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Illusory Correlation as the Outcome of Experience Sampling
Jerker Denrell (denrell@gsb.stanford.edu)

Graduate School of Business, Stanford University, 518 Memorial Way Stanford, CA 94305-5015 USA

Gaël Le Mens (glemens@stanford.edu)
Graduate School of Business, Stanford University, 518 Memorial Way Stanford, CA 94305-5015 USA

Abstract

Individuals are typically more likely to repeatedly select alter-
natives they have a positive impression of. This paper shows
that this sequential sampling feature of the information acqui-
sition process might lead to the emergence of illusory corre-
lation between attributes of multi-attribute alternatives. This
suggests an alternative explanation for illusory correlation that
does not rely on biased information processing. The model
also shows that illusory correlation can emerge even when the
attributes are independently distributed and the distributions
are not skewed.
Keywords: Learning; Experience; Sampling; Illusory Corre-
lation.

Introduction
Much research on illusory correlation has focused on how an
individual’s processing of information might produce biases
in her assessment of the correlation between features or at-
tributes of objects or alternatives. Previous explanations have
proposed that prior expectations (e.g. Chapman & Chapman,
1967), the differential distinctiveness of positive versus nega-
tive stimuli (e.g. Allan, 1993) and the greater distinctiveness
of infrequent events (e.g. Hamilton & Gifford, 1996) dis-
tort the encoding and recall of information used to estimate
the correlation between features (Fiedler, 2000). Some re-
searchers have also proposed that illusory correlation might
emerge from skewed distributions of the features in the pop-
ulation (Fiedler, 1991, 2000).

Most of these prior approaches assume that individuals
have access to information about two or more dimensions and
try to explain why the perceived correlation, based on this
sample, would diverge from the true one. In reality, infor-
mation is not always immediately available. Individuals may
have to sample the information sequentially. For example, in
learning about the attributes of others individuals may obtain
information only by interacting with others. In such contexts,
sampling is often endogenous: prior observations usually in-
fluence the probability of future sampling (Denrell, 2005).
For example, an individual may not want to continue to inter-
act with others unless he or she believes that the interaction
will be productive or interesting. In this paper, we show that
when decision makers sequentially sample information, the
resulting sample selection bias might produce illusory corre-
lation even when features are independently distributed in the
population and information is correctly processed.

Suppose, for example, that you are learning about the com-
petence and creativity of individuals in the population. Sup-
pose, in addition, that you only want to interact with individ-
uals that you believe are either competent or creative. Be-

ing mindful of not wasting your time, you keep a record
of all your interactions with each individual. Your estimate
of the competence and creativity of a given individual is a
weighted average of all your past interactions with that indi-
vidual. Even if competence and creativity are independently
distributed in the population, we show that you will come to
believe that those two traits are positively correlated.

The key to this result is that you may stop interacting with
another individual B depending on your assessment of at-
tributes of that individual. Suppose you mistakenly believe
that B is incompetent (B is actually competent). If you be-
lieve that B is not creative, you are unlikely to interact withB
again and thus your belief about B’s incompetence will tend
to persist. If, on the contrary, you believe that B is creative,
you are likely to interact with B again. Such an interaction
provides you with an opportunity to correct your mistaken
belief about B’s competence. Because of regression to the
mean, your belief about B’s competence is likely to become
more positive after updating. The illusory positive correlation
between competence and creativity emerges as a consequence
of this asymmetry in opportunities for correction of mistaken
estimates.

In the following, we characterize when illusory correla-
tion might develop through experiential learning, when it is
positive and when it is negative. We show that whether the
perceived correlation is positive or negative depends on how
the decision maker forms a combined evaluation of the object
based on beliefs about its dimensions. A positive illusory cor-
relation emerges when evaluations are compensatory (an ob-
ject is evaluated positively if the average of the two features
is positive) or disjunctive (an object is evaluated positively if
one of two features is positive). A negative illusory correla-
tion can emerge when the evaluation of an object is conjunc-
tive (an object is evaluated positively only if both features is
positive). We also consider what happens when the number of
attributes learnt about is higher than two. Because our model
relies on a mechanism different from existing accounts of il-
lusory correlation, it predicts that illusory correlation might
emerge in settings not encompassed by previous theories.

Model
To illustrate how illusory correlations can emerge as a result
of experience sampling, we develop a model in which an in-
dividual learns the values of two attributes of an alternative.
Let X denote the value of the first attribute and Y denote the
value of the second attribute. We assume that the belief about
X (resp. Y ) is a function of past observations of that attribute.
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A’s belief 
about feature X 

in period t

A’s belief 
about feature Y 

in period t

Sampling decision 

 

A’s observation 
of feature X in 

period t+1

A’s observation 
of feature Y in 

period t+1

Figure 1: Structure of the model. In each period, the decision
maker, A, updates her beliefs about the values of features X
and Y on the basis of her new observations, if any. The sam-
pling decision depends on the current beliefs about the values
of the features .

That is, observations of Y (resp. X) do not affect the beliefs
about X (resp. Y ). The structure of the model is represented
on Figure 1. It works as follows:

1. In each period, the decision maker can choose to sample
the alternative or to abstain. If the decision maker samples
the alternative in period t, he or she gets to observe the two
attributes. The observations in period t, xt and yt, are iid
draws from the random variables X and Y with respective
densities f1(.) and f2(.).

2. The decision maker forms beliefs about X and Y based
on his or her experiences. We assume that this process of
belief formation can be modeled as a sequential revision of
current beliefs in view of new evidence. Specifically, the
revised belief of decision maker about the random variable
X after having sampled in period t + 1, denoted x̂t+1 is
x̂t+1 = (1 − b)x̂t + bxt+1, where b ∈ (0, 1). If the de-
cision maker does not sample, the belief does not change:
x̂t+1 = x̂t. While such a weighted average model of belief
updating might seem simplistic, Denrell (2005) has shown
that it provides a reasonable approximation to actual be-
lief updating in several experimental studies. In addition,
it can be derived from more realistic connectionist models
(e.g. Busemeyer & Myung, 1992).

3. The probability of sampling the alternative in period t + 1
is denoted Q(x̂t, ŷt). This probability is assumed to be a
function of the values of x̂t and ŷt. We will assume that
it is an increasing function of both arguments. The idea
is that the decision maker values the attributes positively.
Sometimes, we will assume that Q(x̂t, ŷt) = f(u(x̂t, ŷt)),
where u(x̂t, ŷt) is a function measuring the value of the
alternative given the beliefs about the dimensions.

In summary, based on past observations the decision maker
learns about the two attributes. The decision maker is more
likely to sample the alternative if she has a positive belief
about the two dimensions. In the following, we demonstrate
how this learning process leads to an illusory correlations.

The Stationary Density of Beliefs
Due to the sample bias inherent in the above process, the be-
liefs of the decision maker about the two attributes do not
converge to their true distributions. Specifically, let X̂ and
Ŷ be the asymptotic beliefs about the values of the two at-
tributes, as t → ∞. Denrell & Le Mens (2007) showed that
the joint distribution of the asymptotic beliefs is

h(x̂, ŷ) =

1
Q(x̂,ŷ)g1(x̂)g2(ŷ)R R
1

Q(x̂,ŷ)g1(x̂)g2(ŷ)dx̂dŷ
(1)

where gi(z) is the density that the belief about dimension
i would converge to (asymptotically) if the alternative were
sampled in every period. For example, if f1(.) and f2(.)
are both Normal densities with mean zero and variance σ2,
then gi(.) is a Normal density with mean zero and variance
σ2b/(2− b).

To show that the asymptotic joint density has the form
h(x̂, ŷ), note that the process can be viewed as a (two-
dimensional) semi-Markov process. Transitions are Markov-
ian but only occur if the alternative is sampled. The stationary
distribution of a semi-Markov process is a weighted density
of the stationary density of the underlying Markov chain (here
g(x̂)), where the weight is the average time spent in a state
before a transition occurs, which here is 1

Q(x̂,ŷ) .
It is easy to generalize this idea to more than 2 dimensions.

In general, for N dimensions, the stationary joint densities of
the beliefs is

h(x̂1, · · · , x̂N) =
1

Q(x̂1,··· ,x̂N)g(x̂1) · · · g(x̂N)R
1

Q(x1,··· ,xN)g(x1) · · · g(xN)dx1 · · · dxN
(2)

When Are Beliefs Positively or Negatively
Correlated When N = 2?

In this section, we specify the conditions under which, in the
context of the model introduced above, the asymptotic beliefs
about the values of the two attributes are positively correlated
or negatively correlated. We first report a general condition
on the sampling probability Q, and we illustrates how this
specializes when Q is more precisely specified.

A General Condition for Illusory Correlation
WhenQ(., .) is doubly continuously differentiable, it is possi-
ble to specify a condition on Q(x, y) that, when met, implies
X̂ and Ŷ are positively correlated. Similarly, it is possible
to specify a condition on Q(x, y) that implies X̂ and Ŷ are
negatively correlated. These are formulated in the following
proposition:

Proposition 1 i) If ∂2 ln[Q(x, y)]/(∂x∂y) < 0 for all
x, y ∈ R, then x and y are positively correlated. ii) If
∂2 ln[Q(x, y)]/(∂x∂y) > 0 for all x, y ∈ R, then x and y
are negatively correlated.
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Proof. This formal result has been proven by Denrell & Le
Mens (2007) in another context. Their proof uses the fact that

∂2 lnh(x, y)

∂x∂y
= −∂

2 lnQ(x, y)

∂x∂y

and uses some results by Karlin & Rinott (1980) on the rela-
tion between ∂2 lnh(x,y)

∂x∂y and the correlation of X and Y (see
the Appendix)

Note that whenever ∂2Q(x,y)
∂x∂y ≤ 0 for all x, y ∈ R, the

correlation between x and y is positive. To see why, note that

∂2 lnQ(x, y)

∂x∂y
=

Q(x, y)∂
2Q(x,y)
∂x∂y − ∂Q(x,y)

∂x
∂Q(x,y)

∂y

Q(x, y)2
(3)

and ∂Q(x,y)
∂x

∂Q(x,y)
∂y > 0 because we assumed that Q(x, y) is

increasing in both x and y.

Attributes That Are Substitutes
It is possible to use the conditions specified in Proposition 1
to examine what happens when the attributes are substitutes
to each others. To do so, let’s assume that the probability of
sampling depends on beliefs and a ‘utility’ function as fol-
lows:

1. The probability of sampling in period t is Q(x̂t, ŷt) =
P [u(x̂t, ŷt)].

2. u(x̂t, ŷt) is a quantity that measures the combined value of
the alternative, given the beliefs about the two attributes.
u(x̂t, ŷt) is increasing in both x̂t and ŷt.

3. The probability of sampling depends on the ‘combined
utility’ through the logistic choice function: P (u) =
1/(1 + exp[−su]).
When ∂2u(x,y)

∂x∂y < 0, the sensitivity of the utility to an at-
tribute decreases as the value of the other attribute increases.
In that sense, the attributes are substitutes to each others. The
following proposition states that when this is the case, the
correlation between X̂ and Ŷ is positive.
Proposition 2 If Q(x, y) = 1/(1 + exp[−su(x, y)]) and
∂2u(x,y)
∂x∂y ≤ 0 for all x, y ∈ R, then the correlation between

X̂ and Ŷ is positive..
Proof. With these assumptions on Q, ∂2 lnQ(x, y)/∂x∂y

is equal to

s(1 + esu(x,y))∂
2u(x,y)
∂x∂y − esu(x,y)s2 ∂u(x,y)∂x

∂u(x,y)
∂y

(1 + esu(x,y))2
. (4)

By symmetry, ∂u(x,y)
∂x = ∂u(x,y)

∂y and ∂u(x,y)
∂x

∂u(x,y)
∂y > 0.

Thus, ∂2 lnQ(x, y)/∂x∂y is negative whenever ∂2u(x,y)
∂x∂y ≤

0.
Note that when the attributes make independent contribu-

tions to the total value (∂
2u(x,y)
∂x∂y = 0), a positive illusory cor-

relation also emerges.

Y

X

Y

X

Y

X

Figure 2: Iso-utility curves for quasi-linear mean utility. The
left quadrant corresponds to p = 1, the middle quadrant to
p = +∞ and the right quadrant to p = −∞.

With this specification, it is not possible to say much about
attributes that are complements (when ∂2u(x,y)

∂x∂y > 0). To ad-
dress this, we further specify the probability of sampling in
the next subsection.

Conjunctive and Disjunctive Evaluation Functions
Here we make assumptions about the form of the ‘utility func-
tion’. The structure is exactly as above, but the utility func-
tion, u(x̂t, ŷt), is the ‘root power mean’ or the ‘quasi-linear’
mean: u(x̂t, ŷt) = up(x̂t, ŷt) = [0.5x̂pt + 0.5ŷ

p
t ]
1/p where

p ∈ R and 0 < x̂t < a, 0 < ŷt < a for some a > 0 (i.e. we
assume positive and bounded random variables). This func-
tion has been used in previous literature (Dawes, 1964; Ein-
horn, 1970) to represent both conjunctive, compensatory, and
disjunctive utility functions. It has the following properties:

• For all p ∈ R,min(x, y) ≤ up(x, y) ≤ max(x, y).
• If p = 1, then it is the arithmetic average: u1(x, y) =
0.5x + 0.5y. This corresponds to a situation where the
utility function is compensatory.

• If p > 1, then it puts more weight on the maximum of x
and y. Thus, when p > 1, the utility function is ‘compen-
satory’: the two attributes tend to substitute for each other.
Moreover, it can be shown that limp→+∞ up(x, y) =
max(x, y). This corresponds to a situation where the util-
ity function is disjunctive.

• If p < 1, then it puts more weight on the minimum
of x and y. Thus, when p < 1, the utility function
is ‘non-compensatory’. Moreover, it can be shown that
limp→−∞ up(x, y) = min(x, y). This corresponds to a
situation where the utility function is conjunctive.

Iso-utility curves corresponding to cases where p = 1, p =
+∞ and p = −∞ are shown on Figure 2.

More generally, this utility function enables us to think
about the cases in which the attributes are complements or
substitutes. Note first that
∂2up(x, y)

∂x∂y
=
1

4
(1− p)xp−1yp−1[0.5xp + 0.5yp]

1
p−2 (5)

Thus, we have: p = 1 iff ∂2up(x,y)
∂x∂y = 0, p < 1 iff ∂2up(x,y)

∂x∂y >

0 and p > 1 iff ∂2up(x,y)
∂x∂y < 0.
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Given these assumptions, when is there a positive or nega-
tive correlation?

Proposition 3 If Q(x, y) = 1/(1 + exp[−su(x, y)]) and
u(x, y) = up(x, y)−c = [0.5xp+0.5yp]1/p− cwhere c ∈ R,
the correlation is positive whenever p≥ 1. Moreover, there is
a value of p∗ < 1 such that the correlation becomes negative
for p < p∗.

Proof. We have

∂2 lnQ(x, y)

∂x∂y
= −k £er−sc(r + p− 1) + p− 1¤ , (6)

where r = s
³
xp+yp

2

´ 1
p and

k =
rxp−1yp−1

(1 + er−sc)2(xp + yp)2
> 0.

Now, whenever p ≥ 1, then er−sc(r+ p− 1) + p− 1 > 0
and the correlation is positive by Proposition 1 i).

Next, we show that there is a value of p = p∗ < 1, such that
∂2 lnQ(x, y)/∂x∂y > 0 for all p < p∗. Note that r ∈ [0, sa].
By taking p low enough with p < 0, er−sc(r + p − 1) +
p − 1 can be made negative because r is bounded. Hence,
∂2 lnQ(x,y)

∂x∂y is positive for p low enough and the correlation is
negative by Proposition 1 ii).

Thus, whether we get a positive or negative correlation
depends on how the two attributes interact. If the attributes
are substitutes (∂

2u(x,y)
∂x∂y ≤ 0), a positive illusory correlation

emerges. When the attributes are strong complements (p is
low enough), a negative illusory correlation emerges. Note
that the assumption of complementarity (∂

2u(x,y)
∂x∂y > 0) is not

enough to guarantee the emergence of a negative illusory cor-
relation.

The picture is clearer when one consider the extremes cases
of disjunctive and conjunctive sampling rules. When the rule
is disjunctive, (u(x, y) = max(x, y)), a positive illusory cor-
relation emerges. When the rule is conjunctive (u(x, y) =
min(x, y)), a negative illusory correlation emerges. Finally,
note that in the special case where the utility is the arithmetic
average of the attribute values (p = 1), there is a positive illu-
sory correlation (this is a special case of compensatory utility
function).

Whereas the above theoretical results are asymptotic, sim-
ulations show that illusory correlations tend to emerge pretty
quickly. Figure 3 displays the size of the illusory correlation
after 10 and 50 periods, as a function of the parameter p. The
amplitude of the illusory correlation can be substantial, even
after only 10 periods. As discussed above, when p is equal to
or higher than 1, the correlation is positive. Also, the higher
p (the more compensatory the utility function), the higher the
correlation. Similarly, the correlation is negative for low val-
ues of p.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-10 -5 0 5 10

after 50 periods

after 10 periods

p

Correlation

Figure 3: Amplitude of the illusory correlation after 10 peri-
ods and 50 periods. Based on 100 000 simulations with x and
y uniformly distributed between 0 and 1, s = 10, b = 0.5 and
c = 0.5.

Why Do Illusory Correlations Emerge Through
Experience Sampling?

In the model analyzed here, illusory correlation emerges be-
cause the decision maker bases his or her decision to select an
alternative based on his or her beliefs about the values of both
attributes. In particular, alternatives that are believed to have
low values on both attributes are less likely to be selected.
Several researchers have demonstrated that in such contexts
where beliefs are formed from experience and experiences are
random, there is a negativity bias: negative experiences or ob-
servations tend to have persistent effects (March, 1996; Fazio,
Eiser & Shook, 2004). The reason is that there is an asym-
metry in terms of opportunities for correction of estimation
errors. To see why, note that an alternative which receives
negative observations or experiences is less likely to be se-
lected again, and potential underestimations of the value of
that alternative are unlikely to be corrected. When the value
of an alternative is overestimated, it is likely to be selected
again. When this happens, the decision maker has an oppor-
tunity to correct his or her error of overestimation.

Here, the value of an alternative is an increasing function
of both attributes. To fix things, suppose that the estimate of
the first attribute, x̂t, is low. If the estimate of the second
attribute is also low, then the alternative is unlikely to be se-
lected again, and both estimates are likely to remain low. If,
on the contrary, the estimate of the second alternative is high,
then the alternative is likely to be selected again. When this
happens, the estimate of the first attribute is more likely to in-
crease than to decrease. This is a consequence of regression
to the mean.
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If the estimate of the first attribute is initially high, the ef-
fect of the second attribute works in the opposite direction:
a high estimate of the value of the second attribute is more
likely to induce a diminution of the estimate of the value of
the first attribute.

Whether the illusory correlation is positive or negative
therefore depends on which of those two effects is stronger.
The relative strengths of the effects depends on ∂2 lnQ(x,y)

∂x∂y ,
the cross derivative of the probability of sampling. When
∂2 lnQ(x,y)

∂x∂y > 0, then the effect of ŷt on x̂t is stronger when
x̂t is low. This corresponds to the situation where a high value
of ŷt tends to ‘pull’ x̂t up. Because the effect of x̂t on ŷt
works in a symmetric way, this implies, overall, a positive
correlation between the estimates of both attributes.

When ∂2 lnQ(x,y)
∂x∂y < 0, then the effect of ŷt on x̂t is

stronger when x̂t is high. This corresponds to the situation
where a high value of ŷt tends to ‘push’ x̂t down. Overall,
this implies that the correlation between the estimates of both
attributes will become negative.

Discussion
The model developed in this paper makes only minimal as-
sumptions about the learning mechanism and how informa-
tion is stored in memory. It is possible to show that, when
the belief about the value of an attribute is any weighted av-
erage of past observations, the result still holds (as in Denrell
and Le Mens, 2007). This suggests that almost any reinforce-
ment learning algorithm would lead to the emergence of il-
lusory correlation, provided that observations of an attribute
are contingent on the beliefs about the other attribute.

It is possible to look at the task facing the decision maker
in terms of the trade-off between exploration and exploitation.
Here, we assume that the decision maker explores, but only
to some extent. When he or she believes that the alternative
is not attractive, the probability of sampling is reduced. The
amplitude of the effect is a function to the sensitivity of the
probability of sampling on the beliefs, or in other words, of
the propensity to explore in spite of negative beliefs: When
the sensitivity is low (i.e. the amount of exploration is high),
the size of the illusory correlation is low.

Our results illustrate that it is not necessary that informa-
tion processing be biased for illusory correlation to emerge.
While Fiedler (1991, 2000) also proposed a model where il-
lusory correlation can emerge when information is integrated
in an unbiased way, his model assumes that the distributions
of the attributes are skewed. Also, Fiedler’s model relies cru-
cially on the fact that the number of observations of each at-
tributes is bounded. Here, we show that illusory correlation
can emerge even when the distributions of the attributes are
not skewed and if the decision maker makes a very large num-
ber of observations.

Rather than challenging existing explanations of illusory
correlation, our model suggests that illusory correlation might
emerge in contexts where existing theories are not applicable:
if the decision maker has to search for information himself or

herself, illusory correlation can emerge even if the assump-
tions of the other theories are not met.

Positive Illusory Correlation When the Number
of Attributes Is N > 2.

In this section, we extend the above analysis to settings where
the alternatives have more than two attributes. Suppose there
are N attributes and that the attributes are independently dis-
tributed in the population. Let X1, · · · ,XN be N indepen-
dent random variables representing the values of the N at-
tributes.

1. The probability of sampling is Q(x̂1, · · · , x̂N) =
P [u(x̂1, · · · , x̂N)].

2. u(x1, · · · , xN) is a function that measures the combined
value of the alternative, given the beliefs about the N
dimensions. We now assume that u(x1, · · · , xN) =

( 1N
PN

i=1 x
p
i )
1/p − c, and 0 < xi < a for all i where

a > 0.

3. The probability of sampling depends on the ‘combined
utility’ through the logistic choice function: P (u) =
1/(1 + exp[−su]).
The function up(x1, · · · , xN) has many of the same prop-

erties as when n = 2. It is now possible to state a result
about the pairwise correlations between the asymptotic be-
liefs about the N attributes.

Proposition 4 Suppose

u(x1, · · · , xN) = ( 1
N

NX
i=1

xpi )
1/p − c

and

Q(x1, · · · , xN) = 1/(1 + exp[−su(x1, · · · , xN)]).

Then the pairwise correlations between the asymptotic beliefs
about the values of the attributes are all positive whenever
p ≥ 1.
Proof. The proof uses results on the relation be-

tween joint density and pairwise positive correlation due
to Karlin & Rinott (1980). According to Claim 4 in
the Appendix, it is sufficient to show that for all j and
k, ∂2 lnh(x1, · · · , xN)/(∂xj∂xk) > 0, where all xi,
i 6= j, k, are considered fixed. This is equivalent to
∂2 lnQ(x1, · · · , xN)/∂xj∂xk < 0. After some algebra, we
get:

∂2 lnQ(x1, · · · , xN)
∂xj∂xk

= −k £er−sc(r + p− 1) + p− 1¤
where r = s( 1N

PN
i=1 x

p
i )
1/p and k =

rxp−1j xp−1k /
³
(1 + er−sc)

PN
i=1 x

p
i

´2
> 0. If p ≥ 1,
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then ∂2 lnQ(x1,··· ,xN)
∂xj∂xk

< 0. Claim 4 in the Appendix implies
that all pairwise correlations between asymptotic beliefs are
positive.

When the number of attributes is N > 2, it is much harder
to study negative correlation. The reason is that there does
not seem to exist a simple condition on the joint density that
would imply pairwise negative correlations.

Appendix: On Correlations and Densities
When the Number of Attributes is N = 2

Here we state a condition on the joint density function, which
is sufficient for a positive correlation.
Definition 1 (Karlin & Rinott, 1980) A non-negative func-
tion f(x, y) is totally positive of order 2 (TP2) if
f(x∗, y∗)f(x, y) ≥ f(x∗, y)f(x, y∗) for all x∗ > x and
y∗ > y.
Claim 1 (Karlin & Rinott, 1980) Two random variables,
with joint density f(x, y) are positively correlated, i.e.,
E(XY )−E(X)E(Y ) > 0, if f(x, y) is TP2.

If f(x, y) is continuously differentiable, there is an easy
way to check whether the density is TP2. In this case, a non-
negative function f(x, y) is totally positive of order 2 (TP2)
iff ∂2 ln f(x,y)

∂x∂y > 0.
Here are conditions on the joint density sufficient for a neg-

ative correlation
Definition 2 (Karlin & Rinott, 1980) A non-negative
function f(x, y) is reverse rule of order 2 (RR2) if
f(x∗, y∗)f(x, y) ≤ f(x∗, y)f(x, y∗) for all x∗ > x and
y∗ > y.
Claim 2 (Karlin & Rinott, 1980) Two random variables,
with joint density f(x, y) are negatively correlated, i.e.,
E(XY )−E(X)E(Y ) < 0, if f(x, y) is RR2.

If f(x, y) is continuously differentiable, there is an easy
way to check whether the density is RR2. In this case, a non-
negative function f(x, y) is reverse rule of order 2 (RR2) iff
∂2 ln f(x,y)

∂x∂y < 0.

When the Number of Attributes is N ≥ 2
Here we state a condition on the joint density of N ≥ 2
random variables that is sufficient for the correlation to be
positive. In the following, we set: x = (x1, · · · , xN) and
y = (y1, · · · , yN). We start with the following definition:
Definition 3 (Karlin & Rinott, 1980) A non-negative func-
tion f(x1, · · · , xN) is multivariate totally positive of or-
der 2 (MTP2) iff f(x ∨ y)f(x ∧ y) ≥ f(x)f(y) where,
x ∨ y = (max(x1, y1), ...,max(xN , yN)) and x ∧ y =
(min(x1, y1), ...,min(xN , yN)).

This definition is a generalization of the TP2 condition and
it is equivalent to the definition of TP2 if N = 2.

The following implication is useful: if a joint density is
MTP2 then it is MTP2 also for any subset of two random
variables. Remember that MTP2 for N = 2 is equivalent to
TP2. Thus, we have the following:

Claim 3 If a joint density is MTP2 then any two random vari-
ables are pairwise positively correlated.

If the joint density is continuously differentiable then this
condition is equivalent to ∂2 ln f(x1, · · · , xN)/∂xm∂xs > 0
for all pairs m and s (m 6= s). So we have

Claim 4 Consider a joint density f(x1, · · · , xN) of
a set of random variables, x1, · · · , xN . Whenever
∂2 ln f(x1, · · · , xN)/∂xm∂xs > 0 for all pairs m and
s (m 6= s), then any two random variables xi and xj are
positively correlated.
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