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Abstract: Isoprene (C5H8) is a hydrocarbon gas emitted by many tree species and has been shown to
protect photosynthesis under abiotic stress. Under optimal conditions for photosynthesis, ~70%–90%
of carbon used for isoprene biosynthesis is produced from recently assimilated atmospheric CO2. While
the contribution of alternative carbon sources that increase with leaf temperature and other stresses
have been demonstrated, uncertainties remain regarding the biochemical source(s) of isoprene carbon.
In this study, we investigated leaf isoprene emissions (Is) from neotropical species Inga edulis Mart. as
a function of light and temperature under ambient (450 µmol m−2 s−1) and CO2-free (0 µmol m−2 s−1)
atmosphere. Is under CO2-free atmosphere showed light-dependent emission patterns similar to
those observed under ambient CO2, but with lower light saturation point. Leaves treated with
the photosynthesis inhibitor DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) failed to produce
detectable Is in normal light under a CO2-free atmosphere. While strong temperature-dependent Is
were observed under CO2-free atmosphere in the light, dark conditions failed to produce detectable
Is even at the highest temperatures studied (40 ◦C). Treatment of leaves with 13C-labeled sodium
bicarbonate under CO2-free atmosphere resulted in Is with over 50% containing at least one 13C atom.
Is under CO2-free atmosphere and standard conditions of light and leaf temperature represented
19% ± 7% of emissions under ambient CO2. The results show that the reassimilation of leaf
internal CO2 contributes to Is in the neotropical species I. edulis. Through the consumption of
excess photosynthetic energy, our results support a role of isoprene biosynthesis, together with
photorespiration, as a key tolerance mechanism against high temperature and high light in the tropics.

Keywords: abiotic stress; alternative carbon sources; CO2-free air; decarboxylation process; photosynthesis

1. Introduction

Isoprene (2-methyl-1,3-butadiene, C5H8) is a reactive hydrocarbon gas emitted in large amounts
to the atmosphere by many plants [1,2]. Approximately 500 Tg C year−1 is released as isoprene
by vegetation [3]. Tropical rainforests are an important source of isoprene to the atmosphere and
estimates suggest that they are responsible for 80% of global isoprene emissions (Is) [4]. Isoprene has an
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important role in atmospheric chemistry involving air quality and climate [5]. Due to its high chemical
reactivity with respect to photooxidation, isoprene impacts the atmospheric concentrations of ozone,
methane, and secondary organic aerosols, resulting in strong effects on the radiation balance of the
Earth [6–8]. Despite great advances in our knowledge on the roles of plant Is on atmospheric chemistry,
much less is known about the physiological roles that isoprene plays in plants [9–11]. The emerging
view is that isoprene production can protect photosynthesis during abiotic stress through mechanisms
including excess photosynthetic energy consumption, physical stability of biological membranes, and
direct roles as an antioxidant through reactions with reactive oxygen species that accumulate under
stress conditions [12,13]. However, recent work has noted that protection of photosynthesis through
isoprene via the physical stabilization of membranes may not be possible and that the mechanisms of
protection from oxidative stress are still unclear [14].

Isoprene is synthesized in the chloroplast by the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-
D-erythritol 4-phosphate (DOXP/MEP) pathway [15–18]. The synthesis is initiated by the condensation
of two primary precursors; pyruvate and glyceraldehyde 3-phosphate (G3P), a direct product of
the Calvin–Benson cycle [15,19,20]. The fact that isoprene cannot be stored in the leaves results in
Is from production, with the majority of carbon derived from recent photosynthesis [21]. Under
steady-state conditions of light and temperature (1000 µmol m−2 s−1 and 30 ◦C) ~70%–90% of the carbon
used for isoprene synthesis is produced from recently assimilated atmospheric CO2 [21–23]. It was
observed that plants exposed to 13CO2 rapidly incorporate 13C into isoprene molecules [21,23–25].
Despite this rapid incorporation of 13C, ~10%–30% of the carbon atoms in the isoprene molecules
emitted have been reported to remain unlabeled, even when the leaves are continuously exposed
to 13CO2 [26]. This indicates a contribution of carbon sources other than the recently assimilated
CO2. Those alternative carbon sources are important under stress conditions [27] and increase under
high temperatures, while net photosynthesis (Pn) is reduced at the expense of photorespiration [25].
Therefore, under stressful situations that reduce the uptake of atmospheric CO2 due to partial stomatal
closure while stimulating internal sources of CO2 (e.g., respiration and photorespiration), Is can be
increased even if Pn is substantially reduced [28–30].

Several studies have identified that potential alternative carbon sources for Is can be greater when
environmental conditions are limiting Pn, including xylem-transported carbohydrates [26,31], starch
degradation [26,32], pyruvate [33], stored carbon pools [17], and extrachloroplastic intermediates [34].
In addition, the incorporation of CO2 released by intercellular decarboxylations, e.g., during
mitochondrial respiration, photorespiration or decarboxylation of pyruvate during formation of
MEP was suggested [25–27]. For example, photorespiratory CO2 release is strongly stimulated under
high temperatures and stomatal closure due to the decrease of atmospheric CO2 uptake and the relative
increase of O2 in relation to CO2. Therefore, under stressful conditions that promote stomatal closure,
such as drought and high temperature, an increase in the release of photorespiratory CO2 inside the
leaf could provide alternative carbon sources for isoprene production [35]. However, the identity and
quantitative importance of alternative carbon sources for isoprene synthesis in tropical species under
abiotic stress is still unclear.

In this study, we investigated the incorporation of CO2 from decarboxylation process into isoprene
molecules by quantifying Is under CO2-free reference air in temperature- and light response curves
from a neotropical specie Inga edulis Mart. Taking off the CO2 from the leaf chamber, we stimulated
the photorespiration process and the release of internal CO2 in the leaf. We then compared leaf Is in
CO2-free reference air with Is in ambient CO2 under standard conditions of light and temperature.
We further investigated the potential for the reassimilation of CO2 release by internal decarboxylation
processes using an inhibitor of photosynthesis under CO2-free reference air. Finally, we directly
evaluated the potential of internal leaf CO2 to be incorporated into Is by providing 13C-sodium
bicarbonate (NaH13CO3) solutions to detached leaves under CO2-free reference air. We suggest that
CO2 released by internal decarboxylation processes is a quantitatively important source of alternative
carbon for isoprene formation. Together with photorespiration, isoprene production may be a key
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tolerance mechanism under plant stress that leads to a decrease in stomatal conductance and CO2

uptake. Under these conditions, isoprene could still be synthesized using the CO2 released by
photorespiration, offering a protective mechanism by consuming excess photosynthetic energy and
reducing equivalents. These results deepen our understanding about Is by tropical species under
different environmental conditions commonly experienced in the tropics, such as high irradiance and
temperature, and contributes to the modeling of Is from terrestrial ecosystems in the tropics under
climate change.

2. Materials and Methods

2.1. Plant Material and Experimental Design

Six I. edulis trees with a height ranging from 5 to 10 m were used in this study. The experimental
trees occur naturally near the Laboratory of Plant Physiology and Biochemistry at the National Institute
for Amazonian Research (INPA) campus III in Manaus, Brazil. This tropical species was selected
because of its high reported Is and for its ability to maintain high transpiration rates for many hours
following branch detachment from the tree [25]. From October 2014 to February 2016 Pn and Is rates
were quantified from healthy mature leaves, located in the upper third of the canopy. For each day
of the study, one branch near the top of one of the plants was cut and placed in tap water before
being recut and transported to the laboratory. The leaf gas exchange measurements occurred between
9:00 AM and 5:00 PM, with the branch exposed to ambient light and temperature conditions.

2.2. Isoprene Emissions and Net Photosynthesis

Pn and Is rates were quantified from I. edulis leaves using a portable open gas exchange system
(IRGA) (LI-6400XT, LI-COR Inc., Lincoln, NE, USA) with an artificial light source 6400-02B Red
Blue. The flow rate entering the LI-6400XT leaf chamber was set to 537 mL min−1. A fraction of
air exiting the leaf chamber was used to determine Is using two methods: quantified in real-time
using a high sensitivity quadrupole proton transfer reaction-mass spectrometry (PTR-MS, Ionicon
Analytik, Innsbruck, Austria) or thermal desorption (TD) gas chromatography–mass spectrometry
(GC-MS, 5975C series, Agilent Technologies, Santa Clara, CA, USA). Using four-way junction fitting,
air exiting the leaf chamber was delivered or to the PTR-MS (40 mL min−1) or to the TD tube
(100 mL min−1 when collecting), with the remainder of the flow diverted to the vent/match valve
within the LI6400XT. The excess flow entering the vent/match valve was maintained to at least 200 mL
min−1 [25]. Background measurements were performed with an empty leaf chamber, at the beginning
and at the end of each experiment.

2.3. Light and Temperature Response of Isoprene

For each I. edulis leaf, either a light or temperature response curve was generated. Leaves were
evaluated for their response of Pn and Is to changes in PPFD (Photosynthetic Photon Flux Density) at 0,
25, 50, 75, 100, 250, 500, 750, 1000, 1500, and 2000 µmol m−2 s−1 under constant leaf temperature (30 ◦C)
in both a CO2-free atmosphere (0 µmol mol−1, 4 leaves) and ambient CO2 (450 µmol mol−1, 7 leaves).
To achieve a CO2-free atmosphere inside the LI-6400XT leaf chamber, the CO2 mixer was turned off

and the soda lime was put to fully scrub. Leaf temperature response curves (25→ 30→ 35→ 40 ◦C)
were measured under constant PPFD (1000 µmol m−2 s−1), again in both CO2-free atmosphere (n = 3)
and ambient CO2 (n = 4). Before each series of measurements, the leaves were acclimated for ~15 min
in the chamber, until the stomatal conductance and photosynthesis were stable.

To quantify the ratio of Is between CO2-free atmosphere (0 µmol mol−1 of CO2, 8 leaves) and
ambient CO2 concentrations (450 µmol mol−1 of CO2, 8 leaves), gas exchange was measured with
leaves of I. edulis under standard conditions of light and leaf temperature (1000 µmol m−2 s−1 PPFD,
30 ◦C leaf temperature).
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2.4. Isoprene Emission under Limiting Conditions for Net Photosynthesis

To evaluate Is under limiting conditions for Pn we measured gas exchange under two limiting
situations: (a) using a specific photosynthesis inhibitor, DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea)
or (b) in the dark. DCMU blocks photosynthetic electron flow from photosystem II to the plastoquinone
pool [36], inhibiting photosynthesis.

For the inhibitor experiment, a 180 µM DCMU solution, was prepared and adjusted to pH 7.5.
A leaflet was cut from a leaf and placed in the DCMU solution for two hours, until the inhibitor took
effect. This inhibition time was determined during previous experiments to be sufficient to decrease Pn
to near 0 µmol m−2 s−1 in leaflets under standard conditions (i.e., with CO2, PPFD and leaf temperature
at 450 µmol mol−1, 1000 µmol m−2 s−1, and 30 ◦C, respectively). Following uptake of the DMCU
solution by the transpiration stream, a light response curve was measured under CO2-free atmosphere
and constant leaf temperature (30 ◦C).

For the dark experiment, a temperature response curve was established in the absence of light.
During the measurements the leaves were kept under CO2-free atmosphere and zero PPFD. The samples
were collected in TD tubes, using the LI-6400XT/GC-MS methodology [25].

2.5. 13C-labeling of Leaf Isoprene Emissions Using Sodium Bicarbonate 13C Delivered through the
Transpiration Stream

In order to observe possible reassimilation of internal CO2 by photosynthesis through isoprene
labeling molecules, measurements of Is under CO2-free atmosphere were carried out on detached
fully expanded I. edulis leaflets in a solution of 13C labeled sodium bicarbonate (NaH13CO3) (n = 5).
Fresh solutions of sodium bicarbonate 13C (20, 60, 120 mM) were prepared with the pH adjusted to 7.0.
For each concentration five leaflets were cut and recut in the sodium bicarbonate 13C solution, and
leaf gas exchange measurements were initiated. In sequence, the measurements were made for two
hours, under CO2-free atmosphere at constant PPFD (1000 µmol m−2 s−1) and temperature (30 ◦C)
using the LI-6400XT/GC-MS methodology. Isoprene 13C-labeling is reported as the 13C/12C isotope
ratio of [13C1]isoprene/[12C5]isoprene, [13C2]isoprene/[12C5]isoprene, [13C3]isoprene/[12C5]isoprene,
[13C4]isoprene/[12C5]isoprene, and [13C5]isoprene/[12C5]isoprene by calculating the peak area ratios
(7.1 min retention time) of m/z 69/68, 70/68, 71/68, 72/68, and 73/68, respectively.

3. Results

3.1. Isoprene Emissions under CO2-Free Atmosphere are Stimulated by Light but are Blocked When
Photosynthesis is Inhibited

Under ambient CO2 and leaf temperature of 30 ◦C Is and Pn were stimulated together as PPFD
increased (Figure 1a). However, while Pn saturated at roughly 1000 µmol m−2 s−1 PPFD, Is showed no
sign of saturation up to the highest fluxes of PPFD applied (2000 µmol m−2 s−1) (Figure 1a). When
Is was expressed in µmol C m−2 s−1 (IsC) and plotted against Pn (Figure 1b) the results show that
during high PPFD intensities, Is keeps increasing, representing a higher fraction of Pn relative to lower
PPFD intensities.
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standard deviation for n = 7. 

The light response curve in a CO2-free atmosphere shows that Pn remained negative, while 
light stimulated Is in a similar pattern to that observed under ambient conditions of CO2 (Figure 2a). 
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Figure 2. (a) Leaf isoprene emissions (Is, nmol m−2 s−1, measured by gas chromatography-mass 
spectrometry (GC–MS)) and net photosynthesis rates (Pn, µmol m−2 s−1) from I. edulis leaves as a 
function of PPFD intensity under constant leaf temperature (30 °C) and CO2-free atmosphere (0 µmol 
mol−1). The solid lines are the averages and the hatching area the standard deviation (n = 4); (b) 
Example of leaf isoprene emissions (Is, nmol m−2 s−1) measured by high sensitivity quadrupole proton 
transfer reaction-mass spectrometry (PTR-MS) and net photosynthesis rates (Pn, µmol m−2 s−1) from 
an I. edulis leaf under constants leaf temperature (30 °C) and CO2-free atmosphere, as a function of 
time with PPFD increases at the marked intervals. 

Figure 1. (a) Leaf isoprene emissions (Is, nmol m−2 s−1) and net photosynthesis rates (Pn, µmol m−2 s−1)
from I. edulis leaves as a function of photosynthetic photon flux density (PPFD) intensity under constant
leaf temperature (30 ◦C) and ambient CO2 (450 µmol mol−1); the solid lines are the averages and the
hatching area the standard deviation for n = 7. (b) Isoprene emissions expressed in µmol C m−2 s−1 (IsC)
against Pn (µmol m−2 s−1) as PPFD intensity increases in the same conditions; means, and standard
deviation for n = 7.

The light response curve in a CO2-free atmosphere shows that Pn remained negative, while
light stimulated Is in a similar pattern to that observed under ambient conditions of CO2 (Figure 2a).
However, under CO2-free atmosphere, average Is at maximum PPFD reached 59% of the observed under
ambient CO2 conditions (21.3 nmol m−2s−1 at CO2-free atmosphere vs. 36 nmol m−2s−1 at ambient
CO2, respectively). The fact that Pn remained negative while the leaf was in the chamber demonstrated
that the enclosure CO2 concentrations were below that of the CO2 compensation point, and that
the leaf was a net source of CO2 to the air, likely due in-part to the stimulation of photorespiration.
When real-time Is data was collected, Is saturated at lower PPFD intensity (1500 µmol m−2 s−1 PPFD,
using average values) under CO2-free atmosphere relative to ambient CO2 conditions (Figure 2a vs.
Figure 1a), indicating a limitation of carbon for isoprene production.
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Figure 2. (a) Leaf isoprene emissions (Is, nmol m−2 s−1, measured by gas chromatography-mass
spectrometry (GC–MS)) and net photosynthesis rates (Pn, µmol m−2 s−1) from I. edulis leaves as
a function of PPFD intensity under constant leaf temperature (30 ◦C) and CO2-free atmosphere
(0 µmol mol−1). The solid lines are the averages and the hatching area the standard deviation (n = 4);
(b) Example of leaf isoprene emissions (Is, nmol m−2 s−1) measured by high sensitivity quadrupole
proton transfer reaction-mass spectrometry (PTR-MS) and net photosynthesis rates (Pn, µmol m−2 s−1)
from an I. edulis leaf under constants leaf temperature (30 ◦C) and CO2-free atmosphere, as a function
of time with PPFD increases at the marked intervals.
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To extend the study of light responses of Is and Pn, a specific inhibitor of photosynthesis
(DCMU—3-(3,4-dichlorophenyl)-1,1-dimethylurea) was provided to a I. edulis leaflet under CO2-free
air. Although light-stimulated Is could be observed from the detached leaf placed in water as a control
(up to 15 nmol m−2 s−1), Is were small to negligible and did not increase as a function of PPFD when
DCMU was provided to the detached leaflet (Figure 3). As stomatal conductance (gs) in the DCMU fed
leaflet was similar or higher than gs in the water control leaf, this effect could not be attributed to a
potential stomatal closure induced by DCMU application.
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Figure 3. Leaf isoprene emissions (Is, nmol m−2 s−1), net photosynthesis rates (Pn, µmol m−2 s−1), and
stomatal conductance (gs, mol m−2 s−1) from an I. edulis leaflet under constant leaf temperature (30
◦C) as a function of PPFD intensity under CO2-free atmosphere with and without the addition of the
photosynthesis inhibitor DCMU in the transpiration stream (n = 1).

3.2. Isoprene Emissions under CO2-Free Atmosphere are Strongly Stimulate by Leaf Temperature Increase but
are Eliminated in the Dark

Under temperature response curves with constant light and CO2 conditions (1000 µmol m−2 s−1

and 450 µmol mol−1) Is was strongly stimulated as leaf temperature increased and did not show a
clear observable saturation point while reaching an average of 76 nmol m−2 s−1 at the highest leaf
temperature (40 ◦C, Figure 4a). When IsC was plotted against Pn there was a negative relationship
between these two parameters (Figure 4b), which represents the uncoupling between the Pn and Is
as leaf temperature increases. This is driven by both the decrease in Pn and the increase in Is with
increasing leaf temperature.
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Figure 4. (a) Leaf isoprene emissions (Is, nmol m−2 s−1) and net photosynthesis rates (Pn, µmol m−2 s−1)
from I. edulis leaves as a function of temperature increases under constant PPFD intensity
(1000 µmol m−2 s−1) and ambient CO2 (450 µmol mol−1); the solid lines are the averages and the
hatching area the standard deviation (n = 4). (b) Isoprene emissions expressed in µmol C m−2 s−1

(IsC) against Pn (µmol m−2 s−1) as temperature intensity increases in the same conditions; means and
standard deviation with n = 4.

When the same measurements were made under a CO2-free atmosphere, Is continued to increase
with leaf temperature up to 14–20 nmol m−2 s−1 at 40 ◦C while Pn remained near-zero or slightly
negative (e.g., −1.0 µmol m−2 s−1) (Figure 5).
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Figure 5. (a) Leaf isoprene emissions (Is, nmol m−2 s−1) and net photosynthesis rates (Pn, µmol m−2 s−1)
from I. edulis leaves as a function of temperature under constant PPFD (1000 µmol m−2 s−1) and
CO2-free atmosphere (0 µmol mol−1); the solid lines are the averages and the hatching area the standard
deviation (n = 3). (b) Example of leaf isoprene emissions (Is, nmol m−2 s−1) measured by PTR-MS
and net photosynthesis rates (Pn, µmol m−2 s−1) from an I. edulis leaf under constants PPFD intensity
(1000 µmol m−2 s−1) and CO2-free atmosphere, as a function of time with temperature increases at the
marked intervals.

In order to further evaluate the dependence on Is and Pn, a measurement of these variables
was made as a function of leaf temperature, but in the dark to eliminate photosynthesis. When a
temperature response curve was performed in the dark under a CO2-free atmosphere, Is was not
detectable, even at the highest temperatures studied (40 ◦C) (Figure 6). In contrast, in the light, increases
in leaf temperature stimulated Is, which continued to increase up to the highest leaf temperature
studied (40 ◦C).
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Figure 6. Leaf isoprene emissions (Is, nmol m−2 s−1) and net photosynthesis rates (Pn, µmol m−2 s−1)
from an I. edulis leaf as a function of temperature under CO2-free atmosphere, in the presence and
absence of light (PPFD intensity 1000 µmol m−2 s−1) (n = 1).

As it was determined that Is are stimulated by increases in light and leaf temperature under
CO2-free air, we calculated Is under a CO2-free atmosphere relative to ambient CO2 under standard
conditions of light and temperature (1000 µmol m−2 s−1 PPFD, 30 ◦C, n = 8). When Is emissions under a
CO2-free atmosphere were quantified from eight I. edulis leaves, it was determined that those emissions
amounted to 19% ± 7% of emissions under ambient CO2.

3.3. Sodium Bicarbonate 13C Leaf Feeding

In order to verify the contribution of CO2 reassimilation from the decarboxylation process in
isoprene molecules, sodium 13C-bicarbonate solutions were provided to I. edulis leaflets under CO2-free
atmosphere with PPFD and temperature constant (1000 µmol m−2 s−1, 30 ◦C). Within minutes of
placing the leaflet in the solution, emissions of 13C-labeled isoprene could be observed (Figure 7).
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(12C5) from detached I. edulis leaves fed with three concentrations of NaH13CO3 solutions (20, 60, and
120 mM) through the transpiration stream; means and standard deviation for n = 5.
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When leaflets were placed in the 20 mM solution of sodium bicarbonate 13C they emitted Is with
one labeled carbon, representing 26% of the emissions of unlabeled isoprene molecules. Emissions
of completely labeled molecules [13C5]isoprene were nearly undetectable. With the increase of the
molarity (20–120 mM), the percentage of Is with 13C-labeling also increased relative to the unlabeled
Is, as did the number of carbon atoms 13C-labeled per molecule. In the solution with 120 mM of
sodium bicarbonate 13C, the percentage of molecules with one 13C atom reached 54%, with two labeled
carbons 25%, with three labeled carbons 8%, with four labeled carbons 2%, and with all labeled carbons
reaching up 0.35% (relative to unlabeled Is).

4. Discussion

4.1. Under CO2-Free Air, Isoprene Emissions Display a Similar Light and Temperature Response Pattern to
That under Ambient Conditions, But Is Eliminated when Photosynthesis Is Inhibited

The high correlation between Is and Pn as a function of light (Figure 1) is widely discussed in
literature, since isoprene production via the MEP pathway utilizes, as the first precursor, a product of
the Calvin–Benson cycle, glyceraldehydes-3-phosphate (G3P), which is responsible for three of the five
carbons in the isoprene skeleton and requires 14 mol of NADPH and 20 mol of ATP for each mole of
isoprene synthesized [37–42] (Figure 8). Thus, it is expected that the relationship between Pn and Is be
close under ambient CO2 conditions (Figure 1b).

The production of isoprene from the tropical species I. edulis under a CO2-free atmosphere in
this study is consistent with previous research on several temperate plant species including myrtle
(Myrtus communis), buckthorn (Rhamnus alaternus), velvet bean (Mucuna pruriens), gray poplar (Populus
x canescens), aspen (Populus tremuloides), and tasmanian bluegum (Eucalyptus globulus) [16,27,32,43].
We demonstrate for the first time that Is from I. edulis under CO2-free air are stimulated by light and
temperature in a similar fashion to emissions under ambient CO2, albeit with important differences
(Figures 2b and 5b). Relative to emissions under ambient CO2, Is under a CO2-free atmosphere were
reduced and saturated at low light levels (e.g., 100 µmol m−2 s−1 PPFD) versus no clear light saturation
under ambient CO2 up to 2000 µmol m−2 s−1 PPFD. Other studies that observed Is under limited or zero
CO2 have suggested that alternative carbon sources, that do not come directly from photosynthesis,
such as stored starch and carbohydrates transported in the xylem stream help to maintain the carbon
supply for isoprene when a reduced atmospheric CO2 source is limiting G3P formation, while NADPH
and ATP are still producing by the photochemical phase of photosynthesis [26]. In this study, we
provide quantitative evidence that most carbon alternatives for isoprene production are derived from
the reassimilation of internal CO2 sources.

Previous studies have sought to understand how these alternative carbon sources can maintain
high rates of Is when Pn is reduced under stress [25,34]. However, the decrease in Pn does not
necessarily mean that gross photosynthesis rates are decreasing, but rather that decarboxylation
processes are being stimulated (especially photorespiration), increasing the CO2 released directly into
the cell. At increasing temperatures the oxygenating reaction of RuBisCO has a relative advantage
over the carboxylation reactions because (1) stomatal closure reduces the uptake of atmospheric CO2,
(2) the solubility of CO2 declines stronger than the solubility of O2, and (3) the kinetic properties of
RuBisCO decrease the affinity for CO2 more strongly than that for O2, causing a proportional increase
in photorespiration [44].

Indeed, the Is is stimulated by elevated temperatures (Figure 4), and this dependence is a
consequence of high temperature optimum for isoprene synthase and the use of excess energy not
used in the Calvin–Benson cycle by the enzymatic reactions of the MEP pathway [45–47].

However, when leaves were fed with the photosynthesis inhibitor DCMU under a light response
curve it was not possible to observe Is anymore (Figure 3). The same result occurred when the light
was turned off during a temperature response curve (Figure 6). This confirms that Is is dependent
on the photochemical products of photosynthesis (NADPH and ATP). Once these energetic cofactors
are no longer produced, it is not possible to maintain the isoprene synthesis by the MEP pathway
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demonstrating that the Is is dependent on these energetic cofactors products but can be maintain
without the external carbon supply during several hours.

4.2. CO2 Reassimilation from Decarboxylation Process as an Alternative Carbon Source to Isoprene Synthesis

With respect to the molecular composition, 60% of carbon that comprises the isoprene molecule is
assigned to G3P, as one of initial precursors of the MEP pathway [15,48]. When the external CO2 source
was removed from the reference air stream, 19% ± 7% of Is continued relative to Is observed under
ambient CO2. This percentage is in the range observed by studies that analyzed the contribution of
alternative carbon sources to isoprene synthesis by providing atmospheres of 13CO2 to leaves. In these
studies, it was observed that ~10%–30% of the carbon atoms were not from atmospheric CO2, but
instead originated from other sources [23,26,27]. Although the possibility of reassimilated CO2 as a
source of carbon for isoprene has been discussed in the literature, our results support a possibility that
it represents the main alternative carbon source for isoprene and is largely responsible for maintaining
high Is rates under abiotic stress conditions like high temperatures, which decrease Pn.

A study carried out in leaves of Populus sp. under 0 µmol mol−1 CO2 observed that Is rates were
little affected relative to the measures carried out under ambient CO2 [32]. However, the authors
observed that, when photorespiration was inhibited by the absence of O2, it was no longer possible to
observe Is. In our study, we observed that the Is rates are high under photorespiratory conditions by
stimulating the photorespiratory process by removing the CO2 from the reference air.

In agreement with these results, a previous study provided a [2−13C]glycine (a photorespiratory
intermediate) solution to I. edulis leaves under high temperature and observed Is with labeled
carbon atoms [25]. The authors suggested that, in situations where photorespiration is stimulated,
reassimilation of photorespiratory CO2 by photosynthesis acts as a protective mechanism to avoid
oxidative stress by consuming excess ATP and NADHP produced by the light reactions. Likewise,
our results suggest that increasing the carbon flux through the MEP pathway, which also consumes
excess photosynthetic ATP and NADPH, further increases plant tolerance to abiotic stress including
high temperatures and drought. Thus, the coupled activity of enhanced photorespiration and the MEP
pathway together with reassimilation of internal CO2 sources may offer plants protection against abiotic
stress by helping balance the sources and sinks of photosynthetic ATP and NADPH [44] (Figure 8).
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When sodium bicarbonate (NaHCO3) was provided to I. edulis leaves under CO2-free air,
the bicarbonate could be decarboxylated by carbonic anhydrase enzyme. The CO2 released by the
decarboxylation could be fixed by the Calvin–Benson cycle, constituting a G3P molecule, being able to
enter into the DOXP/MEP pathway and compose isoprene molecules as observed (Figure 7).

Under conditions of limiting CO2, a potential alternative source to isoprene synthesis is the CO2

released into the cell by the decarboxylation process. A previous study estimated that the refixation
rate of mitochondrial respiration was related to the incomplete carbon labeling of Is, suggesting
that respiratory CO2 can contribute to isoprene formation [24]. Another study in Populus deltoides
Barr. leaves measured Is under N2 and 13CO2 atmosphere and observed that the inhibition of
photorespiration did not remove the 12C in isoprene released from leaves under a 13CO2 atmosphere
and suggested that the unlabeled carbon in isoprene molecules is not derived from photorespiratory
carbon [23]. On the other hand, in I. edulis under [2−13C]glycine, feeding a strong labeling of isoprene
molecules was observed, suggesting that the CO2 released from photorespiration can be incorporated
into isoprene molecules [25]. In addition to (photo)respiration, other decarboxylation processes
could be acting as alternative carbon sources to isoprene synthesis, including biosynthetic pathways
such as the DOXP/MEP, fatty acid, mevalonate, fermentation, and the oxidative pentose phosphate
pathway [48–50].

The incorporation of labeled CO2 released by bicarbonate decarboxylation into isoprene molecules
was observed within minutes after placing the leaf in a 13C sodium bicarbonate solution (Figure 7).
This confirms the contribution of CO2 reassimilation to isoprene synthesis and suggests that other
decarboxylation processes can contribute to isoprene synthesis as a primary carbon source under
reduced atmospheric CO2 availability. These results have relevance for the next decades of climate
change predictions [51], since higher temperatures increase respiration and photorespiration and
consequently the amount of CO2 released in to the leaf. This CO2 can contribute to Is in stress situations
that could decrease the stomatal conductance and the carbon uptake.

4.3. The Reassimilation of CO2 in the Cell Interior Linked to Isoprene Emission: Its Importance for Plant
Physiological Functioning under Changing Environmental Factors

In our experiment, high temperatures and light intensities under a CO2-free atmosphere caused a
remarkable depression of Pn and substantial increase in Is, suggesting that other sources than recently
assimilated carbon are used for isoprene formation. Subsequently, when labeled sodium bicarbonate
was provided, the emissions of labeled isoprene indicate that the reassimilation of CO2 released in the
chloroplast can contribute as a carbon source to isoprene synthesis. This is in line with evidence from
Loreto et al. [24] who showed refixation of unlabeled CO2 derived from respiration is an alternative
source of carbon for isoprene in nonstressed leaves.

Under normal conditions, the reassimilation of CO2 in the chloroplast can reach up to 40% [52]
and increase to more than 80% under low CO2 conditions and high temperature [53]. The amount
of photorespiratory or respiratory CO2 emitted or recycled by leaves have been associated with an
improvement of the photosynthetic carbon gain [52,53]. Therefore, the reassimilation of CO2 in the
chloroplast can contribute significantly for photosynthetic carboxylation efficiency by minimizing the
loss of photosynthetic carbon caused by stimulus of photorespiration and respiration.

Previous report have pointed out that the stimulus of internal recycling of photorespired and
respired CO2 in plants may become more important at conditions with high temperatures, low CO2,
water stress, or high irradiance [54–57]. However, in some cases, the respiratory rate is dramatically
inhibited by water stress or extreme temperature conditions, while the photorespiration rate increases
significantly [58]. Efficient internal recycling of photorespired CO2 linked to isoprene synthesis might
improve tolerance against high irradiance and temperature, commonly experienced in the tropics,
besides increasing the overall carbon budget of plants. Nevertheless, the contribution of each of these
decarboxylation processes to the CO2 balance is highly variable, depending on the species, stage of
growth, biotic and abiotic factors [48,50–52]. In addition, there is little evidence for widespread uses of



Forests 2019, 10, 472 12 of 15

an effective mechanism to trap and reassimilate photorespired CO2 in tropical species, and particularly
with relation with Is. Thus, subsequent research is needed to clarify the overall significance of trapping
of CO2 in the cell interior and its flux to isoprene production, particularly in tropical forests, where the
bulk of the world’s Is occur, and both temperature and drought risk are expected to increase according
to most climate scenarios [59–61].

5. Conclusions

Previous studies have shown that plants can use nonatmospheric carbon sources to produce
isoprene. Most studies have focused on stored carbon sources including carbohydrates (starch
and glucose) and their metabolites (pyruvate and phosphoenolpyruvate) as potentially important
alternative carbon sources and few studies are made with tropical species. In this study, we show
that the CO2 released by decarboxylation processes is an important carbon source for I. edulis—a
widespread tropical specie in Amazon forest. Once decarboxylation processes release CO2 within the
leaf mesophyll, our observations suggest that this process acts as a quantitatively important carbon
source for isoprene syntheses mainly during stress situations when the stomata are closed and the
amount of internal CO2 decreases. This study enhances our knowledge of isoprene emission by tropical
species under conditions that plants often experience in the tropics, where the amount of irradiance
and temperature, the two main environmental drivers of isoprene fluxes, are high throughout the
year. The reassimilation of released CO2 within the leaf and its use for isoprene synthesis may be
a key tolerance mechanism against a specific type of stress, for example high irradiance and high
temperature in tropical environments.
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