prover P , which
has query access to f , where S =

(
(x1, f(x1)), . . . , (xm, f(xm))

)
is a random sample with

x1, . . . , xm taken independently and uniformly from {0, 1}n, and ρV , ρP are strings of private
random coins. LP takes values that are either a collection of subsets of [n], or ‘reject’.

The following properties hold:

• Completeness. P
[
LP ∗ ̸= reject ∧ f̂≥τ ⊆ LP ∗

]
≥ 1− δ.

• Soundness. For any (possibly unbounded) prover P ,

P
[
LP ̸= reject ∧ f̂≥τ ⊈ LP

]
≤ δ.

• Double efficiency. The verifier V uses at most O
(

n
τ

log
(

n
τ

)
log

(
1
δ

))
random samples

from f and runs in time poly
(
n, 1

τ
, log

(
1
δ

))
. The runtime of the prover P ∗, and the

number of queries it makes to f , are at most O
(

n3

τ5 log
(

1
δ

))
. Whenever LP ̸= reject, the

cardinality of LP is at most O
(

n2

τ5 log
(

1
δ

))
.

Remark 4.2.4. In Definition 4.1.23 we defined interactive proof systems specifically for PAC
verification. The proof system in Lemma 4.2.3 is technically different, satisfying different
completeness and soundness conditions. Additionally, in Definition 4.1.23 the verifier outputs
a value that is either a function or ‘reject’, while here the verifier outputs a value that is
either a collection of subsets of [n], or ‘reject’.

The verifier V operates by simulating the Goldreich–Levin (GL) algorithm for finding f̂≥τ .
However, the GL algorithm requires query access to f , while V has access only to random
samples. To overcome this limitation, V delegates the task of querying f to the prover P ,
who does have the necessary query access. Because P is not trusted, V engineers the set of
queries it delegates to P in such a way that some random subset of them already appear in
the sample S which V has received as input. This allows V to independently verify a random
subset of the results sent by P , ensuring that a sufficiently dishonest prover is discovered
with high probability.

As a corollary of Lemma 4.2.3, we obtain the following theorem, which is an interactive
version of the Kushilevitz–Mansour algorithm (Kushilevitz and Mansour, 1993; see also Linial,
Mansour, and Nisan, 1993). It says that the class of t-sparse boolean functions is efficiently
PAC verifiable with respect to the uniform distribution using an interactive proof system of
the form [V D, P f ], where the prover has query access and the verifier has random samples.
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Notation 4.2.5. Let X be a finite set. We write Dfunc
U (X ) to denote the set of all distributions

D over X × {1,−1} that have the following two properties:

• The marginal distribution of D over X is uniform. Namely, ∑y∈{1,−1}D
(

(x, y)
)

= 1
|X |

for all x ∈ X .

• D has a target function f : X → {1,−1} satisfying P(x,y)∼D[y = f(x)] = 1.

Theorem 4.2.6. Let X = {0, 1}n, and let H be the class of functions X → R that are
t-sparse, as in Definition 4.1.20. The class H is 1-PAC verifiable for any ε ≥ 4t · 2− n

10 with
respect to Dfunc

U (X ) by a proof system in which the verifier has access to random samples from
a distribution D ∈ Dfunc

U (X ), and the honest prover has oracle access to the target function
f : X → {1,−1} of D. The running time of both parties is at most poly

(
n, t, 1

ε
, log

(
1
δ

))
.

The verifier in this protocol is not proper; the output is not necessarily t-sparse, but it is
poly

(
n, t, 1

ε
, log

(
1
δ

))
-sparse.

The Interactive Goldreich–Levin Protocol
The verifier follows Protocol 4.1, which repeatedly applies Protocol 4.2 (IGL-Iteration).

V performs the following:
r ←

⌈
(4n

τ
+ 1) log

(
1
δ

)⌉
for i ∈ [r]

Li ← IGL-Iteration(n, τ)
if Li = reject

output reject
L← ⋃

i∈[r] Li

output L

Protocol 4.1: Interactive Goldreich–Levin: IGL(n, τ, δ)

We partition the proof of Lemma 4.2.3 into two claims. First, we show that if the prover
is honest, then the output is correct.

Claim 4.2.7. Consider an execution of IGL-Iteration(n, τ) for τ ≥ 2− n
10 . For any prover

P and any randomness ρP , if V did not reject, and the evaluations provided by P were mostly
honest, in the sense that

∀i ∈ [n] : Px∈H

[
f̃(x ⊕ ei) ̸= f(x ⊕ ei)

]
≤ τ

4 ,

then
P
[
f̂≥τ ⊆ L

]
≥ 1

2 ,
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Assumption: V receives a sample S =
(

(x1, f(x1)), . . . , (xm, f(xm))
)

such that

m =
⌈
log

(
40n
τ4 + 1

)⌉
, for all i ∈ [m], xi ∈ {0, 1}n is chosen independently and

uniformly, and f(xi) ∈ {0, 1}. “⊕” denotes bitwise XOR; ⊕ of an empty set is 0.

1. V selects i∗ ∈ [n] uniformly at random, and then sends B to P , where

B = {b1, . . . , bk} ⊆ {0, 1}n

is a basis chosen uniformly at random from the set of bases of the subspace

H = span({x1 ⊕ ei∗ , . . . , xm ⊕ ei∗}).

(For any j, ej is a vector in which the j-th entry is 1 and all other entries are 0.)

2. P sends V the following set:

{(x ⊕ ei, f̃(x ⊕ ei)) : i ∈ [n] ∧ x ∈ H},

where for any z, f̃(z) is purportedly the value of f(z) obtained using P ’s query
access to f .

3. V checks that for all i ∈ [m], the evaluation f(xi) provided by V equals that
which appeared in the sample S. If there are any discrepancies, V rejects and
the interaction and terminates. Otherwise:

4. Let K = {K : ∅ ⊊ K ⊆ [k]}. V Performs the following computation and
outputs L:

L← ∅
for (y1, . . . , yk) ∈ {0, 1}k

for K ∈ K
xK ←⊕

i∈K bi

yK ←⊕
i∈K yi

for i ∈ [n]
ai ← majorityK∈K

(
f̃
(
xK ⊕ ei

)
⊕ yK

)
add {i : ai = 1} and {i : ai = 0} to L

output L

Protocol 4.2: Interactive Goldreich–Levin Iteration: IGL-Iteration(n, τ)
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where the probability is over the sample S and the randomness ρV .

Proof of Claim 4.2.7. Let E denote the event in which the samples {x1, . . . , xm} are linearly
independent. From Claim B.8.2, P[E] ≥ 3

4 . We will show that

∀T ∈ f̂≥τ : P[T /∈ L | E] ≤ τ 2

4 .

This is sufficient to prove the claim, because Parseval’s identity entails that |f̂≥τ | ≤ 1
τ2 , and

so from the union bound and the law of total probability,

P
[
f̂≥τ ⊈ L

]
≤ P

[
f̂≥τ ⊈ L | E

]
+ P[¬E]

≤ |f̂≥τ | · max
T ∈f̂≥τ

P[T /∈ L | E] + P[¬E]

≤ 1
τ 2 ·

τ 2

4 + 1
4 = 1

2 .

Fix some T ∈ f̂≥τ . Note that T ∈ f̂≥τ entails that

Px∈{0,1}n [f(x) = ℓ(x)] ≥ 1
2 + τ

2 (4.3)

where ℓ(x) is either ⊕i∈T xi or 1 ⊕ (⊕i∈T xi). Now, consider the iteration of the outer loop in
Step 4 in which yj = ℓ(bj) for all j ∈ [k]. For any i ∈ [n] and any K ∈ K, let

Gi,K := 1

(
f̃
(
xK ⊕ ei

)
= ℓ(xK ⊕ ei)

)
,

and observe that if Gi,K = 1 then from linearity of ℓ,

f̃
(
xK ⊕ ei

)
⊕ yK = ℓ(xK ⊕ ei) ⊕ ℓ(xK) = ℓ(ei) =

{
1(i ∈ T ) ℓ(x) = ⊕

i∈T xi

1 ⊕ 1(i ∈ T ) ℓ(x) = 1 ⊕ (⊕i∈T xi) .

Therefore, if
∀i ∈ [n] : 1

|K|
∑

K∈K
Gi,K >

1
2

then T will be added to L during the abovementioned iteration of the outer loop. Let

Ai,K := 1

(
f
(
xK ⊕ ei

)
= ℓ(xK ⊕ ei)

)
indicate cases where f agrees with ℓ, and let

Di,K := 1

(
f̃
(
xK ⊕ ei

)
̸= f(xK ⊕ ei)

)
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indicates cases where P is dishonest about the value of f . Then for all i ∈ [n],

1
|K|

∑
K

Gi,K ≥
1
|K|

(∑
K

Ai,K −
∑
K

Di,K

)
(i)
≥ 1
|K|

∑
K

Ai,K −
τ

4
(ii)
≥ 1
|K|

∑
K

A∗
i,K −

τ

4 ,

where (i) follows from the assumption that P is dishonest about at most a τ
4 -fraction of the

evaluations, and (ii) holds for

A∗
i,K =

{
Ai,K xK ⊕ ei /∈ {e1, e2, . . . , en}
0 otherwise.

Therefore, we can bound the probability that T /∈ L based on how well f and ℓ agree:

Px1,...,xk
[T /∈ L | E] ≤ P

[
∃i ∈ [n] : 1

|K|
∑

K∈K
A∗

i,K ≤
1
2 + τ

4

∣∣∣∣ E

]

≤
n∑

i=1
P
[

1
|K|

∑
K

A∗
i,K ≤

1
2 + τ

4

∣∣∣∣ E

]
(union bound)

(i)
≤

n∑
i=1

P
[∣∣∣∣∣ 1
|K|

∑
K

A∗
i,K − µ

∣∣∣∣∣ ≥ τ

4 −
n

2n

∣∣∣∣ E

]

≤
n∑

i=1
P
[∣∣∣∣∣ 1
|K|

∑
K

A∗
i,K − µ

∣∣∣∣∣ ≥ τ

5

∣∣∣∣ E

]
(τ ≥ 2− n

10 )

≤ 25
n∑

i=1

Var
[

1
|K|
∑

K A∗
i,K

∣∣∣∣ E
]

τ 2 (Chebyshev’s inequality)

= 25
n∑

i=1

Var
[∑

K A∗
i,K | E

]
|K|2τ 2

(ii)
≤ 25

n∑
i=1

∑
K Var

[
A∗

i,K | E
]

|K|2τ 2

≤ 10n

|K|τ 2 (variance of an indicator is ≤ 1
4)

= 10n

(2k − 1)τ 2 .

Inequality (i) is justified because µ := E
[
A∗

i,K

]
≥ E[Ai,K ]− n

2n ≥ 1
2 + τ

2 −
n
2n , which follows

from (4.3). For inequality (ii), we argue that given E, Cov[(]A∗
i,K , A∗

i,K′) ≤ 0 for any fixed
K, K ′ ∈ K, K ̸= K ′ and fixed i ∈ [n]. To see this, observe the following.
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1. For any fixed sample x1, . . . , xm ∈ {0, 1}n, the pair (xK , xK′) is distributed uniformly over
the set {(u, u′) : u, u′ ∈ H \ {0} ∧ u ̸= u′}. This is true because the base {b1, . . . , bk}
is chosen uniformly from all bases of H, implying that xK = ⊕

i∈K bi is a uniform point
in H \ {0}. Furthermore, for any fixed value of xK , udiff := xK ⊕ xK′ = ⊕

i∈K∆K′ bi is a
uniform point in H \{0, xK}. Hence, for any fixed value of xK , the point xK′ = xK ⊕udiff
is uniform in H \ {0, xK}.

2. If x1, . . . , xm ∈ {0, 1}n are sampled independently and uniformly and we assume E
occurs, then H is a random subspace of dimension m within {0, 1}n. Therefore, the pair
(xK , xK′) is distributed uniformly over the set {(u, u′) : u, u′ ∈ {0, 1}n \ {0} ∧ u ≠ u′}.

3. Hence, the pair (xK ⊕ ei, xK′
⊕ ei) is distributed uniformly over the set

W = {(u, u′) : u, u′ ∈ U ∧ u ̸= u′},

where U = {0, 1}n \ {ei}.

4. Denote A∗ = {x ∈ {0, 1}n : f(x) = ℓ(x)} \ {e1, e2, . . . , en}. Then

Cov[(]A∗
i,K , A∗

i,K′) = E
[
A∗

i,KA∗
i,K′

]
− E

[
A∗

i,K

]
E
[
A∗

i,K′

]
= P(x,y)∈W [x ∈ A∗]

(
P(x,y)∈W [y ∈ A∗ | x ∈ A∗]− P(x,y)∈W [x ∈ A∗]

)
≤ P(x,y)∈W [y ∈ A∗ | x ∈ A∗]− P(x,y)∈W [x ∈ A∗]

= |A
∗| − 1
|U | − 1 −

|A∗|
|U |

< 0.

Finally, note that when E occurs (the samples {x1, . . . , xm} are linearly independent)
then

k = m ≥ log
(40n

τ 4 + 1
)

,

and so
Px1,...,xk

[T /∈ L | E] ≤ 10n

(2k − 1)τ 2 ≤
τ 2

4 ,

as desired.

Next, we show that if the prover is dishonest, it will be rejected.

Claim 4.2.8. Consider an execution of IGL-Iteration(n, τ). For any prover P and any
randomness value ρP , if there exists i ∈ [n] for which P was too dishonest in the sense that

Px∈H

[
f̃(x ⊕ ei) ̸= f(x ⊕ ei)

]
>

τ

4 ,

then
P[L = reject] ≥ τ

4n
,

where the probability is over the sample S and the randomness ρV .
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Proof. Let E denote the event in which the index i∗ selected by V is one for which P is too
dishonest. We now focus on the case where this event occurred. Let H∗ = H ⊕ ei∗ , and let
X ⊆ H∗ denote the subset of H∗ that appeared in the sample S received by V . Observe that

1− τ

4 > Ex∈H∗

[
1(f̃(x) = f(x)) | E

]
= EX

[
Ex∈X

[
1(f̃(x) = f(x))

]
| E

]
= EX [hX | E],

where hX := Ex∈X

[
1(f̃(x) = f(x))

]
, is the fraction of the sample on which P was honest.

Notice that the only assumptions we have made about the distribution of X is that for every
x, x′ ∈ H∗, P[x ∈ X] = P[x′ ∈ X].

From Markov’s inequality,

PX [hX = 1 | E] ≤ PX [hX ≥ 1 | E] ≤ EX [hX | E] < 1− τ

4 .

This means that

P[L = reject | E] = P
[
∃x ∈ X : f̃(x) ̸= f(x) | E

]
≥ τ

4 ,

and we conclude that

P[L = reject] ≥ P[L = reject | E]P[E] ≥ τ

4 ·
1
n

.

We now prove Lemma 4.2.3 using Claims 4.2.7 and 4.2.8.

Proof of Lemma 4.2.3. We show that the protocol IGL(n, τ, δ) satisfies the requirements of
Lemma 4.2.3. For the completeness, consider the deterministic prover P ∗ that simply uses
its query access to f in order to send the set

{(x ⊕ ei, f(x ⊕ ei)) : i ∈ [n] ∧ x ∈ H},

to V , and observe that P ∗ will never be rejected. Furthermore, for every i ∈ [r], Claim 4.2.7
entails that P

[
f̂≥τ ⊈ Li

]
≤ 1

2 . Thus, f̂≥τ ⊆ LP ∗ ≥ 1− 2−r ≥ 1− δ, as desired.
For the soundness, assume for contradiction that there exists some malicious prover P̃

such that
P
[
LP̃ ̸= reject ∧ f̂≥τ ⊈ LP̃

]
> δ.

The IGL protocol consists of r executions of IGL-Iteration. We say that P̃ was sufficiently
honest in a particular execution of IGL-Iteration if in that execution,

∀i ∈ [n] : Px∈H

[
f̃(x ⊕ ei) ̸= f(x ⊕ ei)

]
≤ τ

4 .

Let D be an indicator denoting the event that throughout the r executions, P̃ was too
dishonest, meaning that the number of executions in which P̃ was sufficiently honest is
strictly less than log(1

δ
).

Consider the following two case:
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• The dishonest case (D = 1): There were at least r′ := r− log(1
δ
) ≥ 4n

τ
log

(
1
δ

)
executions

in which P̃ was not sufficiently honest. From Claim 4.2.8, the probability of rejection in
each of these r′ repetitions is at least τ

4n
. Hence, because the rounds are independent,

P[LP̃ ̸= reject | D = 1] ≤
(

1− τ

4n

)r′

≤
(

1− τ

4n

) 4n
τ

log( 1
δ )
≤ e− log( 1

δ ) ≤ δ.

• The honest case (D = 0): Let j1, . . . , jr′ ∈ [r] be the rounds in which P̃ was sufficiently
honest, with r′ ≥ log(1

δ
). From Claim 4.2.7, with probability at least 1− δ, the result

Ljt for each t ∈ [r′] satisfies
P
[
f̂≥τ ⊆ Ljt

]
≥ 1

2 .

Hence, because the rounds are independent,

P
[
f̂≥τ ⊈ LP̃ | D = 0

]
≤ 2−r′ ≤ δ.

Putting the two cases together, we obtain the desired contradiction:

P
[
LP̃ ̸= reject ∧ f̂≥τ ⊈ LP̃

]
= P

[
LP̃ ̸= reject ∧ f̂≥τ ⊈ LP̃ | D = 0

]
P[D = 0]+

P
[
LP̃ ̸= reject ∧ f̂≥τ ⊈ LP̃ | D = 1

]
P[D = 1]

≤ P
[
f̂≥τ ⊈ LP̃ | D = 0

]
P[D = 0]+

P[LP̃ ̸= reject | D = 1]P[D = 1]

≤ δ.

This completes the proof of the soundness property. For the efficiency, observe the following:

• V performs r =
⌈
(4n

τ
+ 1) log

(
1
δ

)⌉
repetitions of the IGL-Iteration protocol, and each

repetition requires m =
⌈
log

(
40n
τ4 + 1

)⌉
fresh samples. Thus, V requires a total of

r ·m = O
(

n

τ
log

(
n

τ

)
log

(1
δ

))
.

random samples from f .

• P ∗ also performs r repetitions of the IGL-Iteration protocol, and makes at most n2m

queries to f in each repetition. Thus, P ∗ uses at most

q = r · n2m = O

(
n3

τ 5 log
(1

δ

))

queries to f .
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• P ∗ runs in time O(q), and V runs in time polynomial in q.

• For the bound on the cardinality of LP , observe that V performs r repetitions of IGL-
Iteration, and in each repetition, the number of items added to the list in Step 4 is at
most 2k ≤ 2m. Thus, the total list length is at most

r · 2m = O

(
n2

τ 5 log
(1

δ

))
.

This completes the proof.

Remark 4.2.9. It is possible to run all repetitions of the IGL protocol in parallel such that
only 2 messages are exchanged.

Efficient Verification of Fourier-Sparse Functions
The verification protocol of Theorem 4.2.6 is described in Section 4.2. In the IGL protocol,
we worked with functions f : {0, 1}n → {0, 1}. Now, we move to working with functions
f : {0, 1}n → {1,−1}. We translate data from {1,−1} to {0, 1} as follows: b ∈ {1,−1} is
mapped to 1−b

2 ∈ {0, 1}, and b ∈ {0, 1} is mapped to (−1)b ∈ {1,−1}.

V performs the following:
τ ← ε

4t

L← IGL(n, τ, δ
2)

if L = reject
output reject

else
λ←

√
ε

8|L|
for T ∈ L

αT ← EstimateCoefficient(T, λ, δ
2|L|)

h← ∑
T ∈L αT χT

output h

Protocol 4.3: PAC verification of t-sparse functions: VerifyFourierSparse(n, t, ε, δ)

Remark 4.2.10. The output of VerifyFourierSparse is a function h : {0, 1}n → R, not
necessarily a boolean function.
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m←
⌈

2 ln(2/δ)
λ2

⌉
for i ∈ [m]

sample (xi, yi)← D ▷ Takes i.i.d. samples from D.
αT ←

∑m
i=1 yiχT (xi)

output αT

Algorithm 4.1: Estimating a Fourier coefficient: EstimateCoefficient(T, λ, δ)

Proof

Theorem 4.2.6 follows from Lemma 4.2.3 via standard techniques (see exposition in Mansour,
1994). The proof is provided below for completeness. We start with the following claim.

Claim 4.2.11. Let λ, δ > 0, T ⊆ [n], and let D ∈ Dfunc
U ({0, 1}n) with target function

f : {0, 1}n → {1,−1}. Then EstimateCoefficient(T, λ, δ) uses m =
⌈

2 ln(2/δ)
λ2

⌉
random

samples from D and outputs a number αT such that

P
[
|αT − f̂(T )| ≥ λ

]
≤ δ,

where the probability is over the samples.

Proof. Let
(

(x1, f(x1), . . . , (xm, f(xm))
)

denote the sample. Recall that

f̂(T ) = ⟨f, χT ⟩ := Ex∈{0,1}n [f(x)χT (x)],

where |f(x)χT (x)| ≤ 1. Therefore, if we take

αT :=
m∑

i=1
f(xi)χT (xi)

then Hoeffding’s inequality yields

P
[∣∣∣αT − f̂(T )

∣∣∣ ≥ λ
]
≤ 2 exp(−mλ2/2) ≤ δ.

Proof of Theorem 4.2.6. Fix ε, δ > 0 and a distribution D ∈ Dfunc
U ({0, 1}n) with target

function f : {0, 1}n → {1,−1}. Consider an execution of VerifyFourierSparse(n, t, ε, δ).
We show completeness, soundness, double efficiency and sparsity.

• Completeness. Assume that the prover P was honest. Then from Lemma 4.2.3, with
probability at least 1 − δ

2 , L ̸= reject and f̂≥τ ⊆ L. Additionally, from Claim 4.2.11,
with probability at least 1− δ

2 it holds that

∀T ∈ L :
∣∣∣αT − f̂(T )

∣∣∣ ≤ λ.
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Hence, from the union bound, with probability at least 1 − δ all the assumptions of
Claim B.7.1 hold, in which case Claim B.7.1 guarantees that LD(h) ≤ LD(H) + ε, as
desired.

• Soundness. Assume for contradiction that there exists some (possibly unbounded)
prover P such that the verifier’s output h satisfies

P
[
h ̸= reject ∧

(
LD(h) > LD(H) + ε

)]
> δ. (4.4)

From the soundness property of the IGL protocol (Lemma 4.2.3),

P
[
h ̸= reject ∧ f̂≥τ ⊈ L

]
≤ δ

2 . (4.5)

Likewise, from Claim 4.2.11 and the union bound,

P
[
h ̸= reject ∧ ∃T ∈ L :

∣∣∣αT − f̂(T )
∣∣∣ > λ

]
≤ δ

2 . (4.6)

From Equations (4.4), (4.5) and (4.6), we obtain that

P
[
h ̸= reject ∧

(
LD(h) > LD(H) + ε

)
∧ G

]
> 0, (4.7)

where G denotes the event in which f̂≥τ ⊆ L ∧ ∀T ∈ L :
∣∣∣αT − f̂(T )

∣∣∣ ≤ λ. Claim B.7.1
asserts that

G =⇒ LD

( ∑
T ∈L

αT χT (x)
)
≤ LD(H) + ε. (4.8)

Note that if h ≠ ‘reject’ then h = ∑
T ∈L αT χT (x). Hence, putting together Equations (4.7)

and (4.8), we conclude that

P
[
h ̸= reject ∧

(
LD(h) > LD(H) + ε

)
∧
(

LD (h) ≤ LD(H) + ε
)]

> 0,

which is a contradiction.

• Double efficiency. From Lemma 4.2.3, V uses at most

O
(

n

τ
log

(
n

τ

)
log

(1
δ

))
= O

(
nt

ε
log

(
nt

ε

)
log

(1
δ

))
samples for the IGL protocol, which produces a set L of coefficients such that

|L| = O

(
n2

τ 5 log
(1

δ

))
= O

(
n2t5

ε5 log
(1

δ

))
.
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Then, it uses ⌈
2 ln(2/δ)

λ2

⌉
= O

(
log(1/δ)|L|

ε

)
samples for estimating each of the coefficients. In total, V uses at most

O
(

nt

ε
log

(
nt

ε

)
log

(1
δ

))
+ |L| ·O

(
2 log(1/δ)|L|

ε

)
= poly

(
n, t,

1
ε

, log
(1

δ

))
random samples.
Also from Lemma 4.2.3, when executing the IGL protocol, the honest prover makes at
most

O

(
n3

τ 5 log
(1

δ

))
= O

(
n3t5

ε5 log
(1

δ

))
= poly

(
n, t,

1
ε

, log
(1

δ

))
queries.
Clearly, both parties run in time polynomial in the number of their samples or queries.

• Sparsity. The output h = ∑
T ∈L αT χT is |L|-sparse, where

|L| = O

(
n2

τ 5 log
(1

δ

))
= O

(
n2t5

ε5 log
(1

δ

))
.

4.3 Separation Between Learning, Testing, and PAC
Verification

In this section we present a gap in sample complexity between learning and verification.
Conceptually, the result tells us that at least in some scenarios, delegating a learning task
to an untrusted party is worthwhile, because verifying that their final result is correct is
significantly cheaper than finding that result ourselves.

Recall from the discussion in Section 4.1 that when an untrusted prover provides a
hypothesis h̃ which is allegedly ε-good, the straightforward approach for the verifier is to
approximate each of the terms LD(h̃) and LD(H), and then determine whether the inequality
LD(h̃) ≤ LD(H) + ε holds. From Hoeffding’s inequality, the term LD(h̃) can easily be
approximated with constant confidence up to any O(ε) additive error using only O( 1

ε2 )
samples. However, approximating the term LD(H) is more challenging, because it involves
the loss values of all the hypotheses in the class H.

In this section we show an MA-like proof system wherein the prover sends a single message
(h̃, C̃, ℓ̃) such that allegedly h̃ is an ε-good hypothesis with loss at most ℓ̃ > 0, and C̃ ∈ {0, 1}∗

is a string called a certificate of loss. The verifier operate as follows:13

13We provide a more detailed description of the verification procedure in Claim 4.3.15 below.
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• Verify that LD(h̃) ≤ ℓ̃ with high probability. That is, estimate the loss of h̃ with respect
to D, and check that with high probability it is at most ℓ̃.

• Use the certificate of loss C̃ to verify that with high probability, LD(H) ≥ ℓ̃− ε. This
step is called verifying the certificate.

That is, a certificate of loss is a string that helps the verifier ascertain that H has a large loss
with respect to the unknown distribution D. Whenever one defines algorithms for generating
and verifying certificates of loss for a class H, that also defines an associated single-message
interactive proof system for PAC verifying H.

Warm-Up: The Class of Thresholds
For clarity of exposition, we start with a warm-up that investigates the class T of threshold
functions (see definition below). This class admits certificates that are easy to explain and
visualize. We will show that the certificates of loss for T induce a proof system for PAC
verifying T that is complete, sounds, and doubly efficient. However, verifying certificates for
T requires as much resources as PAC learning T without the help of a prover, and so using
this proof system to delegate learning of T is not worthwhile. Therefore, the next step (in
Section 4.3 below) will show that T and its certification easily generalize to the class Td of
multi-thresholds. The gap between verifying and learning is demonstrated for Td.

Definition 4.3.1. The class T is the set of all monotone increasing boolean functions on
[0, 1], as follows:

T = {ft : t ∈ [0, 1]},
where for any t ∈ [0, 1], the function ft : [0, 1]→ {0, 1} is given by

ft(x) =
0 x < t

1 x ≥ t.

Figure 4.2a illustrates an example of a function in T .

Remark 4.3.2. For convenience, we present the separation result with respect to thresholds
defined over a continuous interval X ⊆ R. Furthermore, we assume that the marginal
distribution on X is absolutely continuous with respect to the Lebesgue measure, and we also
ignore issues relating to the representation of real numbers in computations and protocol
messages. This provides for a smooth exposition of the ideas. In Appendix B.3, we show how
the results can be discretized.

Existence of Certificates of Loss for Thresholds

We want to design certificates such that for every distribution D ∈ ∆([0, 1]×{0, 1}) the class
T has large loss, LD(T ) ≥ ℓ, if and only if there exists a certificate for that fact.
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The idea is straightforward. Consider two sets A ⊆ [0, 1]×{1} and B ⊆ [0, 1]× {0}, such
that all the points in A are located to the left of all the points in B, as in Figure 4.2b.

Because we only allow thresholds that are monotone increasing, a threshold that labels
any point in A correctly must label all points of B incorrectly, and vice versa. Hence, any
threshold must have loss at least min{D(A),D(B)}. Formally:

Definition 4.3.3. Let D ∈ ∆([0, 1]× {0, 1}) be a distribution and ℓ, η ≥ 0. A certificate of
loss at least ℓ for class T is a pair (a, b) where 0 < a ≤ b < 1.

We say that the certificate is η-valid with respect to distribution D if the events

A = [0, a)× {1}
B = [b, 1]× {0}

(4.9)

satisfy
|D(A)− ℓ|+ |D(B)− ℓ| ≤ η. (4.10)

The following claim shows the soundness of the certificate, i.e., that a valid certificate of loss
does indeed entail that LD(T ) is large.

Claim 4.3.4. Let D ∈ ∆([0, 1]× {0, 1}) be a distribution and ℓ, η ≥ 0. If D has a certificate
of loss at least ℓ which is η-valid with respect to D, then LD(T ) ≥ ℓ− η.

Proof. Assume C = (a, b) is an η-valid certificate of loss at least ℓ for T with respect to D.
For any t ∈ [0, 1], we show that LD(ft) ≥ ℓ− η.

Consider two cases:

• Case 1: t < a. Then for any x ≥ a, ft(x) = 1. In particular, taking B as in (4.9), we
obtain that

∀(x, y) ∈ B : ft(x) ̸= y.

Observe from Equation (4.10) that D(B) ≥ ℓ− η. Therefore,

LD(ft) = P(x,y)∈D[ft(x) ̸= y] ≥ D(B) ≥ ℓ− η.

• Case 2: t ≥ a. This case is symmetric to the previous one, replacing B with A =
[0, a)× {1}.

Next, we show completeness, meaning that whenever LD(T ) is large there exists a
certificate to that effect. However, the certificate is not tight, conceding a factor of 2:

Claim 4.3.5. Let D ∈ ∆([0, 1]×{0, 1}) be a distribution and ℓ ≥ 0. If LD(T ) = ℓ then there
exists a 0-valid certificate of loss at least ℓ

2 with respect to D.
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Proof of Claim 4.3.5. Let ft be an optimal threshold for D, that is, LD(ft) = ℓ.14 Let

Ã = [0, t)× {1}

B̃ = [t, 1]× {0}
denote the two events in which ft misclassifies a point.15 It follows that

ℓ = D(Ã) +D(B̃).

If D(Ã) = D(B̃) = ℓ
2 , then (t, t) is the desired certificate. Otherwise, assume w.l.o.g. that

D(Ã) >
ℓ

2 > D(B̃).

Because the marginal distribution of D on [0, 1] is absolutely continuous, there exists a point
a ∈ [0, t) that partitions the event Ã to

A := [0, a)× {1},

A′ := [a, t)× {1},
such that D(A) = ℓ

2 . Considering the event B′ := [a, t)× {0}. The optimality of ft implies
that

D(B′) ≥ D(A′)
because otherwise the threshold fa would have loss strictly smaller than that of ft.

Notice that

D(B′) ≥ D(A′) = D(Ã)−D(A) =
(

ℓ−D(B̃)
)
−D(A) = ℓ−D(B̃)− ℓ

2 = ℓ

2 −D(B̃).

Hence, again invoking absolute continuity of measure as above, there exists a point b ∈ [a, t)
such that

D([b, t)× {0}) = ℓ

2 −D(B̃).

Therefore, taking
B := [b, 1)× {0}

yields
D(B) = D([b, t)× {0}) +D(B̃) = ℓ

2 .

So (a, b) is the desired certificate.
14Note that an optimal threshold t ∈ [0, 1] exists because [0, 1] is compact, and the mapping t 7→ LD(ft) is

continuous.
15Namely, Ã is the event in which a point has label 1, but ft assigns label 0 to it, and B̃ is the event in

which a point has label 0, but ft assigns label 1 to it.
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Efficient Generation and Verification of Certificates for Thresholds

The following two claims show that certificates of loss for T do not merely exist, but they
can be generated and verified efficiently, making delegation feasible.

Claim 4.3.6 (Efficient Verification). Let D ∈ ∆([0, 1] × {0, 1}) be a distribution and
ℓ, δ, η ≥ 0. There exists an algorithm that, upon receiving input (a, b) such that 0 < a ≤ b < 1,
takes O

(
log( 1

δ )
η2

)
i.i.d. samples from D and satisfies the following:

• Completeness. If (a, b) is an η-valid certificate of loss at least ℓ with respect to D, then
the algorithm accepts with probability at least 1− δ.

• Soundness. If (a, b) is not a 2η-valid certificate of loss at least ℓ with respect to D, then
the algorithm rejects with probability at least 1− δ.

Furthermore, the algorithm runs in time polynomial16 in the number of samples.

Proof. Let A, B be as in Equation (4.9), and let (x1, y1), . . . , (xm, ym) be the samples the
algorithm received. The algorithm calculates the empirical measures of A, B by

ℓ̂A := 1
m

m∑
i=1

1
(
(xi, yi) ∈ A

)

ℓ̂B := 1
m

m∑
i=1

1
(
(xi, yi) ∈ B

)
and accepts if and only if

|ℓ̂A − ℓ|+ |ℓ̂B − ℓ| < 3
2η.

The running time is clear, and correctness follows from Hoeffding’s inequality,

P
[∣∣∣ℓ̂A −D(A)

∣∣∣ ≥ η

4

]
≤ 2 exp

(
−2m

(
η

4

)2
)

.

Requiring that this probability be strictly less than δ
2 yields the bound

m >
2 log 16

δ

η2 .

The same holds for ℓ̂B. The union bound entails that with probability at least 1− δ both
estimates are η

4 -close to their expectations, in which case the algorithm decides correctly.
16Recall that we ignore the cost performing calculations with real numbers.
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Claim 4.3.7 (Efficient Generation). There exists an algorithm as follows. For any
distribution D ∈ ∆([0, 1]×{0, 1}) and any δ, η ∈ (0, 1

2), the algorithm outputs a certificate (â, b̂)
for T that with probability at least 1− δ is an η-valid certificate of loss at least ℓ = LD(T )/2
with respect to D. The algorithm uses

O

(
1
η2 log 1

η
+ 1

η2 log 1
δ

)

i.i.d. samples from D and runs in time polynomial in the number of samples.

Proof. The proof is a standard application of uniform convergence, VC dimension and
empirical risk minimization (ERM), as covered e.g. in Shalev-Shwartz and Ben-David (2014).
For completeness, we provide a self-contained proof that depends only on Theorem B.4.3,
which upper bounds the number of samples necessary to obtain an ϵ-sample for a set system
of finite VC dimension (see definitions in Appendix B.4).

We start by stating the following consequence of Theorem B.4.3. Let

S = ((x1, y1), . . . , (xm, ym))

denote the samples that the algorithm receives, and let I denote the following set of intervals:

I = {[u, v) : u, v ∈ R} ∪ {[u, v] : u, v ∈ R}.

Observe that the set system A = (R× {0, 1}, I × {0, 1}) has VC dimension 2. Hence, from
Theorem B.4.3, with probability at least 1− δ, we have that S is an η′-sample for A with
respect to D, where η′ := η

16 .
The algorithm operates in two steps. In the first step, the algorithm estimates ℓ. For any

t ∈ R, denote by LS(ft) the empirical loss of ft, namely

LS(ft) := Lleft
S (ft) + Lright

S (ft)

for
Lleft

S (ft) := |([0, t)× {1}) ∩ S|
|S|

and
Lright

S (ft) := |([t, 1]× {0}) ∩ S|
|S|

.

(Cardinalities are computed with S viewed as a multiset.)
The algorithm uses the sample S to find the threshold ft̂ ∈ T defined by

t̂ := arg min
t∈X

LS(ft),

where X = {x1, . . . , xm, 1}.
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The algorithm estimates ℓ by taking

ℓ̂ := LS(ft̂)/2 + 3η′.

We argue that ℓ̂ is a good estimate whenever S is an η′-sample: Let f ∗ = arg minf∈T LD(f).
If S is an η′-sample then

LD(ft̂) ≤ LS(ft̂) + 2η′

= min
t∈X

LS(ft) + 2η′

= min
t∈R

LS(ft) + 2η′

≤ LS(f ∗) + 2η′

≤ LD(f ∗) + 4η′.

Therefore, ∣∣∣LS(ft̂)− LD(f ∗)
∣∣∣ ≤ ∣∣∣LS(ft̂)− LD(ft̂)

∣∣∣+ ∣∣∣LD(ft̂)− LD(f ∗)
∣∣∣

≤ 2η′ + 4η′ = 6η′.

Thus, the estimate ℓ̂ satisfies

|ℓ̂− ℓ| =
∣∣∣∣∣LS(ft̂)

2 + 3η′ − LD(f ∗)
2

∣∣∣∣∣ ≤ 3η′ +

∣∣∣LS(ft̂)− LD(f ∗)
∣∣∣

2 ≤ 6η′.

Furthermore,

ℓ̂ = LS(ft̂)
2 + 3η′

≥ LD(f ∗)
2 −

∣∣∣LS(ft̂)− LD(f ∗)
∣∣∣

2 + 3η′

≥ LD(f ∗)
2 = ℓ.

This completes the first step.
In the second step, the algorithm calculates

(â, b̂) := arg min
a′,b′∈X: a′≤b′

∣∣∣Lleft
S (fa′)− ℓ̂

∣∣∣+ ∣∣∣Lright
S (fb′)− ℓ̂

∣∣∣ .
We claim that (â, b̂) is an η-valid certificate of loss ℓ̂. From Claim 4.3.5 and the assumption
that D is absolutely continuous, there exist (a, b) constituting a 0-valid certificate of loss
exactly ℓ.

Denote
Â = [0, â)× {1}, A = [0, a)× {1}
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B̂ = [b̂, 1]× {0}, B = [b, 1]× {0}.
Then

|D(Â)− ℓ̂|+ |D(B̂)− ℓ̂| ≤ |D(Â)− Lleft
S (fâ) |+ |Lleft

S (fâ)− ℓ̂|
+ |D(B̂)− Lright

S

(
f̂

b

)
|+ |Lright

S

(
f̂

b

)
− ℓ̂|

≤ |Lleft
S (fâ)− ℓ̂|+ |Lright

S

(
f̂

b

)
− ℓ̂|+ 2η′

= min
â,̂b∈X: â≤b̂

∣∣∣Lleft
S (fâ)− ℓ̂

∣∣∣+ ∣∣∣Lright
S

(
f̂

b

)
− ℓ̂

∣∣∣+ 2η′

= min
â,̂b∈R: â≤b̂

∣∣∣Lleft
S (fâ)− ℓ̂

∣∣∣+ ∣∣∣Lright
S

(
f̂

b

)
− ℓ̂

∣∣∣+ 2η′

≤
∣∣∣Lleft

S (fa)− ℓ̂
∣∣∣+ ∣∣∣Lright

S (fb)− ℓ̂
∣∣∣+ 2η′

≤
∣∣∣Lleft

S (fa)− ℓ
∣∣∣+ ∣∣∣Lright

S (fb)− ℓ
∣∣∣+ 14η′

=
∣∣∣Lleft

S (fa)−D(A)
∣∣∣+ ∣∣∣Lleft

S (fb)−D(B)
∣∣∣+ 14η′

≤ η′ + η′ + 14η′ = η.

We conclude that (â, b̂) is an η-valid certificate of loss at least ℓ, provided that S is an
η′-sample with respect to D, which happens with probability at least 1− δ. Seeing as the
algorithm runs in time polynomial in the number of samples, the proof is complete.

Warm-Up Summary

We explained how certificates of loss induce a proof system for PAC verification, and described
a specific instance of this for the class T of threshold functions. We saw that the honest
prover is able to generate a message (h̃, C̃, ℓ̃) that is accepted by the verifier. If h̃ has loss
greater than double the true loss, no certificate can convince the verifier to accept h̃. Both
the verifier and the honest prover are efficient. The certificate is not tight; if the true loss is
ℓ = LD(T ), the certificate of loss only proves that the loss is at least ℓ

2 .
However, the example of the class T is lacking an essential ingredient. The sample

complexity used by the verifier is the same as is necessary for learning without a prover, and
so delegation is not beneficial. In the next section, we present a generalization of this class,
where there is a substantial gap between the resources necessary for verification and those
required for learning, making it worthwhile to delegate the learning task to an untrusted
prover.
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Efficient PAC Verification for the Class Td of Multi-Thresholds
In the warm-up we saw certificates of loss that induce a proof system for PAC verification for
the class of thresholds T . We now extend this construction to a class Td of multi-thresholds,
construct a PAC verification proof system for Td that obtains the following sample complexity
separation between PAC verification on the one hand and PAC learning and tolerant testing
or distance approximation on the other hand.

Theorem 4.3.8. There exists a sequence of classes of functions

T1, T2, T3, ... ⊆ {0, 1}R

such that for any fixed ε, δ ∈ (0, 1
2) all of the following hold:

(i) Td is proper 2-PAC verifiable, where the verifier uses17

mV = O

√d log(d) log
(

1
δ

)
ε6


random samples, the honest prover uses

mP = O

(
d3 log2(d)

ε4 log
(

d

ε

)
+ d
√

d log(d)
ε2 log

(1
δ

))

random samples, and each of them runs in time polynomial in its number of samples.18

(ii) Agnostic PAC learning Td requires Ω
(

d+log( 1
δ

)
ε2

)
samples.

(iii) If ε ≤ 1
32 then 2-PAC learning the class Td requires Ω

(
d

log(d)

)
samples. This is true even

if we assume that LD(Td) > 0, where D is the underlying distribution.

(iv) Testing whether LD(Td) ≤ α or LD(Td) ≥ β for any 0 < α < β < 1
2 with success

probability at least 1−δ when D is an unknown distribution (without the help of a prover)
requires Ω

(
d

log(d)

)
random samples from D.

The Class Td

We start by defining the class of multi-thresholds.

Definition 4.3.9. For any d ∈ N, denote by Td the class of functions

Td = {ft1,...,td
: t1, . . . , td ∈ R}

17We believe that the dependence of mV on ε can be improved, see Remark 4.3.16.
18In Chapter 5, we strengthen this to obtain 1-PAC verification with better sample complexity bounds.
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where for all t1, . . . , td ∈ R and x ∈ [0, d], the function ft1,...,td
: R→ {0, 1} is given by

ft1,...,td
(x) =

0 x < t⌈x⌉

1 x ≥ t⌈x⌉,

and ft1,...,td
vanishes on the complement of [0, d].

0 1
3

2
3

1

0

1
f1/3

(a) The function f1/3 ∈ T1. T1 con-
sists of monotone increasing threshold
functions [0, 1]→ {0, 1}.

01
2

t 1

0

1 A

B

ft

(b) Structure of a simple certificate of loss for T1.
The set A is labeled with 1, and B is labeled 0.
The depicted threshold ft happens to misclas-
sify both A and B, but it is just one possible
threshold.

0 1 2 3 . . .
d

0

1

t1 t2 t3 td

(c) Example of a function in Td.

Figure 4.2: The class Td of multi-thresholds, with the special case T1 and its certificate
structure.

Existence of Certificates of Loss for Td

Remark 4.3.10. As before, we present the separation result with respect to functions defined
over R, we assume that the marginal distribution of the samples on R is absolutely continuous
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with respect to the Lebesgue measure, and we ignore issues relating to the representation of
real numbers in computations and protocol messages. This provides for a smoother exposition
of the ideas. In Appendix B.3, we show how the results can be discretized.

For each i ∈ [d], the class Td restricted to [i− 1, i] is a shifted copy of the class T . Hence,
exactly as we did for T , we can construct a certificate of loss which proves that Td must have
loss ℓi within the interval [i− 1, i]. Therefore, we define certificates for Td as collections of d
certificates of loss for T .

Definition 4.3.11. Let D ∈ ∆(R× {0, 1}) be a distribution and ℓ, η ≥ 0. A certificate of
loss at least ℓ for the class Td is a tuple

(C1, ℓ1, C2, ℓ2 . . . , Cd, ℓd)

where for all i ∈ [d]:

• Ci = (ai, bi),

• i− 1 < ai ≤ bi ≤ i,

• ℓi ≥ 0, and

d∑
i=1

ℓi = ℓ.

The certificate is η-valid with respect to D if the events

Ai = [i− 1, ai)× {1}

Bi = [bi, i]× {0}
defined for all i ∈ [d] satisfy

d∑
i=1
|D(Ai)− ℓi|+ |D(Bi)− ℓi| ≤ η.

The following analogs of Claims 4.3.4 and 4.3.5 follow similarly.

Claim 4.3.12. Let D ∈ ∆(R× {0, 1}) be a distribution and ℓ, η ≥ 0. If D has a certificate
of loss at least ℓ for Td that is η-valid with respect to D, then every function in Td must have
loss at least ℓ− η with respect to D.

Claim 4.3.13. Let D ∈ ∆(R× {0, 1}) be a distribution and ℓ ≥ 0. If LD(Td) = ℓ then there
exists a 0-valid certificate of loss at least ℓ

2 for Td with respect to D.
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Efficient Generation and Verification of Certificates for Td

The following is a straightforward analogue of Claim 4.3.7.

Claim 4.3.14 (Efficient Generation). There exists an algorithm as follows. For any
distribution D ∈ ∆([0, 1] × {0, 1}) and any δ, η ∈ (0, 1

2), the algorithm outputs a certificate
of loss for Td that with probability at least 1− δ is an η-valid certificate of loss at least
ℓ = LD(Td)/2 with respect to D. The algorithm uses

O
(

d2

η2 log d
η

+ d2

η2 log 1
δ

)
i.i.d. samples from D and runs in time polynomial in the number of samples.

Proof sketch. The proof follows the same lines as for Claim 4.3.7. Recall that in that proof,
the algorithm takes a sample of size O

(
1
η2 log 1

η
+ 1

η2 log 1
δ

)
. Whenever the sample is an

η′-sample with respect to the set system A defined in that proof, the algorithm is able to
generate a certificate that is η-valid.

Here, the algorithm instead takes a sample that with probability at least 1 − δ is an
η′

d
-sample with respect to A. This leads to the sample size mentioned in the statement.

The algorithm proceeds as in the previous case, using the sample to generate d certificates
of loss, one for each interval of the form [i − 1, i] for i ∈ [d]. Whenever the sample is an
η′

d
-sample, each of these certificates will be η

d
-valid. Combining these certificates together

yields a certificate for Td that is η-valid.

Agnostic PAC learning Td requires

Θ
(

d + log(1
δ
)

ε2

)
samples, because its VC dimension is d. Thus, the certificate generation procedure outlined
above requires that the prover use a larger number of samples than what is necessary for
learning. This may be worthwhile, because, as stated in the following claim, the verifier can
verify the certificate using fewer samples than what is required for learning.

Claim 4.3.15 (Efficient verification). Let d ∈ N and λ ∈ (0, 1). Let C = (C1, ℓ1, . . . , Cd, ℓd)
be a certificate of loss ℓ for Td, and let D be a distribution. There exists an algorithm that
takes

m = O

(
log

(1
δ

) √
d

λ6 log(d)
)

samples from D, and satisfies:

• Completeness. Let
λ′ := λ3

300
√

d log d
.

If C is λ′-valid with respect to D, then the algorithm accepts with probability at least
1− δ.
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• Soundness. If C is not 2λ-valid with respect to D, then the algorithm rejects with
probability at least 1− δ.

Remark 4.3.16. We believe that the parameters in the above claim can be improved such
that λ6 is replaced by λ2 in the sample complexity, and λ3 is replaced by λ in the completeness
parameter λ′. This would be achieved by using an ℓ2-based uniformity tester, together with
the reduction of Goldreich (2020).

Proof. The proof uses ideas from distribution identity testing stated in Corollary B.5.2. For
all i ∈ [d], let

Ai = [i− 1, ai)× {1}, and
Bi = [bi, i]× {0}.

The algorithm is required to decide whether the validity v of the certificate is less than λ′,
i.e., whether

v :=
d∑

i=1
|D(Ai)− ℓi|+ |D(Bi)− ℓi| ≤ λ′,

or whether v > 2λ.
Form the partition R := {A1, B1, . . . , Ad, Bd, E} of R× {0, 1}, where

E = (R× {0, 1}) \
( ⋃

i∈[d]
Ai ∪Bi

)
.

Define two probability functions, DR and D∗, both over this finite set R of cardinality
2d + 1. Let DR be the distribution induced on R by D; namely, DR(r) = D(r) for each
r ∈ R. Let D∗ denote the distribution over R corresponding to the certificate C. Namely,
D∗(Ai) = D∗(Bi) = ℓi for all i ∈ [d], and D∗(E) = 1− 2∑d

i=1 ℓi = 1− 2ℓ.
Consider the mapping MR that sends each point to the member of R it belongs to:

MR(x, y) =


Ai (x, y) ∈ Ai,
Bi (x, y) ∈ Bi,
E otherwise.

Observe that if S =
(
(x1, y1), . . . , (xm, ym)

)
is sampled i.i.d. from D, then

MR(S) := (MR(x1, y1), . . . , MR(xm, ym))

is an i.i.d. sample from DR. Observe the following connection between TV(DR,D∗) and the
validity v of the certificate:

v =
d∑

i=1
|D(Ai)− ℓi|+ |D(Bi)− ℓi|

=
d∑

i=1
|DR(Ai)−D∗(Ai)|+ |DR(Bi)−D∗(Bi)|

= 2TV(DR,D∗)− |DR(E)−D∗(E)| .
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Furthermore,

|DR(E)−D∗(E)| ≤ TV(DR,D∗).

Thus,
TV(DR,D∗) ≤ v ≤ 2TV(DR,D∗).

The algorithm operates as follows. It executes the distribution identity test stated in
Corollary B.5.2 with respect to distribution D∗ and the sample MR(S). Because D∗ is a
distribution over a set of size 2d + 1, taking a sample MR(S) of size m as specified in the
statement is sufficient to ensure that with probability at least 1− δ, the test distinguishes
correctly between the case TV(DR,D∗) ≤ λ′ and the case TV(DR,D∗) ≥ λ. The algorithm
accepts the certificate if and only if the test concludes that TV(DR,D∗) ≤ λ′.
The desired properties hold:

• Completeness. If v ≤ λ′, then TV(DR,D∗) ≤ v ≤ λ′, and so with probability at least
1− δ the algorithm accepts.

• Soundness. If v > 2λ, then λ < v
2 ≤ TV(DR,D∗), and so with probability at least 1− δ

the algorithm rejects.

This concludes the proof.

We now use the previous two claims to construct the efficient PAC verification protocol
for ‘Td.

Claim 4.3.17. Td is 2-PAC verifiable with sample and runtime complexities as in part (i) of
Theorem 4.3.8.

Proof. The interactive proof system for 2-PAC verification operates as follows. Let D ∈
∆(R× {0, 1}), and let ℓ = LD(Td).

1. The honest prover learns a function h̃ ∈ Td that has loss at most ℓ+ ε
6 , with probability at

least 1− δ
4 . This can be done with the required sample complexity, and the computation

runs in time polynomial in the number of samples, because an ERM can be computed in
polynomial time (as discussed in the proof of Claim 4.3.7).

2. From Claim 4.3.13, there exists a 0-valid certificate of loss at least ℓ
2 for Td with respect

to D, where ℓ = LD(Td). From Claim 4.3.14, the honest prover can generate a certificate
C̃ = (C1, ℓ1, . . . , Cd, ℓd) of loss ℓ̃ := ∑

i ℓi ≥ ℓ
2 that with probability at least 1 − δ

4 is
η-valid, for

η = (ε/8)2

300
√

d log(d)
.

The prover can do this using mP samples as in the statement.
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3. The honest prover sends (h̃, C̃, ℓ̃) to the verifier V .

4. The verifier V uses O
(
log

(
1
δ

)
/ε2

)
samples to estimate the loss LD(h̃) up to an additive

error of ε
6 with confidence at least 1− δ

4 , and rejects if the estimate is greater than 2ℓ̃ + ε
3 .

This ensures that V accepts only if LD(h̃) ≤ 2ℓ̃ + ε
2 .

5. From Claim 4.3.15, the verifier can use mV samples to verify C̃, such that if C̃ is η-valid
then V accepts with probability at least 1− δ

4 , and if C̃ is not ε
4 -valid, then V rejects

with probability at least 1− δ
4 .

For the completeness, observe that when interacting with the honest prover, each of
the operations in Steps 1, 2, 4 and 5 succeeds with probability at least 1− δ

4 , and so with
probability at least 1− δ they all succeed and V accepts h̃, which has loss at most ℓ + ε

6 .
For soundness, let H ∈ Td ∪ {reject} denote the output of V , and let

B = {h ∈ Td : LD(h) > 2ℓ + ε}.

Assume towards a contradiction there exists a prover P for which P[H ∈ B] > δ. Let W
denote the message (h̃, C̃, ℓ̃) sent by P . Because

δ < P[H ∈ B] =
∑
w

P[H ∈ B | W = w]P[W = w],

there exists some w0 = (h̃0, C̃0, ℓ̃0) such that

P[H ∈ B | W = w0] > δ. (4.11)

When the verifier V does not reject, V outputs the hypothesis sent by P . Thus, h̃0 ∈ B
and yet V accepts w0 with probability > δ. We show that this is impossible, based on the
following two facts:

• If LD(h̃0) > 2ℓ̃ + ε
2 , then from Step 4, the verifier V accepts w0 with probability at most

δ
4 .

• If C̃0 is not an ε
4 -valid certificate of loss ℓ̃, then from Step 5, the verifier V accepts w0

with probability at most δ
4 .

This implies that h̃0 ∈ B, that LD(h̃0) ≤ 2ℓ̃ + ε
2 and that C̃0 is an ε

4 -valid certificate of loss ℓ̃.
Claim 4.3.12 yields the contradiction:

ℓ = LD(Td) ≥ ℓ̃− ε

4 ≥
LD(h̃0)

2 − ε

2 > ℓ.
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Lower Bounds for Closeness Testing and 2-PAC Learning of the
Class Td

In this section we show near-linear lower bounds for testing closeness and 2-PAC learning of
the class Td.

Definition 4.3.18. Let 0 < α < β < 1 and d ∈ N. The (α, β, d)-threshold closeness testing
problem is the following promise problem. Given sample access to an unknown distribution
D ∈ ∆([0, d]× {0, 1}), distinguish between the following two cases:

(i) LD(Td) ≤ α.

(ii) LD(Td) ≥ β.

Lemma 4.3.19. Fix 0 < α < β < 1
2 . Any tester that uses sample access to an unknown

distribution D ∈ ∆([0, d]× {0, 1}) and solves the (α, β, d)-threshold closeness testing problem
correctly with probability at least 2

3 for all d ∈ N must use at least Ω
(

d
log(d)

)
samples from D.

The proof of this lemma relies on a lower bound for testing support size of a distribution.

Definition 4.3.20. Let 0 < α < β < 1 and let n ∈ N. The (α, β, n)-support size testing
problem is the following promise problem. Let D ∈ ∆([n]) be an unknown distribution such
that ∀i ∈ supp(D) : D(i) ≥ 1

n
. Given sample access to D, distinguish between the following

two cases:

(i) | supp(D)| ≤ α · n.

(ii) | supp(D)| ≥ β · n.

The following tight lower bound for this problem is due to Valiant and Valiant (2010,).
The formulation we use is adapted from Canonne (2020).19

Theorem 4.3.21 (Valiant and Valiant, 2010,; Canonne, 2020, Theorem 3.5.3). Let 0 < α <
β < 1. Any tester that uses sample access to an unknown distribution D ∈ ∆([n]) and solves
the (α, β, n)-support size testing problem correctly with probability at least 2

3 for all n ∈ N
must use at least Ω

(
n

log(n)

)
samples from D.

Proof of Lemma 4.3.19. We show the following reduction from the support size testing
problem to the threshold closeness problem: Assume T ′ is a tester that solves the (α, β, d)-
threshold closeness testing problem correctly with probability at least 2

3 for all d ∈ N using
19See also the discussion following Theorem 3.1 in Ron and Tsur (2013), and Theorem 5.3 in Valiant (2012).

Similar bounds that appear in Valiant (2011, Claim 3.10) and Raskhodnikova, Ron, Shpilka, and Smith (2009,
Theorem 2.1 and Corollary 2.2) are slightly weaker, but would also suffice for separating between 2-PAC
verification versus 2-PAC learning of Td, as in Claim 4.3.22.
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m(d) samples. Then there exists a tester T that solves the (2α, 2β, d)-support size testing
problem correctly with probability at least 2

3 for all d ∈ N, and uses at most m(d) samples.
For any distribution D ∈ ∆([d]), define a corresponding distribution D′ ∈ ∆([0, d]×{0, 1})

as follows. For all i ∈ [d], let ai = i− 3
4 and bi = i− 1

4 . Then D′(ai, 1) = D(i)
2 and D′(bi, 0) = 1

2d

for all i ∈ [d], and D′ vanishes elsewhere.
Given sample access to D, it is possible to simulate sample access to D′: with probability

1
2 , sample i ∈ D, and output (ai, 1); with probability 1

2 select i ∈ [d] uniformly at random,
and output (bi, 0).

Because Td consists of monotone increasing thresholds,

LD′(Td) =
n∑

i=1
min{D′(ai, 1),D′(bi, 0)}

=
n∑

i=1
min

{
D(i)

2 ,
1
2d

}
(∗)=

∑
i∈[d]\supp(D)

0 +
∑

i∈supp(D)

1
2d

= | supp(D)|
2d

.

Equality (∗) holds whenever D is an input for the support size testing problem, because we
assume that D(i) ≥ 1

d
for all i ∈ supp(D).

To solve the (2α, 2β, d)-support size testing problem, T operates as follows. Given access
to an unknown distribution D ∈ ∆([d]), it simulates an execution of T ′ with access to D′

that solves the (α, β, d)-threshold closeness testing problem. If T ′ decides that LD′(Td) ≤ α,
then T outputs that | supp(D)| ≤ 2α · d, and if T ′ decides that LD′(Td) ≥ β then T outputs
that | supp(D)| ≥ 2β · d. T decides correctly with probability at least 2

3 , because we assume
that T ′ decides correctly with probability at least 2

3 , and

LD′(Td) ≤ α ⇐⇒ | supp(D)| ≤ 2α · d

LD′(Td) ≥ β ⇐⇒ | supp(D)| ≥ 2β · d.

T requires at most as many samples as T ′ does, because simulating one sample from D′

requires taking at most one sample from D.
The claim follows from this reduction and from Theorem 4.3.21.

The previous claim also implies the following lower bound for 2-PAC learning of Td without
the help of a prover.

Claim 4.3.22. 2-PAC learning the class Td with ε ∈ (0, 1
32) requires at least Ω

(
d

log(d)

)
random

samples. This is true even if we assume that the unknown underlying distribution D satisfies
LD(Td) > 0.
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Proof of Claim 4.3.22. Assume for contradiction that there exists an algorithm A that 2-
PAC learns Td using only o

(
d

log(d)

)
samples from D. We construct a tester T that solves the

(1
8 , 3

8 , d)-threshold closeness testing problem using only o
(

d
log(d)

)
samples.

Let D ∈ ∆([0, d]× {0, 1}) be the unknown distribution that T has access to. Fix positive
ε ≤ 1

32 , δ ≤ 1
6 . T operates as follows. It simulates A using samples from D to obtain h ∈ Td

such that with probability at least 1− δ,

LD(h) ≤ 2 · LD(Td) + ε. (4.12)

Next, it takes an additional O(1) samples from D to obtain an estimate ℓ̂ such that with
probability at least 1− δ, ∣∣∣ℓ̂− LD(h)

∣∣∣ ≤ ε (4.13)

If ℓ̂ ≤ 5
16 , then T outputs LD(Td) ≤ 1

8 . Otherwise, if ℓ̂ > 5
16 , then T outputs LD(Td) ≥ 3

8 .
From the union bound, with probability at least 1− 2δ ≥ 2

3 , both (4.12) and (4.13) hold.
Correctness follows by considering each case separately:

• Case 1: LD(Td) ≤ 1
8 . Then

ℓ̂ ≤ LD(h) + ε ≤ 2LD(Td) + 2ε ≤ 2
8 + 2

32 = 5
16 .

• Case 2: LD(Td) ≥ 3
8 . Then

ℓ̂ ≥ LD(h)− ε ≥ LD(Td)− ε ≥ 3
8 −

1
32 = 11

32 >
5
16 .

Finally, T uses the same number of samples as A does, which is a contradiction to Lemma 4.3.19.
From an amplification argument, the claim holds for any δ ∈ (0, 1

2). To see that the claim
is true even if we assume that LD(Td) > 0, note that the distribution D′ constructed in the
proof of Lemma 4.3.19 always satisfies LD′(Td) ≥ 1

2d
, and so we may assume that the hard

distributions for T in the current proof have this property.

Finally, we have obtained the desired separation, showing that PAC verification can be
more efficient than PAC learning and closeness testing.

Proof of Theorem 4.3.8.
(i) Follows from Claim 4.3.17.
(ii) Follows from Theorem 4.1.15, because VC(Td) ≥ d.
(iii) Follows from Claim 4.3.22.
(iv) Follows from Lemma 4.3.19.
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4.4 Lower Bound of Ω̃(d)
We saw in Section 4.3 that for every natural number d there exists a class of VC dimension d
that has a verification protocol requiring only O

(√
d
)

samples for the verifier – a considerable
saving compared to the cost of learning, which is Ω(d). A natural question to ask is, “Does
every class of VC dimension d admit a verification protocol with sample complexity O

(√
d
)
?”

In other words, is it always worthwhile to delegate a learning task? In this section we provide
a partial negative answer to this question, presenting for every natural number d an example
of a class with VC dimension O(d log(d)) where the sample complexity for proper PAC
verification is Ω(d). That is, for these classes the sample complexity of learning and of proper
verification are equal up to a logarithmic factor. Formally:

Theorem 4.4.1. For every ε, δ ∈
(
0, 1

8

)
there exist constants c0, c1, c2 > 0 and a sequence of

classes H1,H2, . . . such that:

• For all d ∈ N, the class Hd has VC dimension at most c0 · d log (d).

• The sample complexity of proper 1-PAC verifying Hd is Ω(d). That is, if

(V1, P1), (V2, P2), . . .

is a sequence such that for all d ∈ N, (Vd, Pd) is an interactive proof system that 1-PAC
verifies Hd using oracles that provide random samples such that the output is either
‘reject’ or in Hd, then for all d ≥ c1, Vd uses at least c2 ·d random samples when executed
on input (ε, δ).

Remark 4.4.2 (Non-proper verification). Theorem 4.4.1 pertains to proper PAC verifi-
cation. Note that if the distribution is labeled by a function,20 then the sample complexity for
non-proper PAC verification is O( log( 1

δ
)

ε2 ): the prover sends a description of fD to the verifier,
and the verifier can easily check that the proposed function has near-zero loss by using this
number of random samples. The only issues in this case pertain to the prover’s ability to find
the function, and send a succinct description of it, as well as the verifier’s ability to evaluate
the function efficiently at points of its choosing.

In contrast, the sample complexity of non-proper PAC verification in the general case is
less clear, and merits further consideration.

The Class Hd

Notation 4.4.3. For any d ∈ N, we write Xd to denote some fixed set of cardinality nd = 2d2.
20Formally, if the family D of distributions satisfies that for every D ∈ D there exists a function fD such

that P(x,y)∼D[y = fD(x)] = 1.
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Notation 4.4.4. For any d ∈ N, we write Fd, 1
2

to denote the set of balanced boolean functions
over Xd, namely,

Fd, 1
2

=
{

f ∈ {0, 1}Xd : |f−1(1)| = nd

2 = |f−1(0)|
}

.

Notation 4.4.5. For any f ∈ Fd, 1
2
, we write Df to denote the distribution over tuples in

X t in which t elements are samples independently and uniformly at random from supp(f).
Namely, for any (x1, . . . , xt) ∈ X t,

Df ((x1, . . . , xt)) =

(

2
n

)t
x1, . . . , xt ∈ supp(f)

0 o.w.

Furthermore, for any F = {f1, . . . , fk} ⊆ Fd, 1
2
, we write DF to denote the distribution over

X t given by

DF (x1, . . . , xt) := 1
k

k∑
i=1
Dfi

(x1, . . . , xt).

Lastly, UX t denotes the uniform distribution over X t.

We now define the sequence of classes Hd for d ∈ N.

Definition 4.4.6. Fix δ ∈ (0, 1). For any d ∈ N, let Xd = [nd] for nd = 2d2, and let
td =

⌊
c2 · d

⌋
where

c2 =

√√√√ log(1− δ/3)
log(1/2e) .

The class Hd is a subset of Fd, 1
2

of cardinality

kd =
3n

√
nd

d

δ

3

which is defined as follows. For all values d in which this is possible, the subset Hd is chosen
such that the following three properties hold:

H1. TV(DHd
,UX t) ≤ δ.

H2. Every distinct g1, g2 ∈ Hd satisfy | supp(g1) ∩ supp(g2)| ≤ 3nd

8 .

H3. All subsets X ⊆ Xd of size at most
√

n satisfy

|{f ∈ Hd : X ⊆ supp(f)}| ≥ 1
δ

.
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However, if for some value of d there exists no subset of cardinality kd that satisfies
these properties, then for that d the class Hd is simply fixed to be some arbitrary subset of
cardinality kd.

Remark 4.4.7. It is not obvious that a set Hd as in the definition above exists. In
Lemma 4.4.11 below, we prove the existence of Hd for all d large enough.

Notation 4.4.8. For the remainder of this section, we often neglect to write the subscript d
wherever it is readily understood from the context.

Note that the VC dimension of Hd is at most log (|Hd|) = O (d log (d)), matching the
requirement in the theorem.

Proof Idea
For any d large enough, we want to show that at least td = Ω(d) samples are necessary.

Consider PAC learning the class Hd in the special case where all x ∈ X are labeled 1, but
the distribution over Xd is not known to the prover. Because every hypothesis in the class
assigns incorrect labels of 0 to precisely half of the domain, a hypothesis achieves minimal
loss if it assigns the 0 labels to a subset of size n

2 that has minimal weight with respect to
the distribution over Xd. Hence, to be successful the prover must learn enough about the
distribution to identify a lightweight subset of size n

2 – but doing that requires Ω (
√

n) = Ω(d)
samples.

To formalize this idea we construct a stochastic process as follows. Let PU denote a prover
that causes V to accept with probability at least 1− δ when V receives samples from the
uniform distribution over X (such a prover exists from the completeness property that V
satisfies as a PAC learning verifier).

First, a set XP of tP samples is taken independently and uniformly from X , where tP is the
number of samples required by PU . Next, two functions f1 and f2 are chosen uniformly from
Hd, and sets X1 and X2 each with td i.i.d. samples are taken from Df1 and Df2 respectively.
A third set XU is taken from UX t . The dependencies between these variables will be designed
in such a way that with high probability X1 = X2 = XU . All samples are labeled with 1.

Finally, randomness values ρV and ρP are sampled for the prover and verifier, which are
then executed to produce three hypotheses:

h1 := [V (X1, ρV ), PU(XP , ρP )],
h2 := [V (X2, ρV ), PU(XP , ρP )],
hU := [V (XU , ρV ), PU(XP , ρP )].

Observe that for i = 1, 2, because Xi ∼ Dfi
and V is a PAC learner, with probability at

least 1− δ either hi is ‘reject’ or LDfi
(hi) < ε.

Observe further that when X1 = X2 = XU , the view of V (which consists of its samples,
its randomness, and the transcript) is the same in all three executions, entailing that



CHAPTER 4. PAC VERIFICATION FUNDAMENTALS 106

h1 = h2 = hU . Additionally, by the definition of PU , with probability at least 1− δ the output
hU is not ‘reject’, and so h1 = h2 are not ‘reject’.

However, Property H2 ensures that f1 and f2 have a small intersection, causing any
hypothesis that has a small loss with respect to Df1 to have a large loss with respect to Df2 ,
and vice versa. This is a contradiction to the above observation that LDfi

(hi) < ε for both
i = 1 and i = 2.

Remark 4.4.9. Because we are dealing exclusively with the case of learning the constant
function that assigns the label 1 to all x ∈ X , for the remainder of this section we will neglect
to mention or denote the labels, which are always 1.

Proof
We now translate the above proof idea into a formal proof of Theorem 4.4.1. The main step
is to construct the following joint probability space.

Lemma 4.4.10. For every d ∈ N large enough there exists a probability space with random
variables

(f1, f2, h1, h2, hU , X1, X2, XU , XP , ρP , ρV )
such that f1, f2, h1, h2, hU ∈ Hd and X1, X2, XU ∈ X t and the following properties hold:

P1. XP is a tuple of tP samples taken independently and uniformly from X , and is independent
of all other variables.

P2. The marginal distribution of XU is uniform over X t.

P3. For i = 1, 2, Xi is distributed according to Dfi
. Namely, for any g ∈ Hd and any

x1, . . . , xt ∈ X ,
P[Xi = (x1, . . . , xt) | fi = g] = Dg((x1, . . . , xt)).

P4. X1 = X2 with probability 1.

P5. X1 = XU with probability at least 1− δ.

P6. ρV and ρP are randomness values for V and P with suitable marginal distributions and
are independent of each other and of all other random variables.

P7. hα = [V (Xα, ρV ), PU(XP , ρP )] for α ∈ {1, 2,U} with probability 1.

P8. | supp(f1) ∩ supp(f2)| ≤ 3n
8 with probability at least 1− δ.

Before constructing the probability space, we show that the existence of such a space
establishes the theorem:
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Proof of Theorem 4.4.1. The requirement on the VC dimension holds because a class of
cardinality kd can have VC dimension at most log(kd), and

log(kd) = log


3n

√
nd

d

δ

3
 ≤ 6d log

(
6d2

δ

)
= O(d log(d)).

For the lower bound on the sample complexity, fix d large enough such that Hd enjoys
Properties H1, H2 and H3, and assume for contradiction that there exists a verifier that
1-PAC verifies H = Hd with accuracy ε and confidence 1− δ using at most t = td samples.
Because Xi ∼ Dfi

(Property P3), the assumption that V is a PAC learner entails that

∀i ∈ {1, 2} : P
[
hi = reject ∨

(
hi ̸= reject ∧ LDfi

(hi) < ε
)]
≥ 1− δ. (4.14)

Because XU is uniform over X t and hU := [V (XU , ρV ), PU(XP , ρP )] (by P2 and P7), the
definition of PU entails that

P[hU ̸= reject] ≥ 1− δ. (4.15)
Next, because P[X1 = XU ] ≥ 1 − δ, P[X1 = X2] = 1 and hi := [V (Xi, ρV ), PU(XP , ρP )] for
i ∈ {1, 2,U} (by P5, P4 and P7), it follows that with probability at least 1− δ the view of V
when computing h1 and h2 is identical to its view when computing hU , and so

P[h1 = h2 = hU ] ≥ 1− δ. (4.16)

Combining Equations (4.15) and (4.16) yields

P[h1 = h2 ̸= reject] ≥ 1− 2δ.

Together with Equation (4.14), this entails that

P
[
(h1 = h2 ̸= reject) ∧

(
LDf1

(h1) < ε
)
∧

(
LDf2

(h2) < ε
)]
≥ 1− 4δ. (4.17)

However, low loss of hi with respect to Dfi
entails that the supports of hi and fi have a large

intersection. Indeed, for all i ∈ {1, 2},

ε ≥ LDfi
(hi) : = Px∼Dfi

[hi(x) ̸= fi(x)] =
∑
x∈X
Dfi

(x) · 1hi ̸=fi
(x)

=
∑

x∈supp(fi)

2
n
· 1hi ̸=fi

(x) = | supp(fi) \ supp(hi)| ·
2
n

.

Thus,
| supp(fi) \ supp(hi)| ≤

εn

2 ,

and so,
| supp(fi) ∩ supp(hi)| =

n

2 − | supp(fi) \ supp(hi)| ≥
n

2 −
εn

2 ,
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Furthermore, because h1 = h2 the identity |A ∩ B| = |A| + |B| − |A ∪ B| shows that the
supports of f1 and f2 also have a large intersection:

| supp(f1) ∩ supp(f2)| ≥ | supp(f1) ∩ supp(f2) ∩ supp(h1)|

=
∣∣∣∣ supp(f1) ∩ supp(h1)

∣∣∣∣+ ∣∣∣∣ supp(f2) ∩ supp(h2)
∣∣∣∣

−
∣∣∣∣ (supp(f1) ∩ supp(h1))

⋃
(supp(f2) ∩ supp(h2))

∣∣∣∣
≥
∣∣∣∣ supp(f1) ∩ supp(h1)

∣∣∣∣+ ∣∣∣∣ supp(f2) ∩ supp(h2)
∣∣∣∣− ∣∣∣∣ supp(h1)

∣∣∣∣
≥ 2

(
n

2 −
εn

2

)
− n

2
≥ n

2 − εn.

That is, Equation (4.17) entails that

P
[
| supp(f1) ∩ supp(f2)| ≥

n

2 − εn
]
≥ 1− 4δ.

In contrast, Property P8 states that

P
[
| supp(f1) ∩ supp(f2)| ≤

3n

8

]
≥ 1− δ.

This is a contradiction whenever ε < 1
8 and δ < 1

5 .

Construction of Hd

To complete the proof, we construct the probability space of Lemma 4.4.10. The first step is
to show that for large enough values of d, a suitable class Hd can be constructed simply by
choosing a set of k functions uniformly at random from F1/2.

Lemma 4.4.11. Fix δ ∈ (0, 1). The following holds for any value d ∈ N that is large enough.
Let F denote a set of kd functions chosen uniformly and independently from Fd, 1

2
. Then with

probability at least 1− 3δ, F satisfies Properties H1, H2 and H3.

The lemma follows immediately from Claims 4.4.12, 4.4.21 and 4.4.23 below, so the
remainder of this section is devoted to stating and proving those claims.

Property H1: TV(UX t ,DHd
) ≤ δ

In this subsection we prove that the distribution DF defined by F is close to the uniform
distribution on X in the following sense.
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Claim 4.4.12. Fix δ ∈ (0, 1). The following holds for all values of n that are large enough.
Let F = {f1, . . . , fk} denote a set of functions chosen uniformly and independently from F1/2.
If

k ≥
(

3n
√

n

δ

)3

and td =
⌊
c2 · d

⌋
for

c2 =

√√√√ log(1− δ/3)
log(1/2e)

then

PF [TV(UX t ,DF ) ≤ δ] ≥ 1− δ.

The proof is partitioned to the following claims.

Claim 4.4.13. For any integer 0 ≤ s ≤ n, any set X ⊆ X of size s and any z ∈ [n],

Pf∈{0,1}X

[
X ⊆ supp(f)

∣∣∣∣ | supp(f)| = z
]

=

(
z
s

)
(

n
s

) .

Proof. If z < s then the probability is clearly 0. Otherwise,

Pf∈{0,1}X

[
X ⊆ supp(f)

∣∣∣∣ | supp(f)| = z
]

=

∣∣∣{g ∈ {0, 1}X : | supp(g)| = z ∧ X ⊆ supp(g)}
∣∣∣

|{g ∈ {0, 1}X : | supp(g)| = z}|

=

(
n−s
z−s

)
(

n
z

)
=

(
n−s
z−s

)
(

n
z

) ·
(

n
s

)
(

n
s

)
(∗)=

(
n
z

)(
z
s

)
(

n
z

)(
n
s

)
=

(
z
s

)
(

n
s

) ,

where (∗) follows from the identity
(

n
s

)(
n−s
z−s

)
=
(

n
z

)(
z
s

)
, which holds because both expressions

count the number of ways to choose a committee of size z with a subcommittee of size s from
a set of n candidates.
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Corollary 4.4.14. For any set X ⊆ X of size s,

Pf∈F1/2 [X ⊆ supp(f)] =

(
n
2
s

)
(

n
s

) .

Notation 4.4.15. For any f ∈ F1/2, we write Ddistinct
f to denote the uniform distribution

over tuples of length t that contain t distinct elements from supp(f). That is, for any
(x1, . . . , xt) ∈ X t,

Ddistinct
f ((x1, . . . , xt)) =


1

(n
2
t )·t!

x1, . . . , xt ∈ supp(f) ∧ |{x1, . . . , xt}| = t

0 o.w.

Furthermore, let Udistinct
X t denote the uniform distribution over the set of tuples of length t

from X with distinct elements,{
(x1, . . . , xt) ∈ X t : |{x1, . . . , xt}| = t

}
.

That is,

Udistinct
X t ((x1, . . . , xt)) =


1

(n
t)·t!

x1, . . . , xt ∈ X ∧ |{x1, . . . , xt}| = t

0 o.w.

Claim 4.4.16. For any ordered tuple X ∈ X t with distinct elements,

Ef∈F1/2

[
Ddistinct

f (X)
]

= 1(
n
t

)
t!

.

Proof. Using Corollary 4.4.14,

Ef∈F1/2

[
Ddistinct

f (X)
]

= P[X ⊆ supp(f)] · 1(
n
2
t

)
t!

+ Pf∈F1/2 [X ⊈ supp(f)] · 0

=

(
n
2
t

)
(

n
t

) · 1(
n
2
t

)
t!

= 1(
n
t

)
t!

.
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Claim 4.4.17. Consider k functions f1, . . . , fk chosen independently and uniformly at random
from F1/2. For any δ ∈ (0, 1) and ordered tuple X ∈ X t with distinct elements, if

k ≥
(

n
√

n

δ

)3

then

Pf1,...,fk∈F1/2

∣∣∣∣∣Udistinct
X t (X)− 1

k

k∑
i=1
Ddistinct

fi
(X)

∣∣∣∣∣ >
δ(

n
t

)
t!

 ≤ δ(
n
t

)
t!

.

Proof. Fix X. Observe that when f1, . . . , fk are chosen independently and uniformly then{
Ddistinct

fi
(X)

}
i∈[k]

is a set of i.i.d. random variables each of which takes values in [0, 1]. Fur-
thermore, from Claim 4.4.16 the expectation of each of these random variables is Udistinct

X t (X).
Thus, from Hoeffding’s inequality, the left-hand side in the claim is at most

2 exp

−2k

 δ(
n
t

)
t!

2
 ,

and so taking

k ≥ 1
2


(

n
t

)
t!

δ

2

log
2

(
n
t

)
t!

δ


is sufficient to obtain the desired bound. A direct calculation shows that

1
2


(

n
t

)
t!

δ

2

log
2

(
n
t

)
t!

δ

 ≤

(

n
t

)
t!

δ

3

≤


(

n√
n

)√
n!

δ

3

=
(

n(n− 1) · · · (n−
√

n + 1)
δ

)3

≤
(

n
√

n

δ

)3

,

as desired.
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Notation 4.4.18. For any F = {f1, . . . , fk} ⊆ F1/2, we write Ddistinct
F to denote the distribu-

tion over X t given by

Ddistinct
F (x1, . . . , xt) := 1

k

k∑
i=1
Ddistinct

fi
(x1, . . . , xt).

Claim 4.4.19. Let F = {f1, . . . , fk} denote a set of functions chosen uniformly and inde-
pendently from F1/2. For any δ ∈ (0, 1), if

k ≥
(

3n
√

n

δ

)3

then
PF

[
TV

(
Udistinct

X t ,Ddistinct
F

)
≤ δ

3

]
≥ 1− δ

3 .

Proof. From Claim 4.4.17, taking k as in the statement ensures that for any particular tuple
X ∈ X t with distinct elements,

Pf1,...,fk∈F1/2

∣∣∣Udistinct
X t (X)−Ddistinct

F (X)
∣∣∣ >

δ

3
(

n
t

)
t!

 ≤ δ

3
(

n
t

)
t!

.

From the union bound, we conclude that with probability at least 1− δ
3 , the inequality

∣∣∣Udistinct
X t (X)−Ddistinct

F (X)
∣∣∣ ≤ δ

3
(

n
t

)
t!

holds for all
(

n
t

)
t! such tuples simultaneously. In this case,

TV
(
Udistinct

X t ,Ddistinct
F

)
= 1

2
∑

X∈X t

∣∣∣Udistinct
X t (X)−Ddistinct

F (X)
∣∣∣ ≤ δ

6 .

Proof of Claim 4.4.12. From the triangle inequality

TV(UX t ,DF ) ≤ TV
(
UX t ,Udistinct

X t

)
+ TV

(
Udistinct

X t ,Ddistinct
F

)
+ TV

(
Ddistinct

F ,DF

)
.

Therefore, it suffices to show the following three inequalities:
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(i) TV
(
UX t ,Udistinct

X t

)
≤ δ

3 for n large enough. Indeed,

TV
(
UX t ,Udistinct

X t

)
= max

A⊆X t

(
UX t(A)− Udistinct

X t (A)
)

=
∑

(x1,...,xt)∈X t: |{x1,...,xt}|<t

( 1
nt
− 0

)

=
(

nt −
(

n

t

)
t!
)

1
nt

= 1− n(n− 1) · · · (n− t + 1)
nt

≤ 1−
(

1− t

n

)t

≤ 1−
(

1− (c2
√

n)
n

)c2
√

n

= 1−
(

1− c2√
n

)√
n

c2
·c2

2

(∗)
≤ 1−

( 1
2e

)c2
2

(∗∗)
≤ δ

3 ,

where (∗) holds for all n large enough because
(
1− c2√

n

)√
n

c2 n→∞−−−→ 1
e

from below, and (∗∗)
holds whenever

c2 ≤

√√√√ log(1− δ/3)
log(1/2e) .

(ii) PF

[
TV

(
Udistinct

X t ,Ddistinct
F

)
> δ

3

]
≤ δ. This is true by Claim 4.4.19.

(iii) TV
(
Ddistinct

F ,DF

)
≤ δ

3 or n large enough. This follows from a calculation very similar to
(i).

We conclude that for n large enough, with probability at least 1− δ over the choice of F ,

TV(UX t ,DF ) ≤ δ,

as desired.

Property H2: ∀i ̸= j : | supp(fi) ∩ supp(fj)| ≤ 3n
8

In this section we show that random sets typically form a code.
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Claim 4.4.20. Pf1,f2∈F1/2

[
| supp(f1) ∩ supp(f2)| > 3n

8

]
≤ δ

k2 .

Proof. Let supp(f2) = {x1, . . . , xn/2}. We think of this experiment as if f1 is chosen first, and
then we count how many members of supp(f2) fall inside supp(f1). The expected number of
hits is n

4 , and they are independent, so we can use Hoeffding’s bound to prove the claim.

Pf1,f2∈F1/2

[
| supp(f1) ∩ supp(f2)| >

3n

8

]
≤ Pf1,f2∈F1/2

n/2∑
i=1

1(xi ∈ supp(f1)) >
3n

8


= Pf1,f2∈F1/2

 2
n

n/2∑
i=1

1(xi ∈ supp(f1)) >
3
4


≤ Pf1,f2∈F1/2

∣∣∣∣∣∣ 2n
n/2∑
i=1

1(xi ∈ supp(f1))−
1
2

∣∣∣∣∣∣ >
1
4


≤ 2 exp

(
−2 · n2 ·

(1
4

)2)
= 2Θ(−n).

In contrast, considering δ to be a constant, it holds that

δ

k2 = 2Θ
(

−log(n)
√

n

)
,

and so for n large enough we obtain Pf1,f2∈F1/2

[
| supp(f1) ∩ supp(f2)| > 3n

8

]
≤ δ

k2 , as desired.

Claim 4.4.21. Pf1,...,fk∈F1/2

[
∀i ̸= j ∈ [k] : | supp(fi) ∩ supp(fj)| ≤ 3n

8

]
≥ 1− δ.

Proof.
Pf1,...,fk∈F1/2

[
∀i ̸= j ∈ [k] : | supp(fi) ∩ supp(fj)| ≤

3n

8

]

= 1− P

⋃
i ̸=j

{
| supp(fi) ∩ supp(fj)| >

3n

8

}
≥ 1−

∑
i ̸=j

P
[
| supp(fi) ∩ supp(fj)| >

3n

8

]

≥ 1− k2 · δ

k2 = 1− δ,

where the last inequality follows from Claim 4.4.20.



CHAPTER 4. PAC VERIFICATION FUNDAMENTALS 115

Property H3: |FX | ≥ 1
δ

In this section we show that there are typically many sets that contain a given subset of size
order

√
n.

Notation 4.4.22. Let F ⊆ F1/2, and let X ⊆ X . We write FX to denote the set

{f ∈ F : X ⊆ supp(f)}.

Claim 4.4.23. Fix δ ∈ (0, 1). Let F = {f1, . . . , fk} denote a set of functions chosen uniformly
and independently from F1/2. There exists N0 such that for all n ≥ N0, if

k ≥
(

n
√

n

δ

)3

then with probability at least 1− δ over the choice of F , all subsets X ⊆ X of size at most√
n satisfy

|FX | ≥
1
δ

.

Proof of Claim 4.4.23. Let X ⊆ X such that |X| = t. From Corollary 4.4.14,

Pf∈F1/2 [X ⊆ supp(f)] =

(
n
2
t

)
(

n
t

) =
n
2 !

(n
2 − t)!t! ·

(n− t)!t!
n!

= n− t

n
· n− t− 1

(n− 1) · · ·
n
2 − t + 1

n
2 + 1

=
n
2
n
·

n
2 − 1

(n− 1) · · ·
n
2 − t + 1
n− t + 1

≥
(

n
2 − t

n

)t

≥
(

n
2 −
√

n

n

)√
n

=
(

1
2 −

1√
n

)√
n

≥ 4−
√

n,

where the last inequality holds for n ≥ 16. Observe that

µ := Ef1,...,fk∈F1/2 [|FX |] ≥ k · 4−
√

n ≥ 2log(n)
√

n−2
√

n n→∞−−−→ ∞,

and choose N0 large enough such that for all n ≥ N0, E[|FX |] ≥ 2
δ
.
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Now, for any n ≥ N0 and any set X of size t, Hoeffding’s inequality entails

Pf1,...,fk∈F1/2

[
|FX | ≤

1
δ

]
≤ P

[∣∣∣∣|FX | − µ

∣∣∣∣ ≥ k · 4−
√

n

2

]

= P
[∣∣∣∣1k

k∑
i=1

1(X ⊆ supp(fi))−
µ

k

∣∣∣∣ ≥ 4−
√

n

2

]

≤ 2 exp
−2k

(
4−

√
n

2

)2 .

Hence, taking

k ≥ 1
2 · 4

2
√

n+1 · log
(

2n
√

n

δ

)
is sufficient to ensure that

∀X ∈
(
X
t

)
: Pf1,...,fk∈F1/2

[
|FX | ≤

1
δ

]
≤ δ

n
√

n

Taking k as in the claim is therefore more than sufficient to this end. Seeing as there exist
less than n

√
n such sets, the union bound yields that

Pf1,...,fk∈F1/2

[
∀X ⊆ X s.t. |X| ≤ t : |FX | ≥

1
δ

]
≥ 1− δ.

Note that for the case |X| < t in the previous line, we have used the facts that X is contained
in some set of size precisely t, and that |FX | is monotone decreasing with the cardinality of
X.

Construction of the Joint Probability Space
Assume Hd is a class that satisfies Properties H1, H2, and H3. We show how to use these
properties to construct a joint probability space that satisfies Properties P1–8, proving
Lemma 4.4.10.

The construction is as follows:

1. XP is sampled uniformly from X tP .

2. A function f1 is chosen uniformly from Hd.

3. X1 = (x1, . . . , xt) is sampled i.i.d. from Df1 .

4. X2 is set to be equal to X1.

5. A function f2 is chosen uniformly from {f ∈ Hd : X2 ⊆ supp(f)}.
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6. XU = (xU
1 , . . . , xU

t ) is sampled such that its marginal distribution is uniform over (Xd)t,
and also P[XU = X1] ≥ 1− δ. This is possible due to Property H1 of the class Hd.

7. ρV and ρP are sampled from the distributions of randomness used by V and PU respec-
tively, independently of each other and of everything else.

8. For α ∈ {1, 2,U}, compute hα := [V (Xα, ρV ), PU(XP , ρP )].

Note that Properties P1, P2, P4, P5, P6 and P7 are satisfied immediately by the
construction, as is Property P3 for the case of i = 1. Property P8 is immediate from the
construction together with H2 and H3. Hence, to prove the correctness of the construction,
it suffices to prove that Property P3 holds also for the case i = 2, as in the following claim.

Claim 4.4.24. The constriction in Section 4.4 satisfies that X2 ∼ Df2. More formally, for
any g ∈ Hd and x1, . . . , xt ∈ X ,

P[X2 = (x1, . . . , xt) | f2 = g] = Dg((x1, . . . , xt)).

Proof. By construction, X1 ∼ Df1 . Hence, it is sufficient to show that

(X1, f1) d= (X2, f2),

where d= denotes equality in distribution. Indeed, conditioned on X1 = X2 = x, both f1 and
f2 are chosen i.i.d. uniformly in

Fx := {f ∈ Hd : x ⊆ supp(f)}.

More formally, for any g ∈ Hd and x ∈ X t,

• If x ⊆ supp(g) then

P[f1 = g | X1 = x] = P[X1 = x | f1 = g]P[f1 = g]
P[X1 = x]

= P[X1 = x | f1 = g]P[f1 = g]∑
g′∈Fx

P[X1 = x | f1 = g′]P[f1 = g′]

= P[X1 = x | f1 = g]∑
g′∈Fx

P[X1 = x | f1 = g′]

= 1
|Fx|

= P[f2 = g | X2 = x].

• Otherwise, if x ⊈ supp(g) then

P[f1 = g | X1 = x] = 0 = P[f2 = g | X2 = x].
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That is, for any g ∈ Hd and x ∈ X t,

P[f1 = g ∧ X1 = x] = P[f1 = g | X1 = x]P[X1 = x] =
= P[f2 = g | X2 = x]P[X2 = x] = P[f2 = g ∧ X2 = x].

This proves Lemma 4.4.10, thereby concluding our proof of Theorem 4.4.1.

4.5 Efficient Verification via Query Delegation
In this section we present some simple results for the case in which the following two
assumptions hold:21

1. Taking unlabeled samples from X is cheap, while obtaining labeled samples is costly.
This is the assumption in the semi-supervised learning literature. It also holds when
learning with respect to the uniform distribution on X (or some other known distribution
on X ).

2. The distribution is labeled according to some function f : X → {0, 1}, and the prover
has query access to f .

The basic idea of the results in this section is query delegation: The verifier simulates a
learning algorithm that uses random samples, but for the majority of the samples the verifier
can avoid accessing the distribution directly. Instead, it delegates the task of collecting
the data to the prover. Consider the following illustration. First, the verifier chooses some
x1, . . . , xm ∈ X and sends them to the prover. For instance, the verifier may choose the xi’s
by taking (cheap) unlabeled samples from the distribution. Secondly, the prover replies by
sending a value ỹ1, . . . , ỹm ∈ {0, 1} to the verifier that purportedly are the correct labels of
the xi’s. Thirdly, the verifier independently takes a small amount of labeled samples directly
from the distribution in order to decide whether to accept or reject the labels proposed by
the prover. Finally, if the verifier does not detect any dishonesty, it will use the proposed
labels to simulate the learning algorithm and output the resulting hypothesis.

The benefit of using query delegation is that the verifier requires much fewer labeled
samples than are necessary for learning, with only a mild increase in time complexity.

21See more formal definitions in Conditions 4.5.1.
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Following are a number of variations on this idea:

V labeled samples V queries Messages Assumption
Claim 4.5.2 O

(
log( 1

δ
)

ε

)
- 2 -

Claim 4.5.3 O
(

log( 1
δ

)
ε

)
- 2 (shorter) PRG

Claim 4.5.4 - O
(

log( 1
δ

)
ε

)
1 CRS

Table 4.1: Query delegation results.

Conditions 4.5.1 (Conditions for Query Delegation). Let H be a class of functions
from X to {0, 1}. Let D be a family of distributions over X × {0, 1} such that:

1. There exists a distributionDX over X such that for everyD ∈ D, the marginal distribution
of D on X is DX .

2. For every D ∈ D, there exists a function fD : X → {0, 1} such that P(x,y)∼D[fD(x) = y] =
1.

Assume further that H has finite VC dimension. From Theorem 4.1.15, there exists an ERM
algorithm that 1-PAC learns H using m = mH(ε, δ) random labeled samples. Let A be such
an algorithm and assume that for any D ∈ D, A runs in time at most t = t(ε, δ).

Claim 4.5.2 (Simple Query Delegation). Under Conditions 4.5.1, H is 1-PAC verifiable
using verifier V and prover P such that:

• V has random sample access to the unknown distribution D and to the marginal distribu-
tion DX . V uses only k = O

(
log( 1

δ
)

ε

)
labeled samples from D, and uses O(m) unlabeled

samples from DX .

• P has query access to fD, and uses O(m) queries to this function.

• V runs in time O(t( ε
4 , δ

2)), and P runs in time O(m).

• The protocol consists of two messages. First, V sends a message of length O(m log |X |)
to P , and then P sends back a message of length O(m).

Observe that 1-PAC learning requires Θ
(

d+log( 1
δ

)
ε2

)
where the VC dimension d can be any

natural number. Hence, the above result implies that under Conditions 4.5.1, there exists
a sample complexity separation of unbounded magnitude between PAC learning and PAC
verifying for any family {Hd}d∈N where VC(Hd) = d for all d.

If we assume the distribution DX has a pseudorandom generator (PRG) with respect to
the ERM algorithm A, then we can also use slightly less communication.
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Claim 4.5.3 (Compressed Query Delegation). Under Conditions 4.5.1, assume that
there exists a pseudorandom generator that generates samples from a distribution D̃X over
X , such that the algorithm A successfully 1-PAC learns H with respect to D as above when
receiving labeled examples in which the marginal distribution over X is D̃X (instead of DX ).
Then H is 1-PAC verifiable using a verifier V and prover P that satisfy the same conditions as
in Claim 4.5.2, except that V sends a shorter message of length O

(
log( 1

δ
)

ε
log |X |

)
to P . The

security of the protocol is information-theoretic, and does not depend on any cryptographic
assumptions. That is, soundness holds also with respect to an unbounded adversary that has
full information about the pseudorandom generator mechanism and can distinguish whether a
sample was taken from D̃X or from DX .

Finally, if we work in the common random string model (CRS) and we assume that the
verifier also has query access to fD, then there exists a non-interactive protocol consisting of
a single message sent from the prover to the verifier. This could be useful in cases where the
prover wants to publish a claim in a manner that allows any interested third party to verify
the claim at a later time, without interacting with the prover.

Claim 4.5.4 (Noninteractive Query Delegation). In the common random string model,
under Conditions 4.5.1, H is 1-PAC verifiable using a verifier V and prover P such that:

• V and P both have access to fD and to a CRS that provides random samples from DX .

• V uses O
(

log( 1
δ

)
ε

)
queries from fD.

• P uses m queries from fD.

• V runs in time O(t( ε
4 , δ

2)), and P runs in time O(m).

• The protocol consists of a single messages of m bits sent from P to V .

Remark 4.5.5. In the above claims, we have reduced the sample or query complexity of the
verifier compared to PAC learning, but the time complexity is modestly increased. In some
cases, it might be possible to combine query delegation with existing general-purpose delegation
of computation protocols, to reduce the time complexity as well.

Protocols and proofs for these claims appear in Appendix B.2. The main issue to notice
is that the prover can always be a little bit dishonest, and therefore the verifier must be
able to PAC learn in the presence of a small amount of adversarial noise. This difficulty is
overcome by using the fact that any ERM algorithm is robust with respect to a small amount
of adversarial noise.
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4.6 Directions for Future Work
This work initializes the study of verification in the context of machine learning. We have
seen separations between the sample complexity of verification versus learning and testing,
a protocol that uses interaction to efficiently learn sparse boolean functions, and have seen
that in some cases the sample complexities of verification and learning are the same.

Building a theory that can help guide verification procedures is a main objective for future
research. A specific approach is to identify dimension-like quantities that describe the sample
complexity of verification, similarly to role VC dimension plays in characterizing learnability.
A different approach is to understand the trade-offs between the various resources in the
system – the amount of time, space and samples used by the prover and the verifier, as well
as the amount of interaction between the parties.

From a practical perspective, we described potential applications for delegation of machine
learning, and for verification of experimental data. It seems beneficial to build efficient
verification protocols for machine learning problems that are commonly used in practice,
and for the types of scientific experiments mentioned in Appendix B.1. This would have
commercial and scientific applications.

There are also some technical improvements that we find interesting. For example, is there
a simple way to improve the MA-like protocol for the multi-thresholds class Td to achieve
1-PAC verification (instead of 2-PAC verification)?

Finally, seeing as learning verification is still a new concept, it would be good to consider
alternative formal definitions, investigate how robust our definition is, and discuss what
the “right” definition should be. One case has OV and OP providing i.i.d. sample access to
different distributions, DV and DP respectively, where DP has better quality data in some
sense. For instance, for some target function f it might be the case that

P(x,y)∼DV
[y = f(x)] < P(x,y)∼DP

[y = f(x)].

Can a prover who has access to DP efficiently provide an advantage to the verifier? Alterna-
tively, it might be the case that DP provides data with “higher resolution” than DV (i.e., the
σ-algebra of DV is a sub-σ-algebra of that of DP ). One can also consider verification in other
settings of learning, such as the statistical queries model, clustering, parameter estimation
and reinforcement learning.
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Chapter 5

Further Results: Verification of
Statistical Algorithms

5.1 Introduction
Comparing what can be computed in a given model of computation versus what can be verified
in that model is a recurring theme throughout the fields of computability and computational
complexity. The most notorious example is of course the P vs. NP problem, which asks
whether the set of decision problems that can be solved in polynomial time equals the set
of decision problems whose solution can be verified in polynomial time given a suitable
proof string. But the same question has been studied for many other settings and models of
computation as well, with prominent examples including L vs. NL (for logspace computation),
P vs. IP = PSPACE (polytime computation, with an interactive proof) and MIP∗ = RE (ditto,
with multiple quantum provers). The existence of a gap between computing and verifying
is sometimes interpreted as capturing the notion of creativity, in the sense that finding a
solution to a problem might require discovery or inventiveness, while verifying a formal proof
for the same is merely rote work.

While this theme has deep roots in the literature and an appealing interpretation, its
parallels for learning have only recently been explored for the first time. In the context
of PAC1 learning, Goldwasser et al. (2021) (Chapter 4 in this dissertation) introduced the
setting of PAC verification, in which an untrusted prover attempts to convince a verifier that
a certain classifier has nearly-optimal loss with respect to a fixed unknown distribution from
which the verifier can take random samples. Specifically, they work in the agnostic PAC
setting, where the objective is to find a hypothesis h that has nearly-optimal loss in the sense

L0-1
D (h) ≤ inf

h′∈H
L0-1

D (h′) + ε, (5.1)
1Probably Approximately Correct (PAC) is the standard theoretical model for supervised learning,

introduced by Vapnik and Chervonenkis (1968, 1971) and Valiant (1984). Agnostic PAC learning is a
generalization to the non-realizable case, introduced by Haussler (1992). See also Shalev-Shwartz and
Ben-David (2014).
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where L0-1
D denotes 0-1 population loss and H is some fixed and known hypothesis class

(formal definitions appear in Sections 5.1 and 5.2 below).
Seeing as computational gaps are already well-studied, the main novelty in this setting

concerns sample complexity gaps. They show that for some hypothesis classes (but not for
others) the number of i.i.d. samples necessary to find a hypothesis with nearly-optimal loss is
strictly greater than the number of i.i.d. samples necessary for verifying, with the help of an
untrusted prover, that a proposed hypothesis has nearly-optimal loss.

Beyond the (substantial) theoretical motivation, this setting could have meaningful (and
timely) real-world applications. First, if a sample complexity gap exists then “verifiable
data collection + ML as a service” becomes a viable business model. The provider would
collect suitable training data from the desired population distribution, execute a chosen ML
algorithm, and subsequently prove to the client that the end result is good with respect to the
population distribution. The client would only need a small amount of independent data from
the population distribution to determine the veracity of the claim. Beyond this, Goldwasser
et al. (2021) envision a variety of other applications, such as more efficient schemes for
replicating scientific results in the empirical sciences.

Our Contributions
PAC verification is novel territory, and very little is currently known. The current chapter
aims to make some modest steps towards charting this landscape. We focus on studying
sample complexity gaps between learning and verifying specifically in terms of the dependence
on the VC (Vapnik–Chervonenkis) dimension. We start with showing a lower bound for the
sample complexity gap. Prior to our work, one could imagine that some classes would give
rise to very large gaps, e.g., O(log(d)) i.i.d. samples for verifying vs. the Θ(d) samples that are
known to be necessary and sufficient for learning, where d = VC(H). Our first result shows
that the gap can be at most quadratic. Namely, for any hypothesis class, PAC verification
requires that the verifier use at least Ω

(√
d
)

i.i.d. random samples.
Second, we show that our lower bound’s dependence on the VC dimension is tight in some

cases, by improving upon a result of Goldwasser et al. (2021) to obtain a PAC verifier for
the class of unions of intervals on R that uses O

(√
d
)

i.i.d. random samples. The previous
result was an upper bound for a weaker notion of verification, that guarantees only that
L0-1

D (h) ≤ 2 ·Opt + ε, where Opt = infh′∈H L0-1
D (h′) (instead of Opt + ε as in Eq. (5.1)). Their

result applied only to a specific restriction of the class of unions of intervals, while our
technique works for the restricted and for the unrestricted versions of the class.

Third, we take a step towards making the notion of PAC verification more applicable in
practical settings. Many ML and data science algorithms that people use in practice, and
might like to delegate to an untrusted service, do not obtain (or at least do not provably
obtain) the objective of agnostic PAC learning as in Eq. (5.1). Instead, they obtain some
quantity of loss which is typically good enough in practice. With this reality in mind, we
introduce a generalization of PAC verification that guarantees that the outcome is competitive
with a specific algorithm. Namely, the verifier guarantees that with high probability, the
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hypothesis h satisfies L0-1
D (h) ≤ E[L0-1

D (hA)]+ε, where hA is the (possibly randomized) output
of the algorithm (see Definition 5.2.3).

Fourth, we study PAC verification of statistical query algorithms. For a batch q of
statistical queries, we define a notion of partition size, denoted PS(q), which is the number of
atoms in the σ-algebra generated by q. We show that whenever this quantity is sufficiently
small, there is a sample complexity gap between execution and verification of the statistical
query algorithm.

Lastly, we show that there exists a sample complexity gap for a natural example we
present, of optimizing a portfolio with advice. Both our lower bound and our upper bound
apply to this example.

Related Works
The study of interactive proofs for properties of distributions was initiated by Chiesa and
Gur (2018). They showed general bounds in terms of the support size. However, they did not
consider tighter bounds that depend on combinatorial characterizations of the distribution
testing property of interest (e.g., bounds that depend on the VC dimension).

The study of PAC verification of a hypothesis class was introduced by Goldwasser et al.
(2021), who considered interactive proofs for properties of distributions in the specific context
of machine learning. In particular, they also considered the relationship between the VC
dimension of the class and the sample complexity of verification. They showed a lower bound
that is incomparable with our lower bound, and they showed an upper bound for unions of
intervals which is weaker than our upper bound. Our definition of PAC verification of an
algorithm is closely modeled on their definition.

Recently, there have been a number of works on the general theme of distribution testing
and interactive proofs for properties of distributions in the context of machine learning. These
include Canetti and Karchmer (2021), Anil, Zhang, Wu, and Grosse (2021), Rubinfeld and
Vasilyan (2023) and Herman and Rothblum (2022), among others. Caro, Hinsche, Ioannou,
Nietner, and Sweke (2023) studied PAC verification with a quantum prover. Seshia, Sadigh,
and Sastry (2022) survey the use of formal methods for verification of AI systems.

Preliminaries
Notation 5.1.1. N = {1, 2, 3, . . . }, i.e., 0 /∈ N. For any n ∈ N, we denote [n] =
{1, 2, 3, . . . , n}.

Notation 5.1.2. For a set Ω, we write ∆(Ω) to denote the set of all probability measures
defined on the measurable space (Ω,F), where F is some fixed σ-algebra that is implicitly
understood.

Definition 5.1.3. Let P ,Q be probability measures defined on a measurable space (Ω,F).
The total variation distance between P and Q is TV(P ,Q) = supA∈F |P(A)−Q(A)|.
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PAC Learning

Definition 5.1.4. Let X be a set, and let H ⊆ {0, 1}X be a set of functions. Let k ∈ N,
X = {x1, x2, . . . , xk} ⊆ X . We say that H shatters X if for any y1, y2, . . . , yk ∈ {0, 1} there
exists h ∈ H such that h(xi) = yi for all i ∈ [k]. The Vapnik–Chervonenkis (VC) dimension
of H, denoted VC(H), is the largest d ∈ N for which there exist a set X ⊆ X of cardinality
d that is shattered by H. If H shatters sets of cardinality arbitrarily large, we say that
VC(H) =∞.

Throughout most of this chapter we use loss functions of the type common in PAC learning,
where the loss of a hypothesis with respect to a distribution is defined as the expected loss of
that hypothesis on a randomly drawn sample form the distribution, as follows.

Definition 5.1.5. Let Ω and H be sets. A loss function is a function L : Ω×H → [0, 1].
Let h ∈ H, and let S = (z1, . . . , zm) ∈ Ωm be a vector. The empirical loss of h with respect to
S is LS(h) = 1

m

∑
i∈[m] L(zi, h). For any distribution D ∈ ∆(Ω), the loss of h with respect to

D is LD(h) = EZ∼D[L(Z, h)]. The loss of H with respect to D is LD(H) = infh′∈H LD(h′).
The 0-1 loss, denoted L0-1, is the special case in which X is a set, Ω = X × {0, 1},

H ⊆ {0, 1}X , and L((x, y), h) = 1(h(x) ̸= y).

However, in Definition 5.2.3 below we also consider more general types of loss.

Definition 5.1.6. Let X be a set, and let H ⊆ {0, 1}X be a class of hypotheses. We say that
H is agnostically PAC learnable if there exist an algorithm A and a function mA : [0, 1]2 → N
such that for any ε, δ ∈ (0, 1) and any distribution D ∈ ∆(X × {0, 1}), if A receives as input
a tuple of mA(ε, δ) i.i.d. samples from D, then A outputs a function h ∈ H satisfying

P
[
L0-1

D (h) ≤ L0-1
D (H) + ε

]
≥ 1− δ.

In words, this means that h is probably (with confidence 1− δ) approximately correct (has
loss at most ε worse than optimal). The point-wise minimal such function mA is called the
sample complexity of H.

PAC Verification of a Hypothesis Class

Definition 5.1.7 (PAC Verification of a Hypothesis Class; a special case of Definition 4.1.22).
Let X be a set, let D ⊆ ∆(X × {0, 1}) be a set of distributions, and let H ⊆ {0, 1}X be a
class of hypotheses. We say that H is PAC verifiable with respect to D using random samples
if there exist an interactive proof system consisting of a verifier V and an honest prover P
such that for any ε, δ ∈ (0, 1) there exist mV , mP ∈ N such that for any D ∈ D, the following
conditions are satisfied:

• Completeness. Let the random variable

hV = [V (SV , ε, δ), P (SP , ε, δ)] ∈ H ∪ {reject}
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denote the output of V after receiving input (SV , ε, δ) and interacting with P , which
received input (SP , ε, δ). Then

PSV ∼DmV ,SP ∼DmP

[
hV ̸= reject ∧

(
L0-1

D (hV ) ≤ L0-1
D (H) + ε

)]
≥ 1− δ.

• Soundness. For any (possibly malicious and computationally unbounded) prover P ′

(which may depend on D, ε, and δ), the verifier’s output hV = [V (SV , ε, δ), P ′] satisfies

PSV ∼DmV ,SP ∼DmP

[
hV = reject ∨

(
L0-1

D (hV ) ≤ L0-1
D (H) + ε

)]
≥ 1− δ.

In both conditions, the probability is over the randomness of the samples SV and SP , as well
as the randomness of V , P and P ′.

5.2 Technical Overview

Bounds for Verification of VC Classes
Our first result is a lower bound for the number of i.i.d. random samples the verifier requires
to successfully PAC verify a class.

Theorem 5.2.1. There exist constants C, c > 0 as follows. Let ε ∈ (0, 1), δ = 1/3, let X be
a set, and let H ⊆ {0, 1}X be a hypothesis class with VC(H) = d ∈ N. Assume that (V, P ) is
an interactive proof system that PAC verifies H with parameters (ε, δ) with respect to the set
of all distributions D = ∆(X × {0, 1}), and the verifier V uses mV = mV (d, ε) i.i.d. labeled
samples. Then mV (d, ε) ≥ (C ·

√
d− c)/ε2.

Proof Idea. This is an application of Le Cam’s ‘point vs. mixture’ method (see Yu, 1997),
together with a reduction from distribution testing to PAC verification. Consider distributions
where the marginal over the domain is uniform on a fixed H-shattered set of size d. PAC
verification requires distinguishing the case of truly random labels (where the loss of the class
is 1/2), from the case where the labels are ε-biased (and the loss of the class is 1/2− ε). An
Ω
(√

d/ε2
)

lower bound for distinguishing these two cases is due to Paninski (2008).

Our second result shows that the lower bound’s dependence on d is tight for a specific
class.

Theorem 5.2.2. Let d ∈ N, and let

Hd =
1X : X =

⋃
i∈[d]

[ai, bi] ∧ (∀i ∈ [d] : 0 ≤ ai ≤ bi ≤ 1)
 ⊆ {0, 1}[0,1]

be the class of boolean-valued functions over the domain [0, 1] that are indicator functions for
a union of d intervals. There exists an interactive proof system that PAC verifies the class
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Hd with respect to the set of all distributions over [0, 1]× {0, 1}, such that the verifier uses
mV = O

(√
d log(1/δ)ε−2.5

)
random samples, the honest prover uses

mP = O
(
(d2 log(d/ε) + log(1/δ))ε−4

)
random samples, and both the verifier and the honest prover run in time polynomial in their
numbers of samples.

Proof Idea. A discretization of the population distribution is induced by partitioning the
domain [0, 1] into d/ε intervals, each of which has weight ε/d according to the population
distribution. In the discretized distribution, the probability mass from each interval is lumped
together into a single arbitrary point in that interval. We show that to find an ε-sub-optimal
union of intervals, it suffices to know this discretized distribution. The prover sends the
(purported) discretized distribution to the verifier. The verifier uses a distribution identity
tester to verify that the provided distribution is a correct discretization of the population
distribution. This is possible using O

(√
d
)

samples, because the support of the discretized
distribution is of size O(d).

Verification of Statistical Algorithms
Many popular algorithms do not come with provable PAC-like guarantees, but tend to work
well in practice. Such heuristics are common in machine learning, data science, optimization,
operations research, finance, etc. People might like to delegate the task of collecting data and
executing an algorithm on that data to an untrusted party. To capture this notion, our next
contribution is a new definition of PAC verification of an algorithm.2 This generalizes the
definition of PAC verification of a hypothesis class (Definition 5.1.7, introduced by Goldwasser
et al., 2021), which corresponds to the special case of PAC verifying an algorithm that is an
agnostic PAC learner for the class.

Definition 5.2.3 (PAC Verification of an Algorithm). Let Ω be a set, let D ⊆ ∆(Ω) be a
set of distributions, let H be a set (called the set of possible outputs), and for each D ∈ D
let OD be an oracle. Let A be a (possibly randomized) algorithm that takes no inputs, has
query access to OD, and outputs a value hA = AOD ∈ H. Let L : D× (H ∪ {reject})→ [0, 1]
be an arbitrary function3, let LD(·) denote L(D, ·), and let LD(A) = E[LD(hA)], where the
expectation is over the randomness of A and of the oracle OD. We say that the algorithm A
with access to oracles {OD}D∈D is PAC verifiable with respect to D by a verification protocol
that uses random samples if there exist an interactive proof system consisting of a verifier V
and an honest prover P such that for any ε, δ ∈ (0, 1) there exist mV , mP ∈ N such that for
any D ∈ D, the following conditions are satisfied:

2This notion differs from delegation of computation, in that the data (the input to the algorithm) is
collected by the untrusted prover.

3Note that this is more general than in Definition 5.1.5.
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• Completeness. Let the random variable

hV = [V (SV , ε, δ), P (SP , ε, δ)] ∈ H ∪ {reject}

denote the output of V after receiving input (SV , ε, δ) and interacting with P , which
received input (SP , ε, δ). Then

PSV ∼DmV ,SP ∼DmP [hV ̸= reject ∧ LD(hV ) ≤ LD(A) + ε] ≥ 1− δ.

• Soundness. For any deterministic or randomized (possibly malicious and computation-
ally unbounded) prover P ′ (which may depend on D, ε, δ and {OD}D∈D), the verifier’s
output h = [V (SV , ε, δ), P ′] satisfies

PSV ∼DmV [hV = reject ∨ LD(hV ) ≤ LD(A) + ε] ≥ 1− δ.

The probabilities are over the randomness of V , P and P ′ and of the samples SV and SP .

In other words, whereas the definition of Goldwasser et al. (2021) required that the
interactive proof system guarantee that a hypothesis is competitive with respect to any
hypothesis in H, our definition requires that it be competitive with respect to a specific
algorithm.

Remark 5.2.4. PAC verification of an algorithm A requires that LD(hV ) ≤ OptA + ε with
high probability. Two natural candidate definitions for OptA include (1) OptA = LD(hA), and
(2) OptA = E[LD(hA)]. Candidate (1) requires that with high probability the verifier’s output
be at most ε worse than the output of executing algorithm A, while (2) requires that it be at
most ε worse than the expected loss of A.

The loss LD(hA) is a random variable that depends, inter alia, on the random samples
used by A (more generally: on the randomness of the oracle used by A). A crucial aspect of
PAC verification is that the verifier use less random samples than are necessary for executing
A, and in particular it cannot access the random samples used by A. So the verifier cannot
know what loss was obtained in any particular execution of A. Therefore, we reject candidate
(1) and adopt candidate (2).

As an application of this new definition, we show that some statistical query algorithms
(see Definitions C.2.1 and C.2.3) can be PAC verified via a protocol in which the verifier uses
less i.i.d. samples than would be required for simulating the statistical query oracle used by
the algorithm. Specifically, for a batch q of statistical queries, the partition size PS(q) is the
number of atoms in the σ-algebra generated by q. If the algorithm uses only batches with
small partition size then verification is cheap, as in the following theorem.

Theorem (Informal version of Theorem C.2.8). Let A be a statistical query algorithm that
adaptively generates at most b batches of queries with precision τ such that each batch q
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satisfies PS(q) ≤ s. Then A is PAC verifiable by an interactive proof system where the verifier
uses

mV = Θ
(√

s log(b/εδ)
τ 2 + log(1/εδ)

ε2

)
i.i.d. samples.

Proof Idea. The verifier simulates algorithm A. Each time A sends a batch of queries to be
evaluated by the statistical query oracle, the verifier sends the queries to the prover, and
the prover sends back a vector of purported evaluations. The verifier uses O(

√
s/τ 2) i.i.d.

random samples to execute a distribution identity tester (Theorem 5.4.1) to verify that the
prover’s evaluations are correct up to the desired accuracy τ .

In particular, Theorem C.2.8 implies the following separation:

Corollary (Informal version of Corollary C.2.9). Let d ∈ N and let A be a statistical query
algorithm such that each batch of queries generated by A corresponds precisely to a σ-algebra
with d atoms. Then simulating A using random samples requires Ω(d/τ 2) random samples,
but there exists a PAC verification protocol for A where the verifier uses O

(√
d/τ 2

)
random

samples.

Examples
Example 5.2.5 (Optimizing a portfolio with advice). Consider a task in which an agent
selects a subset S consisting of n items from the set Ω = [2n]. Subsequently, an item i ∈ Ω is
chosen at random according to a distribution D ∈ ∆(Ω) that is unknown to the agent, and
the agent experiences loss L(i, S) = 1(i /∈ S).

To help make an optimal decision, the agent has access to an i.i.d. sample Z =
(z1, . . . , zm) ∼ Dm. Let H =

(
Ω
n

)
denote the collection of subsets of size n that the agent

could select. VC(H) = n, and therefore estimating the expected loss LD(S) of each possible
choice S ∈ H up to precision ε > 0 requires mA = Ω((n + log(1/δ))/ε2) samples.

By Corollary C.2.9, if the agent can receive advice from an untrusted prover, it can make
an ε-optimal choice using mV = O(

√
n log(1/δε)/ε2) i.i.d. samples. Note that mV ≪ mA for

large n. Furthermore, our expression for mV is tight in the sense that, by Theorem 5.2.1,
Ω(
√

n) samples are necessary for verifying the advice of an untrusted prover.

Note that the above example is an instance of verification in our generalized setting
(Definition 5.2.3), but it is technically not an instance of PAC verification as previously
defined by Goldwasser et al. (2021), e.g., because the distribution has no labels. More
generally, Definition 5.2.3 includes verification of distribution learning, as follows.

Example 5.2.6 (Verification of distribution learning). Let Ω = [n]. Consider a task in
which an agent has access to an i.i.d. sample Z = (z1, . . . , zm) ∼ Dm from some distribution
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D ∈ ∆(Ω) that is unknown to the agent. The agent selects a distribution D̂ ∈ ∆(Ω), and
experience loss LD

(
D̂
)

= TV
(
D̂,D

)
.

It is well known that to achieve loss at most ε with probability at least 1 − δ, it is
necessary and sufficient to take mA = Θ((n + log(1/δ))/ε2) samples Canonne (2020, Theorem
1). In contrast, if the agent has access to advice from an untrusted prover then mV =
O(
√

n log(1/δ)ε−2) i.i.d. samples are sufficient. The honest prover simply sends the verifier
a description of a distribution D̃ ∈ ∆(Ω) that has loss at most ε/

√
n. The verifier uses

distribution testing (Theorem 5.4.1) to decide whether LD
(
D̃
)
≤ ε/

√
n or LD

(
D̃
)
≥ ε, and

accepts if and only if the former case holds.

A large collection of concrete tasks that might be of interest and that fall within the
setting of Definition 5.2.3 involve solving various problems on graphs given random samples
that convey information about the graph, as follows.

Example 5.2.7 (Verification in graphs). Fix n ∈ N. For any graph G = (V, E) with V = [n],
let DG be the uniform distribution on E. The agent does not know G, but it knows n and it
has access to an i.i.d. sample Z = (z1, . . . , zm) ∼ Dm

G . Consider some standard tasks, such as:

• Maximum matching. The agent selects a subset M ⊆
(

V
2

)
and experiences loss

LDG
(M) = min

M ′∈M

|M∆M ′|
n

,

where M is the set of all matchings in G of maximal size.

• Coloring. The agent selects a function f : V → N and experiences loss

LDG
(f) = min

f ′∈F

∑
v∈V 1 (f(v) ̸= f ′(v))

n

where F is the set of all valid colorings of G that use a minimal number of colors.

For these tasks, there is an easy lower bound of m = Ω(n) on the number of samples the
agent needs to guarantee loss at most ε with probability at least 1− δ for ε = δ = 0.1. To
see this, consider the family of graphs that consist of a disjoint union of triplets (sets of three
vertices), such that each triplet contains a single edge. Because the agent does not know in
advance where the edge is in each triplet, finding an approximately maximum matching and
an approximate 2-coloring require seeing nearly all the edges in the graph.

However, if we assume that G has maximum degree bounded by a constant (as in the
lower bound), then DG is a uniform distribution with support size O(n). Hence, given access
to advice from an untrusted prover, the agent can solve these tasks using O(

√
n) samples

using the verification procedure of Example 5.2.6.
To see that Ω(

√
n) samples are necessary for verification with the help of a prover, consider

a family of graphs consisting of a disjoint union of triplets as above, but where only half the
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triplets contain an edge. Distinguishing between this family and the previous family requires
observing a collision (receiving a sample that contains the same edge twice), which requires
Ω(
√

n) samples by the ‘birthday paradox’.

So far, all our examples involved a quadratic gap between learning and verifying. However,
larger gaps are possible if we make strong assumptions on the unknown distribution. One
example of this, pointed out by Goldwasser et al. (2021), is that the gap between learning
and verifying for realizable PAC learning is unbounded. Unbounded gaps can exist also for
other tasks as well, as in the following example.

Example 5.2.8 (Unbounded gap in a graph task). Let n, G = (V, E), and DG be as in
Example 5.2.7. Consider the maximal matching tasks under the assumption that E is a
perfect matching. Again, there is an easy lower bound of Ω(n) random samples to guarantee
loss at most ε with probability at least 1− δ for ε = δ = 0.1 without the help of a prover. To
see this, consider a graph that is a disjoint union of sets of four vertices, where each such set
contains two disjoint edges. Finding a perfect matching requires seeing an edge from each set.

In contrast, mV = O(log(1/δ)/ε) samples are sufficient given advice from an untrusted
prover. The protocol is as follows. The prover sends Ẽ, which purportedly equals E. If Ẽ is
not a perfect matching then the verifier rejects. Then, the verifier takes mV samples from
DG, and accepts if and only if all the edges in the sample appear in Ẽ. For completeness,
if Ẽ = E then the verifier always accepts. For soundness, if

(
|Ẽ∆E|

)
/n ≥ ε, then DG has

weight Ω(ε) on edges that are not in Ẽ, and so taking mV samples is sufficient to ensure that
the verifier rejects with probability at least 1− δ.

For the maximum matching task, we have seen that under the assumption that G has
maximum degree bounded by a constant the sample complexity gap is quadratic, but that
the gap is unbounded under the stronger assumption that G is a perfect matching. We view
this as a demonstration of the richness of this setting.

5.3 A Lower Bound for PAC Verification of VC Classes
Theorem 5.2.1 is proved via a reduction from the following distribution testing lower bound.

Theorem 5.3.1 (Reformulation of Theorem 4 in Paninski, 2008). Let d, t ∈ N and let
ε ∈ (0, 1). For every σ ∈ Σ = {±1}d, let Dσ,ε ∈ ∆([2d]) be a distribution such that for all
i ∈ [d],

Dσ,ε(2i− 1) = 1 + σi · ε
2d

, and Dσ,ε(2i) = 1− σi · ε
2d

.

Let DΣ,ε,t be the distribution over [2d]t generated by selecting a vector σ ∈ Σ uniformly at
random, and then taking t i.i.d. samples from Dσ,ε. Let DU,t = U([2d])t be the distribution
over [2d]t generated by selecting t i.i.d. uniform samples from [2d]. Then TV(DU,t,DΣ,ε,t) ≤
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fPaninski(t, ε, d) for

fPaninski(t, ε, d) = 1
2 ·
(

exp
(

t2ε4

d

)
− 1

)1/2

.

The proof also uses the following well-known fact about maximal couplings (see e.g.
Lemma 4.1.13 in Roch, 2023).

Theorem 5.3.2. Let Ω be a set, and let pX , pY ∈ ∆(Ω) be distributions. Then

TV(pX , pY ) =

inf
{
P[X ̸= Y ] : (X, Y ) is a joint distribution with marginals X ∼ pX and Y ∼ pY

}
.

Proof of Theorem 5.2.1. Let X = {x1, . . . , xd} ⊆ X be a set of size d that is shattered by H
(such a set exists because VC(H) = d). Let DU = U(X × {0, 1}).

For every h ∈ HX = {0, 1}X , let Dh,4ε ∈ ∆(X × {0, 1}) be a distribution such that

∀ (x, y) ∈ X × {0, 1} : Dh,4ε

(
(x, y)

)
=
{

(1 + 4ε)/2d h(x) = y
(1− 4ε)/2d h(x) ̸= y

.

Consider a (possibly randomized) testing algorithm T that takes t i.i.d. samples from an
unknown distribution D and decides correctly with probability at least 1−β whether D = DU

or whether D ∈ {Dh,4ε : h ∈ HX} (if D is not one of these |HX |+ 1 options then we make
no assumptions regarding the behavior of T ).

Let DU,t = (DU)t and let DHX ,4ε,t be the distribution generated by selecting h ∈ HX

uniformly at random and then taking t i.i.d. samples from Dh,4ε. By Theorem 5.3.1,
TV(DU,t,DHX ,4ε,t) ≤ fPaninski(t, 4ε, d). By Theorem 5.3.2, for every α > 0 there exists
a joint distribution (SU , SH) such that SU ∼ DU,t, SH ∼ DHX ,4ε,t, and P[SU ̸= SH] ≤
fPaninski(t, 4ε, d) + α.

For any such α and (SU , SH), no tester can distinguish with probability strictly greater
than 1/2 between SU and SH in the event where SU = SH. Hence,

β ≥ 1/2 · P[SU = SH] = 1/2 · (1− P[SU ̸= SH]) ≥ 1/2 · (1− fPaninski(t, 4ε, d)− α).

Taking α→ 0 and rearranging yields

t ≥

√
d · ln(1 + (4β − 2)2)

ε2 . (5.2)

This establishes a lower bound on the sample complexity for the DU vs. {Dh,4ε : h ∈ HX}
distribution testing problem.

Next, we show a reduction from the distribution testing problem to PAC verification of H.
Let (V, P ) be an interactive proof system that PAC verifies H such that the verifier V and
honest prover P use mV and mP i.i.d. samples from the unknown distribution respectively,
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and satisfy Definition 5.1.7 with parameters ε and δ, as in the statement of Theorem 5.2.1.
Using (V, P ), we construct a tester T for the DU vs. {Dh,4ε : h ∈ HX} testing problem.
Given sample access to an unknown distribution D for the testing problem, T operates as
follows:

1. Compute hV = [V (D), P (DU)]. Namely, simulate an execution of the PAC verification
protocol as follows. Take a sample SV ∼ DmV of mV i.i.d. samples from D, and take a
sample SP ∼ (DU)mP of mP i.i.d. samples from DU (seeing as the specification of DU is
completely known to T , T can generate as many samples from DU as necessary using
uniform random coins). Execute the PAC verification protocol such that V receives
input SV , P receives input SP , and the output of the verifier at the end of the protocol
is hV ∈ H ∪ {reject}.

2. Take a sample Stest ∼ Dℓ of ℓ = ⌈ln(24)/2ε2⌉ < 3/ε2 i.i.d. samples from D.

3. If (hV = reject) ∨ (hV ̸= reject ∧ L0-1
Stest(hV ) ≤ 1/2− 2ε) then output “D ∈ {Dh,4ε : h ∈

HX}”. Otherwise, output “D = DU”.

We argue that the tester T defined in this manner solves the testing problem correctly with
probability at least 7/12. If D = DU , then L0-1

D (h) = 1/2 for any h ∈ H. In particular, if
hV ̸= reject then L0-1

Stest(hV ) ≥ 1/2− ε with probability at least 11/12 (by Hoeffding’s inequality
and the choice of ℓ). Thus, if D = DU then T outputs “D = DU” with probability at least
11/12.

Conversely, if D = Dh′,4ε for some h′ ∈ HX , then L0-1
D (h) = 1/2− 4ε for h ∈ H such that

h|X = h′. From the correctness of the PAC verification protocol, with probability at least
2/3, either hV = reject, or L0-1

D (hV ) ≤ 1/2 − 3ε, and in that case with probability at least
11/12, L0-1

Stest(h) ≤ 1/2− 2ε (again by Hoeffding’s inequality and choice of ℓ). A union bound
implies that if D = Dh′,4ε for some h′ ∈ HX then T outputs “D ∈ {Dh,4ε : h ∈ HX}” with
probability at least 1− 1/3− 1/12 = 7/12.

We conclude that T correctly solves the DU vs. {Dh,4ε : h ∈ HX} testing problem with
probability at least 7/12 using t = mV + ℓ i.i.d. samples from the unknown distribution D.
Plugging β = 5/12 in Eq. (5.2), this implies that mV ≥ (0.3 ·

√
d− 3)/ε2, as desired.

Remark 5.3.3. A previous version of this chapter (Mutreja and Shafer, 2022) presented a
proof of an Ω

(√
d
)

lower bound, without the dependence on ε. That proof uses a reduction
to a simpler distribution testing lower bound based on the ‘birthday paradox’ (instead of the
Paninski bound), and it may be better suited for pedagogical expositions.

5.4 Verification of Unions of Intervals
We use the following theorem.4

4See also Goldreich and Ron (2011) and the discussion following Theorem 5.4 in Canonne (2020).
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Theorem 5.4.1 (Theorem 1 in Canonne, Jain, Kamath, and Li, 2022). Let ε, δ ∈ (0, 1), let
n ∈ N, and let P , P̃ ∈ ∆([n]) be distributions. There exists a tolerant distribution identity
tester that, given a complete description of P̃ and m = O(

√
n log(1/δ)ε−2) i.i.d. samples from

P, satisfies the following:

• Completeness. If TV
(
P , P̃

)
≤ ε/

√
n then the tester accepts with probability at least

1− δ.

• Soundness. If TV
(
P , P̃

)
> ε then the tester rejects with probability at least 1− δ.

Definition 5.4.2. Let ε ∈ [0, 1], let X be a set and let F ⊆ {0, 1}X be a set of functions.
Let D ∈ ∆(X ), and let S ∈ Xm for some m ∈ N. We say that S is an ε-sample for D with
respect to F if

∀f ∈ F :
∣∣∣∣∣ |{x ∈ S : f(x) = 1}|

m
− Px∼D[f(x) = 1]

∣∣∣∣∣ ≤ ε.

We also use the fundamental uniform convergence result from VC theory.5

Theorem 5.4.3 (Vapnik and Chervonenkis, 1968, 1971). Let d ∈ N and ε, δ ∈ (0, 1). Let X
be a set and let F ⊆ {0, 1}X be a set of functions with VC(F) = d. Let D ∈ ∆(X ), and let
S ∼ Dm, where

m = Ω
(

d log(d/ε) + log(1/δ)
ε2

)
.

Then with probability at least 1− δ, S is an ε-sample for D with respect to F .

Proof of Theorem 5.2.2. We show that Protocol C.1 (in Appendix C.1) satisfies the require-
ments of the theorem. For completeness, note that if the prover follows the protocol then
P̃j,0 + P̃j,1 = 1/k for all j, so the verifier will never reject at the first ‘if’ statement. Let
B = {Ij × {y} : j ∈ [k] ∧ y ∈ {0, 1}}, and let F = {1E : E ∈ σ(B)} ⊆ {0, 1}[0,1]×{0,1}.
In words, F is the set of indicator functions for events in the σ-algebra generated by B.
VC(F) = 2k = O(d/ε), so Theorem 5.4.3 and the choice of mP imply that with probability at
least 1− δ/2, SP is an ε/(6

√
2k)-sample for D with respect to F . By the definitions of total

variation distance and of an ε-sample, this implies that P
[
TV

(
P , P̃

)
≤ ε/(6

√
2k)

]
≥ 1− δ/2.

From the completeness of the tester of Theorem 5.4.1 and a union bound we conclude that
with probability at least 1− δ, the verifier does not reject. This establishes completeness.

For soundness, consider two cases.

• The prover is too dishonest, such that TV
(
P , P̃

)
> ε/6. Then by the soundness of the

tester of Theorem 5.4.1, the verifier rejects with probability at least 1− δ/2.
5See also Alon and Spencer (2000), Theorem 13.4.4.
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• The prover is sufficiently honest, such that TV
(
P , P̃

)
≤ ε/6. Then for any h′ ∈ Hd,

∣∣∣L0-1
D (h′)− L0-1

P̃ (h′)
∣∣∣ ≤ ∣∣∣L0-1

D (h′)− L0-1
P (h′)

∣∣∣+ ∣∣∣L0-1
P (h′)− L0-1

P̃ (h′)
∣∣∣

≤
∣∣∣L0-1

D (h′)− L0-1
P (h′)

∣∣∣+ ε/6, (5.3)

where the last inequality follows from TV
(
P , P̃

)
≤ ε/6.

Fix h′ ∈ Hd. We argue that |L0-1
D (h′)− L0-1

P (h′)| ≤ ε/3. Let Q = {x ∈ [0, 1] : h′(x) ̸=
h′(x∗)}, where for each x ∈ [0, 1], we define x∗ = x∗

j such that x ∈ Ij. Namely, Q is
the set of points for which applying the discretization procedure alters the output of h′.
Then∣∣∣L0-1

D (h′)− L0-1
P (h′)

∣∣∣ =
∣∣∣P(x,y)∼D[h′(x) ̸= y]− P(x,y)∼D[h′(x∗) ̸= y]

∣∣∣
=
∣∣∣∣P(x,y)∼D[h′(x) ̸= y ∧ x ∈ Q]

− P(x,y)∼D[h′(x∗) ̸= y ∧ x ∈ Q]
∣∣∣∣ (5.4)

≤ D(Q′) (Q′ = Q× {0, 1})
≤

∑
j∈[k]: Ij∩Q ̸=∅

D(I ′
j) (I ′

j = Ij × {0, 1})

=
∑

j∈[k]: Ij∩Q̸=∅
P(I ′

j) (D(I ′
j) = P(I ′

j))

= P
(⋃{

I ′
j : Ij ∩Q ̸= ∅

})
≤ P̃

(⋃{
I ′

j : Ij ∩Q ̸= ∅
})

+ TV
(
P , P̃

)
≤ 2d/k + TV

(
P , P̃

)
(5.5)

≤ 2d/k + ε/6 = ε/3, (5.6)

where Eq. (5.4) holds since the loss of h′ can differ between D and P only for points in
Q; Eq. (5.5) holds because h′ consists of d intervals, which together have 2d endpoints,
Ij ∩Q ≠ ∅ only if Ij contains one of these endpoints, and if the verifier did not reject
then P̃(I ′

j) = 1/k for all j; finally Eq. (5.6) holds by the assumption (in the current case)
that the prover is sufficiently honest.
Combining Eq. (5.6) with Eq. (5.3) yields ∀h′ ∈ Hd :

∣∣∣L0-1
D (h′)− L0-1

P̃ (h′)
∣∣∣ ≤ ε/2.

This implies that a hypothesis h that has minimum loss with respect to P̃ satisfies
L0-1

D (h) ≤ L0-1
D (H) + ε.

We conclude that regardless of the prover’s behavior, with probability at least 1− δ/2 the
verifier either rejects or outputs a hypothesis with excess loss at most ε, as desired.
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Remark 5.4.4. The dependence of the tolerance parameter in Theorem 5.4.1 on the domain
size is quadratic, namely the verifier accepts if TV

(
P , P̃

)
≤ ε/

√
n. Notice that this affects the

sample complexity of the honest prover but not of the verifier. For instance, if the tolerance
was ε/en instead of ε/

√
n, the verifier’s sample complexity would remain unchanged.

5.5 Discussion and Future Work
In this chapter, we have shown that Ω

(√
d
)

samples are necessary for PAC verifying a class
of VC dimension d, and furthermore, for some classes O

(√
d
)

samples are sufficient. In
contrast, Theorem 4.4.1 states that there also exist VC classes where the sample complexity
for verification is Ω̃(d) under the assumption that the verifier is proper (outputs a hypothesis
from the class), and we believe it is likely that there exist VC classes for which an Ω̃(d) lower
bound holds for any verifier.

Hence, it appears likely that the VC dimension does not characterize the sample complexity
of PAC verification. In that case, finding an alternative combinatorial quantity that does
characterize that sample complexity is an exciting open problem.

A potentially easier problem is to devise upper bounds (PAC verification protocols) for
specific classes of interest. For example, the main property of the thresholds class utilized in
the proof of Theorem 5.2.2 is that it has low ‘surface area’ or noise sensitivity (cf. Balcan
et al., 2012). Perhaps a similar proof technique could apply to other classes as well.

Additionally, we introduced a notion of PAC verification of an algorithm. We believe this
is very natural definition, because many of the algorithms that people might like to delegate
in practice are not PAC learners, including unsupervised learning algorithms (e.g., clustering
and dimensionality reduction algorithms), and supervised algorithms that are not provably
PAC learners (e.g., neural networks trained via SGD). Devising PAC verification protocols
for specific algorithms of interest could be a rewarding endeavor.
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Chapter 6

The Bayesian Stability Zoo

6.1 Introduction
Algorithmic stability is a major theme in learning theory, where seminal results have firmly
established its close relationship with generalization. Recent research has further highlighted
the intricate interplay between stability and additional properties of interest beyond statistical
generalization. These properties encompass privacy (Dwork, McSherry, Nissim, and Smith,
2006), fairness (Hébert-Johnson, Kim, Reingold, and Rothblum, 2018), replicability (Bun,
Gaboardi, Hopkins, Impagliazzo, Lei, Pitassi, Sivakumar, and Sorrell, 2023; Impagliazzo, Lei,
Pitassi, and Sorrell, 2022), adaptive data analysis (Dwork, Feldman, Hardt, Pitassi, Reingold,
and Roth, 2015,), and mistake bounds in online learning (Alon, Livni, Malliaris, and Moran,
2019; Bun, Livni, and Moran, 2020).

This progress has come with a proliferation of formal definitions of stability, including
pure and approximate Differential Privacy (Dwork et al., 2006; Dwork, Kenthapadi, McSherry,
Mironov, and Naor, 2006), Perfect Generalization (Cummings, Ligett, Nissim, Roth, and
Wu, 2016), Global Stability (Bun et al., 2020), KL-Stability (McAllester, 1999), TV-Stability
(Kalavasis, Karbasi, Moran, and Velegkas, 2023), f -Divergence Stability (Esposito, Gastpar,
and Issa, 2020), Rényi Divergence Stability (Esposito, Gastpar, and Issa, 2020), and Mutual
Information Stability (Xu and Raginsky, 2017; Bassily, Moran, Nachum, Shafer, and Yehu-
dayoff, 2018), as well as related combinatorial quantities such as the Littlestone dimension
(Littlestone, 1988) and the clique dimension (Alon et al., 2023).

It is natural to wonder to what extent these various and sundry notions of stability
actually differ from one another. The type of equivalence we consider between definitions of
stability is as follows.
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Definition A and Definition B are weakly equivalent if for every hypothesis class
H the following holds:

H has a PAC learning rule that is H has a PAC learning rule that is
stable according to Definition A stable according to Definition B⇐⇒

This type of equivalence is weak because it does not imply that a learning rule satisfying
one definition also satisfies the other.

Recent results show that many stability notions appearing in the literature are in fact
weakly equivalent. The work of Bun et al. (2023) has shown sample efficient reductions
between approximate differential privacy, replicability, and perfect generalization. Combined
with the work of Alon, Bun, Livni, Malliaris, and Moran (2022); Impagliazzo et al. (2022);
Kalavasis et al. (2023); Malliaris and Moran (2022), a rich web of equivalences is being
uncovered between approximate differential privacy and other definitions of algorithmic
stability (see Figure 6.1).

In this chapter we extend the study of equivalences between notions of stability, and make
it more systematic. Our starting point is the following observation: many of the definitions
mentioned above belong to a broad family of definitions of stability, which we informally call
Bayesian definitions of stability. Definitions in this family roughly take the following form: a
learning rule A is considered stable if the quantity

d
(

A(S),P
)

is small enough, where:

• d is a measure of dissimilarity between distributions.

• P is a specific prior distribution over hypotheses;

• A(S) is the posterior distribution, i.e., the distribution of hypotheses generated by the
learning rule A when applied to the input sample S.

Namely, a Bayesian definition of stability is parameterized by a choice of d, a choice of P,
and a specification of how small the dissimilarity is required to be.1

Remark 6.1.1. To understand our choice of the name Bayesian stability, recall that the terms
prior and posterior come from Bayesian statistics. In Bayesian statistics the analyst has

1An example for an application in the context of generalization is the classic PAC Bayes Theorem. The
theorem assures that for every population distribution and any given prior P, the difference between the

population error of an algorithm A and the empirical error of A is bounded by Õ

(√
KL(A(S),P)

m

)
, where m is

the size of the input sample S, and the KL divergence is the “measure of dissimilarity” between the prior and
the posterior. See e.g. Theorem 6.3.2.
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some prior distribution over possible hypothesis before conducting the analysis, and chooses a
posterior distribution over hypotheses when the analysis is complete. Bayesian stability is
defined in terms of the dissimilarity between these two distributions.

A central insight of this chapter is that there exists a meaningful distinction between two
types of Bayesian definitions, based on whether the choice of the prior P depends on the
population distribution D:

• Distribution-independent (DI) stability. These are Bayesian definitions of stability in
which P is some fixed prior that depends only on the class H and the learning rule A,
and does not depend on the population distribution D. Namely, they take the form:

∃ prior P ∀ population D ∀m ∈ N : d(A(S),P) is small,

where S ∼ Dm.

• Distribution-dependent (DD) stability. Here, the prior may depend also on D, so each
population distribution D might have a different prior. Namely:

∀ population D ∃ prior PD ∀m ∈ N : d(A(S),PD) is small.

A substantial body of literature has investigated the interconnections among distribution-
dependent definitions. In Theorem 6.1.4, we provide a comprehensive summary of the
established equivalences. A natural question arises as to whether a similar web of equivalences
exists for distribution-independent definitions. Our principal contribution is to affirm that,
indeed, such a network exists. Identifying such equivalences is a step towards creating a
comprehensive taxonomy of stability definitions.

Our Contribution
Our first main contribution is an equivalence between distribution-independent definitions of
stability.

Theorem (Informal Version of Theorem 6.2.1). The following definitions of stability
are weakly equivalent:

1. Pure Differential Privacy; (Definition 6.3.5)

2. Distribution-Independent KL-Stability; (Definition 6.3.6)

3. Distribution-Independent One-Way Pure Perfect Generalization; (Definition 6.3.7)

4. Distribution-Independent Dα-Stability for α ∈ [1,∞]. (Definition 6.3.6)
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Where Dα is the Rényi divergence of order α. Furthermore, a hypothesis class H has a PAC
learning rule that is stable according to one of these definitions if and only if H has finite
fractional clique dimension (See Section 6.5).

Remark 6.1.2. Observe that DI KL-stability is equivalent to DI D1-stability, and DI one-way
pure perfect generalization is equivalent to DI D∞-stability. Therefore, The above theorem
can be viewed as stating a weak equivalence between pure differential privacy and Dα-stability
for α ∈ [1,∞].

Remark 6.1.3. In this chapter we focus purely on the information-theoretic aspects of learning
under stability constraints, and therefore we consider learning rules that are mathematical
functions, and disregard considerations of computability and computational complexity.

Table 6.1 summarizes the distribution-independent definitions discussed in Theorem 6.2.1.
All the definitions in each row are weakly equivalent.

Name Dissimilarity Definition
KL-Stability PS[KL(A(S) ∥ P) ≤ o(m)] ≥ 1− o(1) 6.3.6
Dα-Stability PS[Dα(A(S) ∥ P) ≤ o(m)] ≥ 1− o(1) 6.3.6
Pure Perfect Generalization PS

[
∀O : A(S)(O) ≤ eo(m)P(O)

]
≥ 1− o(1) 6.3.7

Table 6.1: Distribution-independent Bayesian definitions of stability.

One example for how the equivalence results can help build bridges between different
stability notions in the literature is the connection between pure differential privacy and
the PAC-Bayes theorem. Both of these are fundamental ideas that have been extensively
studied. Theorem 6.2.1 states that a hypothesis class admits a pure differentially private
PAC learner if and only if it admits a distribution independent KL-stable PAC learner. This
is an interesting and non-trivial connection between two well studied notions. As a concrete
example of this connection, recall that thresholds over the real line cannot be learned by a
differentially private learner (Alon et al., 2019). Hence, by Theorem 6.2.1, there does not exist
a PAC learner for thresholds that is KL-stable. Another example is half-spaces with margins
in Rd. Half-spaces with margins are differentially private learnable (Blum, Dwork, McSherry,
and Nissim, 2005), therefore there exists a PAC learner for half-spaces with margins that is
KL-stable.

Our second main contribution is a boosting result for weak learners that have bounded
KL-divergence with respect to a distribution-independent prior. Our result demonstrates
that distribution-independent KL-stability is boostable. It is interesting to see that one can
simultaneously boost both the stability and the learning parameters of an algorithm.
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Theorem (Informal Version of Theorem 6.2.2). Let H be a hypothesis class. If
there exists a weak learner A for H, and there exists a prior distribution P such that the
expectation of KL(A(S) ∥ P) is bounded, then there exists a KL-stable PAC learner that
admits a logarithmic divergence bound.

The proof of Theorem 6.2.2 relies on connections between boosting of PAC learners and
online learning with expert advice.
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Finite Clique Dimension

DD TV-Stability

DD KL-StabilityGlobal Stability

Max Information

5

6

7 2

4

1

11 8 17

16

10

12

9

13

3

14 15

weakly implies assuming countable domain
same algorithm assuming finite domain

1. Lemma 6.6.6

2. Lemma 6.6.13, Pradeep, Nachum,
and Gastpar (2022)

3. Lemma 6.6.11

4. Lemma 6.6.8, Livni and Moran
(2020)

5. Corollary 2, Alon et al. (2019)

6. Theorem 10, Bun et al. (2020)

7. Theorem 17, Bun et al. (2020)

8. Corollary 3.13, Bun et al. (2023)

9. Lemma 3.14, Bun et al. (2023)

10. Theorem 3.17, Bun et al. (2023)

11. Theorem 3.19, Bun et al. (2023)

12. Theorem 3.1, Bun et al. (2023)

13. Theorem 1, Kalavasis et al. (2023)

14. Theorem 2, Kalavasis et al. (2023)

15. Theorem 4, Kalavasis et al. (2023)

16. Theorem 3, Kalavasis et al. (2023)

17. Theorems 2.2, 2.7 Alon et al. (2023)

Figure 6.1: A summary of equivalences between distribution-dependent definitions of stability (Theo-
rem 6.1.4). A solid black arrow from A to B means that definition A weakly implies definition B. A dashed
blue arrow from A to B means that A weakly implies B only if the domain X is countable. A dotted red
arrow from A to B means that A weakly implies B only if the domain X is finite. A double brown arrow
from A to B means that every learning rule that satisfies definition A also satisfies definition B.

Lastly, after conducting an extensive review of the literature, we have compiled a compre-
hensive network of equivalence results for distribution-dependent definitions of stability. This
network is presented in Theorem 6.1.4, Figure 6.1, and Table 6.2.
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Theorem 6.1.4 (Distribution-Dependent Equivalences; Alon et al., 2022; Impagliazzo et al.,
2022; Malliaris and Moran, 2022; Pradeep et al., 2022; Bun et al., 2023; Kalavasis et al.,
2023). The following definitions of stability are weakly equivalent with respect to an arbitrary
hypothesis class H:

1. Approximate Differential Privacy; (Definition 6.3.5)

2. Distribution-Dependent KL-Stability; (Definition 6.3.6)

3. Mutual-Information Stability; (Definition 6.3.12)

4. Global Stability. (Definition 6.3.11)

If the domain is countable then the following are also weakly equivalent to the above:

5. Distribution-Dependent TV-Stability; (Definition 6.3.13)

6. Replicability. (Definition 6.3.8)

If the domain is finite then the following are also weakly equivalent to the above:

7. One-Way Perfect Generalization; (Definition 6.3.7)

8. Max Information. (Definition 6.3.14)

Furthermore, for any hypothesis class H, the following conditions are equivalent:

• H has a PAC learning rule that is stable according to one of the definitions 1 to 6 (and
the cardinality of the domain is as described above);

• H has finite Littlestone dimension; (Definition 6.6.3)

• H has finite clique dimension. (Definition 6.6.5)

We emphasize that Theorem 6.1.4 is a summary of existing results, and is not a new
result. We believe that our compilation serves as a valuable resource, and that stating these
results here in a unified framework helps to convey the conceptual message of this chapter.
Namely, the fact that a large number of disparate results can neatly be organized based on
our notions of distribution-dependent and distribution-independent definitions of stability is
a valuable observation that can help researchers make sense of the stability landscape.
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Name Dissimilarity Definition References

KL-Stability PS [KL(A(S) ∥ PD) ≤ o(m)] ≥ 1− o(1) 6.3.6 McAllester (1999)

TV-Stability ES [TV(A(S),PD)] ≤ o(1) 6.3.13 Kalavasis et al. (2023)

MI-Stability ES [KL(A(S) ∥ PD)] ≤ o(m) 6.3.12 Xu and Raginsky (2017) &
Bassily et al. (2018)

Perfect Generalization PS [∀O : A(S)(O) ≤ eεPD(O) + δ] ≥ 1− o(1) 6.3.7 Cummings et al. (2016)

Global Stability PS,h∼PD [A(S) = h] ≥ η 6.3.11 Bun et al. (2020)

Replicability Pr∼R
[
PS,hr∼PD,r

[A(S; r) = hr] ≥ η
]
≥ ν 6.3.10 Bun et al. (2023) &

Impagliazzo et al. (2022)

Table 6.2: Distribution-dependent Bayesian definitions of stability.

Related Works
The literature on stability is vast. Stability has been studied in the context of optimization,
statistical estimation, regularization (e.g., Tikhonov, 1943 and Phillips, 1962), the bias-
variance trade-off, algorithmic stability (e.g., Bousquet and Elisseeff, 2002; see bibliography
in Section 13.6 of Shalev-Shwartz and Ben-David, 2014), bagging (Breiman, 1996), online
learning and optimization and bandit algorithms (e.g., Hannan, 1958; see bibliography in
Section 28.6 of Lattimore and Szepesvári, 2020), and other topics.

There are numerous definitions of stability, including pure and approximate Differential
Privacy (Dwork et al., 2006,), Perfect Generalization (Cummings et al., 2016), Global Stability
(Bun et al., 2020), KL-Stability (McAllester, 1999), TV-Stability (Kalavasis et al., 2023),
f -Divergence Stability (Esposito et al., 2020), Rényi Divergence Stability (Esposito et al.,
2020), and Mutual Information Stability (Xu and Raginsky, 2017; Bassily et al., 2018).

Our work is most directly related to the recent publication by Bun et al. (2023). They
established connections and separations between replicability, approximate differential privacy,
max-information and perfect generalization for a broad class of statistical tasks. The
reductions they present are sample-efficient, and nearly all are computationally efficient
and apply to a general outcome space. Their results are central to the understanding of
equivalences between notions of stability as laid out in the current chapter.

A concurrent work by Kalavasis et al. (2023) showed that TV-stability, replicability and
approximate differential privacy are equivalent; this holds for general statistical tasks on
countable domains, and for PAC learning on any domain. They also provide a statistical
amplification and TV-stability boosting algorithm for PAC learning on countable domains.

Additionally, recent works (Asi, Ullman, and Zakynthinou, 2023; Hopkins, Kamath, Majid,
and Narayanan, 2023) have shown an equivalence between differential privacy and robustness
for estimation tasks.

Theorem 6.2.2 is a boosting result. Boosting has been a central topic of study in
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computational learning theory since its inception in the 1990s by Schapire (1990) and Freund
(1995). The best-known boosting algorithm is AdaBoost (Freund and Schapire, 1997), which
has been extensively studied. Boosting also has rich connections with other topics such
as game theory, online learning, and convex optimization (see Schapire and Freund, 2012,
Chapter 10 in Shalev-Shwartz and Ben-David, 2014, and Chapter 7 in Mohri, Rostamizadeh,
and Talwalkar, 2018).

6.2 Technical Overview
This section presents the complete versions of Theorems 6.1.4 and 6.2.2. We provide a concise
overview of the key ideas and techniques employed in the proofs. Please refer to Section 6.3
for a complete overview of preliminaries, including all technical terms and definitions.

Equivalences between DI Bayesian Notions of Stability
The following theorem, which is one of the main results of this chapter, shows the equivalence
between different distribution-independent definitions. The content of Theorem 6.2.1 is
summarized in Table 6.1.

Theorem 6.2.1 (Distribution-Independent Equivalences). Let H be a hypothesis class. The
following is equivalent.

1. There exists a learning rule that PAC learns H and satisfied pure differential privacy
(Definition 6.3.5).

2. H has finite fractional clique dimension.

3. For every α ∈ [1,∞], there exists a learning rule that PAC learns H and satisfied
distribution-independent Dα-stability (Definition 6.3.6).

4. For every α ∈ [1,∞], there exists a distribution-independent Dα-stable PAC learner A
for H, that satisfies the following:

(i) A is interpolating almost surely. Namely, for every H-realizable distribution D,
PS∼Dm

[
L0-1

S (A(S)) = 0
]

= 1.
(ii) A admits a divergence bound of f(m) = O(log m), with confidence β(m) ≡ 0. I.e.,

for every H-realizable distribution D, Dα(A(S) ∥ P) ≤ O(log m) with probability 1,
where S ∼ Dm and P is a prior distribution independent of D.

(iii) For every H-realizable distribution D, the expected population loss of A with respect
to D satisfies ES∼Dm

[
L0-1

D (A(S))
]
≤ O

(√
m−1 log m

)
.

In particular, plugging α = 1 in Item (ii) implies KL-stability with divergence bound of
f(m) = O(log m) and confidence β(m) ≡ 0. Plugging α =∞ implies distribution-independent
one-way ε-pure perfect generalization, with ε(m) ≤ O(log m) and confidence β(m) ≡ 0.
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Proof Idea for Theorem 6.2.1

We prove the following chain of implications:

Pure DP (1)==⇒ D∞-Stability (2)==⇒ Dα-Stability ∀α ∈ [1,∞] (3)==⇒ Pure DP.

Pure DP (1)==⇒ D∞-Stability. The first step towards proving implication (1) is to define a
suitable prior distribution P over hypotheses. The key tool we used in order to define P is
the characterization of pure DP via the fractional clique dimension of Alon et al. (2023). In
a nutshell, Alon et al. (2023) proved that (i) a class H is pure DP learnable if and only if the
fractional clique dimension of H is finite; (ii) the fractional clique dimension is finite if and
only if there exists a polynomial q(m) and a distribution over hypothesis Pm, such that for
every realizable sample S of size m, we have

Ph∼Pm

[
L0-1

S (h) = 0
]
≥ 1

q(m) . (6.1)

(For more details please refer to Section 6.5.) Now, the desired prior distribution P is defined
to be a mixture of all the Pm’s.

The next step in the proof is to define a learning rule A: (i) sample hypotheses from
the prior P; (ii) return the first hypothesis h that is consistent with the input sample S
(i.e. L0-1

S (h) = 0). A is well-defined since with high probability it will stop and return
a hypothesis after ≈ q(m) re-samples from P. Since the posterior A(S) is supported on
{h : L0-1

S (h) = 0}, a simple calculation which follows from Equation (6.1) shows that for every
realizable distribution D, D∞(A(S) ∥ P) ≤ log(q(m)) almost surly where S ∼ Dm.

D∞-Stability (2)==⇒ Dα-Stability ∀α ∈ [1,∞]. This implication is immediate since the
Rényi divergence Dα(Q1 ∥ Q2) is non-decreasing in α.

Dα-Stability ∀α ∈ [1,∞] (3)==⇒ Pure DP. In fact, it suffices to assume KL-stability. We
prove that the promised prior P satisfies that for every realizable sample S of size m, we have
Ph∼P

[
L0-1

S (h) = 0
]
≥ 1

poly(m) , and conclude that H is pure DP learnable. Given a realizable
sample S of size m, we uniformly sample ≈ m log m examples from S and feed the new
sample S ′ to the promised KL-stable learner A. By noting that if KL(A(S ′) ∥ P) is small, one
can lower bound the probability of an event according to P by its probability according to
A(S ′). The proof then follows by applying a standard concentration argument.

Stability Boosting
We prove a boosting result for weak learners with bounded KL with respect to a distribution-
independent prior. We show that every learner with bounded KL that slightly beats ran-
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dom guessing can be amplified to a learner with logarithmic KL and expected loss of
O(
√

m−1 log m).

Theorem 6.2.2 (Boosting Weak Learners with Bounded KL). Let X be a set, let H ⊆ {0, 1}X

be a hypothesis class, and let A be a learning rule. Assume there exists k ∈ N and γ > 0 such
that

∀D ∈ Realizable(H) : ES∼Dk

[
L0-1

D (A(S))
]
≤ 1

2 − γ, (6.2)

and there exists P ∈ ∆
(
{0, 1}X

)
and b ≥ 0 such that

∀D ∈ Realizable(H) : ES∼Dk [KL(A(S) ∥ P)] ≤ b. (6.3)

Then, there exists an interpolating learning rule A⋆ that PAC learns H with logarithmic
KL-stability. More explicitly, there exists a prior distribution P⋆ ∈ ∆

(
{0, 1}X

)
and function

b⋆ and ε⋆ that depend on γ and b such that

∀D ∈ Realizable(H) ∀m ∈ N :

PS∼Dm [KL(A⋆(S) ∥ P⋆) ≤ b⋆(m) = O(log(m))] = 1, (6.4)

and

ES∼Dm

[
L0-1

D (A⋆(S))
]
≤ ε⋆(m) = O

√ log(m)
m

. (6.5)

Proof Idea for Theorem 6.2.2

The strong learning rule A⋆ is obtained by simulating the weak learner A on O(log m/γ2)
samples of constant size k (which are carefully sampled from the original input sample S).
Then, A⋆ returns an aggregated hypothesis – the majority vote of the outputs of A. As it
turns out, A⋆ satisfies logarithmic KL-stability with respect to the prior P⋆ that is a mixture
of majority votes of the original prior P . The analysis involves a reduction to regret analysis
of online learning using expert advice, and also uses properties of the KL-divergence.

6.3 Preliminaries

Divergences
The Rényi α-divergence is a measure of dissimilarity between distributions that generalizes
many common dissimilarity measures, including the Bhattacharyya coefficient (α = 1/2), the
Kullback–Leibler divergence (α = 1), the log of the expected ratio (α = 2), and the log of
the maximum ratio (α =∞).
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Definition 6.3.1 (Rényi divergence; Rényi, 1961; van Erven and Harremoës, 2014). Let
α ∈ (1,∞). The Rényi divergence of order α of the distribution P from the distribution Q is

Dα(P ∥ Q) = 1
α− 1 log

Ex∼P

(P(x)
Q(x)

)α−1
 .

For α = 1 and α =∞ the Rényi divergence is extended by taking a limit. In particular, the
limit α→ 1 gives the Kullback–Leibler divergence,

D1(P ∥ Q) = Ex∼P

[
log P(x)
Q(x)

]
= KL(P ∥ Q),

and

D∞(P ∥ Q) = log
(

ess sup
P

P(x)
Q(x)

)
,

with the conventions that 0/0 = 0 and x/0 =∞ for x > 0.

Learning Theory
We use standard notation from statistical learning (e.g., Shalev-Shwartz and Ben-David,
2014). Given a hypothesis h : X → {0, 1}, the empirical loss of h with respect to a sample
S = {(x1, y1), . . . , (xm, ym)} is defined as L0-1

S (h) = 1
m

∑m
i=1 1[h(xi) ̸= yi]. A learning rule A

is interpolating if for every input sample S, Ph∼A(S)
[
L0-1

S (h) = 0
]

= 1. The population loss
of h with respect to a population distribution D over X × {0, 1} is defined as L0-1

D (h) =
P(x,y)∼D[h(x) ̸= y]. A population D over labeled examples is realizable with respect to a class
H if infh∈H L0-1

D (h) = 0. We denote the set of all realizable population distributions of a class
H by Realizable(H). Given a learning rule A and an input sample S of size m, the population
loss of A(S) with respect to a population D is defined as Eh∼A(S)

[
L0-1

D (h)
]
.

A hypothesis class H is Probably Approximately Correct (PAC) learnable if there ex-
ists a learning rule A such that for all D ∈ Realizable(H) and for all m ∈ N, we have
ES∼Dm

[
L0-1

D (A(S))
]
≤ ε(m), where limm→∞ ε(m) = 0.

Theorem 6.3.2 (PAC-Bayes Bound; McAllester, 1999; Langford, Seeger, and Megiddo, 2001;
McAllester, 2003; Theorem 31.1 in Shalev-Shwartz and Ben-David, 2014). Let X be a set, let
H ⊆ {0, 1}X , and let D ∈ ∆(X × {0, 1}). For any β ∈ (0, 1) and for any P ∈ ∆(H),

P
S∼Dm

∀Q ∈ ∆(H) : L0-1
D (Q) ≤ L0-1

S (Q) +

√√√√KL(Q ∥ P) + ln(m/β)
2(m− 1)

 ≥ 1− β.

Definitions of Stability
Throughout the following section, let X be a set called the domain, let H ⊆ {0, 1}X be a
hypothesis class, and let m ∈ N be a sample size. A randomized learning rule, or a learning
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rule for short, is a function A : (X × {0, 1})∗ → ∆
(
{0, 1}X

)
that takes a training sample

and outputs a distribution over hypotheses. A population distribution is a distribution
D ∈ ∆(X × {0, 1}) over labeled domain elements, and a prior distribution is a distribution
P ∈ ∆

(
{0, 1}X

)
over hypotheses.

Differential Privacy

Differential privacy is a property of an algorithm that guarantees that the output will not
reveal any meaningful amount of information about individual people that contributed data
to the input (training data) used by the algorithm. See Dwork and Roth (2014) for an
introduction.

Definition 6.3.3. Let ε, δ ∈ R≥0, and let P and Q be two probability measures over a
measurable space (Ω,F). We say that P and Q are (ε, δ)-indistinguishable and write P ≈ε,δ Q,
if for every event O ∈ F , P(O) ≤ eε · Q(O) + δ and Q(O) ≤ eε · P(O) + δ.

Definition 6.3.4 (Differential Privacy; Dwork and Roth (2014)). Let ε, δ ∈ R≥0. A learning
rule A is (ε, δ)-differentially private if for every pair of training samples S, S ′ ∈ (X ×{0, 1})m

that differ on a single example, A(S) and A(S ′) are (ε, δ)-indistinguishable.

Typically, ε is chosen to be a small constant (e.g., ε ≤ 0.1) and δ is negligible (i.e.,
δ(m) ≤ m−ω(1)). When δ = 0 we say that A satisfies pure differentially privacy.

Definition 6.3.5 (Private PAC Learning). H is privately learnable or DP learnable if it
is PAC learnable by a learning rule A which is (ε(m), δ(m))-differentially-private, where
ε(m) ≤ 1 and δ(m) = m−ω(1). A is pure DP learnable if the same holds with δ(m) = 0.

Dα-Stability and KL-Stability

Definition 6.3.6 (Dα-Stability). Let α ∈ [1,∞]. Let A be a learning rule, and let f : N→ R
and β : N→ [0, 1] satisfy f(m) = o(m) and β(m) = o(1).

1. A is distribution-independent Dα-stable if

∃ prior P ∀ population D ∀m ∈ N : PS∼Dm [Dα(A(S) ∥ P) ≤ f(m)] ≥ 1− β(m).

2. A is distribution-dependent Dα-stable if

∀ population D ∃ prior PD ∀m ∈ N : PS∼Dm [Dα(A(S) ∥ PD) ≤ f(m)] ≥ 1− β(m).

The function f is called the divergence bound and β is called the confidence. The special case
of α = 1 is referred to as KL-stability (McAllester, 1999).
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Perfect Generalization

Definition 6.3.7 (One-Way Perfect Generalization). Let A be a learning rule, and let
β : N→ [0, 1] satisfy β(m) = o(1).

1. Let ε : N→ R satisfy ε(m) = o(m). A is ε-pure perfectly generalizing with confidence β
if

∃ prior P ∀ population D ∀m ∈ N : PS∼Dm

[
∀O : A(S)(O) ≤ eε(m)P(O)

]
≥ 1− β(m).

2. Let ε, δ ∈ R≥0. A is (ε, δ)-approximately perfectly generalizing (Cummings et al., 2016)
with confidence β if

∀ population D ∃ prior PD ∀m ∈ N :
PS∼Dm [∀O : A(S)(O) ≤ eεPD(O) + δ] ≥ 1− β(m).

Replicability

Definition 6.3.8 (Replicability; Bun et al., 2023; Impagliazzo et al., 2022). Let ρ ∈ R>0 and
let R be a distribution over random strings. A learning rule A is ρ-replicable if

∀ population D, ∀m : PS1,S2∼Dm

r∼R
[A(S1; r) = A(S2; r)] ≥ ρ,

where r represents the random coins of A.

Remark 6.3.9. Note that both in Bun et al. (2023) and in Impagliazzo et al. (2022) the
definition of ρ-replicability is slightly different. In their definition, they treat the parameter
ρ as the failure probability, i.e., A is a ρ-replicable learning rule by their definition if the
probability that A(S1; r) = A(S2; r) is at least 1− ρ.

There exists an alternative 2-parameter definition of replicability introduced in Impagliazzo
et al. (2022).

Definition 6.3.10 ((η, ν)-Replicability; Bun et al., 2023; Impagliazzo et al., 2022). Let
η, ν ∈ R>0 and let R be a distribution over random strings. Coin tosses r are η-good for a
learning rule A with respect to a population distribution D if there exists a canonical output
hr such that for every m, PS∼Dm [A(S; r) = hr] ≥ η. A learning rule A is (η, ν)-replicable if

∀ population D : Pr∼R[r is η-good] ≥ ν.

Global Stability

Definition 6.3.11 (Global Stability; Bun et al., 2020). Let η > 0 be a global stability
parameter. A learning rule A is (m, η)-globally stable with respect to a population distribution
D if there exists a canonical output h such that P[A(S) = h] ≥ η, where the probability is
over S ∼ Dm as well as the internal randomness of A.
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MI-Stability

Definition 6.3.12 (Mutual Information Stability; Xu and Raginsky, 2017; Bassily et al.,
2018). A learning rule A is MI-stable if there exists f : N→ N with f = o(m) such that

∀ population D ∀m ∈ N : I(A(S), S) ≤ f(m),

where S ∼ Dm.

TV-Stability

Definition 6.3.13 (TV-Stability; Appendix A.3.1 in Kalavasis et al., 2023). Let A be a
learning rule, and let f : N→ N satisfy f(m) = o(1).

1. A is distribution-independent TV-stable if

∃ prior P ∀ population D ∀m ∈ N : ES∼Dm [TV(A(S),P)] ≤ f(m).

2. A is distribution-dependent TV-stable if

∀ population D ∃ prior PD ∀m ∈ N : ES∼Dm [TV(A(S),PD)] ≤ f(m).

Max Information

Definition 6.3.14. Let A be a learning rule, and let ε, δ ∈ R≥0. A has (ε, δ)-max-information
with respect to product distributions if for every event O we have

P[(A(S), S) ∈ O] ≤ eεP[(A(S), S ′) ∈ O] + δ

where are S, S ′ are independent samples drown i.i.d from a population distribution D.

6.4 Proof of Theorem 6.2.2 (Stability Boosting)

Information Theoretic Preliminaries
Lemma 6.4.1 (Monotonicity of Rényi divergence; Theorem 3 in van Erven and Harremoës,
2014). Let 0 ≤ α < β ≤ ∞. Then Dα(P ∥ Q) ≤ Dβ(P ∥ Q). Furthermore, the inequality is
an equality if and only if P equals the conditional Q(· | A) for some event A.

Lemma 6.4.2 (Data Processing Inequality; Theorem 9 and Eq. 13 in van Erven and
Harremoës, 2014). Let α ∈ [0,∞]. Let X and Y be random variables, and let FY |X be the
law of Y given X. Let PY ,QY be the distributions of Y when X is sampled from PX ,QX ,
respectively. Then

Dα(PY ∥ QY ) ≤ Dα(PX ∥ QX).
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One interpretation of this is that processing an observation makes it more difficult to
determine whether it came from PX or QX .

Definition 6.4.3 (Conditional KL-divergence; Definition 2.12 in Polyanskiy and Wu (2023+)).
Given joint distributions P(x, y),Q(x, y), the KL-divergence of the marginals P(y|x),Q(y|x)
is

KL(P(y|x) ∥ Q(y|x)) =
∑

x

P(x)
∑

y

P(y|x) log P(y|x)
Q(y|x) .

Lemma 6.4.4 (Chain Rule for KL-divergence; Theorem 2.13 in Polyanskiy and Wu, 2023+).
Let P(x, y),Q(x, y) be joint distributions. Then,

KL(P(x, y) ∥ Q(x, y)) = KL(P(x) ∥ Q(x)) + KL(P(y|x) ∥ Q(y|x)).

Lemma 6.4.5 (Conditioning increases KL-divergence; Theorem 2.14(e) in Polyanskiy and Wu,
2023+). For a distribution PX and conditional distributions PY |X ,QY |X , let PY = PY |X ◦PX

and QY = QY |X ◦ PX , where ‘◦’ denotes composition (see Section 2.4 in Polyanskiy and Wu,
2023+) Then

KL(PY ∥ QY ) ≤ KL
(
PY |X ∥ QY |X

∣∣∣∣ PX

)
,

with equality if and only if KL
(
PX|Y ∥ QX|Y

∣∣∣∣ PY

)
= 0.

Online Learning Preliminaries
Following is some basic background on the topic of online learning with expert advice. This
will be useful in the proof of Theorem 6.2.2.

Let Z = {z1, . . . , zm} be a set of experts and I be a set of instances. For any instance
i ∈ I and expert z ∈ Z, following the advice of expert z on instance i provides utility
u(z, i) ∈ {0, 1}.

The online learning setting is a perfect-information, zero-sum game between two players,
a learner and an adversary. In each round t = 1, . . . , T :

1. The learner chooses a distribution wt ∈ ∆(Z) over the set of experts.

2. The adversary chooses an instance it ∈ I.

3. The learner gains utility ut = Ez∼wt [u(z, it)].

The total utility of a learner strategy L for the sequence of instances chosen by the
adversary is

U(L, T ) =
T∑

t=1
ut.
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The regret of the learner is the difference between the utility of the best expert and the
learner’s utility. Namely, for each z ∈ Z, let

U(z, T ) =
T∑

t=1
u(z, it)

be the utility the learner would have gained had they chosen wt(z) = 1 (z = zj) for all t ∈ [T ].
Then the regret is

Regret(L, T ) = max
z∈Z

U(z, T )− U(L, T ).

There are several well-studied algorithms for online learning using expert advice that guarantee
regret sublinear in T for every possible sequence of T instances. A classic example is the
Multiplicative Weights algorithm (e.g., Section 21.2 in Shalev-Shwartz and Ben-David (2014)),
which enjoys the following guarantee.

Theorem 6.4.6 (Online Regret Bound). In the setting of online learning with expert advice,
there exists a learner strategy L such that for any sequence of T instances selected by the
adversary,

Regret(L, T ) ≤
√

2T log(m),
where m is the number of experts.

Proof
Theorem (Theorem 6.2.2, Restatement). Let X be a set, let H ⊆ {0, 1}X be a hypothesis
class, and let A be a learning rule. Assume there exists k ∈ N and γ > 0 such that

∀D ∈ Realizable(H) : ES∼Dk

[
L0-1

D (A(S))
]
≤ 1

2 − γ, (6.6)

and there exists P ∈ ∆
(
{0, 1}X

)
and b ≥ 0 such that

∀D ∈ Realizable(H) : ES∼Dk [KL(A(S) ∥ P)] ≤ b. (6.7)

Then, there exists an interpolating learning rule A⋆ that PAC learns H with logarithmic
KL-stability. More explicitly, there exists a prior distribution P⋆ ∈ ∆

(
{0, 1}X

)
and function

b⋆ and ε⋆ that depend on γ and b such that

∀D ∈ Realizable(H) ∀m ∈ N :

PS∼Dm [KL(A⋆(S) ∥ P⋆) ≤ b⋆(m) = O(log(m))] = 1, (6.8)

and

ES∼Dm

[
L0-1

D (A⋆(S))
]
≤ ε⋆(m) = O

√ log(m)
m

. (6.9)
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Assumptions:

• γ, b > 0; m, k ∈ N.

• S = {(x1, y1), . . . , (xm, ym)} is an H-realizable sample.

• OS is the online learning algorithm of Section 6.4, using expert set S.

• T = ⌈8 log(m)/γ2⌉+ 1.

• A satisfies Eqs. (6.2) and (6.3) (with respect to k, b, γ).

A⋆(S):
for t = 1, . . . , T :

wt ← expert distribution chosen by OS for round t
do:

sample St ← (wt)k

while KL(A(St) ∥ P) ≥ 2b/γ ▷ See Remark 6.4.7
ft ← A(St)
OS receives instance ft and gains utility E(x,y)∼wt [1(ft(x) ̸= y)]

return Maj(f1, . . . , fT )

Algorithm 6.1: The stability-boosted learning rule A⋆, which uses A as a subroutine.

Proof of Theorem 6.2.2. Let D ∈ Realizable(H) and m ∈ N. Learning rule A⋆ operates as
follows. Given a sample S = {(x1, y1), . . . , (xm, ym)}, A⋆ simulates an online learning game,
in which S is the set of ‘experts’, F = {0, 1}X is the set of ‘instances’, and the learner’s
utility for playing expert (x, y) on instance f ∈ F is 1(f(x) ̸= y). Namely, in this game the
learner is attempting to select an (x, y) pair that disagrees with the instance f .

In this simulation, the learner executes an instance of the online learning algorithm of
Section 6.4 with expert set S. Denote this instance OS.

The adversary’s strategy is as follows. Recall that at each round t, OS chooses a distribution
wt over S. Note that if S is realizable then so is wt. At each round t, the adversary selects
an instance f ∈ F by executing A on a training set sampled from wt, as in Algorithm 6.1.

We prove the following:

1. A⋆ interpolates, namely P
[
L0-1

S (A⋆(S)) = 0
]

= 1.

2. A⋆ has logarithmic KL-stability, as in Eq. (6.4).

3. A⋆ PAC learns H as in Eq. (6.5).
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For Item 1, assume for contradiction that A⋆ does not interpolate. Seeing as A⋆ outputs
Maj(f1, . . . , fT ), there exists an index i ∈ [m] such that

T

2 ≤
T∑

t=1
1(ft(xi) ̸= yi) = U(i, T ), (6.10)

where U(i, T ) is the utility of always playing expert i throughout the game.
Let Et denote the event that St was resampled (i.e., there were multiple iterations of the

do-while loop in round t). Eq. (6.3) and Markov’s inequality imply

P[Et] = P[KL(A(St) ∥ P) ≥ 2b/γ] ≤ γ/2. (6.11)

The utility of OS at time t is

uOS
t = E

St∼(wt)k

ft∼A(St)
(x,y)∼wt

[1(ft(x) ̸= y)]

≤ E
St∼(wt)k

[
L0-1

wt
(A(St)) | ¬Et

]
+ P[Et] ≤

(1
2 − γ

)
+ γ

2 ,

where the last inequality follows from Eqs. (6.2) and (6.11). Hence, the utility of OS

throughout the game is

U(OS, T ) =
T∑

t=1
uOS

t ≤
(1

2 −
γ

2

)
· T. (6.12)

Combining Eqs. (6.10) and (6.12) and Theorem 6.4.6 yields
γ

2 · T ≤ U(i, T )− U(OS, T ) ≤ Regret(OS, T ) ≤
√

2T log(m),

which is a contradiction for our choice of T . This establishes Item 1.
For Item 2, for every ℓ ∈ N let P⋆

ℓ ∈ ∆
(
{0, 1}X

)
be the distribution of Maj(g1, . . . , gℓ),

where (g1, . . . , gℓ) ∼ Pℓ. Let P⋆ = 1
z

∑∞
ℓ=1P⋆

ℓ /ℓ2 where z = ∑∞
ℓ=1 1/ℓ2 = π2/6 is a normaliza-

tion factor.
For any S ∈ (X × {0, 1})m,

KL(A⋆(S) ∥ P⋆
T ) = KL(Maj(f1, . . . , fT ) ∥Maj(g1, . . . , gT ))
≤ KL((f1, . . . , fT ) ∥ (g1, . . . , gT )) (By Lemma 6.4.2)

=
T∑

t=1
KL((ft|f<t) ∥ (gt|g<t)) (By Lemma 6.4.4)

=
T∑

t=1
KL((ft|f<t) ∥ gt). (gi’s are independent)

=
T∑

t=1
KL(A(St) ∥ P) ≤ T · 2b/γ = O(log(m)), (6.13)
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where the last inequality is due to the do-while loop in Algorithm 6.1. For any S ∈
(X × {0, 1})m,

KL(A⋆(S) ∥ P⋆) = Eh∼PA⋆(S)

[
log

(
PA⋆(S)(h)
P⋆(h)

)]

≤ Eh∼PA⋆(S)

[
log

(
PA⋆(S)(h)
P⋆

T (h)/(zT 2)

)]
= KL(A⋆(S) ∥ P⋆

T ) + O(log(T )) = O(log(m)). (By Eq. (6.13))

This establishes Item 2.
Item 3 follows by plugging β = 1

m
and Items 1 and 2 in the PAC-Bayes theorem

(Theorem 6.3.2), yielding

P
S∼Dm

L0-1
D (A⋆(S)) ≤ O

√ log(m)
m

 ≥ 1− 1
m

.

This implies Item 3 because the 0-1 loss is at most 1.

Remark 6.4.7. Our definition of the learning rule A⋆ depends on A and P. The mapping
St 7→ KL(A(St) ∥ P) is well-defined, so A⋆ is a well-defined learning rule.2

6.5 Proof of Theorem 6.2.1 (DI Equivalences)
In this section, we prove Theorem 6.2.1.

Theorem (Theorem 6.2.1, Restatement). Let H be a hypothesis class. The following is
equivalent.

1. There exists a learning rule that PAC learns H and satisfied pure differential privacy
(Definition 6.3.5).

2. H has finite fractional clique dimension.
2We remark that if A is a randomized Turing machine, then KL(A(St) ∥ P) can be estimated to arbitrary

precision by a Turing machine with oracle access to the function P . Namely, consider a Turing machine that
can query an oracle for the value of P(h) up to precision 2−q for any h and q ∈ N of its choosing. To see
that such a machine can estimate KL(A(St) ∥ P), observe that if A uses some finite number of random coins,
then A(St) has a finite support, and so computing KL(A(St) ∥ P) involves querying P at a finite number
of locations. Moreover, if A uses a number R of random coins, which is itself a random variable that may
be unbounded but satisfies E[R] < ∞, then by Markov’s inequality there exists an explicit algorithm A′

that uses at most E[R]/α random coins, such that TV(A(St), A′(St)) < α. Hence, KL(A′(St) ∥ P) can be
estimated to arbitrary precision as before. Taking small enough values of α yields a modified version of A⋆

that can be shown to satisfy the requirements of Theorem 6.2.2.
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3. For every α ∈ [1,∞], there exists a learning rule that PAC learns H and satisfied
distribution-independent Dα-stability (Definition 6.3.6).

4. For every α ∈ [1,∞], there exists a distribution-independent Dα-stable PAC learner A
for H, that satisfies the following:

(i) A is interpolating almost surely. Namely, for every H-realizable distribution D,
PS∼Dm

[
L0-1

S (A(S)) = 0
]

= 1.
(ii) A admits a divergence bound of f(m) = O(log m), with confidence β(m) ≡ 0. I.e.,

for every H-realizable distribution D, Dα(A(S) ∥ P) ≤ O(log m) with probability 1,
where S ∼ Dm and P is a prior distribution independent of D.

(iii) For every H-realizable distribution D, the expected population loss of A with respect
to D satisfies ES∼Dm

[
L0-1

D (A(S))
]
≤ O

(√
m−1 log m

)
.

In particular, plugging α = 1 in Item (ii) implies KL-stability with divergence bound of
f(m) = O(log m) and confidence β(m) ≡ 0. Plugging α =∞ implies distribution-independent
one-way ε-pure perfect generalization, with ε(m) ≤ O(log m) and confidence β(m) ≡ 0.

The next subsections contain Theorem 6.5.1, which is a useful result from Alon et al.
(2023), followed by the statements and proofs of Lemmas 6.5.2 and 6.5.4, which rely on
Theorem 6.5.1 and our boosting result (Theorem 6.2.2). The proof of Theorem 6.2.1 is a
consequence of these results, as follows.
Proof of Theorem 6.2.1. The proof follows from:

Item 1 Theorem 6.5.1⇐=======⇒ Item 2 Lemma 6.5.2=======⇒ Item 4 (∗)==⇒ Item 3 Lemma 6.5.4=======⇒ Item 2,

where (∗) is immediate.

Characterization of Pure DP Learnability via the Fractional Clique
Dimension
For every hypothesis class H, they define a quantity ω⋆

m = ω⋆
m(H), called the fractional clique

number of H. The definition of ω⋆
m involves an LP relaxation of clique numbers on a certain

graph corresponding to H, but for our purposes it will be more convenient to use the following
alternative characterization (Eq. 6 and Theorem 2.8 in Alon et al., 2023):

∀m ∈ N : 1
ω⋆

m

= sup
P

inf
S

P
S∼S
h∼P

[
L0-1

S (h) = 0
]
, (6.14)

where the supremum is taken over distributions over H, and the infimum is taken over
distributions over samples of size m that are realizable by H. In words, 1/ω⋆

m is the value
of a game in which player 1 selects a distribution of hypotheses over H, player 2 selects a
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distribution over realizable samples of size m, and player 1 wins if and only if the hypothesis
correctly labels all the points in the sample.

The fractional clique number characterizes pure DP learnability, as follows:

Theorem 6.5.1 (Restatement of Theorems 2.3 and 2.6 in Alon et al., 2023). For any
hypothesis class H, exactly one of the following statements holds:

1. H is pure DP learnable (as in Definition 6.3.5), and there exists a polynomial p such
that ω⋆

m(H) ≤ p(m) for all m ∈ N.

2. H is not pure DP learnable, and ω⋆
m(H) = 2m for all m ∈ N.

The fractional clique dimension of H is defined by CD⋆(H) = sup{m ∈ N : ω⋆
m(H) = 2m}.

So in other words, Theorem 6.5.1 states that H is pure DP learnable if and only if CD⋆(H) is
finite.

Finite Fractional Clique Dimension =⇒ DI Rényi-Stability
Lemma 6.5.2. In the context of Theorem 6.2.1: Item 2 =⇒ Item 4.

Proof of Lemma 6.5.2. Given that H is DP learnable, we define a learning rule A and a
prior P, and show that A PAC learns H subject to distribution-independent KL-stability
with respect to P .

By Theorem 6.5.1 there exists a polynomial p such that ω⋆
m(H) ≤ p(m) for all m ∈ N.

By Eq. (6.14), for every m ∈ N, there exists a prior Pm ∈ ∆
(
{0, 1}X

)
such that for any

H-realizable sample S ∈ (X × {0, 1})m,

P
h∼Pm

[
L0-1

S (h) = 0
]
≥ 1

ω⋆
m

≥ 1
p(m) .

Let
P = 1

z

∞∑
m=1

Pm

m2

be a mixture, where z = ∑∞
m=1 1/m2 = π2/6 is a normalization factor. P is a valid distribution

over {0, 1}X .
For every m ∈ N and for any H-realizable sample S ∈ (X × {0, 1})m,

P
h∼P

[
L0-1

S (h) = 0
]
≥ 1

zm2 · P
h∼Pm

[
L0-1

S (h) = 0
]
≥ 1

zm2p(m) = 1
q(m) , (6.15)

where q(m) = zm2p(m).
For any sample S, let CS =

{
h ∈ {0, 1}X : L0-1

S (h) = 0
}

be the set of hypotheses consistent
with S. Let A be a randomized learning rule given by S 7→ QS ∈ ∆

(
{0, 1}X

)
such that
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QS(h) = P(h | CS) if h ∈ CS, and QS(h) = 0 otherwise. A can be written explicitly as a
rejection sampling algorithm:

A(S):
do:

sample h← P
while L0-1

S (h) > 0
return h

Algorithm A terminates with probability 1, because for any realizable sample S of size
m ∈ N and any t ∈ N,

P[A did not terminate after t iterations] =
(
Ph∼P

[
L0-1

S (h) > 0
])t
≤
(

1− 1
q(m)

)t
t→∞−−−→ 0,

where the inequality follows by Eq. (6.15).
To complete the proof, we show that A satisfies (i), (ii) and (iii) in Item 4.
Item (i) is immediate from the construction of A. For Item (ii), let m ∈ N. For any

sample S of size m and hypothesis h ∈ CS,

QS(h) = P(h | CS) = P({h} ∩ CS)
P(CS) ≤ q(m) · P(h), (6.16)

where the inequality follows from Eq. (6.15). Hence,

D∞(QS ∥ P) = log
(

ess sup
QS

QS(h)
P(h)

)

≤ log
(

ess sup
QS

q(m) · P(h)
P(h)

)
(from Eq. (6.16) and QS(CS) = 1)

≤ log(q(m)) = O(log(m)).

Item (ii) follows from monotonicity of Dα with respect to α (Lemma 6.4.1). In particular,
KL(QS ∥ P) = O(log(m)).

Item (iii) follows from the PAC-Bayes theorem (Theorem 6.3.2). Indeed, take β = 1
m

and
note that L0-1

S (QS) = 0 for all realizable S. Then for any H-realizable distribution D,

P
S∼Dm

L0-1
D (A(S)) ≤

√√√√KL(QS ∥ P) + 2 ln m

2(m− 1)

 ≥ 1− 1
m

.

This implies that for any H-realizable distribution D,

E
S∼Dm

[
L0-1

D (A(S))
]
≤ 1

m
+

√√√√KL(QS ∥ P) + 2 ln m

2(m− 1) = O

√ log m

m

,

as desired.
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Remark 6.5.3. The ‘furthermore’ section of Lemma 6.4.1 implies that in the foregoing proof,
Dα(QS ∥ P) = Dβ(QS ∥ P) for any α, β ∈ [0,∞].

DI Rényi-Stability =⇒ Finite Fractional Clique Dimension
Lemma 6.5.4. In the context of Theorem 6.2.1: Item 3 =⇒ Item 2.

Proof of Lemma 6.5.4. By Theorem 6.5.1 and Eq. (6.14) it suffices to show that there exist
m ∈ N and a prior P such that for every H-realizable sample S ∈ (X × {0, 1})m,

P
h∼P

[
L0-1

S (h) = 0
]

>
1

2m
. (6.17)

By the assumption (Item 3) and Theorem 6.2.2, there exists an interpolating learning rule
A⋆, a prior P⋆, and a constant C > 0 such that for every D ∈ Realizable(H), the equality

PS∼Dm [KL(A⋆(S) ∥ P⋆) ≤ C log(m)] = 1 (6.18)

holds for all m ∈ N large enough. Fix such an m. We show that taking P = P⋆ satisfies
Eq. (6.17) for this m.

Let Q denote the distribution of A⋆(S ′) where S ′ ∼ (U(S))m′
= PS′ , U(S) is the uniform

distribution over S, and m′ = m ln(4m). The proof follows by noting that if KL(Q ∥ P⋆)
is small then one can lower bounding the probability of an event according to P⋆ by its
probability according to Q.

To see that the KL is indeed small, let PA⋆(S′),S′ and PH⋆,S′ be two joint distributions. The
variable S ′ has marginal PS′ in both distributions, A⋆(S ′) ∼ Q depends on S ′, but H⋆ ∼ P⋆

is independent of S ′. Then,

KL(Q ∥ P⋆) = KL
(
PA⋆(S′) ∥ PH⋆

)
≤ KL

(
PA⋆(S′)|S′ ∥ PH⋆|S′

∣∣∣∣ PS′

)
(Lemma 6.4.5)

= KL
(

PA⋆(S′)|S′ ∥ PH⋆

∣∣∣∣ PS′

)
(H⋆⊥S ′)

= ES′ [KL(A⋆(S ′) ∥ P⋆)] (Definition of conditional KL)
≤ C log(m). (By Eq. (6.18) and choice of m) (6.19)

Taking k = 2C log(m),

P
h∼Q

[
log

(
Q(h)
P⋆(h)

)
≥ k

]
≤ KL(Q ∥ P⋆)

k
≤ 1

2 (6.20)

holds by Markov’s inequality and the definition of the KL divergence. We are interested in
the probability of the event E =

{
h ∈ {0, 1}X : L0-1

S (h) = 0
}
. Because A⋆ is interpolating,

Q(E) ≥ P
S′∼(U(S))m′

h∼A⋆(S′)

[S ⊆ S ′] ≥ 1−m
(

1− 1
m

)m′

≥ 3
4 . (6.21)
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Finally, we lower bound P⋆(E) as follows.

P⋆(E) ≥ P
h∼P⋆

[
E ∧ log

(
Q(h)
P⋆(h)

)
≤ k

]
= P

h∼P⋆

[
E ∧ P⋆(h) ≥ 2−k · Q(h)

]
≥ P

h∼Q

[
E ∧ P⋆(h) ≥ 2−k · Q(h)

]
· 2−k

= P
h∼Q

[
E ∧ log

(
Q(h)
P⋆(h)

)
≤ k

]
· 2−k.

≥
(
Q(E)− P

h∼Q

[
log

(
Q(h)
P⋆(h)

)
≤ k

])
· 2−k. (De Morgan’s + union bound)

≥ 1
4 · 2

−k = 1
4m2C

= 1
poly(m) . (By Eqs. (6.20) and (6.21)

and choice of k)

This establishes Eq. (6.17), as desired.

6.6 Proof of Theorem 6.1.4 (DD Equivalences)

Preliminaries
Littlestone Dimension

The Littlestone dimension is a combinatorial parameter which captures mistake and regret
bounds in online learning (Littlestone, 1988; Ben-David et al., 2009).

Definition 6.6.1 (Mistake Tree). A mistake tree is a binary decision tree whose nodes are
labeled with instances from X and edges are labeled by 0 or 1 such that each internal node has
one outgoing edge labeled 0 and one outgoing edge labeled 1. A root-to-leaf path in a mistake
tree can be described as a sequence of labeled examples (x1, y1), . . . , (xd, yd). The point xi is
the label of the i-th internal node in the path, and yi is the label of its outgoing edge to the
next node in the path.

Definition 6.6.2 (Shattering). Let H be a hypothesis class and let T be a mistake tree. H
shatters T if every root-to-leaf path in T is realizable by H.

Definition 6.6.3 (Littlestone Dimension). Let H be a hypothesis class. The Littlestone
dimension of H, denoted LD(H), is the largest number d such that there exists a complete
mistake tree of depth d shattered by H. If H shatters arbitrarily deep mistake trees then
LD(H) =∞.
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Clique Dimension

Definition 6.6.4 (Clique; Alon et al., 2023). Let H be a hypothesis class and let m ∈ N. A
clique in H of order m is a family S of realizable samples of size m such that (i) |S| = 2m;
(ii) every two distinct samples S ′, S ′′ ∈ S contradicts, i.e., there exists a common example
x ∈ X such that (x, 0) ∈ S ′ and (x, 1) ∈ S ′′.

Definition 6.6.5 (Clique Dimension; Alon et al., 2023). Let H be a hypothesis. The clique
dimension of H, denoted CD(H), is the largest number m such that H contains a clique of
order m. If H contains cliques of arbitrary large order then we write CD(H) =∞.

Global Stability =⇒ Replicability
Lemma 6.6.6. Let H be a hypothesis class and let A be a (m, η)-globally stable learner for
H. Then, A is an η-replicable learner for H.

This follows immediately by noting that global stability is equivalent to 2-parameters
replicability, which is qualitatively equivalent to 1-parameter replicability (Impagliazzo et al.,
2022).

Lemma 6.6.7 (Impagliazzo et al., 2022). For every ρ, η, ν ∈ [0, 1],

1. Every ρ-replicable algorithm is also
(

ρ−ν
1−ν

, ν
)
-replicable.

2. Every (η, ν)-replicable algorithm is also (η + 2ν − 2)-replicable.

Proof of Lemma 6.6.6. By the assumption, there exists a hypothesis h such that for every
population D, we have PR∼R[PS∼Dm [A(S; r) = h] ≥ η] = 1. Hence A is (η, 1)-replicable, and
by Lemma 6.6.7 it is also η-replicable.

DD KL-Stability =⇒ Finite Littlestone Dimension
Lemma 6.6.8. Let H be a hypothesis class that is distribution-dependent KL-stable. Then H
has finite Littlestone dimension.

This lemma is an immediate result of the relation between thresholds and the Littlestone
dimension, and the fact that the class of thresholds on the natural numbers does not admit
any learning rule that satisfies a non-vacuous PAC-Bayes bound (Livni and Moran, 2020).
The next lemma is a corollary of Theorem 2 in Livni and Moran (2020).

Theorem 6.6.9 (Corollary of Theorem 2, Livni and Moran, 2020). Let m ∈ N and let N ∈ N.
Then, there exists n ∈ N large enough such that the following holds. For every learning rule
A of the class of thresholds over [n], Hn = {1[x>k] : [n] → {0, 1} | k ∈ [n]}, there exists a
realizable population distribution D = DA such that for any prior distribution P,

P
S∼Dm

[
KL(A(S) ∥ P) > N or, L0-1

D (A(S)) >
1
4

]
≥ 1

16
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Theorem 6.6.10 (Littlestone dimension and thresholds, Shelah, 1990). Let H be a hypothesis
class. Then,

1. If LD(H) ≥ d then H contains ⌊log d⌋ thresholds.

2. If H contains d thresholds then LD(H) ≥ ⌊log d⌋.

Proof of Lemma 6.6.8. If by contradiction the Littlestone dimension of H is unbounded, then
by Theorem 6.6.10, H contains a copy of Hn, the class of thresholds over [n], for arbitrary
large n’s. Hence, by Theorem 6.6.9 H does not admit a PAC learner that is KL-stable.

MI-Stability =⇒ DD KL-Stability
Lemma 6.6.11. Let H be a hypothesis class and let A be a mutual information stable
learner with information bound f(m) = o(1). (I.e. for every population distribution D,
I(A(S); S) ≤ f(m) where S ∼ Dm.) Then, A is a distribution-dependent KL-stable learner
with KL bound g(m) =

√
f(m) ·m and confidence β(m) =

√
f(m)/m.

The following statement is an immediate corollary.

Corollary 6.6.12. Let H be a hypothesis class that is mutual information stable. Then H is
distribution-dependent KL-stable.

Proof of Lemma 6.6.11. Let D be a population distribution. Define a prior distribution
PD = ES[A(S)], i.e. PD(h) = PS∼Dm [A(S) = h]. We will show that A is KL stable with
respect to the prior PD. We use the identity I(X; Y ) = KL(PX,Y , PXPY ). Let PA(S),S be the
joint distribution of the training sample S and the hypothesis selected by A when given S as
an input, and let PA(S)PS be the product of the marginals. Note that PA(S)PS is equal in
distribution to PA(S′)PS, where S ′ is an independent copy of S. Hence,

I(A(S); S) = KL(PA(S),S, PA(S)PS)
= KL(PA(S)|SPS, PA(S′)PS),
= KL(PS, PS) + Es∼PS

[
KL(PA(S)|S=s, PA(S′)|S=s)

]
(Chain rule)

= Es∼PS

[
KL(PA(S)|S=s, PA(S′)|S=s)

]
= Es∼PS

[
KL(PA(S)|S=s, PA(S′))

]
.

Note that PA(S′) and the prior PD are identically distributed, and PA(S)|S=s is exactly the
posterior produced by A given the input sample s. By Markov’s inequality,

P
S∼Dm

[
KL(A(S) ∥ PD) ≥

√
m · I(A(S); S)

]
≤ I(A(S); S)√

mI(A(S); S)

=
√

I(A(S); S)
m

. (6.22)



CHAPTER 6. THE BAYESIAN STABILITY ZOO 164

Since I(A(S); S) ≤ f(m), by Eq. (6.22)

P
S∼Dm

[
KL(A(S) ∥ PD) ≥

√
f(m) ·m

]
≤
√

f(m)
m

.

Note that since f(m) = o(m), indeed
√

f(m)/m
m→∞−−−→ 0 and

√
f(m) ·m = o(m).

Finite Littlestone Dimension =⇒ MI-Stability
Lemma 6.6.13. Let H be a hypothesis class with finite Littlestone dimension. Then H
admits an information stable learner.

This lemma is a direct consequence of Theorem 2 in Pradeep et al. (2022).

Definition 6.6.14. The information complexity of a hypothesis class H is

IC(H) = sup
|S|

inf
A

sup
D

I(A(S); S)

where the supremum is over all sample sizes |S| ∈ N and the infimum is over all learning
rules that PAC learn H.

Theorem 6.6.15 (Theorem 2, Pradeep et al., 2022). Let H be a hypothesis class of with
Littlestone dimension d. Then the information complexity of H is bounded by

IC(H) ≤ 2d + log(d + 1) + 3 + 3
e ln 2 .

Proof of Lemma 6.6.13. Since finite information complexity implies that H admits an infor-
mation stable learner, the proof follows from Theorem 6.6.15
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Appendix A

Appendices for Chapter 3

A.1 Proof of Lower Bound for Littlestone Classes
Proof of Theorem 3.3.1. Let T be a Littlestone tree of depth d that is shattered by H, and let
H1 ⊆ H be a collection of 2d+1 functions that witness the shattering. T contains nT = 2d+1−1
nodes. The adversary selects the sequence

x1, x2, . . . , xn

consisting of the first n nodes of T in breadth-first order (if n > nT , then the adversary
chooses the suffix xnT +1, . . . , xn arbitrarily). For each time step t ∈ [n], let Ht denote the
version space, i.e., the subset of H1 that is consistent with all previously-assigned labels.
Namely, for any t > 1,

Ht = {h ∈ H1 : (∀s ∈ [t− 1] : h(xs) = ys)} .

Similarly, for each b ∈ {0, 1}, let Ht,b = {h ∈ Ht : h(xt) = b}.
The adversary operates according to Algorithm A.1. Conceptually, at each time step

t ∈ [n], if Ht is very unbalanced, meaning that a large majority of the functions in Ht assign
the same value to xt, then the adversary chooses yt to be that value. Otherwise, if Ht is
fairly balanced, the adversary forces a mistake. Note that if Ht is fairly balanced then the
adversary can force a mistake without violating H-realizability.

We now argue that using this strategy, the adversary forces Ω(log(d)) mistakes. Let
F = {t1, t2, . . . } = {t ∈ [n] : rt ∈ [εt, 1− εt]} be the set of time steps where the adversary
forces a mistake. Note that in the for-loop in Algorithm A.1, the value of k at the beginning
of iteration tk is k (e.g., at the beginning of iteration t3, k = 3).

We argue by induction that for any k ∈ N, if mk := 222k ≤ n then:

1. |F | ≥ k and tk ≤ mk; and

2. |Htk
| ≥ (1/mk)2 · |H1|.
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send x1, . . . , xn to learner
k ← 1
for t← 1, 2, . . . , n:

mk ← 222k

εt ← 1/mk

rt ← |Ht,1|/|Ht|
receive ŷt from learner

yt ←


1− ŷt rt ∈ [εt, 1− εt]
0 rt ∈ [0, εt)
1 rt ∈ (1− εt, 1]

send yt to learner
if rt ∈ [εt, 1− εt]:

k ← k + 1

Algorithm A.1: An adversary that forces Ω(log(LD(H))) mistakes.

The base case is immediate for t1 = 1 ∈ F . For the induction step, assuming that Items 1
and 2 hold for some k ∈ N such that mk+1 ≤ n, we show that they also hold for k + 1. For
Item 1, assume for contradiction that t /∈ F for all t such that tk < t ≤ mk+1.

For each t, tk < t ≤ mk+1, the definition of rt and the adversary’s labeling strategy imply
that the label yt agrees with at least a (1− εt)-majority of the functions in the version space
Ht. Hence,

∣∣∣Hmk+1

∣∣∣ ≥ |Htk
| ·

mk+1∏
t=tk+1

(1− εt)

= |Htk
| · (1− 1/mk+1)mk+1−tk

≥ |Htk
| · (1− 1/mk+1)mk+1

≥ |H1| · (1/mk)2 · (1− 1/mk+1)mk+1 (Induction hypothesis for Item 2)
≥ |H1| · (1/mk)2 · (1/4)
= |H1| · 2−22k+1−2. (A.1)

Observe that for every t ∈ [n], if xt is a node with depth ℓ in T (i.e., the shortest path from
the root to xt contains ℓ edges), then there exists an ‘active’ node x∗

ℓ with the same depth
ℓ in T such that the version space Ht contains only functions from H1 that are consistent
with the labels along the path from the root of T to x∗

ℓ . Namely, Ht is a subset of the 2d−ℓ+1

functions in H1 that witness the shattering of the subtree Tℓ of T that is rooted at x∗
ℓ . In
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particular, the depth (distance from the root) of node xmk+1 is log
(
222(k+1)

)
= 22k+2, so

∣∣∣Hmk+1

∣∣∣ ≤ 2d−22k+2+1 = 2d+1 · 2−22k+2 = |H1| · 2−22k+2
. (A.2)

Combining Eqs. (A.1) and (A.2) yields 2−22k+1−2 ≤ 2−22k+2 , which is a contradiction. This
establishes Item 1. Item 2 follows by a similar calculation, which accounts for the fact that
at time tk+1 the adversary forces a mistake, and this reduces the version space by a factor of
at most εtk+1 :

∣∣∣Htk+1

∣∣∣ ≥ |Htk
| ·

tk+1−1∏
t=tk+1

(1− εt)
 · εtk+1

≥ |Htk
| · (1− 1/mk+1)mk+1 · (1/mk+1)

≥ |Htk
| · (1/4) · (1/mk+1)

≥ |H1| · (1/mk)2 · (1/4) · (1/mk+1) (Induction hypothesis for Item 2)
= |H1| · 2−2·22k · (1/4) · 2−22k+2 = |H1| · 2−6·22k−2

≥ |H1| · 2−8·22k = |H1| · 2−2·22(k+1) = |H1| · (1/mk+1)2.

This completes the induction.
To complete the proof, let k∗ = min {⌊log(d)/2⌋, ⌊log log(n)/2⌋}. Then mk∗ ≤ 2d <

2d+1 − 1 = nT , so T contains at least mk∗ nodes. Additionally, mk∗ ≤ n, so Item 1 implies
that |F | ≥ k∗, namely, the adversary can force at least k∗ mistakes, as desired.

A.2 Multiclass Trichotomy
The following generalization of the Littlestone dimension to the multiclass setting is due to
Daniely, Sabato, Ben-David, and Shalev-Shwartz (2015).

Definition A.2.1 (Multiclass Littlestone Dimension). Let X and Y be sets and let d ∈ N. A
Littlestone tree of depth d with domain X and label set Y is a set

T =
{

(xu, yu◦0, yu◦1) ∈ X × Y × Y : u ∈
d⋃

s=0
{0, 1}s ∧ yu◦0 ̸= yu◦1

}
, (A.3)

where ‘◦’ denotes string concatenation. Let H ⊆ YX . We say that H shatters a tree T as in
Eq. (A.3) if for every u ∈ {0, 1}d+1 there exists hu ∈ H such that

∀i ∈ [d + 1] : h(xu≤i−1) = yu≤i
.

The Littlestone dimension of H, denoted LD(H), is the supremum over all d ∈ N such that
there exists a Littlestone tree of depth d with domain X and label set Y that is shattered by H.
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The Natarajan dimension is a popular generalization of the VC dimension to the multiclass
setting.

Definition A.2.2 (Natarajan, 1989). Let X and Y be sets, let H ⊆ YX , let d ∈ N, and let
X = {x1, . . . , xd} ⊆ X . We say that H Natarajan-shatters X if there exist f0, f1 : X → Y
such that:

1. ∀x ∈ X : f0(x) ̸= f1(x); and

2. ∀A ⊆ X ∃h ∈ H ∀x ∈ X : h(x) = f1(x∈A)(x).

The Natarajan dimension of H is

ND(H) = sup {|X| : X ⊆ X finite ∧ H Natarajan-shatters X}.

We show the following generalization of Theorem 3.4.1 for the multiclass setting.

Theorem A.2.3 (Formal Version of Theorem 3.5.1). Let X and Y be sets with k =
|Y| <∞, let H ⊆ YX , and let n ∈ N such that n ≤ |X |.

1. If ND(H) =∞ then M(H, n) = n.

2. Otherwise, if ND(H) = d <∞ and LD(H) =∞ then

max{min{d, n}, ⌊log(n)⌋} ≤M(H, n) ≤ O(d log(nk/d)). (A.4)

The Ω(·) and O(·) notations hide universal constants that do not depend on X , Y or H.

3. Otherwise, there exists a number C(H) ∈ N (that depends on X , Y and H but does not
depend on n) such that M(H, n) ≤ C(H).

The proof of Theorem A.2.3 uses the following generalization of the Sauer–Shelah–Perles
lemma.

Theorem A.2.4 (Natarajan, 1989; Corollary 5 in Haussler and Long, 1995). Let d, n, k ∈ N,
let X and Y be sets of cardinality n and k respectively, and let H ⊆ YX such that ND(H) ≤ d.
Then

|H| ≤
d∑

i=0

(
n

i

)(
k + 1

2

)i

≤
(

enk2

d

)d

.

Proof of Theorem A.2.3. Items 1 and 3 and the min{d, n} lower bound in Item 2 follow
similarly to the corresponding items in Theorem 3.4.1. The upper bound in Item 2 also
follows similarly to the corresponding item in Theorem 3.4.1, except that it uses Theorem A.2.4
instead of the Sauer–Shelah–Perles lemma. The ⌊log(n)⌋ lower bound in Item 2 follows from
Theorem A.4.5 and Claim A.4.4.
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A.3 Combinatorics of Trees
In this section we present a simple lemma from Ramsey theory about trees that is used for
proving Theorem A.4.5. We start with a generalized definition of subtrees.

Definition A.3.1. Let X be a finite set and let (X,⪯) be a partial order relation. For
p, c ∈ X, we say that c is a child of p if p ⪯ c and there does not exist m ∈ X such that
p ⪯ m ⪯ c. We say that z ∈ X is a leaf if there exists no x ∈ X such that z ⪯ x. (X,⪯)
is a binary tree if every non-leaf x ∈ X has precisely 2 children. The depth of z ∈ X is the
largest d ∈ N for which there exist distinct x1, . . . , xd ∈ X such that x1 ⪯ x2 ⪯ · · · ⪯ xd ⪯ z.
For d ∈ N, we say that (X,⪯) is a complete binary tree of depth d if (X,⪯) is a binary tree
and all the leaves in X have depth d. We say that a partial order (X ′,⪯′) is a subtree of
(X,⪯) if X ′ ⊆ X, and ∀a, b ∈ X ′ : a ⪯′ b ⇐⇒ a ⪯ b.

Lemma A.3.2 (Lemma 16 in Alon et al., 2019). Let p, q ∈ R be non-negative such that
p + q ∈ N. Let T = (X,⪯) be a complete binary tree of depth d = p + q − 1, and let
f : X → {0, 1}. Then at least one of the following statements holds:

• T has a 0-monochromatic complete binary subtree of depth at least p. Namely, there
exists T ′ = (X ′,⪯′) such that T ′ is a subtree of T , T ′ is a complete binary tree of depth
at least p, and f(x) = 0 for all x ∈ X ′.

• T has a 1-monochromatic complete binary tree subtree of depth at least q.

For completeness, we include a proof of this lemma.
Proof of Lemma A.3.2. We prove the claim by induction on the depth d. The base case of
d = 0 (a tree with a single node) is immediate. For the induction step, let a denote the root
of T , and let Tℓ and Tr denote the subtrees of T of depth d− 1 consisting of all descendants
of the left and right child of a respectively. Assume that f(a) = 0. If Tℓ or Tr contain a
1-monochromatic subtree of depth at least q, then we are done. Otherwise, by the induction
hypothesis, both trees contain a 0-monochromatic subtree of depth at least p− 1. Joining
these two subtrees as children of the root a yields a 0-monochromatic subtree of depth at
least p, as desired. The proof for the case f(a) = 1 is similar.

We use the following corollary of Lemma A.3.2.

Lemma A.3.3. Let k, d ∈ N. Let T = (X,⪯) be a complete binary tree of depth d ∈ N, and
let f : X → [k]. Then T has an f -monochromatic complete binary subtree T ′ = (X ′,⪯′) of
depth at least

d′ = d + 1
2⌈log(k)⌉ .

Namely, there exists T ′ such that T ′ is a subtree of T , T ′ is a complete binary tree of depth
at least d′, and |{f(a) : a ∈ X ′}| = 1.
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Proof of Lemma A.3.3. We will show that for any b ∈ N, if k ≤ 2b then there exists an
f -monochromatic subtree of T of depth at least

d + 1
2b

.

This implies the lemma, which corresponds to the special case b = ⌈log(k)⌉.
We proceed by induction on b. The base case b = 1 follows from Lemma A.3.2. For the

induction step, we assume that the claim holds for b and prove that it holds for b + 1. Namely,
we show that if f : X → [k] and k ≤ 2b+1 then there exists an f -monochromatic subtree of
depth at least (d + 1)/2b+1.

Define g : X → {1, 2} by g(x) = 1 + (f(x) mod 2). By Lemma A.3.2, there exists a
g-monochromatic complete binary subtree T0 = (X0,⪯) of T of depth at least (d + 1)/2. In
particular |{f(x) : x ∈ X0}| ≤ 2b. By invoking the induction hypotheses on T0, there exists
a complete binary subtree of T0 that is f -monochromatic and has depth at least

d+1
2 + 1

2b
>

d + 1
2b+1 ,

as desired.

A.4 Multiclass Threshold Bounds
Definition A.4.1. Let X and Y be sets, let X = {x1, . . . , xt} ⊆ X , and let H ⊆ YX .
We say that X is threshold-shattered by H if there exist distinct y0, y1 ∈ Y and functions
h1, . . . , ht ∈ H such that hi(xj) = y1(j≤i). The threshold dimension of H, denoted TD(H),
is the supremum of the set of integers t for which there exists a threshold-shattered set of
cardinality t.

We introduce the following generalization of the threshold dimension.

Definition A.4.2. Let X and Y be sets, let X = {x1, . . . , xt} ⊆ X , and let H ⊆ YX . We
say that X is multi-class threshold-shattered by H if there exist y1, y′

1 . . . , yt, y′
t ∈ Y such that

yi ̸= y′
j for all i, j ∈ [t], and there exist functions h1, . . . , ht ∈ H such that

hi(xj) =
{

yi (j ≤ i)
y′

j (j > i).

The multi-class threshold dimension of H, denoted MTD(H), is the supremum of the set of
integers t for which there exists a threshold-shattered set of cardinality t.

See Table A.1 for an illustration of this definition.

Claim A.4.3. Let X and Y be sets, k = |Y| < ∞, and let H ⊆ YX . Then TD(H) ≥
⌊MTD(H)/k2⌋.
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x1 x1 x3 x4 x5
h1 y1 y′

2 y′
3 y′

4 y′
5

h2 y2 y2 y′
3 y′

4 y′
5

h3 y3 y3 y3 y′
4 y′

5
h4 y4 y4 y4 y4 y′

5
h5 y5 y5 y5 y5 y5

Table A.1: An illustration of Definition A.4.2. The table shows a collection of points
{x1, . . . , x5} that are multi-class threshold shattered by functions {h1, . . . , h5}.

Proof of Claim A.4.3. The proof follows from two applications of the pigeonhole principle.

Claim A.4.4. Let X and Y be sets, let H ⊆ YX such that d = TD(H) <∞, and let n ∈ N.
Then

M(H, n) ≥ min {⌊log(d)⌋ , ⌊log(n)⌋} .

The proof of Claim A.4.4 is similar to that of Claim 3.3.4.

Theorem A.4.5. Let X and Y be sets with k = |Y| <∞, let H ⊆ YX . If LD(H) =∞ then
MTD(H) =∞.

Proof of Theorem A.4.5. Let fk(d) be the largest number such that every class with Little-
stone dimension d has multi-class threshold dimension at least fk(d). We show by induction
on d that fk satisfies the following recurrence relation:

fk(d) ≥
{

1 d = 1
1 + fk(⌈d/2k⌉ − 1) d > 1 .

In particular, this implies that fk(d) d→∞−−−→∞, which implies the theorem.
The base case d = LD(H) = 1 is immediate. For the induction step, we assume the

relation holds whenever LD(H) ∈ [d − 1], and prove that it holds for LD(H) = d. Let T
be a Littlestone tree of depth d that is shattered by H. Fix h ∈ H. Then h is a k-cloring
of the nodes of T . By Lemma A.3.3, there exists an h-monochromatic subtree T ′ ⊆ T of
depth at least ⌈d/2k⌉. Let y be the color assigned by h to all nodes of T ′. T ′ is shattered
by H, so there exists a child c of the root x of T ′ such that edge from x to c is labeled
by some value y′ ̸= y. Let H′ = {g ∈ H : g(x) = y′}. H′ shatters the subtree rooted
at c, so LD(H′) ≥ ⌈d/2k⌉ − 1. By the induction hypothesis, there exist x1, . . . , xs for
s = fk(⌈d/2k⌉ − 1) that are multi-class threshold shattered by functions h1, . . . , hs ∈ H′.
By construction, the set X = {x1, . . . , xs, xs+1 = x} is multi-class threshold shattered by
{h1, . . . , hs, hs+1 = h}, because hs+1(xj) = y for all j ∈ [s + 1], and hi(xs+1) = y′ for all
i ∈ [s]. Hence, fk(d) ≥ s + 1 = 1 + fk(⌈d/2k⌉ − 1), as desired.
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A.5 Proof of Agnostic Lower Bound
The lower bound in Theorem 3.6.1 is derived using an anti-concentration technique from
Lemma 14 of Ben-David et al. (2009). Specifically, this technique uses the following inequality.

Theorem A.5.1 (Khintchine’s inequality; Lemma 8.2 in Cesa-Bianchi and Lugosi, 2006).
Let k ∈ N, and let σ1, σ2, . . . , σk be random variables sampled independently and uniformly at
random from {±1}. Then

E

∣∣∣∣∣∣
∑
i∈k

σk

∣∣∣∣∣∣
 ≥ √k/2.

Proof of lower bound in Theorem 3.6.1. Let d = VC(H). Let {x∗
1, . . . , x∗

d} ⊆ X be a set of
cardinality d that is VC-shattered by H. Let k ∈ N be the largest integer such that kd ≤ n.

Let x ∈ X n be a sequence consisting of k copies of the shattered set, namely,

(x1, . . . , xkd) =
(
x1

1, x2
1, . . . , xk

1, x1
2, x2

2, . . . , xk
2, . . . , x1

d, x2
d, . . . , xk

d

)
,

such that xj
i = x∗

i for all i ∈ [d] and j ∈ [k]. If kd < n then the remaining n− kd elements of
x may be arbitrary.

Consider a randomized adversary that selects the sequence x, and chooses all labels to be
i.i.d. uniform random bits. For each i ∈ [d] and j ∈ [k], let yj

i = y(i−1)k+j and ŷj
i = ŷ(i−1)k+j

denote, respectively, the labels and the predictions corresponding to xj
i . Then for any learner

strategy A,

E
y∼U({0,1}n)

[R(A,H, x, y)]

= E
y∼U({0,1}n)

Ê
y

∑
i∈[n]

1 (ŷt ̸= yt)
−min

h∈H

∑
i∈[n]

1 (h(xt) ̸= yt)


= n

2 − E
y∼U({0,1}n)

min
h∈H

∑
i∈[n]

1 (h(xt) ̸= yt)
 (yi ⊥ ŷi)

≥ kd

2 − E
y∼U({0,1}kd)

min
h∈H

∑
i∈[d]

∑
j∈[k]

1
(
h(xj

i ) ̸= yj
i

) (A.5)

= kd

2 − E
y∼U({0,1}kd)

∑
i∈[d]

min
h∈H

∑
j∈[k]

1
(
h(xj

i ) ̸= yj
i

) (H shatters {x∗
1, . . . , x∗

d})

=
d∑

i=1

k

2 − E
yi∼U({0,1}k)

min
h∈H

∑
j∈[k]

1
(
h(xj

i ) ̸= yj
i

)
=

d∑
i=1

k

2 − E
yi∼U({0,1}k)

[min{ri, k − ri}] (Let ri =
∑

j∈[k]
yj

i )



APPENDIX A. APPENDICES FOR CHAPTER 3 190

=
d∑

i=1
E

yi∼U({0,1}k)

[∣∣∣∣∣k2 − ri

∣∣∣∣∣
]

=
d∑

i=1
E

yi∼U({0,1}k)

∣∣∣∣∣∣k2 −
∑

j∈[k]

(
1
2 + σj

i

2

)∣∣∣∣∣∣
 (Let σj

i =
{

1 yj
i = 1

−1 yj
i = 0 )

= 1
2

d∑
i=1

E
yi∼U({0,1}k)

∣∣∣∣∣∣
∑

j∈[k]
σj

i

∣∣∣∣∣∣


≥ 1
2

d∑
i=1

√
k

2 = d
√

k

2
√

2
= Ω

(√
nd
)
, (A.6)

where the final inequality is Khintchine’s inequality (Theorem A.5.1). To see that Inequal-
ity (A.5) holds, let h∗ ∈ arg minh∈H

∑kd
i=1 1 (h(xt) ̸= yt), and then

E
y∼U({0,1}n)

min
h∈H

∑
i∈[n]

1 (h(xt) ̸= yt)


≤ E
y∼U({0,1}n)

[
kd∑

i=1
1 (h∗(xt) ̸= yt)

]
+ E

y∼U({0,1}n)

 n∑
i=kd+1

1 (h∗(xt) ̸= yt)


≤ E
y∼U({0,1}n)

[
kd∑

i=1
1 (h∗(xt) ̸= yt)

]
+ n− kd

2 . ({yt}t>kd ⊥ h∗)

In particular, Eq. (A.6) implies that for every learner strategy A there exists y ∈ {0, 1}n such
that R(A,H, x, y) = Ω

(√
nd
)
.
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Appendix B

Appendices for Chapter 4

B.1 Types of Scientific Studies Amenable to PAC
Verification

In Section 4.1, we suggested that PAC verification can be used to verify some types of
experiments in a manner that is cheaper than a traditional replication. In this appendix we
discuss three such types of experiments.

Before doing so, we would like to mention a possible objection that may be troubling the
attentive reader: experimental findings typically assert that some specific hypothesis is true,
or has some specified loss; for instance, that smoking cigarettes predicts lung cancer with
some specified accuracy. Replication consists of verifying that the hypothesis indeed has a
loss close to that stated in the original publication. But as we saw in Section 4.1, verifying
that a specific hypothesis has a specified loss can be done with O( 1

ε2 ) independent samples,
without using any special PAC verification techniques. In contrast, the strength of PAC
verification lies in its ability to prove that the distance between some class of hypotheses
and the unknown distribution is large, or alternatively, that “no better hypothesis exists” –
but this appears unrelated to scientific replication. Nonetheless, we now explain how this
CoNP-like flavor of PAC verification can indeed be very useful for replicating or verifying
scientific publications.

Consider the following four types of scientific settings.

1. Confounding variables. Consider a publication that claims to have found a strong
positive correlation between playing the accordion and developing a specific type of
cancer. While this effect might be real, best practices would require that the study
attempt to control for confounding variables. For instance, if people who play the
accordion tend to be older, and older people tend to have more cancer, that could explain
the correlation between accordions and cancer.
Controlling for confounding variables is often performed by binning (also called cross-
tabulation), which in the above example would mean dividing the participants into age
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groups, and checking whether the effect exists within each age group. Another common
practice is to perform multiple regression, in which the “treatment” variable (playing
the accordion) is used together with the potentially confounding variables (such as
age) as the input variables that the regression model uses for predicting the response
variable (having cancer). After performing the regression, the strength of the association
between the response variable and each of the individual input variables is captured by
the parameters corresponding to that variable in the regression model (e.g., in a linear
regression, this would be the linear coefficient associated with the specific input variable).
This is a place where the CoNP-like flavor of PAC verification becomes useful. Regardless
of the specific technique used, the notion of controlling for confounding variables is
essentially this: the published result is purportedly “the best explanation” even after
considering various other variables and the ways in which they might affect the response
variable. Hence, verification of a study that controls for confounding variables can
be viewed as verifying that the proposed hypothesis is the best within some class
that includes alternative hypotheses that explicitly account for the effect of potential
confounders. In the example above, one would need to PAC verify that predicting
cancer is indeed best achieved by a hypothesis that places a lot of weight on playing
the accordion, rather than some alternative hypothesis that attributes less weight to
playing the accordion and more weight to age. In cases where there are many potentially
confounding variables which might interact in various ways, the class of alternative
hypotheses that must be ruled out can be large, and so PAC verification may be useful.

2. Regression analysis. Consider an empirical study that attempts to find a formula
for predicting the value of a dependent variable Y ∈ R given the values of independent
variables X1, . . . , Xn ∈ R. The study can repeatedly measure the values of the dependent
and independent variables in various cases, and then perform a regression analysis to
identify the function f(X1, . . . , Xn) that best predicts Y within some class of functions
H (e.g., linear functions, low degree polynomials, etc.). In this setting, it is natural
to perform PAC verification to ensure that the proposed hypothesis is indeed the best
within the class of functions that the regression analysis considered.

3. Multiple hypothesis testing. In this setting, there is a finite class of hypothesis
H = {h1, ..., hk}, and the researchers perform an experiment in order to decide for each
hypothesis hi whether it should be accepted or rejected. This scenario is common in
many branches of science. As a concrete example, consider genome-wide association
studies (GWAS), in which researchers compare genotypic information throughout the
genome in large cohorts in order to identify genetic variants1 that are associated with a
certain phenotype of interest, such as a disease.2 In a GWAS, we can think of each hi as

1Such as single-nucleotide polymorphisms (SNPs).
2Buniello, MacArthur, Cerezo, Harris, Hayhurst, Malangone, McMahon, Morales, Mountjoy, Sollis, et al.

(2019) is a catalog of over 70,000 different GWAS publications. Pe’er, Yelensky, Altshuler, and Daly (2008)
and Palmer and Pe’er (2017) discuss statistical aspects of GWAS.
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the hypothesis stating that genetic variant i is associated with the disease, and for each
i, the study will either accept or reject hypothesis hi. Huge efforts have been invested
in the past two decades to ensure that GWAS publications can (and do) get replicated
(Marigorta, Rodríguez, Gibson, and Navarro, 2018; Hirschhorn, Lohmueller, Byrne, and
Hirschhorn, 2002).

We argue that scientific publications like GWAS that perform multiple hypothesis testing
could potentially benefit from PAC verification protocols. As a loose illustration, consider
a study that claims to have compiled a list containing the “100 genetic variants that are
most associated with the disease.” Formally, we can think of this as follows. For each
genetic variant i there is some (unknown) real number αi ∈ [0, 1] that represents the true
amount of association between genetic variant i and the disease in the general population,
where 1 indicates the strongest possible association and 0 indicates complete lack of
association. For each i, we write h̃i = 1 if the study included genetic variant i in the
list, and h̃i = 0 otherwise. We can now think of the list of the top 100 genetic variants
proposed by the study as being represented by a vector h̃ = (h̃1, h̃2, h̃3, . . . , h̃k) ∈ {0, 1}k,
where k is the total number of genetic variants considered in the study, and h̃ has precisely
100 non-zero entries. We define the total loss of the study to be L(h̃) = ∑

i(αi − h̃i)2.
The study is ε-good if L(h̃) ≤ minh∈T L(h) + ε, where T is the set of all possible lists of
length 100, namely T = {h ∈ {0, 1}k : ∥h∥1 ≤ 100}. The problem of verifying that the
hypothesis h̃ is ε-good with respect to the class T is technically not an instance of PAC
verification, but it is very similar to PAC verification.

4. Negative results. In the GWAS setting, consider a publication that claims “none
of the genetic variants on chromosome j are associated with the disease.” This claim
falls squarely within the framework of PAC verification. To see this, let X be the set
of possible genomes, and let the unknown distribution D provide samples of the form
(x, y), where x ∈ X is the genome of a random person from the general population, and
y ∈ {0, 1} indicates whether that person has the disease. For each genetic variant i
on the chromosome of interest, the class H contains a hypothesis hi such hi(x) = 1 if
genome x contains genetic variant i, and hi(x) = 0 otherwise. In addition, H contains
the constant functions c0(x) ≡ 0 and c1(x) ≡ 1. The notion of verifying the negative
claim in the publication is captured by PAC verifying that one of the constant functions
is ε-good with respect to H.

Whenever the number of samples necessary for PAC verification is lower than the number
of samples used in the original publication, PAC verification becomes cheaper than a full
replication of the study, but still provides the same benefits. PAC verification is most likely
to be useful in settings where the researchers do not attempt to avoid errors completely,
but rather are interested in balancing the risks of false positive and false negative errors
via mechanism like controlling the false discovery rate (FDR; see Benjamini and Hochberg,
1995; Storey and Tibshirani, 2003). Note that in some cases, PAC verification might actually
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provide stronger evidence in favor of the publication than a traditional replication would,
because it verifies the result in a manner that is qualitatively different from how the result
was originally obtained.3

We hope that the first steps taken in this work may eventually lead to the development
of practical PAC verification protocols that will be useful for the scientific community.

B.2 Proofs for Query Delegation Protocols

Simple Query Delegation

Assumptions:

− A is a 1-PAC learning ERM algorithm for H with sample complexity mH(ε, δ).

− m′ = mUC
H (ε/4, δ/2), where mUC

H denotes uniform convergence sample complexity
of H.

− k =
⌈

4 log( 2
δ

)
ε

⌉

1. V takes i.i.d. labeled samples (x1, y1), . . . , (xk, yk) from D.

2. V takes i.i.d. unlabeled samples xk+1, . . . , xm′ from DX .

3. V chooses a random permutation π : [m′]→ [m′], and sends (xπ(1), . . . , xπ(m′))
to P .

4. P uses query access to fD to obtain ỹπ(i) = fD(xπ(i)) for each i ∈ [m′], and sends
(ỹπ(1), . . . , ỹπ(m′)) to V .

5. V checks that ỹi = yi for all i ∈ [k]. If this does not hold, V outputs h = reject.
Otherwise, V executes A with precision parameter ε/4, confidence parameter δ/2
and input sample S̃ = ((x1, ỹ1), . . . , (xm′ , ỹm′)), and then outputs the hypothesis
h returned by A.

Protocol B.1: Simple Query Delegation

Proof for Claim 4.5.2. For the completeness, note that if P is honest, then V outputs
h = A((x1, fD(x1)), . . . , (xm′ , fD(xm′))) such that all xi are sampled i.i.d. from DX . Because
A is a 1-PAC learner, it holds that with probability at least 1− δ

2 , h is ε
4 -good for H w.r.t. D.

3This is reminiscent of the little oh property of Blum and Kannan (1995).
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For soundness, we show that the following hold for any (possibly unbounded and malicious)
prover:

(i) If V did not reject, then with probability at least 1− δ
2 , it holds that

|{i ∈ [m] : ỹi ̸= fD(xi)}|
m

≤ ε

4 . (B.1)

(ii) If (B.1) holds, then with probability at least 1− δ
2 , the hypothesis h returned by A is

ε-good for H w.r.t. D.

Together, these two conditions imply soundness, i.e.

P
[
h ̸= reject ∧

(
LD(h) > LD(H) + ε

)]
≤ δ.

For (i), let t = |{i ∈ [m] : ỹi ̸= fD(xi)}|. If t > εm/4 then

Pπ[h ̸= reject] ≤
(

1− k

m

)t

< e−kt/m < e−εk/4 ≤ δ

2 ,

where the probability is over the choice of the permutation π, and the final inequality follows
from our choice of k ≥ 4 log( 2

δ
)

ε
.

For (ii), note that hypothesis h returned by A is an ERM hypothesis with respect to S̃.
Let S = ((x1, fD(y1), . . . , (xm, fD(ym)), and let h′ be an ERM hypothesis with respect to S,
and let h∗ be any hypothesis in H. Then

LD(h) ≤ LS(h) + ε/4 (uniform convergence of H)
≤ LS̃(h) + 2ε/4 (from B.1)
≤ LS̃(h′) + 2ε/4 (h is an ERM with respect to S̃)
≤ LS(h′) + 3ε/4 (from B.1)
≤ LS(h∗) + 3ε/4 (h′ is an ERM with respect to S)
≤ LD(h∗) + ε. (uniform convergence of H)

Hence, LD(h) ≤ LD(h∗) + ε for all h∗ ∈ H, as desired.
For the query complexity, note that P makes m′ queries, and from Theorem 4.1.15,

m′ = O(m(ε, δ)).

Compressed Query Delegation
We only prove Claim 4.5.3 for the special case in which X = {0, 1}n, and DX is the uniform
distribution. This implies the claim for other domains and distributions, because uniformly
random bits can be used to simulate samples from other (efficiently samplable) distributions.

The PAC verification protocol uses the following compression protocol as a subroutine.
Assume V takes a labeled sample (x, y) ∼ D. The compression protocol enables V to send a
(randomized) message to P such that:
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(i) The length of the message is roughly |x| plus some constant.

(ii) The message specifies a sequence of t + 1 unlabeled samples x0, . . . , xt ∈ X .

(iii) The message contains x, so that x = xi∗ for some i∗ ∈ {0, 1, 2, . . . , t}.

(iv) P does not know i∗, that is, i∗ is uniformly random and independent of the message that
P received.

This compression protocol uses a pseudorandom generator fPRG of the following form.
fPRG(s) is a deterministic function that takes a seed s ∈ {0, 1}ℓ and returns a sequence
x1, . . . , xt ∈ X for fixed ℓ, t ∈ N. We assume that fPRG is pseudorandom with respect to the
learning algorithm A in the sense that A successfully 1-PAC learns H with respect to the
uniform distribution over X if it receives a labeled sample (x1, y1), . . . , (xm, ym) in which the
xi’s were chosen according to a certain procedure that uses fPRG, rather than being sampled
i.i.d. from the uniform distribution.4

4Technically, the xi’s are sampled by repeatedly invoking Protocol B.2, as is done is Protocol B.3.
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Assumptions:

− fPRG is a pseudorandom generator with seed size ℓ and stretch t as above.

− X ∈ X .

GenerateCompressedMessage(X):
Take the following samples independently:
− I∗ ∼ Uniform({0, 1, 2, . . . , t})
− S ∼ Uniform({0, 1}ℓ)

W1, . . . , Wt ← fPRG(s)
X0 ← X ⊕

(⊕
1≤j≤I∗ Wj

)
▷ “⊕” denotes bitwise XOR; ⊕ of an empty set is 0.

M ← (X0, S)
Output (M, I∗)

ExpandCompressedMessage(M):
(X0, S)←M
W1, . . . , Wt ← fPRG(s)
for i ∈ [t]

Xi ← Xi−1 ⊕Wi

Output X0, . . . , Xt

Protocol B.2: A compression protocol

The compressed query delegation protocol operates as follows, using the above protocol
as a subroutine.
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Assumptions:

− A is a 1-PAC learning ERM algorithm for H with sample complexity mH(ε, δ).

− m′ = mUC
H (ε/4, δ/2), where mUC

H denotes uniform convergence sample complexity
of H.

− k =
⌈

4 log( 2
δ

)
ε

⌉
− The stretch of the pseudorandom generator fPRG is t = ⌊m′/k⌋

1. V performs the following:
for j ∈ [k]

Sample (Xj, Yj) ∼ D
Mj, I∗

j ← GenerateCompressedMessage(Xj)
Send (M1, . . . , Mk) to P

2. P performs the following:
Ỹ ← new matrix
for j ∈ [k]

X0, . . . , Xt ← ExpandCompressedMessage(Mj)
for i ∈ {0, 1, . . . , t}

Ỹj,i ← fD(Xi)
Send Ỹ to V

3. V performs the following:
X ← new matrix
for j ∈ [k]

i∗ ← I∗
j

if Ỹj,i∗ ̸= Yj

Output ‘reject’ and halt
(Xj,0, . . . , Xj,t)← ExpandCompressedMessage(Mj)

Sample← {(Xj,i, Ỹj,i) : j ∈ [k], i ∈ {0, 1, . . . , t}}
h← A(Sample, ε/4, δ/2)
Output h

Protocol B.3: Compressed Query Delegation.



APPENDIX B. APPENDICES FOR CHAPTER 4 199

Claim B.2.1. Assume X is sampled uniformly from X , and then the subroutine Generate
CompressedMessage(X) is executed and outputs the tuple (M, I∗). Then the random
variables M and I∗ satisfy that M⊥I∗.

Proof. Let (X0, S) = M . Fix x0 ∈ X , s ∈ {0, 1}ℓ and i ∈ {0, 1, 2, . . . , t}. Observe that

P[X0 = x0| S = s ∧ I∗ = i] = P

X ⊕

 ⊕
1≤j≤I∗

Wj

 = x0

∣∣∣∣ S = s ∧ I∗ = i


= P

X = x0 ⊕

 ⊕
1≤j≤I∗

Wj

 ∣∣∣∣ S = s ∧ I∗ = i


= 1
|X |

.

Hence,

P[X0 = x0 ∧ S = s ∧ I∗ = i] = P[I∗ = i] · P[S = s | I∗ = i] · P[X0 = x0 | S = s ∧ I∗ = i]
= P[I∗ = i] · P[S = s] · P[X0 = x0 | S = s ∧ I∗ = i]

(S⊥I∗)

= P[I∗ = i] · P[S = s] · 1
|X |

= P[I∗ = i] · P[X0 = x0 ∧ S = s]. (X0⊥S)

Proof of Claim 4.5.3. The proof is similar to the proof of Claim 4.5.2. For completeness,
notice that if P is honest, then V never rejects, and outputs a hypothesis h returned by A
on a sample where the x’s were generated using fPRG, and the labels are all correct. Because
A is a 1-PAC learner, and fPRG is pseudorandom with respect to A, it holds that h is ε-good
with probability at least 1− δ.

Soundness follows from (i) and (ii) in the same manner as in the proof of Claim 4.5.2.
Notice that (ii) holds in the current case by the same argument as in that proof. To complete
the proof we need to establish (i). Let bj be the number of dishonest labels that P provided
for X’s generated by message Mj, and let b = ∑

j∈[k] bj be the total number of dishonest
labels provided by P . We need to show that if b

m′′ > ε
4 , then V rejects with probability at

least 1− δ
2 , where m′′ = (t + 1)k ≥ m′ is the total number of samples.

For each j ∈ [k], V knows the correct label for Xj,i∗ such that i∗ = I∗
j . From Claim B.2.1,

I∗
j is independent of Mj . Because I∗

j is uniformly random, the chance that V does not detect
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a dishonest label for message Mj is pj =
(
1− bj

t+1

)
. In total, if b

m′′ > ε
4 then

P[h ̸= reject] =
∏

j∈[k]
pj =


k

√∏
j∈[k]

pj

k

≤

1
k

∑
j∈[k]

pj

k

=
(

1− b

m′′

)k

<
(

1− ε

4

)k

< e− ε
4 k ≤ δ

2 ,

where the probability is over the choice of the indices I∗
j , and the first inequality is the

AM-GM inequality, and the final inequality follows from our choice of k.
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Noninteractive Query Delegation

Assumptions:

− A is a 1-PAC learning ERM algorithm for H with sample complexity mH(ε, δ).

− m′ = mUC
H (ε/4, δ/2), where mUC

H denotes uniform convergence sample complexity
of H.

− k =
⌈

4 log( 2
δ

)
ε

⌉
− fCRS(t) is a source of common randomness that provides the same i.i.d. samples

x1, . . . , xt from DX to all parties.

1. P performs the following:
X1, . . . , Xm′ ← fCRS(m′)
for i ∈ [m′]

Ỹi ← fD(Xi)
Publish (Ỹ1, . . . , Ỹm′)

2. V performs the following:
X1, . . . , Xm′ ← fCRS(m′)
Sample {I1, . . . , Ik} ← Uniform

((
[m′]

k

))
for i ∈ {I1, . . . , Ik}

if Ỹi ̸= fD(Xi)
Output ‘reject’ and halt

h← A({(Xi, Ỹi) : i ∈ [m′]}, ε/4, δ/2)
Output h

Protocol B.4: Noninteractive Query Delegation.

The proof of Claim 4.5.4 is similar to that of Claim 4.5.2. Note that the amount of common
randomness required can be reduced substantially by using an appropriate PRG, as in
Claim 4.5.3, while the security remains information-theoretic.

B.3 Thresholds Over Discrete Sets
In Section 4.3 we presented the class T of thresholds over the interval [0, 1] ⊆ R, and
neglected issues pertaining to the representation of real numbers. Here, we outline how
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similar results can be obtained for the class of threshold over a finite set X ⊆ [0, 1]. We
write T X = {ft}t∈X ⊆ T , and are interested in 2-PAC verification of T X with respect to any
distribution D ∈ ∆(X × {0, 1}).5

This boils down to the following. Recall that when constructing certificates of loss for T ,
we used the following primitive in the proof of Claim 4.3.5:

Fact B.3.1. Let [α, β] ⊆ R be an interval, and let p be a distribution over R that is absolutely
continuous with respect to the Lebesgue measure. If p

(
[α, β]

)
> r ≥ 0, then there exists

γ ∈ [α, β] such that p
(

[α, γ]
)

= r.

The following alternative primitive, which has the additional property that γ ∈ X , will
be used instead when producing certificates for T X that have succinct representations.

Claim B.3.2. Let N ∈ N, let [α, β] ⊆ R be an interval with α, β ∈ X , and let p be a
probability mass function over X . If p

(
[α, β]

)
> r ≥ 0, then there exists a pair (γ, q) where

γ ∈ X ∩ [α, β] and q ∈ [N ], such that:∣∣∣∣p([α, γ)
)

+ q

N
· p(γ)− r

∣∣∣∣ ≤ 1
2N

.

Likewise, there exists (γ′, q′) such that∣∣∣∣∣p
(

(γ′, β]
)

+ q′

N
· p(γ′)− r

∣∣∣∣∣ ≤ 1
2N

.

Proof. Take
γ = min

{
x ∈ X : p

(
[α, x]

)
≥ r

}
and

q = arg min
i∈[N ]

∣∣∣∣∣∣∣∣
i

N
−

r − p
(

[α, γ)
)

p(γ)

∣∣∣∣∣∣∣∣ .
5That is, any probability space (Ω,D, Σ) with sample space Ω = X × {0, 1}, probability mass function D,

and σ-algebra Σ = 2Ω.
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Observe that

∣∣∣∣p([α, γ)
)

+ q

N
· p(γ)− r

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣p
(

[α, γ)
)

+
r − p

(
[α, γ)

)
p(γ) · p(γ)− r

∣∣∣∣∣∣∣∣
+ p(γ)

∣∣∣∣∣∣∣∣
r − p

(
[α, γ)

)
p(γ) − q

N

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
r − p

(
[α, γ)

)
p(γ) − q

N

∣∣∣∣∣∣∣∣ ≤
1

2N
.

The proof for (γ′, q′) is similar.

Recall that a 0-valid certificate of loss ℓ for T with respect to distribution D was a pair
(a, b) such that D1

(
[0, a)

)
= D0

(
[b, 1]

)
= ℓ, where Di(X) := D(X × {i}). For the discrete

case, we use the following definition of a certificate with finite resolution.

Definition B.3.3. Fix N ∈ N, and let X ⊆ [0, 1] be a finite set. Let D ∈ ∆(X × {0, 1}) be a
distribution and ℓ, η ≥ 0. A certificate of loss at least ℓ for class T X with resolution 1

N
is a

tuple
(a, qa, b, qb)

where 0 < a ≤ b < 1 and qa, qb ∈ [N ], and if a = b then qa + qb ≤ N .
We say that the certificate is η-valid with respect to distribution D if∣∣∣∣D1

(
[0, a)

)
+ qa

N
· p(a)− ℓ

∣∣∣∣+ ∣∣∣∣D0
(

(b, 1]
)

+ qb

N
· p(b)− ℓ

∣∣∣∣ ≤ η.

Using Claim B.3.2, one can repeat the proof of Claim 4.3.5 to show the following.

Claim B.3.4. Fix N ∈ N, and let X ⊆ [0, 1] be a finite set. Let D ∈ ∆(X × {0, 1}) be a
distribution and ℓ ≥ 0. If LD(T X ) = ℓ, then there exist (a, qa, b, qb) such that a, b ∈ X and
qa, qb ∈ [N ], which constitute a certificate of loss ℓ

2 for the class T X that is 1
N

-valid with
respect to D.

In particular, one can obtain an η-valid certificate of finite precision by choosing the
precision parameter N to satisfy N ≥ 1

η
. Likewise, it is possible to repeat the rest of the

analysis, and show that an η-valid certificate of loss ℓ entails that LD(T X ) ≥ ℓ− η, and that
certificates can be generated and verified efficiently. Finally, we can generalize these results to
a multi-threshold class T X

d , and obtain that T X
d is 2-PAC verifiable, and exhibits a quadratic

gap in sample complexity between learning and verification, as in Theorem 4.3.8.
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B.4 Uniform Convergence for Set Systems
The following theorem is due to Vapnik and Chervonenkis (1968, 1971). See also the exposition
by Alon and Spencer (2000, Theorem 13.4.4).

Definition B.4.1. A set system is a tuple (X,S), where X is any set, and S ⊆ 2X is any
collection of subsets of X. The members of X are called points.

The VC dimension of a set system (X,S) is the VC dimension of the set of indicator
functions {1S : S ∈ S} as defined in Definition 4.1.14.

Definition B.4.2. Let (X,S) be a set system, let D be a distribution over X, and let
ε ∈ (0, 1). We say that a multiset A ⊆ X is an ε-sample with respect to D if

∀S ∈ S :
∣∣∣∣∣ |A ∩ S|
|A|

− D(S)
∣∣∣∣∣ ≤ ε.

Theorem B.4.3. There exists a constant c > 0 such that for any set system (X,S) of
VC-dimension at most d and any 0 < ϵ, δ < 1

2 , a sequence of at least

c

ϵ2

(
d log d

ϵ
+ log 1

δ

)

i.i.d. samples from D will be an ϵ-sample with respect to D with probability at least 1− δ.

B.5 Identity Testing for Distributions
The following theorem is due to Batu, Fischer, Fortnow, Kumar, Rubinfeld, and White (2001,
Theorem 24). See also Theorem 3.2.7 in Canonne (2020).

Theorem B.5.1. Let D∗ = (d1, . . . , dn) be a distribution over a finite set of size n, and let
ε ∈ (0, 1). There exists an algorithm which, given the full specification of D∗ and sample
access to an unknown distribution D, takes

O

(√
n

ε6 log(n)
)

samples from D, and satisfies:

• Completeness. If
dTV (D, D∗) ≤ ε3

300
√

n log n
,

then the algorithm accepts with probability at least 2
3 .
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• Soundness. If
dTV (D, D∗) > ε,

then the algorithm rejects with probability at least 2
3 .

A standard amplification argument yields the following:

Corollary B.5.2. Taking

O

(
log

(1
δ

) √
n

ε6 log(n)
)

samples is sufficient to ensure completeness and soundness at least 1− δ (instead of 2
3).

B.6 Total Variation Distance
Claim B.6.1. Let δ ∈ (0, 1), X := [n]. Consider a sequence x1, x2 . . . , xt of i.i.d. samples
taken from UX , and let G denote the event in which all the samples are distinct, that is
|{x1, . . . , xt}| = t. Then taking

n ≥ log(2e)
log

(
1

1−δ

) · t2

entails that
P[G] ≥ 1− δ.

Claim B.6.2. Let P,Q be probability functions over a probability space (Ω,F). Then for all
α ∈ [0, 1],

TV((1− α)P + αQ,P) ≤ α.

In particular, if X is a random variable and E is an event, then

TV(X, X|E) ≤ 1− P[E] = P
[
E
]
.

Proof.
TV((1− α)P + αQ,P) = max

A∈F
(1− α)P(A) + αQ(A)− P(A)

= max
A∈F

α · (Q(A)− P(A)) ≤ α.

In particular, if PX ,PX|E denote the distributions of X and X|E then

TV
(
PX ,PX|E

)
= TV

(
(1− P

[
E
]
) · PX|E + P

[
E
]
· PX|E,PX|E

)
≤ P

[
E
]
.
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B.7 Learning Fourier-Sparse Functions By Estimating
Heavy Coefficients

Let H be the set of t-sparse functions {0, 1}n → R. In this appendix we recall the proof that
one can PAC learn H with respect to Dfunc

U ({0, 1}n) by estimating heavy Fourier coefficients.
We stress that this is a well-known result and is included for completeness only (see Mansour,
1994).

Claim B.7.1. Let ε > 0. Let D ∈ Dfunc
U ({0, 1}n) have target function f : {0, 1}n → {1,−1}.

Consider the function
h(x) =

∑
T ∈L

αT χT (x),

where L is a set such that f̂≥τ ⊆ L for τ = ε
4t

. If

∀T ∈ L : |αT − f̂(L)| ≤
√

ε

8|L| ,

then LD(h) ≤ LD(H) + ε.

Before proving this claim, we show that if a function f is close to being sparse, then it
can be approximated by a sparse function g that includes only coefficients where f has high
Fourier weight.

Claim B.7.2. Let t ∈ N, let β, ℓ ∈ (0, 1), and let D ∈ Dfunc
U ({0, 1}n) have target function

f : {0, 1}n → {1,−1}. Assume LD(H) ≤ ℓ. Then exists g ∈ H such that

LD(g) ≤ (1 + β) · ℓ,

and ĝ>0 = {T : |ĝ(T )| > 0} ⊆ f̂≥τ with τ :=
√

β·ℓ
t

.

Proof. Because LD(H) ≤ ℓ, there exists a function w ∈ H such that LD(w) ≤ ℓ. Let
ŵ>0 = {T : |ŵ(T )| > 0}. Consider the function

g(x) =
∑

T ∈(ŵ>0∩f̂≥τ)
f̂(T )χT (x).
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Clearly, g is t-sparse (because w is t-sparse), and ĝ>0 ⊆ f̂≥τ . Furthermore, we have

LD(g) = Ex∈{0,1}n

[
(f(x)− g(x))2

]
=

∑
T ⊆[n]

(
f̂(T )− ĝ(T )

)2
(Parseval’s identity)

=
∑

T /∈(ŵ>0∩f̂≥τ)

(
f̂(T )− ĝ(T )

)2

=
∑

T /∈ŵ>0

f̂ 2(T ) +
∑

T ∈ŵ>0\f̂≥τ

f̂ 2(T ).

We bound each sum separately.∑
T /∈ŵ>0

f̂ 2(T ) =
∑

T /∈ŵ>0

(
f̂(T )− ŵ(T )

)2
≤

∑
T ⊆[n]

(
f̂(T )− ŵ(T )

)2
= LD(w) ≤ ℓ,

and ∑
T ∈ŵ>0\f̂≥τ

f̂ 2(T ) ≤ |ŵ>0| · τ 2 ≤ t · βℓ

t
= βℓ.

Proof of Claim B.7.1. Observe that

LD(h) = E
[
(f(x)− h(x))2

]
=
∑
T ∈L

(
f̂(T )− ĥ(T )

)2
+
∑
T /∈L

f̂ 2(T ),

and the first sum is bounded by∑
T ∈L

(
f̂(T )− ĥ(T )

)2
≤ |L| · ε

2|L| = ε

2 .

Therefore, to complete the proof it suffices to show that ∑T /∈L f̂ 2(T ) ≤ LD(H) + ε
2 .

Invoking Claim B.7.2 with β := ε
2 and ℓ := max{LD(H), ε

4}, there exists a t-sparse function
g : {0, 1}n → R such that

LD(g) ≤ (1 + β)ℓ ≤ LD(H) + ε

2 ,

and ĝ>0 = {T : |ĝ(T )| > 0} ⊆ f̂≥τ with τ :=
√

εℓ
2t
≥ ε

4t
. This entails that∑

T /∈L

f̂ 2(T ) ≤
∑

T ∈f̂<τ

f̂ 2(T )

≤
∑

T ⊆[n]

(
f̂(T )− ĝ(T )

)2

= E
[
(f(x)− g(x))2

]
≤ LD(H) + ε

2 .
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B.8 Random Matrices Have Full Rank
Claim B.8.1. Let τ > 0, n ∈ N. If τ ≥ 2− n

10 then

n

τ 42n
≤ 1

128 log
(

n
τ4

)
for n large enough.

Proof.
τ ≥ 2−0.1n =⇒ τ 8 ≥ 2−0.8n ≥ 128n log(n)

2n
=⇒ 2nτ 8

n
≥ 128 log(n)

=⇒ 2nτ 4

n
≥ 1

τ 4 128 log(n) ≥ 128 log
(

n

τ 4

)
.

Claim B.8.2. Let n, m ∈ N, τ ≥ 2− n
10 , m ≤ log

(
32n
τ4

)
. Let X = {x1, . . . , xm} be a set of m

vectors chosen independently and uniformly from (F2)n. Then with probability at least 3
4 , the

set X is linearly independent for n large enough.

Proof. Think of the vectors as being chosen one by one. The probability that the first vector
is non-zero is

2n − 1
2n

,

because we can choose any vector except 0. The probability that vector xk+1 is linearly
independent of the first k vectors is

2n − 2k

2n
,

because we can choose any vector not in span({x1, . . . , xk}). Because the choices are made
independently, the probability that all m vectors are linearly independent is

2n − 20

2n
· 2

n − 21

2n
· · · 2

n − 2m−1

2n
≥
(2n − 2m

2n

)m

≥
(

2n − 32n
τ4

2n

)m

=
(

1−
32n
τ4

2n

)m

=
1− 1

4 log
(

n
τ4

)
log( n

τ4 )
≥ 1− 1

4 ,

where the last inequality is Bernoulli’s inequality.
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Appendix C

Appendices for Chapter 5

C.1 Protocol for Unions of Intervals
The verification protocol for unions of d-intervals is detailed in Protocol C.1.

C.2 Verification of Statistical Query Algorithms

Definitions
Statistical Query Algorithms

Definition C.2.1 (Kearns, 1998). Let Ω be a set, let D ∈ ∆(Ω) be a distribution, and let
τ ≥ 0. A statistical query is an indicator function q : Ω→ {0, 1}. An oracle O is a statistical
query oracle for D with precision τ , denoted O ∈ SQ(D, τ), if at each invocation, O takes a
statistical query q as input and produces an arbitrary evaluation O(q) ∈ [0, 1] as output such
that ∣∣∣O(q)− EX∼D[q(X)]

∣∣∣ ≤ τ. (C.1)
In particular, the oracle’s evaluations may be adversarial and adaptive, as long as each of
them satisfies Eq. (C.1).

Remark C.2.2. The notion of PAC verification of an algorithm (Definition 5.2.3) requires
that the verifier’s output be competitive with LD(A) = E

[
LD
(
AO

)]
, the expected loss of

algorithm A when executed with access to oracle O. For this expectation to be defined,
throughout this chapter we only consider oracles whose behavior can be described by a probability
measure. In particular, oracles may be adaptive and adversarial in a deterministic or
randomized manner, but they cannot be arbitrary.

Definition C.2.3. A statistical query algorithm is a (possibly randomized) algorithm A that
takes no inputs and has access to a statistical query oracle O. At each time step t = 1, 2, 3, . . . :
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• A chooses a finite batch qt = (q1
t , . . . , qnt

t ) of statistical queries and sends it to the oracle
O.

• O sends a batch of evaluations vt = (v1
t , . . . , vnt

t ) ∈ [0, 1]nt to A, such that vi
t = O(qi

t)
for all i ∈ [nt].

• A either produces an output and terminates, or continues to time step t + 1.

The resulting sequence r = (q1, v1, q2, v2, . . . ) is called a transcript of the execution.

Note that for each t, the choice of qt is a deterministic function of (r<t, ρ), where

r<t = (q1, v1, q2, v2, . . . , qt−1, vt−1),

and ρ denotes the randomness of A. If A terminates, its final output is a deterministic
function of (r, ρ).

The Partition Size

Definition C.2.4. Let Ω be a set, and let S ⊆ 2Ω be a collection of subsets. We say that S
is a σ-algebra for Ω if it satisfies the following properties:

• Ω ∈ S.

• ∀S ⊆ S : Ω \ S ∈ S.

• For any countable sequence S1, S2, . . . ∈ S : ∪∞
i=1 Si ∈ S.

Definition C.2.5. Let Ω be a set.

• Let A ⊆ 2Ω be a collection of subsets. The σ-algebra generated by A for Ω, denoted
σ(A), is the intersection of all σ-algebras for Ω that are supersets of A.

• Let F ⊆ {0, 1}Ω be a set of indicator functions. The σ-algebra generated by F for Ω is
σ(F) = σ ({A ⊆ Ω : 1A ∈ F}).

Definition C.2.6. Let S be a σ-algebra. The set of atoms of S is

Atoms(S) = {S ∈ S : (∀S ′ ∈ S \∅ : S ′ ̸⊂ S)} .1

Definition C.2.7. Let Ω be a set and let F = {f1, f2, . . . , fk} ⊆ {0, 1}Ω be a finite set of
indicator functions. The partition size of F is PS(F) = |Atoms(σ(F))| ∈ N, i.e., the number
of atoms in the σ-algebra generated by F for Ω.

1S′ ̸⊂ S denotes that S′ is not a strict subset of S.
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Formal Statements
Theorem C.2.8 (PAC Verification of an SQ Algorithm). Let b, s ∈ N, let Ω be a set and H
be a discrete set. Let A be a statistical query algorithm that adaptively and randomly generates
some random number T of batches q1, . . . , qT of statistical queries Ω→ {0, 1} such that with
probability 1, T ≤ b and PS(qt) ≤ s for each t ∈ [T ], and the algorithm outputs a random
value h ∈ H. Let D ⊆ ∆(Ω) be a set of distributions, let τ > 0, and let L : Ω×H → [0, 1] be
a loss function.

Then there exists a collection of oracles O = {OD}D∈D where OD ∈ SQ(D, τ) for all
D ∈ D, such that algorithm A with access to oracles O is PAC verifiable with respect to D
by a verification protocol that uses random samples, where the verifier and honest prover
respectively use

mV = Θ
(√

s log(bk/δ)
τ 2 + log(k/δ)

ε2

)
,

and
mP = Θ

(
s3 log(sbk/δτ)

τ 2

)
i.i.d. samples, with k = ⌈8 log(4/δ)/ε⌉.

As a corollary, we obtain that for statistical query algorithms of a particular type, the
sample complexity of PAC verification has a quadratically lower dependence on the VC
dimension of the batches of statistical queries compared to simulating the algorithm using
random samples.

Corollary C.2.9. Let A be a statistical query algorithm as in Theorem C.2.8, and let d ∈ N.
Assume that in each time step t ∈ [T ], VC(qt) = d and |qt| = 2d. Namely, qt is the set
of indicator functions of a σ-algebra with d atoms. Consider an implementation of A that
uses random samples to simulate the SQ oracle accessed by A, such that the implementation
uses random samples only and does not use any oracles. Simulating an oracle O ∈ SQ(D, τ)
requires

m = Ω
(

d + log(1/δ)
τ 2

)
i.i.d. samples from D. In contrast, there exists a protocol that PAC verifies A such that the
verifier uses only

mV = Θ
(√

d log(bk/δ)
τ 2 + log(k/δ)

ε2

)
i.i.d. samples from D, with k = ⌈8 log(4/δ)/ε⌉.

The lower bound in the corollary is the standard VC lower bound.
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Proofs
Definition C.2.10. Let A be a statistical query algorithm, let D be a collection of distributions,
and let ε, τ > 0. We say that a collection of oracles O = {OD}D∈D is ε-maximizing with respect
to A and D if for each D ∈ D, OD ∈ SQ(D, τ) and E

[
LD
(
AOD

)]
≥ supO∈SQ(D,τ) E

[
LD
(
AO

)]
−

ε.

Proof of Theorem C.2.8. Fix a collection of oracles O = {OD}D∈D that is ε/4-maximizing
with respect to A and D. We show that algorithm A with access to the oracles O is PAC
verified by Protocol C.2.

To establish completeness, notice that each batch at of queries sent to the prover by
VerifierIteration satisfies VC(at) = 1, and there are at most b · k such batches. Hence, by
Theorem 5.4.3 and a union bound, taking mP as in the statement is sufficient to guarantee
that with probability at least 1− 1/4,

∀ iteration i ∈ [k] ∀t ∈ [T ] : ∥p̃t − pt∥∞ ≤
τ

s
√

s
,

where pt is the vector of correct evaluations, with components pj
t = EZ∼D

[
aj

t(Z)
]
. Hence,

with probability at least 1− 1/4,

∀ iteration i ∈ [k] ∀t ∈ [T ] : ∥p̃t − pt∥1 ≤
τ√
s

. (C.2)

By Eq. (C.2), Theorem 5.4.1, and the choice of mV , with probability at least 1− 1/4, none of
the executions of IdentityTest cause the verifier to reject.

By a union bound, with probability at least 1− 1/2, Eq. (C.2) holds and the verifier does
not reject. Then, by Lemma C.2.11,

∀i ∈ [k] : P
[
LD(hi) ≤ LD(A) + ε

2

]
≥ ε

8 . (C.3)

By the choice of k,

P
[
∀i ∈ [k] : LD(hi) > LD(A) + ε

2

]
≤
(

1− ε

8

)k

≤ e−εk/8 ≤ 1
4δ. (C.4)

By Hoeffding’s inequality, a union bound, and the choice of mV ,

P
[
∀i ∈ [k] :

∣∣∣LS′
V

(hi)− LD(hi)
∣∣∣ ≤ ε

2

]
≥ 1− 1

4δ. (C.5)

Combining Eqs. (C.2), (C.4) and (C.5) via a union bound, we conclude that with probability
1− 1, the verifier does not reject and it outputs h ∈ H such that LD(h) ≤ LD(A) + ε. This
establishes completeness.

To establish soundness, consider an interaction between the verifier of Protocol C.2 and
any deterministic or randomized (possibly malicious and computationally unbounded) prover
P ′, and examine the following two events.
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• Event I: the evaluations provided by P ′ satisfy

∀ iteration i ∈ [k] ∀t ∈ [T ] : ∥p̃t − pt∥1 ≤ τ. (C.6)

If the verifier does not reject then Lemma C.2.11 implies that Eq. (C.3) holds. As we
saw in the proof for the completeness requirement, this implies that with probability at
least 1− 1, the verifier outputs h ∈ H such that LD(h) ≤ LD(A) + ε.

• Event II: there exists an iteration i ∈ [k] containing a time step t∗ ∈ [T ] such that
∥p̃t∗ − pt∗∥1 > τ . By Theorem 5.4.1 and the choice of mV , with probability at least
1− 1/4 the verifier rejects in time step t∗.

We conclude that in both cases,

PSV ∼DmV [h = reject ∨ LD(h) ≤ LD(A) + ε] ≥ 1− δ,

and this establishes soundness.

Lemma C.2.11. In the context of Theorem C.2.8, fix a distribution D ∈ D and let OD ∈
SQ(D, τ) be an oracle such that

E
[
LD
(
AOD

)]
≥ sup

O∈SQ(D,τ)
E
[
LD
(
AO

)]
− ε/4.

Consider an execution of VerifierIteration (Protocol C.3). Let G denote the event in
which the verifier does not reject, and the query evaluations p̃t provided by the prover satisfy

∀t ∈ [T ] : ∥p̃t − pt∥1 ≤ τ, (C.7)

where pt is the vector of correct evaluations pi
t = EZ∼D[ai

t(Z)]. Then the output hi ∈ H
returned by VerifierIteration satisfies

P
[
LD(hi) ≤ E

[
LD
(
AOD

)]
+ ε

2

∣∣∣∣ G
]
≥ ε

8 . (C.8)

Proof. Let OG denote the oracle with evaluations that are equal in distribution to the
evaluations provided by the prover conditioned on event G occurring. By the choice of OD,

E[LD(hi) | G] = E
[
LD
(
AOG

)]
≤ E

[
LD
(
AOD

)]
+ ε/4.

By Markov’s inequality,

P
[
LD(hi) > E

[
LD
(
AOD

)]
+ ε/2

∣∣∣ G
]
≤ P

[
LD(hi) > E[LD(hi) | G] + ε/4

∣∣∣ G
]

≤ E[LD(hi) | G]
E[LD(hi) | G] + ε/4

≤ 1
1 + ε/4 ,
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since LD is at most 1. Hence, the complement satisfies

P
[
LD(hi) ≤ E

[
LD
(
AOD

)]
+ ε

2

∣∣∣∣ G
]
≤ ε/4

1 + ε/4 ≤
ε

8 ,

as desired.

C.3 Concentration of Measure
Theorem C.3.1 (Hoeffding, 1963). Let a, b, µ ∈ R and m ∈ N. Let Z1, . . . , Zm be a sequence
of i.i.d. real-valued random variables and let Z = 1

m

∑m
i=1 Zi. Assume that E[Z] = µ, and for

every i ∈ [m], P[a ≤ Zi ≤ b] = 1. Then, for any ε > 0,

P[|Z − µ| > ε] ≤ 2 exp
(
−2mε2

(b− a)2

)
.
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Assumptions:

• d, 1/ε ∈ N (this can always be achieved by making ε smaller if necessary),
k = 12d/ε.

• mP = O((d2 log(d/ε) + log(1/δ))ε−4) is a multiple of k.
• mV = O

(√
d log(1/δ)ε−2.5

)
.

• SV ∼ DmV , SP ∼ DmP .
• D ∈ ∆([0, 1]× {0, 1}) is an unknown target distribution.

Prover(SP , δ, ε):
I1, I2, . . . , Ik ← a partition of [0, 1] into disjoint intervals such that ∪i∈[k]Ii = [0, 1]

and ∀j ∈ [k] : |{xP
1 , . . . , xP

mP
} ∩ Ij| = mP /k.

for j ∈ [k]:
for b ∈ {0, 1}:

P̃j,b ← |{(x, y) ∈ SP : x ∈ Ij ∧ y = b}|/mP ▷ Counted as a multiset
send (I1, . . . , Ik) and

(
P̃j,y

)
j∈[k],y∈{0,1}

to the verifier

Verifier(SV , δ, ε):
receive (I1, . . . , Ik) and

(
P̃j,y

)
j∈[k],y∈{0,1}

from the prover

if ∃j ∈ [k] s.t. P̃j,0 + P̃j,1 ̸= 1/k:
output reject and terminate

x∗
1, . . . , x∗

k ← arbitrary points such that ∀j ∈ [k] : x∗
j ∈ Ij

execute the tester of Theorem 5.4.1 with parameters ε/6, δ/2 where P , P̃ ∈
∆([0, 1]× {0, 1}) are as follows:

- P is the distribution generated by sampling (x, y) ∼ D and then outputting
(x∗, y) where x∗ = x∗

j such that x ∈ Ij

- P̃ is the distribution such that P
[
(x∗

j , y)
]

= P̃j,y for all j ∈ [k], y ∈ {0, 1}

if distribution identity tester rejects:
output reject and terminate

h← arg minh′∈Hd
L0-1

P̃ (h′)
output h

Protocol C.1: Verification protocol for unions of d-intervals.
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Assumptions:

• Ω is a set, D ∈ ∆(Ω) is the population distribution.

• A is a statistical query algorithm to be verified.

• τ ∈ (0, 1) is the accuracy parameter for statistical queries used by A.

• b ∈ N is an upper bound on the number of statistical query batches generated
by A.

• ε, δ ∈ (0, 1) are the desired accuracy and confidence parameters for the verifica-
tion.

• k = ⌈8 log(4/δ)/ε⌉.

• mV = Θ(
√

s log(bk/δ)τ−2 + log(k/δ)ε−2).

• mP = Θ(s3 log(sbk/δτ)τ−2).

• SV , S ′
V ∼ DmV , SP ∼ DmP are independent sets of i.i.d. samples.

• SV = (zV
1 , . . . , zV

mV
), S ′

V = (zV ′
1 , . . . , zV ′

mV
), SP = (zP

1 , . . . , zP
mP

).

Verifier(SV , S ′
V ):

for i ∈ [k]:
hi ← VerifierIteration(SV ) ▷ Protocol C.3

i∗ ← arg mini∈[k] LS′
V

(hi)
output hi∗

Prover(SP ):
loop forever:

q ← receive query from verifier
v ← 1

mP

∑
i∈[mP ] q (zP

i )
send v to verifier

Protocol C.2: A PAC verification protocol for statistical query algorithms.
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Assumptions: As in Protocol C.2.

VerifierIteration(SV ):
for t← 1, 2, . . . :

simulate A until it sends a batch of queries or produces an output
if A sends a batch of queries qt:

if t ≥ b:
output reject and terminate

at ← Atoms(σ(qt))
send at to prover
receive p̃t from prover
IdentityTest(SV , at, p̃t, τ)
ṽt ← evaluations for qt induced by p̃t

send ṽt to A
else if A produces output h:

return h

IdentityTest(SV , at, p̃t, τ):
for j ∈ [mV ]:

ij ← i ∈ [|at|] such that ai
t(zV

j ) = 1
execute the distribution identity tester of Theorem 5.4.1

with sample I = (i1, . . . , imV
) to distinguish with

probability at least 1− εδ/4b between

TV(p̃t, pt) ≤
τ

2
√
|at|

, and τ ≤ TV(p̃t, pt)

where pt is the distribution that generated I

if identity tester rejects:
output reject and terminate

Protocol C.3: A subroutine of Protocol C.2.
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