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Abstract

Essays on Energy and Public Economics

by

Eva Lyubich

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Reed Walker, Chair

Energy is an essential input into the lives of individuals and the production of firms. While
energy use has numerous private benefits, it imposes an external social cost as the combustion
of fossil fuels increases the concentration of greenhouse gases and accelerates the climate
crisis. A central role of the public sector is to reduce such externalities. Governments
can intervene by creating financial incentives such as taxes or subsidies, by investing into
public goods such as research and development of green technologies or infrastructure that
decreases aggregate fossil fuel energy demand, or by directly regulating emissions through
caps or bans. The aggregate and distributional impact of such policies depends on baseline
energy use patterns and available alternatives. My dissertation examines heterogeneity in
energy use and carbon emissions — documenting it, exploring its drivers, and discussing its
implications for the impact of different public sector interventions.

In Chapter 1, I examine place-based differences in individual energy use and carbon emis-
sions. There is substantial spatial heterogeneity in household carbon emissions across the
US, and a strong association between emissions and local amenities such as density, trans-
portation infrastructure, and housing characteristics. I estimate what share of heterogeneity
in carbon emissions is attributable to places themselves, and what share reflects individual
characteristics and sorting. To do this, I construct a longitudinal panel of residential energy
use and commute characteristics for over a million individuals from two decades of adminis-
trative Decennial Census and American Community Survey data. I use movers in my data to
estimate place effects – the amount by which carbon emissions change for the same individual
living in different places – for almost 1,000 cities and roughly 60,500 neighborhoods across
the US. I find that place effects explain more than half of differences between places, and
about 15-25% of overall variation in carbon emissions. My estimates suggest that decreasing
neighborhood-level place effects from one standard deviation above the mean to one stan-
dard deviation below the mean would decrease household carbon emissions from residential
energy use and commuting by about 40%.
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In Chapter 2, I examine racial differences in individual energy expenditures. Using publicly
available data from the American Community Survey from 2010-2017, I show that Black
households have higher residential energy expenditures than white households in the US.
This residential energy expenditure gap persists after controlling for income, household size,
home-owner status, and city of residence. It decreased but did not disappear between 2010
and 2017, and it is fairly stable in levels across the income distribution, except at the top.
Controlling for home type or vintage does not eliminate the gap, but survey evidence on
housing characteristics and available appliances is consistent with the gap being driven at
least in part by differences in housing stock and related energy efficiency investments.

In Chapter 3, which is co-authored with Joe Shapiro and Reed Walker, we examine firm-level
variation in carbon emissions. We provide the first estimates of within-industry heterogeneity
in energy and CO2 productivity for the entire U.S. manufacturing sector. We measure
energy and CO2 productivity as output per dollar energy input or per ton CO2 emitted.
Three findings emerge. First, within narrowly defined industries, heterogeneity in energy
and CO2 productivity across plants is enormous. Second, heterogeneity in energy and CO2

productivity exceeds heterogeneity in most other productivity measures, like labor or total
factor productivity. Third, heterogeneity in energy and CO2 productivity has important
implications for environmental policies targeting industries rather than plants, including
technology standards and carbon border adjustments.
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Chapter 1

The Role of People vs. Places in
Individual Carbon Emissions

1.1 Introduction

Climate change, caused by carbon emissions and other greenhouse gases, is an urgent threat.
Global average temperatures have increased by over 1C (1.8F) relative to pre-industrial levels
(NASA 2020), and the International Panel on Climate Change has cautioned that even
warming of 1.5C could lead to catastrophic consequences, including increased frequency and
severity of extreme weather events, degradation of ecosystems, and population displacement.
There is substantial spatial heterogeneity in household carbon emissions across cities and
neighborhoods in the US, and researchers and policy makers have highlighted this variation
as an opportunity for decarbonization, pointing to features of low carbon places, such as
density and high-quality public transportation infrastructure, that higher-emissions places
could adopt in order to lower household carbon emissions.

However, differences in mean carbon emissions across cities and neighborhoods reflect
a combination of local amenities, household characteristics, and taste-based sorting. The
relative contributions of these pieces is a central determinant of whether place-based inter-
ventions that change urban form would lead to meaningful and rapid reductions in carbon
emissions. For instance, if places with large single-family homes and car-oriented transporta-
tion infrastructure are high emissions because the people who live there dislike multi-family
homes and public transit, then deregulating zoning or building new rail lines would have
little impact on household emissions. Conversely, if the lack of denser housing and transit
options is a constraint on household choices, rather than a reflection of their preferences, then
interventions that change these local public amenities could have the potential to decrease
carbon emissions for many households at once.

In this paper, I decompose variation in household carbon emissions into a component
driven by household characteristics and a component driven by place effects – i.e., the amount
by which the same household’s carbon emissions would differ from place to place due to dif-
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ferences in the underlying features of those places. To do so, I construct a longitudinal panel
of residential and transportation energy use for over one million individuals from 20 years
of restricted-access Decennial Census and American Community Survey (ACS) micro-data.
The longitudinal nature of my data makes it possible to link individual survey respondents
over time and across places and use a mover design. I use changes to household carbon
emissions for over 250,000 movers across roughly 1,000 cities and 60,500 neighborhoods to
estimate place effects and their contribution to heterogeneity in carbon emissions.

I begin my analysis by documenting observational patterns of city and neighborhood level
variation in household carbon emissions in my sample. Detailed geographic identifiers in the
administrative Census data make it possible to directly estimate these values. I estimate
that households in cities with high average emissions emit 50% more than households in
low emissions cities, and households in neighborhoods with high average emissions emit over
two times more than households in low emissions neighborhoods. Accounting for variation
driven by observed household characteristics such as household size and income decreases
the dispersion across place estimates, but by less than 10%.

The heterogeneity that remains after accounting for observable household characteristics
reflects some combination of unobserved household characteristics and causal place effects.
Place effects could result from a variety of local amenities and supply-side factors that
determine patterns of household energy use. For example, place effects could reflect aspects
of urban form such as public transportation, bike and pedestrian infrastructure, highway
networks, density, and/or zoning regulations. They could also be driven by natural amenities
such as climate. Lastly, they could arise from supply-side factors that determine fuel shares
and electricity emissions factors, both of which shift the carbon emitted for a given level of
energy use. In the conceptual framework of this paper, I show how place effects relate to the
parameters of a consumer energy demand model in which average energy demand, energy
demand elasticities, energy prices, and average emissions factors vary across places.

My empirical strategy uses movers in my data to estimate the contributions of place ef-
fects and household characteristics to heterogeneity in household carbon emissions. The basic
idea behind the mover design is to account for unobserved differences between households
by comparing carbon emissions for the same household living in different places. The central
assumption in the mover design is that changes to unobserved determinants of household
carbon emissions are uncorrelated with mover destinations. A crucial advantage of under-
taking this analysis with Census data is that I observe and can control for many time-varying
household characteristics that could correlate with both potential emissions and destination
choices, including income and children. I proceed in two steps.

First, I use an event study to estimate how much carbon emissions change after house-
holds move, as a share of the mean difference between their origin and destination. On
average, when households move to a new city, their carbon emissions change by about 90%
of the mean difference between their origin and destination cities. There is more sorting of
households across neighborhoods, but even at the neighborhood level more than half of mean
differences between neighborhoods is explained by place effects: when households move to
a new neighborhood, their carbon emissions change by about 60% of the mean differences



CHAPTER 1. THE ROLE OF PEOPLE VS. PLACES IN INDIVIDUAL CARBON
EMISSIONS 3

between their origin and destination neighborhoods. These shares are symmetric for moves
to lower or higher emissions places, and they are stable across moves between places with
large mean differences or small mean differences in carbon emissions. Under the baseline
assumptions of the mover design, the estimates from the event study can be used to calculate
the emissions externality of policies that drive existing patterns of household migration, for
example policies that restrict housing supply in on average low-emissions cities. To interpret
the event study shares as unbiased causal estimates of the effect of moving between any pair
of places, it is necessary to impose an additional assumption that there is no systematic
selection of certain types of households to certain types of places.

To allow for unrestricted patterns of sorting, next I estimate a non-parametric distribution
of household and place effects from a two-way fixed effects model. I use these estimates to do
a variance decomposition of overall heterogeneity, including heterogeneity across households
living in the same place as well as heterogeneity not explained by the data. The weaker
identifying assumptions afforded by the two-way fixed effects decomposition come at the cost
of limited mobility bias: naive estimates of variance components are upward biased because
some place effects are estimated from only a few movers (Andrews et al. 2008). I account
for this upward bias using the heteroskedasticity-robust “leave-out” estimator proposed by
Kline, Saggio, and Sølvsten (2020). I find low correlations between unobserved household
and place effects, even at the neighborhood level. This suggests that unobserved sorting
contributes to differences between places through “segregation” of households, but not in a
way that is systematically correlated with unobserved neighborhood attributes. City effects
explain roughly 15% of overall heterogeneity, while neighborhood effects explain roughly 25%
of overall heterogeneity. Controlling for variation driven by climate, electricity emissions
factors, and energy prices in order to isolate the dimensions of place that more likely reflect
urban form decreases the place shares to 10% at the city level and 15% at the neighborhood
level. While this leaves the majority over overall heterogeneity to other factors, my estimates
nevertheless imply the potential for considerable reductions to household carbon emissions
from interventions that decrease place effects: I estimate that if a neighborhood goes from
having a place effect one standard deviation above the national mean to having a place effect
one standard deviation below the national mean, household emissions for residents of that
neighborhood would decrease by about 40%.

I characterize low and high emissions places by examining observable characteristics
from within the Census data as well as from Walk Score1, a private company that gener-
ates estimates of the walk-ability, transit-ability, and bike-ability of every address in the
US.2 Observable correlates of low emissions places for the most part mirror relationships
in the observational data: low emissions places have higher density, more transportation
alternatives to cars, and lower shares of single family homes.

Given that the amenities of low emissions places are those often found in urban areas,
I consider the impact on carbon emissions of urbanization, generally defined. To minimize

1www.walkscore.com
2Data provided by Redfin Real Estate (www.redfin.com).
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mean squared prediction error, I first adjust my estimates of place effects using a linear
empirical Bayes (shrinkage) estimator to down-weight parameters that are noisily estimated.
I examine three scenarios. The first two scenarios are variants on the question: what would
happen to household carbon emissions if places were more like New York City? The third
scenario evaluates how carbon emissions would change if every place across the US were
more like the largest city in its metropolitan or micropolitan area. This exercise doesn’t take
into account general equilibrium effects, but it serves as a useful first order approximation
of the effect on household carbon emissions of policies that “expand” cities – e.g. either
through policies that make it possible for more people to live in the city (without changing
its fundamentals), or through investment and regional development that limits suburban
sprawl and increases the number of neighborhoods that have amenities similar to those of
the largest nearby cities. I estimate that this type of “place-based climate policy” would
result in 13% reductions in average household emissions from residential energy use and
commuting.

Taken together, the results in this paper provide new evidence on the role of places
in household carbon emissions. I provide direct estimates of nation-wide, neighborhood
level variation in household carbon emissions, building on evidence that this variation is
substantial (Jones and Kammen 2014; Ummel 2014; Green and Knittel 2020), but finding
less heterogeneity than predicted from national data projected onto local place and household
characteristics.3 While related work has highlighted the consequences of spatial heterogeneity
in household carbon emissions for allocative efficiency (Glaeser and Kahn 2010; Colas and
Morehouse 2021) and distributional impacts and political economy of hypothetical climate
policies (Cronin, Fullerton, and Sexton 2019; Sallee 2019; Green and Knittel 2020), the
focus of my paper is on examining its causes. I show that place effects can be interpreted
as summarizing the parameters of a model of heterogeneous energy demand, where average
demand and price elasticities of demand vary across places as a result of different amenities
and supply-side factors. Several papers have generated estimates of heterogeneous energy
demand parameters, but have necessarily done so in spatially limited contexts (Auffhammer
and Rubin 2018; Gillingham 2014; Nowak and Savage 2013; Spiller et al. 2014). Finally, my
work builds a bridge to a set of papers that has used observational data paired with modeling
techniques to estimate strong relationships between urban form and carbon emissions (e.g.
Shammin et al. 2010; Timmons, Zirogiannis, and Lutz 2016; Ribeiro, Rybski, and Kropp
2019; Pomponi et al. 2021; Ko 2013).

My empirical approach builds on and contributes to a recent body of work that uses
mover designs to estimate place effects on other individual outcomes, e.g. nutritional choices
(Allcott et al. 2019), health outcomes and health care utilization (Eid et al. 2008; Finkel-
stein, Gentzkow, and Williams 2016, 2020), intergenerational mobility (Chetty and Hendren
2018), and wages (de la Roca and Puga 2018; Card, Rothstein, and Yi 2021). My paper is
the first paper to use a mover design to estimate the role of places in determining household

3Differences in estimates could also be driven in part by the fact that these papers estimate household
carbon footprints from all consumption, including indirect emissions from food and durable goods.
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carbon emissions. These mover design papers fit into a broader literature in urban and spa-
tial economics examining the role of places or specific place-based amenities in determining
individual outcomes. For example, many papers in the urban and spatial literature have
examined the role of density (e.g. see Duranton and Puga 2020, for a review) and trans-
portation infrastructure (Tsivanidis 2019; Allen and Arkolakis 2021) – two amenities closely
related to energy use and carbon emissions – in determining productivity, wages, and wage
inequality, and several papers have studied the effect of transportation infrastructure on
urban form and energy use specifically (e.g. Baum-Snow 2007; Duranton and Turner 2018).
A related set of papers has studied the valuation of local public goods (Bayer, Ferreira, and
McMillan 2007; Schönholzer 2021), endogenous formation of amenities (e.g. Diamond 2016),
and the costs and benefits of using place-based policies to improve aggregate welfare (e.g.
Kline and Moretti 2014; Gaubert, Kline, and Yagan 2019; Fagjelbaum and Gaubert 2020).
The evidence on the relative importance of sorting vs. places is mixed, and in my paper a
large share of variation in carbon emissions is driven by factors other than places; neverthe-
less, my results highlight considerable potential reductions in household carbon emissions
from changes in the distribution of place effects, adding evidence on one channel through
which places play a key role in individual outcomes.

The remainder of this paper proceeds as follows. In Section 1.2, I discuss my empirical
setting and data, and show several stylized facts about carbon emissions in the US. In Section
1.3, I present my model, and discuss the interpretation of place effects. In Section 1.4, I
describe my empirical strategy and identifying assumptions. I present my main findings
on the role of unobserved place vs. person heterogeneity in carbon emissions in Section
1.5. I then describe correlates of unobserved heterogeneity in Section 1.6, and predict how
aggregate carbon emissions would change under counterfactual distributions of place effects
in Section 1.7. Section 1.8 concludes.

1.2 Data and Stylized Facts about Carbon Emissions

in the US

I build a 20-year panel of individual and household-level data using the 2000 restricted access
Decennial Census long form and the 2001-2019 American Community Survey (ACS). The
Census long form is a stratified random sample covering one in six households in the US, and
the ACS is a stratified random sample covering 1% of households in the US each year except
for 2001-2005 when it covered roughly 0.4% of households (U.S. Department of Commerce
2014). I link individuals across surveys using Protected Identification Keys, which are unique
person identifiers assigned by the Census Bureau based on names, addresses, dates of birth,
other household members, and social security numbers (when available).4

4Neither the Decennial Census nor the ACS ask respondents for their social security number. Layne,
Wagner, and Rothhaas (2014) use data with social security numbers to show that the error rate in assigning
Protected Identification Keys without social security numbers is below 1%. See Wagner and Layne (2014) for
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For every individual in my panel, I observe measures of residential and transportation
energy use, and a rich set of demographic, household, workplace, and home characteristics,
including detailed geographic identifiers. I supplement the Census and ACS with several
external data sets in order to convert energy expenditures to energy services and emissions,
and to characterize places. In the remainder of this section, I define my geographic units
of analysis and outcome variables, provide a high-level overview of the key control and
explanatory variables I use, and discuss the construction of my analysis sample. Additional
details can be found in app:data.

Geographic Units of Analysis

Throughout the study, I analyze spatial heterogeneity at two levels of geographic granularity
which are meant to represent roughly a city or labor market and a neighborhood.

My first geographic unit of analysis is a Core Based Statistical Area (CBSA). CBSAs are
designated by the Office of Management and Budget and cover the population of metropoli-
tan and “micropolitan” areas in the US. Each CBSA is a set of contiguous counties with
strong commuting ties and at least one urban core area of at least 10,000 people. In addition
to formally designated CBSAs, I define residual CBSAs by state from unassigned rural areas.
My second geographic unit of analysis is a census tract. Census tracts are county subdivi-
sions that typically cover contiguous areas, have populations of 1,200-8,000 people (4,000 on
average), and are delineated with boundaries that follow identifiable physical features. They
are designed to be relatively stable, but are split or merged every ten years if populations
exceed or fall below the 1,200-8,000 window.5

Carbon Emissions

My primary outcome is metric tons of carbon emissions from residential energy and passenger
vehicle use, which account for roughly one third of US greenhouse gas emissions.6

I estimate carbon emissions from residential energy use from household-reported expen-
ditures on electricity, natural gas, and other home heating fuels in the last year, combined

detailed discussion of the assignment algorithm used by the Census. There is some variation in assignment
succes rate across demographic groups – in particular white and higher income individuals are more likely to
be successfully assigned a Protected Identification Key – but for all demographic subgroups the success rate
is greater than 85%. See Bond et al. (2014) for additional discussion of the variation in assignment rates
across population subgroups.

5Census geographic definitions vary over time to account for changes in administrative boundaries and
populations. To ensure that I don’t erroneously identify people who live in places where the designation
changed as movers, I use the 2000-2010 census block concordance to assign 2010 geographic definitions to
all years in the data.

675% of US greenhouse gas emissions are from burning fossil fuels. Of these, 20% are from residential
energy use (including electricity), and another 20% are from light duty (i.e. passenger) vehicles (U.S. Energy
Information Administration 2020).
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with external data on local annual retail prices and fuel emissions factors. For electric-
ity, I calculate county-level average prices using data from the U.S. Energy Information
Administration (2020) Annual Electric Power Industry Report. This report contains sales,
revenues, and total customers for every major utility in the US, by sector and state. It also
delineates counties contained in each utility’s service territory. I calculate county-level retail
electricity prices using customer-weighted average prices (revenue divided by sales) across
all utilities with service territories containing the county, and I compute household electric-
ity consumption by dividing reported expenditures by my price estimates. I then assign
households to one of 12 National Electric Reliability Council sub-regions using a tract-level
crosswalk from the Homeland Security (2021) Infrastructure Foundation-Level Database,
and compute emissions using the average annual emissions rates assigned to each sub-region
by the U.S. Environmental Protection Agency (2021a) Emissions & Generation Resource
Integrated Database. For natural gas and other home heating fuels, I obtain average retail
prices at the state level from the Energy Information Administration (2020) State Energy
Data System. If a household reports non-zero expenditures on “other home heating fuels”,
I impute the fuel used from their answer to the question “What was the primary fuel used
for home heating?” Finally, I obtain fuel emissions factors from the U.S. Environmental
Protection Agency (2018) Emission Factors for Greenhouse Gas Inventories.

I estimate carbon emissions from transportation energy from individually-reported com-
muting behavior. My outcome captures variation in carbon emissions driven by commute
lengths, number of commutes, and mode of transit.7 I estimate commute distance using the
geodesic distance between home and place of work census blocks, and I estimated commute
speed from estimated mileage and reported time-length of commute. I estimate gasoline
usage using annual national average fuel economy from the U.S. Environmental Protection
Agency and Energy (2020), accounting for the fact that in general fuel economy is roughly
30% higher on highways than in cities. Finally, I estimate the number of annual commutes
using reported weeks worked last year and hours worked last week, and convert annual gal-
lons of gasoline to carbon emissions using the motor gasoline emissions factor from Energy
Information Administration (2020) State Energy Data System. Individuals who commute by
rail, subway, streetcar, bus, bike, or walk, and individuals who work from home are assigned
zero carbon emissions from commuting.8 I examine the sensitivity of my results to using
the Federal Highway Administration (2019) National Household Travel Survey (NHTS) to
predict fuel economy and non-commute miles from household and geographic characteristics
available in both the Census and NHTS. This is not my baseline approach, as it infers how
much of variation in vehicle fleets and fuel economy observed in the NHTS is driven by
individual preferences vs. place-based factors from cross-sectional variation.9

7Commuting accounts for about 28% of all vehicle-miles travelled, and 39% of person-miles travelled on
transit systems (US Department of Transportation 2015), which means I underestimate CO2 emissions from
personal vehicle use for most people in my sample.

8This is a generous assumption that favors public transit. It is roughly correct on the intensive margin,
but not on the extensive margin unless new investment is required to be zero-emissions.

9Place-based factors that contribute to variation in vehicle fleets could include social norms, perceptions
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Individual and Household Characteristics

Throughout the analysis, I use demographic and household characteristics to control for
variation driven by observable characteristics. My primary demographic and household
controls are age, education (completion of a bachelor’s degree), sex, race and ethnicity,
household income (from salaries and wages, interest, social security, supplemental security,
public assistance, retirement, and self employment), household size, and number of kids.
I control for age using bins: 18-24, 25-30, 30-34, 35-39, 40-49, 50-64, and 65+. I control
flexibly for number of kids using categorical variables for 0, 1, 2, or 3+ kids.

As highlighted in Card, Cardoso, and Kline (2016), the normalization choice for cate-
gorical variables does not affect the estimated size of the place variance component or the
variance component of the sum of fixed and observable household effects, but it does affect
the relative sizes of the place and unobserved household effects, as well as the estimated
covariances. Throughout my analysis, I choose the age bin 40-49, no college degree, male,
white & non-Hispanic as the omitted categories. Other than “white”, these are the cate-
gories with the highest within-group variance in outcomes. Thus this normalization should
err towards finding a larger unobservable person component relative to place component.

I also observe home-owner status, whether a household lives in a detached single family
home, building age, and the number of vehicles in a household. Because these characteristics
are intermediate outcomes, which affect CO2 and likely reflect some combination of household
preferences and place characteristics, I do not use these variables as controls throughout my
analysis. I do, however, use them in the second half of the paper to explore correlates of
unobserved place and household heterogeneity.

Place Characteristics and Amenities

In addition to individual-level data on home characteristics from the full sample in my micro-
data, I use several external sources of data to characterize amenities at the block, tract, city
and regional level. My focus is on amenities that are directly relevant to energy consumption
and carbon emissions in the residential and transportation sectors.

To capture variation in climate, I use data on annual heating degree days (HDDs) and
cooling degree days (CDDs) at the state-climate division level from National Oceanic and
Atmospheric Administration (2020). Degree days are computed as the annual sum of the
daily difference between that day’s temperature and 65F, and are meant to be a measure of
the heating and cooling requirements of a place.

To account for neighborhood-level variation in transportation and leisure amenities, I use
data fromWalk Score, a private company that generates estimates of the walk-ability, transit-
ability, and bike-ability of every address in the US. Walk Score® rankings capture proximity
to different commercial amenities such as grocery stores, as well as street characteristics such
as block lengths and intersection widths. Bike ScoreTM indices capture characteristics that

of safety (e.g. if everyone around you is driving a big car it is safer for you to drive a big car; certain types
of cars may be able to handle adverse weather better), road widths, ease of parking, etc.
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make biking more or less accessible, such as the existence of bike lanes, road connectivity,
and hilliness. Transit Score® ratings capture proximity to different types of transit, and
the frequency and connectivity of nearby options. For transit, I also observe the number
of bus routes and rail routes within a half mile. Finally, I observe a set of amenity scores
that measure proximity to parks and leisure and commercial amenities (e.g. grocery stores,
restaurants, retail). Other than route counts, each score is an index from 0-100. I assign over
6 million unique Walk Score points reflecting data from early 2020, one to every populated
census block in the US, by matching census block centroids to the nearest Walk Score
latitude-longitude coordinate.

Analysis Samples

I restrict my analysis to individuals who are at least 18 years of age, who are not identified as
the householder’s child or grandchild, and who are not missing any of the outcome variables
or key explanatory or control variables described above. I also impose several additional
restrictions related to energy variables. I exclude from the sample individuals belonging to
households whose residential energy costs are included in rent, or whose gas costs are included
in their electricity bill, because I don’t observe expenditures in those cases. I also exclude
individuals in households where residential energy use is top coded or whose commute time is
top coded, as the top-coding will obfuscate changes in individual consumption for the highest
demand individuals. Lastly, I exclude individuals if the sum of their household residential
energy expenditures is zero, if they are in the bottom 1% of non-zero residential energy cost
observations, or if they are in the top 1% of commute distance observations as these outliers
more likely reflect survey misreporting. My full sample consists of all individuals who meet
these restrictions across the 48 continental states and the District of Columbia. This is over
16 million people across 12 million households (Table 1.1, column (1)). I use the full sample
to estimate observational geographic and household heterogeneity.

I construct a panel sample by restricting the full sample to individuals for whom I have at
least two observations, and who did not indicate in the ACS that they had moved within the
last year.10 This restriction ensures that I am assigning residential energy expenditures to
the correct location. The panel sample consists of 1,062,000 people across 889,000 households
(Table 1.1, column (2)).

Finally, I impose two additional sample restrictions which are necessary for the imple-
mentation of my empirical strategy. First, because residential energy is determined at the
household level, and place effects are identified from the variation in outcomes of movers
between places, I restrict the sample to only individuals who live with the same set of other
full sample individuals across observations.11 Second, I restrict CBSAs and tracts to the

10In the 2000 Decennial Census, the question asked whether respondents had moved within the last five
years. Since this is significantly more restrictive, I don’t drop these individuals.

11This restriction is weaker than requiring individuals live in a consistent household across observations.
In particular, if someone lives with different roommates across observations, but their roommates aren’t in
the full sample because of e.g. missing variables, I do not drop them from the data. Moreover, because
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“leave-out connected set” – the network of CBSAs or tracts that remain connected to each
other by at least one mover when I drop all the observations in any given household (see
app:l1o for an illustration). I do this after dropping tracts with fewer than 10 full sample
household observations. The networks are constructed separately at the CBSA and tract
level. This means it is possible for a household to be in the CBSA panel but not the tract
panel if the tracts they live in are not in the leave-out connected set of tracts. The leave-out
restriction drops a negligible share of (residual) CBSAs and roughly 13% of (disproportion-
ately rural) tracts, yielding approximately a 5% sample size reduction (Table 1.1, Columns
(4) and (6)).

CBSA movers are households in the CBSA panel that live in different CBSAs across
observations (99,500 people in 87,500 households, Column (5)), and similarly, tract movers
are households in the tract panel that live in different tracts (within or across CBSAs)
across observations (275,000 people in 236,000 households, Column(6)). The CBSA panel,
tract panel, CBSA movers, and tract movers make up my four primary analysis samples.
The main analysis is implemented at the household level: carbon emissions are given by
household residential emissions plus the sum of individual commuting emissions over all
individuals in the household, and other household level characteristics are taken as averages
over person characteristics. All estimates are weighted using Census sample weights.

Sample Statistics

Table 1.1 shows sample statistics for the full sample, unrestricted panel sample, the two
geographically restricted panel samples, and the two mover samples.

A comparison across the samples yields three main take-aways. First, individuals in the
panel are on average more likely to be white and have higher income than the full sample
(columns (1) and (2)). This reflects known heterogeneity in Protected Identification Key
assignment rates within the Census Bureau (Bond et al. 2014). The panel sample is also 6
percentage points less likely to live in a tract designated as urban by the Census, 8 percentage
points more likely to live in a detached home, and 1 percentage point more likely to commute
by car. Second, further restricting the baseline panel to the CBSA and tract panels (columns
(3) and (4)) does not meaningfully change the distribution of demographics, (intermediate)
outcomes, or place characteristics. Finally, movers (columns (5) and (6)) tend to be younger,
more credentialed, and have higher income (conditional on age) than both stayers and the
full sample. Movers also are more likely than stayers to live in urban tracts, less likely
than stayers to live in detached homes, and they have higher rates of using electric heating
and have lower emissions from residential energy, making them more comparable to the full
sample on all of these dimensions.

Overall, about 80% of household carbon emissions in my sample are from residential
energy, and about 20% are from commuting. Close to three quarters of the sample live in

people under the age of 18 are dropped from the full sample, this does not drop households that have new
children or households in which children move out as they become adults.
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a detached, single family home, a vast majority of the sample commutes by car, and on
average households live within half a mile of only one bus route and only 0.1 rail routes.

Table 1.2 shows additional statistics for the panel samples. I observe the vast majority
of households in my panel sample exactly twice, with on average 8-10 years in between
observations. Movers tend to be younger than stayers the first time I observe them, and
are much more likely to have had a child or more than 50% change in household income.
Households tend to move to places with higher shares of detached single family homes and
worse non-car transportation amenities. The majority of moves in my household are from
urban to urban tracts, urban to suburban tracts, or suburban to suburban tracts. Finally,
consistent with secular trends of mobility in the US, households are generally moving to
places that are warmer (16-21% reductions in cooling degree days, and 6-11% reductions in
heating degree days). For additional comparisons of movers vs. stayers, estimates of the
likelihood of moving given shocks to household income or number of children, and the full
set of transition probabilities across urban, suburban, and rural places, see Appendix Tables
A.1, A.2, and A.3 respectively.
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Table 1.1: Sample Statistics

Panel Sample Mover Sample

(1) (2) (3) (4) (5) (6)
Full All CBSA Tract CBSA Tract

Panel A: Demographics
College 0.25 0.25 0.25 0.25 0.35 0.31
Age 44 46 46 46 43 43
White 0.82 0.89 0.89 0.90 0.89 0.88
Female 0.48 0.47 0.47 0.47 0.45 0.46
Household income 103,700 114,700 114,800 115,500 116,700 116,200
Household kids 1.0 1.0 1.0 1.0 1.0 1.0
Household size 2.8 2.9 2.9 2.9 2.8 2.9
Panel B: Outcomes
Tons CO2 18.7 19.9 19.8 19.9 18.8 18.7
Tons CO2 −Residential 15.2 16.3 16.3 16.4 15.2 15.4
Tons CO2 − Commute 3.5 3.5 3.5 3.5 3.5 3.4
Panel C: Intermediate Outcomes
% Detached home 72.4 80.9 80.9 81.5 73.3 72.9
% Use electricity only 28.8 23.5 23.6 23.5 29.8 27.5
% Commute by car 94.9 96.3 96.3 96.6 95.8 96.2
Commute minutes 25.3 24.9 24.9 24.8 26.2 25.7
Panel D: Place Characteristics
% Urban 32.2 26.3 26.4 25.6 30.6 32.0
% Suburban 46.3 43.9 44.0 44.4 44.1 47.7
% Rural 21.5 29.8 29.6 30.0 25.3 20.4
Walk Score 26.25 22.64 22.69 21.98 22.08 24.39
Bike Score 35.38 33.10 33.13 32.77 33.58 34.92
Transit Score 9.07 6.92 6.95 6.51 6.83 7.96
N Bus routes 1.58 1.16 1.16 1.07 1.24 1.35
N Rail routes 0.16 0.09 0.09 0.08 0.10 0.10
Annual CDD 1,364 1,224 1,226 1,214 1,361 1,339
Annual HDD 4,369 4,796 4,786 4,828 4,483 4,510

N People 16,200,000 1,062,000 1,040,000 1,006,000 99,500 275,000
N Households 12,190,000 889,000 836,000 807,000 87,500 236,000
CBSAs 1,000 1,000 1,000 1,000 1,000 1,000
Tracts 71,500 69,500 69,500 60,500 53,500 60,500

Note: Column (1) shows statistics for the full sample. Column (2) shows statistics for the panel sample,
with no restrictions that individuals be in the same household or live in a connected geography. Columns
(3) and (4) show the panel samples restricted to individuals in a consistent household overtime and the
CBSA and tract leave-one-out connected sets, respectively. Columns (5) and (6) show statistics for the
CBSA and tract mover samples. All means are weighted using census sample weights. Counts and shares
are unweighted and rounded according to Census Bureau disclosure rules.
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Table 1.2: Panel Statistics

Panel Sample Mover Sample

CBSA Tract CBSA Tract

Panel A: Sample Characteristics
% first observed in 2000 9.8 9.9 15.3 13.7
Years between obs 7.8 7.8 10.2 9.8

Panel B: Demographic Characteristics
Age first observed 42.1 42.0 37.2 37.2
% |∆ HH income | > 50% 28.0 27.9 44.6 40.3
∆ num. kids -0.12 -0.12 0.07 0.08
% ∆ num. kids ̸= 0 18.6 18.7 29.8 29.8

Panel C: Mover Place Changes
∆ Walk Score -6.4 -6.5
∆ Bike Score -3.9 -3.9
∆ Transit Score -2.3 -2.7
∆ N Bus Routes -0.5 -0.5
∆ N Rail Routes -0.04 -0.04
∆ Tract % detached home 0.05 0.05
% Moves Urban-to-Urban 12.4 17.9
% Moves Urban-to-Suburban 15.3 13.5
% Moves Suburban-to-Suburban 20.6 28.4
%∆ CDD 21.4 16.4
%∆ HDD -10.7 -6.1

N People 1,040,000 1,006,000 99,500 275,000
N Households 836,000 807,000 87,500 236,000
CBSAs 1,000 1,000 1,000 1,000
Tracts 69,500 60,500 53,500 60,500

Note: Columns (1) and (2) shows panel statistics for the CBSA and tract panel samples. Columns (3) and
(4) show statistics panel statistics as well as summary measures of mobility patterns for the CBSA and
tract mover samples. All means are weighted using census sample weights. Counts and shares are
unweighted and rounded according to Census Bureau disclosure rules.
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Observational Heterogeneity

Carbon emissions from residential energy and passenger vehicle use vary immensely across
individuals in the full sample. Individuals one standard deviation above the national mean
emit 3.4 times as much as individuals one standard deviation below the national mean. Pat-
terns of energy use are strongly correlated with observable characteristics such as income,
household size, race & ethnicity, and education. Appendix Figure A.1 shows relationships
between carbon emissions and these characteristics. Accounting for observable character-
istics decreases heterogeneity across individuals, but significant variation remains: carbon
emissions of individuals one standard deviation above the mean are still three times higher
than those of individuals one standard deviation below the mean, holding differences in indi-
vidual observables fixed. A nonparametric regression of household carbon emissions on a set
of fixed effects for age, college education, race and ethnicity, household income, household
size, and number of children indicates that these characteristics can explain 15% of overall
variation in carbon emissions.

There is also substantial spatial variation in carbon emissions across the United States.
I estimate unconditional and conditional place means, µj, using an ordinary least squares
regression of log of individual CO2 onto place fixed effects, year fixed effects τt, and in the
conditional regression, individual and household observable characteristics Xit:

lnCO2it = µj(i,t) +Xit + τt + εit (1.1)

Per capita carbon emissions in CBSAs one standard deviation above the mean are about
54% higher than per capita carbon emissions in CBSAs one standard deviation below the
mean, with that difference decreasing only slightly to 50% when accounting for differences
in population compositions across areas. At the neighborhood level, individuals in high
emissions neighborhoods emit on average 2.2 times what individuals in low emissions neigh-
borhoods do, or 2.1 times more after accounting for differences in observables. Figure 1.1
shows normal distributions reflecting the mean and standard deviation of per capita carbon
emissions over individuals, CBSAs, and tracts. The dotted gray line shows the raw distri-
bution, and the solid lines show conditional means. Even after accounting for observational
characteristics, significant spatial heterogeneity remains, particularly at the neighborhood
level. For the remainder of this analysis, I refer to CBSA and neighborhood means condi-
tional on observable characteristics as “obervational means”, following the terminology used
by Abaluck et al. (2021).

Figure 1.2 shows how carbon emissions differ across urban, suburban, and rural areas.
Suburban and especially rural places have higher emissions than urban places. Controlling
for heterogeneity driven by individual observable characteristics decreases the gap between
urban and suburban households by almost half, from 2.5 tons to 1.5 tons, and also decreases
the gap between urban and rural household by 1 ton, from 6.5 to 5.5.12

12Relatively small differences between urban and suburban means potentially reflect a pretty broad defi-
nition of urban by the Census.
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Figure 1.1: Heterogeneity in Individual Carbon Emissions

Note: This figure shows gaussian curves with means and normals reflecting the true distributions of per
capita emissions, across individuals, CBSAs, and tracts. Raw distributions are not shown in order to
facilitate Census disclosure review processes, but have higher kurtosis and are negatively skewed. The
dotted gray line (labeled “Individual”) corresponds to the distribution of individual CO2, conditioning only
on year FEs. The solid gray line (labelled “Individual, X”) corresponds to the distribution of CO2 over
individuals conditional on year FEs and observable characteristics. The dark blue solid line (“Mean CBSA,
X”) and light blue solid line (“Mean Tract, X”) correspond to the distributions of CBSA and tract
(respectively) mean per capita CO2 conditional on observable year FEs and characteristics. Observable
characteristics include age, gender, race, education, household size, and number of children.
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Figure 1.2: Household Carbon Emissions in Urban, Suburban, and Rural Places

Note: This figure shows mean household CO2 for urban, suburban, and rural areas. Observable
characteristics include fixed effects for age, gender, race, education, household size, and number of children.
Places are defined as urban if they are designated as an urban tract by the census. Places are defined as
suburban if they are not designated as an urban tract by the census, but are contained within a CBSA.
Rural areas are tracts outside of CBSAs. The unconditional regression has an R2 of 0.08,and the
conditional regression has an R2 of 0.21.

Figures 1.1 and 1.2 highlight substantial spatial heterogeneity in carbon emissions. They
also show that while observational heterogeneity in household carbon emissions is partially
driven by sorting of households with different characteristics to different types of places,
the majority remains unexplained. The fundamental goal of this paper is to understand
how much of is remaining unexplained heterogeneity is driven by unobservable individual
preferences, and how much is driven by causal place effects, i.e. the amount by which the
same household’s carbon emissions would differ from place to place, due to the underlying
features of that place, holding household characteristics (including unobserved preferences
or endowments) fixed.
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1.3 Model

Individual i living in place j consumes energy E in the form of four categories of fuels (f).
In the residential sector, they can consume electricity (e), natural gas (n), and other heating
fuels (o). In the transportation sector they can consume motor gasoline (m).13 Average
demand aj, price elasticities of demand ρfj , and prices P f

j are allowed to vary by place.
Demand also depends on observable fixed and time varying characteristics (such as age,
household size, and income) Xit, individual fixed unobserved determinants of demand, αi,
individual time-varying unobserved determinants of demand εit, and national annual trends
τt. Thus, individual demand for residential and transportation energy is given by:

lnEit = aj +
∑
f∈F

ρfj · lnP
f
j +Xitβ + τt + αi + εit (1.2)

Place-based differences in average energy demand and in price elasticities of demand
could arise from a range of fixed and malleable characteristics of places. These include cli-
mate, built environment or urban form – e.g. public transit, pedestrian and bike infrastruc-
ture, proximity to highways and parking, density, and proximity to leisure and commercial
amenities – and regulatory characteristics – e.g. zoning restrictions, building codes, or clean
electricity standards. For example, average demand for heating fuels is higher in cold places,
and average demand for motor gasoline is higher in places where households live farther from
employers or commercial amenities. Price elasticity of demand for gasoline may be higher
in places with better alternative transportation options, and price elasticity of demand for
electricity may be higher in places with a larger variety of home sizes and styles.

For each energy type Ef , carbon emissions, CO2, are a product of the quantity of fuel
consumed and the fuel’s carbon emissions factor ϕf . Emissions factors reflect the physical
carbon content of fuel. They are constant over time and place for natural gas, oil, and
motor gasoline, but vary for electricity as a result of differences in fuels used for electricity
generation. Thus, household consumption of residential and transportation energy results
in carbon emissions:

CO2it = ϕejt · Ee
it + ϕng · Eng

it + ϕo · Eo
it + ϕmg · Emg

it (1.3)

For each fuel f , define sfi as household i’s fuel share of fuel f . Also define sfj as the average

fuel share of fuel f in place j, and s̃fi as household i’s relative fuel share,
sfi
sfj
. This allows me

to rewrite household carbon emissions as a function of their total energy consumption, fuel
emissions factors, and (relative) fuel shares

CO2it =
∑
f∈F

(
s̃fi s

f
j · ϕ

f
jt

)
· Eit (1.4)

13Electric vehicles are a negligible share of driving in my sample time frame. If someone has an electric
vehicle, I over-estimate their emissions, because the electricity they use to charge their vehicle is included in
residential energy (if they charge at home) but I also assign them gasoline emissions.
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Combining this expression with Equation 1.2 yields

lnCO2it = ln

(∑
f∈F

sfj · ϕ
f
jt

)
+ aj +

∑
f∈F

ρfj · lnP
f
j︸ ︷︷ ︸

ψj

+Xitβ + τt + αi + ln

(∑
f∈F

s̃fi · ϕ
f
jt

)
+ εit

= ψj +Xitβ + τt + α̃i + ε̃it (1.5)

Equation 1.5 is the baseline estimating equation that I take to the data. The above
derivation shows that place effects ψj capture place-based variation in average energy de-
mand, variation in price elasticities of energy demand, variation in prices, average electricity
emissions factors, and average fuel shares. Household effects αi capture relative energy
demand. In a simplified world in which household’s relative fuel shares and electricity emis-
sions factors are constant across places, household effects also capture household relative
fuel shares (scaled by fuel emissions factors). However, in reality the model contains an
interaction between household and place specific factors – households with the same fuel
shares across places will have lower emissions in places with cleaner electricity, and similarly,
moving to a place with cleaner electricity will lead to larger reductions among households
with higher electricity shares. This means that there is some mis-specification built into the
two-way fixed effects model.

It is worth noting here two additional simplifications that the model makes. First, I’ve
allowed price elasticities of demand to vary across places (as a result of amenities that serve
as complements or substitutes to energy consumption) but not to vary across households.
Allowing for heterogeneity in demand elasticities across households introduces a second in-
teraction term in the error, as household elasticities are interacted with place-specific prices.
Both this interaction and the interaction between household fuel shares and place-specific
electricity emissions factors motivate treating the errors as heteroskedastic. Second, in the
baseline model place effects are fixed, meaning that any time variation (including e.g. in
prices) is absorbed in the place effects, which reflect average differences between places over
my sample time frame.

Variance Decomposition

Using the two-way fixed effects model derived in Equation 1.5, heterogeneity in household
carbon emissions can be decomposed as below (lumping τt with Xit for brevity):

V ar(yij) = V ar(ψj) + 2 · Cov(αi, ψj) + V ar(αi)

+ V ar(Xitβ) + 2 · Cov(αi, Xitβ) + 2 · Cov(ψi, Xitβ) + V ar(εit)

The focus of my analysis is on the first three terms: the variance component of place
effects, the variance component of unobserved person effects, and their covariance, which
captures the spatial heterogeneity that results from systematic sorting on unobserved pref-
erences. Abusing notation, I re-define yit as the residualized outcome, after having regressed
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household carbon emissions on time effects and observed household characteristics. For the
remainder of this section, I discuss the variance decomposition for this residualized outcome.

V ar(yit) = V ar(ψj) + 2 · Cov(αi, ψj) + V ar(αi) + V ar(εit) (1.6)

I follow Song et al. (2019) and further decompose unobserved heterogeneity into a
between-place component V arj(ȳj), which captures the variation in mean household carbon
emissions across places, and a within-place component V ari(yit − ȳj|i ∈ j), which captures
the heterogeneity in carbon emissions of households living in the same place:

V ar(yit) = V arj(ȳj) + V ari(yit − ȳj|i ∈ j)

= V ar(ψj) + 2 · Cov(ᾱj, ψj) + V ar(ᾱj)︸ ︷︷ ︸
Between

+V ar(αi − ᾱj) + V ar(εij)︸ ︷︷ ︸
Within

(1.7)

Equation 1.7 highlights that heterogeneity between places reflects variation in place ef-
fects, sorting of certain types of households to certain types of places (the covariance term),
and what Song et al. (2019) refer to as segregation of households, i.e. the extent to which
households of different types segregate across places, whether or not this pattern reflects
systematic sorting on place types.14 In addition to the between-place heterogeneity, overall
heterogeneity reflects heterogeneity in household carbon emissions within places, as well as
heterogeneity that cannot be explained by the two-way fixed effects model.

1.4 Empirical Strategy

My empirical strategy uses moves across places to estimate place effects and their contribu-
tion to spatial heterogeneity in carbon emissions. The intuition behind the mover design is
the following: Suppose high-emissions places are high emissions because of a causal place
effect, for example because there are no alternatives to commuting other than by car, or
because zoning regulations constrain the types of homes households can live in. Then when
a household moves from an on average high emissions place to an on average low emissions
place, their carbon emissions should decrease because of lower-emissions alternatives now
available to them. Conversely, if spatial heterogeneity is driven by strong preferences, then,
households that currently live in detached single family homes and commute by car would
continue to do so even given alternate options, and moving from on average high to low
emissions places should have little effect on household carbon emissions.

I decompose carbon emissions heterogeneity using two versions of the mover design. The
first is an event study that characterizes movers’ changes in emissions as a share of origin-
destination differences in mean carbon emissions. This approach gives a decomposition of
heterogeneity between places, although it is not a decomposition of variance terms (and place
shares are not constrained to fall between zero and one). It is also unbiased only if there is

14ᾱj ≡ E[αi|i ∈ j]
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no systematic sorting of household types to place types. While this assumption is somewhat
restrictive, the event study approach is much more efficient than estimating the full two-way
fixed effects model. It yields causal estimates under these stronger assumptions on sorting,
but is useful for prediction and as descriptive evidence under weaker assumptions. The second
approach estimates a non-parametric distribution of household and place effects using the
two-way fixed effect model derived in Section 1.3. This approach gives a decomposition of
overall heterogeneity, and yields unbiased estimates under weaker assumptions on selection.
In the remainder of this section I discuss the mover design identifying assumptions and then
each of these variance decompositions in turn.

Identifying Assumptions

Estimates from both versions of the mover design are unbiased under three assumptions: (1)
additive separability of place effects, or constant effects (2) non-persistence of outcomes, and
(3) exogenous mobility, or conditional orthogonality.15

Assumption 1: Additive Separability of place effects, or constant effects.

A core modeling assumption of the two-way fixed effect design is that the outcome – log
carbon emissions – is additively separable in person and place effects.

This specification implies that place effects increase and decrease CO2 proportionally by
the same amount for everyone. This is realistic for several potential mechanisms through
which place effects could arise. For example, it is natural to model climate as scaling resi-
dential heating or cooling needs up or down by the same factor for everyone. To take a few
examples centered on urban form: if place effects are driven by density, it may be reasonable
to expect places with higher density to decrease the size of homes (and therefore residen-
tial energy requirements) or the length of commutes (and therefore transportation energy
requirements) by the same factor for low and high baseline users. Similarly, an increase
in transportation alternatives to cars might decrease the share of trips taken by car for all
households proportionally.

Nevertheless, the two-way fixed effects model imposes a substantial restriction: it does
not allow for heterogeneous treatment effects or match effects. I already showed in Section
1.3 that the model is mis-specified, as there is an interaction between individual fuel shares
and place-specific emissions factors – a person who prefers electricity to natural gas for
cooling and heating will experience a larger decrease in emissions when moving to a place
with a clean electricity grid than a person who prefers natural gas to electricity, all else
equal. In addition to this, heterogeneous place effects could arise if, for example, place
effects are due to a public transit option that only low-income households use but doesn’t
change high-income household behavior, or if all households use the public transit option
but low-income households get rid of their car and eliminate all car trips, while high-income

15These are discussed in much more depth in Hull (2018)
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households eliminate only a share. Alternatively, heterogeneous place effects might arise if
there is not a lot of variation across places in e.g. number of car trips taken or home sizes
for low baseline users, but high users respond strongly to places with particularly good or
bad amenities.

Given this, the two-way fixed effects model should be treated as an approximation, and
the question becomes whether there is selection of certain types of households to certain
types of places. If there is an interaction term in the error, as long as there is no selection on
this interaction, the mover design will yield unbiased estimates of the average place effects.
To rule out selection on heterogeneous effects, I follow Card, Heining, and Kline (2013)
and test whether moving from a low emissions place to a high emissions place and moving
from high emissions place to a low emissions place are associated with equal and opposite
changes in household carbon emissions. Unlike in their setting, in which higher wages are
unambiguously good, it is not ex-ante obvious whether we would expect selection to be
assortative or disassortative. Nevertheless, testing for symmetry of moves provides evidence
on the existence of either type of selection.

To see this, consider differences in potential outcomes across an origin o and destination
d, allowing now for there to be an interaction η(αi · ψj) between person and place types:

E[CO2it(d)]− E[CO2it(o)] = (ψd − ψo) + η(αi · ψd)− η(αi · ψo)

Because of the multiplicative nature of the interaction term, for a high-type household h and
a low type household l moving between the same origin and destination:

|η(αh · ψd)− η(αh · ψo)| > |η(αl · ψd)− η(αl · ψo)|

Thus, regardless of whether the interactive term is positive or negative, and regardless of
whether sorting is assortative or disassortative, this type of interaction, paired with selection,
would lead to asymmetries between changes in household carbon emissions from moves to
higher on-average places vs. lower on-average places.

I group places into four quartiles based on observational averages of carbon emissions,
and I estimate household carbon emissions for each origin-destination quartile pair, adjusting
for annual trends and controlling for demographic and household characteristics. Results are
shown in Figure 1.3. For parismony, the figure shows only moves from the lowest quartile
emissions places to all 4 quartiles and vice versa, as well as moves within 1st quartile places
and moves within fourth quartile places as bounds in gray. Moves across quartiles lead
to equal and opposite changes in household carbon emissions, suggesting that the log-linear
model of place effects is a good approximation. The figures also provide evidence of selection,
with households that move from the lowest quartile to a different place in the lowest quartile
having lower emissions on average than households that move from the lowest quartile to
higher quartiles (and vice versa).
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Figure 1.3: Changes in household CO2 when moving across quartiles of Mean CO2

(a) CBSA (b) Tract

Note: This figure shows average household carbon emissions for movers across places classified into
quartiles based on their mean carbon emissions in the full sample. Only the subset of moves to and from
the lowest emissions places (quartile 1), as well as moves within the highest emissions places (quartile 4)
are shown. Estimates are conditional on year fixed effects and the standard set of household characteristics
used throughout this analysis.

Assumption 2: Non-persistent Outcomes.

As highlighted above, relative place effects are identified from pairwise comparisons of
household carbon emissions between their origin and destination,

E[CO2it(d)|αi, Xit, τt]− E[CO2it(o)|αi, Xit, τt] = ψd − ψo

This expression holds for any two households moving between o and d, regardless of the
history of places {j} they lived in prior. Note, however, that this doesn’t rule out that
the place somebody was born may have a persistent effect on their preferences and carbon
emissions. Because I include household effects in the model, and only include individuals
over the age of 18 in the sample, any persistent effect of place of birth and upbringing on
carbon emissions will be captured by the household fixed effect.
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Assumption 3: Exogenous Mobility, or conditional orthogonality.

Finally, estimates of place effects from the mover design are unbiased only if moves
are strictly exogenous; in other words if shocks to unobserved determinants of CO2 are
conditionally uncorrelated with destination choices.

E[ϵit|αi, ψj(i,t), Xit, τt] = 0 (1.8)

Note that the two-way fixed effects model allows for unrestricted sorting of households
on fixed or time-varying observable characteristics and on fixed unobservable characteristics.
For instance, entering middle age and having children is associated with an increase in energy
consumption generally (Appendix Figure A.1), and also significantly increases the probability
of moving to a suburb (Appendix Table A.2); however this endogeneity does not bias my
estimates, because I observe age, household size, and number of children. Similarly, estimates
of place effects are robust to household changes in energy demand and simultaneous moves
to a new neighborhood that might arise from an increase (or decrease) in income, because I
observe household income. Finally, if people have heterogeneous, but fixed, preferences for
neighborhood amenities – e.g. if people have a particular distaste for public transit, a strong
preference for large homes, or a particular love for walking or biking – and their choice of
what neighborhood to live in reflects those preferences, estimates of place effects are unbiased
because these unobserved but fixed determinants of CO2 are captured by individual fixed
effects. The ability to account for these time invariant unobserved preferences is a crucial
benefit of the mover estimation strategy.

Thus, the main threat to identification is the possibility that moves correspond to changes
in unobserved preferences – either single idiosyncratic shocks or evolving. A standard ap-
proach for ruling out this source of endogeneity is to test for parallel trends between movers
and stayers prior to the move. A limitation of my data is that I observe the majority of my
sample only twice, which makes it impossible to test for parallel trends. In Section 1.5, I
show that the effect of moving appears to be stable across duration between observations,
meaning estimates from households observed less than 5 years apart are similar to estimates
from households observed more than 15 years apart. If moves were endogenous to prefer-
ences evolving, or “drifting” over time, you would expect that my heterogeneous parameter
estimates would evolve in a parallel way. While somewhat comforting, this does not rule out
the possibility of moves corresponding to a single idiosyncratic shock to preferences. To rule
this out, I use data from the Panel Study of Income Dynamics (PSID), over the same sample
period, and assess whether movers in the PSID exhibit any changes to energy expenditures
prior to their move. While I do not know where households move from or to, I find that
energy expenditures are flat leading up to a move and increase afterward, consistent with
life-cycle trends presented in Table 1.2 of people moving to places with larger homes and
fewer non-car transportation amenities, and with the secular trend over my sample frame of
people moving to places with higher cooling needs. This result is shown Appendix Figure
A.4.



CHAPTER 1. THE ROLE OF PEOPLE VS. PLACES IN INDIVIDUAL CARBON
EMISSIONS 24

Event Study

The first decomposition I estimate is based on an event study, as in e.g. Finkelstein,
Gentzkow, and Williams (2016). Consider a household i that moves from origin o to desti-
nation d. Household i’s expected change in carbon emissions is given by:

E[lnCO2it(d)− lnCO2it(o)|αi, Xit, τt] = ψd − ψo

I re-express the change in place effects in terms of the share of differences between observa-
tional means, ȳd − ȳo, attributable to differences between place effects:

ψd − ψo =
ψd − ψo
ȳd − ȳo

· (ȳd − ȳo)

≡ θo,d · (ȳd − ȳo)

Plugging this expression into the two-way fixed effect model yields an event study, which I
use to estimate the share of differences between places attributable to place effects, θ:

lnCO2it = αi + ψj(i,t) + τt +Xitβ + εit

= αi + ψo + 1[moved] · (ψd − ψo) + τt +Xitβ + εit

= α̃i + 1[moved] · θ · (ȳd − ȳo) + τt +Xitβ + εit (1.9)

Relative to the unrestricted two-way fixed effects model, the event study approach vastly
reduces the dimensionality of the estimation problem, as now the place share of heterogeneity
is characterized by a single parameter θ as opposed to the full distribution of J place effects.
However, this efficiency comes at the cost of an additional assumption, that heterogeneity in
θ cannot be correlated with other parameters in the model. In other words, because place
types are inferred from observational means, the event study limits selection of households
to places so that there is no systematic sorting of e.g. high type households to high type
places. In Equation 1.7, this amounts to requiring the covariance term to be equal to zero.16

Variance Decomposition

The second decomposition I estimate is the one described in Equation 1.6 (and shown again
below), which is based on estimation of the full two-way fixed effects model, allowing for
unrestricted correlations between place effects and household characteristics.

V ar(yit) = V ar(ψj) + 2 · Cov(αi, ψj) + V ar(αi) + V ar(εit)

In contrast to the event study decomposition, the two-way fixed effects decomposition
allows unrestricted sorting of households across places, and the variance share attributable

16The household share term, which captures segregation of household types that is uncorrelated with

unobserved place-based heterogeneity, is given by Ed[αi+Xitβ|τ ]−Eo[αi+Xitβ|τ ]
ȳd−ȳo

.
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to household heterogeneity reflects not only the between component (i.e. how households
differ across places on average) but also the within component (i.e. how much variation in
carbon emissions there is across observably similar households within the same place).

A well-documented challenge to estimating variance components in two-way fixed effect
models is limited mobility bias (Andrews et al. 2008): estimates of place effects are noisy
because they are estimated from a small sample of movers to and from each place. This
creates an upward bias in the plug-in variance estimate relative to the true variance of place
effects, even if estimates of place effects themselves are unbiased. To address this, I estimate
variance components using the heteroskedasticity-unbiased leave-out estimator proposed by
Kline, Saggio, and Sølvsten (2020), henceforth KSS. The KSS estimator uses a leave-out
estimate of standard errors to correct estimates of the variance components for sampling
variability.

I implement the leave-out estimator at the household level, leaving out all observations
corresponding to a household match, not just an individual match. In the mover sample,
the KSS estimator is robust to unrestricted heteroskedasticity and serial correlation within
each match. Because it is not possible to leave out matches for stayers without dropping all
their observations, if there is serial correlation in the error term, KSS estimates of the person
variance component in the panel sample are an upper bound on the true value. To reduce
the computational burden of the estimator, I use the Johnson-Lindenstrauss approximation
(JLA) algorithm introduced by KSS to estimate the statistical leverages of each match, i.e.
the amount by which estimates change when leaving out the match. KSS show that using
JLA introduces an approximation error of roughly 10−4 relative to estimating statistical
leverages directly. See Appendix A.3 for some additional detail on the implementation of
the empirical approach, and KSS for a complete discussion of the leave-out estimator and
JLA algorithm.

1.5 Results

This section presents the core results of my paper: estimates of the share of spatial het-
erogeneity attributable to place effects. I begin this section by showing results from the
event study specification, which – even if the stronger assumptions on selection are violated
– serve as additional descriptive evidence and can be used to predict how household carbon
emissions will change for movers under existing patterns of mobility. I then present results
from the unrestricted two-way fixed effect model. I conclude the section with a discussion
on interpreting the two versions of the analysis, as well as several sensitivity analyses.

Event Study

This section presents estimates from the event study derived in Section 1.4

lnCO2it = α̃i + 1[moved] · θ · (ȳd−i
− ȳo−i

) + τt +Xitβ + εit (1.10)
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Table 1.3: Share of Spatial Variation in Mean CO2 Attributable to Place Effects

Panel Movers

(1) (2) (3) (4) (5)

CBSA
ȳd − ȳo 0.90*** 0.90*** 0.90*** 0.90*** 0.90***

(0.007) (0.007) (0.013) (0.008) (0.017)

N 1,715,000 1,715,000 664,000 179,000 44,000
R2 (adj.) 0.72 0.75 0.77 0.69 0.68

Tract
ȳd − ȳo 0.77*** 0.65*** 0.61*** 0.62*** 0.60***

(0.003) (0.003) (0.006) (0.004) (0.008)

N 1,656,000 1,656,000 640,000 483,000 127,000
R2 (adj.) 0.73 0.75 0.77 0.72 0.72

Controls X X X X
No big life events X X

Note: This table reports event study estimates of place shares of spatial heterogeneity in household CO2.
Columns (1) and (6) report estimates from the panel sample with no controls apart from year fixed effects.
Columns (2) and (7) add controls for the standard set of household characteristics. Columns (3) and (8)
restrict the estimation sample to movers only, to allow movers to differ systematically from stayers.
Columns (4)-(5) and (9)-(10) use the subset of the panel and mover samples that did not have a change to
the number of kids in their household or a larger than 50% increase or decrease to income. All estimates
are weighted using Census sample weights.

ȳj−i
are sample means calculated from the full sample, leaving out the household observa-

tion.17

Table 1.3 presents estimates of the place share, θ̂, from the event study. Column (1)
shows estimates with no controls other than year fixed effects. Adding controls (column (2))
does not change the CBSA estimate, but decreases the share of heterogeneity attributable

17To the extent that there is sampling variability in the distribution of observational means, my estimate of
the relationship between origin-destination mean changes and individual changes in logCO2 may be biased.
In practice, using a linear empirical Bayes estimator to adjust observational means for sampling variability
as in, e.g. Abaluck et al. (2021) or Finkelstein, Gentzkow, and Williams (2020) does not materially change
the results.
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by tract effects by 12 percentage points. This is consistent with evidence that household
sorting across neighborhoods plays an important role in neighborhood-level variation in
carbon emissions, while moves across CBSAs are more likely to be driven by other factors
such as new job opportunities or proximity to friends or family.

In column (2), the effect of changes to observable characteristics – e.g. having kids –
on carbon emissions is estimated from both stayers and movers. However, it may be the
case that households who move after having children do so in part because having children
changed their preferences more than having children changed the preferences of households
who ended up staying where they were. If the decision of whether to move or not is driven
(at least in part) by such heterogeneous preference shocks, then any differential effect of
the preference shock to movers would be incorrectly attributed to place effects, biasing
my estimates. To address this, I re-estimate the event study with movers only (column
(4)), which allows movers to differ systematically from stayers. Once again, this does not
change the estimates in the CBSA specification, but further decreases the the share of spatial
heterogeneity attributable to tract effects by 3 percentage points.

Even after accounting for differences between movers and stayers, mover destinations
might still reflect heterogeneous preference shocks. For example, the decision of one house-
hold to move from a city to a suburb after having children could reflect a different shock
to preferences than that of a household that moves from one neighborhood within a city to
another after having children. While I cannot rule this out entirely, I explore the extent to
which such selection patterns might bias my results by re-estimating the event study on a
sample restricted to only households who did not experience a large shock to observable char-
acteristics. Namely, I restrict the sample to only households who never had a change in the
number of kids living in their home, and never had more than a 50% increase or decrease in
household income between observations. If heterogeneity in unobserved time-varying prefer-
ences leads households to choose different types of neighborhoods, then estimating the event
study using different sets of households with observably different preference shocks should
lead to different results. Reassuringly, estimates from this approach (in columns (3) and (5))
are similar to estimates using the mover-only sample.

I explore two additional dimensions of heterogeneity: the magnitude and sign of changes
in mean carbon emissions between movers’ origin and destination, and the duration between
mover observations. Figure 1.4 shows changes in mover households’ carbon emissions by
decile of origin-destination differences in observational means, with all demographic and
household controls. The gray line is 45-degrees, and would correspond to place effects ac-
counting for 100% of variation in mean differences across places. The slope of the solid line
corresponds to the estimate of θ from the full mover samples (column (4) of Table 1.3). I
find that both for moves across CBSAs and moves across neighborhoods, estimates of the
share of heterogeneity attributable to place effects are symmetric and linear across origin-
destination mean changes. The fact that the place share estimate is stable across deciles of
move types is suggestive evidence that my results aren’t being driven by only a subset of
movers or mover destinations. It also provides additional validation for the log-linear model
specification, serving as kind of an extension of the symmetry check presented in Figure 1.3.
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Figure 1.4: Place Share of Spatial Variation in Mean CO2, by Move Type

(a) CBSA (b) Tract

Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions
that can be explained by place effects, by size of origin-destination differences in mean household carbon
emissions for movers. Movers are split into ten deciles, according to the size of the gap in mean carbon
emissions across their origin and destination. All estimates are from models that control for observable
household characteristics and year fixed effects. The solid lines show the regression estimates from the
pooled model,and the dotted gray line denotes 45, i.e. the scenario in which moving to on average higher or
lower emissions places leads to a 1-for-1 increase in own carbon emissions. All estimates are weighted using
Census sample weights.

Figure 1.5 shows tract-level estimates by duration between observations, with all demo-
graphic and household controls. This exercise allows me to evaluate two possible sources
of bias in the model. First, it provides evidence on the extent to which my place effect
estimates may be biased by life-cycle patterns of energy and CO2 demand. If my estimates
are unintentionally capturing changes to preferences over different stages of life (ages) of
household members, I would expect estimates to be larger for households I observe 15 years
apart than those I observe 5 years apart. Second, if households select where to move based
on preferences that drift over time in a way that isn’t captured by age or other life-cycle
effects, my estimates of place effects would capture a combination of true causal effects and
selection, and the longer the gap between observations, the larger I would expect the selec-
tion component to be. This would result in estimates of place effects that are increasing or
decreasing with the duration between moves, depending on the direction of selection.

I show estimates for the full panel sample (light gray), and the restricted panel of only
households with no significant changes to income or household composition (dark blue).
The pooled estimate is contained in the 95% confidence interval of all but two-duration
specific estimates, and coefficients appear to be mostly stable – the estimate from households
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Figure 1.5: Place Share of Spatial Variation in Mean CO2, over Time

Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions
that can be explained by place effects, by duration between mover observations. In other words, each
coefficient is the estimate for place effects generated from the sub-sample of households that I observe X
years apart. Coefficients plotted in light gray are estimated from the model using the full panel of stayers
and movers. Coefficients plotted in the dark blue are estimated from the model using the sub-sample of
stayers and movers with no changes in the number of children and less than 50% change in household
income between observations. All estimates are weighted using Census sample weights.

observed one year apart is higher than the pooled estimate, and there is a slight but not
statistically significant upward trend for estimates from households observed 16 years apart
or longer. Given that these are also the duration bins with the fewest observations, I do not
interpret this as strong evidence of place effect estimates being biased by drifting preferences.
Analogous CBSA estimates are shown in Appendix Figure A.5, and exhibit a similar pattern.

One additional result that comes out of the analysis of the duration-specific event study
is that household carbon emissions appear to change instantaneously. This suggests that
place effects are driven by attributes that directly impact carbon emissions demand, rather
than characteristics such as peer effects or habit formation, which I would expect to lead to
gradual changes in behavior over time.18

18I do not observe how long ago households moved, but the expected value of how long ago someone
moved is increasing in the duration between observations.
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Variance Decomposition

Estimates from the KSS bias-corrected variance decomposition are shown in tab:kss. The
table presents overall variance for the sample, the share of variance attributable to each of
the unobserved heterogeneity components, and the KSS-adjusted coefficient of determination
(R2). Panel A presents estimates from the entire panel of movers and stayers, while Panel
B presents estimates from the mover only sample. Estimates from a variance decomposition
with no bias correction can be found in app:akm.

In the baseline analysis with year fixed effects and the standard vector of household con-
trols, I estimate that CBSA effects account for 16-19% of overall heterogeneity, and tract
effects account for 24-26% of overall heterogeneity. To estimate the share of CO2 heterogene-
ity more likely attributable to just local built environment and public amenities, I re-estimate
variance components, partialing out measures of climate and electric grid intensity, and then
additionally, prices. Specifically, in columns (2) and (6) I control for heating degree days,
cooling degree days, and electricity emissions factors (all in logs), and in columns (3) and
(7) I also add controls for lagged fuel shares interacted with national retail prices.

I find that controlling for climate and electric grid intensity decreases the place share of
spatial heterogeneity by roughly 10 percentage points, to 10-16% of overall heterogeneity.
This decrease is consistent with a well-understood, robust relationship between climate and
energy use (e.g. Goldstein, Gounaridis, and Newell 2020) and the mechanical relationship
between electricity emissions factors and CO2. However, remaining neighborhood attributes
explain a larger share of variation than climate and grid intensity, underscoring the impor-
tance of residual place characteristics such as urban form. Accounting for cross-sectional
fuel price variation does not further change the results.

Finally, it is possible that place effects evolve over time in ways that differ from national
average trends in carbon emissions. For instance, the governments in certain states or cities
may be particularly concerned about climate change and enact regulations or make place-
based investments aimed at reducing emissions for their residents. In addition to transit and
zoning examples I’ve highlighted throughout the paper, such policies could include regulatory
efforts more directly targeting energy sources, such as renewable portfolio standards, state or
regional cap and trade programs, or laws banning gas stoves in new homes. More generally,
changes to place effects could arise from local or regional planning initiatives motivated
by factors completely unrelated to decision-makers’ climate objectives. For instance, the
Phoenix metropolitan area – one of the fastest growing metropolitan areas in the US – has
grown by nearly 1.6 million residents since 2000. This period of growth has been accompanied
by a mix of suburban expansion, urban development, the opening of a new light rail system,
and several high way expansions.19

To account for time variation in place effects that differs from national trends, I also
estimate time-varying place effects ψjt at the CBSA level.20 I follow Lachowska et al. (2020)

19See e.g. The Phoenix Metro Area (2020).
20For parsimony in the census disclosure review process, I am not disclosing time-varying tract effects

as these involve a different leave-out sample, whereas the CBSA leave-out-connected set is the same in the
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Table 1.4: Unobserved Heterogeneity in CO2 – Variance Decomposition

CBSA Tract

(1) (2) (3) (4) (5) (6) (7)

A: Panel Sample
V ar(logCO2ij) 0.29 0.29 0.29 0.29 0.28 0.28 0.28

Share V ar(ψj) 0.188 0.095 0.099 0.205 0.257 0.152 0.154
Share V ar(αi) 0.505 0.502 0.503 0.306 0.377 0.374 0.373
Share 2 · Cov(αi, ψj) -0.001 0.004 0.004 -0.001 -0.006 0.009 0.010

R2 0.69 0.61 0.61 0.51 0.62 0.54 0.55

B: Mover Sample
V ar(logCO2ij) 0.32 0.32 0.32 0.31 0.31 0.31

Share V ar(ψj) 0.163 0.098 0.102 0.239 0.156 0.163
Share V ar(αi) 0.112 0.091 0.0966 0.102 0.103 0.104
Share 2 · Cov(αi, ψj) 0.010 0.013 0.013 0.010 0.016 0.016

R2 0.30 0.22 0.22 0.36 0.29 0.30

Amenities X X X X
Prices X X
TV-FE X

Note: This table reports results from the heteroskedasticity-robust KSS estimation of variance
components. All specifications include demographic and household controls as well as time fixed effects.
Columns (1) and (5) report the baseline variance decompositions at the CBSA and tract levels. Columns
(2) and (5) add controls for local mean heating degree days, cooling degree days, and electricity emissions
factors (all in logs). Columns (3) and (6) additional control for a price index, constructed from lagged fuel
shares interacted with national retail prices. Finally, column (4) computes time-varying CBSA place effects
using 5-year windows (2000-2004, 2005-2009, 2010-2014, and 2015-2019), using stayer observations across
time windows to identify time variation in place effects, while movers, as before, identify cross-sectional
variation.
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and estimate time-varying fixed effects using stayers to identify variation across time within
place. To maintain connectivity in my set of places, and because for the most part places
evolve slowly, I allow these to vary at 5-year intervals. Thus, there’s a different time-varying
place effect for each period 2000-2004, 2005-2009, 2010-2014, and 2015-2019. Results are
shown in column (9) – allowing CBSA effects to evolve slightly increases their variance share
to 21%.

The interpretation of my results is somewhat complicated by the fact that the contribu-
tion of unobserved household characteristics to overall heterogeneity is highly sensitive to
whether the model is estimated on movers and stayers or movers only. In the panel sample,
unobserved household heterogeneity accounts for 51% of overall heterogeneity when measur-
ing place at the CBSA level, and 38% when measuring place at the neighborhood level. This
share is stable to partialing out exogenous amenities and prices, but the CBSA estimate
decreases to 31% when allowing CBSA effects to change over time. Using the mover-only
sample substantially decreases the unobserved household contribution across specifications,
to 11% in the CBSA specification and 10% in the mover specification. Similarly, estimates
of the covariance between unobserved place and household characteristics are also sensitive
to the sample choice. In both panel specifications, the covariance is slightly negative but
effectively zero – the larger of the two correlation coefficients is -0.02. In contrast, in the
mover sample I find a positive (though still small) correlation coefficient of .07 at the CBSA
level and .06 at the tract level.

There are two reasons we might expect estimates from the panel and mover samples to
differ. The first is from fundamental differences across stayers and movers, and the second is
that KSS cannot correct bias induced by serial correlation in the error term among stayers.
To try to shed light on the relative importance of these pieces, it is useful to compare
estimates from the KSS decomposition to estimates from the naive, uncorrected (AKM)
decomposition in app:akm. If results are driven by differences between the panel and mover
sample, such differences should also be evident in the AKM estimates, even though we expect
estimates of both variance components in AKM to be higher than in KSS because of limited
mobility biased. In contrast, if results are driven by serial correlation in stayers’ error term,
then we would expect the relative contributions of the unobserved heterogeneity components
in the AKM estimation to be fairly similar, with differences being introduced only in the
KSS correction. The AKM estimates suggest that the relative place and person shares are
almost identical across the panel and mover samples in the CBSA analysis. In the tract
analysis, the relative size of the household variance component does drop several percentage
points, but not nearly as dramatically as it does in the KSS analysis, suggesting that the
estimated household variance components in the panel sample of KSS are an upper bound
on the true value, with the upward bias driven by serial correlation in the stayer error term.

Serial correlation in the error term could arise as a result of several sources of measurement
error in my outcome variable. While an advantage of using the Census for this analysis is that
it allows me to observe many household characteristics that are unobservable in standard

time-varying case as it was in the baseline.
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administrative datasets on energy use, thereby making it possible to control for changes to
household characteristics that are correlated with both changes to energy demand and move
propensity and destinations and decrease potential bias from unobserved preference shocks,
a disadvantage is that the survey nature of the data means that my outcomes are constructed
from a combination of survey responses and local external data. In particular, I use local
average prices and local average emissions factors to convert reported energy expenditures
and commute times into carbon emissions. Both of these could introduce serial correlation
into my estimates of stayer outcomes. Additional detailed discussion of measurement error
within the residential and transportation sectors, as well as implications for interpreting
results, can be found in app:datares.

How do these results inform the interpretation of the event study decomposition? Here,
there are also two things to note. First, recall that the event study estimates are unbiased
only if heterogeneity in the share parameter is uncorrelated with observed and unobserved
household characteristics. I’ve shown evidence that my event study estimates are stable
several observable dimensions of heterogeneity in the data. I also showed in the KSS de-
composition that the covariance between unobserved components of heterogeneity are very
close to zero – the largest correlation coefficient across the four baseline estimates (CBSA
vs. tract & panel vs. mover) is 0.06. Together, this suggests that bias from this assumption
on selection should be minimal.

Even with no bias from selection, the event study yields estimates of shares of mean
differences between places attributable to place effects, while the KSS estimates yield a
variance decomposition of overall variation, and this can lead to meaningful discrepancies
in magnitudes. To see this, imagine two places, one ψlow and one with ψhigh, and identical
populations across the two places. If there is high variation in carbon emissions across
populations and a small difference between ψlow and ψhigh, the event study would yield a
share coefficient of 1 (since populations are identical across places, all between differences are
driven by place effects), but the KSS decomposition would yield a place variance component
of close to zero (because of a very large within component to the variance). In practice, this
is very close to what happens at the CBSA level – the vast majority (90%) of differences
between CBSAs can be attributable to variation in place effects and not household attributes,
but there is much more variation in household carbon emissions within CBSAs than there is
across, leading to a variance component of 16-19% in the KSS estimation, about half of which
is attributable to climate and electric grid intensity. At the neighborhood level, household
sorting contributes more to variation between places, dropping event study estimates of the
place share to 62%; accounting for variation within places (using the panel sample with
KSS) further decreases the place variance share to 26% of overall heterogeneity (or 42% of
heterogeneity explained by the model, calculated from re-scaling by the R2).

Specification Tests and Robustness

As an additional specification test, in Appendix A.6, I show binned scatter plots similar to
the one presented for event study results (Figure 1.4), but now with deciles of changes in
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estimated place effects, rather than observational means, on the x axis. I plot these against
two sets of changes in household mean outcomes: changes for the full mover sample, and
changes in the sample restricted to only households with no big life changes. In a correctly
specified model, changes in place effects should lead 1-to-1 to changes in household carbon
emissions, though attenuation bias from noisily estimated place effects should decrease the
slope. Crucially, I find no difference across the two samples, suggesting (as in the event
study analysis) that selection on heterogeneous preference shocks isn’t a first order threat to
identification in my analysis.

To evaluate the sensitivity of my results to my outcome definitions, Appendix A.4 shows
estimates from a KSS decomposition using residential energy only, and using total energy but
imputing carbon emissions from transportation energy using the National Highway Trans-
portation Survey (NHTS). One version of the NHTS imputation uses a LASSO regression
to predict heterogeneous fuel economy from household, geographic, and commute charac-
teristics that are common to both the Census and NHTS surveys, and then uses predicted
relationships to estimate carbon emissions from commuting accounting for variation in fuel
economy. The second version additionally predicts total miles travelled, and uses both het-
erogeneous fuel economy and heterogeneous relationships between commuting and total miles
travelled to estimate carbon emissions from car travel generally. I find that restricting the
analysis to residential energy increases the overall variance by 6 points (∼ 25%), and in-
creases the share of heterogeneity attributable to place effects by 6 percentage points at the
CBSA level, and by one percentage point at the tract level. Estimated place shares do not
appear to be highly sensitive to re-defining the transportation outcome variable. Additional
discussion of these results can be found accompanying Appendix Table A.4.

1.6 The Characteristics of Low and High Emissions

Places

With estimates of place effects in hand, I move on to characterizing the local amenities that
are associated with high and low emissions places. As highlighted in the conceptual model,
place effects reflect a mix of differences in demand for energy, energy prices, energy demand
elasticities, fuel mixes, and emissions factors.

The urban and planning literature has identified many place-based characteristics that
could contribute to differences in energy demand and energy demand elasticities. For exam-
ple, on the residential energy side, larger homes tend to use more energy, as do single-family
homes; there’s a strong relationship between carbon emissions and density, though it is po-
tentially not monotonic because of the effect of density on micro-climates (e.g. through heat
island effects); and parks, plants, and green surface coverage are all negatively correlated
with energy use (see e.g. Ko 2013, for a review). In transportation, car use is lower in places
with more alternative transportation options, fewer parking minimums, and more directly
connected roads (e.g. Transportation Research Board 2009; Barrington-Leigh and Millard-
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Figure 1.6: Correlates of Unobserved Heterogeneity

(a) Tract Effects (b) Person Effects

Note: This figure presents estimates from the multivariate ordinary least squares regressions of place effects
onto a set of local amenities (urban form, capital stock, climate, electric grid intensity, and density), place
effects onto a set of local average demographics, person effects onto a set of local amenities, and local
effects onto a set of local average demographics. All amenity variables are measured in logs (+1 for
variables where zero is possible), except rural and suburban indicators, and – for the person effect
regression only – the homeowner and detached single family home indicators.

Ball 2017). It is worth noting that residential and transportation energy use are related.
For instance, denser neighborhoods tend to reduce the distance someone needs to travel
to get between destinations, and conversely, public transit and pedestrian infrastructure are
more convenient transportation options in dense neighborhoods than they are in areas where
destinations are spread out.

In Figure 1.6, I show the result from projecting place and person effects estimated in
the KSS mover sample onto a set of some of energy-relevant amenities, as well as onto a set
of demographic characteristics. I categorize place amenities into three groups. Amenities
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in the urban form category are ones that households effectively take as given. I include in
these indicators for whether a tract is classified as urban, suburban or rural by the Census,
geodesic distances between tract centroids and the centroid of the closest city and the largest
city, walk scores, bike scores, transit scores, and the average number of bus routes and rail
routes within half a mile of the census block centroids contained within the tract. Amenities
in the capital stock category are ones that reflect a combination of the options available
in a neighborhood and household preferences – these include the share of homeowners, the
share of detached single family homes, the average number of rooms per house, and average
number of cars per household. Climate is (for the purposes of this paper) exogenous, and
captured using annual heating degree days and cooling degree days in NOAA subdivisions.
Bars show coefficient estimates from a multivariate regression of fixed effects onto all three
groups of amenities, as well as electric grid intensity and density which I don’t report in
the figure because I estimate effects larger (in absolute value) than one, so their inclusion
makes the other values more difficult to see.21 For the tract effect estimation, capital stock
variables reflect tract-level means; for the household effect they reflect the household’s own
choice. Finally, all amenities except for suburban and rural indicators (and homeowner
and detached home indicators for the household regression only) are measured in logs, so
correlates should be interpreted as the percent increase or decrease in place effects associated
with a one percent increase or decrease in the amenity.

The results show that tracts with a large share of detached single family homes, bigger
homes, and a larger share of homeowners tend to have significantly higher carbon emissions
place effects. Un-intuitively, tracts with more cars per household have lower place effects.
Tracts with more bus and rail routes within a half mile, and those with better walk and bike
scores have lower place effects, as do tracts that are closer to the closest city within the CBSA.
Tracts closest to the largest city are higher emissions, and conditional on all these regressors,
suburbs are no longer higher emissions than urban areas. One possible explanation for these
last two correlations is longer commutes due to congestion. The regression of person effects
onto place amenities shows much weaker (or zero) correlations for many of the amenities,
consistent with minimal sorting on unobserved characteristics that I estimate in KSS, but
intuitively high type households are more likely to live in larger, detached single family
homes, and have more cars. They also live in places near more rail routes, potentially
reflecting some combination of suburban commuter rail networks, and the high cost of living
in central cities.

In the regression of unobserved characteristics on demographics, I find that non-white
and Hispanic households are more likely to live in low carbon emissions places, as are col-
lege educated and above median households. Households with children live in higher carbon
emissions places, as do older households (though the effect here is small). On the house-
hold side, college educated households tend to have lower unobserved preferences for carbon

21I estimate a coefficient of 4 on log electric grid intensity. This suggests that places that have clean
energy grids are also making other investments or decisions that make them lower carbon emissions. I
estimate a coefficient of close to -10 on density, suggesting a very strong association between density and
place effects.
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emissions, as do younger households (but again with a small effect), and above median in-
come households and households with kids have higher unobserved preferences. Additional
results on the correlates between observable person and observable place characteristics are
presented in Appendix A.6.

1.7 Implications for Aggregate Carbon Emissions

I use estimates of place effects to consider some back of the envelope calculations of how
aggregate carbon emissions would change under counterfactual scenarios where the distri-
bution of place effects differs from its current realization. Because place effects are noisily
estimated, I use linear Empirical Bayes, i.e. a shrinkage estimator, to forecast place effects
that reflect the best (minimum mean squared error) linear prediction of the true values,
given my estimates from the KSS analysis. Many papers in the public and labor literatures
have used this approach to predict e.g. teacher value add or neighborhood effects in other
contexts (Chetty, Friedman, and Rockoff 2014a, 2014b; Angrist et al. 2017; Chetty and Hen-
dren 2018; Finkelstein, Gentzkow, and Williams 2020; Abaluck et al. 2021). Although the
linear approximation only corresponds to the true Empirical Bayes posterior when errors are
normal and homoskedastic, Kline, Rose, and Walters (2021) show that even when errors are
heteroskedastic, the linear shrinkage estimator doesn’t do much worse than non-parametric
Empirical Bayes. The shrinkage estimates are given by:

ψ̂EBj = λjψ̂j + (1− λj)
1

J

∑
j

ψ̂j (1.11)

where the weights λj =
σ̂2
j

s2j+σ̂
2
j
capture the signal-to-noise ratio of each estimate and down-

weight noisy estimates to the grand mean.
I use this approach to estimate counterfactual carbon emissions under three different

scenarios: What if the top 10 most populous CBSAs in the US all had the place effects of
the New York City CBSA? What if the principal cities of the top 10 most populous CBSas
all had the place effects of Manhattan? And what if cities and towns all had the place effects
of the principal cities in their (nearest) CBSA? The goal of this exercise is to get a sense for
how carbon emissions would evolve under interventions to the built environment of places,
without attributing a causal effect to any single amenity, since my correlational analysis
doesn’t parse those causal effects out.

A naive comparison of household carbon emissions in the New York metropolitan area
and the nine other largest metropolitan areas in the US (see Appendix A.8 for the full list)
suggests that household emissions from residential energy and commuting are about 8%
lower in the New York metropolitan (17.9 tons, annually, per household as compared to
19.2). However, I find that assigning the average New York Metropolitan area place effect
to each of these other metropolitan areas actually increases average household emissions
slightly, to 19.3 tons per household, highlighting the high place effects of the suburbs around
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NY. In contrast, if each principal city of the other top nine metropolitan areas had the place
effect of Manhattan, household emissions from residential energy and commuting for current
residents of those cities would decrease by over 50%, from 15.6 tons per household to 7.0.
This is not as large as the naive decrease to 3.9 tons per household – some of Manhattan’s
low emissions can be explained by household sorting – but still the Manhattan place effect
is significantly lower than the effect of the other 9 largest cities in the US, on average.

Manhattan is unique in its density and transit infrastructure within the US, so the last
scenario I consider is intended to capture more closely the spirit of what might happen under
some of the regional zoning and transit-oriented development proposals that are emerging
across the US.22 If each place had the place effect of the principal city in its CBSA, annual
household carbon emissions would go down from residential energy use and commuting
would go down by on average 13%, from 20.6 to 17.9 tons. Again, a naive comparison
(20.6 vs. 15.04) overstates the difference between central city and surrounding areas, but
my estimates suggest that changing places could yield meaningful reductions in household
carbon emissions. For comparison, the Waxman-Markey bill, which failed to pass in 2009
but was, until 2021, the largest federal legislative effort to decrease carbon emissions in the
US, was projected to decrease economy-wide emissions 17% in 2020 relative to 2005 (Center
for Climate and Energy Solutions 2009).

This exercise lends insight into how development that shifts population shares across
place types by “expanding” places with lower place effects (either by making their neighbors
look more like them, or by allowing more people to live in the place without changing its
fundamentals), could affect emissions in the future. My estimates yield only a first-order,
partial equilibrium approximation to the effect of such interventions, as in practice there
would be some re-sorting of populations, changing the distribution of household types living
in each place and therefore changing aggregate carbon emissions.

1.8 Discussion

Overall, my results suggest that roughly 15-25% of heterogeneity in household carbon emis-
sions from residential and transportation energy use across the US can be explained by place
effects, or about 10-20% can be explained by place effects after partialing out variation driven
by climate and electric grid intensity. While this leaves the majority of variation either to
unobserved household characteristics or unexplained factors in my model, I find that over
half of mean differences between places can be explained by place effects, and my estimates

22For example, in 2018, Minneapolis was the first city in the US to ban exclusionary zoning (which
restricts land to be used for single-family homes only) city-wide. In 2021, California passed State Assembly
Bills 9 and 10, which reduce administrative hurdles to “up-zoning” residential land zoned for single family
homes only to allow up to four units, as well as land near transit corridors. There have also been attempts
to create incentives for up-zoning at the federal level. For example, President Biden’s original infrastructure
bill proposal in March 2021 included grants to cities who got rid of exclusionary zoning.
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suggest the potential for meaningful reductions in carbon emissions from “place-based” in-
terventions that make the distribution of place effects across the US more urban.

Whether such place-based interventions would be welfare maximizing would depend on
the costs of implementing them relative to the cost of business as usual or other climate
mitigating policies (e.g. a carbon tax).23 Infrastructure in the US is notoriously expensive
to build, making it unlikely that big expansions of new rail (e.g. building a NYC style
subway system in Houston) would pass the cost-benefit test in current circumstances. How-
ever, correlates of place effects include many amenities that could re-purpose existing built
environment without expensive new additional investments – bus lines, bike lanes, pedes-
trian infrastructure, and dense housing (which, through compactness could decrease related
infrastructure and service costs) are all more likely potential contenders. Incorporating cost
estimates for a marginal value of public funds analysis (Hendren and Sprung-Keyser 2020)
is an important avenue for future research.

The welfare benefits of such interventions would also of course depend on the causal
relationships between local amenities and place effects, and household preferences for local
amenities. The correlations I presented between amenities and place effects don’t identify
causal relationships, but they highlight a strong association between many local public goods
and carbon emissions, suggesting an important potential role played by local public goods.
While Tiebout (1956) posits that residential sorting allows for efficient provision of local
public goods, his framework only applies to amenities without scale economies. Moreover,
there is reason to believe that residential sorting is not efficient due to frictions or exclusionary
policies (e.g. Rothstein 2017; Hausman and Stolper 2020; Christensen and Timmins 2021;
Avenancio-León and Howard 2020). Estimating causal relationships between local public
amenities and household carbon emissions and quantifying whether emissions-relevant local
public amenities are at an efficient level are additional important directions for future work.

Finally, there are several limitations of my empirical analysis that should be taken into
consideration while interpreting my results. The first is that due to the survey nature of my
data, carbon emissions are noisily measured. This leads to lower explanatory power of the
model than is standard in papers in the labor literature using these methods to estimate
firm wage premia. The relatively low explanatory power of the model could also reflect
model mis-specification, but with only two observations per household for the majority of
estimates, the number of specification tests I can do is limited. Second, there is relatively
little variation in urban form across the US – 95% of commuters in my sample commute by
car, and 75% of residential land in the US is zoned for single family homes only (Badger and
Bui 2019). Moreover, place effects are identified from movers, who differ from the general
US population in meaningful ways. The external validity of my results is contingent on
estimates being stable to widening the distributions of place and person types that they are
estimated on.

23The welfare impacts would also depend on other externalities or agglomeration benefits of such inter-
ventions, which have been studied extensively in the environmental and urban economics literatures. For
example, the types of interventions considered in my paper could also impact local air pollution, congestion,
traffic fatalities, and labor market productivity.
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Chapter 2

The Race Gap in Residential Energy
Expenditures

2.1 Introduction

This paper provides estimates of the Black-white residential energy expenditure gap in the
US. I use publicly available data from the American Community Survey (ACS) from 2010
to 2017 to show that annual residential energy expenditures – defined as the sum of expen-
ditures on electricity, natural gas, and other home heating fuels – are both statistically and
economically significantly higher for Black households than for white households.1

Unconditional differences in residential energy expenditures could be driven by many
factors including regional variation in climates, prices, and public support for energy efficient
investments; household variation in income, wealth, credit access, and home ownership; and
local variation in housing stock. After controlling for year, income, household size, and city
of residence, Black renters pay $273 more a year than white renters (16% of the sample
average of $1,705), and Black homeowners pay $408 more a year than white homeowners
(15% of the sample average of $2,649). Energy expenditures for both groups are decreasing
between 2010-2017, and the conditional gap in annual expenditures decreases by about $150
for the average household, but continues to be economically significant at about $200 for
renters and $310 for homeowners in 2017. The gap is fairly stable in levels across most
income deciles, except it closes at the very top of the income distribution. Therefore, as a
percent of income (and baseline residential energy expenditures), the gap is largest for low
income households.

Given the long history of discriminatory housing policy, lending practices, and racial

1Residential energy expenditures are distinct from transportation energy expenditures such as gasoline
purchases. In 2019, residential energy use made up about 20% of energy consumption in the US, and
transportation energy use made up about 30%. These two sectors are the largest sources of emissions from
individual energy consumption, and understanding the energy expenditure gap in both sectors is crucial for
assessing the impacts of possible climate policies. I leave the analysis of transportation energy expenditure
gaps to future research.
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segregation in the United States, differences in housing stock and accumulated wealth are
possible explanations for the remaining residential energy expenditure gap. Controlling for
home type or vintage does not eliminate, or even significantly reduce, the gap. This may
be because neither variable is a complete measure of housing quality. Evidence from the
2015 Residential Energy Consumption Survey (RECS) is consistent with this interpretation:
Conditional on income, Black households are more likely to report that their home is drafty.
They also report fewer Energy Star qualified appliances and home features, and are less likely
to have received a rebate or tax credit for having upgraded an appliance. These differences
exist despite the fact that Black households in the RECS sample are just as (if not slightly
more) likely to have gotten an energy audit.

This paper contributes to a growing body of work on energy burden. For example,
Reames (2016), Bednar, Reames, and Keoleian (2017) and Kontokosta, Reina, and Bon-
czak (2020) find that energy burden is higher in high minority share neighborhoods than
low minority share neighborhoods in a few cities across the US, and Hernandez, Aratani,
and Jiang (2014) study differences in energy insecurity by family characteristics, including
race, in the 2011 ACS. Carley and Konisky (2020) review implications of these differences
for a clean energy transition. The energy economics literature has to date focused on en-
ergy expenditure differences along other dimensions, especially income (e.g. Kolstad and
Grainger 2010), and increasingly, geography (e.g. Cronin, Fullerton, and Sexton 2019). In
terms of racial differences in burden from the current energy system, the focus has mostly
been on differential exposure to resulting pollution. Research shows that Black people are
much more likely to live near pollution point sources and be exposed to neighborhoods with
higher particulate matter (e.g. Peach 1983, Tessum et al. 2019). (Rothstein 2017) argues
that disproportionate exposure to pollution is due to discriminatory siting of sources, and
Christensen, Sarmiento-Barbieri, and Timmins (2020) show evidence from an experiment
that discrimination, which restricts housing choice sets, causes disproportionate sorting of
Black families into neighborhoods near polluting point sources. Hausman and Stolper (2020)
argue that hidden information about pollution, even when constant across all households,
also leads to disproportionate sorting across neighborhoods because pollution is correlated
with other disamenities.

More broadly, this paper builds on insights from a large body of work on the persistent
effects of systemic racism on other outcomes. Black people have less wealth and are less
likely to own homes (e.g. Rothstein 2017), they are more likely to face high cost loans,
even when controlling for credit score and other risk factors (e.g. Bayer, Ferreira, and Ross
2018), and they pay higher property taxes for the same home values (Avenancio-León and
Howard 2020). Aaronson, Hartley, and Mazumder (2019) provide evidence that many of the
above outcomes were meaningfully affected by the Home Owners’ Loan Corporation (HOLC)
redlining maps in the 1930s, which restricted credit access in Black neighborhoods. Beyond
facing discrepancies in home prices, Hardy et al. (2018) show that Black Americans face
higher year-to-year income volatility, and Ganong et al. (2020), show that as a result of wealth
differentials, Black consumption is more sensitive to income shocks. These differences in
wealth, home ownership, income volatility, and credit access all serve as potential barriers to
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living in higher quality, more energy efficient homes or to making necessary energy efficiency
upgrades.

Tying these literatures together, this paper contributes to a broad set of evidence that
Black Americans bear a disproportionate burden of the current energy system, both through
disproportionate pollution exposure, and as I highlight, through disproportionate costs, likely
at least in part as a result of persistent disparities in wealth and housing. In the remainder
of this paper, I outline the data and methodology, present descriptive results, and discuss
conclusions and next steps.

2.2 Data and Methodology

I use the American Community Survey (ACS) Public Use Microdata Sample from 2010 to
2017 (Ruggles et al. 2020). The ACS is a nationally representative survey of about 1% of
the US population every year. I restrict the sample to households that are either entirely
Black or entirely white. I drop households with missing or negative income. I calculate
residential energy expenditures as the sum of self-reported electricity expenditures, natural
gas expenditures, and other home heating fuel expenditures, and I drop households whose
residential energy bills are included in their rent payments or condo fees.2 I deflate all
dollar amounts to 2012 dollars using the consumer price index (CPI) from the Bureau of
Economic Analysis (BEA), and express income in thousands of dollars. ACS household
incomes and energy expenditures are censored at the 99.5th percentile by state-year, and
I additionally censor household size at 10 people. After all restrictions, the pooled sample
consists of 7,906,852 people. All estimates are weighted by the ACS’s household weight.
Black households make up 12.9% of the weighted sample.3

I compute unconditional and conditional annual residential energy expenditure gaps by
regressing household residential energy expenditures on an indicator for household race, year
fixed effects, and an increasing set of household controls:

yit = δ · 1[Blacki] + τt +Xitβ + ϵit

where yit is annual household (i) energy expenditures, τt are year fixed effects, and Xit

includes characteristics such as household income, size, and geographic characteristics. Res-
idential energy expenditures do not actually increase linearly in either household income
or household size, so I have also run these specifications controlling for household income
deciles and household size dummies on the right hand side, as well as in log-log form. In
both versions, level estimates and implied percentage gaps are very similar to those in my
main specification, so I report the linear specifications for simplicity. I estimate specifications
separately for renters and homeowners, as renters may face principal-agent problems that

2This is 6% of white households and 9% of Black households after all other sample restrictions.
3This percentage is slightly increasing over the course of the sample, from 12.7% in 2010 to 13.2% in

2017.
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prevent them from making optimal energy efficiency investments. For estimates that include
Metropolitan Statistical Area (MSA) fixed effects, I use a state fixed effect for observations
where MSA is not identified. My preferred specification includes city fixed effects, which
are the most granular geographic control I can add using the publicly available microdata
sample. Since these are meant to be narrow geographies, I only include observations with
an identified city. This decrease the sample size and changes the sample composition signifi-
cantly: The city sample is 901,580 households (about 13% of the weighted full sample), and
the weighted share of Black households in this sample is 27%. Errors are clustered at the
state level in all specifications.

To understand residential energy expenditure patterns in more depth, I expand on my
preferred specification to look at how annual expenditures have changed over time. I also
compute income deciles for the full sample population each year, and look at how the gap
differs across income deciles, and how that distribution has evolved between 2010 and 2017.

Lastly, I explore possible mechanisms. Continuing to use the ACS sample, I add flex-
ible controls for home type (single-family detached, single-family attached, van or mobile
home, 2-4 plex, 5+ unit apartment building) and home vintage (decade fixed effects) to test
whether either of these variables reduces the gap. I also supplement my analysis with the
2015 Residential Energy Consumption Survey (RECS). RECS is administered by the Energy
Information Administration every 4-6 years to a small, nationally representative set of hous-
ing units. RECS asks a detailed set of questions about energy use and investments through
a combination of surveys and in-person interviews. I restrict the RECS sample to mirror
sample restrictions in the ACS.4 The final sample consists of 4,805 respondents, with Black
respondents making up 12% of the weighted sample. I use RECS to test differences by race,
conditional on income, in receipt of energy assistance and audits, self-assessed home quality,
and availability of Energy Star appliances and other energy-efficient home features. I also
test differences in energy burden, as measured by whether a household reported reducing or
forgoing on basic necessities to pay an energy bill, whether a household reported keeping the
home at an unhealthy temperature in order to pay an energy bill, or whether a household
received a disconnect notice due to inability to pay a bill. All estimates are weighted by
RECS sample weights, and errors are clustered at the census division level.

4In RECS, I only know the race of the respondent, not everyone in the household. I keep only Black or
white respondents. RECS reports incomes in 8 categories (in thousands: < 20, [20,40) [40,60), [60-80), [80-
100), [100-120), [120-140), ≥140) and only reports Census Divisions for geography. I drop households whose
residential energy bills are included in their rent (9% of white respondents and 14% of Black respondents in
the weighted sample). Lastly, many of the questions asked by RECS allow respondents to answer “I don’t
know” or refuse to answer. I treat these answers as missing. I treat “N/A”s as ”No”s, except for when
estimating the share of Energy Star -rated appliances/features, in which case I treat “N/A”s as missing.
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2.3 Results

Evidence on Expenditures

Table 2.1 shows evidence from the ACS that there is a statistically and economically sig-
nificant residential energy expenditure gap across Black and white households in the years
2010-2017.5

Column (1) shows the unconditional mean difference: on average, Black households in
my sample pay about $54 more a year in energy bills than white households do, although
this unconditional difference is not significantly different from 0. The gap becomes statisti-
cally significant and economically meaningful after controlling for income (column 2): Black
households pay about $193 more a year than white households do. This is 8% of the sample
average annual expenditures. The gap persists with controls for household size (column 3),
and is driven by both renters and homeowners (columns 4 and 5). The gap for homeown-
ers is bigger in levels ($381 relative to $258), but as a percent of sample averages the gaps
are comparable (14% for renters and 15% for homeowners). Accounting for sorting across
climates by controlling for MSA (columns 6 and 7) decreases the gap somewhat for both
renters and homeowners but it is still economically and statistically significant at 10% and
11% of average expenditures, respectively.6. Columns 8 and 9 add city fixed effects. This is
my preferred specification because it most precisely controls for location-specific characteris-
tics. Within the same cities, Black renters spend $273 more a year than white renters (16%
relative to average), and Black homeowners spend $408 a year more than white homeowners
(15% relative to average).7 In Table 2.2, I report estimates for all specifications using just
the city sample; they are significantly bigger than those in the full sample. This suggests
that the large gap when I include city fixed effects is driven by the restriction of the sample
to people living in cities, likely as a result of the fact that wealthy suburbs that use a lot of
energy tend to be white.

Figure 2.1 shows that average energy expenditures conditional on income, household size,
and city have decreased between 2010 and 2017 for both Black and white households. The
conditional energy expenditure gap has also decreased in this period, by about $150 for the
average household, although I cannot reject a constant gap over time.8 In 2017 the gap

5I have also analyzed the Black-white energy expenditure gap with the Consumer Expenditure Survey
(CEX) and Residential Energy Consumption Survey (RECS). The patterns and orders of magnitude are
broadly consistent. Both those surveys do not have as much geographic detail and so I exclude those results
and focus on the ACS for brevity.

6Controlling more flexibly for weather by interacting MSA FEs with year FEs does not change these
estimates

7Individual regressions of electricity costs, natural gas costs, and other home heating fuel costs suggest
that the gap is driven by electricity and natural gas. If anything, Black households spend less on home
heating fuel than white households do, but this difference goes to 0 within cities.

8A useful avenue for future work is to explore what has driven this decrease. Of particular interest could
be the role of the American Recovery and Reinvestment Act of 2009, which directed significant funds into
energy efficiency investments.
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remains significantly different from zero, at close to $200 a year for renters and $310 a year
for homeowners.

Figure 2.2 shows that the gap is fairly stable across income deciles, for both renters and
homeowners, except at the very top of the income distribution where it closes. Given that
energy expenditures are a larger share of lower-income households’ consumption, this means
energy burden is especially heightened for low income Black households.

Possible Mechanisms

I first test whether the residential energy expenditure gap can be explained by differences
in home type. Columns (1) and (2) of Table ?? show results. As expected, single-family
detached homes have the highest energy expenditures, and apartments in large buildings
have the lowest expenditures. However, controlling for home type does not decrease the gap
for renters, and it only decreases the gap for home-owners by about $50 relative to the main
specification. I next test whether the residential energy expenditure gap can be explained
by home vintage by controlling for home vintage with decade fixed effects. Columns (3)
and (4) of Table ?? show results. Despite the fact that newer homes are broadly speaking
associated with lower residential energy expenditures, controlling for home vintage does not
change the residential energy expenditure gap. Controlling for home type and vintage may
not have an effect on the residential energy expenditure gap because both variables are
imperfect proxies for energy efficiency, since they do not capture renovations or investments
into energy efficient appliances.

To explore these mechanisms, I turn to the 2015 RECS. I compare survey responses about
home quality, appliance quality, and energy burden across race, conditioning on income
categories. A few key patterns emerge in Table ??. First, Black respondents are about 13
percentage points more likely to report that their home was at least somewhat drafty. Out of
a set of several appliances and home features9, Black respondents have a 7 percentage point
lower share that were Energy Star rated, and they are 3 percentage points less likely to
report having received a rebate or tax credit for upgrading an appliance. If anything, Black
respondents are slightly more likely to have gotten an energy audit, suggesting that this isn’t
a matter of differential information, though this result is not statistically different from 0.
Moreover, Black respondents were about 50% more likely to report having reduced or forgone
basic necessities at least one month in the last year in order to afford their energy bill, were
about 40% more likely to report having kept the home at an unhealthy temperature at least
one month in the last year in order to afford their energy bill, and were about twice as likely
to have received a disconnect notice due to inability to pay a bill at least one month in the
last year. These estimates suggest that energy costs are highly salient, and are evidence of
a striking disparity in energy burden.

9RECS asks about 8 appliances/features: clothes washer, clothes dryer, dishwasher, fridge, freezer, water
heater, light bulbs, and windows.
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Figure 2.1: Energy Expenditures Over Time

Note: The top panel of this figure shows the evolution over time of mean annual energy expenditures in the
ACS conditional on income, household size, and city FE. The bottom panel of this figure shows the
evolution over time of the conditional gap between Black and white expenditures. All values are reported
in 2012 dollars. Standard errors are clustered on state. Bars are 95% confidence intervals.
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Figure 2.2: Energy Expenditures by Income

Note: This figure shows mean annual energy expenditures in the ACS, conditional on household size and
city, by income decile for Black and white households. The top panel shows expenditures for renters, in
2010 on the left and 2017 on the right, and the panel row shows expenditures for home owners. All values
are reported in 2012 values. Standard errors are clustered on state. Bars are 95% confidence intervals.
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Table 2.3: Gap in Annual Residential Energy Costs, Controlling for Home Vintage

(1) (2) (3) (4)

Black 275.2*** 353.0*** 276.9*** 409.7***
(50.44) (36.61) (55.21) (44.88)

HH income 1.127*** 2.221*** 1.490*** 2.217***
(0.155) (0.279) (0.315) (0.439)

HH size 186.1*** 208.8*** 265.4*** 248.6***
(12.98) (12.36) (16.91) (20.35)

Single-Family Attached Home -373.1*** -462.3***
(55.10) (32.35)

Van or Mobile Home -385.0*** -375.5***
(59.32) (70.10)

2 - 4 plex -638.2*** -186.3*
(28.77) (86.47)

5+ Unit Apt. Building -1151.1*** -1451.7***
(51.31) (204.4)

Vintage: 1970 - 1979 -204.8*** -152.1***
(35.56) (24.37)

Vintage: 1980 - 1989 -206.1*** -246.6***
(49.28) (28.94)

Vintage: 1990 - 1999 -188.3** -98.06**
(54.53) (31.01)

Vintage: 2000 - 2009 -194.4** -242.4***
(68.78) (40.73)

Vintage: 2010 - 2017 -370.5*** -448.9***
(71.12) (41.17)

Constant 1995.2*** 2253.5*** 1140.0*** 2053.0***
(42.75) (38.46) (27.94) (29.92)

Sample Mean Energy Expenditures 1705.1 2648.9 1705.1 2648.9
Year FE X X X X
Renters only X X
Home-owners only X X
City FE X X X X
R-squared 0.275 0.236 0.185 0.201
N 363,715 537,865 363,715 537,865

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001
Note: This table reports annual energy-expenditure gaps in the ACS, pooled across 2010-2017, controlling
for home type and vintage. Columns 1 and 2 control for home types. The omitted category is single-family
detached homes. Columns 3 and 4 control for home vintage. The omitted category is homes built before
1970. All specifications include city fixed effects (and are comparable to columns 8 and 9 in Table 2.1).
Standard errors are clustered on state.
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Table 2.4: Conditional Differences in Housing Stock and Energy Burden

White Black Diff

Received energy assistance in 2015 0.031 0.042 0.011
(0.015)

Got an energy audit 0.086 0.099 0.013
(0.014)

Said home was well insulated 0.320 0.329 0.009
(0.027)

Said home was drafty 0.506 0.640 0.134∗∗∗

(0.023)
Share of Energy Star appliances or features 0.443 0.370 -0.073∗∗∗

(0.008)
Received an appliance rebate or tax credit 0.105 0.070 -0.034∗

(0.015)
Has solar PV 0.013 0.013 -0.000

(0.003)
Has smart meter 0.332 0.297 -0.035

(0.037)
Has smart thermostat 0.033 0.047 0.014

(0.011)
Had to reduce/forgo basic necessities 0.202 0.312 0.111∗

(0.037)
Kept home at unhealthy temperature 0.103 0.144 0.041∗

(0.015)
Received disconnect notice 0.137 0.277 0.141∗∗∗

(0.013)
N 4,282 523

mean coefficients; standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: This table tests differences across race in self-reported responses about home quality, appliance
quality, and energy burden, conditioning on income categories. Data is from the 2015 RECS. Standard
errors are clustered on census division.
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2.4 Discussion and Conclusions

This paper provides estimates of the Black-white residential energy expenditure gap in the
US. These estimates suggest that Black households face a higher energy burden than white
households at almost every position in the income distribution. Understanding the differen-
tial energy burden is critical when designing policies that will affect energy prices, such as
much-needed policy to reduce greenhouse gas emissions. This is especially true given that
this gap may be another of many outcomes that has been affected by the persistent effects of
systemic racism in the United States, mediated in particular by differences in housing stock
and wealth.

This paper has some important limitations. The results are suggestive but not causal, and
energy expenditures are self reported on an annual basis. In future versions of this paper, I
will use residential billing data in the state of California for this analysis. This will eliminate
any recall error, and will also allow me to observe differences in prices, payment of late fees,
and participation in low-income assistance programs. Billing data also make it possible to
control for weather more directly, and provide more spatial granularity, which I will use to
estimate the long-term impacts of residential segregation policies such as redlining.
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Chapter 3

Regulating Mismeasured Pollution:
Implications of Firm Heterogeneity
for Environmental Policy

3.1 Introduction

This paper provides the first estimates of within-industry heterogeneity in energy and CO2

productivity for industries spanning the entire US manufacturing sector. We define energy
and CO2 productivity as log dollars of output per dollar of energy input or per ton of CO2

emitted.1 Three key takeaways emerge. First, within narrowly defined industries, hetero-
geneity across plants in energy and CO2 productivity is enormous. For example, given one
dollar of energy inputs, a plant at the ninetieth percentile of a typical industry’s energy pro-
ductivity distribution produces 580 percent more output than a plant at the tenth percentile
of the same industry. Second, these values significantly exceed heterogeneity in most other
measures of productivity. For example, the corresponding 90–10 differences for labor and to-
tal factor productivity are 400 percent and 150 percent, respectively. Third, heterogeneity in
energy and CO2 productivity has important implications for industry-based environmental
regulations. Many countries have considered pairing a carbon tax on domestic output with a
tariff on imports that is proportional to the carbon content of the imports. We show that an
industry-based carbon tariff, which abstracts from within-industry heterogeneity, will sub-
stantially differ from the correct plant-level Pigouvian tax for many plants. Many existing
environmental regulations and standards apply uniformly across plants within an industry.
For example, the US Clean Air Act requires plants in regulated industries and regions to
meet an industry-level technology standard by installing “Best Available Control Technolo-
gies.” Similarly, the Clean Water Act’s Industrial Effluent Guidelines require plants to meet
an industry-level technology standard. Several tradable permit markets use industry-level

1Energy and CO2 productivity are the inverse of energy and CO2 intensity. We use the former metric
to facilitate comparisons to other single-factor and total-factor productivity measures.
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rebates to compensate firms.2 Due to substantial data requirements, researchers and pol-
icymakers have a limited understanding of the extent of producer heterogeneity in energy
and CO2 productivity. We show that plants within an industry have very different pollution
emissions rates, and therefore, such industry-level regulations will be too stringent for some
plants and too lenient for others.

We use confidential, plant-level data from the US Census of Manufactures CM and the
Manufacturing Energy Consumption Survey MECS to explore this heterogeneity. We dis-
tinguish about 375 six-digit NAICS industries. One industry, for example, manufactures
carbon black; another makes ethyl alcohol. Our main results calculate plant-level energy
expenditures on raw fuels and electricity as reported in CM and MECS. We also calculate
plant-level CO2 emissions by converting each fuel consumption choice to CO2 equivalents
using emissions factors (e.g., tons CO2 emitted per ton.

A few estimates near the paper’s end analyze carbon tariffs. These estimates account
for energy consumption and emissions required to produce intermediate inputs that are used
for final good production, sometimes called “indirect emissions.” For example, in most of
the paper, emissions for the cookware industry include coal, gas, oil, and electricity used
to shape a pan. Indirect emissions for the cookware industry also include fossil fuels used
to make aluminum, which is then purchased as an intermediate input to make a pan. We
calculate indirect emissions in two separate ways. The first is standard: we invert the US
input-output table to compute the dollars of coal, oil, and natural gas inputs required to
produce a dollar of output in each industry. This accounts for energy used to produce inputs,
energy used to produce the inputs to inputs, etc. Our second measure of indirect energy is
nonstandard: we use plant-level data on the dollar value of each individual material input
the plant uses, along with associated industry codes for each material, which are all part
of the CM Materials Trailer. We combine this information with the inverted input-output
table to calculate indirect energy and emissions separately for each plant.

This paper builds on several literatures. One explores the implications of firm heterogene-
ity for environmental policy and either argues for market-based instruments like pollution
taxes or cap-and-trade markets (Carlson et al. 2000; Goulder and Parry 2008) or analyzes
industry-based regulation in Melitz-type settings when firms are heterogeneous (Shapiro and
Walker 2018). Several papers within this literature specifically analyze border adjustments
(Cosbey et al. 2019; Kortum and Weisbach 2017). This paper also relates to work ana-
lyzing the efficiency of imperfectly targeted environmental policies (Jacobsen et al. 2020).
A related literature shows that total factor productivity is heterogeneous within narrowly-
defined or homogeneous industries (Syverson 2011); other work interprets heterogeneity as
factor misallocation (Hsieh and Klenow 2009). Existing analysis of heterogeneity in energy
productivity is limited, though includes studies of a subset of energy-intensive, trade-exposed
sectors (Gray and Metcalf 2017). The remainder of the paper discusses data, methodology,

2California’s AB-32 cap-and-trade distributes additional permit allocations to energy intensive, trade-
exposed industries using an industry-level assistance factor to help combat against regulatory leakage. These
assistance factors are applied at the industry-level when determining permit allocations for a facility.
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and results.

3.2 Data & Methodology

We measure plant-level energy inputs using data from the 2007 CM and the 2006 MECS.
The CM includes about 350,000 US manufacturing plants operating in 2007, while MECS
includes a probabilistic sample of around 15,000 plants. We join MECS and the CM at
the plant level, using a unique plant identifier. Our MECS estimates use survey weights to
make statistics represent the broader manufacturing sector. The CM reports each plant’s
value of shipments, capital stock, production hours, and expenditure on electricity, fuels, and
materials. We exclude “administrative records” since many of their values are imputed. We
also exclude records where output, fuel expenditures, or electricity expenditures are imputed.

The CM and MECS both report plant-level expenditure on fuels and on electricity, which
we use to compute CO2 emissions. MECS further reports physical quantities and expendi-
tures for each fuel, which we convert to CO (See chapter appendix for details . Since the
CM does not report expenditures by fuel type, we use MECS to calculate industry-level
averages of CO2 per dollar of fuel expenditure, and we multiply each CM establishment’s
fuel expenditure by these averages. For electricity inputs, we use the EPA’s eGrid database,
which assigns annual total output emissions rates CO2 per KWh to 26 regions of the country,
to calculate the mean marginal emissions based on plant location of electricity consumption.

We account for indirect emissions only in our estimates of carbon tariffs. We do this in
two separate ways. First, we use the 2007 US benchmark input-output data of the Bureau
of Economic Analysis. We invert the input-output table to compute the total dollars of coal,
oil, and natural gas inputs required to produce a dollar of output in each industry. We apply
emissions coefficients from the Energy Information Agency and Environmental Protection
Agency EPA to calculate the total CO2 emitted per dollar of output in an industry. Our
second measure of indirect emissions comes from the CM Materials Trailer, which provides
plant-level detail on the dollar value of each material input, along with associated input
industry codes. We multiply these expenditures by the corresponding industry emissions
rate from the inverted input-output table. Thus, while emissions rates are constant across
intermediate input industries, plant-level variation in intermediate input intensity generates
additional heterogeneity in energy and emissions productivity.

We use all these data to construct multiple measures of energy and emissions productivity.
For comparability with common productivity measures, we construct productivity measures
as the log of the value of shipments per dollar of direct energy input, or per metric ton
of CO2 emitted. We also discuss estimates that define productivity as log dollars of value
added per unit of energy input or CO2 emissions in the Appendix. We calculate value added
by subtracting expenditures on capital, labor, materials, and energy from the plant’s total
value of shipments.

For each industry, we measure productivity heterogeneity by calculating the ninetieth and
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tenth percentile of energy and CO2 productivity across plants within the same industry.3 We
also compute the within-industry standard deviation of all productivity measures for each of
the 375 industries. Lastly, we summarize these industry-level dispersion measures by taking
the unweighted mean across all industries. This latter statistic provides some insight on
within-industry heterogeneity in productivity for the mean industry.

3.3 Results

Table 3.1 shows the mean and dispersion of seven different productivity measures. This table
accounts for only “direct” CO2 or other inputs at a plant. Columns 1–6 calculate productiv-
ity as the log of the plant’s value of shipments divided by some measure of a plant’s factor
demand, CO2 emissions, or intermediate inputs. Columns 2 and 3 report value of shipments
per ton of CO2 produced, where CO2 is calculated using the CM and MECS samples, re-
spectively. Columns 4–6 report other single factor productivity measures, as indicated in
the column headings. Column 7 presents statistics from a total factor productivity index.4

Panel A of Table 3.1 shows mean productivity levels. For example, column 1 implies that
energy costs are roughly 1.5 percent of output value 0.015 1 exp 4.16 for the mean plant
in our sample, since the log of output per dollar energy input is 4.16.5 Panel B of Table
3.1 summarizes the industry-level dispersion measures. The first row presents the mean of
the within-industry 90–10 ratio, taken across all industries in our sample. The second row
of panel B shows the standard deviation of the within-industry 90–10 ratio, taken across
all industries. The third row shows the difference between the ninetieth percentile industry
and the tenth percentile industry of this within-industry 90–10 dispersion measure. Panel C
shows similar values, but using within-industry standard deviations.

Panels B and C of 3.1 show substantial heterogeneity in output per dollar of energy
expenditure or per ton of CO2 emitted, which is the paper’s first main finding. The top-left
entry in panel B, for example, shows that given a dollar of energy inputs in the industry
with the mean energy productivity dispersion, a plant at the ninetieth percentile of the
within-industry energy productivity distribution produces 580 percent more output than a
plant at the tenth percentile of that within-industry distribution does. Dispersion in CO2

productivity is even wider, at 2.27 log points 870 percent difference. The standard deviation
of energy and of CO2 productivity within the average industry is 0.75 to 0.89 log points,
respectively.

Panels B and C also show the paper’s second main finding: dispersion in CO2 and energy
productivity is larger than dispersion in most other productivity measures. Both panels

3To respect confidentiality requirements for 90–10 statistics, we use each industry’s mean and standard
deviation of the respective productivity measure to simulate the ninetieth and tenth percentile using a normal
distribution. Estimates using the simulated data are nearly identical to those from the underlying microdata.

4This index uses a Cobb-Douglas production technology with three inputs: labor, capital, and materials.
Output elasticities for each input are constructed from industry-level revenue shares (Syverson 2011).

5We report this calculation for energy productivity but not other columns because not all other inputs
are measured in dollars (e.g., labor is in terms of worker hours).
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Table 3.1: Single and Total Factor Productivity Statistics

Direct energy CO2 [CM] CO2 [MECS] Labor Capital Materials TFP
(1) (2) (3) (4) (5) (6) (7)

Panel A. Industry-wide statistics
Mean 4.16 8.42 8.80 4.51 1.01 0.95 1.81
SD 0.94 1.16 1.15 0.83 0.95 0.66 0.56

Panel B. Within-industry 90-10 difference in productivity
Mean 1.92 2.27 2.27 1.63 2.22 1.34 0.92
SD 0.47 0.57 1.17 0.45 0.50 0.61 0.39
p90-10 1.21 1.46 3.01 1.16 1.27 1.58 0.99

Panel B. Within-industry standard deviation of productivity
Mean 0.75 0.89 0.89 0.64 0.87 0.52 0.36
SD 0.18 0.22 0.46 0.17 0.19 0.24 0.15
p90-10 0.47 0.49 1.14 0.44 0.43 0.55 0.33

Notes: Panel A means and SD are computed from plant-level CM and MECS observations.
Panel B statistics are calculated using the 375 within-industry 90–10 dispersion measures.
Panel C statistics are calculated using the 375 within-industry standard deviation
measures. See text for details.

show that dispersion in energy and CO2 productivity is more than twice as large as dis-
persion in total factor productivity TFP. Typically, single-factor productivity measures are
more dispersed than TFP, but Table 3.1 shows that dispersion in energy and CO2 produc-
tivity exceeds dispersion in other single-factor productivity measures like labor or material
productivity.6 Dispersion in energy and capital productivity is more similar, though worth
interpreting cautiously since the durability of capital investments makes the value of the
capital stock difficult to measure.

All pairwise t-tests not shown for space reject the hypothesis that dispersion in energy
and CO2 productivity equals dispersion in the other productivity levels. Appendix Table B.1
shows similar conclusions from value-added productivity measures. It may be unsurprising
that CO2 productivity varies so much, since differences in fuel inputs, variation across the
grid in the CO2 intensity of electricity generation, and related forces make CO2 more variable
than energy expenditure. It is more surprising that energy productivity varies more than
other single-factor productivity measures, since even though some fuels are dirtier than
others, one might expect plants to use similar amounts of energy to produce a single unit of

6The greater dispersion of single factor productivity compared to TFP stems from cross-plant differences
in factor intensities. For example, if one plant has a greater labor share than another plant due to lower local
wages, the two plants may have the same TFP but different labor productivity. Differences across plants in
factor prices e.g., wages generally affect single-factor productivity but not TFP (Syverson 2011).
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output. Panel A of Table 3.1 shows that mean productivity for energy and labor are similar,
so the difference in dispersion is not driven by scale effects.

Figure 3.1: Dispersion of Within-Industry 90-10 Productivity Measures

Note: Each kernel density plot was created using the approximately 375 6-digit NAICS dispersion
measures for the corresponding productivity measure. Kernel densities have been censored at the 5th and
95th percentiles in accordance with U.S. Census Bureau disclosure avoidance.

Figure 3.1 demonstrates the paper’s first two conclusions. This graph plots the distri-
bution of industry-level 90–10 dispersion measures. Each of the roughly 375 observations
underlying one of these lines is an industry; the value of each observation equals the within-
industry 90–10 productivity ratio. The mean of the CO2 distribution dark solid line lies
above the mean of all other productivity dispersion measures, demonstrating that CO2 dis-
persion for the average industry is greater than dispersion in the other productivity measures.
The greater width of the CO2 distribution relative to the TFP and labor distributions shows
that within-industry dispersion in CO2 productivity is more variable across industries than
within-industry dispersion in TFP or labor productivity.

Implication for Carbon Tariffs

In many countries, policymakers have proposed import tariffs proportional to the carbon
content of imported goods in order to guard against emissions leakage.7 These are often
referred to as carbon border adjustments or carbon tariffs.

7This type of policy was in the Waxman-Markey bill that passed the US House but not the Senate in
2009. In 2017, France, Mexico, and Canada discussed imposing one on the United States after the Trump
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Table 3.2: Social Costs of Carbon Per Dollar of Output

(1) (2) (3) (4) (5) (6)

Panel A. Industry-wide statistics
Mean 0.019 0 .041 0.034 0.044 0.077 0.071
SD 0.048 0.050 0.032 0.062 0.110 0.075

Panel B. Within-industry 90-10 Differences in SCC/$
Mean 0.060 0.060 0.051 0.089 0.142 0.120
SD 0.204 0.204 0.102 0.205 0.221 0.128
p90-10 0.523 0.523 0.261 0.526 0.567 0.329

Panel C. Within-industry standard deviation of SCC/$
Mean 0.023 0.023 0.020 0.035 0.056 0.047
SD 0.080 0.080 0.040 0.080 0.086 0.050
p90-10 0.035 0.035 0.045 0.053 0.073 0.097

Direct source CM CM MECS CM CM MECS
Indirect source BEA BEA CM CM CM
Leontief inverse X X X X

Notes: Panel A means and SD are computed from plant-level CM and MECS observations. Panel B
statistics are calculated using the 375 within-industry 90–10 dispersion measures. Panel C statistics are
calculated using the 375 within-industry standard deviation measures. Each column computes SCC per
dollar of output using different inputs, as indicated in the column headings and table footers. A column
represents either direct or total emissions, where direct emissions come from either the CM or MECS, and
indirect emissions come from either the BEA I-O table or the CM Material trailer. See text for details.

Table 3.2 reports the level and distribution of the external cost of CO2 emissions per dollar
of output. If another country imposed a carbon tariff on imports from the United States, the
social cost of carbon SCC per dollar output provides one measure of the relevant tariff. We
assume a standard SCC of $40 per metric ton of CO2. Each column represents a different
method of calculating CO2 per dollar of output. Column 1 presents direct emissions from
fuels plus electricity per dollar of output using CM data. Column 2 adds indirect emissions
to the direct emissions estimates from column 1, where indirect emissions are calculated by
inverting the industry-level input-output table.8 Adding industry-level indirect emissions
changes the mean externality panel A but not the within-industry dispersion panels B–C.

Administration announced it was withdrawing from the Paris Treaty on Climate Change. California has
just implemented such a measure for government purchase decisions the Buy Clean California Act.

8Total emissions are the sum of direct and indirect emissions. Direct emissions come from plant-level
data. Indirect emissions come from the input-output table. Note that the input-output table provides both
direct and indirect emissions for an industry. We subtract the industry-level direct emissions from total
industry-level emissions to get our measure of indirect emissions.
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Column 3 shows the same direct plus indirect emissions estimates from column 2 but uses
MECS rather than CM to measure direct plant-level emissions. While MECS is a smaller
sample than CM, it contains plant-level information on the types of fossil fuels used. Column
4 replaces the industry-level indirect emissions estimates used in columns 2 and 3 with
indirect emissions calculated using the CM Materials Trailer. Column 4 uses plant-level
information on input purchases to calculate indirect emissions. For each input material,
however, it only accounts for the industry average of direct emissions of that input material
and not its indirect emissions. Column 5 is similar to column 4, but for each material input,
it calculates total (not just direct) emissions of each input using the inverted input-output
table. Column 6 is similar to column 5 but uses MECS to measure direct emissions.

Panel A of Table 3.2 shows that the external cost of CO2 emissions for the mean plant is
2 to 8 percent of product value. Column 2 suggests that a uniform Pigouvian carbon tariff
imposed on imports from US manufacturers should be around 4 percent. In the first row of
panels B–C, column 2 shows that the mean industry has a 90–10 SCC difference of 0.06. This
implies that even if a carbon tariff were imposed based on industry-specific means instead
of the economy-wide 4 percent, many plants would have a carbon tariff which is well below
the appropriate plant-level tax, whereas others would face a tax rate that is far too high.
Comparing columns 3 and 5 of panel B shows that using plant-level records of intermediate
good purchases from CM, rather than industry-level records from the input-output table,
approximately doubles both the 90–10 and standard deviation measures of dispersion.

Figure 3.2 plots the distribution of industry-level 90–10 differences in SCC per dollar
output. This shows the main conclusions from Table 3.2 visually. Many industries have
high 90–10 differences, and this distribution of dispersions has a long right tail which is
understated by our censoring at the fifth and ninety-fifth percentiles. Thus, a Pigouvian
tax based on industry averages would still miss significant heterogeneity in true SCC per
dollar of output. Detailed analyses of carbon tariffs have noted many challenges, ranging from
legal ambiguity to information burdens. This paper uses plant-level data to highlight another
trade-off—while a plant-specific tariff would impose a large information burden, an industry-
level tariff would have substantial targeting errors stemming from firm heterogeneity.

3.4 Discussion and Conclusions

The records used for this paper are the most detailed data we are aware of that cover the
entire US manufacturing sector. The plant-level granularity and detailed information on
plant-level input purchases reveal significant heterogeneity in energy and CO2 productiv-
ity, which exceeds heterogeneity for most other measures of single-factor and total factor
productivity.

However, there are at least three reasons why our approach may understate the true ex-
tent of heterogeneity. First, we do not observe the full upstream set of plants that contribute
to final output for a given plant in our data. Instead, we assign industry-level emission and
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Figure 3.2: Dispersion in SCC Per Dollar Output

Note: Each kernel density plot was created using the approximately 375 6-digit NAICS dispersion measures
for the corresponding emissions intensity measure. Densities are censored at the 5th and 95th percentiles.

energy intensities to construct our indirect emission and energy measures.9 If supplying
plants are significantly different in terms of emissions or CO2 productivity, then we would
understate heterogeneity. Second, our productivity estimates are based on revenues and not
quantities. This should lead to underestimates of dispersion since more productive plants
tend to have lower prices. Lastly, by excluding “administrative records” and other imputes
from the CM, we are missing many of the smallest manufacturing establishments which
might contribute to even more within-industry heterogeneity.10

How large are the welfare consequences of this heterogeneity for policies like technology
standards or carbon tariffs that target industries and not plants? What are the economic
reasons why energy productivity is more widely dispersed than labor or total factor pro-
ductivity? How would decreasing factor misallocation across firms affect CO2 emissions?

9Even when we observe plant-level input purchases, we only observe the industry of those inputs and
not the specific plant.

10It is worth noting that while these reasons suggest we are understating true heterogeneity, any remaining
measurement error after excluding imputed observations could lead to overstatement of true heterogeneity.
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Finally, what does heterogeneity in CO2 productivity imply about heterogeneity in marginal
abatement costs? We leave these important questions for future work.
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Appendix A

Appendix for Chapter 1

A.1 Data Appendix

Additional Details on Variable Construction

• Missing and imputed variables: I follow Chetty and Hendren (2018) and Bailey
et al. (2020) and treat all imputed variables as missing, unless otherwise described.
Dollar values are inflated to 2019 values using the CPI. Throughout the analysis I
use demographic and household characteristics to control for selection on time-varying
observables, I use work characteristics to construct commuting variables, and I use
home characteristics in the second half of the paper to characterize places and study
associations between built environment and place effects.

• Flags: In 2014 the ACS flags a lot of variables as “allocated” (to 0) if they checked a
box indicating that they did not use natural gas or fuel use and then left the expenditure
question blank. Because of this, I make an exception to the allocation flag and allow
for residential energy to be allocated to 0 based on the checkbox question.

• Work characteristics: For each individual I have employment status, industry and
occupation, place of work, weeks worked last year, and hours worked last week. I allow
place of work tracts or more detailed geographies to be missing, but I drop observations
if county of work is missing (unless the individual works from home, in which case I
impute their place of work from their home, or if they are unemployed). I also allow
current employment status to be missing if weeks worked last year and hours worked
last week are not missing and not imputed. In 2008-2018, the weeks worked variable is
binned; I follow Chetty and Hendren (2018) and assign the midpoint to all individuals
in the bin. Since these variables are an input into my measure of commuting energy use,
I use the midpoint from the bin for all years to keep the variable definition consistent.

• Carpooling: I divide CO2 by the number of car-poolers for individuals who report
carpooling.
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• Commuting Distance: I estimate commute mileage using the GPS distance between
reported home and place of work census blocks. To account for the fact that geodesic
distances don’t capture the indirect nature of roads, I rescale my mileage estimates to
match the national average commuting distance reported in the NHTS (12 miles). For
individuals who only report their county of work but not their census block of work,
I impute miles travelled using reported commute time and average commute speeds
for people with similar residence-job geographic pairs. I use a similar imputation for
individuals for whom the travel speeds implied by dividing estimated miles by commute
time are infeasible – over 80 mph on average in a car or motorcycle, and over 150 mph
in a train.1

• Number of annual commutes: I estimate commuting days per week using reported
hours worked last week and assuming people work 8 hours a day up to 5 days a week,
assuming people worked 5 days if they worked 40-50 hours a week, 6 days if they
worked 50-60 hours in a week, and 7 days if they worked more than that. I assume
everyone commutes twice a day, and that commuting behavior is the same for all the
weeks worked last year.

• Vehicle fuel economy: I assume individuals that commute by car or taxi do so
in a vehicle with annual national average fuel economy, using data from the Federal
Highway Administration (2019). For motorcycles, I scale mpg by 2 (US Department of
Transportation 2015). This is a minor point as motorcycles account for only roughly
0.6% of vehicle miles driven (U.S. Environmental Protection Agency and Energy 2020).
I also account for the fact that in general fuel economy is roughly 30% higher when
driving on highways than in cities by adjusting mpg up by 19% relative to the national
average for drivers whose average commuting speed is greater than 55 mph, and down
by 9% relative to the national average for drivers whose average commuting speed is
lower than 40 mph (U.S. Environmental Protection Agency 2021b).

• Emissions from public transportation: I assign zero emissions to commutes by
public transportation, walking, or biking.

• Identifying kids: I designate a household member a child and drop them from the
analysis sample if they are under the age of 18, or if they are identified as a child via
the Census’ relationship to householder code.

• Building age: I allow building age to be unknown in my analysis sample

Measurement Error in Household Carbon Emissions

There are several sources of measurement error in household carbon emissions from residen-
tial and transportation energy use. This could introduce bias in either estimates of household
and place effects, estimates of the variance components, or both.

1This is the fastest speed a train ever goes in the US, along a small segment of the Northeast Corridor.
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Note that if errors are random but serially correlated within a household, both a naive
variance decomposition and a KSS variance decomposition on a sample consisting of stayers
and movers will overstate the share of heterogeneity attributable to households; however,
when I restrict to the mover only sample, the KSS correction accounts for serial correlation
in the error term and gives unbiased estimates of variance components.

Below, I discuss sources of measurement error, as well as potential biases that arise in
my estimates as a result.

Household reporting of residential energy expenditures:

Households may not accurately remember or report their energy expenditures. Inaccurate
reporting could arise for example due to inattention to bills, or due to bias driven by the
seasonality of energy expenditures – e.g. if household use their last monthly bill to proxy
for annual expenditures.

If household inattention is fixed it will be absorbed by the household effect. If inattention
leads high types to overstate their expenditures, and low types to understate their expen-
ditures, this would lead to an upward bias in the household component of heterogeneity
and vice versa. It is also reasonable to think that inattention may be random but serially
correlated within household.

With fixed or random inattention, estimates of place effects themselves are unbiased.
However, if moves are correlated with changes in attention, this could lead to bias in estimates
of place effects. For example, if households move after positive income shocks, and higher
income households pay less attention to their energy bills, and this inattention leads to
systematic under- or over-estimation of expenditures, estimates of place effects with more
inattentive residents would be biased.

Seasonality is unlikely to bias my estimates because surveys are sent out randomly, and
therefore the season households were surveyed shouldn’t be correlated with other compo-
nents of the model.

Electricity prices:

I estimate electricity prices from total utility revenues divided by total utility customers, by
county. This introduces three sources of measurement error in electricity prices.

First, in counties served by more than one utility, I cannot match customers to the ac-
tual utility they are served by. If customers in an area can select their residential energy
provider, this could lead to bias in the household component of heterogeneity. For example,
if higher type customers are selecting into lower average price utilities, I will underestimate
the household component of heterogeneity. Similarly, if there are several utilities serving
different neighborhoods within the same county, this could lead to bias in the place com-
ponent of heterogeneity. In particular, I will over-estimate consumption in neighborhoods
served by more expensive utilities, and under-estimate consumption in neighborhoods served
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by cheaper utilities. If more expensive utilities generally serve lower consumption neighbor-
hoods, this will lead me to underestimate the place component of heterogeneity.

Second, residential customers generally face a two part tariff consisting of a fixed charge
and a marginal volumetric charge, where the marginal price can either be increasing or
decreasing in consumption depending on the utility. Because I am using average prices,
calculated from utility residential revenues and quantities sold, I overestimate the average
volumetric price and in turn underestimate consumption for everyone (more so for house-
holds in high fixed charge service territories). Moreover, for some utilities, marginal prices
are either increasing or decreasing in consumption. When prices are increasing in consump-
tion, I under-estimate prices faced by high-demand customers and over-estimate prices faced
by low-use customers. This means I over-estimate quantities consumed by high-demand
customers and under-estimate quantities consumed by low-demand customers, leading to an
upward bias in my estimates of the household variance component. Conversely, if prices
are decreasing in consumption, I underestimate the household variance component. Boren-
stein and Bushnell (2019) estimate that in the US, roughly 37% of customers face increasing
block pricing, and roughly 21% face decreasing block pricing, though in all cases the rate
structure is fairly narrow. They also estimate that across territories, utilities that utilize
increasing-block pricing generally serve lower demand customers on average. Thus, my es-
timates likely somewhat over-estimate variation across households within utility territories,
and underestimate variation across territories. Overall, unobserved rate structures should
lead me to estimate a lower bound on place-based heterogeneity and estimate an upper
bound on preference-based heterogeneity.

Finally, residential rates can vary within utilities, and I don’t observe which rate a house-
hold has selected. This leads to the same biases as not being able to observe which utility a
customer chooses, discussed above. Additionally, I do not observe if a household has solar,
and in many states solar customers face different price schedules with significant subsidies
for selling generated power back to the grid. This lowers their average price per kwh, causing
me to underestimate quantity consumed and in turn CO2 from electricity purchased from
the grid by these customers.

Electricity carbon emissions factors:

I estimate carbon emissions intensity of electricity using average emissions factors at the
NERC subregion. This does not capture the fact that electricity is generated from different
fuels throughout the course of the day (e.g. solar peaks in the afternoon) and across sea-
sons (e.g. there is less solar in the winter). The error in household carbon emissions that
results from this is likely serially correlated within household, and can be accounted for in
the mover-only KSS specification. However, if consumption profiles are also correlated with
these patterns, my estimates of household carbon emissions will be biased. For example, if
low type users consume more electricity when marginal emissions are higher then I would
tend to under-estimate their carbon emissions and over-estimate the household component
of heterogeneity.
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Natural gas and other residential heating fuel prices and CO2:

Many of the same price measurement errors arise with natural gas as with electricity, but
generally individuals have less choice over their utility, fixed charges are larger, and there is
less prevalence of block pricing. Unlike electricity, fuel emissions factors for other fuels are
the same regardless of where a household lives. However, in the case of natural gas a sig-
nificant source of emissions is upstream methane leaks, which I don’t consider in this analysis.

Assignment of heating fuel:

I estimate carbon emissions from fuel use by assigning all expenditures on “other home
heating fuels” to the fuel reported as the primary fuel. If a household has non-zero other fuel
expenditures, but they don’t list a primary fuel, I impute their primary fuel based on the
most commonly used primary fuel among other survey respondents in their state and year
(out of residual oil, propane, and wood). If households use more than one heating fuel, or use
a heating fuel other than the one I imputed for them, there will be error in my measurement
of carbon emissions, both as a result of dividing expenditures by the wrong fuel price, and
as a result of assigning the wrong carbon emissions factor. I will overestimate household
carbon emissions if reported or imputed fuel prices are lower than actual average fuel prices
faced by the household, or if reported or imputed fuel types have higher emissions factors
than the fuels actually used.

If I tend to overestimate carbon emissions from heating fuels for otherwise high-type
households and underestimate carbon emissions from heating fuels for otherwise low-type
households, then my household variance component will be biased upward, and vice versa.
Moreover, if moves are correlated with shocks to unobserved fuel components, this could
lead to bias in my estimates of place effects. For example, if a household uses the same
heating fuel everywhere they live but doesn’t report this fuel, if they move to a place where
their neighbors use an on average higher emissions heating fuel, I would overestimate the
place effect. In practice, the share of households reporting non-zero energy expenditures on
heating other than electricity or natural gas is small, and my estimates are not meaningfully
affected when I exclude other heating from the calculation.

Commuting Distances:

Because I estimate commute miles from geodesic distances between coordinates, I will
underestimate speed and miles travelled for individuals who have less direct commutes.
If the directness of a commute is the result of place-based constraints (e.g. the result of
living in a gated community or a neighborhood with many winding roads and cul-de-sacs),
and if these types of neighborhoods tend to be farther from employment centers and have
longer commutes to begin with, then I will underestimate the place component of spatial
heterogeneity.
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Additionally, I impute miles for the people for whom I don’t observe census block of work
using average mph for home and place of work county pairs. This will lead me to overstate
commute distances for people with slower than average commutes, and understate commute
distance for people with faster than average commutes. If faster than average commutes are
also longer than average, then I will underestimate the person component of spatial hetero-
geneity. My estimates are not sensitive to using a simpler measure of commute distance,
calculated from simply dividing reported commute time by the average national commute
speed, 32 mph (Federal Highway Administration 2019), suggesting that errors in commute
speeds are unlikely to bias my estimates.

Total Commuting Miles:

I use weeks worked last year to estimate total commuting from typical commuting be-
havior last week. This assumes that hours worked are stable, that people work at the same
place all year, and that information about commutes reported for last week is representative
of commutes generally. Any deviations along these dimensions introduces measurement er-
ror into my outcome. It is likely that such errors are more likely to arise for lower income
households with less job stability, but it is unlikely that it results in a systematic over- or
under-estimate of commute miles on average.

Commuting Emissions:

I assume everyone drives a vehicle with the annual national average fuel economy, using
data from the NHTS. This is a significant oversimplification, as it ignores patterns of het-
erogeneity in fuel economy both across commute lengths and across regions. If people with
longer commutes drive more fuel efficient vehicles, I will overstate heterogeneity. On the
other hand, if people who want to conserve on gas both buy more fuel efficient vehicles and
choose to have shorter commutes, I will understate heterogeneity. The bias in my estimates
of relative shares is more ambiguous. If these patterns are driven solely by individual pref-
erences, I will over/understate the relative importance of the person component in spatial
variation. On the other hand, if they are driven by local norms or place characteristics such
as e.g. the availability of parking, I will over/understate the relative importance of the place
effect.

Another source of error arises in the assignment of emissions to other modes of transit.
In practice, most public transit in the US is not zero-emissions right now. Assigning zero
emissions to public transit over-states heterogeneity across transit vs. car commuters.

Finally, if households change their mode of transit over the year, or if they use multiple
modes of transit in a single commute, I do not capture this variation. For example, if house-
holds report taking public transit as their primary mode, but in reality they drive part of
the distance of their commute, I will under-estimate their carbon emissions and overstate
overall heterogeneity.
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Non-Commuting Transportation Emissions:

I don’t observe transportation other than commuting. In particular, I don’t observe local
travel for errands or leisure, nor do I observe airplane travel. Thus, I (weakly) underestimate
carbon emissions magnitudes. If commuting is a rank-preserving share of total transporta-
tion emissions, my results will be qualitatively correct but off in magnitudes. However, if
for example places with long commutes have lower other transportation emissions (because
everybody spends leisure time in their back yard) whereas places with short commutes have
higher other transportation emissions (because people go away for the weekend), then my
estimates cannot be used to infer anything about transportation emissions overall.

A.2 The Leave-One-Out Connected Set

Consider the following data: Household 1 moves from NY to Chicago, household 2 moves

Individual & Household Geographic Locations

Year Household Place

1 1 NY
2 1 CHI
1 2 CHI
2 2 NY
1 3 SF
2 3 CHI

from Chicago to NY, and household 3 moves from San Francisco to Chicago. This data can
be visualized as a network, where each place is a node, each household is a node, and edges
connect households to each place they’ve lived in.

Household + Place Network

CHISF NY

H1

H2

H3
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In this figure, San Francisco, Chicago, and New York are all connected by movers – this
is a connected set. The leave-out connected set is the set of places that remains connected
after dropping any household from the data. In this example, San Francisco is not in the
leave-out connected set, because it is only connected to the rest of the network through H3.

A.3 Computational Appendix

For parsimony, I proceed in two steps, regressing log(CO2) on observable characteristics and
year fixed effects, and residualizing so that I am left with

ỹij = αi + ψj + εit

The share of overall variance attributable to place effects can then be captured by the
variance component of place effects,

V ar(ψj) ≡ σ2
ψ =

1

NT

N∑
i=1

T∑
t=1

(ψj(i,t) − ψ̄)2

and the covariance component between place effects and person effects

Cov(αi, ψj) ≡ σ2
α,ψ =

1

NT

N∑
i=1

T∑
t=1

(ψj(i,t) − ψ̄) · αi

KSS provides an estimate for the standard error ψ2
i = V ar(εi) based on a leave out

estimate of σ2
i :

σ̂2
i = yi(yi − x′iβ̂−i) = yi

(yi − x′iβ̂)

1− Pii

where Pii = x′i(xix
′
i)
−1xi is the observation leverage.
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A.4 Additional Figures and Tables

Additional Figures

Figure A.1: CO2 Profiles by Demographic Characteristics

(a) Gender (b) Education

(c) Race (d) Ethnicity
Note: This figure shows variation in household carbon emissions by household member demographics.
Panel (a) shows that households with more women (age 18+) have slightly lower emissions (consistent with
women having fewer and shorter commutes). Panel (b) shows that college educated households have
slightly lower emissions. Panel (c) and (d) show large differences by race and ethnicity – white households
and non-Hispanic households have higher emissions on average than non-white and Hispanic households.
All estimates reflect the full sample, pooled 2000-2019, weighted by Census sample weights.
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Figure A.2: CO2 Profiles by Age and Income

(a) Age

(b) Income Decile
Note: This figure shows variation in household carbon emissions by household member age and household
income deciles. Panel (a) shows a non-linear relationship between the adult age of household members and
mean carbon emissions which increases through people’s 40s and then decreases again (likely reflecting a
combination of higher incomes and children still being in the home). Panel (b) shows an increasing
relationship between household income decile and carbon emissions. All estimates reflect the full sample,
pooled 200-2019, weighted by Census sample weights. Household income is CPI-adjusted.
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Figure A.3: CO2 Profiles by Household Size

(a) Household Size

(b) Number of Kids
Note: This figure shows variation in household carbon emissions by household size (a) and number of
children (b). Carbon emissions increase with household size and with the number of children, but less than
proportionally, and the increase is fairly small going from 4 to 5+ people, or 2 to 3+ kids. All estimates
reflect the full sample, pooled 200-2019, weighted by Census sample weights.
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Figure A.4: Energy Expenditures in Mover Households in the PSID

Note: I examine whether there are pre-trends in energy consumption for movers using data from the PSID,
given data limitations in my baseline data. In particular, I test whether there are significant changes to
monthly energy bills in the years prior to a move, after controlling for household characteristics such as
income and household size. If anything, I find a slightly countervailing pre-trend for movers, with energy
bills decreasing in the year before a move, and then increasing in the several years after (consistent with a
secular trend of households moving to higher emissions places).
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Figure A.5: Event study by duration – CBSA

Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions
that can be explained by place effects, by duration between mover observations. In other words, each
coefficient is the estimate for place effects generated from the sub-sample of households that I observe X
years apart. Coefficients plotted in light gray are estimated from the model using the full panel of stayers
and movers. Coefficients plotted in the dark blue are estimated from the model using the sub-sample of
stayers and movers with no changes in the number of children and less than 50% change in household
income between observations. All estimates are weighted using Census sample weights.
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Figure A.6: Place Effects vs. Household Carbon Emissions

(a) CBSA (b) Tract

Note: This figure shows event study estimates of the share of spatial variation in mean carbon emissions
that can be explained by place effects, by size of origin-destination differences in mean household carbon
emissions for movers. To two sets of points compare the full sample of movers (solid diamond) to the
sample of movers with no significant changes to income or number of children (empty circle). The dotted
black line shows the 45line. All estimates are weighted using Census sample weights.
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Additional Tables

Table A.1: Mean CO2 – Movers vs. Stayers

CBSA Panel Tract Panel

(1) (2) (3) (4) (5) (6) (7) (8)
Moved 0.05*** 0.00 0.08*** 0.02***

(0.002) (0.002) (0.001) (0.001)
From -0.11*** -0.04*** -0.07*** -0.03***

(0.002) (0.002) (0.001) (0.001)
To -0.03*** -0.04*** -0.02*** -0.03***

(0.001) (0.001) (0.001) (0.001)
Cons. 2.85*** 2.82*** 2.86*** 2.81*** 2.85*** 2.82*** 2.88*** 2.83***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

R2 (adj.) 0.719 0.741 0.191 0.345 0.717 0.738 0.342 0.449
Controls No Yes No Yes No Yes No Yes

Note: This table compares household carbon emissions for movers and stayers. Columns (1)-(2) and (5)-(6)
compare movers overall to stayers overall, with and without controls. Movers have higher carbon emissions
than stayers, but the differences is smaller after controlling for differences in income and other demographic
characteristics. Columns (3)-(4) and (7)-(8) present within-comparisons of stayers in a given place to
movers from that place and movers to that place. The results here highlight that generally, movers have
lower emissions than stayers, both at their origin and destination locations.
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Table A.2: Probability of Moving

CBSA Tract

− N kids 0.007*** 0.017***
(0.0004) (0.0007)

+ N kids 0.050*** 0.150***
(0.0005) (0.0008)

∆ HH inc < -50% 0.035*** 0.078***
(0.0006) (0.0010)

∆ HH inc > 50% 0.070*** 0.154***
(0.0005) (0.0008)

Constant 0.044*** 0.142***
(0.0003) (0.0004)

R2 (adj.) 0.018 0.046
N 1,715,000 1,656,000

Note: This table shows that households with a change in the number of children or a larger than 50% (in
absolute value) change in income are much more likely to move than stay. This is especially true of positive
increases in both of these outcomes, and particularly for moves across neighborhoods.



APPENDIX A. APPENDIX FOR CHAPTER 1 87

Table A.3: Mover Origin and Destination Types

(a) CBSA Movers

To Rural To Suburban To Urban Total Share

From Rural 0.11 0.09 0.05 0.25

From Suburban 0.10 0.21 0.11 0.42

From Urban 0.06 0.15 0.12 0.33

Total Share 0.27 0.45 0.28 1.00

(b) Tract Movers

To Rural To Suburban To Urban Total Share

From Rural 0.09 0.07 0.03 0.19

From Suburban 0.08 0.28 0.08 0.44

From Urban 0.04 0.14 0.18 0.36

Total Share 0.21 0.49 0.29 1.00

Note: This table shows shares of origin-destination tract types for CBSA movers (panel (a)) and tract
movers (panel (b)). Close to half of households move to suburban tracts. The most common type of move
(among both CBSA and tract movers) is from a suburban tract to a suburban tract. Tract movers are less
likely to move either from or to a rural neighborhood, in part because rural tracts are less likely to be in
the leave-out connected tract set.
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Table A.4: Place-Based Heterogeneity in CO2 – Sensitivity to Outcome Definition

CBSA Tract

(1) (2) (3) (4) (5) (6) (7) (8)

Share V ar(ψj) 0.188 0.242 0.195 0.197 0.257 0.270 0.262 0.238
Share V ar(αi) 0.505 0.462 0.498 0.473 0.377 0.355 0.371 0.378
Share 2 · Cov(αi, ψj) -0.001 -0.001 -0.001 0.006 -0.006 -0.000 -0.005 -0.002

R2 0.69 0.70 0.69 0.68 0.62 0.62 0.62 0.61

V ar(logCO2ij) 0.29 0.35 0.29 0.20 0.28 0.35 0.29 0.19

Baseline X X
Residential Only X X
NHTS Commute X X
NHTS Total mi. X X

Note: This table presents KSS decomposition estimates testing the sensitivity of my results to different
outcome definitions. Columns (1) and (5) present baseline estimates again, to ease comparisons. Columns
(2) and (6) present estimates using residential energy use only as the outcome. Results highlight that there
is more heterogeneity overall in residential energy use than in commuting, and a larger share is attributable
to place effects – 24% at the CBSA level and 27% at the tract level. Evidently, residential energy use drives
more of the spatial heterogeneity across CBSAs than commuting, while the two sectors contribute in
approximately equal parts at the tract level. In columns (3)-(4) and (7)-(8) I test the sensitivity of my
results to changing my estimate of emissions from the transportation sector, and using the combined
residential+transportation energy outcome. The “NHTS commute” approach uses a penalized Lasso
regression to predict vehicle fuel economy from individual and household demographic characteristics (age,
race, household size, household income, gender, number of vehicles, commute mode of transit, commute
length) and geographic characteristics (CBSA, state, urbanity) and adjust carbon emissions from
commuting for estimated fuel economy. The “NHTS Total miles” approach uses the same variables to
predict total annual vehicle miles travelled. Taking these approaches decreases the overall variance in my
outcome, perhaps evidence that households with longer commutes drive more fuel efficient vehicles and/or
drive less for other purposes, but doesn’t substantially change the place share of heterogeneity – the largest
change is from using the total miles measure, which decreases the tract share of variance from 26% to 24%.
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Table A.5: Place-Based Heterogeneity in CO2 – No Bias Correction

CBSA Tract

(1) (2) (3) (4) (5) (6) (7)

A: Panel Sample
V ar(logCO2ij) 0.29 0.29 0.29 0.29 0.28 0.28 0.28

Share V ar(ψj) 0.201 0.107 0.111 0.220 0.558 0.452 0.454
Share V ar(αi) 0.567 0.564 0.564 0.562 0.765 0.759 0.759
Share 2 · Cov(αi, ψj) -0.014 -0.008 -0.008 -0.015 -0.277 -0.262 -0.261

R2 0.74 0.66 0.66 0.75 0.77 0.69 0.69

B: Mover Sample
V ar(logCO2ij) 0.32 0.32 0.32 0.31 0.31 0.31

Share V ar(ψj) 0.177 0.112 0.115 0.491 0.406 0.413
Share V ar(αi) 0.505 0.503 0.503 0.588 0.584 0.584
Share 2 · Cov(αi, ψj) 0.001 0.004 0.004 -0.159 -0.152 -0.152

R2 0.69 0.62 0.63 0.76 0.69 0.69

Amenities X X X X
Prices X X
TV-FE X

Note: This table reports results from the biased AKM estimation of variance components. All specifications
include demographic and household controls as well as time fixed effects. Columns (1) and (5) report the
baseline variance decompositions at the CBSA and tract levels. Columns (2) and (5) add controls for local
mean heating degree days, cooling degree days, and electricity emissions factors (all in logs). Columns (3)
and (6) additional control for a price index, constructed from lagged fuel shares interacted with national
retail prices. Finally, column (4) computes time-varying CBSA place effects using 5-year windows
(2000-2004, 2005-2009, 2010-2014, and 2015-2019), using stayer observations across time windows to
identify time variation in place effects, while movers, as before, identify cross-sectional variation.
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Table A.6: Place Correlates w/ Observable Characteristics of Urban Form

Above
Median Inc. White College Has Kids

(1) (2) (3) (4)

Suburban 0.02*** 0.01*** -0.01*** 0.02***
(0.001) (0.001) (0.001) (0.001)

Rural -0.06*** 0.10*** -0.06*** -0.02***
(0.002) (0.001) (0.002) (0.002)

Dist. to Closest City -0.05*** 0.02*** -0.02*** -0.01***
(0.001) (0.001) (0.001) (0.001)

Dist. to Largest City 0.07*** -0.04*** 0.02*** 0.02***
(0.001) (0.001) (0.001) (0.001)

Walk Score -0.01*** 0.01*** -0.01*** -0.00
(0.001) (0.000) (0.000) (0.001)

Bike Score 0.01*** -0.00*** 0.00*** 0.01***
(0.001) (0.001) (0.001) (0.001)

Transit Score 0.00*** -0.03*** 0.00 0.01***
(0.001) (0.001) (0.001) (0.001)

Bus Routes 0.05*** 0.03*** 0.04*** -0.05***
(0.005) (0.003) (0.004) (0.005)

Rail Routes 0.20*** 0.05*** 0.10*** 0.04***
(0.004) (0.003) (0.003) (0.004)

Tract Share Detached Homes -0.38*** -0.17*** -0.26*** 0.13***
(0.005) (0.004) (0.005) (0.005)

Tract Share Homeowners 0.16*** 0.42*** -0.19*** -0.07***
(0.008) (0.006) (0.007) (0.008)

Tract Mean Cars/HH 0.38*** -0.13*** -0.34*** 0.50***
(0.008) (0.006) (0.008) (0.009)

Tract Mean Rooms/House 1.15*** 0.36*** 1.00*** 0.21***
(0.006) (0.004) (0.005) (0.006)

Block Density 6.69*** -6.47*** 1.01*** 4.17***
(0.149) (0.111) (0.136) (0.158)

Constant -2.09*** 0.18*** -1.09*** -0.51***
(0.011) (0.008) (0.010) (0.012)

R2 (adj.) 0.09 0.06 0.04 0.02

Note: This table reports correlation coefficients between several demographic categories and a detailed
vector of place characteristics.
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Table A.7: Place Correlates w/ Observable Climate and Energy Supply Characteristics

Above
Median Inc. White College Has Kids

(1) (2) (3) (4)

Cooling Degree Days -0.00*** -0.00*** 0.04*** 0.00
(0.001) (0.000) (0.001) (0.001)

Heating Degree Days 0.03*** 0.10*** 0.08*** -0.01***
(0.001) (0.001) (0.001) (0.001)

Electric Grid Intensity -1.29*** 0.82*** -2.55*** 0.28***
(0.011) (0.008) (0.010) (0.012)

Constant 0.61*** -0.10*** -0.21*** 0.53***
(0.011) (0.008) (0.010) (0.012)

R2 (adj.) 0.01 0.06 0.04 0.001

Note: This table reports correlation coefficients between several demographic categories and a vector of
exogenous place characteristics.

Table A.8: 10 most populous CBSAs (2020)

Rank CBSA

1 New York-Newark, NY-NJ-CT-PA
2 Los Angeles-Long Beach, CA
3 Chicago-Naperville, IL-IN-WI
4 Dallas-Fort Worth, TX-OK
5 Houston-The Woodlands, TX
6 Washington-Baltimore-Arlington, DC-MD-VA-WV-PA
7 Philadelphia-Reading-Camden, PA-NJ-DE-MD
8 Miami-Port St. Lucie-Fort Lauderdale, FL
9 Atlanta-Athens Clarke County-Sandy Springs, GA-AL
10 Boston-Worcester-Providence, MA-RI-NH-CT
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Appendix B

Appendix for Chapter 3

B.1 Data

Direct Energy and Emissions

The main text describes how we construct the analysis sample. Here we describe a few addi-
tional sample restrictions designed to limit measurement error. For each variable in the raw
data, the final sample excludes observations that are more than 100 times larger than the
99th percentile value. We do not apply this rule to ratios, e.g., this restriction is applied to
CO2 and to output, where output is inventory adjusted, but not to CO2 productivity. The
final sample also excludes plants that report zero or have missing values for any of our vari-
ables,1 and plants that do not report positive values for at least one material in the materials
trailer. Finally, the sample excludes establishments that are unique in their industry after
all the above restrictions, since we cannot compute 90-10 dispersions or standard deviations
for these industries.

We calculate emissions from fuel use by multiplying each establishment’s consumption
by fuel-specific emissions factors. We assign these emissions factors using data from the
EPA when possible and from the EIA otherwise. We treat acetylene, hydrogen, and waste
and byproduct gases as zero emissions. For emissions from electricity, we assign CO2 per
MWh using the EPA’s eGRID dataset. We match eGRID regions to counties and compute
emissions from electricity at the establishment level by multiplying each establishment’s
electricity consumption with the corresponding emissions factor from eGRID. In cases where
a county overlaps with several eGRID regions, we take an unweighted mean of emissions
intensities across the relevant eGRID regions. For observations in the CM that are missing
the county variable, we take the unweighted mean of emissions factors across counties within
the state. We do not account for process emissions.

1In cases where electricity kWh variables are missing in MECS but not CM, we use CM values to calculate
total emissions in MECS.
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Indirect Emissions

We use the BEA’s 2007 benchmark Make Table, Use Table, and Import Table to construct
an industry-level input-output (I-O) table. The BEA tables distinguish between industries
and commodities to reflect the fact that some industries produce commodities other than the
primary product of that industry (known as secondary commodities). We use tables after
redefinitions, which in certain cases reallocate secondary commodity outputs to the industry
in which they are the primary product, because this makes industries more homogeneous.2

In practice most I-O codes in the benchmark analysis represent both a commodity and an
industry. Exceptions to this are four commodities which are not industries (scrap goods,
non-comparable imports, used and second-hand goods, and rest-of-world adjustment), and
nine industries corresponding to different types of government enterprises. In cases where a
government industry has an analog in private industry – for example federal electric utilities

– the BEA assigns both the public and private industries’ commodity outputs to the
private industry’s commodity code. The make table is an industry-by-commodity table, with
each element mij represent- ing industry i’s output of commodity j, in nominal dollars. The
use (and import) tables are commodity-by-industry tables, with each element uij representing
the total (imported) amount of commodity i used in industry j’s production, also in nominal
dollars. In addition to the commodity-by-industry pairs, the use table contains three value
added rows (com- pensation of employees; taxes on production and imports less subsidies;
and gross operating surplus) and 20 final demand columns. These additional rows and
columns play an impor- tant role in ensuring that total inputs equal total outputs, but they
are not rows or columns of the final I-O table. The use and import tables are available from
the BEA at producer values and purchaser values – we use producer values throughout to
maintain consistency with the make table. We construct a domestic use table by subtracting
import values from the use table.

The BEA combines crude oil and natural gas extraction into one industry (code 211000).
We split this industry into two, in order to treat oil and natural gas extraction separately.
We assign all of the petroleum refineries commodity produced by the original industry to
the new crude oil industry, and we assign all of the industrial gas manufacturing commodity
produced by the original industry to the new natural gas industry. The rest of commodity
output is assigned such that total production of gas and crude oil are proportional to their
overall production according to the EIA. We assume that the commodity input mix for each
of the two new industries is the same, with levels proportional to industry output, and we
maintain oil and gas extraction as one commodity.

We normalize elements of the make table by commodity totals to generate a “market
shares” table, in which each element sij is the proportion of commodity j produced by
industry i. Analogously, we normalize elements of the domestic use table by industry totals
to generate a direct requirements table, in which each element dij is the proportion of industry
j’s production made up by commodity i. Because we are interested only in combustible fuel

2The BEA reallocates secondary output from an industry to the industry in which it is the primary
product when the two industries’ input structures differ significantly.
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use, we adjust direct requirements values by proportions of fuel used for combustion using
EIA values.3

We generate the industry level I-O matrix by multiplying the market share matrix by
the direct requirements matrix. The elements of this matrix are how much of each input an
industry uses to produce one dollar of output. Thus equilibrium is defined by:

X = AX + Y

where X is an industry-length vector of gross production, Y is an industry-length vector of
final demand, and A is the I-O matrix. We can rearrange to get

X = (I − A)−1Y

(I −A)−1 is referred to as the Leontief inverse. Using the Leontief inverse, we can calculate
how much output is necessary in total from every industry to meet a given vector of final
demand.

Thus, we calculate total emissions embedded in the production necessary to meet a unit
of demand for goods from a given industry by left multiplying the Leontief Inverse by a
row vector of the raw emissions intensities for coal, crude oil, and natural gas, which we
get from the EPA. Since we are using CM data to calculate a more granular measure of
direct emissions from production, we calculate indirect embedded emissions by subtracting
emissions from the direct requirements from the total emissions:

IndirectEmissionsj = TotalEmissionsj −
∑
i

(DirectEmissionsj × InputOutputji)

where the direct emissions vector is calculated from the total emissions vector, resetting
all values to 0 except those corresponding to utilities and fuel industries. After creating
the BEA-level emissions intensities, we convert from BEA industry defini- tions to NAICS
industry definitions using the concordance provided by the BEA. If multiple BEA industries
correspond to a single NAICS industry, we take BEA output-weighted means to calculate a
unique NAICS industry value. If a BEA industry gets split into multiple NAICS industries,
all NAICS industries get the same value. There are several BEA industries that don’t have
corresponding NAICS codes—importantly, the BEA considers government util- ities and
private utilities separately, and only the private utility gets mapped to a NAICS utility
code.

We use the indirect emissions calculated from the BEA to account for the full embedded
emissions of production in two ways. One is through addition of the intermediate emissions
intensities, by industry, to direct emissions intensities from CM. The second uses the CM
Materials Trailer, which identifies material inputs into production by establishment. We use
the BEA emissions intensity values to calculate the direct and the total emissions embedded
in material inputs. The direct emissions capture the industry averages for emissions from

3These are calculated as a proportion of first use energy consumption and not total energy consumption.
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fuel and electricity use in the production of materials. The indirect emissions use the full
Leontief inverse to capture all emissions generated throughout the economy in the produc-
tion of the materials, on average by industry. We add these to CM emissions intensities to
calculate two versions of total emissions productivity based on material inputs. In compiling
data from the CM Materials Trailer, we assign zero emissions to unspecified materials inputs
(the “other industry” category). The fact that these “other industry” inputs represent a
reasonable share of all inputs provides another reason why our estimates understate true
dispersion in energy and CO2 productivity.
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B.2 Additional Tables

Table B.1: Descriptive Statistics of Industry-Level Characteristics – Value Added

Direct Energy CO2 [CM] CO2 [MECS] Labor Capital Stock Materials
(1) (2) (3) (4) (5) (6)

Panel A. Industry-wide statistics
Mean 3.63 7.89 8.25 3.95 0.47 0.37
SD 1.07 1.28 1.30 0.77 0.98 1.00

Panel B. Within-industry 90-10 Differences in Productivity
Mean 2.20 2.53 2.47 1.76 2.43 2.33
SD 0.54 0.59 1.28 0.56 0.53 0.76
p90-10 1.39 1.51 3.27 1.43 1.37 1.95

Panel C. Within-industry standard deviation of Productivity
Mean 0.86 0.99 0.96 0.68 0.95 0.91
SD 0.21 0.23 0.50 0.22 0.21 0.30
p90-10 0.50 0.53 1.28 0.51 0.44 0.63

Notes: Panel A means and SD are computed from plant-level CM and MECS observations.
Panel B statistics are calculated using the 375 within-industry 90-10 dispersion measures.
Panel C statistics are calculated using the 375 within-industry standard deviation
measures. See text for details.
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Table B.2: Social Cost of Carbon per Dollar of Value Added

(1) (2) (3) (4) (5) (6)

Panel A. Summary Stats, CM
Mean 0.06 0.13 0.11 0.33 0.74 0.76
SD 2.72 2.72 0.31 4.48 8.78 6.51

Panel B. Within-industry 90-10 Differences in Productivity
Mean 0.55 0.55 0.24 3.44 7.70 3.50
SD 4.22 4.22 1.49 28.37 65.82 16.33
p90-10 10.81 10.81 3.82 72.73 168.77 41.88

Panel C. Within-industry standard deviation of Productivity
Mean 0.21 0.21 0.10 1.34 3.0 1.37
SD 1.64 1.64 0.58 11.06 25.67 6.37
p90-10 0.18 0.17 0.14 1.37 3.31 1.63

Direct Source CM CM MECS CM CM MECS
Indirect Source BEA BEA CM CM CM
Leontief Inverse X X X X

Notes: Panel A means and SD are computed from plant-level CM and MECS observations.
Panel B statistics are calculated using the 375 within-industry 90-10 dispersion measures.
Panel C statistics are calculated using the 375 within-industry standard deviation
measures. Each column computes SCC per dollar of output using different inputs, as
indicated in the column headings and table footers. A column represents either direct or
total emissions, where direct emissions come from either the CM or MECS, and indirect
emissions come from either the BEA I-O table or the CM Material trailer. See text for
details.




