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Primary Resistances for Ring—DiSk Electrodes
Joseph John Miksis, Jr.
Materials and Molecular Research Division, Lawrence Bérkeley Laboratofy
and Department of Chemical Engineering, University of California,

Berkeley, California 94720

November, 1975

Abstract
A system consisting of a disk electrode, a concentrié ring
electrode, and a large counterelectrode at infinity has three
independeqt'resistance values describing the primary potential
difference between any two electrodes when_cufreﬁt is péssed between
any two electrédes. These resistance values are calculated and
presented as dimensionless correlations as functions of the ratios

of radii of the disk and ring.
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introduction
‘A common electrode geometry in eiectrbanalyﬁical‘and research
applicatidns involves a disk électrode'and a concentric ring
- electrode both embedded in an insulating plane and rotated about the
axis of the disk. Species produced by an electrochemical reaction

at the disk can frequently be detected quantitatively by electrochemical
. 1,2,3 o N .

reaction at the ring. In some of these applications it is

desirable to assess the ohmic potential drop in the solution. For

example, to have a controlled electrode potential for the reaction

at the disk one needs to know how a current to the disk and a current

to the ring separately influence the potential in the éolutiou in

the neighborhood of the disk.4’5

To ensﬁre that a limiting current
is maintained on the ring involves a similaf question.

Experimental efforts to answer these questions involve abrupt
changes in the current to either the ring or the disk followed by a
ﬁeasurement of the change in potential of both tﬁe ring and the disk

43,7 Such rapid chaﬁges in

as shortly thereafter as possible.
potential and current are associated with the primary distributions
of potential and current.

Consequently, we can define a mathematical problem in which

the potential obeys Laplace's equation,

V¢ =0 , , @9)

the potential is zero at infinity, and has a uniform value in the

solution adjacent to each electrode. Corresponding to a zero current




density, tﬁe normal component of the potentia; gradient is zero on
the insulating annulus between the disk and the ring and on the plane
surrounding the ring. This problem excludes éonsideration of the
variation of conductivity within the thin diffusion layer adjacent
to the{éiéctrodes and effectively regards'the change in potential
drop to be determined by the bulk of the solution. Also ekcluded
from consideration is the effect of eléctrode kinetics, it being
assumed that the double-layer capacity is sufficiéntly large that
the potential difference across it does not change during the time
of the measurement.8 (The course of events ihvolving the change of
the charge of the double-layer capacity has beenvexamined by Ni§ancioélu
and Newmah.?’lo’ll)

The problem thus défined isvlimited in scope since it involves
only the geometry of the system, the conductivity of the solution, and
the potentials and currents themselves. The priﬁéipalvresult of the

model is the expression of the disk and ring potentials in terms of

the disk and ring currents:

a = Rgala * Rygely o

v @

V. = erId + RrrIr , : (3)

where I, and I are the total currents to the disk and ring

electrodes, respectively, and V, and Vr "are the potentials, presumed

d

uniform, in the solution adjacent to the two electrodes. 1In the

absence of concentration and surface overpotentials, V, and V. can

d



be regarded to be the_potentials of the electrodes themselves, and
this is the usual ménner of speaking when discussing primary-
distribution problems. 'Bear in mind that in the applications discussed
above these’quantitieé Id s Ir ’ Vd , and Vr. pfobably represent
instantaneous changes in the electrdde currenté and the corresponding
instantaneous changes in the electrode potentials.

Rdd" Rdr , er , and .Rrr are the primar&'resistances defined
by equations 2 and 3 for this ring-disk system. We can attach a
physical meaning to themlby the following considerations. When there
is no ring current, Ir =0 , we see that Rdd represents fhe
resistance between the disk electrode and a counterelectrode at
infinity. This resistance will be lower in tﬁe presence of the -
ring than for the disk alone because current can find a path;through
the ring electrode to the disk, bypassing some of the resistance of’
the solution. This is true even though there is no net curreht to
the ring. Under these circumstances, the potential.of the ring will
take on a definite value to satiéfj the condition of no get current
to the riﬁg. Thié value is determined by er 'ih_equation 3.
Thus, er is a quantity having the dimensions of a resistance but

which yields the potential on the ring due to a current on the disk.

In a similar manner, we see that when there is no disk current,

Rrr is the resistance between the ring and a counterelectrode at
infinity while Rdr reproduces the potential on the disk due to a
current on the ring. As shown below, R = R .

dr rd

The geometry of the ring—disk'system is defined adequately by

of the disk radius to the inner radius of the ring

the rati : Y
ap;o ‘ro/ 1



and the ;étio rl/r2 of the inner and outer radii of the ring. The
resiétances can be made dimensionless with the conductivity k of the
solution and a characteristic length, which we choose to be the outer
radius r, of the ring. Therefore, the resqlts'of this study can

be presented'simply by correlating three dimensionelss resistances

D _ : LR _ D _ R _ .
(RD = Krszd s RD RR = Krszr , and RR KrZRrr> as functions of
two geometric ratios (rO/rl and rl/rz) . This simplicity and

generality is a further justification for restricting the problem
torthe primary resistances.

Inva subsequent paper from this laborator‘y,12 we shall discuss
some more complicated behavior of the‘ring—disk system in which
concentration variations and electrbde kinetiqs are considered in order
to aséess the current distribution on a sectioned electrode (composed
of the ring and disk at the same potential) below the limiting current,
the collection efficiency of the system when the current distribution
on the disk is nonuniform due to the ohmic potential drop in the
solution,'and.the anoméious diffusion coefficient for a redox couple
measured by means of the limiting current to a ring electrode with

zero current to the disk.



Symmetry of Resistances’

Let us consider two cases: case 1 where Id = 0 and case 2

where Ir = 0 . For any two functions ®lv'and @2 , Green's theorem -

. 13 : : , :
says v . i

2 2 _ | . '
| f(@lv 0, = &,V <I>1>dvo = §(¢lvq>2 - 90,90, )-ds . (4)

The integral over the volume VO is zero here because both @l and
@2 obey Lablacefs equation. The ‘surface integral is over the
entire area enclosing the volume V0 , ‘Which we shail take’to be the
entire half-space between the plane of the disk and the countérelectrode
at infinity. The integral over the insulating sdrfaces is zero
because ﬁhe normai component of the potential gradiént is zero there.
The integral over a hemisphere at infinity is zero because each
ﬁotential is'inversely proportional to the rédius,.the potential
gradient is inversely  proportional to the square of the radius, and
dS is proportional to thé square ofvthe radihg.

This leaves us with integrals over only the surfaces of the

electrodes:

Ve

-f(@lwpz -0V )eds L (5) | *

fd>V<I> - $.90.)-d
d(lz 21)—55 J

Now, by the definition of the primary distributions, the potential
adjacent to each electrode is uniform and can be removed from the

integral, with the result
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‘.dlfVQ *dS - dsz@’dS=—er<I> dS+V2fV®l'gS_.v(6)
d . T r
- Furthermore, the integral of the normal component of the potential

gradient over the surface of an electrode is proportional to the

total current to the electrode. Equation 6 becomes

Varlaz 7 Vazlar = “Verte2 * Vioteg - (7

For the cases chosen here, Idl = 0 and Ir2-= 0 , and this reduces -
to

i V,,I,,=V_,I . (8)

dl d2 r2'rl

Substitution of equations 2 and 3 for the electrode potentials, with

Idl = Ir2 =0 , yields

Rdflrlldz = Rralaatea ©)
or

"R, =R .. . - (10)
Gabrielli_gE‘gl.7 state this resultvand provide supporting experimental

results. Equation 10 could be considered to be an example of the

Onsager reciprocal relation.



Analysis
14 . N - , .
Newman reviews methods of calculating current and potential
distributions in ring or disk geometries. At first we_thought that
. we could treat the ring-disk system as a composite disk of radius

T and use the method of separation of variables in rotational

2 .
elliptic coordinates. Then the current density would be zero on the
insuiating annulus while the potentials would be specified on the
ring and disk, and the coefficients of the serieé would be determined
by.triai and error or by matrix inversion so as.ﬁo satisfy these
boundary conditions. However, such a series is inédequate to
represént_the distributions of potential and current invthis system
because the current density approaches'infinity at the inﬁer edgg
of the ring and at the edge of the disk. (The coardinafe system does
allow treatment in a nétural way of the infiniﬁé current density near
the outer edge of the ring, just as it does for the primary distri- |
bution near the edge of a disk without a ;fing.‘l )

_As aﬁ alternative, the currents due to the ring and the disk
were treated separateiy by different metﬁods. First a series.of ten
cases was defined with prescribed current distributions on the.ring.

AN

For cases 1 and 3, these current distributions were

i=—2 - | (11)

1 -
: vV1- x2

and
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. _ 2
lr3 - 1+x° (12)
where
2r - ¥, - r .
X = = _lr 2 . (13)
2 1

Case 2 has a zero current density everywhere on the ring but will
have a current assigned. to the disk as described below. Cases 4
through 10 were assigned the following current distributions on the

ring:

SR R AN a8
where Pk(x) is the Legendre polynomial.

‘It was felt that these cases would represent a complete set
which could be superposed to reproduce any primary current distribution
on the ring electrode. 1In particular, case 1 hés"aﬁ infiniﬁe-current
density at both the inner and the outer edge of the ring, and the
current density approaches infinigy in the manner required when an.
electfode is embedded in an insulating plane, namely, by being
inversely proportional to the square root of the distance from the
edge., Case 3 involves an infinite current denéify_only at the inner
edge qf the ring. A superposition of cases 1 and 3.should.be able to
match the way in which any primary current distriﬁu;ion goes to
infinity at the inner and outer  edges of tﬁe ring. The residual

current distribution should be finite over the ring and ddequately



~-10-

represented by a superposition of the remaining cases 4 through 10..

For some values of. ro/r and: rl/r2 ‘where the accuracy of the

1
results was questionable, the number of cases was extended from 10
to 20. |

The qe#t step in the procedure is to évaluaté the ﬁotential
distribution on both the disk and the ring due to the current
distribution on the ring for each of the cases described above. For
thié purpdse, we use the formula for the potential in the plane of

the diskla

r

. , |
_ 2 i(e")Kk(m)r'dr" o
Cbo(r) = }Ef m—— . (15)
T
‘ 1
where
R (16)
(r + ")

and K(m) 1is the complete elliptic integral of the first kind.
The evaluapion of this integral fér the poteﬁtial distribution on the
ring requires care, first of all, because the.elliptic integral
approaches infinity when r' = r . Additional difficulties are
introduéed for cases 1 and 3 where the current distribution approaches
infinity at the inner or outer edge of the ;ing.

The potential distributions obtained abéve will be nonuniform

on both the ring and the disk. ‘For each case;‘the.po;ential can be

made uniform on the disk by superposing the potential distribution due
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to a current distribution introduced on the disk. Here we use

rotational elliptic coordinates n and £ based on the radius r

o
of the disk. The coordinate transformation reads
z = rogn and r = roVQI + 52)(1 -n), - A7)
and the solution of Laplace's equation by separation of variables
in this coordinate system 1314’16
. © )
¢ = ngo B P, (MM, (£) , - as

where Bn represents arbitrary coefficienﬁs, Pén is again the
Legendre polynomial, and M2n(£) (called Mn(E), in reference 14)
~is a Legendre function of imaginary argument having properties
described earlier. Selection of even Legendre~poiynomials in
equation 181ensures that the corresponding current distribution is
zero in the plane'dutside the disk; hence, the current distribution
is not mbdified on the'ring_byfsuperpésing a potential distribufion
of the type in equation 18;

In practice, equation 18 is truncated after a finite number of
terms, say 20. For each case, the B valuesrare now.chosen so that
the potential (including that dué to the ring current) will be zero
on the surface of the disk. Up to this point, case 2 has not been
defined or modified. We now require that the potential @O be
equal to unity on the surface of the disk, for case 2, which is
equivalent to setting BO =1 .v The superposition of the disk

potential function in equation 18 will generate. a nonzero net current
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,and a uniform potential for the disk for each case.
Next, for each case, we should calculaté thg pdtential distribution
on the rihg due.to the current distribution on thé disk, and we
should add this to the potential distribution previously obtained
from the current distribution én the ring. This step involves the

1

use of equation 18 with values of § greater than zero since

- .
'®6 B nZO BnPZn(O)MZn(g) | ‘ (19)

in thg piane for r greatei than ro . The evaluation of Mzé(g)

hag been nécessary in earlier wdrk,6 and we have introduced

refinements here to permif aécuiate calculation for large values

of £ and n (see appendix A).

The several Cases.that have been treated now each have prescribed
current distributions onlihe'ring and disk, known total curfents, a
uniform potential on the disk, and a nonuniform but finite potential
distribution on the ring. The final step of the procedure is to
superpose ;ases.3 through 10 onto‘cases 1 and 2;”in turn,_in such
é way that the potential distribution on the ring is made uniform.v
Mofe cases can be used to attain a higher degréé of uniformity.

Caseé'l and 2 now satisfy all the requirements of a primary
distribution -- they have uniform potentials oﬁ the ring and the.
disk, and they satisfy Laplace's equation and all the other boundary
conditions. VAnélysis of cases 1 and 2 according to equationst and 3

yields valges of the resistances Rdd . Rdr . er , and Rrr .
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This:solution for thé primary potential and current distributions
by superposition may seem involved and compliéated, but it is
economical and accurate, and it avoids any trial—and—effor calculations.
The functions chosen for superposition méke special allowance for
the geomeéry of the system and can treat the infinite current
_densitiés at the edges of the electrodes even when the insulating

annulus is quite thin.

Results

In the computed results, R

ar and Rr

d ‘usually agreed to

within O.Ql.percent. Certain limiting situations could also ge.
checked to ensure the validity of the results.

Figures 1, é, and 3 show the values of the threé independgnt
resistances as functions of the gebmetric ratips‘ ro/rl and'-rllr2 .
For a very thin ring, Rrr becomes infinite. Consequently, on
figufé 3 wé‘have added a term which compensatés.for this and produces
a finite limit as r approaches r, . An exceptioﬁ is the

1

(unrealistic) limit of a zero gap distance. As r approaches r o

the value of Krerr approaches 0.25, independent of the value of

Discussion

The results for R can be comprehended in relation to the

dd

value 1/4Kro for the primary resistance15 for a single disk in an-

insulating_plane.’ The values for the disk resistance, as plotted in
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figure 1, therefore.approach the value 0.25 as:the influence of the
ring becomés negligible -- either for thin rings (rl - r2) or for
wide gaps between the ring and the disk (f6'<< rl) . The influence
of the ring is always to lower the resistance value KroRdd below
the value 0.25 because the ring érovideé an alternative currenﬁ
path which can help the current get from infinity to the neighborhood
of the disk., Figure 1 shows how ;his'effect becomes more prdnounced
for wide rings and narrow gaps.

Theée are several ways of tﬁinking abouﬁ the coupling'resistaﬁcés
Rdr = er .  First imagine a current to the disk.with no current to
the ring. -Then the potential distribution wiil bear some fésemblance'
to that for 'a single disk in an insulating plane,.and the similarity
will become»exaCt in the limit of a thin ring. Thé ring, in addition
to’distorting this potential field, will acquire a potentiai
corresponding to the single disk at some radial position r, which
lies between ry and ry . Since |

/ey =1+6" (20)

on the ring and since

EREN)

M (E) =2 e t@®) , (21)

the potential in the plane at a radial position r, due to the

primary distribution on a single disk is
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: I r

_ -1 _d . ~1l o
Vr = Vd ctn (&) = s Sin -(;;) . (22)

o
This leads to the resistance value
r r
. 2 . —1f "o\ '

Krerd = 2nro.31n (;;) . | (23)

This formula becomes rigorous for thin rings when we set r,
equal fo r, . Thus, the intercept on the right side of figure 2
is known with certainty. The limit for the ordinate is 0.25 for
nafrow gaps (ro - rl) and 1/2m = 0f1592 fof wide gaps (rO << rl) .
For thick rinés, it is convenient to think of a zero current
on the disk. Then'the ring itself will look iike a disk, with a small
imperfection at the center, and the potential distribution will be
nearly that for a disk of radius r, in an insulating plane. The
small disk of radius r, can then sense only one potential, that

approximately equal to the potential of the ring Vf = Ir/4Kr2 .

This leads to the limit

Kr.R + 0.25 as r

2Rdar 2/ry T (@8

independent of the value of ro/rl .
By an anélysis of the current deflected from the insulating

» one can find a correction to equation 24 for

region for r < ry

small disks;
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Kr.R, = - —— for r, << r and r << r (25)

This limiting slope is verified in figure 2.
For rings which are neither thick nor thin, we can use the
according to

results in figure 2 to calculate the value of B

equation-23. It turns out that r, varies from the arithmetic

average of 2 and r, for thin rings to a value of 2r2/ﬂ for

thick‘rings (in order to reproduce the limit in equation 24). This

suggests the method of correlation of R shown in figure 4. Here.

dr

a value of r is calculated a priori, and the ratio of the lefEf'

*
and righﬁ sides of equation 23 represents a deviatién function which
is close to'ﬁnity. The only adVantéée of figure 4 -over figure 2 is
that the écale can be expanded because thé'minimum and maximum
values now differ by a facfor,of 1.05 instead of é factor of 1.57.

Let us next turn our attention to the ring resistance Rrr . For

wide rings, it is clear that the resistance value is given by

KrZRrr = 0.25 , , , (26)

the value for a single disk of radius r In the other extreme,

) -
3
CkrR +——1nfr - 2)=1n 20 4 2312 (27)
- 27rr 2 3 2 :
) 2T r2 2n .

for thin rings _(rl - rz) " and small disks (ro << rl) .
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Figure 3 was plotted so that the small disk case (rO << rl)
would show clearly these 1imits. According to this figure, the
effect of a nonzero disk is always to lower the ring resistance,
because an élternativé path is provided between the counterelectrode
at infinity and the ring electrode. The correction to equation 27
for small disks is very small, —(ro/r2)5/45Tr2 . ‘Thus, we see that
the curve fqr ro/r1 = 0.8 \is already very close to the curve for
ro/rl = O.l:..

Gabrielli_gg_gl.7 have measured resistances for four ring-disk -
geometries. They verified the coupling rela;ionship between er

and R, '. A comparison between their measurements and our calculated

dr

values is made in table 1. For this purpose, 1/« was given the value
2.25 ohm-cm for a 2 N sulfuric acid solution. The comparison
cannot be regarded as satisfactory. Two experimental values of

KroRdd are greater than 0.25, which should not be possible. The

other two values of KrOR

ad show good agreemeht. Measured values

of the coupling resistance are consistently lower than those calculated.

One value of «Kr is lower than 0.25, which should not be

ZRrr

possible. The other measured values of «r are significantly

2Rrr
higherbthah the calculated values.

. s . -
Shabrang and Bruckenstein™ analyze their results in terms of

equations of the form

vV, -V, = RDI

at Iy + IR, | (28)

and



Table 1. Comparison of calculated resistances with those measured by .

Gabrielli E£.§l~7 for four ring~disk geometries.

r /r

o1 rl/r2 KrZRrr Kr2Rdr h - KroRdd
meas. calc. meas. calc. | meaé. calc.
0.952 0.42 - 0.244 0.252 | 0.211 0.228 0.307 0.192'
0.968 0.62 0.272 0.261 0.194 0.22 | 0.217 0.216
0.976 0.82 ‘ 0.311 0.273 0;189 0.218 0.231 0.238
0.976 0.976 1.213 0.342 0.177 0.219 0.262 0.2495

_ZZ..
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Vs Vp = Rl + (I, + IR, , (29)

where 'RD s RR R RC , and R! are resistances and v is the potential

C T

of the reference electrode and can be expressed as

R +R' I . - (30)

Ve = Rauxfd + Raux!y

Compar{son with equations 2 and 3 shows that we can make the

associations
faa = o * Re T Rpux © o (1)
Rdr = RC + RAux ? | FF32)
er ='Rév+ RAux ’ (33)
and
Rr¥ = Ry +'Ré + RAUX . | ' (34)
In view of equation 10, we can write

RC RC RAux RAux ‘ ' (35)

-Shabrang and Bruckenstein take. these differences to be zero. Indeed,
if the counterelectrode is far away and the reference electrode is

: ' . . N 1
- moderately far away from the ring-disk system, we can estimate

(36)
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where p 1is the radial position of the referénce electrode in
'spherical_coardinates. However, the currents Id ‘and  Ir do not,

in general, need to have the same influence on the potential VT

in equation 30; the difference will become accentuated the closer

the reference electrode probe is to the riﬁg~disk system.

. 1 - . 1 = = Wi
From flguresvl, 2, and 3, we find KrORdd . 0.249 KrZer -0.209 ,

and Kr = 0.3238 for the geometry of Shabrang and Bruckenstein

2Rrr
(rO/rl = 0.95 and rl/r'2 = 8/8.4) . RD corresponds approximately

corresponds approximately to R__ - er .

to R,, -—R , and R
rr

dd dr

(Shabrang and Bruckenstein come to a different éonclusibn.) For the

R

ratio Rb/(RD'+ Rp) , they find values of 0.37, 0.35, 0.34, 0.39,
0.36, 0.34, and 0.31;.whereas we calculate 0.366 for the corresponding
rat105 (Here, we assume that the labels Vo/VD and 'VO/VR are
interchanged in their table III.) |

Because of ﬁnceftainties in the position of the reference
electrode and the conductivity of the solutioﬁ, we refrain from further
comparisons wifh their data.

~From the results of Miller and Bellavance4 we deduce an experimental

value of KrZer = 0.192 . The corfesponding value from‘figupe_Z is
K R 4 = 0.206 for ro/rl = 0.909 and rl/r2_= 0.812 .
Conclusion

Computed values of the primary resistances for a ring-disk
system, as presented here, should permit estimation of the uncompensated

resistances when an attempt is made to control the potentials of the
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electrodes. There are few geometries for which this information
is available.

Diécrépaﬁcies betﬁeen calculated and experimental values may
lead to refined experiments or to comsiderations beyond the scope

of the primary resistances.
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List of Symbols

Bn coefficients in series 18 for potential .

Id disk current, A

Ir ring current, A

K compleﬁe elliptic integral of the first kind

m see equation 16

M2n Legendfevfunction of imaginary argument

Pk., Legendre polynomial

T ”radial position in cylindricél coBrdinates; cﬁ
r radius of disk, cm

ry inner radius of ring, cm

r, outer radius of ring, cm

T, position on ring electrode, cm
.Rdd’Rdr’er’Rrr resistances defined by eguatiopst and 3, ohm

RD’RR’RC’Ré resistances defined by equations 28 and 29, ohm



~26~

- resistances defined by equation 30, ‘ohm

RAux’RAuxr

RE,R%,R%,RE dimensionless resistances

S surface area, cm

Vd disk potential, V

Vr fing potential, )

VT potential at reference electrode, V

VO volume, cm

X see»equation 13

z distance from the plane of the disk, cm

n rotational elliptic coordinate

Kv conductivity of the solution, ohm—l - cm—l
£ rotational elliptic coordinate

P radial position in spherical coordinates, cm

- ¢ potential in the solution, V
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APPENDIX A: Calculation of the M Functions

Of fundamental importance in the calculation of potential

distributions in disk systems are the functions Mn defined byl6

4 , M , ,
I E1(+ £%) 523} = a(n + DM, (A-1)

subject to the boundary conditions

M =1 at £=0, . - | (A-2)
M =0 at £=ow . - (A-3)

We describe here several methods which have been used for evaluating

Mn(g) and its derivative.

Power series

Equation A-1 is Legendre's equation of imaginary argument.

Development in a power series

oo
5 k
Moo= ] CE (a-4)
k=0 : :
is assured to converge for |&| < 1 . From the boundary condition
A-2 we have
c =1. - (A-5)

~The recursion relation is
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(k= n-2)(k+n-1)

= - C k> 1. -
€k = Ck-2 Kk - 1) - ofor k> 1 (A-6)
le
It has been shown elsewhere™ that
n_ 4
M.;_n(o) = - % (_2_‘}_)__5 , (A-7)
[(2n)!]
the result being restricted to even values of 2n . We generalize
by noting that
Cl = ~2/m for n=20, - (A-8)
Cl = -1/2 for n=1, (A-9)

and a recursion relation for higher values of n is

2
_ n ) -
Cl,n B <n - 1) Cl,n—-2 . (4-10)

The function subprogram FUNM(N,XI) calculates Mn(é) according
to this method beginning at statement 7. The function subprogram

FUNMP (N,XI) calculates the derivative M;(E) by the same technique.

" Series in 1/§

On the basis of equations 8.1.3 and 15.1.1 of reference 17, one

can develop the expression, convergent for |g| >1,
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- FUNCTION FUNMIN,XI) & XI2=X1%%2 § ADD=1.C $ SUM=1.0
P1251.57079€2267948566102 .
U IF(ABS(XI)elLTeleT) GO T 7 & DO | K=1,5CC
TAND T - ADD AT LOAT(2*<+NIAFLOAT(2%K+N-1)/8 ¢0/FLOAT(K)/ (FLOAT(K+N)+0.5)
1/x12
SUM=SUML ADD

______ 1 IF(ARS(ADD) LT 1 NE=-ORARS(SUM)) GO TO = _
- 2 FUN“= SUV/le (14M)/Z7P12 3 IF(N.FQe0) RETURN
DO 1 NN=1,

3 FUNM= rurw:FLCAT(NV)/FLOA?(Z*NNOI) & N2=N/2
e U IF(NGNEG2ENZ ) GO T S 6§ DD 4 MN=1, N2 . L

4 FUNMSFUNMIFLOATINYNYZ(FLOATINANY=0,.5) $ RETUAN

S FUNMzFUNMZPI2 § IF(N2,80.C) RETURN § DO 6 Nriz=] N2

6 FUNM=FURY: (FLOAT(NN)Y 1.5 )/FLOAT(NN) § RETURN

7 A2=1.0 H N2=N/2 & IFL2M2.E0N) GO TO 9° ¢ Al1=-P1?2

IF(N.EQel) GO TO 11 ¢ NN 9 NN=3,N, 2
8 A1=A1/7(1e9=1.0/FLOATI(NN) ) ®%2 ¢ GO TO 11
9 Ax:—l.O/PIZ $ IF(NSGFQLD) 60 TH 11 ¢ DD 10 NN=2,N
O AL=ZAL/Z(Ll e =1 «C/FLOAT(NN) ) =22 . Ll D -

11 A1=A1%X] + FUNMZA2+Al $ D0 12 K=2,500,2
A2« A2EXIPEFLOAT(K-N=-2 ) XFLNAT(K+N=-1)I/FLOAT(KEK =K'}
A1=~A1HXT2XFLOAT (K-N= 1)SFLOAT(K+N) /JFLOAT(KEK¢K) ¢ AND=A2+AL

et FUNY=FUNM+ ADD .

12 IF(ADS(AND ) oL Tel oE~- Q*ABQ(FUNQ)).nﬁruﬂN $ RETURN $ END
FUNCTION FUNMP(M,X 1) ¢ XI2=XI*%2 § ADD=1,0 ¢ SUM=],9
PI2=1457Y79€3267%486661 Q2

o L JECADSIXT) oL Te1e0) GO T 7 & NN 1 K=1,500
iﬁg?;—ADD*FLOAT(?*K¢N) FFLCAT(2%K+N+ 1) /78 o/FLOAT(KIZ(FLUAT(K#N) +0,5)
SUM=SUM+ADD :
e IF(AQ%(A)D).L1.). E-9 *APS(SUM)) GO 1O 2
2 FUNMDZ-SUM/X[n=(2¢N) /P I2%FLOAT(NG¢]) .
IF(N.EQeT) PETUYRN $ N 3 NN=1,N
3 FUNMP=FUNMPRFLOATINNI/FLIAT(2 NN+ ) § N2=N/2
e JTF(NGMEL2ENDY) G2 TO 5 ¢ DO 4 NN=1,N2
4 FUNMP=FUNMRCELNDATI(NNI/Z(FLOAT(NN)-C .5) § RETURN
5 FUNMPsFUNUP=DL2 § TF(NP.CQ.0) RETURN § DO 6 NN=1,N2
& FUNMPSFUNMD (FLOAT(NN) +0 5)/FLCAT(NN) $& RITURN
C 7 A2=1 4 /XT RN2=N/Z2 § IF(2%N2eEQWN) GU TN 9 ¢ Al=-P12
IF(NEQel) 6N TN 11 & DO B NN=I N, 2
8 Al=AL/(1el=1o7/7FLiJAT(NN) ) %%2 § Gn TO 11 ‘
9 Al=-1.0/P12 § [FINJEQeO) GO TO 11 % 00 10 NNz=2,N,”?
._JﬁuAl-Al/(l.,-l.f/rLHAY(NN))**Z
11 FUNMD=ALl $ D0 12 K=2,500,2 T )

A?-—Ae*xl?*lLOAT(K N-?)*FLQAT(KQN-I)/FLOAT(k#K K)
-- : Al=-AIBX 2% OAT{K-N=-]1 )XFLOAT(K+N) /FLOAT (K*K ¢X)
ADD=A2*FLOAT(K)+ALXFLOAT(K+1) $ FUNMP=FUNMP+ADD"
12 IF(AHS(ADD).LT.I. =9¥ABS(FUNMP)) RETURIN $ RETURN .$ END
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' . '2 ASY !
v o L@ED_ 1 éo(_l)kr1+2+k)r(2+2+k)
n 1 2 o n+l k=0 3 ik 2k
[‘“(w%) = R GSALA
_ 9,088 (A4il)
Q. (0 °

where Qn(ig) is a Legendre function of the second kind of imaginary

argument whose value at the origin is determined to be

(L, o o |
Q_(0) = 2_§Zl++2;> iﬁl , (A-12)

One can simplify the expressions somewhat by noting that

N (a-13)
M, (E) - 1, Ereo, | (A-14)
1 22 o
and
(n + 2)2 - M)

Mo42(8) > (2n + 5) (2n + 3) £2 as &>, (Afls)

Then, if we write equation-A-11 as

© D

_ kK, A
M _(E) = kZO g (4 16,)
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then the values of Do can be inferred from equations A-13 to A-15

and the higher coefficients are determined by the recursion relation

(2k + n)(2k + n - 1)
1
4k(k + n + 'é')

s : (a-17)

The function subprogram FUNM(N,XI) calculates Mn(E) according
to this method for & > l:. The function subprogram FUNMP (N,XI)

calculates the derivative M;(g) by the same technique.

. . . -1
Series expansion in ctn ~(§)

Introduction of the variable

y = cta L (&) ‘ (A-18)

transforms the differential equation A-1 to

2 dzMn ' -
sin"y —5 = n{n + 1)Mn (A-19)
dy
with boundary conditions
Mn =0 a#y y=20. ’ (A-20)
Mn =1 at y=mu/2. ' (A-21)

The asymptotic forms A-13 to A-15 lead to

MO +-% y as y-~0, (A-22)
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M, > %-y as y >0, T (a-23)
and

22
. N (n + 2)7y
M2 > G+ ) 2n + 3)

Mn(y) as y >0 . (A=24)
The solution can be expressed as a power series in y

[><} ) A
M= Z Aky2k+n+l ) | | (A-25)
k=0
This seriés is observed to converge for all the values of interest,
tﬁat is, 'y between -OIJand ﬂ/2v or £ between 0 .and ® , The
vélues of A0 can‘be inferred from equations A—22 to A-24. A
recursion relation can be derived for the higher coefficients.
This involves the expénsion of sinzy in a power series in vy .

The subroutine COEFkNMAX,KMAX,A) establishes the cbefficients
for Mzn(E) , that is, for even Value§ of 2n . rThe subroutine
DISK(R,PE,A2N,NM) calculates the values of Mzg(g) for a given value
of & (reléted to R) and stores the result iﬁ the array PE(N) .
These progréms are specialized for the fing—disk geometry treated
in this thesis and are iptgnded to calculate the'potenﬁial onvéhe
ring due to a currentbon the disk, in conjunction with the compuéer
programs discussed in appendix B. It was not necessary for this
purpose to develop the derivative Mén(g) . However, the subroutine
V.DISKP(R,PPE,AZN,NM) calculates the values of Mén(é) and stores

them in the array PPE(N) .

-
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E COEF(NMAX KMAX,A) & DIMENSION A(20,40)
/1.5707903257045966192 $ DO 1 K=2,KMAX & DO I N=1,NMAX
0 $ DU 3 N=2,NMAX § ON=N-1
0% ON»t?*A(N—l.1)/(4.?*ON+1.)/(a.c*ON—l.O)
¢ KMAX $ OK=KK=1 & SUM=0.,0 $ PFAC=1.0
0 % DO 2 iP=1,KK $ P=LP-1 § SIGNP=-SIGNP § FACM=1.0
1) PFAC= pﬁAC»(2.0*P+1.0)*2 0% $ SIGN=S[IGNP )
PyXK § QM=MM-} : e
IF(MM.GT.LP) FacM= FACM*Z.C*(UM-P)*(Z.O*QM 240%P41.,2)
T SUMzSUMEA(N,KK=-MM+]1 }¥SIGN%4 4 0% (QKR-QM+ON+043) % (AK-QM+QON) /PFAC/FACM
.2 SIGN=-SIGN
T3 TA(NLKK }==SUM/4,0/0K/(2.0%QN+0K+0.5) $ RETURN §$ END ‘ oo

$ DIMENSION ‘PE(20),A2N(20,40),Y4(60)

SUBROUTINE DISK(R,PE,AZN,NM)
C.. - CALCULATES M(X1), THE LEGENDKE FUNCTION OF IMAGINARY ARGUMENT
©¥=PI/2.-ATAN(XI), WHERE XI=SQRT(REX2-1,0) .
TTTTTUUYSASINGLGO/R) & YM(L)=Y b Y2=VEY § MAX=NM+33 $ DO 1.M=1,MAX )
Tl YM(MEL)=YMIMI®Y2 § DO 3 N=1,NM $ PE(N)=0.0 $ DO 2 M=1,40
ADD=A2N(N,M)¥YM(M+N=-1) § PE(N)=PE(N)+ADD
2 IF(ABS(ADD) +LT.1.E-TXAUS(PE(N))) GO TO 3
TTTTTT3 CONTINUE $ RETURN § END R -

SUBROUTINE DISKP(R PPE,AZN,NM) SDIMENSITON PPE(ZO),\PN(ZO O),YM(GC)
C CALCULAYEQ THE DERIVATIVE OF MAXI), THZ LEGENDRE "FUNCTION OF
C IMAGINARY ARGUMENT Y=Pl/2 - ATAN(XI)
TTTTTTTT ¥ =ASIN(LLC/R) S YM(1)=1.9 B ¥Y2=zYRY § MAX=NY+28 $ DI 1 M=1,MAX
1 YM(M+1)=zvyM(M)RY2 § DO 3 N—l,NM § PRPE(N)=N.C 3 DO 2 M=1,6)
ADDZA2NIN, M) XYM(Me+N=]1 ) AFLOAT( 2%M+2%N=3) b PPE(N)I=PPE(N) +ADD
3

2 lF(AHS(ADD).LT-l.E 7¥AB8S(PPE(N)DY) GO TO
T3 PPEIN)=-PRE(N)/RA%X2 '8 RETURN & END ’ o

4
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Recursion in order n

Let
Q,(18) = -1 Ctn—l(ﬁ) ,.
Qi) = £ etn M(®) - 1,

and

(a + 1)Q ., (1E) = (2n + 1)iEQ_(i8) - nQ__; (i8) .

A recursion relation for the derivative is

. do (1)
@+ £ —gF— = nEQ (i) + niQ_, (18) .

Now Mn(g) is related to Qﬁ by

Q18
Mh(g) - Qn(o) ’

where Qn(O) is given by equation A-12.

‘To avoid complex arithmetic, define
_ .0+l .
q,(6) = i"q_(16) .

Equations A-28 and A-29 become

(n + 1)qn+l(£) = -(2n + l)éqn(i).+ nqn_l(i)'

(Af26)

(A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)
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and

1+ &7 —aE T ngq (€) - nq _; (&) . (A-33)

7The function subprogram XI(R;Z,ETA;INDEX,ANS) caichlates

Mzn(E) and Mén(g) by means of the recursion relations'déVelopeA'
above. It also calcﬁlates a conversibn from cylindrical codrdinates
to elliptic éoardinates since itvwas originally designed to be used
in a pfogram to calculate the primary resistance in a cylindrical
cell with‘a\small disk centered in one end and.wigh the counterelectrode
compfising the other end of the cell. For this reason, the function
XI also calculates ?2ﬁ(n)Mén(g)' and Pén(n)Mzn(é) as well as the
r derivative of P, (MM, (E) . ’

The recursion methqd loses accuracy for large valugs of n ,-
and this becoﬁes more severe for values of £ greéfér than 1.
- An error in ;he‘sixth significant figure is detéctable at n = 24
fof‘ £€=0.5,at n=14 for & = 0.9 and 1.0 ,_ét n=28 for

£E=2,and at n=6 for £ =3 and 4 .

Finite differences

A finite-difference solution of equation A-1 or equation A-19
has been developed using the variable y = ctn—l(é) as the independent
variable. While this method gave generally satisfactory results, its

accuracy can be exceeded by using one of the methods described here.
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FUNZTION XT(P,Z,FTA, INDEX,ANS,0)
DIMINSION O(27 , 5).9HI(?J).PHIFTA(2))'DHI(I(2‘),AN§(20)
JMAX=20 .

CALCULATES CONVEGS[ON FROM CYL INDRICAL COORDINATES R,2 TN
ELLIPTIC COYRDINATES ETAyX1a.

22=7%%2 3 RHN2=2%%24722-1.0 % IF(PHO2.GE.0.0) GO TN 1
X2=3.C%22/(~FHO2+SORT{RHIDAE244 ,5%22)) § GO TO 2 L

TX2=0. EX(RMO2+SQRT(PHO2 XD +4,0%22))

XI=SQRT(X2) $ JF(XT.£Q.7.C) 63 TN 3
IF{Z7.LTeleC) XI==¥1 $& ETA=Z/X! §& GO 710 4
ETA=SQRT (1 (0-0%%tD)

"CALCULATES LEGENDRE POLYNOMIALS P(ETA) AND LEGONDOPE SUNCYIONS

MEXT), AS WElLl. A% THE DFRIVATIVES, RESULTS ARE FUR ZVEN URNDFRe.

S X1T14O#XH%X2 ¢ XF=FTARKI $X][ %02
[1221e57°79567267G489661722 ¢ 0(1,2)=P]2-aTAN(X])

D=1 e 0-X1"*Q(1,2) $ 0(1,41)=10 % PO=FTA & I(1,3)=0.0
(1y8)==-1,./¥1 $ PPOz1.D & N(1,5)=012 & N=2 L DO S J=24IMAX
SNEYD & O J,1)=((2AEN+] ) HFTAXDIN- '\'*' 1(J-1,1))/7(Ne1)
(Jy2)= ((2N+1)XT =QD=N®O(J=1,2))/7(Ne1)
(Jy3)=((2%MN+L )L (UOH+FTAERPRN) =-NED(JI~1,3))/7(N+1)
(JyS)==N"0(U=1,45) Z(N+1) & N=N+1
(D48 )=NH(XTXO(JI,21400)7XY % pO—((Z“V’l)*‘"YA*n(JJI)’N*pr),/(N§1)
')=(-(?"~‘N¢l)*.Xl*C‘(J'?)°N‘QU)/(N"l)

POT( (2 N+1)2(0(J, 1) +=TAXD(J,3))-NEPOOY/(N+]) & DO H U= ,0MAX
HI(J)=0(J,1)300J,2)/70(3,5) % PHIETA(JI=ND(J, 5)"](Jo?)/O(J 5)
HYX[(J)=(‘(J01)”’("(Jp")/”(Jq%) & 0D 7 J=1,4yJMAX

R DERIVATIVF OF POTENT AL, INDFX=] ; - . o
GO YO (11,12413,14),INDEX

ANS( S )=/ XE (X IMPHIXT(JI)I-ETAXPHIETA(JI)) & GD TO 7

POTENTTIAL, INDEX=D

ANS(JI=OHI(JI)Y ¢ G TO 7 - ) .

FOR HEMISPHLPICAL 1T, INDEX=4 ' i
ANS(J)=(1eT-CTARED)XPHIETA(J)I+ (1. O’ETA**’)*QHIXl(J) ¢ G) 1O 7
M2N(XI) tHDFX 3

ANS(J)I=N(J,2)70(4,5) . .

CONTINUE ¢ KETURN § FND
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Summary

The series expansioh in y = ctn—l(E) - should cénvefge for
y<Tm or § > -= ,'thch covers every.conceiVable value of interest.
The accuracy of this method is:always excgllent, but the calculation
of the coefficients in the series is eXﬁensive.

The series expansion in 1/ is inexpensive and genérally accurate
except for vélues of §& quite close to 1. The series expansion in §
is also inexpensive. Its accuracy is deficient for values of £ quite
close to 1, and it also fails for large order n . An error in the
sixth significant figure is detectable at n =20 for ¢ - 0.5
and at - n =12 for & = 0.9 .

The recursion relation fails badly for large & and large n ,
but it is better than the power series in £ fér & <1 . An inexpensive

procedure for moderate n should probébly combine recursion for

|€] < 1.01 with the series in 1/& for £ > 1.01 .



APPENDIX B: Computer Proggams

The programs for the calculation of the pfimary resistances
"for the ring-disk system aré recotded here. These include thé main
program RIDISK, the subroutines RING and ALLPOL, and the function EK.
In addition, one needs thé subroutines COEF énd DISK, discussed
and reproduced in appendix A.

The function EK calculates the complete,eliiptic iﬁtegral~of
the first kind, K(m) .
| Subroutine ALLPOL calculates bothAodd aﬁd even Legendre
polynomial§ of argument X and stores them in the array P .

The s&broutine RING cglculatesrthevvalués of the potential due

to a ring current by evaluating the integral involving the elliptic

integral:
r2 v
' _ 2 i(r")K(m)x'dr’ , » _
Q)O(r) TomK f r +r' - (B-1)
,rl :
where
. ,
m:.—l‘LE.___z . . A (B_Z)
(r + ')° :

This is done for each case of ring current discussed in the text and

.

is carried out for each value of r in the array RR (either .on the

ring or on the disk).
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" The main program must carry out the manipulations reﬁerred to
in the text. First oherreadS‘th sets of'abscissae and weight factors
for Gaussian integration. Thé first set (X _and» W) .establishes
values of f ét which potentials are calculated on both thebring,and
thé disk.. The second set (U and V in the maih‘prograﬁ and AP
and V in subroutine RING) establishes the valﬁes'of r' _at which
the current‘density on the ring is specifiéd and the basis for the
integration in équ#tionfB-l.

We used the vélues-IM = 32 and JM =_64. More values a;e required
for the accurate intégration of equation B-1 théh for the SQbseQUenc
sﬁraightening out of the'potential distributions on the.ring and the
disk;'

For. KM‘ and NM we used values of lO,aﬁd 20{ Howevgr, for
some of the calculatioﬁs, KM was increaéed to 20, as mentioned in
the text. |

For each problem, the Computer‘reads the values of ro/rl
~and rl/r2 . In the output, ZDD, ZDR, ZRD, and ZRR refer.to values
of KrZRdd ,'Krszr , KrZer , and Krerr . _CAP refers to ﬁhe
resistance between #he ring and the disk when ﬁb current flows to
the counterelectrode at infinity, and ELECT refefs ﬁo_the resistancé
between a composite electrode (consisting of‘the ring and disk at the
same potential) aﬁd a counterelectrqde'at infinity. Boﬁh of these
fesistances are multipiied by 'Kré to make thgm dimensionléss.

ZDRRD and ZRRR are auxiliary values‘related to the developmeht-of
‘improved wayé.of presenting the dependence,of Rdr and R?r on
See also appendix C.

ro/rl and rl/r2 .
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PROGRAM. RIDISK (INPUT,OUTPUT,TAPE1=0UTPUT,PUNCH)
DIMENSICH X(32) W (32)yRIC32) 4RRU32) ,PC(32,22),FR(32,22),
_ 1AMPUO(22),AHPR(22) yPO1(2) 4 PRI2) 4BULE0,22) 9PEC20),A2N(20,400,PC 79)
2,P0(20),5020) ' :
COMMCN A0, cp(uu 22) ,CK{Y 32.29),IH,JH KM, U(64),V(E4) PI,RL,R2,00
100 FOKMAT (515 '
101 FCAHAT(&FlS 1
102 FORMAT (2F9,5,8F1347) , .
103 FCRMAT(3F10. 1) . __ ) e
104 FCKMAT (2F 3G, 1) .
(105 FCRMAT (1n , 3X,*RO/R1%, 4X,*R1/R2%,  8X,*ZDC*y10X,*ZCR*,10X,*ZR
10% 510X, ¥ZrR® 410Xy *GAP* ,9X, *ELECT*/)-
106 FCKMAT (6F12,3)
P1221.5707953267949 5 PI<2,0%PI2 § A0=1.38625436112
READ 10C,IH, IM,JH,JH,KME NM=20 o - o
IHP1=1he1 3 F:IAU 104, (X (L), i=IHP1,IM) 3 REAG 104, (W(I)y ISIKPL,IM)
JHF1=Jk41 & READ 101, (UUJ),J=JHPL,JM) § READ 101, (V) ,J=driP1,JdMH)
00 3 I=1,IM § IF(I4GT4IH) GO TO 1
CIL=IM-1¢1 & X(I)=0.5-0,5*X(IL) 3 HCIV=WCIL) § 60 TO 2
1 X(1)=0.5¢0.5%X(1) - ,
2 CALL ALLPOL(KM=2,2.0%X(I)=1.0,P) § 00 3 K=2,KM e
3 CR(ILK+Z)=P(K-1) 3 U0 & J=1,J4 3 IF(JeGT.JH) GC T &
JLTUM=-J+1l § U(J130.5-0.5%U(JL) $ vIJI=v(JL) § GO TO §
4 U(JI=0.5+0.5%U(0)
S CALL ALLFOL (KM=l 2o0%U(J)=1.0,P) § 00 6 K=l KM
6 CPLJ,KI=P(K=3) § CALL ALLPOL(2*NM=2,0.0,P) 3 CC 7 N=1,NN
7
[+]

PO (NI =F(2%N-1) & CALL CUEF(NMy40,A2N) $ PRINT 135 & R2:1.0
S REAL 103, RO1,R1 5 IF(RO1.EQeU0.0) STOF 3 RO=RO1*R1 3 CC=1.0-R1
C¥**$CALCULATION OF RAOII AND ETA VALUES®es#
00 6 I=1,IM § ROCIIZRO%(1,0-X(1)**2)%*0.5
8 RRE1)I=R1+(R2-R1)*X(I) :
Covesees¥ASSiGH CURSENT VALUES TO THE RINGes¥ssssevse
_AMPR(4)=(R2=RL)* (RZ+R1I*PL & AMPR(2)=040 § CC 9 K=6yKM _
9 AMFR(K)=U.0 3 AMPR(5)= (R2=R1)**2%PI/3.0
AMPR (3)=(R2~F1)* (R2+2. 0%R1)*P1/0,75 § AMPR(1)=PI*AMPR (4)
CH*s*@CALCULATE POTENTIAL ON THE UISK AND RING***¥svesssvessns
CALL RING(PO,RD) § CALL RING(PR,RR)

C**¥**CALCULATE THE S VALUES FOR DISK ONLY FROSLEM®ssses
DO 10 N=1,NM | GO 10 K=1,KM L
10 BO(N,K)=0.0 3 DO 11 I=1,IM § CALL ALLFCL(2*NH=2,X(I),P) .

DO 11 N=1s3N4 5 DO 11 K=1,KM .
11 BUCN,K)=8U(H,K) PO (I,K)*P (2*N=1)%W (I) & 00 12 N=1,NH §CO 12K=1,KM
12 BOUN,KI=BOINKI* (4*H=3)%0.5 § 8D(1,2)51.0
C**¥er yilUATE LISK CURRENTS#sesws
D0 13 K=1,KM
T AMFO(K)I 3D (1 4<) ¥4 . 0*R0
C***¥%C VALUATE NEW RING POTEHTIALS®ssewss
DO 14 I=1,I4 & CALL DISK(RR(I}/RQ,PE,A2N,NH)
00 14 K=1,KM § 0O 14 N=1,NM
14 PROILKIZPROI 4 ) +00 (N, K)*PELN) *POIN)
CH#¥STRAIGFTEN THS RING PUTENTIALS**ssses
00 17 N=3,KM 3 DO 15 K=1,KM 3 C(K)=0.0 & D0 15 I=1,IM
15 C(K)=CUKI+CRII,N¢2)*FR(L,KI®W (L) . _
00 17 K=1,KM & IF(K.EQ.N) GO TQO 17 8% F=C(K)/C(N) % DO 1€ I=1,IM
16 PROL,KI=PK(I 4K) =F*PR(I,N) 5 AMPU(K)=AMPD(K) =F*ANPO (H)
AMPR (K)=AMPR (K) =F *AMPR (N)

¥
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CONTINUE

*CALCULATE. AVERAGE POTENTIALS**sssse

00 18 K=1,2 § PRI(K)=0.4 & PUI(K)=0,0_3% 00 18 121, IM
PRI(KISFRI(KI+PR{I ) *W (1) o
PRI(1)=U,5*PRI(1) 3 FkI(Z)’U.S‘PiI(Z) P POIC2Z)=1.0

C“"'CALCULATE THE REIISTANCE RELATIONSHIPS®%sssssss

DET=AHFR(LI*ARPD(2) =AMFR(2) *ANPU(1) T
ZRR=(PKRI(1)*AMPD(2) ~PRI(2)*AMPU(L) ) /0ET '

ZRD= (AMFR(1) ®2RI(2)=AMFR(2)*PRI(L))I/DET
ZOR=(FLICLI*ANMPL(2)~POL(2)*LMPD(L))/DET

Z00=(AMFR(1) *2DI(2)-AMPR(2)*POL1(1))/DET
OET2=PRI(CLI*POIC2)-PRI(2)*PUI(1)

GAP=(DET2%2.0/(2ZDR¢ZRC)/VDET 3 ELECT= DETZ/(ZRR'ZCC ZOR~- ZRE)/UCT
RSTARK=R1*(3,0-R1)/2.0+0D**2/P12

_20RRL= (ZOR+ZRCI*PI*RO/R2/ASIN(RO/RSTAR) .
ZRKR =ZRR+0+5*(R1/PII** 28 ALUG(DU* (1394-107,*SGRT(1.-R1%%2))/32,)
RO1=R0/RL $ PRINT 102, ROL,RL,2UD)Z0R$ZRLG,LIKR, GAP,ELECT ZURRO,ZRRR
PUNCH 106y KO1,R1,2C0,Z0URyIRUy ZRR

GO TG 99 8 ENC

SUBROUTINE ALLPOL (NMAX,X,P) § DIMENSICN P(79)

C ¢ &

H 1

"CALCULATION OF LCGENOKE POLYNOMIALS & + ¢ & &
P(1)=1.0 3 P(2)=X § IF(NMAX.LE+1) RETURN & CC 1 N=2,NMAX
PIN#1)=((2*N=1)*X*P(N)~(n=1)*P(N-1))/N § RcTURN 3 «NO

FUNCT ION EK(EM) .
EMLI=1.0-EM ¢ FK==50.0 $ [F(EMI.LE.0.0) RETURN '
EK=1436629436112+EM1%2(0.09666344259+EM1*(0.035900922332+FM]%(

710.03742563T13+FM1¢0,01451196212)))-(0.5+FM1%(0.12498593507¢FEM ]+ (

20.068802485T76+EM1%( 0, 033283)5346*FW1*0.00441787012))))*AIOP(CWI)
RETURN $ END .
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SUBROUTINE RING(PCT,RR) 3 OIMENSION PCT(32,22),RR(32),S2(64)
C*e**#*SUBROUTINE ~ CALCULATES VALUES OF THE FOTENTIAL CUE TO A RING®¢sess
CPP*OCURRENT BY EVALUATING The INTEGRAL INVOLVING THE ELLIPTIC INTEGRAL __ _

CCHMON A0,CP (244220 ,0R( 32,240 3 IM, UM, XM, AP (5L 4y (54) ,PT ,RL,R2,(D

00 38 'I=1,I4 § A=(RRUL)=R1)1/(R2-R1) & G=AeR1/0C & DC 1 K=1,KHM

1 POTU(IyK)I=i;40 3 IF(ALGE4UsO +AND. ALLE.1.,0) GC TC 7

ELIZEK(140=(A/(2,%G=A))**2)*K1/(D0*A¢2,%RY) _

ELZ27EK(L1a0-({1,0-0)7(2e®541,0-A))%*2)%R2/00/(2.%G¢+1,=A)

_ D0 5 JU=1,JM 1 Y=AP(JI=A & H=(Y/(Y+2,%6))%*2 § EL  =EK{1.0-H)

"IF(AP(J)4EQ.0.0) GO TO 2 '

POT(I,3)=POT (1,3} ¢vI(J)®((Y+C)*EL /(Y+2,%G)-ELL1)/7AP(J) **0.5

IF(AP(J).HE.l.O) GO0 TO 3 & 53=-aL1 3 GO T0 4

2 S3s-¢clLe 3 GO0 &

3 S3=(Y+G)*EL /(Y 2,%C)/{AP(J)¥ (L0~ AP(J)))"O s
1-EL1/ AF(UI*%0.5-EL2/C1.0-AP(J))*%0,.5
POT(I,1)=P0OT(1,1) #S3*V(J) § 0O 5 K=4,KM
POI(I,K)=POT(I,K)0(106)'£L 'LP(J,K)/(Y&Z.'G)'V(J) § CC 6 Kzl,KM
POT (I ,K)sPOT(I,K)*0D/FI 5 POT(I,1)=00%(FOT(I,1)+4 *CELLEL2))I/PI .
POT(1,3)=UD*(FOT(I,3)¢L,*EL1)/PI § GO TO 38 :
7 SUK=(AOtALOG(2.%6)) /720 3 S3=0e0 5 35=0,0 % H=(A/(2.%G=-R))®*2
IF(AGNECDe Q) SS=(G-A)*EK(L1.0-H)/(2.,0%G=A) +ALCG(A®*2)/4,~SUM
SG4=0e0 5 H=((1.0-A)/(1.0-A%+2,%G))**2
IF(ACNE(Ls0) 54= (x.u A+GI¥EK(1,0-HI/ (1.0~ A02.'C)0ALOG((1.-A)"2)

own s

1/74.=-SUM
DO 9 J=1,JM 3 Y=AP(JI-A 5 H=(Y/(Y+2,%G))**2 § S2(J)=0.0
IF(Y.EQ.0.0) 50 TC 9 3% EL =EK(1.0=H) § 00 8 K=l, KM

8 POT(I,KIZFOT (L1,K) +(Y+GI®EL  *LPIJ,KI/(Y+2.%GI*V(J) L
S2UJIZ(Y+GI®EL  /(Ye2.%G)+ALOG(Y*42) /4, ~SUN
S3=SI+(G/IY+2.%G) V¥¥2%ALOGIHI*V (J)
9 CONTINLE § 53=S3*CG/PI & AU0=0.0 $ AS=A/(A+2.%R1/0C)
IF(AS.GTe0.0) ADD=AS*(ALOGIAS)I=140) 3 AT=(1.=A)/(1s+A¢2,*R1/00)
IF(AT,6T.0.0) ADD=ACO+AT®(ALUGLAT) =14)
 $3=53-8(00%2.%(0C*A+R1)/PL 5 00 10 KzlyK¥
10 POT(L,K)=POT (I,K) *DU/PI S3*CRII,K)
DO 13 J=1,J4 3 IF(AP(J).EQ.0.0) GO TO 11
POT(Iy3)=POT (I,3) +VIJ)*(S2(J)=S5)/AP(J)**0,.5
IF(AP(J).hE.1.0) GO TO 12 & S1=-35 § GO TO 13
11 $1=-S4 5 GO TO 13
12 S1=SZ(J)/ AP (J)*(1.=AP(J)))**0.5-SS/AF (J)**(,5- Skl(l.-AP(J))"O 5
13 POT(1,1)=F0T (Iy1) ¢S1%V(J)
POT(I,1)= UU'(POT(I,1)0h.'(SSbe))IPIODU'(AO#B.'ALOG(Z ) $ALEGG(G))
PL= FCT(I 3

VAZA*$0,5 § PL=0D® (FLtbs* (SEESUMI)/P]

IF(ALEC.0.0) GO TO 35 & IF(R.EQ.1.0) GO TO 3¢ _

_ PL2FL-2.0%U0%(AL0G(1.0-A)=2,0¢+VA*ALGG((1.04VA)/{1.0-VAY)I/PT
60 TG 37

3€ PL=PL+ 4,0%0C/PI § GO YO 37

36 PL=FL=2.0%00%(ALOG(2.)~2,0)/PI

37 POT(1,3)=PL

38 CONTINLE § RETURN & END
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APPENDIX C: ‘CqmputedvResulté

Computed results were punched on cards to petmit cofrelatibn
without repeatiné the expense of the initial calculation. These
results- are printed in the following table. Rather than print ZRD,
we have_given the percent deviation DEV from the'value.onZDR. Values
indicated by a check were obtained with KM = 20.

Following the table of results is a simple p%ogram for testing
correlaﬁion formulas. Some of these correlationé have been discussed

in the text.
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PROGRAM DATA{INPUT,DUTPUT,TAPEL=0UTPUT)

100 FOOMAT (AX,"RO1E ,4X, 501 %,6X, $ZD0%*, OX X ZDR% ,GX , ¥ZRRT, 7X, XDS V¥ , 1 IX , %

1ZD% ,8X,*ZORPNE ,QX,%7P=)

T 101 FOPMAYT (33X, 2F6e24,3F12.8,F8.,4,5%,3F12,8) T T s s e
122 FORMAT (1M ) . : - i .
106 FORMAT (6F 12.8) : ' .

POINT 100 . : .

e P =T, 18] 526 S8 T e e o e e memn s - e
98 PRINT 102 ° : i ]

99 REAN 105, RC1,4R1,2DD,2DR,ZRD,ZRR ¢ IF(RO1.EQ.0.0) GO TO 938
IF(RT1eLTeCeN) STORP

T TRO=RO1ERI1 s

NDEV=IC0.NE(7ED/ZIDR=1 .0) i

2D =1.2/7720D/RC420%( 1 0~-R1IBH2XAL0OG(10-R0O1)

ASTARZRI (3 .-R1)I/2e4 (1 -R1IEXR2/P %2, .

T ZDRAD= 24 SHZNREPIENRC/ASINCROI/RSTAR) R

ZR =ZZRR+0.S5/PTXX2EALOG( 1 a0-R1%%3)
PRINT 101, RO1,R1,2ZNND, ZDR, ZRR, CEV, ZN, ZDRRD, ZR
GO TO 99 $ END
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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