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Abstract of the Dissertation

Neural Signal Processing:

Electrode-based Brain Imaging, Focalized

Neural Stimulation, and Neural Dynamics Study

by

Ying Li

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2017

Professor Wentai Liu, Chair

Simultaneous neuroimaging and neurostimulation provides a powerful tool for monitoring the

functional state of the nervous system as well as treating neural diseases. The neuroimaging

is able to obtain real-time information of the targets, and provides a dynamic guidance for

the neurostimulation, so that the underlying neural network can be modulated with high

precision.

The first part of this thesis aims to develop EEG-based brain imaging algorithms with

high reconstruction accuracy and speed. EEG brain imaging is able to produce brain images

with excellent temporal resolution (∼ms), and is therefore a good candidate for studying the

dynamic brain states. However, the corresponding EEG inverse problem is highly ill-posed,

thus requiring regularization techniques to impose additional constraints to obtain a pre-

cise result. We have developed two novel EEG-based brain imaging methods (s-SMOOTH

and gFOTV) using sparse regularizations based on the compressed sensing principle - these

methods demonstrate better performance than the state-of-the-art methods in terms of re-

construction accuracy, localization accuracy, and focalization degree. Furthermore, in order

to obtain real-time brain images, a novel parallel computing algorithm has been developed

to accelerate the image reconstruction speed.
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The second part aims to develop optimization methods for noninvasive electrical stimu-

lation, so as to provide high focal accuracy and desired intensity at the target under specific

constraints. Conventional optimization methods either maximize the intensity at the tar-

get, resulting in low focal accuracy, or maximize the focal accuracy at the expense of low

intensity. We have developed a novel optimization method called Stimulation with Optimal

Focality and Intensity (SOFI), which provides both high intensity and focal accuracy within

the safety constraints. We apply this method to transcranial current stimulation (tCS) and

transcutaneous spinal cord stimulation (tSCS).

The last part further studies the neural dynamics with advanced time-frequency analy-

sis techniques. We employ an accurate time-frequency analysis approach - Hilbert Huang

Transform (HHT) - which is able to deal with nonstationary and nonlinear signals such as

EEG/ECoG. We have demonstrated that it achieves better results than the widely used

method - Fourier Transform (FT) - by comparing them in the applications of seizure detec-

tion and cross-frequency coupling.

iii



The dissertation of Ying Li is approved.

Richard Joseph Staba

Ian Cook

Daniel T. Kamei

Wentai Liu, Committee Chair

University of California, Los Angeles

2017

iv



To my parents and my dearest Shuo. . .

for their endless love and support.

v



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Electrode-based Brain Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction: EEG Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Realistic Head Model Construction . . . . . . . . . . . . . . . . . . . 8

2.1.3 Two Groups of Inverse Methods: Dipolar and Distributed Models . . 9

2.2 Inverse Methods for Distributed Model . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 L2-norm Based Regularization . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Sparse Regularization: L0 and L1 Regularizations . . . . . . . . . . . 11

2.2.3 Sparsity on Transform Domain . . . . . . . . . . . . . . . . . . . . . 11

2.3 Quantitative Evaluation of the Inverse Methods . . . . . . . . . . . . . . . . 12

2.4 Effect of Various Factors on EEG Brain Imaging . . . . . . . . . . . . . . . . 13

3 Variational EEG Brain Image Reconstruction . . . . . . . . . . . . . . . . . 17

3.1 Sparsity on High Order Spatial Derivative: Total Generalized Variation (TGV) 18

3.2 Voxel-based Total Generalized Variation (vTGV) for Smoothness Enhancement 19

3.3 L1−2 Regularization for Sparsity Enhancement . . . . . . . . . . . . . . . . . 22

3.4 s-SMOOTH: Sparsity and Smoothness Enhanced Brain Tomography . . . . . 23

3.4.1 Formulation and Algorithm . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Simulation Experiments and Results . . . . . . . . . . . . . . . . . . 29

3.4.3 Application to Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



4 Acceleration of EEG Brain Image Reconstruction . . . . . . . . . . . . . . 46

4.1 Sparsity on Fractional-Order Derivative: Fractional-Order Total Variation

(FOTV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Graph Fractional-Order Total Variation (gFOTV) . . . . . . . . . . . . . . . 48

4.3 gFOTV: Graph Fractional-Order Total Variation EEG Source Reconstruction 49

4.3.1 Formulation and Algorithm . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Parallel Computation to Accelerate the Algorithm . . . . . . . . . . . . . . . 54

4.4.1 Fast Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Focalized Multi-Electrode Stimulation with Optimization Techniques . . 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Transcranial Current Stimulation (tCS) . . . . . . . . . . . . . . . . . 63

5.1.2 Transcutaneous Spinal Cord Stimulation (tSCS) . . . . . . . . . . . . 65

5.2 Focalized Multi-Electrode Stimulation . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 Prior Arts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.3 SOFI: Stimulation with Optimal Focality and Intensity . . . . . . . . 69

5.3 Focalized Transcranial Current Stimulation (tCS) . . . . . . . . . . . . . . . 74

5.3.1 Realistic Head Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

vii



5.4 Focalized Transcutaneous Spinal Cord Stimulation (tSCS) . . . . . . . . . . 80

5.4.1 Realistic Spinal Cord Model . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Brain Dynamics Study with Accurate Time-Frequency Analysis . . . . . 94

6.1 Time-Frequency Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Fast Fourier Transform (FFT) . . . . . . . . . . . . . . . . . . . . . . 94

6.1.2 Hilbert-Huang Transform (HHT) . . . . . . . . . . . . . . . . . . . . 95

6.2 Seizure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.3 Results and Method Comparison . . . . . . . . . . . . . . . . . . . . 100

6.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Cross Frequency Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.3 Results and Method Comparison . . . . . . . . . . . . . . . . . . . . 109

6.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 EEG-based Brain Imaging . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.2 Focalized Noninvasive Stimulation . . . . . . . . . . . . . . . . . . . . 116

viii



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ix



List of Figures

2.1 Construction of a realistic head model from MRI. From outside in are: scalp

(gray), skull (white), brain (green), cortex surface (brown). . . . . . . . . . . 9

2.2 Top: comparison of different inverse algorithms with different electrode num-

bers (noise-free). One can see that more electrodes and better inverse meth-

ods help to improve the reconstruction accuracy. Bottom: performance of

the inverse method MNE under different noise levels. One can see that more

electrodes and better SNR result in higher reconstruction accuracy. . . . . . 15

2.3 Illustration of the ultra-dense electrode-based brain imaging system. . . . . 16

3.1 Illustration of piecewise polynomial current densities in 3D view and side view.

From top to bottom: impulse (sparse in itself), piecewise constant (sparse in

first spatial derivative), piecewise linear (sparse in second derivative), piece-

wise quadratic (sparse in third derivative). . . . . . . . . . . . . . . . . . . . 19

3.2 Illustration of three normal directions to a triangular voxel Λ. . . . . . . . . 20

3.3 Geometric interpretation of sparsity for various regularizations. From left to

right: `2, `1, `0.001 (used to approximate `0), and `1−2 when β = 1. The black

line corresponds to the linear constraint, the solid dot specifies the sparse

solution and the circular dot specifies the non-sparse solution. . . . . . . . . 23

3.4 Source localization results with different α3. Top: two sources with different

configurations. Bottom: two sources with different sizes. . . . . . . . . . . . 27

3.5 Influence of β on the image reconstruction results. (A) Two simulated sources.

(B) Influence of β on the reconstruction error. The larger the β, the smaller

the reconstruction error will be. (C) Influence of β on the sparsity term. β = 1

enhances the sparsity compared to β = 0. . . . . . . . . . . . . . . . . . . . 29

3.6 Various source configurations (side view) with a shape of Gaussian function

of different σ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

x



3.7 Source localization results of various methods on synthetic data with three

sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Influence of measurement noise. (A) Source localization results in the nearly

noiseless (30dB) and noisy (0dB) cases. (B) Quantitative evaluation of various

methods under different measurement noise levels. The plots show the average

results over 50 repeats, where the error bar represents standard deviation. . . 33

3.9 Influence of brain noise. (A) Source localization results in the nearly noiseless

(30dB) and noisy (0dB) cases. (B) Quantitative evaluation of various methods

under different brain noise levels. The plots show the average results across

50 repeats, where the error bar represents standard deviation. . . . . . . . . 35

3.10 Influence of source sizes. (A) Source localization results of various methods

for two sources with different source sizes. (B) Quantitative evaluation of

various methods with different source sizes. The average result of 50 repeats

is shown in the plots, where the error bar represents the standard deviation. 36

3.11 Influence of source configurations. (A) Source localization results of two

sources data with different configurations. (B) Quantitative results of var-

ious methods with different source configurations (σ2). The average result of

50 repeats is shown in the plots, where the error bar represents the standard

deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Whisker plots of various methods at different source locations. The red bar

represents the median value of 50 random locations. . . . . . . . . . . . . . 38

3.13 Localization results of visual P300 sources with different methods. . . . . . 41

3.14 Localization results of auditory P300 sources with different methods. . . . . 42

3.15 Comparison of Laplacian and vTGV operator. Top: two sources with differ-

ent configurations. Bottom: two sources with different sizes. The left panel

visualizes the source localization results. The vTGV operator provides accu-

rate results with intensity distribution closer to the ground truth. The right

panel shows the quantitative results. . . . . . . . . . . . . . . . . . . . . . . 44

xi



4.1 Source localization results of various methods on synthetic data with three

sources. The color scale gradation goes from blue being the minimum to red

being the maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Quantitative comparisons of various methods with different source sizes (av-

erage of 50 realizations of different noise configurations, where the error bar

shows the sample standard deviation). . . . . . . . . . . . . . . . . . . . . . 53

4.3 Comparison of gFOTV with s-SMOOTH. . . . . . . . . . . . . . . . . . . . . 54

4.4 Reconstructed brain images for various data sets (No. of electrodes × No. of

voxels). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Multi-threading speedup of computation. . . . . . . . . . . . . . . . . . . . . 61

5.1 Left: realistic head model with 64 electrodes on the scalp. Right: head model

after meshing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Simulated target and avoidance regions on the cortex surface. . . . . . . . . 76

5.3 Comparison of various transcranial current stimulation methods. The color

shows the intensity of the electrical field. . . . . . . . . . . . . . . . . . . . . 77

5.4 Comparison of various transcranial current stimulation methods. The color

shows the stimulation parameters at each electrode. . . . . . . . . . . . . . . 77

5.5 Comparison of LCMV and the proposed method with single target. . . . . . 78

5.6 Comparison of LCMV and the proposed method using multiple targets. . . . 79

5.7 Comparison of LCMV and the proposed method using single target with

avoidance region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 MR image of the torso. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Realistic spinal cord model based on individual MRI/CT image. . . . . . . . 81

5.10 Spinal cord model with the multi-electrode array. . . . . . . . . . . . . . . . 82

5.11 Spinal cord model after meshing. . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



5.12 Simulated target and avoidance regions. (a) single target. (b) multiple targets.

(c) one target region with one nearby avoidance region. . . . . . . . . . . . . 85

5.13 Method comparison. (a) stimulation parameter at each electrode; (b) intensity

of E-field at the white matter; (c) directional intensity in the desired direction. 85

5.14 Influence of target locations. (a) targeting bone; (b) targeting white matter. 87

5.15 Method comparison with target in the direction of z axis. (a) stimulation

parameter at each electrode; (b) intensity of E-field at the white matter; (c)

directional intensity in the desired direction. . . . . . . . . . . . . . . . . . . 88

5.16 Comparison of LCMV and the proposed SOFI method in the case of multiple

targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.17 Comparison of LCMV and the proposed SOFI method in dealing with avoid-

ance regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.18 Influence of the parameter λ in the proposed method on the stimulation re-

sults. (a) stimulation parameter at each electrode; (b) intensity of E-field at

the white matter; (c) directional intensity in the desired direction. . . . . . . 92

6.1 Top: A seizure signal from our database (red line is the seizure onset); Bottom:

all of the IMFs of the signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Flow chart of the three stages of our algorithm. . . . . . . . . . . . . . . . . 98

6.3 Frequency spectrum of FFT (left) and HHT(right). . . . . . . . . . . . . . . 99

6.4 Power trend of different frequency bands during a seizure. Left: FFT; Right:

HHT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 KNN classification. Two dimensions of the feature space (log-scale) are shown.

x is predicted as “seizure” by the KNN classifier. . . . . . . . . . . . . . . . 101

6.6 Signals of dataset A, D and E from Bonn database. . . . . . . . . . . . . . . 101

xiii



6.7 Classification of five seizure stages by firing pattern: Preictal = preictal stage,

Fast onset = initial fast EEG activity stage, Mixture = firing pattern transi-

tion stage, Ictal burst = fast-burst stage, Slow ictal burst = slow-burst stage. 108

6.8 Patient 1: PAC comodulogram comparisons between the conventional method

(left) and HHT method (right) in five seizure stages. HHT method displays

PAC comodulogram in IMF domain instead of traditional frequency domain,

and represents coupling phenomenon between certain two IMFs instead of

frequency bands. The color bar represents MI. Patient 2: PAC comodulogram

comparisons between the conventional method (left) and HHT method (right)

in five seizure stages. HHT method shows clear and regular PAC patterns

across different stages, while the conventional method does not. . . . . . . . 110

6.9 Comparisons between the two methods in ictal stage of patient 1 (top); and

histograms of the frequency range of 5th IMF (phase) and 1st-2nd IMFs (am-

plitude) in HHT method (bottom); showing the consistency of the two meth-

ods in terms of coupled frequency bands. . . . . . . . . . . . . . . . . . . . . 112

xiv



List of Tables

3.1 Parameter α1 used in different noise levels. . . . . . . . . . . . . . . . . . . . 27

4.1 Computation time in seconds. Columns 3 to 6 list the computation times of

single-threaded CVX, ADMM and the proposed algorithm Eq. (4.6) with one

thread and 16 threads, respectively. . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Conductivity value used for the realistic spinal cord model . . . . . . . . . . 83

6.1 Result of the A&E classification problem . . . . . . . . . . . . . . . . . . . . 102

6.2 Algorithms using Bonn database (A&E) . . . . . . . . . . . . . . . . . . . . 102

6.3 Result of the D&E classification problem . . . . . . . . . . . . . . . . . . . . 103

6.4 Algorithms using Freiburg database . . . . . . . . . . . . . . . . . . . . . . . 104

xv



Acknowledgments

I still remember a conversation five years ago when a friend told me with excitement that

there is a retina prosthesis device that can help blind people to see light. Shortly after that,

I happened to have a chance to talk to Kuanfu Chen, who introduced his lab to me and told

me that this lab is the first to work on the retina prosthesis device. At that moment, I had

a strong feeling that this is the lab I belong to. In the past few years, I feel very thankful

and proud to be a member of this lab, which is dedicated to enabling blind people to see,

enabling paralyzed people to walk, and treating patients with brain disorders.

First, I would like to express my highest respect and deepest gratitude to my advisor,

Prof. Wentai Liu, who provided me the valuable opportunity to work in this lab. He is a true

scholar who devotes all of his career to this very meaningful and exciting field, and is still very

passionate about it after all these years. From him, I learned how to become an independent

researcher who knows how to define problems and develop elegant solutions, who always

prepares to learn new things and who always holds the research to a high standard.

I also would like to thank my PhD committee members, Prof. Richard Staba, Prof. Ian

Cook, and Prof. Daniel Kamei, for their valuable time and insightful advice. I am grateful

to my collaborators, Prof. Jing Qin, Prof. Stanley Osher, Prof. Wotao Yin and Tianyu Wu.

All of this great work of brain imaging would be impossible without you. I am also thankful

to our collaborator Dr. Yue-Loong Hsin for providing us with a large amount of valuable

epilepsy and event-related potential data.

I want to thank my lab mates, Kuanfu Chen, Yi-Kai Lo, Chihwei Chang, Stanislav

Culaclii, Po-Min Wang, Luyao Chen, Hanyue Zhou, Yushan Wang, Yiwen Meng, and many

others. Thanks for your sincere friendship. The happy moments shared with you will always

stay in my memory. I would like to especially thank my lab mate Yi-Kai Lo, who provided

me selfless encouragement and support in my most difficult time. I also want to thank my

collaborators in the lab, Luyao Chen and Yushan Wang, for their help of the realistic models

in the focalized stimulation project.

I would like to thank my good friends outside the lab: Huihui Zhou, Beijia Li, Hong Lv,

xvi



Fangting Xia, Junzhu Su, Shan Jiang, and many others. Thanks for your constant support

and for making my graduate student life more iridescent.

Last but not the least, I would like to express my deepest love to my parents. Thanks

for teaching me so much wisdom to confront the beauty and frustration of life. Thanks for

being my harbor and telling me to never give up. I also want to thank my husband Shuo

Tan. Thanks for being such a wonderful boyfriend and husband. Thanks for your support

and companionship during both the good and hard times. Thanks for encouraging me to

pursue my dream and helping me to become a better self.

Chapter 3 is a version of [LLQ15] and [LQH16], Chapter 4 is a version of [LLQ15],

[LQO16] and [QWL16], Chapter 5 is a version of [LL16], and Chapter 6 is a version of

[LHL14] and [ZLH16]. Our research was supported in part by grants from California Capital

Equity LLC and UC Laboratory Research Fee Program.

xvii



Vita

2007-2011 B.S. Theoretical and Applied Mechanics, Peking University, China

2015 Fall Machine Learning Scientist Intern, Amazon Co. LLC, Seattle, WA

2016 M.S. Bioengineering, UCLA, Los Angeles, CA

Publications and Presentations

Jing Qin, Tianyu Wu, Ying Li, Wotao Yin, Stanley Osher, and Wentai Liu. “Acceler-

ated High-resolution EEG Source Imaging.” submitted to 8th International IEEE EMBS

Conference on Neural Engineering. IEEE, 2017.

Ying Li, and Wentai Liu. “Focalized Noninvasive Stimulation with Optimization Tech-

nique”, Provisional Patent Filed, UCLA Case No. UC-2017-497-1-LA.

Ying Li, Jing Qin, Yue-Loong Hsin, Stanley Osher, and Wentai Liu. “s-SMOOTH: Sparsity

and Smoothness Enhanced EEG Brain Tomography.” in Frontiers in Neuroscience, section

Brain Imaging Methods, 2016.

Ying Li, Jing Qin, Yue-Loong Hsin, Stanley Osher, and Wentai Liu. “Sparsity and Smooth-

ness Enhanced EEG Brain Imaging.” 2016 BMES Annual Meeting, Oct 5th-8th, Minneapolis,

MN.

Ying Li, Jing Qin, Stanley Osher, and Wentai Liu. “Graph Fractional-Order Total Varia-

tion EEG Source Reconstruction.” 2016 38th Annual International Conference of the IEEE

xviii



Engineering in Medicine and Biology Society. IEEE, 2016.

Hanyue Zhou, Ying Li, Yue-Loong Hsin, Wentai Liu. “Phase-Amplitude Coupling Analysis

for Seizure Evolvement Using Hilbert Huang Transform.” 2016 38th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2016.

Ying Li, Wentai Liu, Jing Qin, Chih-Wei Chang, and Yi-Kai Lo. “Ultra-Dense Electrode-

Based Brain Imaging System With High Spatial And Temporal Resolution”, Patent Filed,

Serial No. PCT/US2016/050452, UCLA Case No. UC-2016-151-2-LA-FP.

Ying Li, Yue-Loong Hsin, and Wentai Liu. “Comparison study of seizure detection using

stationary and nonstationary methods.” 2014 36th Annual International Conference of the

IEEE Engineering in Medicine and Biology Society. IEEE, 2014.

xix



CHAPTER 1

Introduction

Functional neural imaging is able to evaluate brain function, e.g., memory and cognition, as

well as help diagnose brain disorders, e.g., epilepsy, depression, schizophrenia and Alzheimer′s

disease. However, it is unable to treat the neural disorders by itself. The neural stimulation

has been developed to treat neural diseases by intervening with the nervous system, especially

for drug-resistant patients, but the location information of the targets is usually unknown

in most applications. Recently, it has been realized that the combination of these two

techniques can provide more effective stimulation [CCM12]. The neural imaging can provide

target information to guide the neural stimulation. In addition, during the stimulation, the

neural imaging can also monitor the change of functional states, and provide this feedback to

the stimulation algorithm so as to adjust the parameters dynamically. Therefore, concurrent

neural imaging and stimulation provides a powerful tool for monitoring the functional state of

the nervous system, as well as treating neural diseases. This thesis aims to develop advanced

optimization methods to provide brain images with high temporal and spatial resolution, as

well as focalized neural stimulation with high precision.

For neural imaging, there have been various functional imaging modalities such as fMRI,

PET, SPECT, and EEG-based imaging. Compared to the hemodynamic-based imaging

techniques, the EEG-based brain imaging is especially interesting for guiding a dynamic

stimulation, since it provides excellent temporal resolution (∼ms). In addition, the device

is lightweight and portable, and therefore is more suitable for applications that requires a

natural habitual environment. However, the corresponding EEG inverse problem is an ill-

posed one that has infinitely many solutions. This is due to the limited number of EEG

sensors as well as noise contamination in the recorded signals. To obtain a unique solution,
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regularizations can be incorporated to impose additional constraints on the solution. An

appropriate choice of regularization is critically important for the reconstruction accuracy of

the brain image. The first contribution of this dissertation develops various novel EEG brain

imaging algorithms with advanced sparse regularizations, which provide brain images with

high reconstruction accuracy and fast speed. For neural stimulation, we focus on noninvasive

electrical stimulation techniques, which do not require surgery for implanting the electrodes.

The traditional noninvasive stimulation techniques employ two large electrodes, in which the

current flow is non-focal and thus a large area is activated. Recently, multi-electrode arrays

have been adopted for noninvasive stimulation to obtain multi-site stimulation, which have

been demonstrated to be more effective. With multiple electrodes, the stimulation parame-

ters at each electrode can also be optimized to achieve more focal and precise stimulation.

The second contribution of this dissertation develops optimization algorithms to provide

noninvasive stimulation of the nervous system with high intensity and focal accuracy. Fur-

thermore, it is important to understand the dynamics of the underlying neural networks

not only from time domain but also in frequency domain. The third contribution of this

dissertation focuses on employing advanced time-frequency analysis methods to study the

dynamics of the nervous system with high accuracy.

Chapter 2 introduces the background of EEG-based brain imaging. The mathematical

formulation of the EEG inverse problem is introduced, and two groups of EEG inverse meth-

ods as well as various regularization techniques are presented. The inverse methods with

the widely used `2-norm regularization [HHI93, Pas02] have the limitation that the recon-

structed sources are spread out, resulting in a brain image with low spatial resolution. To

obtain a more focal source, methods with sparse regularizations, including `0-norm and `1-

norm regularizations [UHS99, DH08], were proposed to impose sparsity on the source, which

are demonstrated to greatly improve the focalization degree of the source. However, the

reconstructed source by these methods is over-focused, therefore these methods fail to esti-

mate the extent of the sources. To address this issue, efforts have been devoted to exploring

sparsity in transform domains of the current density, such as the spatial Laplacian domain

[HNZ08, VMS08, CNH10], wavelet-basis domain [CNH10, LZD12, ZZD14], Gaussian-basis
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domain [HTD11], or variation domain [ACK05, Din09, Gra09, LBM11, BAC14, SLW16]. To-

tal variation (TV) regularization based brain imaging method was proposed recently, which

imposes sparsity on the spatial gradient rather than the current density itself. It solves the

over-focused problem of `0-norm or `1-norm based methods and is able to estimate the extent

of the sources. Unfortunately, due to its piecewise constant assumption, the intensity of the

reconstructed source is almost uniform.

Chapter 3 presents a novel Sparsity and SMOOthness enhanced brain TomograpHy (s-

SMOOTH) method to improve reconstruction accuracy of brain images, by employing ad-

vanced variational regularization techniques. More specifically, a voxel-based total gener-

alized variation (vTGV) regularization is employed to promote sparsity on the high-order

spatial derivative, and the `1−2 regularization is utilized to impose sparsity on the cur-

rent density itself. The total generalized variation (TGV) regularization [BKP10] has been

shown to outperform the Laplacian-based, wavelet-based, and TV-based regularizations in

compressive sensing MRI reconstruction [KBP11, QG13, GQY14], image deconvolution and

denoising [BKP10, QYW14]. Comparing to its basis, the TV, the TGV incorporates in-

formation of higher-order derivatives, and therefore is better suited for modeling piecewise

smooth functions [BBB13, BH14]. Notice that the traditional TGV is defined on a 2D image

and its extension to an irregular surface is challenging. In order to deal with the 3D cortex

surface, we define a voxel-based TGV (vTGV) regularization which extends the definition

of the second order TGV from 2D image to an irregular triangular mesh such as the cortical

surface. vTGV enhances the smoothness of the brain image and reconstructs the spatial dis-

tribution of the current density more precisely. Meanwhile, motivated by the performance

of the `1−2 regularization in compressive sensing reconstruction and other image processing

problems [ELX13, LYH15, YLH15], we incorporate the `1−2 regularization into the objective

function. Numerical experiments show that `1−2 regularization provides faster convergence

and yields sparser source images than the `1-norm regularization. Furthermore, by apply-

ing the difference of convex function algorithm (DCA) and alternating direction method of

multipliers (ADMM), we derive an efficient numerical algorithm to solve the corresponding

optimization problem. A variety of simulation tests on Gaussian-shaped sources with var-
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ious noise levels, source sizes, source configurations and locations show that the proposed

approach results in better performance than the state-of-the-art methods in terms of total

reconstruction accuracy, localization accuracy, and focalization degree. The tests on audi-

tory and visual P300 data further demonstrate that the proposed method is able to preserve

high order smoothness and produce brain images with higher spatial resolution.

Chapter 4 focuses on developing accelerated EEG brain imaging method without sac-

rificing the reconstruction accuracy. For the s-SMOOTH method presented in Chapter 3,

although it provides high-quality brain images, its computation is relatively large due to the

two complicated regularization terms, which limits its application in real-time brain state

monitoring. To address this issue, we propose another novel EEG source reconstruction

method based on the Fractional-Order Total Variation (FOTV) to reconstruct brain im-

ages with similar accuracy but relatively low computational cost. FOTV has been recently

proposed to solve image processing problems [RHZ13, CSZ13]. Different from TV which

imposes sparsity of first-order spatial derivatives, FOTV can choose a more flexible and ele-

gant smoothness order for the underlying source by imposing sparsity of α-order derivatives

(α > 0). Therefore, the proposed method is capable of reconstructing the brain image with

higher-order smoothness and preserving natural intensity changes of the brain image. As a

consequence, the localization accuracy of peaks is greatly improved compared to TV-based

methods. In order to extend the traditional FOTV defined on a 2D rectangular grid to an

irregular cortex surface, we treat the cortex surface as a graph and define a novel graph

FOTV (gFOTV) using the shortest paths on the graph. In fact, TV-based methods can

be considered as a special case in our proposed framework when α = 1. In addition, we

derive an efficient algorithm using the alternating direction method of multipliers (ADMM).

Finally, a large variety of simulations are conducted with different source sizes using a real-

istic head model. The proposed method is compared with several state-of-the-art ones both

qualitatively and quantitatively, which demonstrates superior performance in terms of total

reconstruction accuracy, spatial resolution, and localization accuracy. Moreover, in order to

further accelerate the brain imaging process, we develop a parallel algorithm by applying

the Chambolle-Pock and ARock algorithms along with diagonal preconditioning. A variety
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of experiments show that the proposed algorithms have more rapid convergence than the

state-of-the-art methods and have the potential to achieve real-time temporal resolution.

Chapter 5 develops optimization algorithms for multi-electrode noninvasive neural stim-

ulation, including transcranial current stimulation (tCS) and transcutaneous spinal cord

stimulation (tSCS). For tCS, the current optimization algorithms either maximize the target

intensity at the expense of low focal accuracy, or optimize the focality resulting in relatively

low target intensity. We propose a novel Stimulation with Optimal Focality and Intensity

(SOFI) method, which is able to optimize both the intensity and focality of the target at

the same time. A large amount of simulation results demonstrate that the SOFI method is

able to achieve focalized stimulation, and it also provides better results than state-of-the-

art methods in terms of target intensity, focality, and localization accuracy. For tSCS, the

current methods either use two-electrode montage or multi-electrode array with empirical

stimulation parameters, which result in non-focal current flow at the target. We construct a

realistic spinal cord model based on structural MRI and apply SOFI to design optimal stim-

ulation parameters for each electrode. We demonstrate that it is able to stimulate multiple

targets as well as avoid certain regions with high focal and localization accuracy. To the

best of our knowledge, this is the first method that designs optimal stimulation parameters

for tSCS to achieve focalized stimulation with an array of stimulation electrodes.

Chapter 6 focuses on studying the brain dynamics with advanced time-frequency anal-

ysis technique. Fast Fourier Transform (FFT) is widely used for frequency analysis, which

assumes that the signal is stationary and linear. However, most bio-signals, such as EEG

and ECoG, are nonstationary and nonlinear; therefore, FFT may introduce some inaccuracy

to the results. In this dissertation, we propose to use the Hilbert-Huang Transform (HHT),

an advanced time-frequency analysis technique that is able to deal with non-stationary and

nonlinear signals. We demonstrate that the HHT outperforms FFT in the application of

seizure detection and cross-frequency coupling (CFC). For seizure detection, HHT method

provides a higher detection accuracy than FFT method with the same set of features. In the

application of CFC, HHT provides more regular and stronger coupling patterns than FFT.

Chapter 7 summarizes the dissertation and points out some future directions.
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CHAPTER 2

Electrode-based Brain Imaging

In this chapter, we review the background of EEG brain imaging. EEG brain imaging

enables us to reconstruct the current density in the brain from the electrical measurements

with excellent temporal resolution (∼ ms). To reconstruct brain images from the EEG

signal, we need to solve the so-called EEG inverse problem.

First, we introduce the mathematical formulation of the EEG inverse problem, the pro-

cedures of constructing a realistic head model, and two large groups of inverse methods. A

big challenge of solving the EEG inverse problem is that the problem is highly ill-posed,

due to the relatively small number of electrodes compared to that of the potential dipole

locations. To obtain a unique and precise solution, regularizations can be incorporated to

impose additional constraints on the solution. We introduce the widely used `2-norm based

regularization that uses `2 norm as the regularization term. However, the methods based

on `2-norm regularization tend to generate a brain image with very low spatial resolution.

We then present several sparse regularizations, such as `0-norm or `1-norm regularization,

which overcome this limitation by imposing sparsity constraint on the source. The inverse

methods with sparse regularizations are able to improve the spatial resolution of the recon-

structed brain image; however, the sources reconstructed by these methods are over-focused.

Finally, we explain why imposing sparsity on a transform domain rather than the original

domain can help to improve the image reconstruction accuracy. Specifically, some relevant

regularizations are introduced and their advantages and disadvantages are discussed.
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2.1 Introduction: EEG Inverse Problem

There have been various neural imaging modalities developed so far, such as functional

Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET), Single-Photon

Emission Computed Tomography (SPECT), Electroencephalography (EEG) based imaging,

Magnetoencephalography (MEG) based imaging, etc. Hemodynamic imaging techniques,

such as fMRI, PET and SPECT, have been widely used since they offer high spatial res-

olution [PS04]. However, their temporal resolution is limited on the order of seconds due

to the relatively slow blood flow response [PS04]. Furthermore, these imaging systems re-

quire the subject to be restricted in a large chamber, which limits their applications in the

natural habitual environment. On the other hand, brain imaging based on EEG provides

an alternative solution that overcomes these limitations. Unlike fMRI, PET and SPECT,

EEG has much higher temporal resolution in the range of milliseconds. In addition, it is

lightweight and portable, and hence can be used in various applications that require natural

environments, such as learning in a classroom. Therefore, in this dissertation, we focus on

EEG-based brain imaging.

As a noninvasive method, electroencephalography (EEG) is used to measure brain activity

and detect abnormalities associated with certain brain diseases. When neurons in the brain

are activated, local currents are generated, and can travel through different tissues, e.g.,

gray matter, cerebrospinal fluid (CSF), skull and scalp. These currents result in electrical

potentials on the scalp that are recorded by electrodes as the EEG signals. The EEG

forward problem refers to estimating the electrical potential on the scalp given the current

distribution in the brain, while the inverse problem refers to the process of reconstructing

the spatial distributions of currents in the form of a 3D brain image given the electrical

recordings.

2.1.1 Mathematical Formulation

To formulate this problem in mathematical expressions, we assume that dipole sources are

located on the cortex surface [DS93]. In addition, we assume that the orientation of each
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dipole is perpendicular to the cortex surface [DS93]. This is based on the assumption that

most of the current flow to the scalp is produced by cortical pyramidal cells, which are

normal to the cortical surface [DS93, NS06]. Let b ∈ RN be the electrical potential on the

scalp measured by the electrodes, where N is the number of electrodes, and u ∈ RM is the

neural current density at each dipole location. The electrode potential b can be related to

the neural current u by the following linear equation

b = Au+ n, (2.1)

where n ∈ RN denotes the noise and A ∈ RN×M is called lead field matrix. Note that the

(i, j)-th entry of A stands for the electrical potential measured by the ith electrode due to

a unit dipole source at the jth location. The matrix A can be calculated by constructing a

head model [OV91, Gul98, FKW02], and solving the Maxwell′s equations [Sar87] with the

boundary element method (BEM) [OV91, FKW02].

2.1.2 Realistic Head Model Construction

In order to obtain a brain image with high accuracy, a realistic head model based on indi-

vidual MR image is desired. The basic steps for constructing a head model with boundary

element method (BEM) include: 1) segmentation, in which the head is segmented into

different tissue layers, e.g. scalp, skull, brain; 2) meshing, in which a triangular mesh is con-

structed for each layer to describe the geometry; 3) lead field matrix calculation, in which a

one-to-one mapping is calculated between each electrode and each dipole by BEM, and the

result is stored in the lead field matrix A.

Currently, there are various open-source toolboxes available for head model construction,

including Freesurfer (https://surfer.nmr.mgh.harvard.edu/), SPM (http://www.fil.

ion.ucl.ac.uk/spm/), Fieldtrip (http://www.fieldtriptoolbox.org/), NFT (https://

sccn.ucsd.edu/wiki/NFT), etc. Fig. 2.1 illustrates a realistic head model we constructed

based on high-resolution MRI with Fieldtrip toolbox [OV91, FKW02], which contains the

scalp, skull, brain, and the cortex surface.
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Figure 2.1: Construction of a realistic head model from MRI. From outside in are: scalp

(gray), skull (white), brain (green), cortex surface (brown).

2.1.3 Two Groups of Inverse Methods: Dipolar and Distributed Models

In general, there are two types of models for solving the EEG inverse problem: dipolar and

distributed source model [MML04]. The dipolar model [SGA78, SV86, MLL92] assumes

that a small number of focal sources are active so only a few parameters of these sources

need to be estimated. Since the number of unknown parameters is usually smaller than

that of the measurements, the corresponding inverse problem is over-determined and can be

solved by nonlinear optimization techniques [UHS98]. However, the source reconstruction is

usually highly sensitive to the initial values due to the high non-convexity of the objective

function. Furthermore, this model is not able to handle spatially extended sources, such

as that during the propagation of a seizure. On the other hand, in the distributed source

model [HI84, HHI93], the source space is divided into a lot of voxels with fixed locations,

and only the activation in each location needs to be estimated. However, due to a relatively

small number of electrodes (∼ 102) and a large number of potential dipole locations (∼ 104),

the corresponding inverse problem is highly under-determined and results in infinitely many

solutions. To obtain a unique solution, regularization can be used to impose additional

constraints on the solution.
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2.2 Inverse Methods for Distributed Model

In this dissertation, we focus on the distributed source model. In this model, we assume

that the source space is divided into M voxels with fixed locations. Usually, the number of

voxels M is much larger than the number of electrodes N , thus the linear system Eq. (2.1) is

highly under-determined and has infinitely many solutions. To guarantee uniqueness of the

solution for the distributed source model, regularization techniques can be applied to impose

additional constraints on the solution. We consider the following model to reconstruct the

brain image

min
u

1

2
‖Au− b‖2

2 + αR(u), (2.2)

Here, the first term, called data fidelity term, reflects the statistics of the Gaussian

noise. The second term is the regularization term which is related to the assumption on the

characteristics of u, e.g., smoothness or sparsity. The regularization parameter α controls

the trade-off between these two terms.

2.2.1 L2-norm Based Regularization

The L2-norm based regularization is the earliest used regularization for EEG-based brain

imaging. It uses the `2-norm of the current density as the regularization term, i.e. R(u) =

‖Wu‖2 where W is a weighting matrix; therefore, it chooses a solution with minimal energy.

The corresponding model for solving the inverse problem can be expressed as follows

min
u

1

2
‖Au− b‖2

2 + α ‖Wu‖2 , (2.3)

The minimum `2-norm methods include several widely-used methods, such as minimum

norm estimate (MNE) [HHI93], weighted minimum norm estimate (wMNE) [JLS87, DS93],

low resolution brain electromagnetic tomography (LORETA) [Pas99], and standardized low

resolution brain electromagnetic tomography (sLORETA) [Pas02]. These methods usually

have a closed-form solution and thus the computational cost is relatively low. This advantage
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makes L2-norm based methods convenient and easy to implement. However, they share a

limitation that the reconstructed sources spread over a large area of the brain, resulting in a

brain image with low spatial resolution, i.e., proximal sources may become indistinguishable

in the solution.

2.2.2 Sparse Regularization: L0 and L1 Regularizations

To overcome the limitation of minimum `2-norm methods, sparse structure of the underlying

source has been explored to improve the focalization of the source. A natural strategy to

impose sparsity is `0-norm regularization which minimizes the number of nonzero intensity

values in the image. However, since the `0-regularized problem is computational NP-hard,

its `1-norm relaxed version is usually considered in practice. For a real nonnegative number

p, the `p-norm of u ∈ RM is defined as

‖u‖p = (
M∑
i=1

|ui|p)
1
p , p ≥ 0. (2.4)

Here p can be any non-negative value (e.g. p = 0 corresponds to `0-norm, and p = 1

corresponds to `1-norm).

Different from minimum `2-norm methods, the minimum `0-norm or `1-norm methods,

such as focal underdetermined system solution (FOCUSS)[GGR95], minimum current es-

timate (MCE) [UHS99], and sparse source imaging (SSI) [DH08], assume that the source

current density is sparse with only a few active voxels. As a result, these methods greatly

improve the focalization degree of the reconstructed source and are better at distinguishing

proximal sources.

2.2.3 Sparsity on Transform Domain

For methods that impose sparsity on the original source domain, although the focalization

is greatly improved, these methods fail to estimate the extent of the sources since the recon-

structed source is over-focused. To address this issue, efforts have been devoted to exploring

sparsity on transform domains of the current density, such as the spatial Laplacian domain
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[HNZ08, VMS08, CNH10], wavelet-basis domain [CNH10, LZD12, ZZD14], Gaussian-basis

domain [HTD11], or variation domain [ACK05, Din09, Gra09, LBM11, BAC14, SLW16].

Mathematically, the corresponding model can be expressed as

min
u

1

2
‖Au− b‖2

2 + α ‖Du‖1 , (2.5)

where D is an operator for the transformation. For example, if D is the finite difference

operator, then the model imposes sparsity on the variational domain [ACK05, Din09, Gra09].

Furthermore, in order to obtain a local smooth and global sparse result, some approaches

impose sparsity on both the transform domain and the original source domain. For example,

Focal Vector field Reconstruction (FVR) [HNZ08] and ComprEssive Neuromagnetic Tomog-

raphy (CENTL) [CNH10] impose sparsity on the spatial Laplacian and the current density

itself. It has been shown that combination of these two regularization terms improves the

imaging results than by using `2-norm or `1-norm regularization alone. However, the Lapla-

cian operator, i.e., the sum of all unmixed second partial derivatives, tends to assign high

weight to the central voxel and relatively low weights to its neighbors, which results in the

over-smoothing effect of the reconstructed image. Sparse Total Variation (TV) methods,

also known as TV-`1 [BAC14, SLW16], impose the sparsity constraint on both the spatial

gradient and the current density itself. They assume that the current density distribution is

piecewise constant, and are able to preserve the extent of the sources well. However, due to

the piecewise constant assumption, the reconstructed current density distribution is almost

uniform in each subregion (so called “staircasing effect”), which fails to reflect the intensity

variation of the source in space. As a consequence, these methods have difficulty localizing

peaks of the source, leading to relatively large localization error.

2.3 Quantitative Evaluation of the Inverse Methods

In order to quantitatively evaluate the performance of an EEG source imaging method, we

use the following criteria to evaluate the results for synthetic data:

(a) Total reconstruction error (TRE), which measures the relative difference between the
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true source and the reconstructed one [IAJ03]. The smaller the TRE, the higher recon-

struction accuracy the brain image will have. TRE is defined as

TRE =
‖û− u‖2

‖u‖2

,

where u is the true source and û is the reconstructed source. Note that TRE has no

units since it is a relative value.

(b) Localization error (LE), which measures the distance between the peaks of the true

source and the reconstructed one [IAJ03, MSB08]. Suppose that there are K underlying

sources and LEk is the localization error of the k-th source; then LE is defined as the

average localization error of all the sources. In order to define LEk, let Ik be a set of

voxel indices that are spatially closest to the peak of the k-th source (the voxels with

intensity less than 10% of the global maximum are not considered) and let dki be the

distance between the i-th voxel to the peak of the k-th true source. The LEk and LE

can then be expressed as

LE =
1

K

∑
k

LEk, LEk = {dki | i = argmax
i′∈Ik

‖ui′‖2}.

(c) Degree of focalization (DF), which describes how focal the reconstructed source is. It

is defined as the energy ratio between the reconstructed and the true source in the true

source area [IAJ03]

DF =
‖ûS‖2

2

‖uS‖2
2

,

where uS is u restricted to the true source area S. The higher the DF, the more focalized

the reconstructed source will be. A perfect reconstruction has a DF of 100%.

2.4 Effect of Various Factors on EEG Brain Imaging

There are many factors that may influence the accuracy of the reconstructed brain image,

such as the electrode number, noise level, and inverse methods. After studying the influence

of various factors using Monte Carlo Simulation, we find that the accuracy of brain image

can be improved by increasing electrode number, improving signal-to-noise-ratio (SNR) and
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using better inverse algorithms. In Fig. 2.2 (top), we compare the performance of different

inverse methods, including MNE, sLORETA, WMNE and FOCUSS, with different electrode

numbers. We can see that increasing electrode number, and using better inverse methods

can improve the accuracy of the reconstructed brain image. Fig. 2.2 (bottom) shows the

performance of the inverse method MNE under different noise levels and with different

electrode numbers. One can see that increasing electrode number and improving SNR helps

to improve the brain imaging performance, in terms of relative error, degree of focalization,

and localization error. Therefore, to obtain a more precise brain image, we can increase

electrode number by using a dense electrode array, reduce the electronics noise by designing

better electronics, or develop a better inverse imaging algorithm.

During the past two decades, electrode systems with 64∼256 electrodes (electrode pitch

at∼2 cm) were adopted in scientific research and clinics [GBC90, Tuc93]. Recently, the ultra-

high density electrode system is becoming increasingly interesting [FHB03, RFH09, OFC13,

PNH14], and researchers have tried to use small sized dense array (less than 64 electrodes)

to demonstrate the concept and its advantages of ultra-dense electrodes [FHB03, OFC13,

PNH14]. However, no one has developed an ultra-dense electrode array that is able to cover

a large portion of the whole head. We propose to develop an ultra-dense electrode array

(500∼5,000 electrodes for EEG, 10,000 electrodes for ECoG) to fully capture the functional

brain information with high temporal and spatial resolution, illustrated in Fig. 2.3 [LLQ15].

In addition, we have developed several novel brain imaging algorithms to improve the brain

image reconstruction accuracy, which will be presented in Chapters 3 and 4.
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Figure 2.2: Top: comparison of different inverse algorithms with different electrode numbers

(noise-free). One can see that more electrodes and better inverse methods help to improve the

reconstruction accuracy. Bottom: performance of the inverse method MNE under different

noise levels. One can see that more electrodes and better SNR result in higher reconstruction

accuracy.
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Figure 2.3: Illustration of the ultra-dense electrode-based brain imaging system.
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CHAPTER 3

Variational EEG Brain Image Reconstruction

In the previous chapter, we introduce the background of EEG brain imaging, and explain

the importance of an appropriate choice of regularization for the brain image reconstruction

accuracy. In this chapter, we present a novel Sparsity and SMOOthness enhanced brain

TomograpHy (s-SMOOTH) method to improve the reconstruction accuracy by integrating

two recently proposed regularization techniques: Total Generalized Variation (TGV) reg-

ularization and `1−2 regularization. TGV is able to preserve the source edge and recover

the spatial distribution of the source intensity with high accuracy. Compared to the rele-

vant total variation (TV) regularization, TGV enhances the smoothness of the image and

reduces staircasing artifacts. The traditional TGV defined on a 2D image has been widely

used in the image processing field. In order to handle 3D EEG source images, we propose

a voxel-based TGV (vTGV) regularization that extends the definition of second-order TGV

from 2D planar images to 3D irregular surfaces such as cortex surface. In addition, the `1−2

regularization is utilized to promote sparsity on the current density itself. We demonstrate

that `1−2 regularization is able to enhance sparsity and accelerate computations than `1 reg-

ularization. The proposed model is solved by an efficient and robust algorithm based on the

difference of convex functions algorithm (DCA) and the alternating direction method of mul-

tipliers (ADMM). Numerical experiments using synthetic data demonstrate the advantages

of the proposed method over other state-of-the-art methods in terms of total reconstruction

accuracy, localization accuracy, and focalization degree. The application to the source local-

ization of event-related potential data further demonstrates the performance of the proposed

method in real-world scenarios.
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3.1 Sparsity on High Order Spatial Derivative: Total Generalized

Variation (TGV)

In Chapter 2, we introduce a variational method - total variation (TV) which assumes the

current density of the sources is piecewise constant, and imposes sparsity on first-order spatial

derivative. The TV-based brain imaging method has the limitation that the reconstructed

intensity of the source is almost uniform (staircasing artifacts), therefore it has difficulty

of localizing the source peak accurately. To overcome this limitation, TGV was proposed

to preserve high order of smoothness in image processing problems [BKP10]. Based on the

assumption that the underlying image is piecewise polynomial, TGV exploits sparsity of high

order derivatives along the x-axis and the y-axis. For the illustrative purpose, we display in

Fig. 3.1 various piecewise polynomials defined on a plane with degree up to two. Given a 2D

image u twice continuously differentiable on a bounded set Ω ⊂ R2, the second order TGV

of u with the coefficient α = (α1, α2) can be defined as the following infimal convolution

[BKP10, GQY14]

TGV2
α(u) = min

p=(p1,p2)∈(C2(Ω,R))2
α1 ‖∇u− p‖1 + α2

∥∥∥Ẽ(p)
∥∥∥

1
, (3.1)

where ∇ is the 2D gradient operator, p is an auxiliary variable, and the operator Ẽ is defined

by

Ẽ(p) =

 ∂p1

∂x
1
2
(∂p2

∂x
+ ∂p1

∂y
)

1
2
(∂p2

∂x
+ ∂p1

∂y
) ∂p2

∂y

 . (3.2)

Here the `1-norm of a matrix treats a matrix as a vector, i.e., ‖X‖1 =
∑

i,j |Xi,j|. Unlike the

Laplacian operator which only involves all unmixed second partial derivatives, the second-

order TGV involves all partial derivatives, similar to Hessian. In Eq. (3.1), when ∇u is equal

to p, the first term in the objective function becomes zero and Ẽ becomes the Hessian of

u. Therefore, one can see that TGV (u) ≤ ‖H(u)‖1 where H(u) is the Hessian of u. This

suggests that TGV could yield a faster minimizing sequence than ‖H(u)‖1; therefore, it is a

better choice as a regularization term for imposing sparsity than the `1-norm of Hessian in

terms of convergence rate.
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Figure 3.1: Illustration of piecewise polynomial current densities in 3D view and side view.

From top to bottom: impulse (sparse in itself), piecewise constant (sparse in first spatial

derivative), piecewise linear (sparse in second derivative), piecewise quadratic (sparse in third

derivative).

3.2 Voxel-based Total Generalized Variation (vTGV) for Smooth-

ness Enhancement

Since the cortex surface has complicated geometries and topological structures, it is crucial to

choose an appropriate regularization tailored to such kind of irregular surfaces. We discretize

the cortex surface to be a 3D triangular mesh Ω and define a voxel-based TGV (vTGV)

regularization on it. In order to define directional derivatives on triangular mesh, we treat

the centroid of each triangle as a dipole. From now on, we treat each triangle as one voxel

in the discretized source space, and the terms triangle and voxel are used interchangeably.

Since each voxel has three voxels connected to it, three directional derivatives on R3 can

be used to define “gradient” of the density function u. Consider a triangular voxel Λ ∈ Ω,

which is homeomorphic to R2; we assume that q1, q2, q3 are three normal directions along

three edges for Λ, where qi ∈ R3 depends on the shape of the triangle Λ. For instance,

Fig. 3.2 illustrates three normal directions associated with a triangular voxel. Although not

perpendicular to each other, these three directions can span the tangent plane through each

voxel and thereby can be used to fully describe variations of u. The gradient of u restricted
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on Λ is defined by

∇̂u =


∂u
∂q1

∂u
∂q2

∂u
∂q3

 , ∂u

∂qi
= lim

h→0
x,x+hqi∈Λ

u(x+ hqi)− u(x)

h
. (3.3)

Figure 3.2: Illustration of three normal directions to a triangular voxel Λ.

Note that this definition is in the local sense and it can be considered as an extension

of the gradient operator in R2 into the gradient in a 2D manifold. Given a differentiable

function p = (p1, p2, p3), the operator E acting on p restricted to Λ is defined by

E(p) =


∂p1

∂q1
1
2
(∂p2

∂q1
+ ∂p1

∂q2
) 1

2
(∂p3

∂q1
+ ∂p1

∂q3
)

1
2
(∂p1

∂q2
+ ∂p2

∂q1
) ∂p2

∂q2
1
2
(∂p3

∂q2
+ ∂p2

∂q3
)

1
2
(∂p1

∂q3
+ ∂p3

∂q1
) 1

2
(∂p2

∂q3
+ ∂p3

∂q2
) ∂p3

∂q3

 . (3.4)

This operator can be considered as an extension of Ẽ in Eq. (3.2) tailored to the triangular

mesh Ω.

Next, we discuss the discretization of the operators ∇̂ and E . On the triangular mesh Ω

with M voxels, we first index all voxels and then define a finite difference operator matrix

D ∈ R3M×M as follows. The (i, j)-th entry of D is defined as

Di,j =


1, if j = l;

− 1, if j ∈ {kl,1, kl,2, kl,3};

0, otherwise,

(3.5)
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where the voxel index is l = di/3e ∈ {1, . . . ,M}, i.e., the smallest integer no less than i/3,

and kl,1, kl,2 and kl,3 are the indices of the voxels adjacent to the l-th voxel. Based on the

definition in Eq. (3.4), the discretization of the operator E is defined as E ∈ R3M×3M of the

form

E =
1

2
(D̂ + D̂T ), where D̂ = I1×3 ⊗D, and I1×3 =

[
1 1 1

]
, (3.6)

where ⊗ is the Kronecker product of two matrices. Note that each edge is counted twice

in Eq. (3.5) so that the operator E can be easily constructed by using D. Moreover, E is

symmetrized by taking the average between D̂ and its transpose.

One can see that ∇̂u is discretized by Du, and E(p) is discretized by Ep. Once D and E

are available, TV and the second order vTGV with the coefficients α1 and α2 can be defined

as

TV(u) = ‖Du‖1 , (3.7)

vTGV2
(α1,α2)(u) = min

p∈R3M
α1 ‖Du− p‖1 + α2 ‖Ep‖1 . (3.8)

In Eq. (3.8), the parameters α1 and α2 balance the first and second order derivative informa-

tion of the image [PV15]. It has been proven that for a large ratio α2/α1, the second order

TGV coincides with TV under certain conditions [PV15].

TV is able to well preserve the edges of images, but is known to create piecewise constant

result even in regions with smoothly changed intensities [BBB13]. By considering higher-

order derivative information, TGV generalizes TV and is able to reduce staircasing effects

by assuming that the image to be reconstructed is piecewise polynomial (including piecewise

constant, piecewise linear, piecewise quadratic, etc.)[BH14]. In particular, the proposed sec-

ond order vTGV assumes that the underlying current density distribution is piecewise linear,

and thereby this regularization is able to enforce the sparsity of second spatial derivatives.

Although a natural image may have higher order smoothness, it is usually sufficient to use

the second order vTGV in practice, since performance enhancement is limited but more

computations are required for higher order vTGV. Therefore, we only use the second order

vTGV regularization in this work.
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3.3 L1−2 Regularization for Sparsity Enhancement

In order to further improve the spatial resolution of the brain image, sparsity constraint

can be incorporated into the model. Previous work incorporate `1 regularizations to further

impose sparsity on the current density [HNZ08, CNH10, SLW16]. Recently, `1−2 regulariza-

tion has been proposed [ELX13, YEX14, LYH15], and has been shown to provide a sparser

result than the widely used `1-norm regularization. The `1−2 regularization penalty function

is defined as

‖u‖1−2,β = ‖u‖1 − β ‖u‖2 , 0 < β ≤ 1, (3.9)

which has shown potential in image processing and compressive sensing reconstruction

[LYH15, YLH15] in terms of sparsity and fast convergence. It promotes sparsity of an

image, and achieves the smallest value when only one voxel in the image is non-zero.

We further discuss the property of `1−2 regularization from the optimization point of

view. Consider a minimization problem in 2D minx∈R2 R(x) subject to the linear constraint

Ax = b where R(x) is a regularization function. To solve the problem graphically, we need to

find the level curve of minimum radius to the origin that intersects with the line L : Ax = b.

Fig. 3.3 illustrates the solutions when R is `2, `1, `0.001 (used to approximate `0) and `1−2

when β = 1, respectively. As shown in Fig 3.3(A), the `2-regularized solution rarely has zero

components, indicating that the solution is usually non-sparse. The `1-regularized solution

may not be sparse if the line L is parallel to the level curves. Compared to `p (0 < p < 1)

regularization, the `1−2 regularization is more likely to yield a sparse solution due to the

curvature of level curves. Therefore, the `1−2 regularization promotes sparser solutions than

the other regularizations being compared. In the EEG inverse problem, the brain images to

be reconstructed in general have a sparse structure that the number of sources is limited,

which motivates us to apply the `1−2 regularization to solve this problem.

In this work, we unify the `1 type and the `1−2 type regularizations by allowing β = 0 in

Eq. (3.9), so that the sparsity regularization term could be adjusted by tuning the parameter

β.
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Figure 3.3: Geometric interpretation of sparsity for various regularizations. From left to

right: `2, `1, `0.001 (used to approximate `0), and `1−2 when β = 1. The black line corresponds

to the linear constraint, the solid dot specifies the sparse solution and the circular dot specifies

the non-sparse solution.

3.4 s-SMOOTH: Sparsity and Smoothness Enhanced Brain To-

mography

3.4.1 Formulation and Algorithm

3.4.1.1 Proposed EEG Reconstruction Algorithm

In this method, we combine the vTGV and `1−2 regularizations:

The following model is proposed to reconstruct the EEG brain image u

min
u

1

2
‖Au− b‖2

2 + vTGV2
(α1,α2)(u) + α3 ‖u‖1−2,β , (3.10)

where vTGV2
(α1,α2)(u) is defined in Eq. (3.8), and ‖u‖1−2,β is defined in Eq. (3.9). Here,

αi > 0 are regularization parameters which control the contribution of each regularization

term. Note that if β = 0, the `1−2 regularization reduces to the `1 regularization. If we

require p = 0, then the vTGV regularization reduces to the TV.

Since the dual norm of ‖·‖2 is itself, i.e., ‖u‖2 = max‖q‖2≤1〈u, q〉, the model Eq. (3.10)
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can be reformulated as

min
u,p,‖q‖2≤1

1

2
‖Au− b‖2

2 + α1 ‖Du− p‖1 + α2 ‖Ep‖1 + α3(‖u‖1 − β〈u, q〉). (3.11)

Next, we apply the difference of convex function algorithm (DCA) [TA97] to obtain the

following two subproblems
q ← u/‖u‖2,

(u, p)← argmin
u,p

1

2
‖Au− b‖2

2 + α1 ‖Du− p‖1 + α2 ‖Ep‖1 + α3(‖u‖1 − β〈u, q〉).
(3.12)

In particular, the second subproblem can be solved efficiently using ADMM. By the change

of variables, it can be further written as

min
u,p,x,y,z

1

2
‖Au− b‖2

2 + α1 ‖x‖1 + α2 ‖y‖1 + α3(‖z‖1 − β〈z, q〉)

subject to x = Du− p, y = Ep, z = u.

By introducing the scaled multipliers x̃, ỹ, z̃, we have the following augmented Lagrangian

function

L(u, p, x, y, z, x̃, ỹ, z̃) =
1

2
‖Au− b‖2

2 + α1 ‖x‖1 + α2 ‖y‖1 + α3(‖z‖1 − β〈z, q〉)

+
ρ

2

(
‖Du− p− x‖2

2 + 2〈Du− p− x, x̃〉+ ‖Ep− y‖2
2 + 2〈Ep− y, ỹ〉+ ‖u− z‖2

2 + 2〈u− z, z̃〉
).

Note that this version is equivalent to the standard augmented Lagrangian function up to

scaling of multipliers. We group the variables u, p, x, y, z into three blocks, i.e., u, p and

(x, y, z). Then the ADMM yields the following algorithm:

u← argmin
u
L(u, p, x, y, z, x̃, ỹ, z̃)

p← argmin
p
L(u, p, x, y, z, x̃, ỹ, z̃)

(x, y, z)← argmin
x,y,z

L(u, p, x, y, z, x̃, ỹ, z̃)

x̃← x̃+Du− p− x

ỹ ← ỹ + Ep− y

z̃ ← z̃ + u− z +
α3β

ρ
q

(3.13)
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Moreover, u and p can be solved explicitly as followsu =
(
ATA+ ρ(DTD + I)

)−1(
AT b+ ρDT (p+ x− x̃) + ρ(z − z̃)

)
p = (ETE + I)−1

(
ET (y − ỹ) + (Du− x+ x̃)

)
.

In addition, due to the separability of variables, the (x, y, z)-subproblem boils down to three

independent subproblems with respect to x, y and z, respectively, each of which has a

closed-form solution represented by proximal operators. For example, the z-subproblem can

be solved by using the proximal operator of `1-norm

argmin
z

{
α3 ‖z‖1 +

ρ

2

∥∥∥∥u− z + z̃ +
α3β

ρ
q

∥∥∥∥2
}

= proxα3/ρ(u+ z̃ +
α3β

ρ
q). (3.14)

where proxγ(x) = sign(x) � max{|x| − γ, 0} with componentwise multiplication �, also

known as shrinkage operator. Combining DCA for problem Eq. (3.12) and ADMM for the

(u, p)-subproblem, we obtain the algorithm summarized in Algorithm 1.

Note that in this study the entire matrix A is scaled by multiplying 105 in order to reduce

round-off errors. Algorithm 1 terminates when either the maximal number of iterations or

the minimal relative change is reached. Note that there are two loops in the algorithm: outer

and inner loop. In our experiments, the maximum number of iterations for each inner loop

is set to be 40, and the maximum number of outer loop is set to be 10. The algorithm will

also be halted if the relative change of u is smaller than 10−3. Here the relative change of u

is defined as

uchange =
‖unew − uold‖2

‖uold‖2

. (3.15)

In general, ADMM is simple to implement with linear convergence even if part of the objec-

tive function is nondifferentiable. Our empirical experience shows that the `1−2 regularization

further promotes faster convergence of the algorithm than its `1-regularized counterpart.

3.4.1.2 Parameter Selection

In the proposed Algorithm 1, the regularization parameters α1, α2, α3 are selected to make

a balance between smoothness and sparsity. Based on our large numbers of experiments,

the optimal parameter selection does not change significantly as the source number, size,
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Algorithm 1 s-SMOOTH EEG Reconstruction Algorithm

Input: the data b, the sensing matrix A, difference operators D,E, parameters

α1, α2, α3 > 0 and β ∈ [0, 1], the maximal number of iterations for the outer loop Nout,

and the maximal number of iterations for the inner loop Nin.

Output: the reconstructed uo.

if β = 0 then

Nout ← 0

end if

Initialize uo = 0.

for 1 to Nout do

if uo = 0 then

q ← 0

else

q ← uo/‖uo‖2

end if

Initialize p, x, y, z, x̃, ỹ, z̃ as zero vectors

for 1 to Nin do

u← (ATA+ ρ(DTD + I))−1
[
AT b+ ρDT (p+ x− x̃) + ρ(z − z̃)

]
p← (ETE + I)−1

[
ET (y − ỹ) + (Du− x+ x̃)

]
x← proxα1/ρ(Du− p+ x̃)

y ← proxα2/ρ(Ep+ ỹ)

z ← proxα3/ρ(u+ z̃ +
α3β

ρ
q)

x̃← x̃+Du− p− x

ỹ ← ỹ + Ep− y

z̃ ← z̃ + u− z +
α3β

ρ
q

end for

uo ← u

end for
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or configuration changes. For different noise levels, the regularization parameters need to

be tuned smaller when SNR increases. Table 3.1 lists all values of α1 that we use for the

synthetic data sets with SNR between 0dB and 30dB. For simplicity, we set α2 to be equal

to α1. A more detailed discussion about the influence of ratio α2/α1 on the reconstruction

results can be found in [PV15]. For α3, we find that the performance of the proposed method

is not sensitive to α3 as long as it is in the range of α3 = 0.1 ∼ 0.5α1 . Fig. 3.4 illustrates the

source reconstruction results with different values of α3, where we can see that the results

look very similar. By taking a careful look at the bottom source, one can see that α3 = 0.1α1

yields slightly under-focalized result, while α3 = 0.4α1 yields slightly over-focalized result, so

α3 = 0.2 or 0.3 α1 provides results closest to the ground truth. In our experiment, we fix α3

to be 0.3α1 in all test cases. As for the parameter ρ, which controls the convergence speed

of Algorithm 1, it is set to 10α1 by default. For real data sets, we use the same parameters

for the same noise level as the synthetic data.

Table 3.1: Parameter α1 used in different noise levels.

SNR(dB) 0 5 10 15 20 25 30

α1 (*10) 7 6 5 3 2 2 1

Figure 3.4: Source localization results with different α3. Top: two sources with different

configurations. Bottom: two sources with different sizes.
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The parameter β in the `1−2 regularization term varies from 0 to 1. When β = 0, the

`1−2 regularization becomes the `1 regularization. In Fig. 3.5, we study the effect of β on

the source reconstruction results. Fig. 3.5(B) shows the change of reconstruction error with

different values of β, where we can see that the larger β is, the smaller the reconstruction

error will be. When β = 1, the highest reconstruction accuracy is achieved. Fig. 3.5(C)

shows the change of the sparsity term as iteration increases. One can see that comparing to

β = 0 (`1 regularization), β = 1 (`1−2 regularization) helps to promote sparsity. Notice that

the sparsity term will decrease rapidly from one inner loop to another since the variable q

is redefined in each outer loop. In our experiments, the maximal number of iterations at

each inner loop is set to 40. At each inner loop, the solution becomes convergent and stable

within the tolerance, so does the sparsity term. Then at the iteration 41, the updated q

results in the refinement of the solution and a large drop of the sparsity term (Fig. 3.5(C)).

In sum, β = 1 not only helps reduce the reconstruction error, but also enhances the sparsity

term. Therefore , we set β to 1 in the following study.

3.4.1.3 Computational Cost

In Algorithm 1, the two least squares subproblems involve matrix inverse which is com-

putationally intensive. Instead of computing inverses of P = ATA + ρ(DTD + I) and

Q = ETE + I directly, we apply the Cholesky decomposition and then solve linear systems

using backward/forward substitution, i.e., mldivide in MATLAB. In addition, since the

construction of P and Q does not depend on the time points, we can further reduce com-

putational time by performing Cholesky decomposition once and saving results for all time

points. For instance, when using 10240 voxels and running 100 iterations, the running time

on a desktop with 3.4GHz CPU and 16G memory using MATLAB 2014b is reduced from

3.5 min to 1.8 min.

Further, if we reduce the number of voxels to 6000, it takes about 11 s to run 100

iterations, and only 6.4 s if the matrices are pre-computed. If further decreasing the voxel

number to be 2000, the computation time is reduced to 1.2 s, or 0.9 s with pre-computed
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Figure 3.5: Influence of β on the image reconstruction results. (A) Two simulated sources.

(B) Influence of β on the reconstruction error. The larger the β, the smaller the reconstruc-

tion error will be. (C) Influence of β on the sparsity term. β = 1 enhances the sparsity

compared to β = 0.

matrices. Compared to relevant work [HNZ08, CNH10, SLW16], the proposed algorithm has

reduced the computational cost significantly.

3.4.2 Simulation Experiments and Results

3.4.2.1 Synthetic Data Simulation

In our simulation, source is synthesized using the Gaussian-tapered patch. Firstly, a source

center is seeded on the cortex surface, then its neighbors are gradually recruited to make
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a patch. Because the Gaussian function has bell shape, the source intensity distribution

reaches a peak at the center and gradually decreases to zero as it moves away from the

center. To model different source configurations, we use Gaussian functions with different

variations (σ2), illustrated in Fig. 3.6. As σ2 goes to infinity, the intensity of the source

decays more and more slowly from the center to its neighbors and approximates the constant

function.

Figure 3.6: Various source configurations (side view) with a shape of Gaussian function of

different σ2.

In addition to various source configurations, we test a variety of sources with different

sizes. Specifically, we use the sources containing 100∼300 triangular voxels, which corre-

sponds to 1.4∼2.2cm in radius. To study the sensitivity of the result to the measurement

noise, we add i.i.d. additive white Gaussian noise to each channel. We also study the in-

fluence of the brain noise by adding i.i.d. Gaussian additive noise to the voxel space. As a

widely used criterion for noise level measurement, the signal-to-noise ratio (SNR) is defined

as

SNR = 10 log10

Psignal
Pnoise

,

where Psignal and Pnoise are the power of the signal and the noise, respectively. In our

simulation, SNR is set to 20dB by default. The effect of different noise levels is also studied

by using signals of SNR 0∼20dB. The synthetic signal is normalized to make sure that the

amplitude of the signal falls into the range from 10 µV to 100 µV , which is the typical EEG

signal amplitude of an adult human [AGA04]. For synthetic data, we use the head model
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template provided by Fieldtrip [OSP03], where the number of voxels M is equal to 10240.

3.4.2.2 Performance Comparison with State-of-the-art Methods

We compare the proposed method s-SMOOTH with four representative source localization

methods in the literature: MNE, sLORETA, minimum `1 method (“L1” for short) and TV-

`1. Fig. 3.7 shows the reconstructed brain image of three synthetic sources, where the source

intensity is scaled to be in [0 1]. A threshold is set at 20% of the maximum intensity, i.e., voxel

intensity less than the threshold will be set to 0, so as to obtain a better visualization. For

MNE and sLORETA which are minimum `2 methods, one can see the reconstructed sources

are spread out with a lot of spurious sources around the sources. The intensity of adjacent

voxels has large jumps since these two methods do not consider the spatial relation between

neighboring voxels. Regarding L1 method, the focalization of the reconstructed source is

greatly improved. However, the sources are over-focused that only a few voxels are included

in the area of the true sources. Compared to L1 method, the TV-`1 method successfully

recovers the extent of sources, but fails to reflect the intensity variation of the sources, as we

can see that the intensity of the current density is almost uniform in each source region. In

contrast, the proposed method not only eliminates the spurious sources, recovers the extent

of the sources, but also provides a smooth result which reflects the magnitude variation of

the current density.

3.4.2.3 Sensitivity Study

In this section, we investigate the sensitivity of the proposed method to various factors both

qualitatively and quantitatively.

1. Influence of Measurement Noise Level

Fig. 3.8(A) illustrates the source localization results of two sources in nearly noiseless

(30dB) and noisy (0dB) cases. In the nearly noiseless case, MNE successfully locates these

two sources but produces a few spurious sources. For TV-`1 method, although we can see

a little magnitude variation in the edge of the sources, the main area of the sources still
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Figure 3.7: Source localization results of various methods on synthetic data with three

sources.

shows almost uniform current density distribution. Compared to the other two methods, the

proposed method shows the closest result to the ground truth, where the magnitude of the

current density varies smoothly from the peak to its neighbors. From the noisy case, one

can see that the imaging result is sensitive to measurement noise, especially for the bottom

source. MNE shows a lot more spurious sources than the nearly noiseless case even after

thresholding. The TV-`1 method shows an enlarged coverage of the bottom source compared

to the ground truth. In addition, one can see that the source intensity becomes more flat in

the noisy case. The proposed method is more robust to the noise with the coverage of the

bottom source shrinks slightly.

To quantify the influence of noise levels on the source reconstruction performance, we

test various noise levels and evaluate the results with the criteria defined above. In order

to avoid inconsistency due to different noise configurations, we repeat the experiment 50

times by adding random noise and display the averaged result and the standard deviation

in Fig. 3.8(B). Generally, the performance of all the methods is improved as SNR increases.

From the TRE plot, one can see that our method has the smallest total reconstruction error

compared to the other two methods. The LE plot shows that the proposed method has
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the smallest localization error. Compared to the proposed method, the TV-`1 method has

relatively large localization error since it tends to produce an almost uniform current density

and thereby has difficulty locating the peak of the source. In the DF plot, both TV-`1

method and the proposed method show very high focalization degree, this is because they

incorporate `1 or `1−2 regularization to impose sparsity on the source current density. Taken

together, the proposed method shows good performance for all three quantitative criteria at

every noise level.

Figure 3.8: Influence of measurement noise. (A) Source localization results in the nearly

noiseless (30dB) and noisy (0dB) cases. (B) Quantitative evaluation of various methods

under different measurement noise levels. The plots show the average results over 50 repeats,

where the error bar represents standard deviation.

2. Influence of Brain Noise Level

In this section, we study the influence of brain noise by adding i.i.d. Gaussian additive

noise to each voxel. Fig. 3.9(A) shows the source imaging results in the nearly noiseless

(30dB) and noisy (0dB) cases. Note that in this figure the imaging results are not thresholded
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so as to better visualize the influence of brain noise. In the nearly noiseless case, MNE

produces much less spurious sources under the brain noise than under the measurement

noise (Fig. 3.8(A)), indicating that the spurious sources are mainly due to the measurement

noise. For the TV-`1 method, the reconstructed intensity distribution is generally piecewise

constant, but we can see that the intensity variation is larger than the result in Fig. 3.8(A).

The proposed method produces an accurate source intensity distribution that is very close

to the ground truth. In the noisy case, generally the performance of all the methods is

affected by the noise. The MNE result shows more background activities due to the high

level of noise. The TV-`1 result shows smaller intensity variation than the nearly noiseless

case. For example, for the bottom source, we can see four different intensity colors in the

nearly noiseless case, but only two different intensity colors in the noisy case. Compared to

the TV-`1 method, the proposed method provides a smoother result. We can see that the

source intensity is weakened due to the high noise level.

Fig. 3.9(B) further quantifies the results using different noise levels. The TRE plot shows

that the proposed method has the smallest reconstruction error. In addition, by comparing

to the result in Fig. 3.8(B) with the same noise level, one can see that the reconstruction

error under brain noise is smaller, which is consistent with the visualization result. The LE

plot shows that the proposed method has the smallest localization error. It is worth noting

that the localization errors of all the methods are smaller than those with measurement noise

(Fig. 3.8(B)). Finally, in the DF plot, both the proposed method and the TV-`1 method

achieve high focalization degree. The focalization degree for MNE is much higher than that

under measurement noise. In summary, we observe that the brain imaging result is less

sensitive to brain noise than to measurement noise. The proposed method demonstrates

robust performance under various levels of brain noise.

3. Influence of Source Size

In addition to noise level, we also investigate the influence of the source size on the

reconstruction results. Fig. 3.10(A) illustrates the reconstructed brain image with two

sources of different sizes. In MNE, although it locates these two sources at the approximate

locations, it is difficult to differentiate the smaller source from the large numbers of spurious
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Figure 3.9: Influence of brain noise. (A) Source localization results in the nearly noiseless

(30dB) and noisy (0dB) cases. (B) Quantitative evaluation of various methods under different

brain noise levels. The plots show the average results across 50 repeats, where the error bar

represents standard deviation.

sources. TV-`1 method recovers both sources clearly without spurious sources, but the

coverage of the reconstructed sources is enlarged, especially for the small source on the top.

Additionally, it fails to recover the intensity variation of the source in space. In contrast,

the proposed method accurately reconstructs the size and intensity variation of these two

sources.

Fig. 3.10(B) shows the quantitative results of various source sizes, where the x-axis

represents the number of voxels contained in the simulated sources. TRE plot shows that

the proposed method has the smallest reconstruction error, which is insensitive to the source

size. In the LE plot, the proposed method shows the smallest localization error. As the

source size increases, its localization error becomes slightly smaller, which implies that the
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proposed method has advantages of dealing with larger sources. The TV-`1, by contrast,

shows relatively large localization error due to the uniform intensity of the reconstructed

source. In the DF plot, the proposed method demonstrates very high focalization degree.

In summary, the proposed method shows consistent outstanding performance over the other

two methods regardless of the source size.

Figure 3.10: Influence of source sizes. (A) Source localization results of various methods for

two sources with different source sizes. (B) Quantitative evaluation of various methods with

different source sizes. The average result of 50 repeats is shown in the plots, where the error

bar represents the standard deviation.

4. Influence of Source Configuration

We study the performance of the proposed method using sources with different decay

speeds (see Fig. 3.6). In Fig. 3.11(A), we show two sources of different configurations:

the top source decays fast as it goes far from the center while the bottom source decays

slowly. From the reconstruction results, one can see that the MNE is not able to tell the

configuration difference between these two sources. The TV-`1 method models the source

intensity to be piecewise constant, so both of the reconstructed sources decay very slowly.

As for the proposed method, we can tell that the bottom source decays more slowly than
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the top one.

We further evaluate the performance of the methods with different source configurations

quantitatively. In Fig. 3.11(B), the x-axis represents the variance σ2 of the Gaussian function

(Fig. 3.6), so the source intensity decays faster and faster from left to right. The TRE plot

shows that the proposed method has the smallest reconstruction error among all the methods.

By comparing the results of different variance σ2, one can see that the proposed method

favors smoother sources whose intensity decays faster, i.e. smaller σ2. In the LE curve,

the proposed method shows much smaller localization error than the other two methods.

Again, one can see that the smoother sources have smaller localization errors. Finally, the

DF plot shows that the focalization degree does not rely on the source configurations too

much. In sum, the proposed method outperforms the other two methods consistently for all

three criteria. Compared to constant sources, it favors smoother sources.

Figure 3.11: Influence of source configurations. (A) Source localization results of two sources

data with different configurations. (B) Quantitative results of various methods with different

source configurations (σ2). The average result of 50 repeats is shown in the plots, where the

error bar represents the standard deviation.

5. Influence of Source Location
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To systematically evaluate the performance of the proposed method for different source

locations, we randomly select 50 locations in the whole source space, and test its average

performance. Fig. 3.12 displays the whisker plot of the quantitative results, where the

lower quartile, median, and upper quartile are shown. In TRE plot, the proposed method

shows the best median reconstruction accuracy. The range of the results is relatively large

which indicates the performance varies at different locations. The LE plot shows that the

localization error of the proposed method has a median value of around 1cm, which is the

smallest among all the methods. In addition, the range of its localization error is also the

smallest. From the DF plot, one can see that the median focalization degree of the proposed

method is ∼ 97% which is the highest. All in all, the proposed method shows the best

average performance for different source locations among all the compared methods.

Figure 3.12: Whisker plots of various methods at different source locations. The red bar

represents the median value of 50 random locations.

3.4.3 Application to Real Data

To evaluate the performance of the proposed method in realistic scenario, we collected two

P300 event-related potentials (ERPs) via auditory and visual oddball paradigms, in which

a subject detected an occasional target stimulus in a regular train of sensory stimuli. The

experiment was conducted with the approval of institutional review board at Hualien Tzu

Chi General Hospital, Taiwan (IRB 101-102) with written informed consent from the subject.

P300 is a positive peak occurring about 300ms or more after a stimulus [Lin05], which

reflects information processing associated with attention and memory. In the auditory stim-

ulation setting, two audio signals of 1500 Hz (target, 40 trials) and 1000 Hz frequency
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(nontarget, 160 trials) were randomly presented to the subject. In the visual stimulation

setting, two different pictures of a fierce shark (40 trials) and of an old man (160 trials) were

randomly presented to the subject. The subject was required to detect the targets by silently

counting these events. A 64 channels EEG machine (ANT Neuro, Enschede Netherlands)

was used to record the neural signals. The EEG data was sampled at 512 Hz, filtered by

a band pass filter of 0.5-30 Hz and was referenced to the average of all channels. In the

end, the average was taken across the trials in order to improve the SNR, and the difference

between the target and nontarget was used for source localization.

In addition to EEG data, high-resolution MRI data (General Electric, Waukesha, WI,

USA) were obtained from the subject for realistic head model construction [OFM11]. We

first segmented the head into three layers, i.e., scalp, skull and brain, and then constructed

a triangular mesh for each layer [OV91, FKW02]. The cortex surface was also triangulated

into a fine mesh with 16384 triangles, each corresponding to a potential dipole source. Fi-

nally, boundary element method (BEM) [OV91, FKW02] was used to calculate the lead field

matrix.

We have applied the proposed s-SMOOTH method to localize the generators of P300

ERPs. Although the neural generators of P300 remain imprecisely located, a consistent pat-

tern of P300 sources has been shown by various techniques - such as intracranial recordings,

lesion studies, and fMRI-EEG combination - that the target-related responses locate in the

parietal cortex and the cingulate, with stimulus specific sources in the superior temporal

cortex for the auditory stimulation and in the inferior temporal, and superior parietal cortex

for the visual stimulation [Lin05]. It is shown that there is a significant amplitude differ-

ence between target and non-target at latency of 300-400ms for auditory stimulation and of

400-500ms for visual stimulation [LPF99].

We compare the proposed method with various representative methods, including MNE,

sLORETA, minimum `1 method (“L1” for short), and TV-`1. Among them, sLORETA has

been widely used to localize the sources of P300 [SHI09, BKI11, MAS14] due to its high

localization accuracy, which can be used as a rough reference. Fig. 3.14 illustrates the P300

source localization results of auditory stimulation at the peak (312ms). Since the results of
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MNE and sLORETA show low spatial resolution, a threshold is set at 20% of the maximum

intensity to improve the visualization. One can see that the source localization results of

different methods generally agree with each other. The sources from insula, superior tempo-

ral, temporo-parietal junction and parietal cortex are detected, which agree with previous

literature [LPF99, MJS04, Lin05]. The results of MNE and sLORETA are spread out with

many spurious sources, and the extent of the sources is difficult to be identified. L1 method

generates an over-focused result that only a few voxels are active in each source area. TV-`1

produces a result with clearer extent, however, the current density is piecewise constant in

each source subregion. In contrast, our method provides a smooth result that reflects the

intensity variation of the sources in space. Fig. 3.13 shows the source localization results of

visual stimulation at 438ms, in which the sources in posterior temporal, parietal and mesial

frontal cortices are found, which generally agrees with previous literature [LPF99, Lin05].

One can see that the image resolution for MNE and sLORETA is very low, especially for

sLORETA. L1 method only pinpoints a few active voxels and TV-`1 provides an almost

uniform current density in each source region. Compared to other methods, the proposed

method demonstrates the capability of producing brain images with better smoothness and

higher spatial resolution.

3.4.4 Discussion

In this study, we develop a novel EEG source imaging method aiming to accurately re-

construct the location, extent, and magnitude variation of the current density distribution.

The contributions of this work are threefold: (1) a voxel-based total generalized variation

(vTGV) regularization is defined, which incorporates the information of higher-order deriva-

tives and therefore is able to enhance smoothness of the reconstructed brain image as well

as reduce the staircasing artifacts; (2) a new `1−2 regularization is introduced to the EEG

source imaging field for the first time, which is able to reconstruct a sparser source than the

widely used `1 regularization; and (3) an efficient algorithm is derived to solve the proposed

model based on DCA and ADMM. The reconstructed brain image by the proposed method

shows not only high location accuracy, but also high focalization degree.
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Figure 3.13: Localization results of visual P300 sources with different methods.

Due to the ill-posedness of EEG inverse problem, the source image reconstruction relies

on the modeling of the characteristics of underlying sources. MNE and sLORETA do not

model the spatial relation between adjacent dipoles; thus the reconstructed current density

distribution is not smooth and many spurious sources are generated. Minimum `1-norm

methods, such as MCE, assume the source to be highly focalized thus is not suitable for

spatially extended sources. Total variation (TV) based methods assume the intensity of the

source to be uniformly distributed in space, and hence fail to reflect the intensity variation of

the sources. This effect becomes more obvious when the regularization parameter increases,

resulting in even more flat intensity distribution [Gra09]. By contrast, the proposed method

s-SMOOTH assumes the intensity of the adjacent dipoles to be piecewise polynomial, re-

sulting in a brain image which is very smooth that recovers the magnitude variation within

a source precisely (Fig. 3.7). The performance of the proposed method is evaluated under
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Figure 3.14: Localization results of auditory P300 sources with different methods.

various noise levels, source sizes, source configurations and locations. The simulation results

show that the source reconstruction result of s-SMOOTH is robust under different condi-

tions. Quantitative results show that the performance of s-SMOOTH improves as the noise

level decreases (Fig. 3.8(B), Fig. 3.9(B)), source size increases (Fig. 3.10(B)), and current

density distribution gets far from a constant function (Fig. 3.11(B)).

The classical TGV assumes that the underlying image is piecewise polynomial (including

piecewise constant, linear, quadratic, etc.) and thus imposes sparsity in high-order spatial

derivatives. In this work, we extend the TGV framework from Euclidean spaces to irregular

surfaces and propose a novel second-order vTGV operator. A large number of simulation

experiments with Gaussian-shaped sources show that it provides better results than the state-

of-the-art methods. It is sufficient to use second order considering the computational cost

and performance improvement. Note that the second-order TGV is mathematically different
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from the Laplacian operator [BKP10] used in previous methods, such as LORETA, FVR, and

CENTL. Laplacian operator has been widely used in EEG brain imaging [PML94, HNZ08,

CNH10] due to its simple form. However, it only considers the unmixed second partial

derivatives and does not involve the mixed partial derivatives. It assigns high weight to the

central dipole and low weights to its neighbors, resulting in a very high peak in the center of

the reconstructed source. In contrast, the proposed vTGV operator takes both unmixed and

mixed partial derivatives into account and is able to recover fine details of brain images. Fig.

3.15 compares the reconstructed brain image using a Laplacian operator and the proposed

vTGV operator. One can see that the vTGV operator reconstructs the intensity variation of

the sources more precisely. With the Laplacian operator, the reconstructed sources show a

high peak in the center and the intensity decays very fast from the center (“over-smoothing”

effect). Note that in this study, we treat each triangle as voxel, so each voxel has three

neighbors. Accordingly, the weighting assigned to the central voxel by Laplacian operator

is 1 and is -1/3 for its neighbors. In the case that each vertex is treated as voxel, this over-

smoothing effect will become even more severe, since each vertex usually has 6 neighbors

thus the weighing assigned to the neighbors will be only -1/6. From the quantitative results

in the right panel of Fig. 3.15, one can see that the vTGV operator is advantageous in both

total reconstruction accuracy and localization accuracy. The focalization degree results are

very close for both operators.

The `1-norm regularization has been used in EEG source imaging to improve the focal-

ization of the source for a long time [MO95, UHS99, HDS06, DH08]. In this work, we use the

`1−2 regularization instead of the `1-norm regularization to enhance sparsity of the image.

The `1−2 regularization is a very recently proposed regularization technique which refines

the `1 regularization by taking the difference between the `1 and `2 norms. In this work, we

set the parameter β ∈ [0, 1]. When β is equal to 0, `1−2 regularization becomes the `1-norm

regularization. We show that the reconstruction accuracy is improved as β increases, and

it achieves the highest accuracy when β = 1 (Fig. 3.5(B)). Therefore, we set the β to 1 in

our experiments. Fig. 3.5(C) shows that with β = 1, the sparsity of the image improves

faster than β = 0, implying that the sparsity of the image is further enhanced using the `1−2
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Figure 3.15: Comparison of Laplacian and vTGV operator. Top: two sources with different

configurations. Bottom: two sources with different sizes. The left panel visualizes the source

localization results. The vTGV operator provides accurate results with intensity distribution

closer to the ground truth. The right panel shows the quantitative results.

regularization compared to `1 regularization. On the other hand, if sparsity is fixed, `1−2

regularization helps to accelerate the convergence of the optimization algorithm.

It is worth noting that the proposed objective function is a very general frame, which

includes some related methods, e.g. L1, TV and TV-`1, as its special cases by choosing

proper parameters. For example, by setting the α2, p and β to be 0, it becomes the TV-`1

method. By further setting the α3 to be 0, it becomes the TV method. On the other hand,

if choosing α1, α2 and β to be 0, it becomes the L1 method. In addition, some relevant

methods that combine two regularization terms [HNZ08, CNH10, SLW16] usually describe

the data fidelity by using an inequality constraint. Instead, we integrate this term into our

objective function. This enables us to apply efficient optimization methods such as ADMM

to derive a fast and robust algorithm. Compared to the optimization algorithms used in these

methods [HNZ08, CNH10, SLW16], the proposed algorithm in this work is more efficient and

robust, and it is also able to tackle large-scale problems. Further, with this type of problem

formation, it is possible to adopt some computing techniques [PXY16] to further accelerate

the algorithm, which will be the future work.
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For parameter selection, we provide some typical parameter values that work well in our

experiment. Table 3.1 lists some values for α1 used in our experiments. For α2, we simply

set it to be equal to α1. Note that it might provide a better result if α2 is further tuned. For

α3, the parameter associated with the sparsity term, we show that the source reconstruction

results are not sensitive to the choice of α3 as long as it is within the range 0.1 ∼ 0.5α1.

Specifically, we suggest to use α3 = 0.3α1. Notice that in this study, we focus on spatially

extended sources rather than point sources; therefore, we assign relatively small weighting to

the sparsity term. In the case that the underlying source is point source, larger weights can

be assigned to the sparsity term (e.g. α3 = 100α1) so as to make the reconstructed source

highly focalized.

3.4.5 Conclusion

In this study, we propose a novel EEG inverse method Sparsity and SMOOthness enhanced

brain TomograpHy (s-SMOOTH), which combines the vTGV and the `1−2 regularizations

to improve reconstruction accuracy for EEG source imaging. Considering the complicated

geometries of the cortex surface, we define a vTGV regularization on a triangular mesh ex-

pressed as an infimal convolution form. The vTGV regularization enhances the high-order

smoothness and thus is able to improve localization accuracy, while the `1−2 regulariza-

tion enhances the sparsity of the brain images. A series of simulation experiments with

Gaussian-shaped sources show that the proposed s-SMOOTH is able to accurately estimate

the location, extent, and magnitude variation of the current density distribution. It also

consistently provides better performance than other competitive methods in terms of quan-

titative criteria such as total reconstruction accuracy, localization accuracy, and degree of

focalization. Although this study focuses on discussing EEG source imaging, the proposed

method is equivalently applicable to MEG source imaging.
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CHAPTER 4

Acceleration of EEG Brain Image Reconstruction

In Chapter 3, we present a novel EEG brain image method s-SMOOTH, which incorporates

two advanced regularization techniques to provide brain images with high reconstruction

accuracy. An efficient algorithm using ADMM is derived to solve the problem, however, its

computational cost is still relatively high due to these complicated regularization terms. In

order to provide real-time brain images, more efficient methods with less computation are

desired.

In this chapter, we propose a graph Fractional-Order Total Variation (gFOTV) based

method, which provides similar reconstruction accuracy but consumes less computation by

using only one regularization term. As discussed in the previous chapter, imposing sparsity

on the first derivative provides sources with high focalization degree, but the intensity of the

reconstructed sources is almost uniform that leads to low localization accuracy. On the other

hand, imposing sparsity on the second derivative produces smooth brain images, which im-

proves the localization accuracy but the reconstructed sources become less focalized. To solve

this problem, the s-SMOOTH method incorporates two regularization terms: voxel-based

total generalized variation (vTGV) regularization and the `1−2 regularization. The vTGV

regularization imposes sparsity on the second derivative, which enhances the smoothness of

the brain image, and the `1−2 regularization imposes sparsity on the current density itself

to enhance the sparsity of the image. The combination of these two regularizations result

in a brain image that is both locally smooth and globally sparse. In contrast, the gFOTV

method only employs one regularization term to achieve similar performance. It provides

the freedom to choose the smoothness order by imposing sparsity on α-order derivatives

(α > 0). We demonstrate that choosing a order α = 1.6 provides an accurate result that is
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smoother than α = 1 and more focal than α = 2. The performance of gFOTV and various

state-of-the-art methods is compared using a large amount of simulations both qualitatively

and quantitatively. The results demonstrate the superior performance of gFOTV not only in

spatial resolution but also in localization accuracy and total reconstruction accuracy. With

only one regularization term, the computational cost of gFOTV method is reduced to three

times less than that of the s-SMOOTH method.

To further speed up the algorithm, we develop a parallel algorithm by applying the

Chambolle-Pock and ARock algorithms along with diagonal preconditioning. A variety of

experiments show that the proposed algorithms have more rapid convergence than the state-

of-the-art methods and have the potential to achieve the real-time temporal resolution.

4.1 Sparsity on Fractional-Order Derivative: Fractional-Order To-

tal Variation (FOTV)

Fractional-order TV has been proposed recently in image processing to enhance smoothness

with relatively low computational cost [RHZ13, CSZ13, BF07]. We focus on the anisotropic

version in which the objective function of the derived minimization problem is separable.

Recall that the anisotropic fractional-order TV in a 2D rectangular mesh is defined as follows:

TVα(u) = ‖∇αu‖1 =
M∑
i,j=1

(
|(Dα

xu)i,j|+ |(Dα
y u)i,j|

)
,

where α ∈ (1, 2). Here the fractional derivative is based on the Grüwald-Letnikov derivative

definition [OS74]

(Dα
xu)i,j =

K∑
k=0

wα(k)u(i− k, j), (Dα
y u)i,j =

K∑
k=0

wα(k)u(i, j − k),

where the coefficients are

wα(k) = (−1)k
Γ(α + 1)

k!Γ(α− k + 1)
.

It is easy to see that wα(0) = 1 and wα(1) = −α. Moreover, if α = 1, then TVα is the

traditional TV. If α = 2, Dα
x/Dα

y approximates the second partial derivative of u along the
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x/y-direction. Although the above definition is also valid for α ∈ (0, 1) ∪ (2,∞), it has

experimentally shown that α ∈ (1, 2) achieves the best performance in applications [CSZ13].

4.2 Graph Fractional-Order Total Variation (gFOTV)

Since the cortex surface is an irregular 3D surface consisting of gyrus and sulcus, we define

a graph α-order TV with α ∈ [1, 2] tailored to such surface. After discretizing the cortex

surface, we create a graph whose nodes correspond to the centroids of all triangles. For a

specific node vi, let d(vi, vj) be the number of nodes on the shortest path connecting the

nodes vi and vj, which is in or close to a geodesic of the underlying surface passing through

vi and vj. Given a path p = (vi=m0 , vm1 , . . . , vmK
) where the shortest distance between the

nodes vm0 and vmj
is j nodes, the fractional-order derivative along the path p is defined as

(Dα
p u)i := Dα

p u(vi) =
∑
v∈p

wα(d(vi, v))u(v) =
K∑
j=0

wα(j)u(vmj
).

Then the discretized fractional-order TV of u is defined as follows:

TVα(u) = ‖Dαu‖1 =
M∑
i=1

∑
p∈P(i;K)

|(Dα
p u)i|,

where P(i;K) is the set of all paths starting from the ith node with length of K nodes. The

shortest path between each node pair can be calculated by the breadth-first search (BFS)

algorithm. For a specific node vi, the nodes at level k, i.e., the nodes have shortest distance

k from vi, are assigned the weight wα(k). In particular, if α = 1, then Dα is exactly the finite

difference operator used in the TV-based methods. If α = 2, then wα(k) = 0 for k > 2 which

implies that all nodes at level more than two are assigned zero weight. If α ∈ (1, 2), then

the weights wα(k) will gradually decay as k goes to infinity. As the value of α increases from

1 to 2, the decay rate of weights wα(k) becomes larger. Note that K specifies the maximal

level of nodes to be used. Due to the sparse structure of the underlying u, it is sufficient to

choose K ≤ 4 levels of neighboring nodes to achieve the desired accuracy in our experiments.
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4.3 gFOTV: Graph Fractional-Order Total Variation EEG Source

Reconstruction

4.3.1 Formulation and Algorithm

After defining FOTV on triangular mesh of cortex surface, we propose the following fractional-

order TV regularized EEG source reconstruction model to improve high order smoothness

of the brain image

min
u

{
1

2
‖Au− b‖2

2 + λTVα(u)

}
. (4.1)

where λ > 0 is regularization parameter, which controls the tradeoff between the data fidelity

term and the sparsity term.

By change of variables, the above problem can be converted to a linear equality con-

strained minimization problem

min
u,v

{
1

2
‖Au− b‖2

2 + λ ‖v‖1

}
subject to Dαu = v.

Then the ADMM yields the following algorithm

v = shrink(Dαu+ ṽ, λ/ρ)

u = argmin
u

{
1

2
‖Au− b‖2

2 +
ρ

2
‖Dαu− v + ṽ‖2

2

}
= (ATA+ ρDT

αDα)−1
(
AT b+ ρDT

α (v − ṽ)
)

ṽ ← ṽ + γ(Dαu− v)

(4.2)

Here the parameters ρ > 0, γ ∈ (0, (
√

5 + 1)/2) and the shrinkage operator is defined

componentwise as shrink(u, µ)i = sign(ui) max{|ui| − µ, 0}.
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4.3.2 Experiments and Results

4.3.2.1 Experimental Protocol

In our simulation, Gaussian patches are used to simulate sources in the brain. To represent

sources at different locations, we randomly select three sources located at different lobes of the

cortex surface. In addition, to evaluate the performance of the proposed methods for different

source sizes, we simulate sources containing 50, 100, 150, 200, 250 voxels, corresponding to

1.0cm, 1.4cm, 1.7cm, 1.9cm, 2.1cm in radius, respectively. After sources are generated,

random independent and identically distributed (i.i.d.) Gaussian noise is added to each

voxel as background neural noise. Additionally, electrode and electronic noise are added

to each channel. For the signal-to-noise ratio (SNR), it is set to be 10dB by default. The

number of electrode used is 346, and the number of voxels in the source model is 10240.

Finally, the signal is normalized to between 10µV to 100µV , which is a typical range of

amplitude for an adult EEG signal [AGA04]. To reduce round-off errors, both the lead field

matrix A and the electrical potential b are scaled by 105.

4.3.2.2 Parameter Selection

In the operator Dα, the parameter α specifies the order of the spatial derivative domain

where we want to impose sparsity constraint on. As α becomes larger, we impose sparsity

of higher order derivatives, and therefore the reconstructed sources become smoother and

decay faster. When α = 1, the source decay speed is the slowest, which is the case of TV

that the current density is piecewise constant. By our experience, it works well when α = 2.

By choosing α to be a fraction between 1 and 2, all level nodes will be assigned a non-zero

weight, which enhances reconstruction smoothness. Specifically, α = 1.6 is appropriate for

all our experiments. In addition, the spatial resolution will be higher than that of α = 2.

In the proposed Algorithm Eq. (4.4), the regularization parameter λ controls the balance

between the data fidelity term and the sparsity term. When the source size becomes larger,

λ should be tuned to be a little larger. As the noise level becomes higher, λ needs to be a

little smaller. According to our experience, it works pretty well by simply choosing λ around
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1. The parameter ρ affects the convergence speed of Algorithm Eq. (4.4), and is set as 10λ

by default. Finally, the parameter γ is fixed as 1.

4.3.2.3 Simulation Results

First, we evaluate the performance of the proposed method using α = 2 and α = 1.6, and

compare with several state-of-the-art methods: sLORETA, `1-norm based and TV-based

methods. Fig. 4.4 shows the reconstruction results of three sources at different locations of

the cortex surface. One can see that the spatial resolution of sLORETA is very low, since

it is based on the Tikhonov regularization using `2-norm. The `1-norm based method MCE

greatly improves the spatial resolution because it imposes sparsity of the source in itself,

but it yields over-focused reconstructed sources and fails to identify the spatial extent of the

sources. The TV-based method shows good performance in identifying the spatial extent and

preserving edges. However, it does not recover the varying intensity of the source, because

of the assumption that the source intensity is piecewise constant. In contrast, the proposed

method generates the reconstructed images closest to the ground truth. It not only provides

high spatial resolution, but also successfully reconstructs the intensity variation and the

spatial extent of the sources. It is worth noting that α = 1.6 is able to further enhance the

spatial resolution compared to α = 2.

We further evaluate the proposed method quantitatively by using various quantitative

criteria. To show the robustness and consistency, we conduct a large number of simulation

tests with different source sizes, and average results of 50 realizations with different noise

configurations, illustrated in Fig.4.5. In the TRE curve, one can see that the proposed

method provides the smallest total reconstruction error. Notice that the TV-based method

also shows a relatively small total reconstruction error compared to other methods. In the

LE curve, our proposed method shows the smallest localization error, since it makes the

brain image smoother by imposing sparsity in higher order derivative instead of the first

order derivative. As is well known that sLORETA can provide high localization accuracy,

sLORETA also shows small localization error. TV-based method, however, produces rela-
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Ground truth sLORETA MCE

TV gFOTV2 gFOTV1.6

Figure 4.1: Source localization results of various methods on synthetic data with three

sources. The color scale gradation goes from blue being the minimum to red being the

maximum.

tively large localization error, which is because the reconstructed sources are constant in each

subregion therefore it has difficulty pinpointing the peak of the source accurately. Finally,

the DF curve shows that all of the methods with sparsity constraints show high focalization

degree. It is interesting to notice that for gFOTV-based methods, α = 1.6 further enhances

the spatial resolution. Compared to other methods, the spatial resolution of sLORETA is

the lowest, as indicated by its name “standardized low resolution brain electromagnetic to-

mography”. To sum up, our proposed method demonstrates superior performance from all

the criteria including total reconstruction accuracy, localization accuracy and focalization

degree.

4.3.2.4 Comparison of gFOTV with s-SMOOTH

To compare the performance of gFOTV with s-SMOOTH, we simulate three spatially ex-

tended sources on the cortex surface. Fig. 4.3 shows the brain image reconstruction results

of TV, s-SMOOTH, and gFOTV methods when α = 1.6. The TV method fails to reflect
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Figure 4.2: Quantitative comparisons of various methods with different source sizes (average

of 50 realizations of different noise configurations, where the error bar shows the sample

standard deviation).

the varying intensity of the sources, while both s-SMOOTH and gFOTV methods are able

to reconstruct the intensity variation. Furthermore, the gFOTV method achieves a better

result that is closer to the ground truth than the s-SMOOTH method. This can also be

seen from the quantitative results where the TRE for s-SMOOTH is 0.22 while that for

gFOTV is only 0.19, indicating that the gFOTV provides higher reconstruction accuracy

compared to s-SMOOTH method. More interestingly, the gFOTV method only consumes

1/3 of the computation compared to the s-SMOOTH, since it only uses one regularization

term. In summary, the gFOTV method demonstrates potential to provide similar or higher

reconstruction accuracy but consume less computation cost than the s-SMOOTH method.

4.3.3 Conclusion

We have proposed an efficient and accurate EEG source reconstruction method by defining

a novel graph fractional-order total variation (gFOTV) adapted for a triangular mesh of the

cortical surface. This method imposes sparsity in α-order spatial derivatives with α ∈ [1, 2],

which includes the TV-based methods as a special case when α = 1. By tuning the parameter

α, the proposed method provides the freedom to choose a more elegant order of smoothness

for the underlying brain image. Therefore, it not only provides high spatial resolution, but

also recovers the current density variation and localizes the source peaks with high accuracy.

In addition, the proposed algorithm is parameter friendly in the sense that the parameter
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Figure 4.3: Comparison of gFOTV with s-SMOOTH.

selection is not sensitive to source size and noise level. A variety of simulation experiments

demonstrate that the proposed method consistently outperforms the state-of-the-art methods

both qualitatively and quantitatively.

4.4 Parallel Computation to Accelerate the Algorithm

The gFOTV is able to save the computational cost by only involving one regularization term.

However, since each of its iterations solves a least squares subproblem, the computation

intensity of gFOTV grows very quickly as the number of voxels increases. Inspired by

the numerical performance of the asynchronous coordinate updating scheme [PWX16], we

exploit the coordinate-friendly structure of the gFOTV operator and develop a very fast

algorithm to solve it. It is important to note that the proposed algorithm can be easily

extended toward other regularization models that involve the composition of the `1-norm

and a coordinate-friendly operator, such as those in the sparse source imaging (SSI) [DH08]

and the spatial Laplacian in [CNH10].
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4.4.1 Fast Numerical Algorithm

We consider the following variational model to reconstruct the current density distribution

on the cortical surface

min
u

1

2
‖Au− b‖2

2 + λ ‖Dαu‖1 , (4.3)

where λ > 0 is a tuning parameter used to balance the first data fidelity term and the second

regularization term. Here ‖·‖2 is the Euclidean norm and ‖x‖1 returns the sum of absolute

values of all components in the vector x. Note that the proposed algorithms can be easily

extended when we replace Dα in Eq. (4.3) by another sparsifying matrix. For example, if

Dα is replaced by the identity matrix, then Eq. (4.3) becomes the `1-norm regularized model

[UHS99, DH08].

In our previous gFOTV work [LQO16], we applied the alternating direction methods of

multipliers (ADMM) to derive an algorithm, where one subproblem involves solving Mx = b

for an N × N matrix M . It is time-consuming even though we used the Cholesky fac-

torization; moreover, the computation time will increase superlinearly when the number of

voxels N increases. Motivated by the desire to design a scalable algorithm, we resort to

the Chambolle-Pock algorithm [CP11]. The Chambolle-Pock algorithm is one of the first

primal-dual algorithms which solves the problem minx f(x) + g(Ax) without inverting any

matrices.

By defining

B =

(
A

Dα

)
, f(p, q) =

1

2
‖p− b‖2

2 + λ‖q‖1for

(
p

q

)
∈ RM+L,

Problem Eq. (4.3) can be rewritten as minu f(Bu). Then we can apply the Chambolle-

Pock algorithm with diagonal preconditioning [PC11] to solve it. By introducing two dual

variables s ∈ RL, t ∈ RM , we obtain the following algorithm
uk+1 = uk − Σ(DT

αs
k + AT tk)

sk+1 = Proj‖·‖∞≤λ(s
k + Γ1Dα(uk − 2Σ(DT

αs
k + AT tk)))

tk+1 = (I + Γ2)−1(tk − Γ2b+ Γ2A
T (2uk+1 − uk)).

(4.4)
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Here Σ,Γ1,Γ2 are diagonal matrices controlling the step sizes, which are defined by

Σii = (
L∑
j=1

|(Dα)ji|+
M∑
j=1

|Aji|)−1

(Γ1)ii = (
N∑
j=1

|(Dα)ij|)−1

(Γ2)ii = (
N∑
j=1

|Aij|)−1.

The projection of x ∈ RL is defined componentwise as[
Proj‖·‖∞≤λ(x)

]
i

= min(λ,max(−λ, xi)).

It has been shown that the above choices make Algorithm Eq. (4.4) converge fast.

By letting zk := (uk, sk, tk)T , Eq. (4.4) can be rewritten as

zk+1 = Tzk.

As shown in [PWX16], it is computationally advantageous to update zk in the (block) co-

ordinate fashion. Specifically, for every iteration, we randomly update one coordinate of z

in Eq. (4.4), say zk+1
i = (Tzk)i, and keep the rest coordinates unchanged, i.e., zk+1

j = zkj

for j 6= i. Furthermore, as shown in [PWX16, Section 4.2], we can plug the u update in

Algorithm Eq. (4.4) to the t update, and get a similar yet new algorithm:
uk+1 = uk − Σ(DT

αs
k + AT tk)

sk+1 = Proj‖·‖∞≤λ(s
k + Γ1Dα(uk − 2Σ(DT

αs
k + AT tk)))

tk+1 = (I + Γ2)
−1

(tk − Γ2b+ Γ2A
T(uk − 2Σ(DT

αs
k + AT tk))),

(4.5)

which is more suitable for coordinate update. Algorithm Eq. (4.5) is shown to be coordinate-

friendly, which means updating one coordinate of z is much cheaper than updating z entirely,

and the aggregate cost of updating all coordinates is similar to updating the whole z. More-

over, one of the major advantages of coordinate update is that it allows larger step sizes

than its full update counterpart. During the implementation of the coordinate update of

Algorithm Eq. (4.5), all the step-size matrices Σ,Γ1,Γ2 are multiplied by a scaling factor

s ≥ 1, which empirically leads to faster convergence.
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Furthermore, on computers and clusters equipped with multiple cores, we are able to

perform asynchronous parallel update in Eq. (4.5), as described in [PWX16, Section 4.4]

and [PXY16], which greatly speeds up the convergence. On a multi-core system, each core

will randomly select one coordinate of z to update, independent of other cores, and all

cores update the coordinate in parallel, while reading from and writing to their shared

memory. Asynchronous information delay and lockless memory access are allowed. It is

shown in [PXY16, PWX16] that if we relax the coordinate update as

zk+1
i = (1− ρ)zki + ρ(Tzk)i, zk+1

j = zkj , ∀ j 6= i, (4.6)

with a properly chosen factor ρ < 1, then this async-parallel algorithm will yield a solution to

Problem Eq. (4.3). We empirically choose ρ = 0.5 in all experiments for stable performance.

Our numerical experiments show that the above async-parallel version provides a nearly

linear speedup to Algorithm Eq. (4.5) as the number of working cores grows.

4.4.2 Experiments and Results

In this section, we demonstrate the performance of the proposed algorithms by testing them

on various simulation data sets. In particular, we compare the randomized coordinate update

of Algorithm Eq. (4.5) and its multi-core version with the ADMM-based algorithm [LQO16]

and the CVX toolbox http://cvxr.com/cvx/. The toolbox has been used in the state-

of-the-art EEG methods [CNH10, SLW16]. We apply the fractional-order TV regularized

model with α = 1.6, which consistently yields superior performance compared to other

related models in terms of accuracy [LQO16]. It is worth noting that as the number of

voxels increases, the quality of brain images reconstructed from this model can be further

enhanced.

4.4.2.1 Simulation Protocol

Our simulation uses the same sources as those in [LQO16], which we describe as follows.

First, a center is seeded and then its neighbors are gradually recruited to form a patch. The

current density is the strongest in the center, and then gradually decays as it goes far from
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the center following the shape of a Gaussian distribution. To represent sources at different

locations, we randomly select three sources located in different lobes of the cortex surface.

To simulate the noise, we impose random independent and identically distributed (i.i.d.)

Gaussian noise to each voxel and then add Gaussian noise at a signal-to-noise ratio (SNR)

of 20dB to each channel. The simulated measurements are normalized to fall between 10

µV to 100 µV , as suggested in [AGA04]. Experimental results show that the computation

time only relies on the number of voxels, the number of electrodes and the regularization

parameter λ, rather than the configuration of noise and source. Here, we choose the number

of electrodes as 68, 103 and 346, and the number of voxels as 10240, 16384 and 40960.

4.4.2.2 Computing Platform

All numerical experiments are performed in a machine with an Intel R© Xeon R© CPU E5-2650

v4 @ 2.2GHz and 64GB RAM in double precision. The CPU has 12 physical cores and each

core has 2 logical processors. The ADMM and CVX are called in Matlab 2016a running

on Windows 10. The async-parallel coordinate update algorithm is written in C++ based

on the toolbox [EPY16], and runs on Ubuntu 16.04LTS. We compare only the computing

time of the three algorithms. The core optimization algorithm of CVX is written in C and

called in Matlab through MEX; the ADMM subproblems are solved using basic linear algebra

operations in Matlab, which are highly optimized. Therefore the comparison is considered

fair despite the difference of platforms.

4.4.2.3 Performance Comparison

To make a fair comparison, we let each algorithm run until it achieves the same objective

function value, which implies the same accuracy and focalization degree. The scaling factor

s for the step size matrices in Eq. (4.6) is tuned between 5 and 11 to achieve the best

performance. In addition, we fix the regularization parameter λ = 20 for all tests, as it

works well consistently. Let p be the number of threads in our algorithm.

Fig. 4.4 shows all the brain images reconstructed from various data sets by randomized
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68× 10240 68× 16384 68× 40960

103× 10240 103× 16384 103× 40960

346× 10240 346× 16384 346× 40960

Figure 4.4: Reconstructed brain images for various data sets (No. of electrodes × No. of

voxels).

coordinate update of Algorithm Eq. (4.6) running one thread. As the triangular mesh gets

finer, the reconstructed sources become more focused. The increase of electrodes also helps

shrink the extent of sources and thereby localize sources more accurately. In Columns 3-

6 of Table 4.1, we compare the computation times of single-threaded CVX, ADMM and

coordinate update of Eq. (4.6) running one thread and 16 threads. Here, we manually change

the precision in CVX to achieve the same accuracy. In ADMM, the algorithm terminates

when it reaches either 1000 iterations or the tolerance of 10−3 for the relative error between

two consecutive results. In our method, we tune the scaling factor s and the number of

epoches for each data set, and then fix them for both single-threaded and multi-threaded

versions of Algorithm Eq. (4.6). One can see that for large-scale data sets, e.g., the case

with 346 electrodes and 40960 voxels, coordinate update algorithm Eq. (4.6) shows superior

performance over ADMM and CVX in terms of computation time.
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m n CVX ADMM p = 1 p = 16

68 10240 52.78 67.36 40.30 4.90

68 16384 95.00 237.80 74.46 8.46

68 40960 311.71 2015.79 242.42 25.45

103 10240 62.37 64.21 33.00 3.84

103 16384 108.16 175.31 56.19 6.35

103 40960 393.23 1639.51 194.48 19.77

346 10240 370.63 51.02 45.14 5.21

346 16384 476.16 135.12 66.45 7.59

346 40960 2720.28 1200.10 177.15 19.70

Table 4.1: Computation time in seconds. Columns 3 to 6 list the computation times of

single-threaded CVX, ADMM and the proposed algorithm Eq. (4.6) with one thread and 16

threads, respectively.

Furthermore, to study the speedup behavior of Algorithm Eq. (4.6), we use various

numbers of threads p = 1, 2, 4, 8, 16 and fix the number of epoches as 5000 and the scaling

factor s = 6. We define the speedup ratio by

running time using 1 thread
running time using p threads

,

which measures the reduction of running time due to the growth of threads. In Fig 4.5,

we plot the speedup ratio against the number of threads. One can see that the async-

parallel coordinate update algorithm achieves an (almost) linear speedup as the number of

threads grows. The above comparisons show that multi-threading significantly shortens the

computation time: for the 346× 40960 test, it is reduced from over twenty minutes (ADMM

or CVX) to less than twenty seconds (see Table 4.1).

4.4.3 Conclusion

We propose a fast and high-resolution EEG source imaging method, which significantly accel-

erates the numerical solutions of TV and gFOTV regularized EEG reconstruction methods.
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Figure 4.5: Multi-threading speedup of computation.

Specifically, by utilizing the coordinate friendly structure of the gradient and the fractional-

order gradient operators, we derive the proposed algorithm by applying the primal-dual

method and diagonal preconditioning technique. Numerical experiments show that the pro-

posed method running multiple threads on a multi-core system exhibits superior performance

in terms of both computation time and solution accuracy over the state-of-the-art methods.

The proposed approach can be generalized to accelerate other regularized models involving

the `1-norm. It also has a great potential to achieve real-time temporal resolution, which

can potentially bring tremendous convenience and broad influence to clinical applications.
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CHAPTER 5

Focalized Multi-Electrode Stimulation with

Optimization Techniques

In the previous chapters, we have developed several EEG-based brain imaging algorithms

that are able to produce images with high spatial and temporal resolution. In this chapter, we

will discuss focal and precise electrical stimulation for neural disorder treatment. Specifically,

we are interested in noninvasive neuromodulation that does not requires surgery, such as

transcranial current stimulation (tCS) and transcutaneous spinal cord stimulation (tSCS).

We will also discuss how to integrate together of both neural imaging and neural stimulation

by applying neural imaging to guide the neural stimulation.

It is well known that the key challenges for noninvasive stimulation lie in the ability to

provide high spatial and temporal resolution, with a high degree of focal accuracy, while using

the correct intensity and directionality using external current injection through an electrode

on the skin. The conventional two-electrode system inherently lacks this capability. However,

a multi-electrode systems can meet these requirements, based on their use of sophisticated

mathematical models and algorithms, and carefully designed safety features. As a result,

a multi-electrode system is considered herein as a viable mechanism to achieve focal and

precise stimulation.

In this chapter, we first introduce the background of tCS and tSCS. To achieve focalized

and precise stimulation, we propose a novel optimization method called Stimulation with

Optimal Focality and Intensity (SOFI), which is able to optimize both intensity and focality

at the target. We also apply the SOFI method to tCS and tSCS, and demonstrate that

it is able to stimulate multiple targets as well as avoid certain regions with high focal and
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localization accuracy. In addition, we show that it provides better results than the state-of-

the-art methods in terms of directional intensity and focality at the target.

5.1 Introduction

5.1.1 Transcranial Current Stimulation (tCS)

The technique of transcranial current stimulation (tCS) is rapidly becoming a non-invasive

neuromodulation for the treatment of brain-related disorders. Transcranial direct current

stimulation (tDCS) is a type of tCS, which applies a constant weak DC current to the targeted

cortex regions, while transcranial alternating current stimulation (tACS) is a variant of tDCS

where the current varies in time. tCS has shown great therapeutic potential for modulating

neural disorders and brain injuries such as depression [LKH06, NBF09], Parkinson′s disease

[BFR06, FBS06], and epilepsy [ARG13]. Studies also show that tCS could be applicable

to attention problem, stroke, and other illnesses caused by traumatic brain injury [WCC06,

KKP12, SDO14]. However, most of these studies are conducted by using two large patch

electrodes at specific anodic or cathodic neuromodulation at the targeted regions. The two

electrode montage has the limitation that it cannot stimulate multiple targets at the same

time, and we need to change electrode locations frequently to stimulate different targets.

To overcome the limitations of the two electrode montage, the multiple electrode stim-

ulation has been proposed [DDB11, SVS12, RFR14, GDE16, FTL16]. In order to better

make use of each electrode, it is desirable to control each electrode independently and de-

sign optimal stimulation patterns for each electrode to obtain a focal stimulation at the

target as well as avoid activation in certain regions. So far, several optimization meth-

ods have been developed for tCS to achieve more accurate stimulation [DDB11, SVS12,

DDH13, RFR14, GDE16]. The conventional optimization methods either maximize inten-

sity at the target, which results in very low focal accuracy (e.g. maximum intensity method

[DDB11, DDH13, SVS12, GDE16]), or maximize the focal accuracy at the expense of low

intensity (e.g. Linear Constrained Minimum Variance (LCMV) [DDB11]). In addition, in
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the LCMV method and its variants [DDB11], a hard constraint is enforced to meet the spec-

ified intensity and orientation at the target, which may lead to an infeasible solution when

the specified intensity is high or the target region is large. In addition, the hard constraint

limits the degree of freedom of the problem, which hinders it from obtaining a better so-

lution with higher intensity or focality. To overcome this limitation, we have developed a

novel optimization method called Stimulation with Optimal Focality and Intensity (SOFI),

which provides a solution with both high intensity and high focal accuracy within the safety

constraints. It is able to not only deal with multiple targets, but also avoid activating certain

regions. Particularly, for the spatially extended target, the algorithm is able to provide vari-

ous current intensity distributions (e.g. uniform, smooth, Gaussian) at the target depending

on the applications.

Another limitation of conventional optimization methods is that they require the clinician

to specify location and intensity at the target, which is usually unknown in most applications.

Recently, a method based on the reciprocity principle was proposed [FTL16], which enables

the EEG signal to be used as a guide for designing stimulation patterns without specifying

the location of the target. However, the stimulation parameters chosen by this method is

just empirical, and it is only able to deal with simple situations, such as cases in which a

single focal source predominates. It is unable to handle complicated cases, such as multiple

targets, spatially extended targets with different orientations in different parts, or containing

brain regions to be avoided. In the multiple targets case, it is possible that this method may

stimulate the averaged location of these targets. With the expertise in EEG brain imaging

area, we propose to use our dynamic EEG brain image methods [LQO16, QWL16] as a guide

for electrical brain stimulation. Using our precise EEG source localization [LQO16, QWL16],

our method is able to provide the accurate information of the target location, number as

well as orientation, so as to enable a precise stimulation. Different from other studies which

use fMRI as a guidance [CCM12], our EEG brain imaging system is able to provide much

higher temporal resolution in the range of milliseconds rather than seconds. In addition

to guide dynamic stimulation of the neural networks, the concurrent EEG brain imaging

will also offer real-time feedback of the neuromodulation. Thus, a closed-loop stimulation is
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eminently possible.

5.1.2 Transcutaneous Spinal Cord Stimulation (tSCS)

Epidural spinal cord stimulation (eSCS) has been used for restoration of motor functions in

spinal cord injury (SCI) [DGP98, MPR07b, HGH11, AEG14], pain management [Cam04,

RDD12, Jeo12], and spasticity control [PGD00]. However, it is invasive in that surgery is

needed to implant electrodes into the body. As an alternative, the transcutaneous spinal cord

stimulation (tSCS) was used to achieve a similar effect as eSCS in a noninvasive way [EGR12].

It has been shown that tSCS is able to elicit the locomotor-like movements in healthy subjects

[MPR07a, GGM10, GMP10, GPP11] as well as in spinal cord injury (SCI) subjects [EGR12,

HHK13]. tSCS has also been demonstrated to control pain [Cec09] and suppress spasticity

[HMT14]. Conventional tSCS uses one or two large electrodes for stimulation, resulting in

non-focal current flows in the spinal cord. Due to the large activated area, it is difficult

to avoid certain regions that we do not want to activate, e.g. bladder. In addition, the

two-electrode montage is not able to target multiple sites simultaneously, which limits its

effectiveness. Furthermore, when stimulating different targets, we may need to frequently

change the electrode locations, which is very inconvenient especially if we want to stimulate

a neural network dynamically.

More recently, multiple electrode arrays consisting of 3*3 [GGM15, GGP15, GER16],

3*7, and 3*8 electrodes [KTD13, KDS14, KHD15] have been adopted for transcutaneous

spinal cord stimulation, which make the multisite stimulation possible. Compared to single

site stimulation, the multisite stimulation has been demonstrated to induce more effective

stepping movements and higher amplitude of EMG activity in healthy subjects [GGM15,

GGP15, GER16]. However, the stimulation parameters are currently chosen by experience,

and the induced current is still not focused. In addition, certain sensitive regions such as

the bladder cannot be avoided. All of these together limit their capability of modulating the

neuronal circuits precisely.

To improve the focal accuracy of the stimulation, ring configuration has been widely
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used to enhance the focality of the epidural spinal cord stimulation (eSCS) [RDD12] and

transcranial current stimulation (tCS) [DDB11, FTL16]. It is featured by an anode (cathode)

electrode surrounded by four cathode (anode) electrodes. Generally, it is good at stimulating

the radial orientation, but has difficulty in dealing with tangential orientation [FTL16].

Another limitation lies in that when the target is not underneath any electrode, the ring

configuration is not able to stimulate the target precisely. In addition, it is not able to avoid

certain regions either. A more effective and focal stimulation can be achieved by precisely

constructing a spinal cord model and taking advantage of optimization methods. However,

to the best of our knowledge, there has not been any work that uses optimization methods

to provide optimal stimulation parameters for tSCS. In this dissertation, we propose a novel

optimization method SOFI, resulting in focalized and precise spinal cord stimulation.

5.2 Focalized Multi-Electrode Stimulation

5.2.1 Mathematical Formulation

Let’s consider a volume conduction model (e.g. head model, or spinal cord model) with

different tissues, where each tissue has isotropic conductivity. Assume there are N elec-

trodes on the skin. We use a vector x to represent the injected current at each electrode.

Furthermore, we discretize the whole volume into M voxels and use vector e to represent

the electrical field at each voxel resulting from the electrical stimulation. Since we further

consider the orientation of the electrical field, the vector e has a dimension of 3M ∗1. Under

quasi-static conditions, the electrical field e in the voxels and the stimulation parameters x

at the electrodes has a linear relationship [GC99, DDB11]:

e = Kx. (5.1)

Here, the coefficient matrix K is called “lead field matrix”, which describes the one to

one mapping between each electrode and each voxel. Specifically, the (i, j)-th entry of K

denotes the electrical field at the i-th voxel due to an unit current stimulation at the j-

th electrode. Therefore, the electrical field in each voxel is a linear superposition of that
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due to the stimulation at each electrode. Note that although focusing on electrical field

in this study, we can also use K to represent the electrical potential, current (density), or

activation function at each voxel resulting from the current stimulation at each electrode.

The K matrix can be calculated by constructing a realistic volume conduction model and

solving the Maxwell′s equations [GC99] with the boundary element method (BEM) or finite

element method (FEM). Note that the lead field matrix K here is different from that in the

EEG inverse problem. Here, the current sources are at the electrode side, while in the EEG

inverse problem, the current sources are in the brain.

5.2.2 Prior Arts

There are few literatures that aim to improve focal accuracy in transcutaneous spinal cord

stimulation. On the other hand, several methods have been developed to design better stim-

ulation parameters in transcranial current stimulation. In this section, we will review two

types of state-of-the-art stimulation methods in transcranial current stimulation: optimiza-

tion methods and reciprocity methods. These two types of methods have not been used in

transcutaneous spinal cord stimulation to the best of our knowledge.

5.2.2.1 Optimization Methods

Recently, optimization techniques have been used to obtain optimal stimulation parameters

for transcranial current stimulation [DDB11, RFR14, SVS12, GDE16]. It makes use of

the whole multi-electrode array to achieve higher degree of focal accuracy and localization

accuracy by assigning different weightings to different electrodes. With the optimization

framework, it is very easy to incorporate a variety of constraints, such as avoidance area or

any safety limits.

Linearly constrained minimum variance (LCMV)

The Linearly constrained minimum variance (LCMV) [DDB11] adopts analogous method-

ology as that in beamforming problems. It enforces a hard constraint at the target, including

intensity and orientation, and minimizes the electrical field in other areas. Let C represent

67



a subset of the lead field matrix corresponding to the target voxels and e0 represent the

specified intensity and orientation at the target; then the model of LCMV method can be

expressed as follows

min
x
‖Kx‖2

subject to Cx = e0.

The most advantage of LCMV methods is that it optimizes focal accuracy at the target

on the premise that the desired intensity and orientation at the target is satisfied. However,

the hard constraint at the target greatly limits the degree of freedom, and hinders it from

obtaining better solution with higher intensity and focality. Moreover, with this hard con-

straint, it is possible that it may be unable to obtain a feasible solution, such as in the cases

that the specified target intensity is high or the target area is large.

Maximum Intensity

Different from LCMV which optimizes the focality at the target, the maximum intensity

method [DDB11, SVS12, GDE16] optimizes the intensity at the target. Specifically, it max-

imizes the directional intensity in the desired orientation, assuming that the orientation of

the E-field also influences the stimulation results. It optimizes the intensity at the expense

of focal accuracy.

max
x

eT0Cx

subject to
N∑
i=1

|x| ≤ 2 ∗ Itotal.

The advantage of this method is that the obtained intensity at the target is the maximum.

On the other hand, its drawback is also obvious that the focal accuracy of this method is

sacrificed [DDB11], which will be shown later.
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5.2.2.2 Reciprocity Principle Based Methods

A critical limitation of the optimization method is that the target location, intensity, and

orientation must be specified beforehand, which is unknown in many cases. Recently, tran-

scranial current stimulation methods based on reciprocity principle [FTL16] were proposed

as an alternative of optimization methods. Based on the assumption that there is a single

focal source, it designs the stimulation parameters to maximize the electrical field along the

desired orientation. It uses EEG as a guide and does not need the prior knowledge of the

target. Unfortunately, this method is empirical rather than optimal, and it is only able to

deal with simple situations, such as cases in which a single focal source predominates. It is

unable to handle complicated cases, such as the situation that there are multiple targets,

spatially extended targets with different orientations in different parts, or certain avoidance

regions.

5.2.3 SOFI: Stimulation with Optimal Focality and Intensity

In this section, we present a novel method Stimulation with Optimal Focality and Intensity

(SOFI) to obtain optimal stimulation parameters for noninvasive electrical stimulation, which

overcomes the limitations of the aforementioned methods, and is able to provide both high

intensity and focality simultaneously at the target.

5.2.3.1 Safety Criteria

First, it is important to guarantee that the stimulation is within safety limits. If using Imax

to represent the maximum current at each electrode, Itotal to denote the maximum total

current injected to the body, and ratio to represent the intensity ratio between the target

and avoidance region, our safety criteria are summarized as follows:
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|xi| ≤ Imax, i = 1, ..., N

N∑
i=1

|xi| ≤ 2 ∗ Itotal

N∑
i=1

xi = 0

Intensityavoid ≤
1

ratio
Intensitytarget

(5.2)

Note that since the total positive current is equal to the total negative current, the sum

of the absolute value of the current should be twice the total current injected to the body

(the second safety criteria in Eq. (5.2)). Note that the safety limit values Imax and Itotal may

vary in different applications.

5.2.3.2 Optimization Model

The key challenges for noninvasive stimulation technologies lie in the capability of providing

precise stimulation with both high focal accuracy and intensity in the desired direction. As

we can see, the current optimization methods either maximize the intensity at the target by

sacrificing the focal accuracy (e.g. maximum intensity method [DDB11, SVS12, GDE16]),

or maximize the focal accuracy at the expense of relatively low intensity (e.g. Linear Con-

strained Minimum Variance (LCMV) [DDB11]). In addition, in the LCMV method and its

variants [DDB11], a hard constraint is enforced to meet the specified intensity and orienta-

tion at the target, which may lead to an infeasible solution when the specified intensity is

high or the target region is large. To overcome these limitations, we have developed a novel

optimization method called Stimulation with Optimal Focality and Intensity (SOFI), which

does not set any hard constraint and thus it always generates a feasible solution. Unlike

previous methods, the SOFI method optimizes both focality and intensity within safety con-

straints, resulting in a solution with both high focal accuracy and high intensity. The model
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of SOFI can be expressed as follows:

min
x

1

w
‖Ks‖2 − λ ∗ eT0Cx

subject to

|xi| ≤ Imax, i = 1, ..., N

N∑
i=1

|xi| ≤ 2 ∗ Itotal

N∑
i=1

xi = 0

Intensityavoid ≤
1

ratio
Intensitytarget

(5.3)

In the objective function, the first term is the focality term, where the constant w is the

ratio between the total number of voxels and the number of targeted voxels. The second

term is the intensity on the desired direction. The parameter λ balances these two objectives

and controls the relative importance of the focality and directional intensity. It can be set

empirically or automatically by the L-curve method or cross validation method [Han94].

Since this optimization problem is convex, it can be efficiently solved by softwares such as

CVX.

The SOFI method is able to deal with any target location on any tissue with any target

orientation. It can not only deal with multiple targets, but also avoid activating certain

sensitive regions. In addition, it is very easy to incorporate various safety constraints into

the model. Rather than setting a hard constraint at the target like the LCMV method, it

allows a range of intensity by changing the parameter λ. It optimizes intensity and focality

simultaneously.

To further improve the focality, we can replace the L2 norm with L1 norm to impose

sparsity on the target area, for example

min
x

1

w
‖Ks‖1 − λ ∗ e

T
0Cx (5.4)

Furthermore, for spatially extended targets, it is possible to design the current intensity

distribution (e.g. uniform, smooth, Gaussian, etc.) at the target depending on the require-
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ments of certain applications. This can be achieved by imposing sparsity on a transform

domain rather than the original domain:

min
x

1

w
‖D(Ks)‖1 − λ ∗ e

T
0Cx (5.5)

where the operator D helps to transform into different domains. For example, if uniform

distribution is desired, then we can set D to be the total variation operator to impose sparsity

on the first derivative domain; if smooth distribution is desired, D can be set to be Laplacian

operator, which imposes sparsity on the second derivative domain. If high-order smoothness

or Gaussian distribution is required, we can use total generalized variation (TGV) to impose

sparsity on high-order spatial derivative. A similar idea has been adopted in EEG inverse

problem in our published papers [LQO16, LQH16] and here we propose to apply it to optimal

stimulation.

5.2.3.3 EEG/EMG Inverse Image Guided Optimal Stimulation

One of the limitations of conventional optimization methods is that they require the clinician

to specify the location and intensity of the target area, which is unknown in most applications.

Recently, a method based on the reciprocity principle was proposed for tDCS [FTL16], which

enables the EEG signal to be used as a guide for designing stimulation patterns without

specifying the location of target. However, this method is empirical rather than optimal,

and it is only able to deal with simple situations, such as cases in which a single focal source

predominates. It is unable to handle complicated cases, such as multiple targets, spatially

extended targets with different orientations in different parts, or containing brain regions to

be avoided.

Unlike the reciprocity principle-based methods that use EEG signal as a guidance, our

system uses our dynamic EEG brain image system [LLQ15] as a guide for electrical stimu-

lation. Compared to fMRI, EEG brain imaging provides much higher temporal resolution

(∼ms). It is able to provide not only the number and the location, but also the orienta-

tion of targets. With our precise EEG source localization method [LQO16, LQH16], our

system is able to provide the ability to handle complicated target/avoidance configurations
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with high accuracy. The concurrent EEG brain imaging not only provides a guide for dy-

namic stimulation of complicated neural networks, but also offers real-time feedback of the

neuromodulation. Thus a closed-loop stimulation is eminently possible.

5.2.3.4 Quantitative Metric

In order to evaluate the performance of various stimulation methods quantitatively, we use

the following criteria:

• Intensity, defined as the average intensity at the target voxels.

• Target Error (TE), defined as the distance between center of mass of the activation

area and the target.

• Focality, defined as the radius within which the accumulative energy (square of inten-

sity) is half of the total energy.

Considering that the target orientation also plays an important role on the stimulation

effectiveness, we further adopt the following directional criteria:

• Directional Intensity (DI), defined as the average intensity in the desired direction.

• Directional Target Error (DTE). It is similar to target error (TE). The only difference

is that we use the total intensity when calculating TE, while using directional intensity

for DTE calculation.

• Directional Focality (DF). It is similar to focality, and the only difference is that when

calculating DF, we use the directional intensity rather than the total intensity.
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Figure 5.1: Left: realistic head model with 64 electrodes on the scalp. Right: head model

after meshing.

5.3 Focalized Transcranial Current Stimulation (tCS)

5.3.1 Realistic Head Model

To design optimal stimulation parameters for tCS, it is necessary to construct a realistic

head model. Using a similar method as in Chapter 2, we can construct a realistic head

model and source model from high-resolution MR image. In addition, we have built an

electrode model containing multiple electrodes, where the electrode locations are from the

international standard 10-10 system. Fig. 5.1 shows the head model with 64 electrodes on

the left panel, and the head model after meshing on the right panel. In the current electrode

model, we use materials of gel and 2mm thick copper, with a diameter of 1.2cm. Note that

the number, material, size, pitch, thickness and position of electrodes can be easily modified.

With the realistic head model, we further use FEM method to calculate the lead field matrix

in COMSOL. For the conductivity of each tissue, we use the values provided in [DDB11].

5.3.2 Experiments and Results

In this section, we first describe the safety limits and simulation protocol we used, then

compare the performance of the proposed SOFI method to various state-of-the-art methods,

including single small electrode, ring pattern, maximum intensity [DDB11, GDE16], weighted
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least square (WLS) [DDB11], and LCMV [DDB11]. In order to have a fair comparison, we

restrict the same safety limits (including total current and current for individual electrode)

on the three optimization methods: WLS, LCMV and SOFI. For the other three methods

that do not use optimization, we only restrict the total current. Additionally, we further

compare the LCMV and the SOFI methods in the following cases: single target, multiple

targets, and single target with an avoidance region.

5.3.2.1 Safety Limits

For transcranial direct current stimulation (tDCS), there have been different safety criteria in

different literatures, including the limits for total current [BNB12, BED13], current density

[BNB12], charge density [LKM09], duration [BNB12, SN11], etc. A common criteria shared

by most literatures is that the total current should be less than 2mA [BNB12, BED13]. In

our study, we restrict both total current and current for individual electrode. Specifically,

we use the following constraints: the Imax is set to 1mA, the Itotal is set to 2mA, and the

intensity ratio between the target and avoidance region is set to 10. Note that these values

can be easily modified to satisfy the requirements of different applications.

5.3.2.2 Simulation Protocol

To test the performance of the proposed SOFI method on tCS, we conduct the simulation on

several different cases, including single target, multiple targets, and avoidance region on the

cortex surface. Fig. 5.2 shows the target and avoidance region we use. For single target, we

use the target on the right hemisphere. For multiple targets, we use two symmetric points

on the left and right hemispheres. For the avoidance region, a part of the auditory cortex is

used.

5.3.2.3 Results

We compare the performance of the proposed method with various state-of-the-art methods.

Fig. 5.3 shows the resulting electrical field, and Fig. 5.4 shows the weighting for each
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Figure 5.2: Simulated target and avoidance regions on the cortex surface.

electrode. Single electrode and maximum intensity methods show high intensity at the

target, but the focality of the electrical field is very low. For the ring configuration, one can

see a relatively focal activation area around the target, but its intensity is weak compared to

that on the temporal cortex. This might be because the temporal cortex is closer to the scalp

electrodes. In contrast, the Weighted LS (WLS), LCMV, and the proposed SOFI method

provide a focal result. Compared to the other two methods, the proposed method provides

even better intensity and focality.

LCMV is probably the most popular method for optimizing focality so far [DDB11], so

we further compare the proposed method to LCMV in different cases: single target, multiple

target, single target with avoidance region.

1. Single Target

Fig. 5.5 shows the comparison when there is one prominent target. The quantitative

result shows that the proposed SOFI method provides better results than the LCMV, in terms

of intensity, directional intensity (DI), target error (TE), and focality. It is worth noting that

the focality is larger than 2cm for both methods, which is probably due to the relatively small

current we use in tDCS (e.g. total current ≤2mA) as well as the high resistivity of the skull.

This value matches with the results in other literatures [DDB11, FTL16].

2. Multiple Targets

In addition to single target, we also show that the proposed SOFI method is able to

stimulate multiple sites. In Fig. 5.6, two symmetric points on the left and right hemispheres
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Figure 5.3: Comparison of various transcranial current stimulation methods. The color

shows the intensity of the electrical field.

Figure 5.4: Comparison of various transcranial current stimulation methods. The color

shows the stimulation parameters at each electrode.
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Figure 5.5: Comparison of LCMV and the proposed method with single target.

are set to be the targets. The results show that both methods are able to target both sites.

Compared to LCMV, the proposed method shows higher focal accuracy. Note that the focal

accuracy for both methods is lower than that in the single target case.

3. Avoidance Region

Fig. 5.7 shows the results when part of the auditory cortex is set to be the avoidance

region. One can see that the avoidance region is successfully set to be silent (dark blue

color). To avoid the auditory cortex, the activated area of LCMV shifts to the top, resulting

in larger target error and lower focal accuracy. In comparison, the proposed method SOFI

provides a more focal result with higher localization accuracy.

5.3.3 Conclusion

In summary, we have demonstrated that the SOFI method is able to deal with different

complicated cases, such as single target, multiple targets, and target with avoidance region.

It is worth noting that the result of single target is the best, since it has less constraints

and hence provides a higher degree of freedom to select a better solution. Compared to
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Figure 5.6: Comparison of LCMV and the proposed method using multiple targets.

Figure 5.7: Comparison of LCMV and the proposed method using single target with avoid-

ance region.
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the maximum intensity and LCMV methods, the SOFI method maximizes the intensity and

focal accuracy at the same time and achieves better focality and intensity. Its advantage is

especially significant when we require certain regions not to be activated. The SOFI method

is able to avoid the region without significantly shifting the activated area, while the LCMV

method shifts the activation area, resulting in lower localization accuracy.

5.4 Focalized Transcutaneous Spinal Cord Stimulation (tSCS)

5.4.1 Realistic Spinal Cord Model

To calculate the optimal stimulation parameters, first we need to construct a spinal cord

model. Here, we build a realistic spinal cord model based on high-resolution CT/MRI image,

which includes the following steps: image segmentation, electrode model construction, and

meshing. Then we can apply FEM method to calculate the lead field matrix.

1. Image Segmentation

In this step, we segment the torso into different tissues according to the gray level on the

MRI/CT image. The segmentation can be done manually in software such as Solidworks, or

automatically in software such as MeVisLab. For tissues that are difficult to be identified

from the image, we can build it manually using software such as Solidworks or COMSOL.

Fig. 5.8 shows one of the MR image we used.

After image segmentation, we convert 2D segmentation results for each tissue into 3D

models with software such as Solidworks. Then we put all of the tissue together to form a

whole model. Fig. 5.9 shows a 3D model with different tissues, such as skin (including SC,

SG and dermis layers), fat, muscle, vertebrae, spinal nerve, CSF, grey matter, and white

matter.

2. Electrode Model Construction

After constructing the 3D model for the spinal cord, we import the model into software

such as COMSOL, and construct an electrode model. The electrode model includes a multi-

electrode array on the back and one return electrode on the belly. Fig. 5.10 shows the
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Figure 5.8: MR image of the torso.

Figure 5.9: Realistic spinal cord model based on individual MRI/CT image.
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Figure 5.10: Spinal cord model with the multi-electrode array.

spinal cord with the electrodes on it, where we use 9(rows)* 7(columns) small electrodes

for stimulation and one large electrode as the return. In the current model, the electrodes

use stainless steel, with thickness of 60µm and diameter 1cm. Note that the number of

electrodes is not limited to 63. The electrode material, size, pitch, thickness, and position

can also be easily changed in software such as COMSOL.

3. Meshing

In this step, we discretize the 3D model into a large number of voxels to form a finite

element model.

4. Lead Field Matrix Calculation

To calculate the lead field matrix, we can use a finite element method software such as

COMSOL. For each electrode, we inject a unit current (density) to it, and compute the

resulting voltage/electrical field/current (density)/activation function at each voxel. The

obtained values form a vector, which will become the corresponding column for the lead field

matrix. Repeating this process will give us the whole lead field matrix. Table 5.1 lists the

conductivity values for different tissues we use to calculate the lead field matrix.
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Figure 5.11: Spinal cord model after meshing.

Table 5.1: Conductivity value used for the realistic spinal cord model
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5.4.2 Experiments and Results

5.4.2.1 Safety Limits

According to [GGM15, GGP15], with a carrier frequency of 10 kHz, the subject can easily

tolerate a stimulation intensity from 30 to 200mA for a painless operation. Therefore, here

we adopt a safety criteria that the current intensity for each electrode is limited to 100mA,

the total current intensity is limited to 200mA, and the intensity in the avoidance region is

at least 10 times smaller than that in the target region. It is worth pointing out that the

suggested safety limit values Imax = 100mA and Itotal = 200mA can be easily modified.

5.4.2.2 Simulation Protocol

In our simulation study, we simulate three different target configurations to test the per-

formance of the proposed method in different cases (Fig. 5.12), including 1) single target

case, in which there is only one target region; 2) multiple targets case, in which there are

two target regions; 3) avoidance case, in which we simulate one target along with a nearby

avoidance region. In this study, the default target tissue is white matter. This is because

the target region is dorsal root or dorsal column in many applications, such as locomotor

behavior regulation and pain control. Except for white matter, we also test the case that

the target location is on the vertebra (e.g. we choose a spot on the vertebra where there is a

cavity so that the current can flow into the spinal cord), and compare the results with that

of white matter. For the target orientation, the default orientation is along y-axis (radial to

the electrode); we also test the orientation of z-axis and make a comparison between them.

5.4.2.3 Method Comparison

We compare the proposed SOFI method with several state-of-the-art methods in the liter-

ature: single large electrode, single small electrode, maximum intensity, ring configuration,

and LCMV. Fig. 5.13 shows the stimulation results for each stimulation method.

For single large electrode, single small electrode, and the maximum intensity methods,
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Figure 5.12: Simulated target and avoidance regions. (a) single target. (b) multiple targets.

(c) one target region with one nearby avoidance region.

(a)	

(b)	

(c)	

Figure 5.13: Method comparison. (a) stimulation parameter at each electrode; (b) intensity

of E-field at the white matter; (c) directional intensity in the desired direction.
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the intensity of E-field at the target is very high; however, the E-field is spread out resulting

in very low focal accuracy. Among all the methods, the maximum intensity method provides

the highest directional intensity and the worst focality. In comparison, the results of ring

configuration, LCMV and the proposed method are much more focal. Compared to the other

two methods, the proposed method provides the best results in terms of bot intensity and

focality.

5.4.2.4 Effect of Various Factors on the Stimulation Results

In the following, we show the influence of different factors, such as target location, tar-

get orientation, multiple targets, avoidance region, and parameter λ on the result of the

stimulation.

Target Location

The SOFI method is able to target any location including any tissue such as bone and

white matter. Deeper source is generally more difficult to target, in terms of intensity and

focality at the target. For example, in Fig. 5.14, we compare the results of targeting bone

with targeting white matter. As we can see from the results, targeting bone provides much

higher target intensity and focality accuracy than targeting white matter, which is reasonable

since the electrical field is weakened by the high-resistivity bone when targeting the white

matter.

Target Orientation

In addition to target locations, the proposed method is also able to target any orientation.

In the previous results (Fig. 5.13), we set the target orientation to be along the y-axis, i.e.

radial to the electrode. In the following figure, we show the results of target orientation

along the z-axis, i.e. tangential to the electrode, and compare the performance of different

stimulation methods. The first row shows the stimulation parameters for each method,

and one can see that the weighting for each electrode is very different from that of y-axis

orientation (Fig. 5.13 top). For targets with z-axis orientation, generally the stimulation

pattern is to place the anode on one side of z-axis and the cathode on the other side. The
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Figure 5.14: Influence of target locations. (a) targeting bone; (b) targeting white matter.

ring configuration has difficulty in dealing with tangential targets, which can be seen from

its low target intensity and focal accuracy. To improve the focal accuracy, the LCMV and

the SOFI methods place multiple anodes with different weightings rather than only using

a single anode/cathode. Compared to other methods, the proposed SOFI method provides

the best focal accuracy.

Multiple Targets

The SOFI method is able to deal with not only a single target but also multiple targets.

Fig. 5.16 compares the performance of the LCMV and the proposed SOFI methods for

targeting two regions. The SOFI method provides better results than the LCMV method in

terms of target intensity, localization accuracy, and focal accuracy. Compared to the results

of single target (Fig. 5.13), we can see that both target intensity and focality are lower in

the multiple targets case, due to additional constraints on the solution.

Avoidance Region

As we know, the ring pattern is unable to avoid certain regions. In contrast, optimization

methods including the proposed SOFI method are able to handle that, by restraining the
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(a)	

(b)	

(c)	

Figure 5.15: Method comparison with target in the direction of z axis. (a) stimulation

parameter at each electrode; (b) intensity of E-field at the white matter; (c) directional

intensity in the desired direction.
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Figure 5.16: Comparison of LCMV and the proposed SOFI method in the case of multiple

targets.
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Figure 5.17: Comparison of LCMV and the proposed SOFI method in dealing with avoidance

regions.

intensity in the avoidance region to a few times (e.g.10) lower than that in the target region.

Fig. 5.17 compares the performance of the LCMV method and the proposed SOFI method

when dealing with an avoidance region close to the target region (Fig. 5.12 (c)). The result

shows that the LCMV method avoids the region by shifting the activated area away from

the target region, leading to larger target error and lower focal accuracy. In contrast, the

proposed SOFI method provides much higher localization accuracy and focal accuracy than

LCMV method.

Parameter λ

The intensity and focality at the target have an inherent trade-off [DDB11]. In the SOFI

method, the parameter λ controls the relative importance between the target intensity and

focality, and is critical to the stimulation results. When λ is large, more weight is put on

the directional intensity term, therefore the intensity of the results will be high, and vice
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versa. By setting λ at a very small value (e.g. 0.01), we can estimate the upper bound of

the focality. On the other hand, if setting λ at a very large value (e.g. 1000), we can obtain

an upper bound of the intensity. As λ goes to infinity, the proposed method becomes the

maximum intensity method (Fig. 5.18). To obtain the best result, selecting an appropriate

value of λ is very important.

Fig. 5.18 shows the results of LCMV method, the maximum intensity method, and the

proposed SOFI method with different λ. The results show that as λ becomes larger, the

directional focality decreases while the directional intensity increases. The result of λ =0.01

estimates the upper bound of directional focality, which is 0.59cm, and λ =1000 estimates

the upper bound of directional intensity, which is 27.3V/m. One can see that the results of

λ =1000 matches with that of maximum intensity method. In addition, the proposed SOFI

method always obtains better results than LCMV in terms of focality and intensity. For

example, when λ =2, the SOFI method provides a similar intensity to LCMV, but its focal

accuracy is higher; when λ = 4, it provides similar focality to LCMV, but the intensity is

much higher.

5.4.3 Conclusion

To the best of our knowledge, this is the first study that uses optimization technique to

design optimal stimulation parameters for tSCS. We develop a novel optimization method

SOFI, which is able to handle any target location (e.g. on the dorsal root or on the dorsal

column) with any orientation. With this method, we can stimulate as deep as the white

matter, with focal accuracy around 1cm (Fig. 5.14). In addition, we can stimulate not only

single target but also multiple targets, as well as avoid certain regions. We demonstrate that

the SOFI method provides better results than other state-of-the-art methods in terms of

directional intensity and focality. It is worth noting that adding more constraints (e.g. more

targets) on the problem will affect the stimulation performance, due to the reduced degree

of freedom.

In the SOFI method, the parameter λ controls the relative importance between the
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(a)	

(b)	

(c)	

Figure 5.18: Influence of the parameter λ in the proposed method on the stimulation results.

(a) stimulation parameter at each electrode; (b) intensity of E-field at the white matter; (c)

directional intensity in the desired direction.
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intensity and the focality. By changing λ, we can estimate an upper bound of focality and

intensity. When λ is very large, we get the best intensity; when λ is very small, we get

the best focality. With an appropriate parameter λ, an elegant solution can be obtained

with both high intensity and focal accuracy. The parameter λ can be selected manually by

experience or automatically by methods such as L-curve or cross validation.
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CHAPTER 6

Brain Dynamics Study with Accurate Time-Frequency

Analysis

So far, we have presented several brain imaging algorithms that are able to provide images

with high reconstruction accuracy, as well as optimization algorithms which can provide

focalized and precise stimulation. We have also discussed how to use the neural images to

guide the stimulation.

In this chapter, we will further study the neural dynamics quantitatively with accurate

time-frequency analysis method. Specifically, we propose to use Hilbert-Huang Transform

(HHT), a nonstationary method for analyzing the frequency of neural signal. By applying

to seizure detection and cross frequency coupling, we demonstrate that it is able to extract

more accurate frequency information than the widely used Fast Fourier Transform (FFT)

method.

6.1 Time-Frequency Analysis Methods

6.1.1 Fast Fourier Transform (FFT)

Fourier transform is a widely used frequency analysis technique, which converts a signal

from the time domain to the frequency domain. The fast Fourier Transform (FFT) is a

computational effective implementation of the discrete Fourier Transform (DFT), which is

defined as follows

Xk =
N−1∑
n=0

xne
−i2πkn/N k = 0, ...., N − 1, (6.1)
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where the x0, ..., xN−1 are the time points of a signal in time domain, while the X0, ..., XN−1

are the output in frequency domain.

Fourier transform assumes that the signal is stationary. However, neural signals such as

EEG, ECoG and EMG, are nonstationary, thus the stationary assumption may introduce

inaccuracy. It has been demonstrated that the Fourier Transform has deficiency in identi-

fying the low-frequency and high-frequency bands of heart rate variability (HRV), while the

nonstationary method Hilbert-Huang Transform (HHT) is able to overcome this limitation

and provides superior performance [LKY11].

6.1.2 Hilbert-Huang Transform (HHT)

Hilbert-Huang Transform (HHT) is a powerful tool in dealing with nonlinear and nonsta-

tionary signal. It mainly involves two steps: Empirical Mode Decomposition and Hilbert

Transform [Hua14].

1. Empirical Mode Decomposition (EMD)

The purpose of EMD is to decompose the signal into some intrinsic mode functions

(IMFs) that can be handled by Hilbert Transform. An IMF represents a simple oscillatory

mode that is more general and data-adaptive than the harmonic function: it can have a

variable amplitude and frequency as functions of time. That is why HHT can deal with

nonstationary signals. IMF is defined with two requirements: 1) the number of extrema and

the number of zero-crossings must either be equal or differ at most by one; 2) at any point,

the mean value of the envelope defined by the local maxima and the envelope defined by

the local minima is zero. Fig. 6.1 shows the IMFs of a seizure signal from our database. In

the end, the original signal can be expressed as the sum of the IMFs. Let x(t) represent the

original signal, cj represent the IMFs and rn the residue, then we have

x(t) =
n∑
j=1

cj(t) + rn(t). (6.2)

Multivariate Empirical Mode Decomposition (MEMD) is an extension of standard EMD
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Figure 6.1: Top: A seizure signal from our database (red line is the seizure onset); Bottom:

all of the IMFs of the signal.

to multivariate signals, which decomposes signals from several channels simultaneously.

MEMD can extract common rotation modes across signal components, thus is more suitable

than EMD to decompose the fusion of information from multiple sources [MGK08].

2. Hilbert Transform (HT)

After we decompose the original signal into several IMFs, there is no difficulty to apply

the Hilbert Transform to each IMF component. Hilbert Transform is defined as:

y(t) = H[x(t)] =
1

π
PV

∫ ∞
−∞

x(τ)

t− τ
dτ. (6.3)

Here “PV” indicates the principal value of the singular integral. Now, we can calculate

the instantaneous amplitude a(t), phase θ(t) and frequency w(t) as follows:
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a(t) =
√
x2 + y2, θ(t) = arctan(

y

x
), w(t) =

dθ

dt
. (6.4)

In the end, the original signal can be expressed as the real part in the following form:

x(t) = <

{
n∑
j=1

aj(t)exp
[
i

∫
wj(t)dt

]}
. (6.5)

6.2 Seizure Detection

6.2.1 Introduction

Epilepsy is one of the most common neurological diseases, affecting over 3 million people in

U.S. and 50 million (∼1%) people worldwide. Electro-Encephalography (EEG) can display

clear abnormalities when a seizure begins, thus is very suitable for seizure detection. Con-

ventionally, the detection of seizure is achieved by visual scanning of EEG recordings by an

experienced neurophysiologist. However, this method has the drawbacks of time-consuming

and subjective. Hence, many algorithms have been developed to detect seizure automatically

since 1970s. A seizure detection algorithm usually consists of three stages: 1) frequency/time

analysis; 2) feature extraction; 3) classification.

Frequency/time analysis is the first stage of seizure detection algorithm, whose accuracy

will directly influence the following two stages. Currently, many researchers use Fast Fourier

Transform (FFT), which assumes that the signal is stationary. However, EEG signal itself

is nonstationary even within a short window, thus the stationary assumption may intro-

duce inaccuracy. To verify this, we compared the performance of FFT and HHT in seizure

detection.

After frequency/time analysis, some features can be extracted to characterize the signal.

The features vary from time domain features (such as minimum, maximum, mean, variance,

energy, entropy, etc.) [DOY12, LWC10], frequency domain features (such as energy, dom-

inant frequency, weighted frequency, etc.) [Sub07, HHH11, OA11], to features from cross

correlation [CCM09], PCA [PG08], ICA [HHH11], etc. Here we used the power in different
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Figure 6.2: Flow chart of the three stages of our algorithm.

frequency bands and the total power as our features. Although Oweis, et al. [OA11] also

used HHT for frequency analysis, our features are more effective and achieve much higher

accuracy.

After feature extraction, the features will form two classes (seizure or non-seizure) in

the feature space. The goal of the classification stage is to classify the testing signal to

the seizure or non-seizure class. Some commonly used classifiers include K-nearest neighbor

(KNN) [GRD11], artificial neural networks (ANN) [AFA09], support vector machines (SVM)

[DOY12, CCM09], etc. In our algorithm, we chose the KNN classifier, which is usually used

as benchmark of various classifiers. Combined all of the above three stages, we developed

our own seizure detection algorithm.

6.2.2 Methods

Our algorithm consists of three stages: frequency analysis, feature extraction, and classifi-

cation. Fig. 6.2 shows the flow chart of our algorithm.

1. Frequency Analysis

Fig. 6.3 compares the FFT and HHT frequency spectrum of the signal shown in Fig.

6.1 (top), from which we can have two observations: 1) the resolution of HHT spectrum is

better than FFT; 2) FFT has a wider frequency distribution, while HHT stresses on lower

frequencies. The reason why HHT can give a more accurate frequency analysis than FFT

is as follows: in FFT, the frequency is derived by convolution, thus there will be a trade-

off between time resolution and frequency resolution; in HHT, the frequency is derived by

differentiation, and hence it is not limited by the uncertainty principle and can provide both

high time resolution and high frequency resolution at the same time.
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Figure 6.3: Frequency spectrum of FFT (left) and HHT(right).

2. Feature Extraction

After frequency analysis, a total of 7 features were extracted: power in delta (0.5-4Hz),

theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), gamma1 (30-60Hz), gamma2 (≥60Hz) fre-

quency band, and total power.

To calculate the power of a certain frequency band using HHT, we first calculated the

energy of each IMF within a small moving window, then summed all of them together and

divided by time to get the total power. The energy of each IMF can be calculated as follows:

1) find the time points when the instantaneous frequency located within the frequency band;

2) sum the square of the instantaneous amplitude corresponding to these time points.

Fig. 6.4 shows the power trend of different frequency bands of the signal in Fig. 6.1

(top). From the figure, we can see a dramatic increase of power in some frequency bands

when seizure starts. That is why our proposed features are very effective. Moreover, we can

see the difference between FFT and HHT again: HHT stresses on lower frequencies.

3. Classification

In this step, the data is separated into training set and testing set. The training set is

labeled (seizure or non-seizure class), and the task of the classifier is to predict labels of the

testing set. Here we use KNN as our classifier, whose idea is intuitive: it classifies unlabeled

examples based on their similarity with examples in the training set.
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Figure 6.4: Power trend of different frequency bands during a seizure. Left: FFT; Right:

HHT.

For example, Fig. 6.5 shows two dimensions of the feature space, from where we can

clearly see two classes: seizure (red) and non-seizure signal (blue). Our goal is to find a class

label for the unknown testing example x(green). Assume we use k = 5 neighbors. After

searching for the 5 closest neighbors of x, we find that all of them belong to the seizure class,

so x is assigned to the seizure class.

6.2.3 Results and Method Comparison

Three databases were tested here: 1) Bonn database; 2) Freiburg database; 3) Tzu Chi

Medical Center database.

6.2.3.1 Result of Bonn database

The Bonn database is available online [ALM01], which was recorded by the University of

Bonn. There are a total of five datasets (denoted A-E) each containing 100 single-channel

EEG segments of 23.6 s. The sampling rate is 173.61Hz, and the ADC has the spectral

bandwidth 0.5 85 Hz. In our study, we use 3 sets of them: A (recorded from healthy

volunteers relaxed in an awake state with eyes open); D (recorded within the epileptogenic

zones); E (recorded during seizure activities). Fig. 6.6 shows some examples from these
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Figure 6.5: KNN classification. Two dimensions of the feature space (log-scale) are shown.

x is predicted as “seizure” by the KNN classifier.

3 datasets. Here we formed two classification problems: 1) classify set A (healthy) and E

(ictal); 2) classify set D (interictal) and E (ictal). We separated all of the sets into 50% -50%

: half for training, and half for testing.

1) A & E classification problem

Table 6.1 shows that our algorithm achieves 100% accuracy for both FFT and HHT,

which is a good result compared with other recent algorithms (Table 6.2) [Sub07, PG08,

CCM09, OA11]. In addition, the features and classifier of our algorithm are relatively simple

Figure 6.6: Signals of dataset A, D and E from Bonn database.
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Table 6.1: Result of the A&E classification problem

  

TABLE I.  RESULT OF THE A&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 100 100 100 
HHT 100 100 100 

2048 
(11.8s) 

FFT 100 100 100 
HHT 100 100 100 

1024 
(5.9s) 

FFT 100 100 100 
HHT 100 100 100 

TABLE II.  ALGORITHMS USING BONN DATABASE (A&E) 

Authors Methods Accu 

Subasi 
 (2007) [12] 

Discrete wavelet transform (DWT), 
mixture of expert model 

95 

Polat et al. 
 (2008) [6] 

Principal Component Analysis and FFT, 
Artificial immune recognition system 

100 

Chandaka et 
 al.(2009) [5] 

Cross-correlation, LS-Support vector 
machine 

95.95 

Oweis et al.  
(2011) [4] 

MEMD or EMD, weighted frequency, 
t-testing/Euclidean clustering 

80% or 
94% 

Our work Fast Fourier Transform or Hilbert-Huang 
Transform, K-nearest neighbor classifer  

100 

TABLE III.  RESULT OF THE D&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 94.00 92.00 93.00 
HHT 96.00 94.00 95.00 

2048 
(11.8s) 

FFT 95.00 93.00 94.00 
HHT 95.00 94.00 94.50 

1024 
(5.9s) 

FFT 94.00 94.50 94.25 
HHT 98.00 94.50 96.25 

TABLE IV.  ALGORITHMS USING FREIBURG DATABASE 

Authors # of patients Sensitivity Specificity 

Schad et al. (2008) [13] 6 patients 38%-77%  - 
Aarabi et al. (2009) [8] 21 patients 68.9% 97.8% 
Orosco et al. (2011) 
[14] 

21 patients 41.4% 79.3% 
69.4 69.2% 

Raghunathan et al. 
 (2011) [15] 

5 patients 87.5% 99.82% 

Our work (FFT) 21 patients 89.66% 93.26% 
Our work (HHT) 21 patients 93.10% 95.17% 

 

that even the window is only 4s, HHT still has advantage 
over FFT. Therefore we conclude that the “stationary 
assumption” can introduce some inaccuracy, and propose that 
we should pay attention to the “nonstationarity” of the EEG 
signal. On the other hand, we should also notice that HHT 
takes longer time for computation. Hence, our suggestion is 
using HHT when higher accuracy is required, and using FFT 
when less computation is required. 

IV. CONCLUSION 

We developed a highly accurate seizure detection 
algorithm whose performance is very competitive among the 
current algorithms. The features and classifier in our 
algorithm are simple but very effective, therefore is very 
suitable for hardware implementation. Most importantly, we 
conducted a detailed comparison of the stationary method 
FFT and nonstationary method HHT in seizure detection, and 
found that HHT offers better performance for difficult cases 

in aspect of both sensitivity and specificity. To the best of 
our knowledge, this is the first to compare stationary 
methods and nonstationary methods in seizure detection. 
Tradeoff of accuracy and computation power suggests to use 
FFT when less computation is required and use HHT if 
higher accuracy is needed. 
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Table 6.2: Algorithms using Bonn database (A&E)

  

TABLE I.  RESULT OF THE A&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 100 100 100 
HHT 100 100 100 

2048 
(11.8s) 

FFT 100 100 100 
HHT 100 100 100 

1024 
(5.9s) 

FFT 100 100 100 
HHT 100 100 100 

TABLE II.  ALGORITHMS USING BONN DATABASE (A&E) 

Authors Methods Accu 

Subasi 
 (2007)  

Discrete wavelet transform (DWT), 
mixture of expert model 

95 

Polat et al. 
 (2008) 

Principal Component Analysis and FFT, 
Artificial immune recognition system 

100 

Chandaka et 
 al.(2009)  

Cross-correlation, LS-Support vector 
machine 

95.95 

Oweis et al.  
(2011) 

MEMD or EMD, weighted frequency, 
t-testing/Euclidean clustering 

80% or 
94% 

Our work Fast Fourier Transform or Hilbert-Huang 
Transform, K-nearest neighbor classifer  

100 

TABLE III.  RESULT OF THE D&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 94.00 92.00 93.00 
HHT 96.00 94.00 95.00 

2048 
(11.8s) 

FFT 95.00 93.00 94.00 
HHT 95.00 94.00 94.50 

1024 
(5.9s) 

FFT 94.00 94.50 94.25 
HHT 98.00 94.50 96.25 

TABLE IV.  ALGORITHMS USING FREIBURG DATABASE 

Authors # of patients Sensitivity Specificity 

Schad et al. (2008)  6 patients 38%-77%  - 
Aarabi et al. (2009)  21 patients 68.9% 97.8% 
Orosco et al. (2011) 
 

21 patients 41.4% 79.3% 
69.4 69.2% 

Raghunathan et al. 
 (2011)  

5 patients 87.5% 99.82% 

Our work (FFT) 21 patients 89.66% 93.26% 
Our work (HHT) 21 patients 93.10% 95.17% 

 

that even the window is only 4s, HHT still has advantage 
over FFT. Therefore we conclude that the “stationary 
assumption” can introduce some inaccuracy, and propose that 
we should pay attention to the “nonstationarity” of the EEG 
signal. On the other hand, we should also notice that HHT 
takes longer time for computation. Hence, our suggestion is 
using HHT when higher accuracy is required, and using FFT 
when less computation is required. 

IV. CONCLUSION 

We developed a highly accurate seizure detection 
algorithm whose performance is very competitive among the 
current algorithms. The features and classifier in our 
algorithm are simple but very effective, therefore is very 
suitable for hardware implementation. Most importantly, we 
conducted a detailed comparison of the stationary method 
FFT and nonstationary method HHT in seizure detection, and 
found that HHT offers better performance for difficult cases 

in aspect of both sensitivity and specificity. To the best of 
our knowledge, this is the first to compare stationary 
methods and nonstationary methods in seizure detection. 
Tradeoff of accuracy and computation power suggests to use 
FFT when less computation is required and use HHT if 
higher accuracy is needed. 
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compared to others. For example, Polat, et al. [PG08] also achieved 100% using FFT, but

they used more than 100 features.

2) D & E classification problem

D&E problem is more difficult than A&E, since the waveform difference between D&E

is not as distinct as that of A&E (Fig. 6.6). Table 6.3 shows the results of using different

window lengths. We can see that the accuracy is also very high, and HHT performs better

than FFT in all cases.
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Table 6.3: Result of the D&E classification problem

  

TABLE I.  RESULT OF THE A&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 100 100 100 
HHT 100 100 100 

2048 
(11.8s) 

FFT 100 100 100 
HHT 100 100 100 

1024 
(5.9s) 

FFT 100 100 100 
HHT 100 100 100 

TABLE II.  ALGORITHMS USING BONN DATABASE (A&E) 

Authors Methods Accu 

Subasi 
 (2007) [12] 

Discrete wavelet transform (DWT), 
mixture of expert model 

95 

Polat et al. 
 (2008) [6] 

Principal Component Analysis and FFT, 
Artificial immune recognition system 

100 

Chandaka et 
 al.(2009) [5] 

Cross-correlation, LS-Support vector 
machine 

95.95 

Oweis et al.  
(2011) [4] 

MEMD or EMD, weighted frequency, 
t-testing/Euclidean clustering 

80% or 
94% 

Our work Fast Fourier Transform or Hilbert-Huang 
Transform, K-nearest neighbor classifer  

100 

TABLE III.  RESULT OF THE D&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 94.00 92.00 93.00 
HHT 96.00 94.00 95.00 

2048 
(11.8s) 

FFT 95.00 93.00 94.00 
HHT 95.00 94.00 94.50 

1024 
(5.9s) 

FFT 94.00 94.50 94.25 
HHT 98.00 94.50 96.25 

TABLE IV.  ALGORITHMS USING FREIBURG DATABASE 

Authors # of patients Sensitivity Specificity 

Schad et al. (2008) [13] 6 patients 38%-77%  - 
Aarabi et al. (2009) [8] 21 patients 68.9% 97.8% 
Orosco et al. (2011) 
[14] 

21 patients 41.4% 79.3% 
69.4 69.2% 

Raghunathan et al. 
 (2011) [15] 

5 patients 87.5% 99.82% 

Our work (FFT) 21 patients 89.66% 93.26% 
Our work (HHT) 21 patients 93.10% 95.17% 

 

that even the window is only 4s, HHT still has advantage 
over FFT. Therefore we conclude that the “stationary 
assumption” can introduce some inaccuracy, and propose that 
we should pay attention to the “nonstationarity” of the EEG 
signal. On the other hand, we should also notice that HHT 
takes longer time for computation. Hence, our suggestion is 
using HHT when higher accuracy is required, and using FFT 
when less computation is required. 

IV. CONCLUSION 

We developed a highly accurate seizure detection 
algorithm whose performance is very competitive among the 
current algorithms. The features and classifier in our 
algorithm are simple but very effective, therefore is very 
suitable for hardware implementation. Most importantly, we 
conducted a detailed comparison of the stationary method 
FFT and nonstationary method HHT in seizure detection, and 
found that HHT offers better performance for difficult cases 

in aspect of both sensitivity and specificity. To the best of 
our knowledge, this is the first to compare stationary 
methods and nonstationary methods in seizure detection. 
Tradeoff of accuracy and computation power suggests to use 
FFT when less computation is required and use HHT if 
higher accuracy is needed. 
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6.2.3.2 Result of Freiburg database

The Freiburg database was available online by request at http://epilepsy.uni-freiburg.

de/freiburg-seizure-predictionproject/eeg-database. This database contains intracra-

nial EEG recordings from 21 patients at the Epilepsy Center of the University Hospital of

Freiburg. There are in total 87 seizures, 509h of interictal and 73h of preictal or ictal data.

For each patient, six channels are available, of which 3 focal and 3 extrafocal electrodes. The

data were acquired using a Neurofile NT digital video EEG system with 256 Hz sampling

rate, and a 16 bit ADC. Before using this database, we firstly filtered the data by a 50Hz

notch filter to remove the line noise.

We tested all the 21 patients (87 seizures and 509 h interictal signals) in the Freiburg

database. A window length of 4s was used, since there are many short seizures (<5s) in this

database. Our classification criteria are: for ictal signal, as long as one window is classified

as “seizure”, we will say that a seizure is detected; for interictal signal, if one window is

classified as “seizure”, then we will report a false alarm.

To guarantee the reliability of our algorithm, we used 21-fold cross validation: use 20

patients for training and one for testing, then repeat this procedure for 21 times. Since there

is not enough ictal data for training, we used a window with 80% overlap to generate more

training examples. Also, since the interictal signals are very long and they are more than

enough for training, thus we randomly picked up 200 windows from each signal. Using FFT,

we obtained a sensitivity 89.66% and specificity 93.26% ; for HHT, the results are better:
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Table 6.4: Algorithms using Freiburg database

  

TABLE I.  RESULT OF THE A&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 100 100 100 
HHT 100 100 100 

2048 
(11.8s) 

FFT 100 100 100 
HHT 100 100 100 

1024 
(5.9s) 

FFT 100 100 100 
HHT 100 100 100 

TABLE II.  ALGORITHMS USING BONN DATABASE (A&E) 

Authors Methods Accu 

Subasi 
 (2007)  

Discrete wavelet transform (DWT), 
mixture of expert model 

95 

Polat et al. 
 (2008) 

Principal Component Analysis and FFT, 
Artificial immune recognition system 

100 

Chandaka et 
 al.(2009)  

Cross-correlation, LS-Support vector 
machine 

95.95 

Oweis et al.  
(2011) 

MEMD or EMD, weighted frequency, 
t-testing/Euclidean clustering 

80% or 
94% 

Our work Fast Fourier Transform or Hilbert-Huang 
Transform, K-nearest neighbor classifer  

100 

TABLE III.  RESULT OF THE D&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 94.00 92.00 93.00 
HHT 96.00 94.00 95.00 

2048 
(11.8s) 

FFT 95.00 93.00 94.00 
HHT 95.00 94.00 94.50 

1024 
(5.9s) 

FFT 94.00 94.50 94.25 
HHT 98.00 94.50 96.25 

TABLE IV.  ALGORITHMS USING FREIBURG DATABASE 

Authors # of patients Sensitivity Specificity 

Schad et al. (2008)  6 patients 38%-77%  - 
Aarabi et al. (2009)  21 patients 68.9% 97.8% 
Orosco et al. (2011) 
 

21 patients 41.4% 79.3% 
69.4 69.2% 

Raghunathan et al. 
 (2011)  

5 patients 87.5% 99.82% 

Our work (FFT) 21 patients 89.66% 93.26% 
Our work (HHT) 21 patients 93.10% 95.17% 

 

that even the window is only 4s, HHT still has advantage 
over FFT. Therefore we conclude that the “stationary 
assumption” can introduce some inaccuracy, and propose that 
we should pay attention to the “nonstationarity” of the EEG 
signal. On the other hand, we should also notice that HHT 
takes longer time for computation. Hence, our suggestion is 
using HHT when higher accuracy is required, and using FFT 
when less computation is required. 

IV. CONCLUSION 

We developed a highly accurate seizure detection 
algorithm whose performance is very competitive among the 
current algorithms. The features and classifier in our 
algorithm are simple but very effective, therefore is very 
suitable for hardware implementation. Most importantly, we 
conducted a detailed comparison of the stationary method 
FFT and nonstationary method HHT in seizure detection, and 
found that HHT offers better performance for difficult cases 

in aspect of both sensitivity and specificity. To the best of 
our knowledge, this is the first to compare stationary 
methods and nonstationary methods in seizure detection. 
Tradeoff of accuracy and computation power suggests to use 
FFT when less computation is required and use HHT if 
higher accuracy is needed. 
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the sensitivity is 93.10% and specificity is 95.17% (Table 6.4). Also, for some special cases,

for example patient 12, FFT gives a very bad specificity (62.98%), but HHT still gives a

high specificity (90.64%).

Table 6.4 compares some algorithms using the Freiburg database [SSS08, AFA09, OCL11,

RJI11]. The performance of our algorithm is significantly better than others. It seems that

the result of Raghunathan, et al. [RJI11] is also good, but they only tested 5 patients, which

are relatively easy cases.

6.2.3.3 Result of Tzu Chi Medical Center Database

This database was recorded by our collaborator Dr. Yue-Loong Hsin at Hualein Tzu Chi

Medical Center, Taiwan. A total of 33 ictal recordings are available from 13 patients. The

sampling rate is 256Hz, and the channel number varies from 5 to 52. Fig. 6.1 (top) is a

representative ictal recording from this database.

When testing this database, we used the ictal and interictal signals from the Freiburg

database for training. We expect that the signal power between different databases will be

different since they use different electrodes for recording. Therefore, we normalized the power

in different frequency bands by the total power. The result shows that all of the seizures

were detected (100% sensitivity), which have been verified by experienced epileptologists.
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6.2.3.4 Compare the Performance of FFT and HHT

All of the above testing results show that HHT outperforms FFT in seizure detection (except

when both of them achieve 100% accuracy). It is usually assumed that the signal can be

regarded as “stationary” when the window is short. But our results show that even the

window is only 4s, HHT still has advantage over FFT. Therefore we conclude that the

“stationary assumption” can introduce some inaccuracy, and propose that we should pay

attention to the “nonstationarity” of the EEG signal. On the other hand, we should also

notice that HHT takes longer time for computation. Hence, our suggestion is using HHT

when higher accuracy is required, and using FFT when less computation is required.

6.2.4 Conclusion

We developed a highly accurate seizure detection algorithm whose performance is very com-

petitive among the current algorithms. The features and classifier in our algorithm are

simple but very effective, therefore is very suitable for hardware implementation. Most im-

portantly, we conducted a detailed comparison of the stationary method FFT and nonsta-

tionary method HHT in seizure detection, and found that HHT offers better performance for

difficult cases in aspect of both sensitivity and specificity. To the best of our knowledge, this

is the first to compare stationary methods and nonstationary methods in seizure detection.

Tradeoff of accuracy and computation power suggests to use FFT when less computation is

required and use HHT if higher accuracy is needed.

6.3 Cross Frequency Coupling

6.3.1 Introduction

Cross Frequency Coupling (CFC) is the interaction between brain oscillations of different

frequencies, and the coupling phenomenon has been observed in the brain of rodent and

human [TKT08, BE04]. Phase-amplitude coupling (PAC) is a type of CFC, which shows

the dependence between the phase of a low-frequency component and the amplitude of a
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high-frequency component of electrical brain activities [CK10]. It has been claimed that the

modulation of low frequency phase on high frequency amplitude plays a functional role in

cognition and information processing, such as learning and memory [AHJ10, LJ13]. The

low-frequency phase reflects local neuronal excitability, and the increase of high-frequency

amplitude shows a general increase in population synaptic activity or selective activation of

a connected neuronal subnetwork [CK10]. The change of PAC patterns has been associated

with various neurological disorders, e.g., epilepsy, Parkinson′s disease, and schizophrenia

[AVW11, LTR10, MH11]. Therefore, PAC shows great potential in diagnosing and treating

diseases, and it is critical to understand the biological meaning of PAC patterns.

The conventional method used for PAC analysis first defines the frequency of interest,

and then uses narrowband Fourier-based filters to extract different frequency bands. After

obtaining signals of different frequencies, it uses Hilbert Transform (HT) to extract instan-

taneous phase and amplitude signals to calculate the coupling intensity [TKT08, LTR10].

However, this method has several drawbacks: 1) the operation of filtering in frequency space

is linear and can cause waveform distortions when applied to nonlinear and nonstationary

electrocorticography (ECoG) data [Hua05]; 2) narrowband filter distorts data near the cut-

off frequency, and data distortions can be significantly high when the filter is repeatedly

used to extract many frequency bands [PHK14]; and 3) since the ECoG signal is not an

oscillatory function with zero reference level, the instantaneous phase and amplitude values

extracted by HT do not have physical meanings according to Huang [HSL98], which all make

the interpretation of comodulogram (coupling map) inaccurate.

In order to overcome the limitation of the conventional method, a novel method based

on Hilbert Huang Transform (HHT) is proposed in this study, which displays PAC comod-

ulograms in an IMF domain instead of a traditional frequency domain. As HHT is able to

deal with nonstationary and nonlinear signals, the proposed method also avoids distortions

from using conventional time-frequency analysis methods like Fast Fourier Transform (FFT).

The proposed method consists of two steps: Multivariate Empirical Mode Decomposition

(MEMD) and followed by HT. MEMD decomposes the signal into several Intrinsic Mode

Functions (IMFs) that are oscillatory functions, thus the instantaneous phase and ampli-
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tude extracted by HT are physically meaningful. In this study, we apply the proposed HHT

method in analyzing five subsequent seizure EEG (electroencephalography) evolving stages

from preictal stage to seizure termination, and compare the PAC patterns obtained by the

conventional method and HHT method. The results show that the HHT method overcomes

the limitation of the conventional method and shows more regular and clearer PAC patterns

across different patients.

6.3.2 Materials and Methods

6.3.2.1 Materials

The intracranial signals were obtained from two epileptic patients with pharmacoresistance

undergoing staged epilepsy surgery. For the first patient, the ECoG data were recorded

using 4*8 grid electrodes at 256 Hz sampling rate. The ECoG data of the second patient

were recorded by three 2*8 grid electrodes at 1024 Hz. Raw signals were filtered by a 0.5

Hz high-pass filter in both two patients, and the signal from the second patient was further

filtered by a 300 Hz low-pass filter. In addition, line noise was removed by a 5-order band-

stop Butterworth filter. The experimental procedures involving human subjects described

in this study were approved by the Institutional Review Board.

6.3.2.2 Stages of Seizure

Regarding the seizure dynamic, each attack is classified by time order as preictal, ictal, and

postictal. In this study, the time-series seizure EEG activity is divided into five stages:

preictal stage before seizure onset, initial fast EEG activity stage, firing pattern transition

stage, fast-burst stage and slow-burst stage before seizure stops (shown in Fig. 6.7).

6.3.2.3 Modulation Index Calculation

There are many quantitative methods for measuring PAC, among which the Kullback-Liebler

based modulation index (KL-MI) has many advantages over the other methods, i.e., good
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Figure 6.7: Classification of five seizure stages by firing pattern: Preictal = preictal stage,

Fast onset = initial fast EEG activity stage, Mixture = firing pattern transition stage, Ictal

burst = fast-burst stage, Slow ictal burst = slow-burst stage.

tolerance to noise, amplitude independent, and good sensitivity to multimodality and mod-

ulation bandwidth [TKE10]. Therefore, we use KL-MI to measure coupling intensity in this

study. The method begins with the average binned amplitude as a function of phase, and

then uses KL divergence algorithm to calculate the deviation of this amplitude distribution

(P) from a uniform distribution (U) [TKE10, TKM09]. MI is defined by dividing the KL

distance by the maximal possible entropy value log (N):

MI =
DKL(P,U)

log(N)
(6.6)

The KL distance is related to the Shannon entropy by the following:

DKL(P,U) = log(N) +
N∑
j=1

P (j)log[P (j)] (6.7)

Therefore, when amplitude is uniformly distributed over phases (i.e., P = U), MI equals

to zero and no coupling exists between the amplitude and phase. MI increases as P gets

further away from U , meaning the coupling gets stronger.

6.3.2.4 Comodulogram Construction

After computing MI between phase and amplitude from each pair of IMFs, the HHT method

displays the comodulogram in an IMF domain which represents the coupling phenomenon

between IMFs rather than between frequency bands. As each IMF contains an oscillatory

mode and the sum of all the IMFs is the original signal, the IMF-domain comodulogram
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does not need to first define the frequency of interest and presents a comprehensive look of

coupling phenomenon.

6.3.3 Results and Method Comparison

The conventional method and HHT method are used to analyze the intracranial signals

from two epilepsy patients. Comparisons are made between the two methods illustrating

PAC phenomenon in the five seizure EEG stages in Fig. 6.8.

It is shown that the phase of delta and theta band modulates the amplitude of gamma-

band brain rhythm in epileptogenic cortex [GCC15]. Therefore, the frequency of interest for

phase signal is set between 0.5 Hz and 10 Hz in the conventional method. In Patient 1 (left)

and Patient 2 (left), the conventional method shows the coupling phenomenon between

different frequency bands in a frequency domain. For Patient 1, preictal and initial fast

EEG activity stages have similar coupling area (i.e., mainly between 3-8 Hz phase and

around 100 Hz amplitude), and the fast onset shows stronger coupling intensity. The firing

pattern transition stage and fast-burst stage both show stronger coupling phenomenon than

fast onset generally between 2-10 Hz phase and 15-100 Hz amplitude, where the strongest

coupling exists between around 4-7 Hz and 40-50 Hz. Slow-burst EEG activity mainly

couples between 2-6 Hz phase and 15-60 Hz amplitude with weaker intensity than fast-burst

EEG activity. For Patient 2, the coupling is mainly between 0.5-2 Hz phase and 30-100

Hz amplitude in preictal stage, and 0.5-1 Hz phase and around 20-80 Hz, 210-240 Hz and

280-300 Hz amplitude in initial fast EEG activity stage. After the firing transition stage, the

coupling sporadically distributes between 0.5-10 Hz phase and 30-100 Hz amplitude, with

main coupled phase 0.5-2 Hz. From the two patients, we can see the PAC patterns using

the conventional method are not consistent across different patients. Moreover, although

a moving window is used in this method to improve frequency resolution, the displayed

minimal frequency is limited by sampling rate and the bandwidth of filter, and thus is not

able to illustrate delta band (0.5-3 Hz) when the sampling rate is low (Patient 1, left).

As for HHT method, illustrated in Patient 1 (right) and Patient 2 (right), there are
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Patient1 Patient2

Figure 6.8: Patient 1: PAC comodulogram comparisons between the conventional method

(left) and HHT method (right) in five seizure stages. HHT method displays PAC comod-

ulogram in IMF domain instead of traditional frequency domain, and represents coupling

phenomenon between certain two IMFs instead of frequency bands. The color bar repre-

sents MI. Patient 2: PAC comodulogram comparisons between the conventional method

(left) and HHT method (right) in five seizure stages. HHT method shows clear and regular

PAC patterns across different stages, while the conventional method does not.
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generally two patterns (Pattern I and Pattern II) which are two strongest coupling regions

in the IMF-domain comodulograms, both having stronger coupling intensity than that of

the conventional method during all stages. During seizure (including fast onset, mixture,

ictal burst and slow ictal burst), the location of Pattern I (e.g., in patient 1, Pattern I is the

area around 5th-IMF phase coupled with 1st-IMF amplitude) is relatively fixed, with only

intensity changing: increasing from seizure onset to fast-burst stage and then decreasing

till seizure stops; whereas the location of Pattern II (e.g., in patient 1, Pattern II is the

area around 9th-IMF phase coupled with 3rd-IMF amplitude in initial fast EEG activity

stage, 9th-IMF phase with 1st-IMF amplitude in firing pattern transition stage, and 7th-

IMF phase with 1st-IMF amplitude in bursting stages) changes from fast onset to ictal burst

and remains the same from ictal burst to slow ictal burst, while the intensity keeps changing

over stages.

As each IMF also has a frequency range, we check the instantaneous frequency of the

coupled IMFs in each stage of the two patients and find consistency between the two methods

in terms of coupled frequency. Fig. 6.9 illustrates the frequency consistency in the ictal stage

(seizure) of patient 1. As it is shown in the IMF-domain comodulogram, the couplings are

between 5th-IMF phase and 1st-IMF amplitude, and between 5th-IMF phase and 2nd-IMF

amplitude. The frequencies of 1st-2nd IMFs (amplitude) and 5th IMF (phase) are shown

in the histograms on the right, where the amplitude frequency mainly ranges approximately

from 20 to 50 Hz, and the phase frequency 3-8 Hz, which is consistent with the result shown

by the conventional method in frequency bands.

As a result, compared to the conventional method, HHT method shows similar PAC

patterns in IMF domain between the two patients, and regular changes across different

seizure stages. It also has a more comprehensive PAC presentation and generally stronger

coupling intensity (MI) than the conventional method. Therefore, we hypothesize that the

IMF may have biological meaning and the real coupling may happen in the IMF domain

rather than frequency domain.
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Figure 6.9: Comparisons between the two methods in ictal stage of patient 1 (top); and

histograms of the frequency range of 5th IMF (phase) and 1st-2nd IMFs (amplitude) in

HHT method (bottom); showing the consistency of the two methods in terms of coupled

frequency bands.

6.3.4 Conclusion

We propose a novel method based on HHT to analyze PAC phenomenon in IMF domain,

and show new PAC patterns in five seizure stages of two epilepsy patients. The proposed

HHT method is superior than the conventional method in terms of 1) able to deal with

nonstationary and nonlinear signal, and generates less signal distortions leading to more

accurate results; 2) more regular and clearer PAC patterns in IMF domain over five seizure

stages in different patients; and 3) generally stronger PAC intensity. The coupling intensity

between IMFs is stronger than that is between frequency bands, and the frequency compo-

nents of coupled IMFs are consistent with the conventional method, which indicates that the

real coupling may exist between IMFs rather than traditional frequency bands. For further

development, the proposed method also can be applied to EEG signals from patients with

different diseases such as schizophrenia, depression, and Alzheimer′s disease.
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CHAPTER 7

Conclusions and Future Directions

7.1 Conclusions

In this dissertation, we have developed two novel EEG-based brain imaging methods that

provide brain images with high temporal and spatial resolution. Firstly, we develop a Spar-

sity and SMOOthness enhanced brain TomograpHy (s-SMOOTH) method, which combines

the voxel-based total generalized variation (vTGV) and the `1−2 regularizations to improve

reconstruction accuracy for EEG source imaging. By imposing sparsity constraints on high

order spatial derivative, the vTGV regularization enhances the smoothness of the brain

image, and helps to accurately reconstruct the current density distribution of the source.

Furthermore, the `1−2 regularization enhances the sparsity of the brain image, and improves

the spatial resolution. A large number of simulation experiments show that the s-SMOOTH

outperforms the state-of-the-art methods in terms of total reconstruction accuracy, localiza-

tion accuracy, and degree of focalization. The application to auditory and visual P300 data

further demonstrates its performance in realistic scenario. Secondly, we develop an efficient

and accurate EEG brain imaging method by defining a novel graph fractional-order total

variation (gFOTV) adapted to the cortical surface. Unlike s-SMOOTH, which incorporates

two regularization terms to promote both smoothness and sparsity, the gFOTV method only

uses one regularization term but achieves similar accuracy. It imposes sparsity in α-order

spatial derivatives with α ∈ [1, 2], and provides the freedom to choose a more elegant order

of smoothness for the underlying brain image. Specifically, we show that α = 1.6 provides an

accurate result that is smoother than α = 1 and more focal than α = 2. It is worth mention-

ing that the gFOTV method consumes less computation than the s-SMOOTH method by

113



only using one regularization term. Furthermore, we develop a parallel algorithm based on

the gFOTV method, which significantly accelerates the numerical solutions. Numerical ex-

periments show that this algorithm running multiple threads on a multi-core system exhibits

superior performance in computation time compared to the state-of-the-art optimization al-

gorithm, such as alternating direction methods of multipliers (ADMM). It shows a great

potential to achieve real-time temporal resolution, which can potentially bring tremendous

convenience and broad influence to clinical applications.

In addition to neural imaging, we have also developed a novel optimization method

Stimulation with Optimal Focality and Intensity (SOFI), in order to provide focalized stim-

ulation to treat neural diseases in a noninvasive way. In noninvasive electrical stimulation,

the biggest challenge is to achieve both high intensity and high focal accuracy at the target

within the safety limits. However, the existing optimization methods either maximize the

intensity at the expense of focality, or optimize the focality by sacrificing the intensity. In

contrast, the SOFI method is able to optimize both intensity and focality at the target. By

applying to transcranial current stimulation (tCS) and transcutaneous spinal cord stimula-

tion (tSCS), we show that the SOFI method is able to target not only a single target, but

also multiple targets as well as avoid certain regions with high focal and localization accu-

racy. For tCS, we have demonstrated that our proposed method provides better results than

the state-of-the-art methods in terms of directional intensity, focality, and target accuracy.

For tSCS, SOFI is the first optimization method that designs optimal parameters for each

electrode to achieve focalized stimulation to the best of our knowledge. We also propose to

use the developed EEG-based brain imaging to guide and provide feedback for the focalized

stimulation to produce a dynamic stimulation.

Finally, to study the neural dynamics in frequency domain, we propose to use an accurate

nonstationary method - Hilbert-Huang Transform (HHT) - for time-frequency analysis. We

demonstrate that it outperforms the widely used stationary method - fast Fourier Transform

(FFT) - in the applications of seizure detection and cross frequency coupling.
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7.2 Future Directions

Currently, neural imaging and stimulation techniques are developed separately. In the fu-

ture, it would be desirable to incorporate them into a closed-loop system, which includes

1) realistic volume conduction model based on high resolution MRI/CT images; 2) accurate

inverse imaging algorithms to provide precise target localization and focal precision with ex-

cellent temporal resolution; 3) optimal stimulation patterns with desired intensity guided by

our source localization algorithm; 4) miniaturized and fully integrated hardware electronics

to independently and dynamically drive each of the multi-electrodes; and 5) user-friendly

graphical user interface that will enable home use. In addition, we point out the following

future directions for improving the current imaging and stimulation methods.

7.2.1 EEG-based Brain Imaging

We have developed two accurate brain imaging methods: s-SMOOTH and gFOTV. Cur-

rently, the EEG source imaging methods work for each time point independently. In the fu-

ture, the relationship between two contiguous time points could also be modeled so that the

brain imaging is done in a spatiotemporal manner. Considering that the current source distri-

butions between consecutive time points usually changes smoothly [BG97, GYO04, ZGB05],

the temporal smoothness of the signal could be integrated into the objective function to

further improve the reconstruction accuracy [OHG09, GKH12].

So far, the regularization parameters in the models are tuned manually. In the future, the

parameters could be selected in an automatic fashion by treating the parameters as unknown

variables in the proposed model and then solving the corresponding optimization problem

using the bilevel approach [KP13, CCR15, RSV16].

For the gFOTV method, at present, we select a fixed smoothness order for the whole

brain image. It is possible that the brain image has different smoothness orders in different

subregions. In future work, our proposed framework could be extended by using spatially

variant smoothness orders for different subregions in an automatic way to further improve the

reconstruction accuracy. In addition, currently the gFOTVE method has only been tested
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on synthetic data, and it would be interesting to apply gFOTV to various real scenarios in

the future.

7.2.2 Focalized Noninvasive Stimulation

Currently, the research of focalized stimulation focuses on methodologies development. In

the future, it would be necessary to test the proposed SOFI method in real experiments

to further verify its performance. For transcutaneous spinal cord stimulation (tSCS), it

would be interesting to apply the SOFI method to restore motor functions in spinal cord

injury (SCI) as well as manage chronic pain. For transcranial current stimulation (tCS),

it has shown therapeutic potential for modulating the neural disorders such as depression

[LKH06, NBF09], epilepsy [ARG13], stroke, and other illness caused by traumatic brain

injury [WCC06, KKP12, SDO14]. It would be interesting to evaluate the SOFI method

through sensorimotor and cognitive investigations in these brain disorders.
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