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16S rRNA gene profiling and genome

reconstruction reveal community metabolic

interactions and prebiotic potential of

medicinal herbs used in neurodegenerative

disease and as nootropics

Christine Tara PetersonID
1*, Vandana Sharma2, Stanislav N. IablokovID

3,4,

Levent Albayrak5, Kamil Khanipov5, Sasha Uchitel6, Deepak Chopra1,7, Paul J. Mills1,

Yuriy Fofanov5, Dmitry A. RodionovID
2,3, Scott N. Peterson2,8

1 UC San Diego, School of Medicine, Center of Excellence for Research and Training in Integrative Health,

Department of Family Medicine and Public Health, La Jolla, California, United States of America, 2 Sanford

Burnham Prebys Medical Discovery Institute, Bioinformatics and Structural Biology Program, La Jolla,

California, United States of America, 3 Institute for Information Transmission Problems, Russian Academy of

Sciences, Moscow, Russia, 4 P.G. Demidov Yaroslavl State University, Yaroslavl, Russia, 5 Department of

Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch,

Galveston, Texas, United States of America, 6 Washington University, Department of Biology, St. Louis,

Missouri, United States of America, 7 Chopra Foundation, Department of Ayurveda and Yoga Research,

Carlsbad, California, United States of America, 8 Sanford Burnham Prebys Medical Discovery Institute,

Tumor Microenvironment and Cancer Immunology Program, La Jolla, California, United States of America

* chpeterson@ucsd.edu

Abstract

The prebiotic potential of nervine herbal medicines has been scarcely studied. We therefore

used anaerobic human fecal cultivation to investigate whether medicinal herbs commonly

used as treatment in neurological health and disease in Ayurveda and other traditional sys-

tems of medicine modulate gut microbiota. Profiling of fecal cultures supplemented with

either Kapikacchu, Gotu Kola, Bacopa/Brahmi, Shankhapushpi, Boswellia/Frankincense,

Jatamansi, Bhringaraj, Guduchi, Ashwagandha or Shatavari by 16S rRNA sequencing

revealed profound changes in diverse taxa. Principal coordinate analysis highlights that

each herb drives the formation of unique microbial communities predicted to display unique

metabolic potential. The relative abundance of approximately one-third of the 243 enumer-

ated species was altered by all herbs. Additional species were impacted in an herb-specific

manner. In this study, we combine genome reconstruction of sugar utilization and short

chain fatty acid (SCFA) pathways encoded in the genomes of 216 profiled taxa with mono-

saccharide composition analysis of each medicinal herb by quantitative mass spectrometry

to enhance the interpretation of resulting microbial communities and discern potential driv-

ers of microbiota restructuring. Collectively, our results indicate that gut microbiota engage

in both protein and glycan catabolism, providing amino acid and sugar substrates that are

consumed by fermentative species. We identified taxa that are efficient amino acid fermen-

ters and those capable of both amino acid and sugar fermentation. Herb-induced microbial

communities are predicted to alter the relative abundance of taxa encoding SCFA (butyrate
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and propionate) pathways. Co-occurrence network analyses identified a large number of

taxa pairs in medicinal herb cultures. Some of these pairs displayed related culture growth

relationships in replicate cultures highlighting potential functional interactions among medici-

nal herb-induced taxa.

Introduction

Millions of individuals are adversely affected by neurodegenerative disease worldwide [1].

Global health improvements have increased human lifespan, which further exacerbates this

disease burden. Neurodegenerative diseases, such as Parkinson’s Disease (PD) and Alzheimer’s

Disease (AD), represent a heterogenous group of disorders that promote deterioration of the

central and/or peripheral nervous systems and affect an estimated 1% and 8% of the popula-

tion, respectively [2]. Nootropics, which are drugs, supplements or herbal medicines that exert

action on the nervous system for increased mental performance, are increasingly used by both

healthy individuals and individuals with neurodegenerative diseases [3–5]. A large Global

Drug Survey of over 100,000 participants recently reported that 30% of respondents had taken

nootropics for cognitive enhancement and that nearly half of the users had obtained the cogni-

tion enhancers through friends [6]. Thus, a burgeoning need exists for the evaluation of the

efficacy of these products and the investigation of mechanisms of action through which medic-

inal herbs impinge on the progression of neurodegenerative diseases and to safely support cog-

nition in healthy individuals.

Recent studies suggest that altered gut microbiota and its metabolites are associated with

neurodegenerative diseases such as PD and AD; however, the causal relationships with human

microbiota have yet to be established [7]. In AD patients, Bacteroidetes was decreased, whereas

Actinobacteria was slightly more abundant compared to gender-matched controls. Reduced

relative abundance of other butyrate producers from the Lachnospiraceae family such as

Coprococcus, Faecalibacterium and Roseburia species has been observed in PD stool com-

pared to healthy controls [8–10]. Butyrate, a short chain fatty acid (SCFA), displays pleiotropic

effects on host physiology which can inhibit histone deacetylase, proinflammatory cytokines,

promote improved gut barrier function, induce Tregs, and function as a gut-brain axis signal-

ing molecule [11, 12]. SCFAs also attenuate neuroimmune mechanisms, neuroinflammatory

processes driving inflammaging, and the integrity of the blood-brain-barrier (BBB) [13, 14].

SCFAs such as butyrate are reduced in PD stool compared to age-matched controls and is a

relevant clinical consideration in patients given the anti-inflammatory and neuroprotective

effects of these bacterial fermentation products [15].

Herbal medicines used for neurological health and disease were the subject of the current

study (Table 1). The traditional system of medicine in India, namely Ayurveda, emphasizes

gastrointestinal health and disease prevention and commonly uses these medicinal herbs for

neurological health and disease. These nervine herbal medicines contain compounds that

cross the BBB [16] and likely interact with gut microbiota to induce local and systemic effects

including alterations in the gut-brain axis. Use of these herbal medicines is widespread for sup-

port in neurodegenerative diseases such as AD and PD as well as in healthy populations such

as medical students for nootropic effects [16–19].

Our recent work has established the prebiotic potential of medicinal herbs [20, 21]. The

most commonly cited yet debated definition of prebiotics refers to dietary carbohydrates selec-

tively fermented by gut microbiota that modulate the composition of microbiota to confer
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health benefits to the host [22, 23]. Glycan prebiotics are catabolized by microbes such as Bifi-
dobacterium spp. and Bacteroides spp. in the colon. Sugars liberated by these species and others

are then fermented by a large repertoire of saccharolytic species. The end products of micro-

bial carbohydrate and amino acid metabolism include SCFAs. The prebiotic potential of herbal

medicines to maintain immune homeostasis, reduce inflammation, improve colonic barrier

function, promote protection from opportunistic pathogens, and modulate the gut-brain axis

warrants additional basic research and clinical investigation.

Unlike traditional glycan prebiotics, the medicinal herbs studied here provide both complex

carbohydrate and protein substrates. An important consequence of medicinal herb-driven pre-

biotic effects is the alterations in bacterial community metabolism, which is expected to result

in the generation of unique metabolites that may contribute to therapeutic efficacy. Addressing

these possibilities will require human intervention studies.

In the current investigation, anaerobic human fecal cultivation was used to investigate the

extent to which 10 nervine herbal medicines commonly used in both neurodegenerative dis-

ease and as nootropics alter the growth and abundance of gut bacterial species. It is either cur-

rently unknown or scarcely little is known about the gut microbiota in the context of each

herbal medicine. It is uncertain if and to what extent gut microbiota or their metabolites medi-

ate the effects of these medicinal herbs. Mass spectrometry was implemented to determine

monosaccharide profiles of the 10 medicinal herbs since this basic information was largely

incomplete in the scientific literature. Genome reconstruction was applied to determine sugar

utilization, SCFA production and glycosyl hydrolase potential in the context of sugar profiles.

Co-occurrence network analysis was implemented to identify community interactions and

cross-feeding relationships. Thus, the authors hypothesized that the substrates present in

herbal medicines may be potent drivers to alter the gut microbiota composition thereby redi-

recting community metabolism.

Methods

Study participants and sample collection

Twelve healthy, English-speaking women and men aged 30–60 years that had previously

adhered to a vegetarian or vegan diet for >1 year were recruited to donate a single stool sam-

ple. This study was carried out in accordance with the recommendations of Sanford Burnham

Table 1. Nervine herbal medicines examined in the current study.

Species Common Name Family

Bacopa monnieri brahmi or waterhyssop Plantaginaceae

Evolvulus alsinoides shankhapushpi Convolvulaceae

Centella asiatica gotu kola or pennywort Apiaceae

Nardostachys jatamansi Jatamansi Valerianaceae

Boswellia serrata Frankincense Burseraceae

Eclipta alba bhringaraj or false daisy Asteraceae

Mucuna pruriens kapikacchu or velvet bean Fabaceae

Withania somnifera Ashwagandha Solanaceae

Asparagus racemosus Shatavari Asparagaceae

Tinospora cordifolia Guduchi Menispermaceae

Selected common names and family information are shown. Note that in some regions in India, brahmi may refer to C. asiatica. In addition, shankhapushpi may refer

to any of 4 nervine species to include Convulvulus pluricaulis (Convulvulaceae), Evolvulus alsinoides (Convulvulaceae), Clitoria ternatea (Papilionaceae) and Canscora
decussata (Gentianaceae); the commonly used E. alsinoides was examined here.

https://doi.org/10.1371/journal.pone.0213869.t001
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Prebys Medical Discovery Institute Institutional Review Board and guidelines with written

informed consent from all subjects. All subjects gave written informed consent in accordance

with the Declaration of Helsinki. The protocol was approved by the Sanford Burnham Prebys

Medical Discovery Institute Institutional Review Board (IRB-2014-020). Participants ate their

normal diets and donated a morning fecal sample in stool hats (Fisher Scientific). The fecal

samples were transferred to conical tubes and stored at -80˚C until further processing.

Nervine medicinal herbs examined in the current microbiome study

We examined 10 medicinal herbs in this study (Table 1) sourced from Banyan Botanicals

(Albuquerque, NM), with the exception of Jatamansi, which was sourced from AyurOrganics

(Victoria, Australia).

Anaerobic fecal cultures

Equal volumes of stool collected from 12 healthy vegetarian participants were pooled into a

single sample and used to inoculate (approximately 106 cells) a chemically defined medium

(CDM) or CDM supplemented with either 1% herb or 1% glucose in Hungate tubes. Anaero-

bic cultures (9% H2, 81% N2) were grown statically for 3–4 days at 37˚C as technical replicates

(n = 6) and grown to approximate saturation. CDM contains 50 mM HEPES, 2.2 mM

KH2PO4, 10 mM Na2HPO4, 60 mM NaHCO3, 4 mM of each amino acid, except leucine (15

mM), 10 mL ATCC, Trace Mineral Supplement. CDM contained nucleoside bases (100 mg/

L), inosine, xanthine, adenine, guanine, cytosine, thymidine and uracil (400 mg/L). CDM con-

tained choline (100 mg/L), ascorbic acid (500 mg/L), lipoic acid (2 mg/L), hemin (1.2 mg/L)

and myo-inositol (400 mg/L). Resazurin (1 mg/L) was added to visually monitor dissolved

oxygen. The pH of the media was adjusted to 7.4. The 2X CDM and medicinal herbs (powder)

in sterile water (2%) were separately reduced in an anaerobic chamber (Coy Labs) for 3 days.

Microbial DNA Isolation

Genomic DNA was isolated from cultures as well as the fecal inoculum using the procedures

of the QiaAmp DNA stool kit (Qiagen) with a modification that included an additional step of

bead beating using the Thermo FastPrep instrument (MP Bio) to ensure uniform lysis of bac-

terial cells. DNA was purified with QIAquick (Qiagen) purification kit columns. DNA integ-

rity was analyzed by spectrophotometry and visualized by gel electrophoresis. Quantitative

PCR was used to allow equivalent amounts of each amplicon generated in each sample to be

pooled for library construction.

16S rRNA sequence analysis

Multiplexed 16S rRNA libraries were prepared using standard 16S metagenomic sequencing

library protocols from Illumina, which uses V3-V4 region of 16S rRNA for target amplifica-

tion. We performed paired end reads (250 bp) sequencing to generate ~200,000 sequences/

sample using the Illumina MiSeq. Subsequent analysis was done in CLC Microbial Genomics

Module 2.5 (Qiagen) and R [24]. Paired end reads were merged (mismatch cost– 2, minimum

score– 8, gap cost– 3, maximum unaligned end mismatches– 0) and trimmed to the same

length. Additional quality filter steps were applied to exclude short reads, sequences with poor

quality scores, and chimeras. To ensure comparable high coverage in all samples, we excluded

samples producing <35,000 high quality reads. We did not use OTU-based enumeration of

taxa due to the over-merging that occurs. Instead each unique 16S rRNA sequence was
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subjected to BLAST using the NCBI 16S rRNA database (Bacteria and Archaea) to identify

best matches to taxa at the genus and species levels based on % identity.

Statistical analyses

Differential abundance in the microbiome across treatment groups was evaluated using the

Analysis of Composition of Microbiomes (ANCOM) methodology [25] with a False Discovery

Rate adjusted p-value of 0.05 threshold for significance. The ANCOM procedure compares the

relative abundance of a taxon between two ecosystems by computing Aitchison’s log-ratio of

abundance of each taxon relative to the abundance of all other taxa one at a time. The signifi-

cance of each test is determined using the Benjamini-Hochberg procedure that controls for

FDR at 0.05. To account for taxa absent in sample groups, an arbitrary pseudocount of 1 is

used. Weighted UniFrac distances and beta-diversity (Bray-Curtis) values were calculated

using the Qiagen CLC Genomics Module, which provides visualization of the PCoA plot.

Mass spectrometry analysis of nervine herbal medicines

All samples (1% w/v) were hydrolyzed with 2M TFA at 100˚C for 4 hrs. Samples were dried to

completion under nitrogen and reconstituted in MilliQ water. Samples were filtered through

pre-washed Costar Spin-X filters (0.45μm, nylon). An aliquot of each sample (1%) was injected

onto HPLC. Monosaccharide analysis was performed using Dionex CarboPac™ PA1 column

(4X250 mm) with PA1 guard column (4x50 mm) at a flow rate of 1 ml/min. Monosaccharide

detection was with pulsed amperometric detection with gold electrode. Elution gradients were

as follows: 0–20 min, 19 mM NaOH, 20–50 min, 0 mM-212.5 mM NaOAc gradient with 19

mM NaOH, 50–65 min, 212.5 mM NaOAc with 19 mM NaOH, 65–68 min, 212.5 mM–0 mM

NAOAc with 19 mM NaOH, 68–85 min, 19 mM NaOH. Standards included: fucose, rham-

nose, arabinose, galactose, glucose, mannose, xylose, fructose, ribose, galacturonic acid and

glucuronic acid. The monosaccharides were assigned based on the retention time and quanti-

fied using Chromeleon™ 6.8 chromatography data system software.

Genome reconstruction of sugar metabolism and SCFA pathways

To predict metabolic capabilities of microbial taxa identified by 16S analysis, we performed

genomics-based reconstruction of ten metabolic subsystems including eight subsystems

involved in sugar uptake and utilization and two subsystems for SCFA synthesis. We used a

subsystems-based approach implemented in the SEED genomic platform [26] to capture, ana-

lyze and extend pathways, enzymes, and transporters involved in sugar and SCFA metabolism

in microbial genomes. This approach is based on functional gene annotation and prediction

using three comparative genomic techniques: (i) homology-based methods; (ii) genome con-

text analysis; (iii) co-regulation by the same regulon [27]. These context-based techniques

were used to disambiguate paralogs with related but distinct functions (most notably trans-

porters) and fill-in gaps (“missing genes”) in the inferred biochemical pathways.

The reference set of 2,228 genomes representing ~700 microbial species from human gut

were from the PATRIC genomic database [28]. The metabolic subsystems were developed

based on previously published genomic studies of sugar metabolism in various bacterial taxa

[28–32] and the studies of phylogenetic distribution of bacterial pathways for production of

butyrate [33] and propionate [34]. Each reference genome in each analyzed sugar subsystem

was assigned a binary (“1” or “0”) phenotype reflecting the presence/absence of a complete

sugar utilization pathway including a sugar-specific uptake transporter (S1 Fig). For SCFA

subsystems, the assigned binary phenotypes reflect the presence/absence of at least one func-

tional pathway variant, as both propionate and butyrate subsystems include four different
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pathway variants (S2 Fig). The obtained binary phenotype matrix (BPM) for reference

genomes was used to calculate a community phenotype matrix (CPM) for all mapped taxa

obtained from 16S analysis by averaging the respective CPM values (S2 and S5 Tables). Com-

munity phenotype index (CPI) for each sample was calculated as the sum of respective CPM

values of each taxa multiplied by their relative abundances. CPI gives a probabilistic estimate

of a fraction of the community possessing a specific metabolic pathway (0–100%).

Co-occurrence analysis

Complex pairwise interactions (such as co-presence, co-exclusion, and one-way dependence)

among organisms were screened using mutual information [35] with software developed in-

house for the purpose of this project in C++. Mutual information, similar to C-score [36],

operates on presence/absence data. Individual presence/absence relative abundance thresholds

were identified for each pairwise interaction by maximizing mutual information across a

threshold plane formed by relative abundance values of interacting organisms. The bootstrap-

ping approach used to estimate the statistical significance of the patterns allows the removal of

low fidelity patterns that may appear simply by chance. All combinations of taxa pairs were

used for screening, only pairs which perform above a predefined significance value were

inspected. Bootstrapping was performed by randomly reshuffling the presence/absence vectors

for each organism pair 1000 times. All patterns analyzed had p values<0.001.

Results

Nervine herbal medicines alter fecal microbiota

The fecal inoculums used for cultivation were derived from 12 healthy vegetarian donors and

subsequently pooled in equal amounts into one pooled sample to increase species diversity. In

total, 16S rRNA analysis revealed an estimated 317 distinct taxa, and we further analyzed 243

taxa that were observed at an average relative abundance >0.01% in at least one culture condi-

tion. Variability in technical replicate cultures negatively impacted the statistical significance

of some taxa that are strongly altered in some but not all replicates (S1 Table).

PERMANOVA analysis (Bray Curtis) was used (CLC Microbial Genomics Module) and

visualized with Principal Coordinate Analysis (PCoA) to identify the significance of the differ-

ences in community composition. All herb cultures were significantly different than control

cultures (p<0.01–0.002)., visualized by pronounced shifts of microbial communities com-

pared to non-supplemented control cultures (Fig 1A). Each herb-supplemented culture was

significantly different than all others (p<0.04–0.002), with three exceptions. Communities

generated in Ashwagandha, Bacopa and Gotu Kola were not significantly different with respect

to each other. Shatavari, Jatamansi, Kapikacchu and Guduchi drive unique communities

whereas the remaining medicinal herbs generate diverse communities that are more inter-

related. PCoA analysis also highlights within-replicate culture variation. This variation is based

on selection for distinct communities, rather than poor biological reproducibility of individual

taxa. We calculated the average fold-change of taxa for each herb-supplemented culture rela-

tive to control cultures. The greatest overall modulatory capacity was observed in cultures sup-

plemented with Bacopa, Guduchi, Bhringaraj, Ashwagandha and Shankhapushpi (Fig 1B).

Each medicinal herb generated communities displaying unique dominance patterns of bacte-

rial families (Fig 1C). Compared to control cultures lacking any carbohydrate energy source,

Ashwagandha, Bhringaraj, Guduchi and Kapikacchu stimulated the growth of Bifidobacteria-

ceae and Bacteroidaceae, whereas Gotu kola communities were dominated by Enterobacteria-

ceae and Pseudomonadaceae. Frankincense strongly increased the relative abundance of

Bacteroidaceae, and Jatamansi stimulated the expansion of Ruminococcaceae. Shatavari
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selected for a relatively balanced representation of several families including: Bacteroidaceae,

Porphorymonadaceae, Enterococcaceae, Lachnospiraceae, Veillonellaceae and Alcaligenaceae.

These results emphasize the strong and unique selective properties of herbal medicine sub-

strates and the complexity of the induced communities involved in the coordinated catabolism

and metabolism of each herb.

At the species level, 136 (56%) of observed taxa are altered by more than 100-fold by at least

1 medicinal herb. The relative abundance of 14 taxa (5.3%) was induced above control cultures

by all 10 medicinal herbs including: Acidaminococcus intestini, 5 Bacteroides spp., including B.

thetaiotaomicron, 2 Butyricimonas spp., Enterobacter kobei, Klebsiella varicola, Leclercia ade-
carboxylata, Parabacteroides johnsonii, Sutterella massiliensis and Clostridium colinum. In

addition, 45 taxa (18%) displayed elevated relative abundance in response to 8 or more herbal

medicines relative to control cultures (Fig 1D). The taxa displaying high herb-responsiveness

are diverse but enriched for Bacteroides spp. The relative abundance of 45 taxa (18%) were

never increased by any herb (Fig 1E). Nearly all of the non-responsive taxa were observed at

high abundance (>0.1%) in control cultures, suggesting that these taxa may participate in herb

metabolism as their relative abundance remains high in many medicinal herb-supplemented

cultures.

Sugar composition of nervine medicinal herbs

To enhance our ability to interpret the microbiota profiles induced by each herbal medicine,

we used quantitative HPAEC-PAD mass spectrometry to characterize the monosaccharide

Fig 1. A. PCoA of nervine herbs. Bray-Curtis PCoA β-diversity plots of communities observed in Ctrl = control, Shat = Shatavari, Jat = Jatamansi, GK = Gotu

Kola, Ash = Ashwagandha, Bos = Boswellia = Frankincense, Bac = Bacopa, Shank = Shankhapushpi, Gud = Guduchi, Kap = Kapikacchu, Bhr = Bhringaraj

cultures and the uncultured FI = fecal inoculum. B. Modulatory capacity of nervine medicinal herbs. Average fold change of taxa comparing herb-

supplemented to control cultures. Zeros were replaced with e-6 to permit minimum fold-change values to be calculated. C. Medicinal herbs induce distinct

microbial communities. Average relative abundance of bacterial families generated in herb-supplemented cultures. D. Taxa displaying high herb

responsiveness. Taxa displaying increased average abundance>5-fold compared to controls in 8 or more herb-supplemented cultures. Relative abundance

values were multiplied by 1X106 to convert all values to>1. These values were log10 transformed and depicted in the heatmap. E. Taxa displaying low herb

responsiveness. Taxa displaying decreased average abundance>5-fold compared to controls in all herb-supplemented cultures. Relative abundance values were

multiplied by 1X106 to convert all values to>1. These values were log10 transformed and depicted in the heatmap.

https://doi.org/10.1371/journal.pone.0213869.g001
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composition of each herb. Given the diverse taxonomy of the plants from which the studied

medicinal herbs are derived, it was surprising that the monosaccharide profiles of all nervine

herbal medicines contain a similar distribution of sugars (Fig 2A). We did not detect fructose,

fucose, ribose or glucosamine in any herbal medicines. Additional sugar standards were not

tested. With the exception of Guduchi, which lacked mannose, the remaining sugars are pres-

ent in all of the medicinal herbs analyzed in varying abundance. Shatavari, Ashwagandha,

Guduchi and Kapikacchu had the highest sugar content with glucose as the dominant mono-

saccharide. Frankincense and Shatavari displayed elevated proportions of galactose, whereas

Guduchi possessed higher proportions of xylose.

Sugar utilization capabilities of nervine medicinal herb-supplemented

communities

Using a genomic approach, we performed metabolic reconstruction and obtained binary sugar

utilization phenotypes for 8 monosaccharides detected in the medicinal herbs. A schematic of

Fig 2. A. Monosaccharide composition of medicinal herbs. Proportions of monosaccharides detected in medicinal herbs: glucuronic acid, galacturonic acid,

xylose, mannose glucose, galactose, arabinose and rhamnose. Fructose, fucose, ribose or glucosamine were not detected. B. Sugar utilization potential and herb-

responsiveness. The average sugar utilization pathways for all taxa responding to 10, 9, 8 to 0 herbs. C. Modulation of glycosyl hydrolase representation. The

relative abundance of taxa was multiplied by the number of genes in each GH family and summed for each herb.

https://doi.org/10.1371/journal.pone.0213869.g002
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the sugar uptake transporters and catabolic enzymes involved in the reconstructed utilization

pathways is provided in S1 Fig. The obtained community phenotype matrix (CPM) contains

the sugar utilization capacity values for 216 taxa observed in medicinal herb-supplemented

communities (S2 Table). We calculated community phenotype index (CPI) for each herb-sup-

plemented community to represent the overall capability for utilization of each sugar in each

community (S2A and S2B Fig). CPI for glucose was elevated 1.5-2-fold in all studied commu-

nities (including the glucose-supplemented control culture). All sugar-specific CPI values were

significantly elevated in communities supplemented with Frankincense, Kapikacchu and

Shankhapushpi. The response to other medicinal herbs was more differentiated.

We examined taxa induced by herbal medicines in the context of their sugar utilization

capacity. The average number of relevant sugar utilization pathways encoded by taxa induced

by most herbs (8–10) was greater than taxa responding to 7 or fewer herbs (Fig 2B). While the

trend of saccharolytic potential is evident, we observed high variability in saccharolytic poten-

tial (absent to fully present) of taxa comprising each herb responsiveness group (0 to 10) and

shown (S3 Table). These results indicate that while sugar utilization potential correlates with

high medicinal herb responsiveness, many taxa encode limited or no relevant saccharolytic

potential, indicating metabolism of alternative substrates.

Glycosyl Hydrolase representation is expanded by nervine medicinal herbs

The complexity of dietary glycans consumed in human diets is mirrored by the large repertoire

of glycosyl hydrolase (GH) specificities encoded in gut microbiomes. Among the microbial

taxa profiled, GH family assignments from the CAZy database [37, 38] were available for 63

reference genomes. The relative abundance change of taxa encoding large repertoires of GH

families was further analyzed (S4 Table). Among taxa encoding extensive GH functions, we

noted that many displayed high herb responsiveness including multiple Bacteroides spp., B.

dorei, B. faecis, B. sartorii, B. thetaiotaomicron and B. vulgatus. The relative abundance of sev-

eral Parabacteroides spp. was also strongly increased by most of the medicinal herbs.

We multiplied the relative abundance of taxa by the number of genes in each family to

determine whether medicinal herbs induced preferential selection of particular GH families

(Fig 2C). Frankincense induced the largest increase in relative abundance of GHs, whereas

Jatamansi displayed the smallest influence on GH representation. All other herbal medicines

increased a larger number of GH families. The positive selection of GHs by medicinal herbs

strongly suggests that glycan catabolism specificity is restructured and an important aspect of

the microbiota modulatory capacity of each herbal medicine examined. We were unable to

correlate the annotated specificities of altered GH family representation to the sugar composi-

tion of individual medicinal herbs (not shown). These results suggest that factors other than

sugar composition such as sugar linkages, chain-length and degree of branching may represent

the relevant selective force. Transcriptional analysis of GH expression patterns would allow

more precise and relevant abundance measurements of GH functions.

Nervine herbal medicines modulate butyrate and propionate producing

species

The catabolism of glycans by GHs leads to increased availability of mono-, di- and oligosaccha-

rides that are selectively transported and metabolized by diverse sugar fermenting bacteria.

Sugar fermentation by gut microbes generates varying quantities of lactate, butyrate, propio-

nate, acetate, formate, succinate and gases such as H2, H2S, CO2, CH4 and other products.

We used available reference bacterial genomes to reconstruct butyrate and propionate bio-

synthesis pathways encoded within medicinal herb-induced communities. Four alternative
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pathways for butyrate production were reconstructed starting from acetyl-CoA, succinyl-CoA,

L-glutamate, and L-lysine, respectively (S3A Fig). For propionate synthesis we analyzed four

biochemically distinct pathway variants, namely the propanediol, acrylate, succinate pathways,

and the Wood-Werkman cycle, which ferments pyruvate to propionate using the modified

succinate pathway and TCA cycle (S3B Fig). These analyses resulted in the identification of a

large number of taxa with SCFA biosynthetic potential, including 76 butyrate and 85 propio-

nate producers, distributed among the medicinal herb-induced communities. We analyzed the

relative abundance of these taxa in response to herb-supplementation (Fig 3A and 3B). We fur-

ther calculated cumulative CPIs for butyrate and propionate in each culture condition as a pre-

diction of relative butyrate and propionate production potential induced by each medicinal

herb (Fig 3C).

Compared to control cultures, only Jatamansi selected for an increased proportion of buty-

rate producers. Compared to glucose-supplemented cultures, only Jatamansi, Guduchi and

Bacopa selected for an increase in butyrate producers. Herbal medicine supplementation

selected for distinct butyrate producers. For example, in Ashwagandha cultures, Faecalibacter-
ium prausnitzii and Eubacterium rectale were dominant. E. rectale is the primary butyrate pro-

ducer in cultures containing Gotu Kola and Kapikacchu. Clostridium symbiosum was

dominant in response to Bacopa, Frankincense and Jatamansi and to a lesser extent Guduchi,

Shankhapushpi and Shatavari. Clostridium clostridioforme was most dominant in cultures con-

taining Shankhapushpi and Shatavari. Finally, Roseburia faecis was increased significantly by

Kapikacchu supplementation.

Control cultures strongly select for propionate producers. We note that glucose-supple-

mented cultures selected for a single propionate producer, accounting for >99% of the total.

Frankincense was the only medicinal herb that selected a greater number of propionate pro-

ducers in excess of control cultures. We noted that Bacteroides spp. accounted for 72% of pro-

pionate-producing species in the fecal inoculum, but only 21% in control cultures. Compared

to control cultures, medicinal herb supplemented cultures increased the relative abundance of

predicted propionate producers. The fraction of Bacteroides spp. in medicinal herb-supple-

mented cultures ranged from 42–56% of total predicted propionate producers, with the excep-

tion of Frankincense where 77% of propionate producing species belonged to Bacteroides. The

lack of significant alterations in SCFA producers in herb-supplemented cultures may be due to

the relatively high levels of such taxa in control cultures used for comparison.

Amino acid fermentation of herbal medicines by gut microbiota

We analyzed control fecal cultures (containing amino acids but no carbohydrate energy source)

to identify species that engage directly in amino acid fermentation or cross feed on the products

of fermentation. A total of 49 taxa displayed relative abundance in control cultures >0.1%, rep-

resenting 88% of the total community (Fig 4). This community was represented by diverse taxa

including; Clostridium spp. (8), Alistipes spp. (2), Bacteroides spp. (8), Citrobacter spp. (3),

Desulfovibrio spp. (3), Enterococcus spp. (2), Oscillibacter spp. (2) and Pseudoflavonifractor spp.

(2). The sugar utilization potential of these taxa is low (ave = 0.9 of 8 max per species). Interest-

ingly, the relative abundance of all members of this group was increased by at least 1 medicinal

herb (ave = 3.9). These results reflect the high metabolic adaptability of taxa that are both effi-

cient amino acid fermenters and maintain high fitness in herb-supplemented cultures.

Medicinal herb-responsiveness of asaccharolytic gut bacterial species

We identified 29 taxa that were increased in relative abundance in cultures supplemented by

one or more medicinal herbs and that are predicted to encode limited or no potential to
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Fig 3. A. Herb responsiveness of predicted butyrate producing taxa. B. Predicted propionate producing taxa. Relative

abundance values were multiplied by 1X106 to convert all values to>1. These values were log10 transformed and depicted in

the heatmap. C. Predicted butyrate and propionate-producing taxa. Expressed as cumulative phenotype index for each

community.

https://doi.org/10.1371/journal.pone.0213869.g003
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metabolize any of the sugars present in herbs (S5 Table). Acidaminococcus intestini and Sutter-
ella massiliensis were induced by all 10 medicinal herbs. Additional taxa included Lutispora
thermophila, Parasutterella excrementihominis, Phascolarctobacterium succinatutens were

induced in 9 medicinal herb-supplemented cultures. Blautia hydrogenotrophica and Eubacte-
rium eligens were increased by 7 herbs (S5 Table). These results may highlight taxa

Fig 4. Amino acid fermenters. Taxa displaying an average relative abundance>0.1% in control cultures without

carbohydrate. Relative abundance values were multiplied by 1X106 to convert all values to>1. These values were log10

transformed and depicted in the heatmap.

https://doi.org/10.1371/journal.pone.0213869.g004
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contributing to medicinal herb catabolism through protein catabolism and/or their amino

acid fermentation capacity. A distinct set of taxa lacking relevant sugar metabolism pathways

were never induced in medicinal herb-supplemented cultures including 3 Desulfovibrio spp.,

Alistipes putredinis Eggerthella lenta, Emergencia timonensis, Flavonifractor plautii, Ihubacter
massiliensis, Phascolarctobacterium faecium and Phocea massiliensis (S5 Table). These taxa

were highly represented in control cultures suggesting they efficiently ferment amino acids but

compete less favorably when presented with medicinal herb substrates.

Co-occurrence analysis of medicinal herb-supplemented communities

The modulatory effects of medicinal herbs act in a substrate-dependent manner and via indi-

rect effects resulting from shifts in microbial community metabolism and the relative balance

of metabolic products that cross-feed consumer species. We used 16S rRNA sequence profiles

derived from 279 human fecal cultures including control cultures as well as those supple-

mented with 29 different prebiotics (SNP, unpublished data) and 20 Ayurvedic medicinal

herbs, which included those reported here. This generated robust, statistically supported co-

occurrence networks (S6 Table). We then manually inspected the co-occurring pairs of taxa,

noting several pairs or larger groups of species that displayed highly similar growth profiles in

one or more herb-supplemented cultures. The number of replicates for each medicinal herb

was insufficient for the statistical significance of these patterns to be determined. Nevertheless,

the observed patterns were so striking that we chose to analyze them in more detail. This

enabled us in some cases to distinguish patterns involving phylogenetically related taxa likely

based on high degree of functional redundancy (co-metabolism of substrate) or by syntrophic

interactions (cross-feeding) occurring by taxonomically unrelated taxa. We exploited the

observed variation in species abundance across some replicate cultures to establish additional

confidence in the significance of co-varying taxa.

The relative abundance profiles of Phascolarctobacterium faecium and Lachnoclostridium
pacaense bear conspicuous growth relationships in cultures supplemented with several herbs

(Fig 5). These taxa were highly abundant in control cultures and generally reduced in herb-

supplemented cultures. The P. faecium genome does not encode any relevant sugar metabo-

lism pathways and utilize succinate to generate acetate and propionate. Conversely, L. pacaense
encodes broad sugar utilization pathways and is predicted to generate butyrate.

C. clostridioforme, C. symbiosum and Bacteroides cellulosilyticus display coherent growth

relationships in cultures containing multiple herbs (Fig 6). These taxa are efficient amino acid

fermenters based on their high abundance in control cultures, but also encode broad sugar uti-

lization pathways. The relative abundance of all of these species is unchanged or reduced in all

medicinal herb-supplemented cultures.

Additional similarities in growth profiles were noted between pairs or groups of species. Analy-

sis of these relationships revealed that co-varying taxa do so in a substrate-dependent manner.

Moreover, it appears that some species possess elevated capacity to engage in cooperative metabo-

lism as evidenced by the large number of distinct taxa with shared growth characteristics. Finally,

we note that some medicinal herbs induce a larger number of co-varying taxa than others.

A putative consortium including; Bacteroides cellulosilyticus, B. thetaiotaomicron, B. unifor-
mis and B. vulgatus display striking growth pattern similarities that highlight the herb-depen-

dency of these putative interactions (Fig 7A). B. thetaiotaomicron and B. vulgatus displayed

increased relative abundance compared to controls in all medicinal herb-supplemented cul-

tures, whereas Bacteroides cellulosilyticus and B. uniformis were abundant in control cultures

(2% and 5.7% respectively) and remained largely unchanged by medicinal herb supplementa-

tion. The profiles of B. thetaiotaomicron and B. uniformis are strikingly similar in replicate
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Fig 5. P. faecium and L. pacaense display coordinated growth. Relative abundance of taxa in replicate cultures

(n = 3–6).

https://doi.org/10.1371/journal.pone.0213869.g005

Fig 6. Putative consortium involving B. cellulosilyticus, C. symbiosum and C. clostridioforme display coordinated

growth. Relative abundance of taxa in replicate cultures (n = 3–6). C.c. and B.c. in control, Bacopa, Bhringaraj and

Shatavari. C.c. and C.s. in Ashwagandha, Gotu Kola, C.s. and B.c. in Bacopa.

https://doi.org/10.1371/journal.pone.0213869.g006
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cultures for some herbal medicines but not others. Replicate cultures supplemented with Jata-

mansi and Gotu Kola displayed high variation that serve to reinforce the potential significance

of the observed growth pattern relationships of these taxa.

B. thetaiotaomicron and Bacteroides cellulosilyticus also display growth patterns similar to

B. ovatus and Flavonifractor plautii (Fig 7B). Again, we note that the pair-wise combinations

of taxa are medicinal herb-dependent. B. ovatus encodes sugar utilization pathways for all 8

monosaccharides present in the medicinal herbs and displays slight increases in relative abun-

dance in several medicinal herb-supplemented cultures, whereas F. plautii encodes none of the

relevant sugar utilization pathways and displays reduced relative abundance in medicinal

herb-supplemented cultures. The Bacteroides spp. are propionate producers, whereas F. plautii
generates butyrate from lysine metabolism.

The growth of taxa including; B. ovatus was also similar to B. intestinalis and B. stercoris dis-

play herb-dependent similarities (Fig 8A). The growth of B. stercoris was in turn related to the

butyrate-producing species, Emergencia timonensis and Gemmiger formicilis in cultures sup-

plemented with six different herbs (Fig 8B). E. timonensis does not encode relevant sugar

metabolism pathways whereas G. formicilis encodes 4 of 8 relevant pathways.

The growth of Bacteroides oleiciplenus displayed highly similar growth patterns to Intestini-
monas butyriciproducens in several herb-supplemented cultures and in cultures containing

Ashwagandha, Bacopa, and Shankhapushpi; their growth patterns were similar to Methanobre-
vibacter smithii and G. formicilis. The relative abundance of M. smithii is low in control cul-

tures, but increased substantially in several medicinal herb-supplemented cultures, suggesting

that in some herbal medicine cultures, M. smithii consumes the products of metabolism, ace-

tate and H2 to produce methane. This putative consortium highlights a potential cross-feeding

relationship among sugar metabolizing taxa and a methanogen. Bacteroides nordii displayed

growth similarities to M. smithii in cultures supplemented with Ashwagandha, Bacopa, Bhrin-

garaj and Jatamansi whereas Alistipes indistinctus displayed patterns similar to and B. oleiciple-
nus (S4 Fig).

Finally, a strongly linked growth pattern observed between Desulfovibrio piger, an asacchar-

olytic H2 consumer, and Bacteroides ovatus was evident in cultures supplemented with

Fig 7. A. Putative Bacteroides consortium. Relative abundance of taxa in replicate cultures (n = 3–6). Bacopa, B.c., B.t. and B.v. Gotu Kola, B.c., B.t. B.u. and B.

v, Bhringaraj, B.t., B.u and B.v., Frankincense, B.u. and B.v. Guduchi, B.t. and B.v. Jatamansi, B.c., B.t. B.u. and B.v. Shankhapushpi, B.t. and B.u. B. control, B.t.
and B.o., Bacopa and Gotu Kola, B.t., B.o., F.p. and B.c. Guduchi B.t. and B.o.

https://doi.org/10.1371/journal.pone.0213869.g007
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Bhringaraj, Frankincense and Jatamansi (S5A Fig). Bacteroides intestinalis is also part of this

consortium displaying divergent growth profile similarities to other member species in an

herb-specific manner (S5B Fig).

Additional putative consortia identified are summarized in (Fig 9) and suggest that some

taxa are more frequently involved in unique herb-microbe interactions than others. These spe-

cies may provide an important functional capacity to gut communities that combines broad

catabolic specificity with high levels of cooperative metabolism. Additional studies are

required to validate the observed growth pattern relationships and the functional basis for

their presumed interactions.

Discussion

The application of anaerobic fecal cultivation provides a means of characterizing the impact of

medicinal herbs on gut microbiota composition in the absence of complicating host influence.

This simplification allowed us to gain insights to the functional interactions and cooperative

catabolism and metabolism of gut communities in the context of nervine medicinal herbs.

Herbal medicines are a unique prebiotic, as they provide diverse glycan and protein substrates

that gut microbes are well equipped to utilize. We analyzed the relative abundance patterns of

taxa in medicinal herb-supplemented cultures focused on: 1. GH-mediated degradation of

complex carbohydrate, 2. sugar and 3. amino acid fermentation, and 4. possible cross-feeding

relationships that form in response to these processes.

Nervine medicinal herbs alter fecal microbiota

Each medicinal herb promoted unique and strong alterations in microbial communities com-

pared to control fecal cultures that provide amino acids but no carbohydrate energy source.

PERMANOVA analysis (Bray Curtis) was used to identify the significance of the differences in

community composition observed. All herb cultures were significantly different than control

cultures (p<0.01–0.002). Each herb-supplemented culture was significantly different than all

others (p<0.04–0.002), with three exceptions. Communities generated in Ashwagandha,

Bacopa and Gotu Kola were not significantly different with respect to each other. Shatavari,

Fig 8. A. Putative Bacteroides consortium. Relative abundance of taxa in replicate cultures (n = 3–6). Ashwagandha, Gotu Kola and Shankhapushpi, B.i. B.o.

and B.s. Guduchi, B.o. and B.s. B. Ashwagandha, E.t. and G.f., Gotu Kola, Frankincense, Shankhapushpi and Shatavari B.s., E.t. and G.f., Bhringaraj, B.s. and E.t.

https://doi.org/10.1371/journal.pone.0213869.g008
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Jatamansi, Kapikacchu and Guduchi drive more discrete communities compared to the other

herbal medicines (Fig 1A), and within-replicate cultures generated highly distinct communi-

ties in Ashwagandha, Bacopa, Gotu Kola, Frankincense, Kapikacchu and Shankhapushpi dis-

tinct from control cultures. The occurrence of “alternative communities” in replicate cultures

suggests that multiple microbial configurations may compete for substrate utilization with

rather similar efficiency. The relative abundance of 103 taxa was increased by most herbs (�5),

thus highlighting community members with functionally diverse catabolic capacity (S3 Table).

Distinct patterns in community representation were evident at the family-level (Fig 1C), sug-

gesting that induced taxa encode and employ redundant or complimentary gene functions in

response to medicinal herb-specific substrates. Among the ten herbal medicines evaluated in

this study, each altered a large number of taxa in an herb-specific manner, thus highlighting

the potent modulatory potential of medicinal herb substrates (Fig 1B).

Genome reconstruction of sugar metabolism pathways

The reconstruction of sugar utilization phenotypes allowed us to address herb-induced taxa

modulation in the context of sugar metabolism potential (S3 Table). The cumulative abun-

dance of individual sugar metabolism pathways was altered in medicinal herb-supplemented

Fig 9. Herb-specific taxa pairs. Summary of taxa displaying growth pattern similarities in replicate cultures.

https://doi.org/10.1371/journal.pone.0213869.g009
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communities (S2A and S2B Fig) but did not correlate with the sugar abundance or composi-

tion of any herbal medicine. This is consistent with our current understanding of the impor-

tance of higher order polysaccharide characteristics such as sugar linkages, chain-length and

branching. We speculate a more complex modulatory capacity of medicinal herbs beyond

sugar fermentation to potentially include indirect prebiotic effects from bioactive compounds

and other plant components. However, we noted a relationship between the taxa displaying

increased relative abundance for most herbs (7 to 10) encoded a larger compliment of sugar

metabolism pathways compared to those positively responding to 6 or fewer medicinal herbs

(Fig 2B). These results suggest that taxa encoding broad sugar utilization potential are more

likely to display increased fitness in response to a broad array of herbal medicines and that

sugar substrates present in each medicinal herb are component drivers of community

composition.

Consistent with this conclusion, medicinal herb-supplemented cultures drove alterations in

GH family representation and abundance in an herb-specific manner (Fig 2C). Gut micro-

biomes encode vast repertoires of GH specificities. The average relative abundance of several

Bacteroides spp., including B. dorei, B. faecis, B. sartorii, B. thetaiotaomicron, B. vulgatus, and

Parabacteroides spp. encode large repertoires of GHs. The relative abundance of these taxa was

increased by all herbal medicines examined. Future transcriptomic studies examining GH

expression patterns and sugar linkages present in each herb are expected to clarify specific sub-

strate features of medicinal herbs driving shifts in community composition.

Nervine herbs alter butyrate and propionate producing species

Among the most abundant taxa in control cultures (Fig 1E), nine are predicted to produce

butyrate from amino acid L-lysine or L-glutamate. Similarly, among the 19 most abundant

butyrate producers in control cultures (32% of the community) all but three, namely Oscilli-
bacter ruminantium, Anaerotruncus colihominis and Pseudoflavonifractor phocaeensis, dis-

played reduced relative abundance in all medicinal herb-supplemented cultures (Fig 3A). This

observation indicates that media containing only amino acid energy source select for domi-

nant butyrate producers and that medicinal herb-supplementation results in the reduced rela-

tive abundance of these taxa. The same finding was evident for propionate producers. Among

the 17 most abundant propionate producers in control cultures (57% of total), none displayed

increased relative abundance in any medicinal herb-supplemented culture (Fig 3B). These

results suggest that the butyrate and propionate generated in medicinal herb-supplemented

cultures is primarily due to sugar fermentation. In addition, compared to control cultures,

only Jatamansi selected for an increased number of butyrate producing species. Compared to

glucose only supplemented cultures, Jatamansi, Bacopa, and Guduchi promoted increased

numbers of butyrate producing species. These results may underplay the butyrogenic effect of

medicinal herbs since they are compared to control cultures that strongly select for distinct

and dominant butyrate producers.

Amino acid fermentation

The relative abundance of 45 taxa in control culture communities (Fig 1E) were never

increased by any medicinal herb tested (group 1). We noted that 49 taxa (group 2) displaying

the highest relative abundance in control cultures (Fig 4) have no overlap with taxa in group-1.

We deduce that taxa in group-1 are actively repressed or outcompeted in medicinal herb-sup-

plemented cultures. Herb-repressed taxa include Clostridium spp. (7), Bacteroides spp. (4),

Desulfovibrio spp. (3), and potential pathobionts Citrobacter spp. (3), Escherichia fergusonii
and Shigella dysentariae. Taxa in group-2 represent those that ferment amino acids or their
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metabolic bi-products with high efficiency. This group was enriched in Eubacterium spp. (4)

and Pseudomonas spp. Taxa in group-2 uniformly encoded limited sugar metabolism path-

ways (ave = 0.91 out of 8/species). These observations are consistent with their increased fit-

ness in control cultures. Given that amino acids are not limiting in cultures, it is curious that

all members of group 2 display increased relative abundance in at least 1 herb (average = 3.7)

supplemented culture. Indeed 13 taxa encoded none of the 8 sugar utilization pathways, sug-

gesting that their herb-dependent increase is due to cross-feeding on products generated by

herb metabolism.

Co-occurrence analysis of herb-supplemented communities

We noted that replicate cultures, particularly for some herbs (e.g. Gotu Kola and Shankha-

pushpi) displayed variable outcomes in community representation. We speculate that such

variation reflects alternative community configurations that form stochastically in response to

a common substrate. It is intriguing to consider that multiple, semi-independent communities

may possess similar efficiencies to metabolize complex substrate, suggesting that the specific

subset of taxa responding to medicinal herbs may be probabilistic.

The putative consortia we report must be interpreted with caution due to the limited cul-

ture replicates analyzed. Our results highlight a relatively large group of species equipped to

ferment both amino acids and sugar for energy production. The substrate preference or possi-

ble co-expression of these pathways by these dualistic taxa in cultures supplemented with

herbs remains unclear. Multiple consortia involved species belonging to a common genus. The

growth pattern relationships likely reflect the presence of redundant or overlapping metabolic

capacity and substrate preference. We also observed related growth profiles of phylogenetically

unrelated taxa that may reflect cross-feeding relationships, such as between species with high

GH diversity and sugar fermenting taxa. Additionally, consortia feature asaccharolytic taxa

that derive energy from amino acid fermentation with dualistic taxa and dualists with chemo-

lithotrophic taxa. Our results indicate that medicinal herb catabolism in culture involves both

amino acid and sugar fermentation within the community. A large fraction of the taxa belong-

ing to putative consortia possessing dual phenotypes confounds clear interpretation of the

basis for their observed growth relationships.

A number of metabolites generated by gut microbes are known to support cross-feeding

such as lactate, butyrate, propionate, acetate, formate, H2 and others. While these metabolites

represent the most obvious basis for membership in proposed consortia, it is perhaps unlikely

that this is the case. Virtually all of the growth relationships we observed involved pairs or trios

of taxa, whereas if the SCFAs and other common metabolites were the drivers of coordinated

growth, we anticipate that larger groups of taxa would be involved since numerous taxa pro-

duce and consume these metabolites. We speculate that coordinated growth profiles of species

may be based on other as yet unidentified metabolites. Analysis of low complexity communi-

ties (2–5 species) in vitro may allow validation of these predictions and an evaluation of the

molecular basis for their functional interaction.

An intriguing alternative possibility is that some taxa have evolved functions allowing them

to physically interact with specific species in the community thereby facilitating the direct

sharing/exchange of metabolites. In the context of herb-supplemented culture, we consider the

additional possibility that taxa proximity might also be mediated through physical interactions

with medicinal herb substrate. We note that the taxa displaying similar growth profiles are

enriched for mucosally-associated species such as B. thetaiotaomicron, B. ovatus, B. vulgatus,
Phascolarctobacterium, G. formicilis, D. piger and others [39, 40]. Mucosally-associated com-

munities are distinct and adapted to forage on the consistent supply of mucin components
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(e.g. glycans and protein). It is interesting to speculate that mucosal-associated species may

have evolved mechanisms to preferentially interact with species to foster efficient and directed

cross-feeding relationships. Such relationships would be predicted to be mutually beneficial.

Support for some of the putative consortia identified here has been published. D. piger dis-

played striking growth similarities with B. ovatus (S5A Fig). Fermentation results in H2 accu-

mulation that inhibits bacterial NADH dehydrogenases, thereby reducing fermentation

efficiency. The metabolic basis of interactions between B. thetaiotaomicron and D. piger has

been reported [41]. In mice, B. thetaiotaomicron increases the fitness of D. piger by providing

sulfate. The D. piger genome does not encode sulfatase functions. D. piger consumes lactate,

H2 and formate. Propionate, a major end-product of fermentation generated by Bacteroides
spp., were lower in the fecal microbiota of mice co-colonized with D. piger. We speculate that

the observed growth pattern relationships between D. piger, B. ovatus and B. intestinalis may

be based on similar interactions may link their growth profiles.

Based on microbiota transcriptomics analysis, M. smithii directs B. thetaiotaomicron to

preferentially ferment dietary fructans that generate acetate and formate that is subsequently

consumed by M. smithii for methanogenesis [42]. M. smithii preferentially consumes formate

rather than acetate when both are available. Co-colonization of mice with M. smithii and B.

thetaiotaomicron resulted in large increases in cell number of both species, indicating a mutual

positive fitness increase. We observed growth similarities between M. smithii and the related

taxa, B. oleiciplenus and B. nordii (S4 Fig) and speculate that similar cross-feeding may link

their growth profiles.

We note that some taxa are more broadly represented in interactions with other taxa dic-

tated by medicinal herb-substrates. This may highlight an important phenotypic quality of

“metabolic cooperativity”. In the context of medicinal herb metabolism, the predominantly

selected for Bacteroides spp., B. stercoris (9 interactions), Intestinimonas butyriciproducens (8),

B. cellulolyticus (7), Gemmiger formicilis (7), B. ovatus and B. nordi (6) displayed high coopera-

tivity compared to other taxa (Fig 9).

A limitation of 16S rRNA profiling is the inability to address functional consequences of

observed changes in microbiota composition. Here we employed genomic reconstruction of

select energy metabolism pathways to gain functional insights and enhance the interpretation

of 16S rRNA profiling data. While not definitive, this combination of data permits significant

hypotheses to be generated that may be subsequently tested and validated. The analysis of the

prebiotic potential of medicinal herbs represents a first step toward documenting mechanistic

aspects of how gut microbiota may contribute to the therapeutic efficacy of these nervine

herbs.

The medicinal herbs analyzed here are reported to alter host signaling via the gut-immune-

brain axis [43–49]. A growing number of studies have linked the gut microbiota as a factor in

the gut-brain axis [50–55]. It is intriguing to speculate that the gut microbiota modulatory

capacity of these medicinal herbs may contribute to their therapeutic effect. This may occur as

the result of herb catabolism that increases the bioactivity and/or bioabsorption of medicinal

herbs. The bacterial metabolites produced by herb-selected communities may also alter gut

and systemic immune functions. We expect that future and ongoing human interventions

evaluating these herbs and their effects on gut microbiota will differ in many respects with the

data reported here; however, our data suggest that medicinal herbs are potentially potent pre-

biotics that modulate a number of species with the potential to alter host physiology, particu-

larly immune function. Our findings emphasize the potential relevance of gut microbiota as a

factor in the mechanism of action of medicinal herbs. Additional studies involving healthy and

individuals with neurodegenerative disease that include analysis of gut microbial communities

and the microbially generated metabolites that gain access to the circulatory system will be of
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interest to improve our understanding of the variables that may positively or negatively influ-

ence the therapeutic efficacy of nervine medicinal herbs.

Supporting information

S1 Fig. Reconstructed sugar transport and catabolic pathways in reference genomes.

(TIF)

S2 Fig. A. Community phenotype indices. Presence (1) or absence (0) of sugar utilization

pathways multiplied by relative abundance of taxa observed in each culture condition: path-

ways for glucose, galactose, glucuronate and galacturonate. B. Presence (1) or absence (0) of

sugar utilization pathways multiplied by relative abundance of taxa observed in each culture

condition: pathways for xylose, arabinose, rhamnose and mannose.

(TIF)

S3 Fig. A. Reconstructed metabolic pathways for butyrate synthesis in reference genomes.

Four variants of butyrate biosynthesis (P1-P4) using pyruvate, succinate, glutamate or lysine.

B. Reconstructed metabolic pathways for propionate synthesis in reference genomes. Four var-

iants of propionate biosynthesis (P1-P4) using lactaldehyde/propanediol, lactate or acetate.

(TIF)

S4 Fig. Putative consortium. Relative abundance of taxa in replicate cultures (n = 3–6). Ash-

waganda, Bacopa, Gotu Kola, Jatamansi and Kapikacchu, A.i., M.s., B.n. and B.ol..
(TIF)

S5 Fig. A. Putative consortium D. piger, B. ovatus and B. intestinalis. Relative abundance of

taxa in replicate cultures (n = 3–6). Gotu Kola, Bhringaraj and Frankincense D.p. and B.o.. B.

Bacopa and Shankhapushpi, B.i. and B.o., Gotu Kola and Frankincense, B.i., D.p. and B.o.,
Bhringaraj, D.p. and B.o., Shatavari, B.i. and D.p..

(TIF)

S1 Table. 16S rDNA profiling data and statistical significance. The significance of change in

relative abundance of taxa was determined using Analysis of Composition of Microbiomes

(ANCOM) methodology with a False Discover Rate adjusted p-value of 0.05 threshold for sig-

nificance.

(XLSX)

S2 Table. Sugar utilization pathways of bacterial taxa. The presence or absence of sugar uti-

lization pathways was scored at the species level as 1 or 0, respectively. When corresponding

reference genomes were unavailable for specific taxa genus and family level assignments were

predicted. In instances where multiple genomes were available and analyzed, fractional assign-

ments were made depending on the conservation of sugar pathways.

(XLSX)

S3 Table. Taxa responsiveness to medicinal herbs. Taxa displaying increased relative abun-

dance in all 10, 9, 8, to 0 herb-supplemented cultures are shown in descending order together

with predicted sugar utilization pathways and the fold change of each taxa in herb-supple-

mented cultures green (increased by>5-fold), yellow (unchanged, <5-fold) and red

(decreased by >5-fold).

(XLSX)

S4 Table. Taxa encoding GH gene families. Taxa encoding (CAZy) or predicted to encode

large number of GH are shown along with the fold change of each taxa in herb-supplemented

cultures green (increased by>5-fold), yellow (unchanged, <5-fold) and red (decreased by
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>5-fold).

(XLSX)

S5 Table. Asaccharolytic taxa. Taxa are displayed in descending order of herb-responsiveness

along with predicted sugar utilization pathways and fold change of each taxa in herb-supple-

mented cultures green (increased by>5-fold), yellow (unchanged, <5-fold) and red

(decreased by >5-fold).

(XLSX)

S6 Table. Co-occurrence of taxa in prebiotic/herb cultures. Taxa co-occurring among 279

cultures are shown. n00 indicates number of cultures where neither taxa were observed, n01

indicates the number of cultures where taxa 1 is absent but taxa 2 was detected, n10 indicates

the number of cultures where taxa 1 is detected but taxa 2 was absent, n11 indicates the num-

ber of cultures where taxa 1 and taxa 2 were detected.

(XLSX)

Author Contributions

Conceptualization: Christine Tara Peterson.

Data curation: Christine Tara Peterson, Vandana Sharma, Sasha Uchitel, Scott N. Peterson.

Formal analysis: Christine Tara Peterson, Vandana Sharma, Paul J. Mills, Yuriy Fofanov,

Dmitry A. Rodionov, Scott N. Peterson.

Funding acquisition: Christine Tara Peterson.

Investigation: Christine Tara Peterson, Sasha Uchitel, Scott N. Peterson.

Methodology: Christine Tara Peterson, Vandana Sharma, Levent Albayrak, Sasha Uchitel.

Project administration: Christine Tara Peterson, Sasha Uchitel.

Resources: Christine Tara Peterson, Paul J. Mills, Scott N. Peterson.

Software: Christine Tara Peterson, Vandana Sharma, Stanislav N. Iablokov, Levent Albayrak,

Kamil Khanipov, Yuriy Fofanov, Dmitry A. Rodionov.

Supervision: Christine Tara Peterson, Deepak Chopra, Paul J. Mills.

Validation: Christine Tara Peterson, Deepak Chopra, Paul J. Mills.

Visualization: Christine Tara Peterson, Vandana Sharma, Stanislav N. Iablokov, Levent

Albayrak, Kamil Khanipov.

Writing – original draft: Christine Tara Peterson.

Writing – review & editing: Christine Tara Peterson, Stanislav N. Iablokov, Levent Albayrak,

Kamil Khanipov, Sasha Uchitel, Deepak Chopra, Paul J. Mills, Yuriy Fofanov, Dmitry A.

Rodionov, Scott N. Peterson.

References
1. Thakur KT, Albanese E, Giannakopoulos P, Jette N, Linde M, Prince MJ, et al. Neurological Disorders.

In: Patel V, Chisholm D, Dua T, Laxminarayan R, Medina-Mora ME, editors. Mental, Neurological, and

Substance Use Disorders: Disease Control Priorities, Third Edition (Volume 4). Washington (DC)2016.

2. Endres K, Schafer KH. Influence of Commensal Microbiota on the Enteric Nervous System and Its Role

in Neurodegenerative Diseases. J Innate Immun. 2018:1–9.

Effects of nervine herbs on microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0213869 March 19, 2019 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213869.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213869.s011
https://doi.org/10.1371/journal.pone.0213869


3. Greely H, Sahakian B, Harris J, Kessler RC, Gazzaniga M, Campbell P, et al. Towards responsible use

of cognitive-enhancing drugs by the healthy. Nature. 2008; 456(7223):702–5. https://doi.org/10.1038/

456702a PMID: 19060880

4. Waegemans T, Wilsher CR, Danniau A, Ferris SH, Kurz A, Winblad B. Clinical efficacy of piracetam in

cognitive impairment: a meta-analysis. Dement Geriatr Cogn Disord. 2002; 13(4):217–24. https://doi.

org/10.1159/000057700 PMID: 12006732

5. Corazza O, Bersani FS, Brunoro R, Valeriani G, Martinotti G, Schifano F. The diffusion of performance

and image-enhancing drugs (PIEDs) on the internet: the abuse of the cognitive enhancer piracetam.

Subst Use Misuse. 2014; 49(14):1849–56. https://doi.org/10.3109/10826084.2014.912232 PMID:

24827869

6. Maier LJ, Ferris JA, Winstock AR. Pharmacological cognitive enhancement among non-ADHD individu-

als-A cross-sectional study in 15 countries. Int J Drug Policy. 2018; 58:104–12. https://doi.org/10.1016/

j.drugpo.2018.05.009 PMID: 29902691

7. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, et al. Gut Microbiota is Altered in Patients with Alz-

heimer’s Disease. J Alzheimers Dis. 2018; 63(4):1337–46. https://doi.org/10.3233/JAD-180176 PMID:

29758946

8. Perez-Pardo P, Kliest T, Dodiya HB, Broersen LM, Garssen J, Keshavarzian A, et al. The gut-brain axis

in Parkinson’s disease: Possibilities for food-based therapies. Eur J Pharmacol. 2017; 817:86–95.

https://doi.org/10.1016/j.ejphar.2017.05.042 PMID: 28549787

9. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, et al. Parkinson’s dis-

ease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord.

2017; 32(5):739–49. https://doi.org/10.1002/mds.26942 PMID: 28195358

10. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. Colonic bacterial composi-

tion in Parkinson’s disease. Mov Disord. 2015; 30(10):1351–60. https://doi.org/10.1002/mds.26307

PMID: 26179554

11. Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation.

Immune Netw. 2014; 14(6):277–88. https://doi.org/10.4110/in.2014.14.6.277 PMID: 25550694

12. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived

butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013; 504(7480):446–50.

https://doi.org/10.1038/nature12721 PMID: 24226770

13. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota con-

stantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015; 18(7):965–77.

https://doi.org/10.1038/nn.4030 PMID: 26030851

14. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences

blood-brain barrier permeability in mice. Sci Transl Med. 2014; 6(263):263ra158. https://doi.org/10.

1126/scitranslmed.3009759 PMID: 25411471

15. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J, et al. Short chain fatty

acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls.

Parkinsonism Relat Disord. 2016; 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019 PMID:

27591074

16. Srivastav S, Fatima M, Mondal AC. Important medicinal herbs in Parkinson’s disease pharmacother-

apy. Biomed Pharmacother. 2017; 92:856–63. https://doi.org/10.1016/j.biopha.2017.05.137 PMID:

28599249

17. Kumar N, Abichandani LG, Thawani V, Gharpure KJ, Naidu MU, Venkat Ramana G. Efficacy of Stan-

dardized Extract of Bacopa monnieri (Bacognize(R)) on Cognitive Functions of Medical Students: A

Six-Week, Randomized Placebo-Controlled Trial. Evid Based Complement Alternat Med. 2016;

2016:4103423. https://doi.org/10.1155/2016/4103423 PMID: 27803728

18. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, et al. Mucuna pruriens in Par-

kinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry.

2004; 75(12):1672–7. https://doi.org/10.1136/jnnp.2003.028761 PMID: 15548480

19. Shah N, Singh R, Sarangi U, Saxena N, Chaudhary A, Kaur G, et al. Combinations of Ashwagandha

leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS One.

2015; 10(3):e0120554. https://doi.org/10.1371/journal.pone.0120554 PMID: 25789768

20. Peterson CT, Sharma V, Uchitel S, Denniston K, Chopra D, Mills PJ, et al. Prebiotic Potential of Herbal

Medicines Used in Digestive Health and Disease. J Altern Complement Med. 2018.

21. Peterson CT, Vaughn AR, Sharma V, Chopra D, Mills PJ, Peterson SN, et al. Effects of Turmeric and

Curcumin Dietary Supplementation on Human Gut Microbiota: A Double-Blind, Randomized, Placebo-

Controlled Pilot Study. J Evid Based Integr Med. 2018; 23:2515690X18790725.

Effects of nervine herbs on microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0213869 March 19, 2019 23 / 25

https://doi.org/10.1038/456702a
https://doi.org/10.1038/456702a
http://www.ncbi.nlm.nih.gov/pubmed/19060880
https://doi.org/10.1159/000057700
https://doi.org/10.1159/000057700
http://www.ncbi.nlm.nih.gov/pubmed/12006732
https://doi.org/10.3109/10826084.2014.912232
http://www.ncbi.nlm.nih.gov/pubmed/24827869
https://doi.org/10.1016/j.drugpo.2018.05.009
https://doi.org/10.1016/j.drugpo.2018.05.009
http://www.ncbi.nlm.nih.gov/pubmed/29902691
https://doi.org/10.3233/JAD-180176
http://www.ncbi.nlm.nih.gov/pubmed/29758946
https://doi.org/10.1016/j.ejphar.2017.05.042
http://www.ncbi.nlm.nih.gov/pubmed/28549787
https://doi.org/10.1002/mds.26942
http://www.ncbi.nlm.nih.gov/pubmed/28195358
https://doi.org/10.1002/mds.26307
http://www.ncbi.nlm.nih.gov/pubmed/26179554
https://doi.org/10.4110/in.2014.14.6.277
http://www.ncbi.nlm.nih.gov/pubmed/25550694
https://doi.org/10.1038/nature12721
http://www.ncbi.nlm.nih.gov/pubmed/24226770
https://doi.org/10.1038/nn.4030
http://www.ncbi.nlm.nih.gov/pubmed/26030851
https://doi.org/10.1126/scitranslmed.3009759
https://doi.org/10.1126/scitranslmed.3009759
http://www.ncbi.nlm.nih.gov/pubmed/25411471
https://doi.org/10.1016/j.parkreldis.2016.08.019
http://www.ncbi.nlm.nih.gov/pubmed/27591074
https://doi.org/10.1016/j.biopha.2017.05.137
http://www.ncbi.nlm.nih.gov/pubmed/28599249
https://doi.org/10.1155/2016/4103423
http://www.ncbi.nlm.nih.gov/pubmed/27803728
https://doi.org/10.1136/jnnp.2003.028761
http://www.ncbi.nlm.nih.gov/pubmed/15548480
https://doi.org/10.1371/journal.pone.0120554
http://www.ncbi.nlm.nih.gov/pubmed/25789768
https://doi.org/10.1371/journal.pone.0213869


22. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the con-

cept of prebiotics. J Nutr. 1995; 125(6):1401–12. https://doi.org/10.1093/jn/125.6.1401 PMID: 7782892

23. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr., Goh YJ, et al. Prebiotics: why definitions

matter. Curr Opin Biotechnol. 2016; 37:1–7. https://doi.org/10.1016/j.copbio.2015.09.001 PMID:

26431716

24. Eglen SJ. A quick guide to teaching R programming to computational biology students. PLoS Comput

Biol. 2009; 5(8):e1000482. https://doi.org/10.1371/journal.pcbi.1000482 PMID: 19714211

25. Mandal S, Van Treuren W, White RA, Eggesbo M, Knight R, Peddada SD. Analysis of composition of

microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;

26:27663. https://doi.org/10.3402/mehd.v26.27663 PMID: 26028277

26. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annota-

tion of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014; 42(Data-

base issue):D206–14. https://doi.org/10.1093/nar/gkt1226 PMID: 24293654

27. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. PATRIC, the bacterial bioinfor-

matics database and analysis resource. Nucleic Acids Res. 2014; 42(Database issue):D581–91.

https://doi.org/10.1093/nar/gkt1099 PMID: 24225323

28. Ravcheev DA, Godzik A, Osterman AL, Rodionov DA. Polysaccharides utilization in human gut bacte-

rium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory

networks. BMC Genomics. 2013; 14:873. https://doi.org/10.1186/1471-2164-14-873 PMID: 24330590

29. Rodionova IA, Li X, Thiel V, Stolyar S, Stanton K, Fredrickson JK, et al. Comparative genomics and

functional analysis of rhamnose catabolic pathways and regulons in bacteria. Front Microbiol. 2013;

4:407. https://doi.org/10.3389/fmicb.2013.00407 PMID: 24391637

30. Gu Y, Ding Y, Ren C, Sun Z, Rodionov DA, Zhang W, et al. Reconstruction of xylose utilization pathway

and regulons in Firmicutes. BMC Genomics. 2010; 11:255. https://doi.org/10.1186/1471-2164-11-255

PMID: 20406496

31. Arzamasov AA, van Sinderen D, Rodionov DA. Comparative Genomics Reveals the Regulatory Com-

plexity of Bifidobacterial Arabinose and Arabino-Oligosaccharide Utilization. Front Microbiol. 2018;

9:776. https://doi.org/10.3389/fmicb.2018.00776 PMID: 29740413

32. Bouvier JT, Sernova NV, Ghasempur S, Rodionova IA, Vetting MW, Al-Obaidi NF, et al. Novel Meta-

bolic Pathways and Regulons for Hexuronate Utilization in Proteobacteria. J Bacteriol. 2018.

33. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)

genomic data. MBio. 2014; 5(2):e00889. https://doi.org/10.1128/mBio.00889-14 PMID: 24757212

34. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, et al. Phylogenetic dis-

tribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014; 8

(6):1323–35. https://doi.org/10.1038/ismej.2014.14 PMID: 24553467

35. Cover TM, Thomas JA. Elements of information theory. 2nd ed. Hoboken, N.J.: Wiley-Interscience;

2006. xxiii, 748 p. p.

36. Stone L, Roberts A. The checkerboard score and species distributions. Oecologia. 1990; 85(1):74–9.

https://doi.org/10.1007/BF00317345 PMID: 28310957

37. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active

EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009; 37(Data-

base issue):D233–8. https://doi.org/10.1093/nar/gkn663 PMID: 18838391

38. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active

enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014; 42(Database issue):D490–5. https://doi.

org/10.1093/nar/gkt1178 PMID: 24270786

39. Gustafsson RJ, Ohlsson B, Benoni C, Jeppsson B, Olsson C. Mucosa-associated bacteria in two mid-

dle-aged women diagnosed with collagenous colitis. World J Gastroenterol. 2012; 18(14):1628–34.

https://doi.org/10.3748/wjg.v18.i14.1628 PMID: 22529692

40. Borgo F, Garbossa S, Riva A, Severgnini M, Luigiano C, Benetti A, et al. Body Mass Index and Sex

Affect Diverse Microbial Niches within the Gut. Front Microbiol. 2018; 9:213. https://doi.org/10.3389/

fmicb.2018.00213 PMID: 29491857

41. Rey FE, Gonzalez MD, Cheng J, Wu M, Ahern PP, Gordon JI. Metabolic niche of a prominent sulfate-

reducing human gut bacterium. Proc Natl Acad Sci U S A. 2013; 110(33):13582–7. https://doi.org/10.

1073/pnas.1312524110 PMID: 23898195

42. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism.

Proc Natl Acad Sci U S A. 2006; 103(26):10011–6. https://doi.org/10.1073/pnas.0602187103 PMID:

16782812

Effects of nervine herbs on microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0213869 March 19, 2019 24 / 25

https://doi.org/10.1093/jn/125.6.1401
http://www.ncbi.nlm.nih.gov/pubmed/7782892
https://doi.org/10.1016/j.copbio.2015.09.001
http://www.ncbi.nlm.nih.gov/pubmed/26431716
https://doi.org/10.1371/journal.pcbi.1000482
http://www.ncbi.nlm.nih.gov/pubmed/19714211
https://doi.org/10.3402/mehd.v26.27663
http://www.ncbi.nlm.nih.gov/pubmed/26028277
https://doi.org/10.1093/nar/gkt1226
http://www.ncbi.nlm.nih.gov/pubmed/24293654
https://doi.org/10.1093/nar/gkt1099
http://www.ncbi.nlm.nih.gov/pubmed/24225323
https://doi.org/10.1186/1471-2164-14-873
http://www.ncbi.nlm.nih.gov/pubmed/24330590
https://doi.org/10.3389/fmicb.2013.00407
http://www.ncbi.nlm.nih.gov/pubmed/24391637
https://doi.org/10.1186/1471-2164-11-255
http://www.ncbi.nlm.nih.gov/pubmed/20406496
https://doi.org/10.3389/fmicb.2018.00776
http://www.ncbi.nlm.nih.gov/pubmed/29740413
https://doi.org/10.1128/mBio.00889-14
http://www.ncbi.nlm.nih.gov/pubmed/24757212
https://doi.org/10.1038/ismej.2014.14
http://www.ncbi.nlm.nih.gov/pubmed/24553467
https://doi.org/10.1007/BF00317345
http://www.ncbi.nlm.nih.gov/pubmed/28310957
https://doi.org/10.1093/nar/gkn663
http://www.ncbi.nlm.nih.gov/pubmed/18838391
https://doi.org/10.1093/nar/gkt1178
https://doi.org/10.1093/nar/gkt1178
http://www.ncbi.nlm.nih.gov/pubmed/24270786
https://doi.org/10.3748/wjg.v18.i14.1628
http://www.ncbi.nlm.nih.gov/pubmed/22529692
https://doi.org/10.3389/fmicb.2018.00213
https://doi.org/10.3389/fmicb.2018.00213
http://www.ncbi.nlm.nih.gov/pubmed/29491857
https://doi.org/10.1073/pnas.1312524110
https://doi.org/10.1073/pnas.1312524110
http://www.ncbi.nlm.nih.gov/pubmed/23898195
https://doi.org/10.1073/pnas.0602187103
http://www.ncbi.nlm.nih.gov/pubmed/16782812
https://doi.org/10.1371/journal.pone.0213869


43. Mathur D, Goyal K, Koul V, Anand A. The Molecular Links of Re-Emerging Therapy: A Review of Evi-

dence of Brahmi (Bacopa monniera). Front Pharmacol. 2016; 7:44. https://doi.org/10.3389/fphar.2016.

00044 PMID: 26973531

44. Pathak-Gandhi N, Vaidya AD. Management of Parkinson’s disease in Ayurveda: Medicinal plants and

adjuvant measures. J Ethnopharmacol. 2017; 197:46–51. https://doi.org/10.1016/j.jep.2016.08.020

PMID: 27544001

45. Shinomol GK, Muralidhara, Bharath MM. Exploring the Role of "Brahmi" (Bacopa monnieri and Centella

asiatica) in Brain Function and Therapy. Recent Pat Endocr Metab Immune Drug Discov. 2011; 5

(1):33–49. PMID: 22074576

46. Simpson T, Deleuil S, Echeverria N, Komanduri M, Macpherson H, Suo C, et al. The Australian

Research Council Longevity Intervention (ARCLI) study protocol (ANZCTR12611000487910) adden-

dum: neuroimaging and gut microbiota protocol. Nutr J. 2019; 18(1):1. https://doi.org/10.1186/s12937-

018-0428-9 PMID: 30611275

47. Farooqui AA, Farooqui T, Madan A, Ong JH, Ong WY. Ayurvedic Medicine for the Treatment of Demen-

tia: Mechanistic Aspects. Evid Based Complement Alternat Med. 2018; 2018:2481076. https://doi.org/

10.1155/2018/2481076 PMID: 29861767

48. The benefits of natural products for neurodegenerative diseases. New York, NY: Springer Science

+Business Media; 2016. pages cm p.

49. Srivastava P, Yadav RS. Efficacy of Natural Compounds in Neurodegenerative Disorders. Adv Neuro-

biol. 2016; 12:107–23. https://doi.org/10.1007/978-3-319-28383-8_7 PMID: 27651251

50. Roy Sarkar S, Banerjee S. Gut microbiota in neurodegenerative disorders. J Neuroimmunol. 2019;

328:98–104. https://doi.org/10.1016/j.jneuroim.2019.01.004 PMID: 30658292

51. Dinan TG, Cryan JF. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol Clin North

Am. 2017; 46(1):77–89. https://doi.org/10.1016/j.gtc.2016.09.007 PMID: 28164854

52. Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: Linking the microbiome-

gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative dis-

eases. Pharmacol Ther. 2016; 158:52–62. https://doi.org/10.1016/j.pharmthera.2015.11.012 PMID:

26627987

53. Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the Mammalian gut-brain axis.

Adv Appl Microbiol. 2015; 91:1–62. https://doi.org/10.1016/bs.aambs.2015.02.001 PMID: 25911232

54. Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease.

Front Physiol. 2011; 2:94. https://doi.org/10.3389/fphys.2011.00094 PMID: 22162969

55. Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal micro-

biota in neurodegenerative diseases. Neurochem Int. 2018; 120:149–63. https://doi.org/10.1016/j.

neuint.2018.08.005 PMID: 30114473

Effects of nervine herbs on microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0213869 March 19, 2019 25 / 25

https://doi.org/10.3389/fphar.2016.00044
https://doi.org/10.3389/fphar.2016.00044
http://www.ncbi.nlm.nih.gov/pubmed/26973531
https://doi.org/10.1016/j.jep.2016.08.020
http://www.ncbi.nlm.nih.gov/pubmed/27544001
http://www.ncbi.nlm.nih.gov/pubmed/22074576
https://doi.org/10.1186/s12937-018-0428-9
https://doi.org/10.1186/s12937-018-0428-9
http://www.ncbi.nlm.nih.gov/pubmed/30611275
https://doi.org/10.1155/2018/2481076
https://doi.org/10.1155/2018/2481076
http://www.ncbi.nlm.nih.gov/pubmed/29861767
https://doi.org/10.1007/978-3-319-28383-8_7
http://www.ncbi.nlm.nih.gov/pubmed/27651251
https://doi.org/10.1016/j.jneuroim.2019.01.004
http://www.ncbi.nlm.nih.gov/pubmed/30658292
https://doi.org/10.1016/j.gtc.2016.09.007
http://www.ncbi.nlm.nih.gov/pubmed/28164854
https://doi.org/10.1016/j.pharmthera.2015.11.012
http://www.ncbi.nlm.nih.gov/pubmed/26627987
https://doi.org/10.1016/bs.aambs.2015.02.001
http://www.ncbi.nlm.nih.gov/pubmed/25911232
https://doi.org/10.3389/fphys.2011.00094
http://www.ncbi.nlm.nih.gov/pubmed/22162969
https://doi.org/10.1016/j.neuint.2018.08.005
https://doi.org/10.1016/j.neuint.2018.08.005
http://www.ncbi.nlm.nih.gov/pubmed/30114473
https://doi.org/10.1371/journal.pone.0213869



