
UC Office of the President
Recent Work

Title
Adult Cardiomyocyte Cell Cycle Detour: Off-ramp to Quiescent Destinations

Permalink
https://escholarship.org/uc/item/8xz2w63x

Journal
Trends in Endocrinology and Metabolism, 30(8)

ISSN
1043-2760

Authors
Broughton, Kathleen M
Sussman, Mark A

Publication Date
2019-08-01

DOI
10.1016/j.tem.2019.05.006

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xz2w63x
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Trends in Endocrinology &Metabolism

TEM 1410 No. of Pages 11
Review

Adult Cardiomyocyte Cell Cycle Detour:
Off-ramp to Quiescent Destinations
Kathleen M. Broughton1 and Mark A. Sussman1,*
Highlights
Adult mammalian cardiomyocytes are
remarkably refractory to completion of
cell cycle progression through mitosis.

Despite ongoing study for decades,
progress to promote adult mammalian
cardiomyocyte cell cycle completion
has been frustratingly ineffective.

Fundamental biological differences
exist between adult mammalian
cardiomyocytes versus those derived
from neonatal mice or lower vertebrates,
such as zebrafish, that both possess rel-
Ability to promote completion of mitotic cycling of adult mammalian
cardiomyocytes remains an intractable and vexing challenge, despite being
one of the most sought after ‘holy grails’ of cardiovascular research. While
some of the struggle is attributable to adult cardiomyocytes themselves that
are notoriously post-mitotic, another contributory factor rests with difficulty in
definitive tracking of adult cardiomyocyte cell cycle and lack of rigorous
measures to track proliferation in situ. This review summarizes past, present,
and future directions to promote adult mammalian cardiomyocyte cell cycle pro-
gression, proliferation, and renewal. Establishing relationship(s) between cardio-
myocyte cell cycle progression and cellular biological properties is sorely
needed to understand the mechanistic basis for cardiomyocyte cell cycle with-
drawal to enhance cardiomyocyte cell cycle progression and mitosis.
atively immature phonotypes.

Studies reporting cardiomyocyte prolifer-
ation often lack definitive proof of authen-
tic cardiomyocyte mitotic activity due to
methodologies misrepresented as com-
pletion of cell cycle progression.

Twomajor points of cell cycle withdrawal
for adult mammalian cardiomyocytes are
the restriction point (R-point) and acquisi-
tion of higher level ploidy through
multinucleation (polyploidy).
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Cardiomyocyte Proliferation: Everything Old Is New Again
Retrospective Views on Cardiomyocyte Mitosis
Considering the universally accepted conclusion that loss of cardiomyocytes is a major underlying
cause of heart failure from acute pathologic injury or chronic stress, the answer of generating ad-
ditional cardiomyocytes to restore structural and functional integrity of the heart seems a simple,
clever, and achievable solution. However, inherent biological properties of the adult mammalian
myocardium have rendered this overtly straightforward approach frustratingly difficult. Indeed,
decades of research and thousands of publications have been dedicated to the singular goal of
prompting adult mammalian cardiomyocytes to re-enter cell cycle and complete mitosis. The in-
escapable conclusion from collective efforts put forth is that adult mammalian cardiomyocytes are
remarkably refractory to mitotic activity, unlike those found in either early postnatal mice or
zebrafish. Nevertheless, new publications appear every year touting major advances in under-
standing and augmenting cardiomyocyte proliferation [1–4]. Therefore, it seems reasonable to
briefly reflect upon where we are in this process, what factors are obstructing forward progress,
and how the field could recenter with renewed focus and purpose to empower the ultimate goal
of developing interventional approaches for therapeutic cardiomyogenesis.

Evolution of Thinking on Cardiomyocyte Renewal
Current literature is replete with masterful reviews on the topic of cardiomyogenesis that summa-
rize the sophisticated and elegant studies carried out by hundreds of laboratories around the
world [5–10]. The consensus opinion for many years remains that mammalian cardiomyocyte
proliferation is readily observed in prenatal and early postnatal development [11,12]. Furthering
evidence for immature mammalian cardiomyocyte proliferative capacity, similar conclusions
were reached observing cultured neonatal cardiomyocytes [13–15]. However, scant evidence ex-
ists to support adult mammalian cardiomyocyte division in vitro, but rather a ‘de-differentiation’
process characterized by loss of myofibril organization, return to immature phenotypic properties,
and expression of stem cell marker c-kit [16–19]. Even less encouraging, adult mammalian car-
diomyocyte division in situ remained elusive, with reports of occasional mitotic figures without de-
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Glossary
Cytokinesis: physical separation that
completes cell division resulting in two
comparable daughter cell progeny.
Diploid: a cell or an organism
possessing paired sets of
chromosomes.
Endomitosis: karyokinesis without
cytokinesis, leading to multinucleation.
Endoreplication: genomic duplication
without karyokinesis, leading to
polyploidization.
Karyokinesis: nuclear division resulting
in doubling of the nuclear number.
Ploidy: the number of paired
chromosome sets in a cell or organism.
Polyploid: a cell or organism having
more than typical diploid paired
chromosomes.
R-point: the restriction point (R) is a
point in G1 of the animal cell cycle at
which the cell becomes ‘committed’ to
the cell cycle and after which
extracellular proliferation stimulants are
no longer required. A cell’s decision to
enter, or reenter, the cell cycle is
determined by collective progressive
and inhibitory extracellular signals that
are received and processed.
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finitive proof of completed cytokinesis (see Glossary) [20,21], since labeling with proliferating cell
nuclear antigen and bromodeoxyuridine (BrdU) are not definitive evidence of completed cell divi-
sion [22,23]. The new millennium witnessed a number of controversial turns in the search for ev-
idence of adult mammalian cardiomyogenesis, with the advent of cardiac stem cells [24,25],
carbon-14 estimates of turnover from nuclear bomb blasts [26,27], as well as the rise and fall
of related studies from the Anversa lab [28]. Retrospectively considering the arc of thinking on
adult mammalian cardiomyocyte replacement, there is no disputing that researchers have failed
to unlock regenerative potential of the adult mammalian myocardium sufficient to restore struc-
ture or function lost from pathologic damage, chronic stress, or aging [12]. Acceptance of this
humbling defeat stands in stark contrast to myocardial repair in lower vertebrates or neonatal
mice where acute injury promotes cardiomyocyte replacement [29,30]. Profound differences in
reparative potential between mammalian neonatal versus adult hearts are intriguing, but the un-
derlying explanation might simply be chalked up to neonatal mammalian cardiomyocytes having
more in common with zebrafish than adult mammals [31]. So without a clear path forward, many
have returned to re-examination of the adult cardiomyocyte armed with novel approaches and
unflagging optimism, intent upon succeeding where so many others have failed before them.

Current Renewed Interest in Cardiomyocyte Proliferation
Several excellent reviews have previously covered many aspects of current knowledge and ob-
stacles in the pursuit of cardiomyogenesis for adult mammalian hearts [23,29,32,33]. Highlighting
the distinction of adult mammalian hearts is important, as substantial time and effort has been
expended defining the indisputable cardiomyogenic activity inherent to postnatal mouse myocar-
dium as well as zebrafish hearts. Yet there is abundant evidence that the inherent biological milieu
of hearts from postnatal mice or zebrafish is profoundly distinct from adult mammalian myocar-
dium, leaving translatability of such research unresolved. Clearly, it stands to reason that
cardiomyogenic testing for adult mammalian hearts is best tested in the setting of an in vivo
adult mammal model to achieve the most dependable and reliable results. And yet, even in the
setting of adult murine models, there has been lack of consensus on cardiomyogenic cell
sources, proliferative activity, and quantitation of mitotic activity. For example, a rigorous study
of cardiomyogenesis in mice during postnatal development concluded that a very brief period
of cardiomyogenic potential exists after birth that disappears in the adult heart [34], consistent
with more recent revisitation of this topic using the apical resection model [35,36] as well as neo-
natal pigs [37,38]. None of these studies address potential induction on cardiomyogenesis follow-
ing pathologic damage in an adult setting, but a recent consensus statement from the American
Heart Association focused upon endogenous cardiomyogenesis (rather than cell-based thera-
peutic approaches) concluded ‘1) Cardiomyocyte renewal rates may be higher after injury than
under normal conditions, and 2) The experimental determination of cardiomyocyte turnover
after cardiac injury can be challenging owing to inflammation, proliferation of stromal and vascular
cells, and scar formation’ [39]. After decades of unrelenting investigation, the consensus is that
answers related to cardiomyocyte turnover in the pathological setting remain unresolved. Clearly,
new approaches and additional knowledge are required. Selected primary considerations that
have hampered the field are presented in the next few paragraphs, highlighting longstanding lim-
itations as well as the way forward proposed in this review.

To Avoid Detours and Stay on the Main Path toward Mitosis, We Need to Understand Where the
Off-ramps Are and Bypass Them
Paradoxically, a primary issue hampering studies of adult mammalian cardiomyogenesis has
been the difficulty of determining cardiomyocyte proliferation using markers of cell cycling.
While such demonstrations are readily reproduced in neonatal mice or zebrafish, the biological re-
sponses of adult cardiomyocytes to mitotic stimuli render typical measures of cell division
2 Trends in Endocrinology & Metabolism, Month 2019, Vol. xx, No. xx
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irrelevant. For example, multiple markers of cell cycle have been developed for investigations of
nonmyocardial cell biology and coopted to assess cardiomyocyte proliferation (Figure 1). Each
of these markers has been used to infer mitotic activity, yet none of them alone are truly definitive
indicators of authentic cell division when working with cardiomyocytes. Specifically, these
markers indicate progression through cell cycle, including mitosis. However, in the context of
cardiomyocytes, many of these markers are present at multiple stages of cell cycle and it is im-
possible to distinguish cells that are progressing through mitosis from those that arrest at various
mitotic checkpoints.

The Janus-Faced Cardiomyocyte: Deceptively Progressive

Numerous Approaches for Assessing Mitosis: Most Inauthentic

All sorts of results have been reported in the adult mammalian context with widely varying obser-
vations of cardiomyocyte ‘proliferation’ using a plethora of markers and metrics to assess de
novo cardiomyogenesis [34,40,41]. Lack of standardization, varied experimental approaches,
and under-appreciation for distinctive cell cycle regulation of cardiomyocytes has led to substan-
tial confusion and, in some cases, hyperbolic claims of translational potential that have not as yet
been borne out through the passage of time and practical experience.

Warnings from Published Articles on Flawed Methodology
Limitations of using these markers to document cardiomyocyte proliferation have been
highlighted in previous publications [40,42], but despite these admonitions the presentation of
TrendsTrends inin EndocrinologyEndocrinology & MetabolismMetabolism

Figure 1. Markers of Division and Cell-Cycle Status. Fluorescent ubiquitin cell cycle indicator (FUCCI) fluorescence
mKO (red) presents in G1 phase, and AzG (green) presents during S/G2/M phases, where during the G1/S transition both
fluorescence (mKO/AzG) present simultaneously and merge into a yellow color. Bromodeoxyuridine (BrdU) or Edu, both
thymidine analogs, incorporate into DNA during synthesis (cyan). Phosphorylated Histone 3 (pHH3) is responsible fo
chromatin condensation and is thus present during G2 through M phase (magenta). Nuclear antigen Ki67 is present from
G1 to M phase (emerald). PCNA is present between G1 and G2 phase in response to DNA synthesis (burgundy). Anillin
plays a role in creating the cleavage furrow formation and begins to accumulate in late G2 through late M phase (blue)
Aurora B plays a role in mitosis, present from G2 through M phase (sand). Reproduced from Alvarez et al. [22].
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these labels as evidence of cardiomyocyte mitotic activity continues. This serious problem for the
field is indicative of disconnects in recognizing the atypical mitotic resistance of cardiomyocytes
relative to other cell types where such labels could be accurate and appropriate. A recent
study pointed out these limitations and offered a way forward using two novel proteins (RhoA
and IQGAP3) [43] or midbody positioning [44] as definitive markers of cardiomyocyte division,
but unfortunately use of these markers also rests upon a tour-de-force confocal analysis of intra-
cellular localization at a critical transient moment in the penultimate steps of mitosis. Demonstra-
tion of cardiomyocyte mitosis using individual proteins or structures will require further
development of tools to monitor these proteins in real-time to follow intracellular localization
that is beyond the capabilities of current typical investigations of cardiomyocyte analyses.

Complexity of Demonstrating Mitosis In Vivo
Cumulative background information presented thus far in this section certainly is sufficiently dis-
concerting to prompt skepticism and reservations related to recent publications of enhanced car-
diomyocyte proliferation. Of note, one recent publication from 2017 asserts that frequency of
mononuclear diploid cardiomyocytes correlates with increased cardiac regenerative potential
[45] with an associated editorial [46], yet this study did not rigorously discriminate between ploidy
levels resulting from endomitosis, endoreplication, or cellular division. In a different publication
from 2017, administration of miRNA mimics was touted to induce cardiomyocyte passage
throughmitosis, yet these conclusions were based upon Aurora B and phospho-histone 3 immu-
nolocalization [3], spawning an editorial comment in the same issue [47]. A third high profile study
based upon a defined set of four cyclin-related factors (4F) concludes adult cardiomyocyte pro-
liferation was evident based upon EdU and phospho-histone 3 as well as histologic assessment
of mosaic analysis with double markers (MADM) transgenic mice [2]. Cardiac-specific mouse
models for clonal analysis, including MADM, have been comprehensively covered in an excellent
review by Leone et al. [23]. MADM has been used to assess mitosis in postnatal cardiomyocytes
or adult cardiomyocytes with relatively low labeling efficiency of 0.78% or 0.9%, respectively [48].
Low efficiency cardiomyocyte labeling in MADM is likely due to the requirement for cell division
coupled with Cre-mediated recombination in G2 phase to allow for recombinant alleles to segre-
gate into separate daughter cells representative of mitosis [49,50]. Catching mitosis and Cre-
recombination simultaneously, given the rarity of cardiomyocyte division in an adult heart, is
clearly challenging and the requirement for three separate alleles (Cre as well as two MADM)
into a single mouse for MADM presents a daunting prospect for mouse breeding schemes to in-
troduce additional genetic modifications [51]. MADM is much more amenable to use with delivery
of inductive agents to adult mice, as in a recent study touting unprecedentedly high adult cardio-
myocyte mitotic activity following combined adenoviral delivery of four cell-cycle regulators [2].
Lastly, yet another publication in 2018 shows ‘birth of new cardiomyocytes in adult mice’ follow-
ing 8 weeks of running exercise, identified based on incorporation of 15N-thymidine by multi-
isotope imaging mass spectrometry (MIMS) and on being mononucleate/diploid [1]. MIMS also
relies upon quantitation from a very limited number of 15N-labeled diploid mononuclear
cardiomyocytes (0.14%–0.09% in noninjured hearts in one study; 0.25% in sedentary mice in a
second study), leaving the technique susceptible to substantial influence from finding small num-
bers of additional labeled cells [1,52]. MIMS technology, while impressive, is certainly not a widely
adopted technique for assessing cardiomyocyte proliferation and validation using more broadly
available techniques is warranted to substantiate the conclusion that exercise prompts a ~4.6-
fold increase in new cardiomyocytes [1]. Whether such profound elevation of adult mammalian
cardiomyocyte mitosis in these studies can be authenticated by other laboratories remains to
be seen, as previous controversial claims for a postnatal burst of cardiomyocyte proliferation
[53] were subsequently challenged by multiple laboratories unable to replicate these results
[54–56].
4 Trends in Endocrinology & Metabolism, Month 2019, Vol. xx, No. xx
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Considerable resources, time, and effort have been poured into studies of cardiomyogenesis in
experimental models characterized by repair after acute injury, most notably in neonatal mice
and zebrafish. The excitement and enthusiasm with which these models have been pursued is
indisputable, but translating findings from these models to promote productive adult mammalian
cardiomyocyte cell cycle progression and mitosis remains unfulfilled [29]. Aside from controver-
sies of cardiomyogenesis versus ‘regeneration’ in the neonatal mouse apical resection model
[30,31,36,57–59] and the role of stem cells [60–62], shared reparative capabilities of neonatal
mice and zebrafish appear to rest with the immature phenotype of the tissues relative to the
adult mammalian myocardium [31]. The proteomic analysis concluded ‘the profound differences
in structural gene expression place the (regenerative) zebrafish heart rather in the vicinity of the
(proliferative) neonatal, but not the adult mouse hearts… It is therefore questionable if promitotic
stimuli that drive cardiac regeneration in zebrafish may be capable of inducing cardiac regenera-
tion in adult mammalian cardiomyocytes’ [29]. Additional significant differences include presence
of intact centrosomes in cardiomyocytes of adult zebrafish or neonatal mammalian rodents ver-
sus absence in adult mammalian hearts [63]. Narrowing to the nexus of this challenge leads to
defining causes and consequences for mammalian adult cardiomyocytes to withdraw from and
their intractability to re-enter cell cycle.

Many Causes, One Consequence: The Withdrawn Adult Cardiomyocyte
Decades of studying the cardiomyocyte cell cycle and current barriers to proliferation induction
has produced far too much information than can be adequately summarized in this review, but
fortunately has been covered in recent overviews [5,64–66]. One inescapable conclusion from
digesting the avalanche of prior studies on this topic is that, when pressured by manipulation of
cell cycle to progress toward mitosis, adult mammalian cardiomyocytes respond uncooperatively
with abortive mitosis from checkpoint arrest, polyploidywith DNA synthesis without cytokinesis,
hypertrophic growth, or even death. Perhaps the failed forced entry when pushing adult mamma-
lian cardiomyocytes to advance to mitosis is inextricably linked to their biological contractile func-
tion, which is inevitably compromised as a consequence of structural remodeling linked to
acquiring immature status that (as noted in the preceding paragraph) is likely part and parcel of
authentic mitosis [16]. Since cardiomyocyte cell cycle is replete with various off-ramps from the
mitotic highway, defining specific stage(s) of progression and exit points will be crucial to devel-
oping interventional approaches to keep these reluctant travelers on the road to productive
cytokinesis.

Where Do Reluctant Cardiomyocytes Get Off?

Fluorescent Ubiquitin Cell Cycle Indicator (FUCCI) to Study Cardiomyocyte Cell Cycle

Adult mammalian cardiomyocytes are notoriously indifferent to stimuli well known to drive mitosis
in other cell types, such as serum stimulation, oncogenic stimuli, or forced cell cycle re-entry, yet it
is clear that they do respond in alternative ways. These longstanding ambiguities have rendered
claims of induced cardiomyocyte cell cycling open to debate and skepticism, although pervasive
doubts are sharply contrasted against the abundance of publications in support of induced car-
diomyocyte mitotic activity. Our group assessed cardiomyocyte regulation from a new perspec-
tive using FUCCI reporters [67] as a tool to dissect cell cycle progression (Figure 1).
Implementation of FUCCI labeling has yielded advances in biological systems ranging from cell
culture to zebrafish, flies, mice, and embryonic stem cells [67]. The novel transgenic mouse is
based upon well documented and proven FUCCI technology adapted to in vivo cell cycle moni-
toring via cardiomyocyte-specific transgenesis (FUCCI-Tg) [22]. Although the FUCCI system has
previously been studied in the cardiovascular context [68–71], none of these prior studies used
cardiomyocyte-specific expression and none were concerned with demonstration of enhanced
adult cardiomyogenesis. Cardiomyocyte division is not the derived readout of the FUCCI-Tg,
Trends in Endocrinology & Metabolism, Month 2019, Vol. xx, No. xx 5
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but rather the study of cell cycle progression. Indeed, to address the eventual outcome of cell
cycle progression to discriminate between endoreplication, endomitosis, or mitosis, additional
readouts are required for incorporation with imaging to determine ploidy state of nuclei as well
as nuclearity of cardiomyocytes. The FUCCI-Tg is particularly valuable as a novel tool to assess
cardiomyocyte proliferation because: (i) every cardiomyocyte in the heart is visualized for cell
cycle status, not just ‘cycling myocytes’; (ii) four distinct stages of cell cycle progression are re-
vealed with inherent implications for cardiomyocyte mitosis; (iii) quantitation of cell cycle status
for collective myocyte populations is possible; (iv) the system can be used in combination with
DNA labeling to correlate cell cycle progression with DNA synthesis versus DNA damage, and
most importantly (v) in vivo labeling is assessed in the adult mammalian heart, the ultimate testing
milieu for authentic proliferative activity (to validate observations from in vitro or postnatal environ-
ments). The oscillation of FUCCI signal occurs in real time, unlike long-term tracking or genetic
tracing approaches, so several time points need to be analyzed to find optimal timing for detec-
tion, for example, after treatment, when cardiomyocyte proliferation occurs. Functionality and util-
ity of the FUCCI-Tg documented in our publication [22] not only reinforced many prior studies of
cardiomyocyte biological properties, but also revealed a previously unappreciated aspect of with-
drawal from cell cycle: the canonical restriction point (R-point) first described by Pardee in 1974
[72].

R-point
R-point cell cycle withdrawal could be mistaken for another cell cycle checkpoint, but the pro-
cesses involved differ substantially. Whereas a checkpoint involves primarily intracellular sensors
of metabolic state, genome integrity, and sequential execution of prior cell cycle steps, the R-
point transition rests upon cellular integration of signals received from the environment over an ex-
tended period of time to determine whether growth is warranted [73]. Without permission to pro-
ceed past R-point, the cell withdraws from cycling and enters an arrested state. The R-point has
been narrowed to a mid-to-late G1 stage known as the G1/S boundary when cellular resources
are focused upon maintenance and preservation of ongoing processes rather than proliferative
growth. Cardiomyocyte arrest at the R-point is intuitively attractive given the high metabolic de-
mands of contractile function and the need to maintain structural integrity for normal function.
The R-point integrates a multifaceted ‘knot of mitogen and inhibitory signaling’ intrinsically dedi-
cated to preventing cell cycle progression [74], which likely accounts for both the extended
lifespan of cardiomyocytes as well as their notorious reluctance to undergo mitotic activity.

Polyploidy
Contributing to the confusion, biological phenomena of endomitosis, endoreplication, and DNA
damage are often underappreciated or unaccounted for in assessments of cardiomyocyte prolif-
eration [75]. Consistent with their atypical nature and resistance to cell division, cardiomyocytes
enter mitosis and exit without generating daughter cells but rather by mere duplication of DNA
without new nucleation or by adding additional nuclei [45,76–81]. Although the terms
‘endoreplication’, ‘endomitosis’, and ‘endoreduplication’ are often used interchangeably [82],
for this proposal endoreplication refers to DNA duplication without karyokinesis, whereas endo-
mitosis refers to karyokinesis without cytokinesis. These two processes involve progression
through cell cycle that presents as DNA synthesis, often misrepresented as mitotic activity
(Figure 2). Cardiomyocytes exhibit increased levels of ploidy within single nuclei as well as by ac-
cumulating multiple nuclei, even as a normal process of aging [34,80,83]. Cardiomyocytes also
incorporate DNA labeling agents consequential to attempting DNA repair response following en-
vironmental challenge such as oxidative stress [84,85]. Failure to appreciate these normal as-
pects of cardiomyocyte cell biology leads to controversial claims of proliferation rates and
potentially erroneous claims of regeneration [86–88].
6 Trends in Endocrinology & Metabolism, Month 2019, Vol. xx, No. xx
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Figure 2. Adult Mammalian Cardiomyocytes Withdraw from Cell Cycle Progression at Two Primary Points o
R-Point Restriction (R-point) and Acquisition of Higher Level Ploidy (Polyloidy) through Genomic Duplication
(Endoreplication) Multinucleation (Endomitosis). Nuclei shown in varying coloration corresponding to the fluorescen
ubiquitin cell cycle indicator (FUCCI) reporter system.

Trends in Endocrinology &Metabolism

Trends in Endocrinolo
f

t

Redirecting the Driver Rather Than Hijacking the Vehicle
Cardiomyocytes have good reasons for bailing out with R-point or polyploidy, as these represent
biologically sensible choices in the face of proliferative stimuli. The structural and functional de-
mands placed upon the adult mammalian heart are incompatible with widespread coordinated
adult mammalian cardiomyocyte mitosis that would compromise tissue integrity and hemody-
namic output. And yet even now, pieces continue to emerge in the puzzle of the recalcitrant car-
diomyocyte. Among the candidate directions to follow, prevention of stresses that prompt
cardiomyocytes to bail out of cell cycle, such as metabolic shifts, endothermy, phenotypic matu-
ration, and reactive oxygen species, have all received recent attention [89–91]. Lest we forget,
promoting a youthful lifestyle for cardiomyocytes on an environmental and molecular level helps
to stave off cellular senescence and decrepitude [8,92]. Perhaps the answer lies not simply
with brute force bludgeoning adult mammalian cardiomyocytes into submission to cell cycle,
but gentle persuasion by offering a conducive environment and involving cellular crosstalk. Re-
cent examples from studying liver biology demonstrate ploidy state plays an essential role in reg-
ulation of cellular proliferation and tissue regeneration [93,94]. Regulation of cellular proliferation is
a recurring theme in studies of polyploidy, with particular emphasis in liver aging and repair.
Acquisition of stable higher ploidy state prompts cell cycle withdrawal and potential emergence
of senescence-associated characteristics [95–97]. However, hepatocytes undergo ploidy
reversal during liver repopulation, senescent human hepatocytes are ‘rejuvenated’ after cell
gy & Metabolism, Month 2019, Vol. xx, No. xx 7
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Outstanding Questions
Why have decades of concerted efforts
to promote completion of adult mam-
malian cardiomyocyte cell cycle re-
sulted in so little tangible progress?

How relevant are studies of
cardiomyocytes with proven prolifera-
tive capabilities in neonatal animals or
lower vertebrates such as zebrafish to
furthering understanding of adult mam-
malian cardiomyocyte cell cycle
progression?

What measures can provide definitive,
readily demonstrable, and unambigu-
ous evidence of adult mammalian car-
diomyocyte cell cycle completion?

Can canonical points of adult cardio-
myocyte cell cycle withdrawal, such
as R-point or multinucleation, be over-
come to promote completion of
cytokinesis?

What is the role of the myocardial envi-
ronment and interstitial cell populations
in limiting cell cycle progression andmi-
totic activity of adult mammalian
cardiomyocytes?
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transplantation, and polyploidy in hepatocytes does not necessarily equate with senescence [98].
A regulatory role for inhibition of proliferation in highly regenerative liver tissue and cultured cells
appears to be exerted by tetraploid cells upon diploid brethren [99]. In support of an antiprolifer-
ative action, the polyploid state plays a tumor-suppressive role in the liver [100]. Concurrently,
tetraploid hepatocytes also give rise to aneuploid progeny and can facilitate adaptation to chronic
liver disease [93]. As evident from these few selected examples, incontrovertible evidence that
regulation of ploidy in liver is fundamentally important for determination of proliferative activity,
even as mechanisms of ploidy determination and ensuing biological actions remain frustratingly
elusive. Similar observations of ploidy-based regulation of cardiac repair occur in zebrafish
heart regeneration [101]. If such concepts could be adapted to adult mammalian myocardium,
then cardiomyocytes therein might be more amenable to stating on the road to mitosis rather
than taking the off-ramps to quiescence or, alternatively, running out of gas and ending in cytoki-
nesis failure.

Where Does the Road Lead (Concluding Remarks/Future Perspectives)?
We Are Only as Strong as Our Weakest Links: Factoring in the Entire Organism
Everything written up to this point certainly is sufficient to give one pause regarding prospects for
restoration of myocardial function through promotion of adult cardiomyocyte cell cycle. In keeping
with allusions to the cell cycle highway, staying on track for adult mammalian cardiomyocyte may
be facilitated by shifting gears rather than hitting the accelerator. Namely, focusing upon cell biol-
ogy rather than narrow heavy-handed molecular interventions, recognizing that changing funda-
mental phenotype of cardiomyocyte to a more pliable and accommodating condition is
inextricably linked to changing the potential for cell cycle progression, and taking cues from
other adult organs and cells such as the liver [93,94]. Lastly, although this review has centered
upon adult mammalian cardiomyocytes, the involvement of the cardiac interstitial cell population
should not be discounted or overlooked since those support cells regulate the surrounding
environment [102–106]. And in the final analysis, a complex web of intrinsic and extrinsic
factors all provide signposts in a medley that influences receptivity of the tissue to reparative
action [107,108], leaving us with both profoundly unresolved issues as well as inescapable
realities that need to be surmounted (see Outstanding Questions).

Realistic Expectations, Believable Outcomes, and Achievable Destinations
The quest for cardiomyogenic approaches in the adult mammalian heart remains a top priority for
cardiovascular research and therapeutic interventional strategies to treat heart failure, even after
decades of frustration and what can be characterized, at best, as modest outcomes. As previ-
ously observed, some of the impasse is attributable to the plethora of approaches and interpre-
tations used in prior published studies. Even today, new tools allowing for increased
understanding and improved accuracy for assessments are desperately needed. Application of
rigorous and consistent measures to determine induction of cardiomyocyte cell cycle progression
in the adult mammalian myocardium is essential to validate and compare the ever-expanding se-
ries of methods and practices developed throughout the world. Inconsistent measures, inappro-
priately applied measures, and overinterpretation of findings have been and continue to be
problematic for achieving resolution in advancing mechanistic understanding of cardiomyocyte
cell cycle regulation. Paradoxically, while substantial information has been gathered on the unique
characteristics of the cardiomyocyte cell cycle relative to other cell types, assessments of out-
comes often fail to fully and faithfully encompass the spectrum of possibilities with high rigor
and reproducibility. The research community should coalesce around a commonly shared set
of principles used to guide measurement of cardiomyocyte cell cycle and allow all researchers
to benefit by comparative measures with standardized references such as the FUCCI-Tg serving
as a platform for adult mammalian myocardial cell-cycle analysis [22]. Accomplishing the goal of
8 Trends in Endocrinology & Metabolism, Month 2019, Vol. xx, No. xx
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unraveling cardiomyocyte cell cycle control will provide a path forward to reconcile disparate ob-
servations, thereby improving the accuracy and reproducibility of interventions intended to en-
hance adult mammalian cardiomyocyte cell cycle progression.
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