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Primary Resistances for Ring-Disk Electrodes 

Joseph John Miksis, Jr. 

Materials and Molecular Research Division, Lawrence Berkeley Laboratory 
and Department of Chemical Engineering, University of California, 

Berkeley, California 94720 

November, 1975 

Abstract 

A system consisting of a disk electrode, a concentric ring 

electrode, and a large counterelectrod~ at infinity has three 

independent resistance values describing the primary potential 

difference between any two electrodes when current is passed between 

any two electrodes. These resistance values are calculated and 

presented as dimensionless correlations as functions of the ratios 

of radii of the disk and ring. 
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Introduction 

A common electrode geometry in electroanalytical and research 

applications involves a disk electrode and a concentric ring 

electrode both embedded in an insulating plane and rotated about the 

axis of the disk. Species produced by an electrochemical reaction 

at the disk can frequently be detected quantitatively by electrochemical 

i . h . 1,2,3 react on at t e r1ng. In some of these applications it is 

desir•ble to assess the ohmic poten~ial drop in the solution. For 

example, to have acontrolled electrode potential for the reaction 

at the disk one needs to know how a current to the disk and a current 

to the ring separately inf~uence the potential in the solution in 

the neighborhood of the disk. 4 •5 To ensure that a limiting current 

is maintained on the ring involves a similar question.
6 

Experimental efforts to answer these questions involve abrupt 

changes in the current to either the ring or the disk followed by a 

measurement of the change in potential of both the ring and the disk 

as shortly thereafter as possible. 4 •5 •7 Such rapid changes in 

potential and current are associated with the primary distributions 

of potential and current. 8 

Consequently, we can define a mathematical problem in \vhich 

the potential obeys Laplace's equation, 

0 ' (1) 

the potential is zero at infinity, and has a uniform value in the 

solution adjacent to each electrode. Corresponding to a zero current 
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density, the normal component of the potential gradient is zero on 

the irisulating annulus between the disk and the ring and on the plane 

surrounding the ring. This problem excludes consideration of the 

variation of conductivity within the thin diffusion layer adjacent 

to the electrodes and effectively regards the change in po~ential 

drop to be determined by the bulk of the solution. Also excluded 

from consideration is the effect of electrode kinetics, it being 

assumed that the double-layer capacity is sufficiently large that 

the potential difference across it does not change during the time 

8 of the measurement. (The course of events involving the change of 

the charge of the double-layer capacity has been examined by Nisancioglu 
I 

and Newman. 9 •10 •11) 

The problem thus defined is limited in scope since it involves 

only the geometry of the system, the conductivity of the solution, and 

the potentials and currents themselves. The principal result of the 

model is the expression of the disk and ring poteritials in terms of 

the disk and ring currents: 

where Id and 

V R did + R I , r r rr r 

I are the total currents to the disk and ring 
r 

(2) 

(3) 

electrodes, respectively, and Vd and V are the potentials, presumed 
r 

uniform, in the solution adjacent to the two electrodes. In the 

absence of concentration and surfa~e overpotentials, vd and v 
r 

can 
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be regarded to be the_potentials of the electrodes themselves, _and 

this is the usual manner of speaking when discussing primary-

distribution problems. Bear in mind that in the applications discussed 

above thes~ quantities v 
r 

probably represent 

instantaneous changes in the electrode currents and the corresponding 

instantaneous changes in the electrode potentials. 

R rr are the primary resistances defined 

by equations 2 and 3 for this ring-disk system. We can attach a 

physical meaning to them by the following considerations. When there 

is no ring current, Ir = 0 , we see that Rdd represents the 

resistance between the disk electrode and a counterelectrode at 

infinity. This resistance will be lower in the presence of the 

ring than for the disk alone because current can find a path through 

the ring electrode to the disk, bypassing some of the resistance of 

the solution. This is true even though there is no net current to 

the ring. Under· these circumstances, the potential of the ring will 

take on a definite value to sati~fy the condition of no net current 

to the ring. This value is determined by Rrd in equation 3. 

Thus, Rrd is a quantity having the dimensions of a resistance but 

which yields the potential on the ring due to a current on the disk. 

In a similar manner, we see that when there is no disk current, 

R is the resistance between the ring and a counterelectrode at rr 

infinity while Rdr reproduces the potential on the disk due to a 

current on the ring. As shown below, Rdr = Rrd . 

The geometry of the ring-disk system is defined adequately by 

the ratio r
0
/r1 of the disk radius to the inner radius of the ring 

- .. 
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and the ratio r 1 /r
2 

of the inner and outer radii of the ring. The 

resistances can be made dimensionless with the conductivity K of the 

solution and a characteristic length, which we choose to be the outer 

radius of the ring. Therefore, the results of this study can 

be presented simply by correlating three dimensionelss resistances 

(~ = Kr2Rdd , ~=~ = Kr2Rdr , and ~ = Kr2Rrr) as functions of 

two geometric ratios (ro/rl arid rl/r2) . This simplicity and 

generality is a further justification for restricting the probleiu 

to the primary resistances. 

12 
In a subsequent paper from this laboratory, we shall discuss 

some more complicated behavior of the ring-disk system in which 

concentration variations and electrode kinetics are considered in order 

to assess the current distribution on a sectioned electrode (composed 

of the ring and disk at the same potential) below the limiting current, 

the collection efficiency of th~ system when the current distributiort 

on the disk is nonuniform due to the ohmic potential drop in the 

solution, and the anomalous diffusion coefficient for a redox couple 

measured by means of the limiting current to a ring electrode with 

zero current to the disk. 



-6-

Symmetry of Resistances 

Let us consider two cases: case 1 where Id = 0 and case 2 

where Ir = 0 . For any two functions ¢1 and ¢2 
13 

Green's theorem 

says 

The integral over the volume v 
0 

is ~era here because both 

¢2 obey Laplace's equation. The surface integral is over the 

(4) 

and 

entire area enclosing the volume V , which we shall take to be the 
0 

entire half-space between the plane of the disk and the counterelectrode 

at infinity. The integral over the insulating surfaces is zero 

because the normal component of the potential gradient is zero there. 

The integral over a hemisphere at infinity is zero because each 

potential is inversely proportional to the radius, the potential 

gradient is inversely proportional to the square of the radius, and 

dS is proportional to the square of the radius. 

This leaves us with integrals over only the surfaces of the 

electrodes: 

(5) 

Now, by the definition of the primary distributions, the potential 

adjacent to each electrode is uniform and can be removed from the 

integral, with the'result 
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Furthermore, the integral of the normal component of the potential 

gradient over the surface of an electrode is proportional to the 

total current to the electrode. Equation 6 becomes 

(7) 

For the cases chosen here, Idl = 0 and Ir2 = 0 , and this reduces 

to 

(8) 

Substitution of equations 2 and 3 for the electrode potentials, with 

Idl = Ir2 = 0 , yields 

(9) 

or 

(10) 

• Gabrielli ~ al. 
7 

state this result and provide supporting experimental 

results. Equation 10 could be considered to be an example of the 

Onsager reciprocal relation. 
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Analysis 

14 
Newman reviews methods of calculating current and potential 

distribu~ions in ring or disk geometries. At first we thought that 

we could treat the ring-disk system as a composite disk of radius 

r
2 

and use the method of separation of variables in rotational 

elliptic co~rdinates. Then the current density would be zero on the 

insulating annulus while the potentials would be specified on the 

ring and disk, and the coefficients of the serie~ would be determined 

by trial and error or by matrix inversion so as to satisfy these 

boundary conditions. However, such a series is inadequate to 

represent the distributions of potential and current in this system 

because the current density approaches infinity at the inner edge 

of the ring and at the edge of the disk. (The coordinate system does 

allow treatment in a natural way of the infinite current density near 

the outer edge of the ring, just as it does for the prin~ry distri-

,. . 15 
bution near the edge of a disk without a r1ng. ) 

As an alternative, the currents due to the ring and the disk 

were treated separately by different methods. First a series of ten 

cases was defined with prescribed current distributions on the ring. 
\. 

For cases 1 and 3, these current distributions were 

2 
(11) 

2 
- X 

and 

• 
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ir3 y;+;. (12) 

where 

2r - r - r2 1 
(13) X = 

r2 - rl 

Case 2 has a zero current density everywhere on the ring but will 

have a current assigned to the disk as described below. Cases 4 

through 10 were assigned the following current distributions on the 

ring: 

i 
r,k Pk-4 (x) ' 

where Pk(x) is the Legendre polynomial. 

It was felt that these cases would represent a complete set 

(14) 

which could be superposed to reproduce any primary current distribution 

on the ring electrode. In particular, case 1 has an infinite ~urrent 

density at both the inner and the outer edge of the ring, and the 

current density approaches infinity in the manner required when an 

electrode is embedded in an insulating plane, namely, by being 

inversely proportional to the square root of the distance from the 

edge. Case 3 involves an infinite current density only at the inner 

edge ~f the ring. A superposition of cases 1 and 3 should be able to 

match the way in which any primary current distribution goes to 

infinity at the inner and outer edges of the ring. The residual 

current distribution should be finite over the ring and &dequately 
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represented by a superposition of the remaining cases 4 through 10. 

For some values of. r
0
/r

1 
and r/r

2 
where the accuracy of the 

results was questionable, the number of cases was extended from 10 

to 20. 

The next step in the procedure is to evaluate the potential 

distribution on both the disk and the ring due to the current 

distribution on the ring for each of the cases described above. For 

this purpose, we use the formula for the potential in the plane of 

the disk14 

where 

m = 

i(r 1 )K'·(m) r 1 dr 1 

r + r 1 

4rr 1 

2 
(r + r') 

and K(~) is the complete elliptic integral of the first kind. 

(15) 

(16) 

The evaluation of this integral for the potential distribution on the 

ring requires care, first of all, because the elliptic integral 

approaches infinity when r 1 = r • Additional difficulties are 

introduced for cases 1 and 3 where the current distribution approaches 

infinity at the inner or outer edge of the ring. 

The potential distributions obtained above will be nonuniform 

on both the ring and the disk. For each case; ·the potential can be 

made uniform on the disk by superposing the potential distribution due 
/ --
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to a current distribution introduced on the disk. Here we use 

rotational ylliptic coordinates n and ~ based on the radius 

of the disk. The coordinate transformation reads 

z = r ~n 
0 

and r = 

and the solution of Laplace's equation by separation of variables 

. 14 16 
in this coordinate system 1S ' 

00 

L B Pz Cn)Mz (~) ' 
n=O n n n 

where B represents arbitrary coefficients, P is again the n 2n 

r 
0 

(17) 

(18) 

Legendre polynomial, and M2n(~) (called M (0 in reference 14) 
n 

is a Legendre function of imaginary argument having properties 

described earlier. Selection of even Legendre_po1ynomials in 

equation 18 ensures that the corresponding current distribution is 

zero in the plane outside the disk; hence, the current distribution 

is not modified on the ring by superposing a potential distribution 

of the type in equation 18. 

In practice, equation 18 is truncated after a finite number of 

terms, say 20. For each case, the B values are now chosen so that 

the potential (including that due to the ring current) will be zero 

ori the surface of the disk. Up to this point, case 2 has not been 

defined or modified. We now require that the potential ¢ 
0 

be 

equal to unity on the surface of the disk, for case 2, which is 

equivalent to setting B = 1 
0 

The superposition of the disk 

potential function in equation 18 will generate a nonzero net current 
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rand a uniform potential for the disk for each case. 

Next, for each c~se, we should calculate the potential distribution 

on the ring due to the current distribution on the disk, and we 

should add this to the potential distribution previously obtained 

from the current distribution on the ring. This step involves the 

use of equation 18 with values of ~ greater than zero since 

00 

<I>' 
0 

(19) 

in the plane for r greater than r
0 

The evaluation of H2n(~) 
6 has been necessary in earlier work, and we have introduced 

refinements here to permit accurate calcul~tion for large values 

of ~ and n (see appendix A). 

The several cases that have been treated now each have prescribed 

I 

current distributions on the ring and disk, known total currents, a 

uniform potential on the disk, and a nonuniform but finite potential 

distribution on the ring. The final step of the procedure is to 

superpose cases 3 through 10 onto cases 1 and 2, in turn, in such 

a way that the potential distribution on the ring is made uniform. 

More cases can be used to attain a higher degree of uniformity. 

Cases 1 and 2 now satisfy all the requirements of a primary 

distribution-- they have uniform potentials on the ring and the. 

disk, and they satisfy Laplace's equation and all the other boundary 

conditions. Analysis of cases 1 and 2 according to equations 2 and 3 

yields values of the resistances Rdd , Rdr , Rrd , and R 
rr 
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This solution for the primary potential and current distributions 

by superposition may seem involved and complicated, but it is 

economical and accurate, and it avoids any trial-and-error calculations. 

The functions chosen for superposition make special allowance for 

the geometry of the system and can treat the infinite current 

densities at the edges of the electrodes even when the insulating 

annulus is quite thin. 

Results 

In the computed results, Rdr and Rrd usually agreed to 

within 0.01 percent. Certain limiting situations could also be 

checked to ensure the validity of the results. 

Figures 1, 2, and 3 show the values of the three independent 

resistances as functions of the geometric ratios r
0
/r

1 

For a very thin ring, R becomes infinite. 
rr 

Consequently, on 

figure 3 we have added a term which compensates for this and produces 

a finite limit as r
1 

approaches r 2 . An exception is the 

(unrealistic) limit of a zero gap distance. As r
0 

approaches r
1 

, 

the value of Kr 2R approaches 0.25, independent of the value of rr 

Discussion 

The results for Rdd can be comprehended in relation to the 

value l/4Kr for the primary resistance
15 

for a single disk in an 
0 

insulating plane. The values for the disk resistance, as plotted in 
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Figure 1. Correlation of the disk resistance. 
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Figure 2. Correlation of the interaction resistance. 
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Figur~ 3. Correlation of the ring resistance. 



/ 2. 4 I . 

-17-

figure 1, therefore approach the value 0.25 as the influence of the 

ring becomes negligible -- either for thin rings (r
1 
~ r 2) or for 

wide gaps between the ring and the disk (r
0 

<< r
1

) The influence 

of the ring is always to lower the resistance value Kr
0

Rdd below 

the value 0.25 because the ring provides an ~lternative current 

path which can help the current get from infinity to the neighborhood 

of the disk. Figure 1 shows how this effect becomes more pronounced 

for wide rings and narrow gaps. 

There are several ways of thinking about the coupling resistances 

Rdr = Rrd • First imagine a current to the disk with no current to 

the ring. Then the potential distribution will bear some resemblance 

to that for a single disk in an insulating plan~, and the similarity 

will become exact in the limit of a thin ring. The ring, in addition 

to distorting this potential field, will acquire a potential 

corresponding to the single disk at some radial position r* which 

lies between and 

on the ring and since 

Since 

2 
(r/r ) 

0 
1 + t,;2 

M (l;;) 
0 

2 --1 - ctn (E,;) 
1T 

the potential in the plane at a radial position r* due to the 

primary distribution on a single disk is 

(20) 

(21) 
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v 
r 

-1 
vd ctn (~) 

.This leads to the resistance value 

. -l(ro)· S1n - • 
r* . 

This formula becomes rigorous for thin rings when we set r* 

equal to r 2 . Thtis, the intercept on the right side of figure 2 

is known with certainty. The limit for the ordinate is 0.25 for 

(22) 

(23) 

narrow gaps (r
0 
~ r

1
) and l/2n = 0.1592 for wide gaps (r

0 
<< r 1) . 

For thick rings, it is convenient to think of a zero current 

on the disk. Then the ring itself will look like a disk, with a small 

imperfection at the center, and the potential distribution will be 

nearly that for a disk of radius r 2 in an insulating plane. The 

small disk of radius r can then sense only one potential, that 
0 

approximately equal to the potential of the ring V · = I /4Kr . 
r r 2 

This leads to the limit 

independent of the value of r
0
/r

1 

By an analysis of the current deflected from the insulating 

region for r < r 1 , one can find a correction to equation 24 for 

small disks: 

(24) 
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1 
4 

r << r and 1 2 (25) 

This limiting slope is verified in figur~ 2. 

For rings which are neither thick nor thin, we can use the 

results in figure 2 to calculate the value of r* according to 

equation 23. It turns out that r* varies from the arithmetic 

average of r
1 

and for thin rings to a value of for 

thick rings (in order to reproduce the limit in equation 24). This 

suggests the method of correlation of Rdr shown in figure 4. Here 

a value of r* is calculated ~ priori, and the ratio of the lefE · 

and right sides of equation 23 represents a deviation function which 

is close to unity. The only advantage of figure 4 ~ver figure 2 is 

that the scale can be expanded because the minimum and maximum 

values now differ by a factor of 1.05 instead of a factor of 1.57. 

Let us next turn our attention to the ring resistance R 
rr 

wide rings, it is clear that the resistance value is given by 

For 

Kr
2R rr 0.25 ' (26) 

the value for a single disk of radius r
2 

• In the other extreme, 

for thin rings (r
1 
~ r

2
) and small disks 

0.2312 

(r << r ) • 
0 1 

(27) 
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XBL 757-6828 

Figure 4. Correlation of interaction resistance. 
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Figure 3 was plotted so that the small disk case (r
0 

<< r
1

) 

w6~ld show clear!~ the~e limits. According to this figure, the 

effect of a nonzero disk is always to lower the ring resistance, 

because an alternative path is provided between the counterelectrode 

at infinity and the ring electrode. The correction to equation 27 

for small disks is very small, Thus, we see that 

the curve for r
0
/r1 = 0.8 is already very close to the curve for 

7 
Gabrielli ~ al. have measured resistances for four ring-disk 

geometries. They verified the coupling relationship between R -
rd 

artd Rdr • A comparison between their measurements and our calculated 

values is made in table 1. For this purpose, 1/K was given the value 

2.25 ohm-em for a 2 N sulfuric acid solution. The comparison 

cannot be regarded as satisfactory. Two experimental values of 

Kr
0

Rdd are greater than 0.25, which should not be possible. The 

other two values of Kr 
0

Rdd show good agreement. Measured values 

of the coupling resistance are consistently lower than those calculated. 

One value of Kr 2R is lower than 0.25, which should not be rr 

possible. The other measured values of Kr
2
R rr are significantly 

higher than the calculated values. 

Shabrang and Bruckenstein5 analyze their results in terms of 

equations of the form 

(28) 

and 



Table 1. Comparison of calculated resistances with those measured by 

Gabrielli ~ al. 
7 

for four ring-disk geometries. 

ro/rl rl/r2 Kr
2R 

rr Kr2Rdr KroRdd 

meas. calc. meas. calc. meas. calc. 

0.952 0.42 0.244 0.252 0.211 0.228 0.307 0.192 

0.968 0.62 0. 272 0.261 0.194 0.22 0.217 0.216 
.....__ 

0.976 0.82 0. 311 0.273 0.189 0.218 0.231 0.238 

0.976 0.976 1. 213 0.342 0.177 0.219 0.262 0.2495 

I 
N 
N 
I 



0 u I 
I 

-23-

(29) 

where RD , ~ , RC , and R~ are resistances and VT is the potential 

of the reference electrode and can be expressed as 

(30) 

Comparison with equations 2 and 3 shows that we can make the 

associations 

(31) 

(32) 

(33) 

and 

R = IL + Rc' + R' rr ·~ Aux (34) 

In view of equation 10, we can write 

R - R' = R - R' C C Aux · Aux 
(35) 

Shabrang and Bruckenstein take these differences to be zero. Indeed, 

if the counterelectrode is far away and the reference electrode is 

moderately far away from the ring-disk system, we can estimate
15 

R' = Aux 
1 

2TIKP ' 
(36) 
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where p is the radial position of the reference electrode in 

spherical coordinates. However, the currents I 
r 

do not, 

in general, need to have the same influence on the potential VT 

in equation 30; the difference will become accentuated the closer 

the reference electrode probe is to the ring-disk system. 

and 

From figures 1, 2, and 3, we find Kr
0

Rdd = 0.249 , Kr 2Rrd = 0.209 , 

Kr R = 0.3238 2 rr for the geometry of Shabrang and Bruckenstein 

(r
0
/r1 = 0.95 and r 1 /r2 = 8/8.4) • ~ corresponds approximately 

to Rdd - Rdr , and RR corresponds approximately to R rr 

(Shabrang and Bruckenstein come to a different conclusion.) For the 

ratio· ~/(~ + RR) , they find 'values of 0.37, 0.35, 0.34, 0.39, 

0.3~, 0.34, and 0.31, whereas we calculate 0.366 for the corresponding 

ratio. (Here, we assume that the labels V
0

/V0 and V
0

/VR are 

interchanged in their table III.) 

Because of ~ncertainties in the position of the reference 

electrode and the conductivity of the solution, we refrain from further 

comparisons with their data. 

4 . 
From the results of Miller and Bellavance we deduce an experimental 

value of Kr 2Rrd = 0.192 . The corresponding value from figure 2 is 

Kr 2Rrd = 0.206 for r
0
/r1 = 0.909 and r 1/r2 = 0.812 • 

Conclusion 

Computed values of the primary resistances for a ring-disk 

system, as presented here, should permit estimation of the uncompensated 

resistances when an attempt is made to control the potentials of the 
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electrodes. There are few geometries for which .this information 

is available. 

Discrepancies between calculated and experimental values may 

lead to refined experiments or to considerations beyond the scope 

of the primary resistances. 
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List of Symbols 

B coefficients in series l8 for potential 
n 

Id disk current, A 

Ir ring current, A 

K complete elliptic integral of the first kind 

m see equation 16 

N
2

n Legendre function of imaginary argument 

Pk Legendre polynomial 

r radial position in cylindrical coordinates, em 

r radius of disk, em 
0 

r
1 

inner radius of ring, em 

r
2 

outer radius of ring, em 

r* position on ring electrode, em 

Rdd'Rdr'Rrd'Rrr resistances defined by equations 2 and 3, ohm 

~,~,Rc,Rb resistances defined by equations 28 and 29, ohm 
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R R' resistances defined by equation 30, 'ohm Aux' Aux 

~·~·~·~ dimensionless resistances 

s 

X 

z 

T} 

K 

p 

surface area, 
2 em 

disk potential, V 

ring potential, V 

potential at reference electrode, V 

volume, em 3 

see equation 13 

distance from the plane of the disk, em 

rotational elliptic coBrdinate 

-1 -1 
conductivity of the solution, ohm - em 

rotational elliptic coBrdinate 

radial position in spherical coordinates, em 

potential in the solution, V 
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APPENDIX A: Calculation of the M Functions 

Of fundamental importance in the calculation of potential 

distributions in disk systems are the functions }1 defined b/
6 

n 

d ~ dN] 
dE,: (1 + t_;2) dE.; n = n(n + l)N , n 

(A-1) 

subject to the boundary conditions 

H 1 at s 0 , n (A-2) 

H = 0 at s = 00 

n 
(A-3) 

We describe here several methods which have been used for evaluating 

H (s) and its derivative. 
n 

Power series 

Equation A-1 is Legendre's equation of imaginary argument. 

Development in a power series 

H 
n 

00 

I 
k=O 

c sk 
k 

(A-4) 

is assured to converge for lsi < 1 . From the boundary condition 

A-2 we have 

The recursion relation is 

c 
0 

1 . (A-5) 
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(k- n- 2)(k + n- 1) · 
-ck-2 k(k - 1) . for k > 1 . (A-6) 

16 It has been shown elsewhere that 

2 (2nn!) 4 

1T [ (2n) ! ] 2 ' 
(A-7) 

the result being restricted to even values of 2n We generalize 

by noting that 

cl = -2/'JT for n = 0 ' 

cl = -'JT/2 for n = 1 ' 

and a recursion relation for higher values of n is 

c l,n 
c 
l,n-2 

The function subprogram FUNM(N,XI) calculates 

(A-8) 

(A-9) 

(A-10) 

N (~) 
n 

according 

to this method beginning at statement 7. The function subprogram 

FUNMP(N,XI) calculates the derivative M' (~) 
n 

by the same technique. 

Series in 1/E, 

On the basis of equations 8.1.3 and 15.1.1 of reference 17, one 

can develop the expression, convergent for 1~1 > 1 , 
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FUNCTIO"l ~UI\;~(N.,X() $ XI?=XI*"'2 S AOD=loC $ SU"4=lo0 
Pt2=t.5?1')79t::';:>679'~8<?66l02 
IF(IIHS(XI)oLTolo':) GO F1 7 $ ~0 1 K=1,5CC 
'AO~~-AOD~rLCAT(2*~+N)~FLOAT(2*K+N-ll/4oO/FLOAT(K)/(FLOAT(K+Nl+Oo5l 
1 /X I~ 

SU,..=SUM+ADD 
1 lFCARS(J'nlil.LTolo0E'-<'l7-Af'S(SU~ll GO TO£. 
2 FlJN'~=SlJI.'/XI•':::'(t+Nl/Pt2 t. l~"(N.E'OoO) R:TUR"' 

00 1 Nf';=l,N 
3 FlJN~=tlJ~:·~"FLCAT!N~)/f.LOAT(Z>Io:NN+ll $ N2=N/2 

.fF(N ..... f •. ?•':N?l GO TO~~ f, DO 4 ~:N=I,N2 
4 .. FUN"':FU'-.;\4•.•FLOAT(N•l)/(FLilhT(N!\l-0.5) $ RO:TU::'IN 
5 FlJN'.I\:FIJ'\;'A'•P!? $ lf'(N2.i:O.C) "<f-TtJ!~N $00 6 N~i=1,N2 
6 FUN'~=FUf\.'~<•(tLf1AT("lN)+Io<;)/FLOAT(N"l) $ R"':Tll~t~ 
7 42~1.0 t N2=N/2 ' IFI2~~2.EO.N) GQ ~0 9 $ 41=-Pl? 

IF(N.E0.1J Gfl TO 11 t f'Jil q N'-1=3,N,2 
8 AI=I\I/!1.'J-I.O/FlflATI'\1'1ll'~*2 f. GO TO 11 
9 q:~1o0/f'>l2 f, lF(NoFO.Jl r,O TO 11 $ OIJ 1~ NN=2tNt2 

_ 1 (I_ .A 1 =A 1 / ( 1 • " - 1 • r / r L ()A T ( N N ) ) ~ 'l< 2 
11 A1=A1*XI ~ FUNM=A2+A1 $ 00 12 K=2,500,2 

A2=-A2*XT?Of-LOAT(K-N-?)OFLIJAT(K+N-1)/FLOAT(K~I(-K) 
A1=-,\l•:•xt?*F·LOAT(<-N-1 )r.FLO.\T(K+Nl/FLOAT(l<.'l't<.+o<) $ Af)O:A2+Al 
FUN'A:FUf\JM+ADD 

12 IF(t.llSCADfJloLToloE-9"'AtlS(FUN~)) PE.TURN $ ~fTUqN ~ Et~O 

FliN('TJQI\; f'IJ"lr.<P(~:,x I) " X 12=XI**2 $ ADOi:t.•) 1> SUt~=t.') 
P I 2 = I • 57 1 7 9 f 3? 6 7 c. 4 "'t; fJ>l o 2 
_IF(..,SS(XIloLT.1oOl GC HJ 7 $ 11'1 I 1(:1,500 

-ADD:-AOnorLDAT(?OK+N)¢FLCATI2*K+N+1)/4o/FL0AT(K)/(rLUAT(K+Nl+Oo5) 
I/XI2 

SlJM::-<;U"1tA[l0 
1 IF(A'lS(A1f'loLTolo''E-9 *.\eS(SU'-4)) GO TO 2 

-2 FlJil'-t;:>=-SlJ~'/XI><,:,(?+-~l)/.~I2~'FLOAT(N+1) 
IF ("' • t 0 • ·~ ) r_q.: T IJ P N $ f'D J N N = I , N 

1 FU"''1fJ=FUN"P'·'FLOIIl(NN)/FL>JAT(;:>"NN+1) $ N2=N/? 
TF(I'IJ.~I'=.?'''N? l GC rn -~ $ [)Q 4 NN= 1, "'? 

4 Fl)f\J\1P=~='II'I"'"'f-l.OAT(NN)/-(FL01\T(NN)-•: .')) ~ r~C:TURN 
5 Fll'·l~1P=F1!'l'-1P'''P12 f. TF (t-J;>.COo0) r·lt TIJD:-J $ 00 6 ~;~-J=I ,N2 
6 FUN'-'Po-.FUt'"~'' (FLOIIf("'N)+J.SJ/Ft_r.AT(I\JN) $ RC:.TU;?\1 
7 1\2=1 o/'<T l.i-J?::N/2 f IF(;>:lc~J2oEOoN) Gi.J TIJ 9 $ A1 =-Pl2 

I F ( \l • [ 0 .t l t; n T n I I ~ [) Cl >l N N = 3 , 1\1 , 2 
6 1\1=1\1/(1 •. :-1.':/FL•JAT(NN))\<*2 $ Gn TO 11 
9 A1:-lo0/PI2 $ IF(N.EO.O) GO TO 11 $ ~U 10 NN=2,N,? 

1 "l __ A 1 = 1\ 1 . / ( 1 • " - I • 1: / F l n A T ( N N ) ) >t. >I< 2 
I 1 FUNI.1D:I\J t Of) 1? K:?.,S00,2 

A 2=- A 2 >~<x I 2 '~ 1- L n A r ( K -N- 2 l '7-F LO 4 T ( K +1\1- I ) /FLOAT ( K* K -K I 
A 1 = - A I t.< X I 2 * F L 0 AT ( K - N -I ) ·' F L 0 AT ( K + N ) / F L '1 AT ( K * K + K ) 
AOO=A2*FLOAI(K)+AI~'FLf)llr(K+1) f, FUN"1P:::F1JNMP+I\DD 

i~ IF(AA~(IIOD).LTo1 .F-Q*A85(FUN~PI) RETlJQN $RETURN $END 
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M (l;) = 
n 

f(n + 1) 

[rG + ~)r 

= (A-ll) 

where Q (i~) is a Legendre function of the second kind of imaginary 
n 

argument whose value at the origin is determined to be 

Q (0) 
n 

Dne can simplify the expressions somewhat by noting that 

and 

M (~) 
0 

2 
-+- as 

7f~ 

(n + 2)
2 

Mn+2(~)-+ (2n + 5)(2n + 3) 

Then, if we write equation A-ll as 

M (~) 
n 

~-+00, 

H (~) 
n 

~2 
as ~-+oo. 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 



0 i_ .. l, 
'V f J . i .• J 

l ' 

-31-

a 

then the values of D can be inferred from equations A-13 to A-15 
0 

and the higher coefficients are determined by the recursion relation 

(2k + n)(2k + n- 1) 
-Dk-1 ( 1\ 

4k k + n + 2) 
(A-17) 

The function subprogram FUNM(N,XI) calculates M (~) 
n 

according 

to this method for ~ > 1 . The function subprogram FUNMP(N,XI) 

calculates the derivative M'(~) by the same technique. 
n 

S . . . -1(1:) er1es expans1on 1n ctn s 

Introduction of the variable 

transforms the differential equation A-1 to 

. 2 s1n y n(n + 1)M 
n 

with boundary conditions 

M = 0 at y = 0 . 
n 

M 1 at y = n/2 . 
n 

The asymptotic forms A-13 to A-15 lead to 

2 
M -+- y 

o n 
as y -+ 0 , 

(A-18) 

(A-19) 

(A-20) 

(A-21) 

(A-22) 
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1 2 
M1 ~ 2 y as y ~ 0 , 

2 2 
· ~ (n + 2) y 

Mn+2(y) (2n + 5)(2n + 3) Mn(y) as Y ~ 0 · 

The solution can be expressed as a power series in y 

M 
n 

00 

L ~y2k+n+l . 
k=O 

(A-23) 

(A-24) 

(A-25) 

This series is observed to converge for all the values of interest, 

that is, y between 0 and n/2 or ~ between 0 and oo The 

values of A can be inferred from equations A-22 to A-24. A 
0 

recursion relation can be derived for the higher coefficients . 

This involves the expansion of . 2 
S1n y in a power ~eries ~n y . 

The subroutine COEF(NMAX,KMAX,A) establishes the coefficients 

for M
2 

(~) , that is, for even values of 2n . The subroutine 
n . 

DISK(R,PE,A2N,NM) calculates the values of M2n(~) for a given value 

of ~ (related to R) and stores the result in the array PE(N) • 

These programs are specialized for the ring-disk geometry treated 

in this thesis and are intended to calculate the potential on the 

ring due to a current on the disk, in conjunction w'ith the computer 

programs discussed in appendix B. It was not necessary for this 

purpos~ to develop the derivative M;n(~) However, the subroutine 

DISKP(R,PPE,A2N,NM) calculates the values of MZn(O and stores 

them in the array PPE(N) . 
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SUAnOu INE COEF(NMAX,KMAX 1 Al ~ DIMENSION A(20,40) 
A(l,l) lo/1.S7074632'>744cl<;;">61~2 i. 00 1 1<=2,1<.'-IAX i. DO N=l 1 N"4AX 

1 A(N 1 K) C,Q $ DO 3 N=2 1 N~AX ~ ON=N-1 
-"- A ( N 1 1 l = 4 • 0 *ON >it~'?.* A ( N -1 1 1 l / ( 4 • ~ * QN+ 1 • ) / ( 4 • C II: ON-1 • 0)" .. " 

DO 3 KK=2,K~AX $ OK=KK.-1 $ SUM:O,O ~ PFA~=1.0 
SIGNP=-1.0 $ 00 2 LP=t,KK t P=LP-1 $ SIGN~=-SIGNP ~ FACM=1•0 
lF(LP.GTo1 l PFAC=PFAC*C2oO~P+1.01*2.0*P $ SIGN=SIGNP 

--··DO 2 MM=LP 1 '<K $ Q,.=.,.M-1 . 
IF(MMoGT.LP) FAC~=FAC"'*2•C*(UM-P)*(2,0*0M-2.0*P+1.0l 
SUM=SUM+A(N,KK-MM+li*SIGN*4•0*(DK.-O~+O~+Oo5l*COK-0 ... +0Nl/PFAC/FACM 

,2 SIGN=-SIGN " 
-·3-A(t~,KK )=-SUM/4.0/0K/(Z,O*ON+OK+O.S) $.RETURN $ END 

• 1 

2 

SURROUTINE DISK(R 1 PE 1 A~N 1 NM) $DIMENSION PE(20),A2~(20,40l,Y~(60l 
CALCULATES M(XIl, THE "LEGEN0~~ FU~CTION OF IMA~INARY ARGUME~T 
V=PI/2.-ATAI-<(Xllt '"HeRE XI=SO:?T(Pf.:*2-1.0) 

·v=ASIN( loO/R) f, YM( l l=Y $ ¥2=¥'11-Y $ MAX:NM+3:3 $ DO 1 M=1 ,MAX 
YM("''+1l=YM(M)¥Y2 $DO 3 N=1,No'" $ PE(Nl=O.O $DO 2 114=1,40 
ADD=A2NCN,Ml~YM(M+N-1) $ ~E(Nl=PE(N)+AOD 
(F(ARS(A00).LT.1.E-7*AUS(PE(NI)l GO TO 3 

-····-· ·-3 CONTINUE $ RETURN $ END -

SUBROUTINE D!SKP(o.!,PPE,A2N,NM)$')!MENSIIJN Pr>EC20),.\?N(20,40I,YM(60) 
C CALCULATES THE DERIVATIVE OF IHXII, THt:: LC::GEND~E·FtJt>ICTIO''' OF 
C IMAGINA~Y ~R~U~ENT Y=Pl/2- ATAN(XI I 

----····-v=ASINt1.C·IR) !> YM(1l=1o'l!. Y'?=Y*Y i. r.~.\X=N'~+3b $DO 1 ~l=t,MAX 
1 YM(M+1 I=Y~(MI*Y? 'DO 3 N=I,N~ t P~~(N)=0.C !. 00 2 ~=1,4J 

A D D = A ?. N ( N , ·~ I * Y ·~ ( M + N- l ) t,: F L 0 A T C 2 * "'1 + 2 ~' N- J ) 1 P r> [ ( N I = P P E ( N ) + A r > 0 
2 IF(AHS(.\DD),LToloE-7*ArlS(PPt(N))) GCJ TO .3 
3 PPf(N)=-PPE(N)/R**2 $ RETURN $ END 
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Recursion in order n 

Let 

-1 
~ ctn (~) - 1 , 

and 

(n + l)Qn+l (i~) = (2n + l)i~Q (i~) - nQ 1 (i~) . n n-

A recursion relation for the derivative is 

dQ (i~) 
(1 + ~ 2 ) __;n~- = n~Q (i~) + niQ 1 (i0 • 

d~ n n-

Now M (~) is related to Q by n n 

M (~) = 
n 

where Q (0) is given by equation A-12. 
n 

To avoid complex arithmetic, define 

Equations A-28 and A-29 become 

(A-26) 

(A-27) 

(A-28) 

(A-29) 

(A-30) 

(A-31) 

(A-32) 
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and 

nsq (s) - nq l(s) . n n- (A-33) 

The function subp.rogram XI(R,Z,ETA;)NDEX,ANS) calculates 

M2n(s) and HZn(s) by means.of the recursion relations developed 

above. It also calculates a conversion from cylindrical coordinates 

to elliptic coordinates since it was originally designed to be used 

in a program to calculate the primary resistance in a cylindrical 

cell with a small disk.centered in one end and with the counterelectrode 

comprising the other end of the cell. For this reason, the function 

XI also'calculates Pin(n)M_2n(s) and Pzn(n)H2n(E,;) as well as the 

r derivative of P2n(n)M2n(s) · 

The recursion method loses accuracy for large values of n 

and this becomes more severe for values of s greater than 1. 

An error in the sixth significant figure is detectable at n = 24 

for s = 0.5 , at n = 14 for E,; = 0.9 and 1.0 , at n = 8 for 

s = 2 , and at n = 6 for s = 3 and 4 • 

Finite differences 

A finite-difference solution of equation A-1 or equation A-19 

has been developed using the variable 
-1 

y = ctn (0 as the independent 

variable. ~1ile this method gave generally satisfactory results, its 

accuracy can be exceeded by using one of the methods described here. 



-36-

FIJN': T l'JN X I C P, l, FT A, T~ Of X, A"' S, 0 I 
Dl""'!\S!O"l 012': 0 ';I,PHI(2ji 0 PHTf'TA(2.)),PHlXI(2~1,A"lS(201 

___________ J"4AX., ?O 
C CALC\JLAT"'S co:-.,vf.«S!O..., FRO.'•I CVLINORIC\L COORDINATES 'l,l TO 
C ELLirTIC CO"~DINATFS ETA,XI. 

l?=l"'''? $ ~HrJ;:>:-=>t•"'C?+Z2-laO \ !F(PHIJ?.GE:.O.OI GO TIJ 
X2=:?.C*Z2/(-~H02+S!}RT(RH'1::'**2+4aO*Z2)1 £GO TO 2 

--i---X2=0.~<"(~110?+S0f-'T("HC1;><1rt:;>+4o::l~Z211 . -
2 XI=SQRT(X?) f, iF(XIal-Oo':'aC'I r;Q TO 1 

IF(7.LT • .:.01 Xl=-"1 !. ETI\=Z/X! $GO TO 4 
J. '=TA=SOR'f ( 1 .0-<>*t::?l 

C CALCULATES Ll~ENDWE POLYNO~!ALS P(fTA) ANO LfG[N~PE "'UNCT!O~S 
C "'!(XI l, AS W':LL A~; 'fHC OF~IV<\TIVESo RFSULTS ARE FUR CVEN UR•>t:Ro 

4 X1=1aO+XI~*? ' XF=FTA~~?+X!*~2 
P(2=lo57~79~~267~489661~? $ 0(1,2l=~!?-AT4N(X() 
00 = I • 0- )( I t: 0 ( 1 , 2 I '!. 0 ( 1 , 1 l = I • 0 \ Ptl = r.: T ,\ !> J ( 1 , J l = 0 • 0 
0 ( 1 , 4 I=- 1 • / :< 1 $ rP 0 = 1 • J C.. rH I , 5 I=" I 2 ~. ~~: .: J. D D 5 J = ;.>, J '-4A X 
N:N•I $ O(J,Il=C(?>I<"l+I)'~<F'f.\"<!:>fJ-N*cl(J-I,IIl/("1+11 
O(J,2)= ((2''N+11"'XI *!1fl-N'•r:J(J-I,?))/('1•1l 
0 ( J , 3 l = ( ( 2 * N + I ) (: ( u 0 + >= T A * P P 0 I - N ~' n ( J - l , i I I / ( N + I ) 
cl ( J , 5 I =- N ,.. 0 ( J- I , !"·I / ( N + I l $ N = N + I 
0 C J , 4 ) = ~J "' I X I ~· C" C J , ;> I+ nn I / X 1 f, P 0 = ( C 2 * 'H l I ~ f: T A * 0 ( J ,, 1 ) - 1\4 * P () ) / ( N + 1 ) 
Qf):(-(;>~t·H II~XI*OCJ,?I-N'•OO)/(N+ll . 

5 PP0.,.((2>'·N+ll'-'(0(J,li+'-'T,\.,,8(J,:'))-N>I<PDOI/('.J+I) t nr'f '> J=I 1 JI~4X 
PHICJI=rCJ,I )~:O(J,2)/iJ(J,':>I.'- PHJf=TA(J):O(J, 3l"'JCJ,;::>I/0(J,51 

6 Pllfl(!(.JI:f'(J,ll>•('l(J 0 4I/0(J,"i) 4. f)r) 7 J=l 0 JMAX 
C Q f>FRIV/\TIVP OF r";_lTf::NTI'IL, INOFX=1 

Go To c 1 1 , 1 ;:_ , 1 .3 , 1 1• 1 , IN nt: .'< 
11 ANSIJI='-</XF'·'(XI•'PI-i!XIIJI-F'TI\·~PHIFTACJil t GO TO 7 

C PO T t' NT I A L , I NO f X = :> . 
12 ANS(J•):DH!(J) ~ G~J TO 7 

C FOP ~·t-....,ISPH!:PICAL PIT, II\:OCX=4 
14 ANSCJI=C1a"-~lA·~:~:>I*PHlETACJI+(1.0+E'TA*>!<2)*PHIXI(J) $ G•J TO 7 

C M2N(Xll PW"'X 3 
13 I\NSIJI:r(J,?I/0(J 0 51 

7 CONTINUf I ~~TURN 5 FND 
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Summary· 

The series expansion in 
-1 

y = ctn ([,;) should converge for 

y < n or ~ > - 00 , which covers every conceivable value of interest. 

The accuracy of this method is always excellent, but the calculation 

of the coefficients in the series is expensive. 

The series expansion in 1/~ is ineXpensive and generally accurate 

except· for values of [,; quite close to 1. The series expansion in t;, 

is also inexpensive. Its accuracy is deficient for values of [,; quite 

close to 1, and it also fails for large order n • An error in the 

sixth significant figure is detectable at n = 20 for ~ = 0.5 

and at n = 12 for t;, = 0.9 . 
The recursion relation fails badly for large [,; and large n , 

but'it is better than the power series in [,; for t;, < 1 . An inexpensive 

procedure for moderate n should probably combine recursion for 

lt;,l 2 1.01 with the series in 1/~ for [,; > 1.01 • 
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APPENDIX B: Computer Programs 

The programs for the calculation of the primary resistances 

for the ring-disk system are recorded here. These include the main 

program RIDISK, the subroutines RING and ALLPOL, and the funct;ion EK. 

In addition, one needs the subroutines COEF and DISK, discussed 

and reproduced in appendix A. 

The function EK calculates the complete. elliptic integral of 

the first kind, K(m) . 

Subroutine ALLPOL calculates both odd and even Legendre 

polynomials of argument X and stores them in the array P • 

The subroutine RING calculates the values of the potential due 

to a ring current by evaluating the integral involving the elliptic 

integral: 

where 

cp (r) 
0 

m 

i(r')K(m)r'dr' 
r + r' 

4rr' 
2 . 

(r+r') · 

(B-1) 

(B-2) 

This is done for each case of ring current discussed in the text arid 

is carri~d out for each value of r in the array RR (either on the 

ring or on the disk). 
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The main program must carry out the manipulations referred to 

in the text. First one reads two sets of abscissae and weight factors 

for Gaussian integration~ The first set · (X and W) establishes 

values of r at which potentials are calculated on both the ring and 

the disk. . The second set (U and V in the main program and AP 

and V in subroutine RING) establishes the values of r' .at which 

the curretit density on the ring is specified and the basis for the 

integration in equation B-1. 

We used the values IM = 32 and JM = 64. More values are required 

for the accurate integration of equation B~l than for the subsequent 

straightening out ~f the potential distributions on the ring ~nd th~ 

disk. 

For KM and NM we used values of 10 and 20. However, for 

some of the calculations, KM was increased to 20, as mentioned in 

the text. 

For each problem, the computer reads the yalues of r
0
/r

1 

and r
1
/r

2 
• In the output, ZDD,' ZDR, ZRD, and ZRR refer to values 

of Kr
2

R . 
rr 

GAP refers to the 

resistance between the ring and the disk when no current flows to 

the counterelectrode at infinity, and ELECT refers to the resistance 

between a composite electrode (consisting of the ring and disk at the 

same potential) and a counterelectrode at infinity. Both of these 

resistances are multiplied by Kr 2 to make them dimensionless. 

ZDRRD and ZRRR are auxiliary values related to the development of 

·improved ways of presenting the dependence of Rdr 

'r
0
/r1 and r

1
/r

2 
. See also appendix c. 

and R 
rr 

on 
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PROGRA~ RlDlSK <INPUT,OUTPUT,TAPE1=0UTPUT,PUNCHI 
0 I H~ t. $1 Ctl X I J2 I , " (3 2 l , R :l I J2 l , ~R. ( J 2 I , PC ( J 2 , 2 2 l , F R ( J 2, 2 2 l , 

1 A H P (J ( 2 2 l , AMP R I 22 l , P 0 l I 2 J 1 1-'R !( Zl 1 B i) ( 2 0 1 2 2 l , Pt: ( 2 0 l , ~ 2 N ( 2 0 , 't 0 l , P ( 7 9) 
- ----- 2, P 0 I 2ll l , G I 2 0 I . 

COt'.HCN AO,CP(64,22l,CI<.( J2,24l,IH,JH,KH, Ul6'tl,V(t'ti,PI,R1,RZ,Ou 
100 FOF.:MATISI~d 
1 0 1 F C "H .l T ( 4 F 15. 11 
102 FORMAT 12f'J, 5 1 6F1J,l) 

_103 FCRHAT 13F10. 11 ________ _ 
10't fCkMAT 12FJU,1l 

_1C5 fCRMAT llh , JX,•RO/R1•, 4X,•R11R2•, 
lO•,!OX,•ZKR•,10X,•GAP•,yx~•ELECT•/) 

106 fCkMAT lbf12dl 
PI2=1.5707Y63~6794'3 $ PI=2.0•PIZ $ A0=1.l6&2g43o112 
READ 10C,!H,l'1 1 JH,JH,KI'1$ NH=ZO 

-----IHP1=lh+1 $ f;oAU 104,1X<Il,l=1HP1,IMl $ REAO 10~ 0 (W(Il,I,;H-P1,1Hl _______ _ 
JHF1=Jh+1 I. Rt:AO 101, (U(Jl,J=JHP1,JH) i READ 101 1 (V(JJ 1 J=Jr1P1 0 JHl 
00 3 I=i,IH i IFll~GT,IHl GO TO 1 
IL=lH-1+1 i XIII=0.5-0,5•X<ILI $ W{lt=W<lll i GO TO 2 

1 X<li=O,S+0,5•X<II 
Z_CALL ALLPOLIK'1-2 0 2,0•X(li-1,0 1 PI 
3 CIHI,K+2l=P<K-1l i LJO & J=l,J:-1 $ 

JL=JI'1-J+1 I. UIJI=0,5-0,5•UtJLI $ 
4 U(Jl=0.5+0.5•U(JI 

$ 00 J K=Z,KM ---------
If(J,GT,JHl GC TJ 4 
WUI=W(JLI i GO TO 5 

5 CALL ALLF0l(KH-4,2,Q•U<JI-1.0,Pl $ 00 6 K=4,KH 
& CP(J,KI=P<K-31 I. CALL ALLPOL<Z•~H-z,o,O,Pl ! CC 7 ~=1,N~ 
7 PO (t.l=FI2•tl-1l S CALL CUEFIN11 1 40,A2Nl $ PiUI\T 1u5 I. RZ.::1, 0 

g'3-I<EAlJ 10;!, R01,R1 I. 1FIR01,£Q,U,Ol STQ,F I. RO=f;.Q1•R1 I. OC=1.0-:U 
c••••CALLULATION OF RAJII A~O ETA VALUES•••• 

00 ~ I=1,IM & ROCli=RO•I1~0-XCII••zJ••O,S 
6 RHC11=~1+1R2-~11•~1Il 

c••••••••ASSiGN CU~~ENT VALUES TO TH[ ~ING••••••••••• 

____ AHFRC4l=1(<2-Rll•tR2+-Rli•PI b AMPrH2l=O,Q I. _GC '3 1<=& 1 KH __ _ 
9 AMFRIKl=U.O ~ AHP~(51=1R2-R1J••z•PI/J,Q 

AHPRIJI=<~Z-~11-•CR2+Z,O•R1l'PI/0,75 $ AHPRI1l=PI•AMPRI4l 
C•••••CALLULAT~ PJT~NTIAL GN THE ~lSK AND RING•••••••••••••••• 

CALL Rl~GIPO,~OI $ CALL ~LNG<P~,RRI 
C•••••CALLULATE THE 9 ~ALUES FOR DISK ONLY FROdLEH•••••• 

DO 10 ti-"1,Nr1 E 00 1U K=l,KM 
---fri.till(N,K)=O.O 6 00 11 I=l,IM & C~lL ___ ALLFGL(.2•t\H•2,X.(Il,P) ------·-·--· 

DO 11 I\=.1,N;1 liDO 11 K=1 1 KH 
11 BU<N,KI=SUIN,KI-PD<I,Kl•PI2•N-1l•Wcll i DO 12 N=l,NH $CO 12K=1,KH 
12 dOih,KI=BOIN,KI•c~•N-31•0,5 $ ~0(1,21=1.0 

c•••••iVALUAit Ll~K CUR~£NTS•••••• 
DO 13 1<=1, KM 

13 AHFO<Kl=dUCl,<I•~.O•RO 
C•••••EVALUATE NE~ RING POTlNTIALS••••••• 

DO 14 I=l,IM 1 CALL OISKIHRCIIIRO,PE,AZN,NHI 
00 14 K=1 0 KI1 E 00 1~ N=1 0 NH 

14 P R <I , K I = P td I , .I + tJ 0 C N , 1<. I • P U td 'P 0 ( N l 
C•••••STkAlG~TEN f~E Rl~G POTENTIALS••••••• 

---------0017 N=J,KM I. 00 15 K=1,KH E LIKI=0.0-1 00 15--l=1,!H ________________ --------
15 C(KI=ClKl+C~<I,"+21•FRll 1 Kl'Will _ 

00 17 K=1,K11 £ IFIK,EQ,Nl GO TO 17 $ f;;:C(KIICU\1 i 00 1C I=1,IH 
16 PRC!,KI=PkCI,~I-F•PRCI,Nl £ AHPU<KI=AMPDIKJ-F•AMPOCNI 

AHPRCKI=AMPRIKI-F•AMPR(NI 
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17 COr-.TINliE 
C•••••CALCULAT~ A~ERAGi POTENTIALS••••••• 

______ 00 18 K=1,2 £ PRitJ<l=O.u ~ PU1tl<.l=0,0 __ !_00_18_l=1 1 IH ------------------------
16 PRl(Kl=f~l!(t+Pk(I 1 !<.l•Wtil 

PRl(ll=U,5•~~I(ll i Fki(2l=0.5•P{l(2l £ P01(21=1,Q 
c•••••CALCULATE THE R~~ISTA~Ci KELATIONSHIPS••••••••• 

0ET=~HF~(11•AM~0(21-AMF~t21•A~PU(11 
Z iH<: (Pte I< 1 I • Ml PO ( 2 I - Pld ( 21• I.Mr>U ( 11 I I DE T 

___ ZRO= (AI'IFR< 11 ., RI ( 21-AHF~< 21 •PRI ( 1 I I /DE T ___ -----------------------------
ZOR=<FCl(li•AMP~(21-P01(21•AHP0(111/0ET 

l OL= (A t-!FR ( 11 •;> OI ( 2 I~ At1 P R ( 2 I •p 01 ( 1l I I OET 
OET2=P~l(1J•POI<21~PRl<ZI•Pul(ll 
GAP=C~TZ•Z,G/(ZO~tZ~CI/UiT I ELECT=OElZI<ZRR+ZCC-ZO~-Z~CttOET 
RSTAii=Rl•(J, O-R11 /Z,U+DD .. l/PIZ 

---- lOf<i<C= <ZOR+ZRCI•PI•ROtRZ/ASlN(t<.O/RSTAI'lt __ 
ZRI<R =ZRR+0,5 4 (R.l/PII••z•ALUG(J.J• (1J9.-107,•sc;;H(1.-Rt••zl 1/32,1 
R01=RO/Rl $ P~INT 1~2, R01,R1,ZUO,ZOR,Z~U,ZRR,G.P,ELECT,ZJR~O,ZRRR 
PU~LH 106, ~01 1 R1 1 ZC0 1 ZO~,lRU,ZR~ . . 
GO TC '.i<i £ ENC 

----- --------- ---------------------------- ---------------------- ·- -----------' 

SUBROUTINE A LLPOL(NMAX, X, P) i. .OlME NSICN Ptigl 

C • • CALC~LATION OF L~GtNOkE POLYNOMIALS • • • • • 
P(JJ=loO I P(21=X ~ IF~NHAX,LEoll RETli~N i CC 1 N=Z,NHAX 

----1 P(~+li=((2•N-tl•x•P(N)-(N-11 4 P(N-1li/N $ KiTU~N ' LNO 

FUNCTION fK!FMI 
EMl=l.O-EM ~ fK=-50.0 $ IF!EMl.LE.O.OI RETURN 
EK=l.36629436ll2tE~l~(0.09b66344259+EMl•I0,035qQOQ?383+(~l*( 

-10.03742563713+~Ml~O.Ol4511~621211 l-!0.5+F~l~tO.l24~R~~]59itE~l~( 
20.0688024B576+EM1~(0.U3328355346+E~l*0.004417870121 lll*Al.OG([Mll 

RETURN $ END 
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SUBI<OUTltlE ~lr-GIPCT,RRI ~ OIHE'NSION PCTIJ2,22·l,RiHJ21,SZI6ltl 
c•••••SUb~OUTlN[ CALCULATES ~ALuES OF TrlE fOTENTIAL CUE TO A RING••~••• 
~~~-• .. GU!.i<Et•T ar E 'W.\LU.HING Tn~ UHE~RAL INJOLJING n'E t:LLIFT IC lNTEui-l.1L 

C C HMC N. -A 0, C P ( ':4, 2 2 l , C~ ( .52, 2 41 , I~, JH, K~ , A P ( o Lo I , v I?;,) , PI , R 1 , R2, C J 
00 Jd '1=1,1'1 £A: IRR1li-Rll/IR2-RU i. G=A+Rl/OC ~ DO 1 K=1,KI1 

1 POTtl,KI=ij,u i IFIA,GE.,IJ.O .AND. A,L£.1,01 GC TO 7 
EL1=~K(1,0-IA/(2,•G-All••zJ•K1/IOG*A+2.*~11 

EL2=EKI1.0-( (1,0-Al/12.•~tl,O-~l>••2l•R2/DD/12.•G+1.-AI 
00 5 J=l,JM i Y=APIJI-A!. H.:(¥/(Y+2,•(dl••2 i C:L =EK(l,O-HI 

---·If(AP!Jl.t.J.O, Ol GO TO 2 . - - -- - -
P0lll,Jl=POTII,3l+~(J)•(I't'+Gl•£L /('t'+2.•Gl-EL1l/AP(Jl 4 •0.S 
lF<APIJI.tjE.!.Ol GO TO 3 i SJ=-C.Ll i GO TO If· 

2 S3=-t.:L2 ~ GO :0 4 
3 SJ=IY+Gl•EL /IY+Z,*Gl/(APIJI•(!,O-AP!Jill••o,5 

1 ":" £ Ll/ AF (..J I • • 0. 5- E L 2/ ( 1. 0 -API J l I • • 0. 5 ___________ ------------- .. __ -·- ____ _ 
,. f'Olti,U=POTI1,1l+S3•V(J) £DO 5 K=4,Kt1 
5 POlll,KI=POTU,Kl+('t'+GI•t.L •!..PIJ,Kl/IY+2.•Gl•V(Jl $ ·cc & K=4,KH 
6 POT(l,Kl=POTII,<l•OD/fi £ POTI1,11=UO•<FOT!I,11+4,•t£L1+EL211/Pl 
POT!I,31=UO•<~OTII,31+4,•£L1l/PI ~GO TO 38 

7 SUM=IAO+ALO~I!,•Gll/2, i SJ=O.u ' 5S=O.U i H=IA/(Z.•G-All••z 
______ IF (A • 1\!:. 0. ill S 5= (G-Al •E K ( 1. 0- Hl/ ( 2, 0 •G- A l + ALC G (A .. Z I /4.- SUH 

54=0.0 £ H=((1,0-AI/(1.0-At2,•GJ)••2 
IFIA.t.E.1.01 i4.=(1,0-A+GI"f.KI1.0-HI/(1,0-A+2."GitALOGI( l.-AI""21 

1/4,-SUM 
00 9 J;1,J~ i Y=~P(Jl-A 'H=lr/(Y+Z.•GIJ••z I S21JI=O.O 
IFIY.EC.O •. Ol ;o TO 9 i EL =EKil.O-HI I DO 8 K=4,~M 

___ 8_ P 0 T I 1 , I< I= P 0 T ( I , K I + ( Y + G l • E L • ~ P ( J , K I I ( Y + 2 , • G I • II ( J I 
S21Jl=l~tGI•EL /(Y+2.•Glt~L0u(Y""211lt.-SUM 

SJ=SJ+IC./I'Y+2,"GI l••z•ALOGUti•VIJl 
9 COhT lNl.£ i 53=S3•CQ/PI ~ AuU=O.O i AS-=At<A+2,•1<!/CCI 

lfiAS.GT.O.~I AOJ=~S•tALOGIASl-1,01 i AT=I1.-AI/(1,+A+2.•R1/DOI 
IFIAT.GT,O.Ol AOJ=~DO+AT"IALuGtATl-1.1 
SJ;SJ-AC0•2. •IDC•Att<l)/PI £ 00 10 K-=4,Kr' __ _ 

10 POTI!,K);PQT(l,KI•DU/Pl tSJ•C~ti,KI 
DO 13 J=1,J.'1 ; !f(~PIJI.£J,O.Ol GO TO 11 
POTil~Jl=POT(i,Jl+V(Jl•(S2(JI-SSl/AP(JI••o.5 

IF<APIJ).t,£.,1,0) GO TO 12 i S1=-S5 $GO TO 1J 
11 S1=-S'< £GO TO 13' 
12 S1=S~IJI/(A~(Jl•t1.-APIJIJI••0.5-S5/AF(J)"•0.5-S41(1,-AF()II~•o.5 
13 POT 11,11=f--OT IItll +Sl•V(J) 

POTII,11"UU"(POTti,11+~.•(S5tS~Il/PI+OO•<AD+3.•AL0G(2.l+ALCGIGII 
PL=I-CT!l_,Jl 

VA=A••0.5 £ PL=OO•tFL+4.•(S~tSUHII/Pl 
IFIA.EC.O.OI GO TO 35 i IFtA.£(.1.1.01 GO TO ~c 

-----P L = f L- 2, 0 • UO • ( Al 0 G (1, 0 -A l -2, 0 tV A • A LG G I I 1. 0 +VA I I ( 1. 0- VAl I II PI 
GO TO 37 

35 PL=Plt '-• u•o CIPI i GO TO 37 
3& PL=f--L-2.0"UJ•tALOGI2.l-2.01/Pl 
37 POTti,JI=PL 
38 COhTlNl.E I ~ETURN £ END 

----- ·------------
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APPENDIX C: Computed Results 

Computed results were punched on cards to permit correlation 

without repeating the expense of the initial calculation. These 

results are printed in the following table. Rather than print ZRD, 

we have given the percent deviation DEV from the value of ZDR. Values 

indicated by a check were obtained with KM = 20. 

Following the table of results is a simple program for testing 

correlation formulas. Some of these correlations have been discussed 

in the text. 



r 
-4'4-

- --- ---·--- ---------------------- ------- ------ -- ·-·· 

ROI Rl zoo lOR ZPR o·Ev 

• I 0 ··~ 99 2.52524612 .i602136~ • 4 I 066<'\7 4 -. 0 J ·) ') 
• 1. 0 o9d 2 • 55 0 9 '.l 4 J ~ oi6.10042J • 3 769 'l7~5 -.OJJO 
• I 0 .~5 2.6~140tl72 • ltd :1 7 S<i ~; • 334~(L:"!CJtl -.oooo 
• 1 0 .90 2.77704159 .lb7351«1 o.l0449:):17 -.00-)0 
• I 0 .l:iO 3.12152515 •. 17545410 .271'\51<;27 - • ·) ')) 0 

• I 0 o60 4oi462!313R .19?.4~17~) .~<;9,147f>O • ·) 0 J I 
• 1 0 .40 6.1743076.3 .2106541'> .2.,2341~-'3 -.OOJJ 
• I 0 .20 !2o20JA0746 .22·)94R?.I .2:>0273:1?. -.0105 
• 1 0 • 10 24.21275001 .2.3990154 .25003120 -.OJJ'l 
• 10 .05 41:io20770664 • 24494691 .2500033!3 -.CI1J ....... 

• 50 .99 .50504207 .1674114'3 .41057039 -. 00·)0 
• 50 ·;qs .51016995 ol6d15326 .37690203 -.OOJO 
• 50 .95 .526094bl .170372d4 .33421420 -.oooo 
.so .90 • 554(>1 332 .I 7407914 o30441fl27 -.oooo 
.so .so .62067639 .18159675 .27!'1458&1 c .• 

. .. 
• 50 .60 .80<>20122 .197283<3-1 • 254021139 .0002 
.50 o40 1e164\l683 .21398755 .25233381 -.00::11 
.so .zo 2.175856~9 .23165690 .250272?7 -.0116 

----. ~0 -- .to 4.15232216 .24076067 .25003106 -.OHI./. 
.so • 05 8.08442934 o2453780d .25000337 -.0133 

.eo .99 .3156392.5 o1A499>;0') o40A35'15tl -.oooa 

.eo .98 o31880A40 .11-'551?44 o3747f,U50 -.cooo 
otiO ~95 .JC'851615 .1d7076C5 .332317tl1 -.COO') 
.oo o90" .34548642 .IA974933 o 102 R619 I -.oooo 
.oo oHO o JH336'-H'>5 .1Q536460 o2774~2Jd • OO·J I 
• 80 .60 .4B554675 .2075742) o 2~Rb09'H .0004 
.so o40 .6676o596 .22091291 .2'5221444 -.00:::>5 
.eo .20 1.16640456 .2.3516019 .25025734 -.0074 
.80 • 1 0 2.12520187 .242~1361 .25002<101 .0504 
• 8C_ .05 4.02249594 • 24625902 • 25000313 -.0123 ...... 

.90 .)9 .28055157 .19tlto'•9a .4031069~ -.0000 

.40 • ·)8 .28332150 o19d37673 o369845.?H - •• ~oJo 

.90 .q~ .?91658134 o19Y0tl9:-od o32H205~"' -.0000 

.90 .90 . ~ 305fiF.9S6 .~0062551 .2-)974717 .cooo 

.90 .so o33668tl1~ .204524J8 o275563JH .• 0()02 

.90 .-:.o .41720082 • 214 1 7 30 7 o2379507d • •)006 

.90 .40 .55719472 .2252'1443 .25203701 -. 0 0 'J 0 
o90 o20 .93454220 .2J7.36~23 • 25023564 .00·:)2 
o<JO • 1 0 1 .65899<)44 .2436044~ o250025'HI o14J(, 
.90 .05 3.07935040 .24681233 .250C027n .coa~V"' 

.·95 .99 • 26575637 
.. 
.20957381• • 39406724 -.OOOJV"" 

o95 .98 o2653031:i4 • ?0930569 • ]61 664 91 -. 0000..,.. 
.95 •. 95 ' • .?7578912 .2Ct1973C3 • 321'1·)950 o • ......... 
• 95 .YO • 28820875 .20934505 .z··:-t5J674'3 o00JOV"' 
.95 .ao .3!454085 • 2117475"\ o273lROQ7 • 000 I ........ 
o95 .·60 .3tJ2001J5 .219J62d7 o257ldt>42 .ooo.i.,..... 
.95 .40 o49770'H31 • 22g74950 o2518161~ .')()')/ ........ 
• 95 .20 • B068391 I .23911 740 .25021335 -.OOOtJV 

-· ·~ 95 • 1 0 lo39477209" .244520'-ll .25002557 -. 001) 3 v 
.95 .05 2o5572ld7J .24724652 • 250002-i6 .o~6ii.,..... 

.90 • '19 .257S4844 .22112912 • 3772RA·JO -.OOO')V 

.9R o98 • ?5985586 o 220 I 431..>4 • .3473979fl -.r::aaov 

.9U .95 .26640~)97 .21~50522 • 312 05!15 7 • o ooo/ 

.91.1 o<IO .27691-1941 .21770326 o2H9072JO .ooo1v' 

.9fl .so .2990>3594 • 21 f\74622 .2n999061 .OCJ2V"' 

.98 o60 .35502573 .224'•9037 • 2 562 Of-134 .oooJv' 

.98 .40 .45002018 .23?19'305 .?515~612 • '1001 V 

.98 o20 .70214304 o240d644~ • ~::; 0 I '34 0 f.l .ooo5v' 

.98 olO lo 18232443 o245)<3951 o?50021l\7 • 0 I .10 ~ 
• 98 • ') 5 2.14466423 .24766471 .25000182 • 0 71 7 
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PROGRAM nATA(INPUT,OUTPUT,TAPf1=0UTDUTl 
· 100 FOO~AT t~x,*P01~,4x,~nt*,oX,*lDD*,9X,*ZOR*,9X,*ZRR~,7x,*OSV*,13X,* 

1 Zf)*, 8X,~ZDRPf'* 0 9X,*7r'"") 
--101 FOf7'-'AT (3X,;>F6e2,3F12o8 0 F8oo\o5)C,JF12.8) 

1:>2 FOR~IAT (l'ti) 
10~ F6R~AT C6r12oB) 

POINT 100 
'p t = 3. 1 41 59 2 6 54-

qa PRTNT 10? 
99 REA"' 10'->t RC'1,R1,lOD,ZOR,ZRD,ZRR S [F(R01.EO.O.Ol GO TO 93 

TF(;.>':'1oLToCo0l' SlnP 
-RO=R01-e:P1 
nEV~1CO.')~( lf-;'f'I/ZD<?-1.0 l 
l 0 = 1 • ) /If' f)/ R C + 2 • 0 " ( I • ()- ~~ I ) * * 2 II< A L 0 G ( 1 • 0- llQ 1 ) 
P 5 TAR= Q I * ( 3 • -PI ) /2 • + ( I •- 11 I ) *"' 2/ P I* 2 • 

- ----· ZDP"?D=2• ~*ZilR*PT *f~C //IS I 1\1( 170/PS T .AP) 
ZR =ZRR+0.5/P1**?*'AL()G( 1o0-P1~*3l 
PRTNT 101, R•)l,R1 9 ZI)n,znR,ZRR,CEV,ZO,ZORRO,lR 
GO TO 99 $ END 
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