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Abstract of the Dissertation

Understanding Probabilistic Models

Through Limit Theorems

by

Jeffrey Thomas Lin

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2017

Professor Marek Biskup, Chair

Limit theorems are ubiquitous in probability theory. The present work samples contributions

of the author at the interface of this theory with three distinct fields: interacting particle

systems, exchangeable random variables, and long-range percolation.

In the theory of interacting particle systems, one often studies the stationary distribu-

tions, which are obtained as limiting distributions of the process. We will discuss a proof

concerning characterization of these measures in the case of an attractive nearest neighbor

translation invariant spin system on the integers.

Exchangeable sequences of random variables are mixtures of i.i.d. sequences, and the

probability measure that determines the relative proportions of this mixture can be ob-

tained as a limit from the exchangeable sequence itself. We will analyze the possibility of

reconstructing this probability measure from only partial information about the exchange-

able sequence.

A goal in long-range percolation is to understand how chemical distance scales with

Euclidean separation. We will show that the limiting scaling behavior for a certain class of

models is polylogarithmic. This will be an improvement on existing results.
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CHAPTER 1

Introduction

Limit theorems are paramount in probability theory, appearing in areas such as percolation,

Markov processes, large deviations, statistical mechanics, ergodic theory, universality of

KPZ, and many more. The present work is an investigation of limit theorems in three

different areas of probability theory: interacting particle systems, exchangeable random

variables, and long-range percolation. In this introduction chapter, we will summarize these

problems, and the next three chapters will cover them in detail. The final chapter is the

conclusion.

1.1 Interacting Particle Systems Problem

Interacting particle systems are Feller Processes that take place on the compact state space

W S where W is a compact metric space, and S is an at most countable set, which we

think of as particles. The model we discuss below can be applied to study frequently occur-

ring systems such as TASEP, physical situations where particles arranged in a lattice have

interacting spins, or other areas.

For our purposes, we will take W = {0, 1}, leading to what is called a spin system.

The rate of transition is generally described using functions c(η, x) ≥ 0 where x ∈ S and

η ∈ W S. We think of the function c as describing the rate of change at site x from η(x) to

1−η(x) given that all of the coordinates are known to be {η(y)}y∈S. This allows for the rate

of change at a given site to depend on any of the coordinates. Feller processes exhibiting

these transition rates exist, as shown in [13]. (Chapter 1, Chapter 3) Essentially, one defines
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the pregenerator Ω with codomain C(W S), the space of continuous functions defined on the

state space of our process. Ω is an unbounded operator on a subspace of C(W S) given by

the formula

Ωf(η) =
∑
x∈S

c(x, η)[f(ηx)− f(η)] (1.1)

where ηx = η on S \ {x} and ηx(x) = 1 − η(x). The pregenerator definition (1.1) applies

to a dense set of f , under supremum norm, for which this series converges. Then one takes

the closure of the graph of the pregenerator, and proves that this closure is a generator for

a Feller process. All Feller processes can be represented by a generator. (see [13] Chapter 1)

There is a third way to represent Feller processes other than as Markov processes and

via a generator. One can also use a semigroup.

Definition 1.1. Let Tt : C(W S) → C(W S), t ∈ [0,∞) where each Tt is a bounded linear

operator. If the family Tt obeys

1. T0 = I

2. Tt+s = Tt ◦ Ts

3. for each f ∈ C(W S), ||Ttf − f ||∞ → 0 as t→ 0.

4. Tt1 = 1

5. Ttf ≥ 0 whenever f ≥ 0.

then Tt is a Feller Semigroup.

Every Feller process has a unique Feller semigroup associated with it. ([13] Chapter 1

Section 1)

Let µ be a probability measure defined on W S. Let us denote by µTt the probability

measure, also defined on W S, given by∫
WS

fdµTt =

∫
WS

Ttfdµ (1.2)
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whenever f ∈ C(W S). Thus, µ is evolved under the semigroup for t time to become µTt. If

t ≥ 0⇒ µTt = µ, then µ is called stationary.

Often in the theory of Markov Processes, one is concerned with the evolution of the

process towards a stationary distribution. By Tychonoff’s theorem, the state space of our

spin system is compact, hence one can show that there always exists a stationary distribution.

Definition 1.2. A spin system with Feller Semigroup Tt is called ergodic if there is exactly

one stationary distribution ν for the process, and moreover for any µ a probability measure

on W S, we have µTt → ν weakly.

In our case, we will assume a condition known as attractiveness ([13] p. 134).

Definition 1.3. Given a spin system with rates c(x, η) we call it attractive if whenever η ≤ ζ,

we have ∀x ∈ S

η(x) = ζ(x) = 0 ⇒ c(x, η) ≤ c(x, ζ) (1.3)

and

η(x) = ζ(x) = 1 ⇒ c(x, η) ≥ c(x, ζ) (1.4)

Intuitively, a spin system is attractive if flips at x that would cause the spin at x to agree

with its environment are more likely to occur than flips at x that would cause disagreement

with the environment.

Much is known about the theory of attractive spin systems. The attractiveness allows

comparison of distributions to play a role. We say that two probability measures µ and ν

have µ ≤ ν if all f ∈ C(W S) that are monotonic in each coordinate obey
∫
fdµ ≤

∫
fdν.

Attractiveness means that this (stochastic) ordering of measures is preserved by evolution

of the system.

There is a maximum and minimum stationary distribution for any attractive spin sys-

tem. (see [13] p.135) Sometimes they are called maximal and minimal respectively, because

stochastic ordering is not a total linear order, but they are comparable to all other stationary

distributions. We will adopt the notation of calling the maximal stationary distribution ν
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and the minimal stationary distribution ν. These can be obtained by starting the system

a.s. with either all 1 states or all 0 states respectively. Ergodicity for an attractive spin

system is equivalent to ν = ν. ([13] p.136)

In our present problem, we will restrict not only to attractive spin systems, but even

those with site set S = Z and assume that the rate of change at site x ∈ Z depends only on

the current state of its two nearest neighbors. Moreover, we assume the rates are translation

invariant. This means that ∀y ∈ Z, c(x− y, {η(z − y)}z∈Z) = c(x, η).

The main result of this work in the area of interacting particle systems is the correction

of the proof for the following theorem, [12] and [13] (p. 152 Theorem 3.13 in [13]):

Theorem 1.4. Suppose an attractive translation invariant nearest neighbor spin system on

the integers satisfies c(x, η) + c(x, ηx) > 0 whenever η(x− 1) 6= η(x+ 1). Then for that spin

system, the extremal invariant measures are precisely ν, ν

1.2 Exchangeability Problem

The second subject discussed in this dissertation concerns exchangeable random variables.

Definition 1.5. Let Xj be a sequence of real-valued random variables defined on the same

probability space for j ≥ 1. Call X = (Xj)j∈N exchangeable if whenever π : N → N is a

finite permutation, we have that

(Xj)j∈N =d (Xπ(j))j∈N. (1.5)

Exchangeable sequences are ubiquitous in mathematics. For instance, the sequence of

draws from Pólya’s urn is an exchangeable sequence, and exchangeability shows up in in-

teracting particle systems. If X is a random variable, then the sequence X,X,X, . . . is

exchangeable.

Exchangeable sequences are generalizations of sequences of iid random variables. In fact,

de Finetti’s theorem, which we review below, spells out exactly what kind of generalization.
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De Finetti’s theorem, and this discussion, applies only to infinite exchangeable sequences.

(i.e. X = (X1, X2, . . . ))

In preparation for de Finetti’s theorem, we need some definitions.

Definition 1.6. Suppose Θ is a Borel probability measure on P (R), the space of Borel

probability measures on the reals, with vague topology. We call Θ a mixing measure. Say

that X is iid-Θ if its distribution is given by

∀A ∈ Borel(RN) : P (X ∈ A) =

∫
θN(A) dΘ(θ). (1.6)

We also need

Definition 1.7. Say that X is a mixture of iids directed by α, where α is a random

Borel probability measure defined on the same probability space as X, if αN is a regular

conditional distribution for X given σ(α).

Now we state de Finetti’s theorem.

Theorem 1.8 (de Finetti). The following are equivalent:

1. X is exchangeable

2. X is a mixture of iids directed by some α

3. X is iid-Θ for some Θ.

Moreover, each X corresponds to a unique Θ and, up to distributional equality, a unique

α in this way. Θ is the distribution of α. Exchangeable sequences that have the same

distribution will have the same Θ, and every possible Θ describes an exchangeable sequence.

So iid sequences are exchangeable sequences with Θ a point mass. In general, the joint

distribution of an exchangeable sequence is obtained by taking a weighted-integral-average

of iid sequences. iid sequences themselves are obtained by only including one such a sequence

in this weighted-integral-average.

In a sense, de Finetti’s theorem can be regarded as saying that we can reconstruct the

mixing measure, Θ from joint distributional information of the exchangeable sequence. We

could ask if marginal information suffices.
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The following question was posed by David Aldous in [1] (p. 20):

Question 1.9. Let X = (Xj)j∈N, Y = (Yj)j∈N be exchangeable sequences of R-valued random

variables, with Sn =
∑n

j=1 Xj, Tn =
∑n

j=1 Yj. Suppose that ∀n ≥ 1 we have Sn =d Tn. Does

it follow that X =d Y ?

The motivation for considering this question is reconstruction. It is well known that

one cannot deduce the coupling of random variables just from knowing the marginals. We

could ask if the situation changes if, in addition, we know a priori that the underlying joint

distribution is exchangeable. However, to make such a question interesting, we should not

consider the marginal distributions of the exchangeable sequence X itself, since they are all

the same, but rather those of its partial sums. Since X is exchangeable, the distribution of

a sum of distinct components of X depends only on the number of summands. Thus, the

question can be seen as asking if the joint distribution of an exchangeable sequence can be

deduced from the maximum amount of marginal information.

An answer to this question was known before the author’s work. In [7], Evans and Zhou

showed, via Fourier analytic techniques, that there exist two exchangeable sequences X and

Y which have all the same marginals of their partial sums, but not the same joint distribution.

However, by inspection of this method, one finds that X and Y are signed random variables.

Since it is often true that an a priori nonnegative assumption helps reconstruction, it was

natural to ask if sign matters in the present problem:

Question 1.10. Let X = (Xj)j∈N, Y = (Yj)j∈N be exchangeable sequences of [0,∞)-valued

random variables, with Sn =
∑n

j=1 Xj, Tn =
∑n

j=1 Yj. Suppose that ∀n ≥ 1 we have Sn =d

Tn. Does it follow that X =d Y ?

This question was also quite reasonable in light of the partial positive result in [7].

There, it was shown that the answer is affirmative with the additional assumption that the

exchangeable sequences are mixtures of countably many nonnegative iid sequences. (i.e.

their Θ’s are concentrated on countable sets within P ([0,∞)).)
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The present work proves that the answer to Question 1.10 is a resounding “no” by finding

even a counterexample consisting of two exchangeable sequences X and Y which take values

in the set {0, 1, 2, 3}.

Let us discuss the idea of our proof. We know that the joint distribution of a d-dimensional

random vector can be recovered when the one-dimensional projections are known for all

vectors in Rd. One could consider a different, though related reconstruction problem of

trying to recover the joint distribution of a d-dimensional random vector from knowing its

one-dimensional projections along merely a subset of deterministic vectors in Rd. We use the

representation of an exchangeable sequence as an integral-combination of i.i.d distributions

in order to reduce Question 1.10 to the above d-dimensional question for a specific subset.

To solve the reduced question, we require an important result from the work of Cuesta-

Albertos, Fraiman, and Ransford in [6]. In that work, the Paley-Wiener theorem [16] is

used to produce two distinct probability measures with compact support that have the same

one-dimensional projections along certain subsets. The resulting two measures are then

appropriately transformed to suit our needs.

1.3 Long Range Percolation

The third and last subject discussed in this dissertation is long range percolation.

Let G be a graph. Percolation is the study of random subgraphs of G obtained by deleting

some of the edges of G, but keeping all the vertices. The edges are deleted at random, and

independently of one another. In our present model, the graph G is the complete graph on

Zd (hence ”long range”) and edges are kept with probability proportional to 1
|x−y|s where

x, y are the endpoints of the edge in question, and s ∈ (d, 2d). The one exception to this

rule is that nearest neighbor edges are present (kept) almost surely. In percolation theory in

general, one is interested in the geometric properties of the random subgraph. We will focus

on the chemical distance, which is defined as the graph distance between two points within

the random subgraph. Because we always keep all nearest neighbor edges and our random
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graph is thus connected, the chemical distance is always finite.

A brief explanation of the restriction on s follows. Heuristically speaking, for large s, the

model is much like nearest neighbor percolation. For small s values, the chemical distance

function is bounded. Thus, the interesting behavior occurs in between the two extremes,

which turns out to mean between d and 2d. The critical cases s = 2d and s = d are of

interest as well, but not addressed in this work. For readers interested in more details on

other s values, see [3] for a summary.

In [2] and [3], Biskup establishes that

lim
L→∞

P (log(L)∆−ε ≤ Ddis(0, Le1) ≤ log(L)∆+ε) = 1 (1.7)

where Ddis is the chemical distance, e1 is the first standard basis vector for Rd, and the above

holds for each ε > 0. We will improve this to

Theorem 1.11. There are c, C > 0 such that

lim
L→∞

P (c ∗ log(L)∆ ≤ Ddis(0, Le1) ≤ C ∗ log(L)∆) = 1. (1.8)

The strategy of proof in [2] and [3] relies on the observation that there is, with over-

whelming likelihood, an edge e = 〈x, y〉 with x in a small neighborhood of 0 and y in a small

neighborhood of Le1. Then there is, with overwhelming likelihood, a pair of edges connect-

ing a neighborhood of 0 to a neighborhood of x and a neighborhood of y to a neighborhood

of Le1. This iteration is continued until the probability of finding all the edges cannot be

maintained close enough to 1. At each step, the size of the neighborhoods is microscopic

compared to the previous scale, and the number of edges doubles. An appropriate choice of

the size of the neighborhoods establishes the upper bound portion of (1.7), while the lower

bound is established by an iterative method that effectively argues that optimizing paths

have roughly an hierarchical form like the above.

This method does not appear to the author to be sufficient for the improvement we claim.

Instead, the present work will derive an iteration inequality from similar considerations, and
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use it to obtain first and second moment estimates that force not only the bounds we claim,

but also even a sort of scaling limit for a restricted notion of the distance.

This part of the dissertation, on long range percolation, is joint with Marek Biskup. A

small portion of the corresponding text in the present dissertation is a nearly verbatim copy

of our private communications.
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CHAPTER 2

Interacting Particle Systems

2.1 Introduction

This section is copied nearly verbatim from [14], with only formatting and minor error

corrections.

For the purposes of this note, an attractive translation invariant nearest neighbor spin

system is a certain kind of Feller process defined on the compact state space X = {0, 1}Z with

rates satisfying the attractiveness inequalities, and depending only on the nearest neighbors.

(See [13], p.144-145 for more details.) Notice that such spin systems have rates entirely

determined by 8 = 23 parameters corresponding to the rates dependent on a given site and

its two nearest neighbors. More concretely, the parameters are cijk where i, j, k ∈ {0, 1}. For

instance, c010 means the flip at any site x when the present spin of particle x is 1 and its two

nearest neighbors both have spin 0. We will use ηx to denote the configuration that agrees

with η at all sites other than x, and has the opposite spin at x. The notion of stochastic

ordering, minimality, and maximality is discussed in the previous chapter.

T. Liggett proves in [12] and [13], (p. 152 Theorem 3.13) the following theorem:

Theorem 2.1. Suppose an attractive translation invariant nearest neighbor spin system on

the integers satisfies c(x, η) + c(x, ηx) > 0 whenever η(x − 1) 6= η(x + 1). Then this spin

system has only the minimal and maximal invariant measures (ordered stochastically) as the

extremal invariant measures.

We discuss the estimate in [13] of lemma 3.7 part (e). It is wrong, but the similar

estimate ε
∫
gl+1
m,ndν ≤ (4Kl + 2ε)

∫
glm,ndν is valid. This change does not affect the proof

10



moving forward, because the only time the estimate is used is in the proof of lemma 3.10 in

[13], where it is used to derive that supm≤n
∫
glm,ndν <∞. This fact still holds with the new

estimate. The same line of reasoning appears in [12] within the proof of lemma 2.2 there.

We will refer to [13] from now on.

2.2 A Correction

The problem with the estimate as written is at the top of p.150 of [13] in the discussion of

bounding below the positive contribution to Ω̃glm,n. The argument there fails to consider

the possibility that change in the γ coordinate at any of the xi among the left and right

endpoints in the l + 1 length intervals may not only create a length l interval, but also

destroy an adjacent length l interval. But this can only happen at at most 2glm,n such sites,

i.e. the left and right neighbors of intervals of length l. The bound below on the rate of

the type of flip in question is still correctly stated as ε so as long as we replace ε(gl+1
m,n) by

ε(gl+1
m,n − 2glm,n) the estimate is correct. This results in the display reading

Ω̃glm,n ≥ ε(gl+1
m,n − 2glm,n)− 4Klglm,n.

What has been shown is the statement that attractive translation invariant nearest neigh-

bor spin systems with enough nonzero transition rates have the smallest possible set of

extremal invariant measures.
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CHAPTER 3

Exchangeable Random Variables

3.1 Introduction

This section is copied nearly verbatim from [15], with only formatting and minor error

corrections.

In probability theory, there are many results concerning uniqueness of a distribution

satisfying certain properties. For instance, there are the various moment problems, the

inversion of the characteristic function, the inversion of the Laplace transform. Another

kind of uniqueness result relates to exchangeable sequences of random variables. Given the

joint distribution of an exchangeable vector X = (Xn)n∈N, it can be written as a “mixture”

of iids in exactly one way.

We will prove altered versions of these types of results. Roughly speaking, we will assume

only partial information, and make regularity assumptions to ensure that the resulting prob-

lem is well-defined. In the process, we show a trend of what types of obstructions there can

be to such uniqueness results: arithmetic and algebraic structure. (These two notions are

related because arithmetic relationships between exponents, say in a Laplace transform, will

correspond to polynomial relationships between the exponentials, for instance the Laplace

transforms.)

In [1], (p. 20) Aldous proposes the following question.

Question 3.1. Let X = (Xj)j∈N, Y = (Yj)j∈N be exchangeable sequences of R-valued random

variables, with Sn =
∑n

j=1 Xj, Tn =
∑n

j=1 Yj. Suppose that ∀n ≥ 1 we have Sn =d Tn. Does

it follow that X =d Y ?
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Despite this question being over 30 years old, only partial progress has been made on

it. In [7] Section 2, Evans and Zhou show the answer is negative in the class of signed

random variables. Therefore, interest has somewhat shifted to the nonnegative case. In [7],

it is shown that there is an affirmative answer if we know that X and Y are mixtures of

countably many nonnegative iid sequences. We will show that the nonnegative restriction

does not improve the situation in the absence of the additional assumption of [7]: X cannot

be determined uniquely from this partial information even if Xj ≥ 0. However, as we will

see, uniqueness holds when the exchangeable sequences are mixtures of convex combinations

of up to 3 iid sequences.

Uniqueness is also true for more complicated mixtures, so long as the iid sequences

involved in the mixture are related “transcendentally”. (It is the main purpose of this

chapter to present results which make this theme precise, in the context of all uniqueness

questions we will consider.) We may think of the heuristic, “mixtures of a small number of

distributions exhibit uniqueness of X”, as a special case of the heuristic about arithmetic and

algebraic (polynomial) dependence. For instance, if the collection of allowed distributions in

the mixture is small, then there cannot be too many arithmetic dependencies.

The first question naturally leads to the following continuous time analog, suggested by

J. Černý.

Question 3.2. Let St and Tt be mixtures of Lévy Processes. Suppose that ∀t ≥ 0, St =d Tt.

Is (St)t≥0 jointly equidistributed with (Tt)t≥0?

We will see that in the case of restricting to mixtures of Brownian Motions, the answer

is yes. However, we will find a (possibly unexpected) parallel between a measure similar to

the Levy measure implied in this problem and the mixing measure implied in Question 3.1.

In particular, we will find that upon restricting to even just Poisson Processes, uniqueness

fails.

For a Lévy Process, knowing the marginal at any time t 6= 0, such as t = 1, tells us

the entire joint distribution of the process. However, this will not be true for a mixture of
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Lévy Processes. We will see that in some cases, we could say St is unique just from making

observations at t ∈ N and other times we require all t ≥ 0. In the former case, the continuous

time problem makes uniqueness of St more plausible than the discrete time case only because

continuous time imparts infinite divisibility which limits the possible distributions that can

occur in the mixture. In the latter case, the continuous time problems will tend to exhibit

uniqueness over their discrete time counterparts not only because of infinite divisibility, but

because observation at noninteger t’s provide more information beyond that.

An example of where the fact that we make continuum observations makes a difference,

at least in the argument, is the case of a mixture of normal distributions or Brownian

motions. In this case, the continuum of observations destroys the arithmetic structure,

making uniqueness a fact in the Brownian Motion case, as opposed to an open problem in

the discrete time case.

In light of these questions, it is natural also to consider various random analogs of unique-

ness problems from the classical theory of random variables. For instance, one such a question

is posed below:

Question 3.3. Let α, β be random Borel measures on R. Suppose that their moments

(which are random variables)
∫
R x

ndα and
∫
R x

ndβ are well-defined and equal in marginal

distribution (i.e. for one n at a time). Do we have α =d β?

Question 3.3 can be viewed as a randomization of classical uniqueness theorems, in the

sense that the probability measure one tries to recover is deterministic in the classical theo-

ries, and we now take it to be random.

We will see that in all randomized versions of classical uniqueness problems we consider,

knowing joint information is enough to assert uniqueness of the original random measure in

distribution, but knowing marginal information is not enough. We will see that the existence

of counterexamples again depends on the arithmetic and algebraic structure.

The layout of the chapter is as follows. We will treat Question 3.1 in Section 2, Question

3.2 in Section 3, and the questions similar to Question 3.3 in Section 4. Section 3 is fairly
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technical, but Section 4 does not depend on Section 3, so Section 3 could be omitted on a first

pass. In each of the sections, we will first discuss the results required to make the questions

precise and the definitions associated to the corresponding question. We also discuss the

machinery to be used in the rest of the section. In subsections, we consider answers to the

questions in various cases.

3.2 Discrete Time Exchangeability Problem

In this section, we consider Question 3.1 posed by Aldous. We keep the notation used in

the statement of the question, so that X = (Xj) and Y = (Yj) will denote sequences of

exchangeable random variables.

First we state the following without proof:

Lemma 3.4 (Classical Bounded Moment Problem). Let V = (Vγ) and Z = (Zγ) be vectors

indexed by the same set Γ of arbitrary cardinality. Thus V and Z take values in RΓ. Assume

that for each γ ∈ Γ, Vγ, Zγ are bounded real random variables. Then V and Z have the

same distribution if and only if they have the same joint moments, i.e. ∀{γ1, . . . , γl} ⊂ Γ

∀r1, . . . , rl ∈ N

E

(
l∏

i=1

V ri
γi

)
= E

(
l∏

i=1

Zri
γi

)
(3.1)

.

We will have need throughout the chapter for the notion of a random measure. In

general, we will use P (M) to denote the (Borel) probability measures defined on a standard

Borel space M. Similarly, we define M+(M) to be the collection of finite nonnegative Borel

measures on M. In each case, give these spaces the measurable structure generated by the

mapping µ 7→ µ(B), B ∈ Borel(M). Since M is standard Borel, so is P (M) with the topology

given by vague convergence. The Borel σ algebra determined by vague convergence is an

equivalent definition of the measurable structure given to P (M). (For these facts, see for

instance [11].) A random measure is then a random variable taking values in either M+(M)
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or P (M). We will always deal with Polish spaces when the topology is significant, and

standard Borel spaces if not. We almost always deal with probability measures, i.e. except

when dealing with Lévy measures.

From now on we will use

∀s ≥ 0, Lµ(s) =

∫
[0,∞)

e−sxdµ(x) (3.2)

to mean the Laplace transform (at s ≥ 0) of a probability measure µ on [0,∞). Let P+ =

{µ ∈ P (R)|µ is supported in [0,∞)}, which is closed in P (R). If µ is random, then the

Laplace transform will simply be a random variable.

In this section, we will use symbols α, α1, α2 to denote random probability measures and

Θ,Θ1,Θ2 to denote elements of P (P (R)). Symbols Xj, Yj will denote real-valued random

variables.

Definition 3.5. For each j ≥ 1, let Xj be a real-valued random variable. Call X = (Xj)j∈N

exchangeable if whenever π : N→ N is a finite permutation, we have that

(Xj)j∈N =d (Xπ(j))j∈N. (3.3)

Definition 3.6. Say that X is iid-Θ if its distribution is given by

∀A ∈ Borel(RN), P (X ∈ A) =

∫
θN(A) dΘ(θ) (3.4)

.

Definition 3.7. Say that X is a mixture of iids directed by α, where α is defined on

the same probability space as X, if αN is a regular conditional distribution for X given σ(α).

By definition of regular conditional distribution this is just the same as saying that

whenever A1, . . . , An ∈ Borel(R) we have for a probability 1 set of ω,

P (Xi ∈ Ai, 1 ≤ i ≤ n|σ(α))(ω) =
∏
i

α(ω,Ai). (3.5)

We now state the well-known theorem of de Finetti.
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Theorem 3.8 (de Finetti). The following are equivalent:

1. X is exchangeable

2. X is a mixture of iids directed by some α

3. X is iid-Θ for some Θ.

Remark 3.9. For each exchangeable law µ on RN there exists a unique law Θ on P (R)

for which any X with distribution µ is iid-Θ. This assignment µ 7→ Θ is a bijection from

the exchangeable laws on RN to P (P (R)). In fact, it is a homeomorphism. Also, if X is

exchangeable then its directing measure is unique up to a.s. equality, and the distribution of

the RV α is Θ. Therefore, if the (joint) distribution of X is determined, then the law of α

is determined.

In the literature, the phrase “mixing measure” refers to both Θ and α. We will use

the terminology for Θ and call α the directing measure. In contexts when we have two

exchangeable sequences X and Y , we denote by Θ1, α1 the mixing measure, directing measure

(respectively) for X and Θ2, α2 the mixing measure, directing measure (respectively) for Y .

Symbols α1, α2, α will always refer directing measures, not arbitrary random measures.

We set Sn =
∑n

j=1Xj and Tn =
∑n

j=1 Yj. Our question is then whether ∀n, Sn =d Tn

implies Θ1 = Θ2 (or α1 =d α2).

Towards this, let us define:

Definition 3.10. Let L ⊂ P (R) be measurable. We will say that L is mixture-restricting

provided that whenever Θ1,Θ2 are concentrated on L and ∀n, Sn =d Tn, we have Θ1 = Θ2.

To determine if a class L is mixture-restricting or not, we may use the following

Lemma 3.11. A measurable class L ⊂ P+ is mixture-restricting if and only if ∀α1, α2 a.s.

L-valued, we have that

∀s ≥ 0, Lα1(s) =d Lα2(s) (3.6)

implies Θ1 = Θ2.
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Proof. We have that the statement ∀n, Sn =d Tn is equivalent to the statement

∀n, s ≥ 0, E[e−sSn ] = E[e−sTn ], (3.7)

which, using the definition of a directing measure, is equivalent to

∀n, s ≥ 0, E
[(∫

[0,∞)

e−sxdα1(x)

)n]
= E

[(∫
[0,∞)

e−sxdα2(x)

)n]
. (3.8)

By the classical bounded moment problem, this is equivalent to

∀s ≥ 0, Lα1(s) =d Lα2(s). (3.9)

We do not assert the analogous statement for MGFs (moment generating functions) be-

cause we have no need for it even though it is true under suitable boundedness hypotheses.

We do not assert a statement for the characteristic function case because the characteristic

function would be a complex-valued random variable, and one would need the joint distribu-

tion of the real and imaginary parts. The absence of an analogous lemma for characteristic

functions is related to the absence of a bounded moment problem for complex-valued RVs

that does not involve knowing any conjugate moments. This can be thought of as a heuristic

reason for the shift in focus away from signed random variables in the recovery problems we

consider in this chapter.

3.2.1 Known Results

In this section, we will discuss results known beforehand. Using the conditional SLLN, it

follows that

Proposition 3.12. P ({0, 1}) is mixture-restricting.

In Section 2 of [7], it is shown that
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Proposition 3.13. P (R) is not mixture-restricting.

In Section 3 of the same paper, it is shown that a positive result can still be salvaged.

Proposition 3.14. If ∀n, Sn =d Tn, and Θ1,Θ2 are purely atomic, concentrated in P+ then

X =d Y . In other words, any countable subset of P+ is mixture-restricting.

Interestingly enough, Muntz’s Theorem, which arises in Lemma 3.3 of [7], can be replaced

by the theorem of complex analysis stating that holomorphic functions defined on a connected

open set agree just as soon as they agree on a set of points that accumulates within the

domain.

Their assumption is of a different nature than what we will consider; they restrict the

size of the sets where Θ1,Θ2 are concentrated rather than requiring, as we will, that Θ1,Θ2

are concentrated on a nice set of distributions that may be a continuum. Considering that

the general problem has been solved in the negative, we will primarily address restrictions

of the latter type, hence the terminology of such a set L being “mixture-restricting”. A

particularly interesting case is when L is contained in P+.

For example, let P denote the collection of distributions in P (R) which are the distri-

bution probability measures for Poisson RVs. (So µ ∈ P should satisfy ∀k ≥ 0, µ({k}) =

e−λλk/k! for some λ ≥ 0.) Similarly, define E for exponentials, G for geometrics, and Bn for

binomials with parameter n fixed and p ∈ [0, 1] varying. It is an exercise in analysis to see

that:

Remark 3.15. Bn,G, E ,P are all mixture-restricting.

3.2.2 The Relationship Between the Aldous Question and Arithmetic Proper-

ties of the Value Set

In this subsection, we will present one substantiation of the heuristic that the more arithmetic

dependencies there are in the allowed value set for X1, the harder it is to recover X uniquely.

Fix A = {a1, . . . , aN} when N ∈ N or A = {a1, . . . , } when N = ∞. Assume, for technical
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reasons, that A has no accumulation points in R. We allow negative values in A. Define

FA ⊂ P (R) to be those distributions that are supported in A. (We can say “supported”

instead of “concentrated”, because A is closed. FA is closed because A is.) We set L := FA.

For X exchangeable, it is equivalent to say that X1 ∈ A a.s. or to say α ∈ L a.s. or to say

Θ is supported on L.

Theorem 3.16. FA is mixture-restricting if A is linearly independent over Q.

Proof. It suffices to handle the case in which A is discrete, infinite, i.e. N =∞, because sub-

sets of mixture-restricting sets are always mixture-restricting. We haveX, Y exchangeable se-

quences, which therefore comes with directing measures and mixing measures by Remark 3.9.

Since we are trying to prove the mixture-restricting property, we assume ∀n ≥ 0, Sn =d Tn.

(In future proofs of the mixture-restricting property, we not explicitly mention this.) We

need to see that α1 =d α2. It suffices to see that (α1({aj}))j∈N =d (α2({aj}))j∈N

Suppose that M ∈ N. Then by using the linear independence hypothesis for our value

set and the properties of directing measures, we have that ∀r1, . . . , rM , with s =
∑M

j=1 ri,

(
s

r1, r2, . . . , rM

)
E(

M∏
i=1

(α1{ai})ri) = P(Ss =
s∑
i=1

riai)

= P(Ts =
s∑
i=1

riai) =

(
s

r1, r2, . . . , rM

)
E(

M∏
i=1

(α2{ai})ri). (3.10)

Here, the first and third equality hold because the linear independence hypothesis guarantees

that the only way that a sum of elements from A can be
∑s

i=1 riai is if ri copies of ai are

used for each i ≤M .

Now Lemma 3.4 completes the proof.

It is also acceptable to have a few arithmetic dependencies:

Proposition 3.17. F{0,1,2} is mixture-restricting.
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More generally, let µ1, µ2, µ3 ∈ P+ and let L1,L2,L3 denote their Laplace transforms

respectively. Let

L := {a1µ1 + a2µ2 + a3µ3|a1 + a2 + a3 = 1, a1, a2, a3 ≥ 0}. (3.11)

Then L is mixture-restricting.

Proof. We prove the more general claim. We may assume that no strict subset of {µ1, µ2, µ3}

has convex hull containing all of µ1, µ2, µ3 because subsets of mixture-restricting sets are

mixture-restricting. From this, it follows that L is homeomorphic to T3 := {(a, b, c)|a+b+c =

1, a, b, c ≥ 0} because the map taking (a, b, c) 7→ aµ1 + bµ2 + cµ3 is invertible, and therefore

because T3 and L are both compact Hausdorff, they are homeomorphic via this assignment,

hence measurably isomorphic.

Proceeding by way of Lemma 3.11, and using the homeomorphism above, we are reduced

to showing that if U, V are T3-valued random vectors for which ∀s ≥ 0 we have

(L1(s),L2(s),L3(s)) · U =d (L1(s),L2(s),L3(s)) · V (3.12)

then U =d V . That this is enough follows from the fact that when U, V are the pushforwards

of α1, α2 via the homeomorphism above, the left side has the distribution of the (random)

Laplace transform of α1 evaluated at s, and the right side has the distribution of the (random)

Laplace transform of α2 evaluated at s.

Because U, V are probability vectors, it suffices to show that if U ′, V ′ are bounded random

vectors in R2 with

(L1(s)− L3(s),L2(s)− L3(s)) · U ′ =d (L1(s)− L3(s),L2(s)− L3(s)) · V ′ (3.13)

then U ′ =d V
′.

We will check that the collection of v’s of the form

v = c(L1(s)− L3(s),L2(s)− L3(s)) (3.14)

cover a nonempty open set as s ≥ 0 and c ∈ R vary. We know that µ1 − µ3 is a signed

measure on [0,∞) and as is µ2−µ3. We may regard L1(s)−L3(s) and L2(s)−L3(s) as the
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Laplace transforms of these signed measures respectively. Therefore, a nonempty open set of

v’s are of the form (3.14). For instance, one may check that the derivatives of L1(s)−L3(s)

and L2(s)−L3(s) must be different at some s0 > 0, for if they were the same, then µ1 − µ3

and µ2 − µ3 would have the same Laplace transform.

Bivariate analytic functions agreeing on a nonempty open set in R2 have to agree, and

we apply this to the bivariate MGF of U ′ and that of V ′.

3.2.3 Four Values are Too Many

We will see our first counterexample to the nonnegative Aldous problem, proving the claim

Proposition 3.18. P+ is not mixture-restricting.

We will even show that

Theorem 3.19. F{0,1,2,3} is not mixture-restricting.

In order to prove this theorem, we must develop the following.

First we need some definitions

Definition 3.20. Fix d > 0. A subset S of Rd is said to be determining if whenever U

and V are bounded Rd-valued random variables such that ∀s ∈ S, s · U =d s · V implies that

U =d V .

As mentioned multiple times in the introduction, algebraic properties of certain restric-

tions will be important. Thus it is no surprise that we need to consider the 0 set of polyno-

mials.

Definition 3.21. A subset S of Rd is called a projective variety if there exists a degree-

homogeneous polynomial p defined on Rd such that p 6= 0 and p−1(0) = S.

The next result, based on the work of Cuesta-Albertos, Fraiman, and Ransford in [6]

(Theorems 3.1 and 3.5), and the subsequent proposition will be used throughout this chapter.
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Lemma 3.22. Fix d ≥ 1. A subset S of Rd is determining if and only if it is not contained

in any projective variety.

We will borrow the ideas found in [6] in order to prove this lemma.

Proof. Fix d ≥ 1 and S ⊂ Rd. We assume that S is nonempty because the claim is true if

S is empty.

Suppose S is not contained in any projective variety, and consider two bounded random

variables U, V . For each n ≥ 0, we define the polynomial

p(x) = E[(x · U)n]− E[(x · V )n] (3.15)

which is homogeneous of degree n. Since p vanishes on S, it follows that p must be the 0

polynomial. It follows that ∀x ∈ Rd we have that all the moments of the real-valued, bounded

random variable x · U are equal to those of x · V . Hence ∀x ∈ Rd we have x · U =d x · V ,

thus U =d V .

For the converse, it suffices to assume that S is a projective variety and construct two

different probability measures µ and ν with bounded support, defined on Rd, such that

∀s ∈ S, s · µ = s · ν. Here, if U is µ distributed then s · µ means the distribution probability

measure of s · U and similarly for ν.

Define an auxiliary function f : Cd → C given by

f(z) :=
d∏
j=1

sin zj − zj
z3
j

. (3.16)

Here, we have z = (z1, . . . , zd).

It is routine to verify that

(i)f is even, entire, and real valued when restricted to Rd

(ii)f is of exponential type, i.e. there is a C > 0 such that ∀z we have |f(z)| ≤ Ce
∑d
j=1 |zj |

(iii)There is a C > 0 such that ∀x ∈ Rd we have |f(x)| ≤ C/(1 + ||x||2).

(iv) we have f(0) 6= 0.
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In what follows, all that matters is that f has the properties listed above.

Now, find p a homogeneous polynomial on Rd that is not a constant such that S ⊂ p−1(0).

The reason p can be chosen to be not a constant is that S is nonempty. Define g : Rd → R

by g(x) = p(x)2f(x)K , where K is chosen large enough so that g ∈ L2(Rd)∩L1(Rd). This is

possible by (iii). Let h = ĝ be the Fourier transform of g. By Plancherel’s theorem we have

that h ∈ L2(Rd) and h is real-valued since g is even and real-valued. Note also that h is

bounded continuous. Moreover, the Paley-Wiener theorem [16] tells us that h is supported

in a compact subset of Rd. Here, we are applying Paley-Wiener to g which is exponential

type, analytic because f is exponential type, analytic. (We extend the definition of p to Cd.)

But, depending on the convention of the Fourier transform, we already know the inverse

Fourier transform of g in terms of h. This shows that h is 0 off of a compact set.

Define finite, positive Borel measures with compact support by

µ = h+dx, ν = h−dx, (3.17)

which are mutually singular and therefore not equal. Using the Fourier inversion theorem,

there is a constant c 6= 0 depending on the conventions of the Fourier transform and its

inverse, such that

µ̂− ν̂ = cg = cp2fK on Rd. (3.18)

Evaluating this equality at 0 ∈ Rd we find that

µ(Rd)− ν(Rd) = cp(0)2f(0)K = 0. (3.19)

Since µ and ν are both nonzero (because g is not zero, p is not zero, so h is not zero) and

have the same total mass, we may renormalize if necessary to force them to be probability

measures.

We also have that for any x ∈ Rd x·µ = x·ν if and only if ∀t ∈ R we have µ̂(tx)−ν̂(tx) = 0

if and only if ∀t ∈ R, cp(tx)2f(tx)K = 0. Thus, ∀x ∈ S we have p(x) = 0 and thus x·µ = x·ν.
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This completes the proof that S is not determining, because µ and ν are distributions

of bounded random vectors with values in Rd for which their projections along vectors in S

agree in law, but they are not equidistributed with one another.

Part of the utility of presenting the above proof is to show how constructions in the sequel

that use this lemma can be made explicit. We have now stated and proven what we need

from the existing literature. We use the above to prove the following proposition, which will

drive many constructions in this chapter.

Proposition 3.23. There exist U 6=d V which take values in the unit tetrahedron

T4 := {(x0, x1, x2, x3)|∀j ∈ {0, 1, 2, 3}, xj ≥ 0,
3∑
j=0

xj = 1} ⊂ R4 (3.20)

such that ∀y ∈ R we have c4(y) · U =d c4(y) · V . Here, c4(y) = (1, y, y2, y3) ∈ R4.

Proof. Let c3(y) = (1, y, y2) ∈ R3 for all y ∈ R. By Lemma 3.22 applied to the collection of

scalar multiples of points on the curve c3, there exist W = (W1,W2,W3) 6=d Z = (Z1, Z2, Z3)

bounded R3-valued RVs such that

∀y ∈ R, c3(y) ·W =d c3(y) · Z. (3.21)

Let H = {(x, y, z) ∈ R3|1 ≥ x ≥ y ≥ z ≥ 0}. Observe that H has nonempty interior.

Therefore, given any compact set C ⊂ R3, there exist a ∈ R, a 6= 0, b ∈ R3 such that

aC + b ⊂ H. Because (3.21) is unchanged by rescaling and translation, we may assume that

W,Z are H-valued. Define
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U0 = 1−W1 V0 = 1− Z1

U1 = W1 −W2 V1 = Z1 − Z2

U2 = W2 −W3 V2 = Z2 − Z3

U3 = W3 − 0 V3 = Z3 − 0

U = (U0, U1, U2, U3), V = (V0, V1, V2, V3). (3.22)

Observe that U and V are T4-valued. From linear algebra (invertibility of the linear

transform linking (U1, U2, U3) to W and (V1, V2, V3) to Z) it follows that (U1, U2, U3) 6=d

(V1, V2, V3) so that U 6=d V . By (3.21) we have

∀y ∈ R, c3(y) · (U1 + U2 + U3, U2 + U3, U3) =d c3(y) · (V1 + V2 + V3, V2 + V3, V3). (3.23)

Plugging in the explicit form of c3(y) yields

∀y ∈ R, U1 + (1 + y)U2 + (1 + y + y2)U3 =d V1 + (1 + y)V2 + (1 + y + y2)V3. (3.24)

Multiplying by (y − 1), we obtain

∀y ∈ R, (y − 1)U1 + (y2 − 1)U2 + (y3 − 1)U3

=d (y − 1)V1 + (y2 − 1)V2 + (y3 − 1)V3. (3.25)

Thus, by definition of U0, V0 we learn that

∀y ∈ R, c4(y) · U =d c4(y) · V. (3.26)

We have shown that U, V have the required properties.
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Remark 3.24. Notice that trying the above argument in one dimension lower would fail

because the curve c2(y) = (1, y) is not contained in a projective variety. This prevents the

above argument from contradicting our earlier discovery that F{0,1,2} is mixture-restricting.

We are now ready to establish Theorem 3.19.

Proof of Theorem 3.19. Obtain U, V from Proposition 3.23. Define α1 and α2 so that

U =d

(
α1({0}), α1({1}), α1({2}), α1({3})

)
(3.27)

and

V =d

(
α2({0}), α2({1}), α2({2}), α2({3})

)
. (3.28)

Strictly speaking, α1, α2 may not be directing measures for some exchangeable sequence, but

the distribution of α1, α2 are still elements of P (P (R)) and are thus mixing measures, from

which we may extract directing measures that have the same distribution as α1, α2. Thus,

we may assume without loss of generality that α1, α2 are already defined on an appropriate

probability space so that they are directing measures. In the future, this argument will not

be explicitly stated.

By a change of variables in c4(y) from Proposition 3.23 we have ∀s ≥ 0,

Lα1(s) = (e−0s, e−1s, e−2s, e−3s) ·
(
α1({0}), α1({1}), α1({2}), α1({3})

)
=d (e−0s, e−1s, e−2s, e−3s) ·

(
α2({0}), α2({1}), α2({2}), α2({3})

)
= Lα2(s) (3.29)

However, we have that the corresponding Θ1 and Θ2 are distinct because U and V have

different distributions, hence as do α1 and α2. Thus, Θ1,Θ2 have the required properties

when we use Lemma 3.11 to prove that F{0,1,2,3} is not mixture-restricting.
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3.2.4 A Generalization of the Four-Value Case

We may regard the values 0, 1, 2, 3 as independent sums of 0 copies of 1, 1 copy of 1, 2 copies

of 1 and 3 copies of 1 respectively. We may replace the constant random variable 1 with any

nonnegative distribution to obtain a generalization of Theorem 3.19.

Proposition 3.25. Let µ ∈ P+ be nondegenerate and let ∗ denote convolution. Let L be the

collection of convex combinations of δ0, µ, µ ∗ µ, µ ∗ µ ∗ µ. Then L is not mixture-restricting.

The same is true of the convex combinations of δ0, µ, µ ∗ µ, µ ∗ µ ∗ µ, . . . .

The primary purpose of this subsection is to prepare for comparisons and analogies with

material from subsection 3.3.2, for which the case in which µ is Poisson is important. The

techniques themselves are not logical prerequisites for material in the sequel.

Proof. To imitate the last proof, we need a homeomorphism between T4 and L. We propose

the map assigning a vector (a, b, c, d) ∈ T4 the element aδ0 + bµ + cµ ∗ µ + dµ ∗ µ ∗ µ of

L. This map is surjective. To see it is injective, if there are (a, b, c, d), (a′, b′, c′, d′) with

aδ0 + bµ+ cµ∗µ+dµ∗µ∗µ = a′δ0 + b′µ+ c′µ∗µ+d′µ∗µ∗µ then taking Laplace transforms

we have that ∀s ≥ 0,

aLµ(s)0 + bLµ(s)1 + cLµ(s)2 + dLµ(s)3

= a′Lµ(s)0 + b′Lµ(s)1 + c′Lµ(s)2 + d′Lµ(s)3. (3.30)

Consider the operation of multiplying by Lµ(s), then taking the derivative in s, and

then dividing by d
ds
Lµ(s). This division is legitimate because d

ds
Lµ < 0 for nondegenerate µ.

Iterating this process on (3.30) as many times as we wish shows that (a, b, c, d) = (a′, b′, c′, d′).

Bijective continuous maps between compact Hausdorff spaces are homeomorphisms.

Now, obtain U, V as in Proposition 3.23. Define

α1 = U0δ0 + U1µ+ U2µ ∗ µ+ U3µ ∗ µ ∗ µ (3.31)
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and

α2 = V0δ0 + V1µ+ V2µ ∗ µ+ V3µ ∗ µ ∗ µ. (3.32)

We assume without loss of generality that α1, α2 are directing measures. This way, Θ1,Θ2 are

the pushforwards of the distributions of U, V via the above homeomorphism. Since Θ1,Θ2

are the distributions of α1, α2 by Remark 3.9 we have that α1 6=d α2 and Θ1 6= Θ2. However,

the random Laplace transform of α1 is

Lα1 =

(
L0
µ,L1

µ,L2
µ,L3

µ

)
· U (3.33)

and the Laplace transform of α2 is

Lα2 =

(
L0
µ,L1

µ,L2
µ,L3

µ

)
· V. (3.34)

Vectors of the form

(
L0
µ,L1

µ,L2
µ,L3

µ

)
(s) are a subset of the image of c4. Thus, ∀s, α1 and

α2 have random Laplace transforms evaluated at s that have the same distribution. Thus,

by Lemma 3.11 it follows that L is not mixture-restricting.

3.2.5 Another Generalization of the Four-Value Case

The primary purpose of this subsection is to prepare for comparisons and analogies with

material from Subsection 3.3.2, and to expose some new techniques that are useful in prov-

ing results showing the relationship between arithmetic and algebraic dependencies versus

uniqueness results. The techniques themselves are not logical prerequisites for material in

the sequel.

We may instead replace the role of independent sums by regular sums of the random

variable with itself. So we regard 0, 1, 2, 3 as the sum of 0, 1, 2, 3 copies of 1. If instead of 1,

we use an arbitrary nonnegative random variable, we arrive at the following generalization.

Proposition 3.26. Let µ ∈ P+ be such that Lµ(s) is a rational function in s, and let T 6= 0

be a random variable with distribution µ. Fix N ≥ 3. Let L be the convex combinations of
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the distributions of 0T, 1T, 2T, . . . , NT . i.e. L ⊂ P+ is the set of probability measures that

have Laplace transform of the form

N∑
j=0

bjLµ(js) (3.35)

where

N∑
j=0

bj = 1 (3.36)

and ∀j ≥ 0, we have bj ≥ 0.

Then L is not mixture-restricting.

Independent sums of exponential random variables give rational Laplace transforms, for

example.

Proof. It suffices to handle the case N = 3. Assume that Lµ(s) = p(s)/q(s) with p, q poly-

nomials sharing no common factor, and q having no zeros in [0,∞). We seek a homogeneous

polynomial r 6= 0 of 3 variables for which

r

(
p(1s)

q(1s)
− p(0s)

q(0s)
,
p(2s)

q(2s)
− p(0s)

q(0s)
,
p(3s)

q(3s)
− p(0s)

q(30)

)
= 0. (3.37)

This is equivalent to

r(p(1s)q(0s)q(2s)q(3s)− p(0s)q(1s)q(2s)q(3s), p(2s)q(0s)q(1s)q(3s)

−p(0s)q(1s)q(2s)q(3s), p(3s)q(0s)q(1s)q(2s)− p(0s)q(1s)q(2s)q(3s)) = 0 (3.38)

Let us say that p has degree n ≥ 0, q has degree m ≥ 0, and r has degree l > 0. The

space of polynomials in s of degree at most l(3m + n) has dimension linear in l as a vector

space over R whereas the space of polynomials in 3 variables that are homogeneous, of

degree l is quadratic in l. Therefore, there exists l large enough such that the assignment of
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homogeneous degree l polynomials in 3 variables to polynomials of degree at most l(3m+n)

given by

r 7→ r(p(1s)q(0s)q(2s)q(3s)− p(0s)q(1s)q(2s)q(3s), p(2s)q(0s)q(1s)q(3s)

−p(0s)q(1s)q(2s)q(3s), p(3s)q(0s)q(1s)q(2s)− p(0s)q(1s)q(2s)q(3s)) (3.39)

has nontrivial kernel.

Thus we have a nonzero homogeneous polynomial r for which r(Lµ(1s)−Lµ(0s),Lµ(2s)−

Lµ(0s),Lµ(3s)− Lµ(0s)) = 0.

Now, we use Lemma 3.22 to find W = (W1,W2,W3) 6=d Z = (Z1, Z2, Z3) bounded random

vectors for which ∀s ≥ 0 we have

(Lµ(1s)− Lµ(0s),Lµ(2s)− Lµ(0s),Lµ(3s)− Lµ(0s)) ·W

= (Lµ(1s)− Lµ(0s),Lµ(2s)− Lµ(0s),Lµ(3s)− Lµ(0s)) · Z. (3.40)

We then find C compact such that W,V are both C-valued, and a 6= 0, b ∈ R3 such that

aC+ b ⊂ T ′3 := {(a, b, c)|a+ b+ c ≤ 1, a, b, c ≥ 0}. This is possible because C is compact and

T ′3 has nonempty interior. Thus, we may assume that W,Z were T ′3-valued to begin with.

We now define U, V via

U0 = 1− U1 − U2 − U3 V0 = 1− Z1 − Z2 − Z3

U1 = W1 V1 = Z1

U2 = W2 V2 = Z2

U3 = W3 V3 = Z3

U = (U0, U1, U2, U3), V = (V0, V1, V2, V3). (3.41)

Thus U 6=d V and ∀s ≥ 0, we have
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(Lµ(0s),Lµ(1s),Lµ(2s),Lµ(3s)) · U

=d (Lµ(0s),Lµ(1s),Lµ(2s),Lµ(3s)) · V. (3.42)

Definition 3.27. Let µk denote the probability distribution of kT .

We define α1 = U0µ0 + U1µ1 + U2µ2 + U3µ3 and α2 = V0µ0 + V1µ1 + V2µ2 + V3µ3 which

are L-valued. Without loss of generality, we assume α1 and α2 are directing measures.

Since T 6= 0, we have that all of the µk are distinct, nondegenerate, and therefore

have Laplace transforms with derivatives that are never 0. We aim to show that T4 is

homeomorphic to L through the map (a, b, c, d) 7→ aµ0 + bµ1 + cµ2 + dµ3. This is surjective.

Also, it is injective because if there are (a, b, c, d), (a′, b′, c′, d′, ) such that aµ0 + bµ1 + cµ2 +

dµ3 = a′µ0 + b′µ1 + c′µ2 + d′µ3 then we may take Laplace transforms to obtain ∀s ≥ 0

aLµ(0s) + bLµ(1s) + cLµ(2s) + dLµ(3s)

= a′Lµ(0s) + b′Lµ(1s) + c′Lµ(2s) + d′Lµ(3s). (3.43)

We may take the derivative of this relation k times, then take s ↓ 0, then divide by [ d
k

dsk
Lµ](0).

Again, this operation shows us that (a, b, c, d) = (a′, b′, c′, d′). Continuous bijections between

compact Hausdorff spaces are always homeomorphisms.

Therefore, U 6=d V implies that α1 6=d α2 and Θ1 6= Θ2. Also, ∀s ≥ 0, Lα1(s) =d Lα1(s).

This is because the left side is the left side of (3.42) in distribution and the right side is the

right side of (3.42) in distribution. This suffices by Lemma 3.11.

In the following example, the answer to the Aldous problem actually is different than

above despite the fact that the arithmetic dependencies among the µk still remain. We will

use a very transcendental Laplace transform to make the arithmetic dependencies irrelevant.

32



Proposition 3.28. Let T be Poisson distributed with parameter λ. Let N ≥ 1. Let µ be the

distribution of T , and define µ0, µ1, µ2, . . . , µN as before. Define L as in Proposition 3.26.

Then L is mixture-restricting.

Proof. We will argue for N = 3, with the general case being similar. Let L(s) = eλ(e−s−1)

denote the Laplace transform of µ. We already know that T4 is homeomorphic to L

in the natural way. (see the last proof) Therefore, it suffices to show that there can-

not be any U = (U0, U1, U2, U3) 6=d V = (V0, V1, V2, V3) defined on T4 for which ∀s ≥

0, (L(0s),L(1s),L(2s),L(3s)) · U = (L(0s),L(1s),L(2s),L(3s)) · V . We will in fact show

that there is no homogeneous polynomial other than 0 that vanishes on the image of the

curve (L(0s),L(1s),L(2s),L(3s)) ∈ R4 defined for s ≥ 0. Suppose that r 6= 0 is such a

homogeneous polynomial of degree l, say. Order the set Ml of monic monomials of total de-

gree l in 4 variables by ordering lexicographically on the exponents, with the fourth variable

taking highest priority, then the third, second, then first. This is a total ordering. Write aw

for the coefficient of any monic monomial w in r. Find the largest monic monomial with a

nonzero coefficient in r. Call this monomial m(x0, x1, x2, x3). Then we have

r(x0, x1, x2, x3) = amm(x0, x1, x2, x3) +
∑

w<m∈Ml

aww(x0, x1, x2, x3) (3.44)

with am 6= 0.

We have ∀s ≥ 0

r(L(0s),L(1s),L(2s),L(3s)) = 0 (3.45)

so by the theorem of complex analysis asserting the equality of holomorphic functions defined

on the same connected open domain, agreeing on a set with an accumulation point within this

domain, (3.45) holds also for s < 0. The term of r(L(0s),L(1s),L(2s),L(3s)) corresponding

to m goes to ∞ as s → −∞ faster than any of the other terms, so the coefficient am is 0,

contradiction.
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3.2.6 The Normal Case

The normal case is another case of significance to the next section on the continuous time

analog of the present problem.

Lemma 3.29. Let N be the collection of normal distributions, including the degenerate

ones. For all µ ∈ N let M(µ) =mean of µ and let V (µ) = variance of µ. Then the map

(M,V ) : N → R× [0,∞) is a homeomorphism, hence measurable isomorphism.

Proof. This follows from convergence of types.

Remark 3.30. Let Θ be a mixing measure supported in N . Since Θ is then a probability

measure on N , we can view M,V as random variables giving the (random) mean and variance

of an element of N drawn with prior distribution Θ. Then the joint distribution of the

corresponding exchangeable sequence X is given by (Xi){i∈N} =d (A+B1/2N (0, 1)i){i∈N} where

the entire family {N (0, 1)1,N (0, 1)2, . . . , (A,B)} is independent (but the notation indicates

A,B are not necessarily independent), (A,B) =d (M,V ), and N (0, 1)i is normal with mean

0 and variance 1.

See, for instance, p.29 of [1] regarding this remark.

We highlight in the remark that the distribution of (M,V ) is calculated relative to Θ,

and that it is necessary to use (A,B) instead of (M,V ) when we deal with the independent

normals because these normals and (A,B) are constructed on the same probability space.

We already specified that X, Y corresponds to Θ1,Θ2 and α1, α2 via Remark 3.9. For this

subsection, when Θ1,Θ2 are supported on N , we will use (M1, V1) to indicate (M,V ) defined

on the probability space (N,Θ1) and (M2, V2) to indicate (M,V ) defined on the probability

space (N,Θ2).

We have the following transform inversion fact.

Lemma 3.31. Suppose µ, ν be probability measures on R×[0,∞) such that ∀t, s ∈ R×[0,∞)

we have
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∫
R×[0,∞)

eitx−sydµ(x, y) =

∫
R×[0,∞)

eitx−sydν(x, y). (3.46)

Then µ = ν.

Notice that N is not a subset of P+. The author is uncertain if N is mixture-restricting

or not, which seems to rely on a generalization of Muntz’s Theorem (see [8]) which would

include the sequence of points tn = 1/n in the role of the values of the parameter at which

the Laplace transform is known a priori. However, what is true is the following.

Proposition 3.32. Let Θ1,Θ2 supported in N be given. Suppose that V1, V2 have finite MGF

in some neighborhood around 0, and that ∀n > 0, Sn =d Tn. Then Θ1 = Θ2.

Proof. Let (A,B), (A′, B′) have the same distributions as (M1, V1), (M2, V2) respectively with

the three random vectors/variables (A,B), (A′, B′),N (0, 1) all independent. From Sn =d

Tn we learn that ∀n ≥ 0, nA + (nB)1/2N (0, 1) =d nA
′ + (nB′)1/2N (0, 1) Computing the

characteristic function of both sides reveals that ∀n ≥ 0, t ∈ R

E[eitnA−t
2nB/2] = E[eitnA

′−t2nB′/2] (3.47)

or equivalently ∀n > 0, t ∈ R

E[eitA−
t2B
2n ] = E[eitA

′− t
2B′
2n ]. (3.48)

Looking at (3.48) for fixed t and varying n, it follows that the convergence of the MGF in a

neighborhood of 0 is precisely what is needed to be able to use complex analysis to conclude

that for each fixed t, we have that ∀s ≥ 0

E[eitA−sB] = E[eitA
′−sB′ ] (3.49)

Particularly, we are using the fact that holomorphic functions defined on a common connected

open domain, agreeing on a set with a limit point in the domain must be equal. Namely,
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this limit point would be s = 0 regardless of which t was fixed. The MGF hypothesis is what

allows s = 0 to be in the (interior of the) domain of these transforms.

Then, by Lemma 3.31 it follows that (A,B) =d (A′, B′) so that (M1, V1) =d (M2, V2)

from which it follows by Lemma 3.29 that Θ1 = Θ2.

3.3 Continuous Time Exchangeability Problem

We could view the questions answered in the last section from the perspective of Sn, Tn. These

are mixtures of partial sums of iid sequences. From this point of view, it is natural to consider

mixtures of Lévy Processes, which are the continuous time analog. Recall that a Lévy process

is an independent stationary increments process that is continuous in probability and starts

at 0. We will use the notation St, Tt for mixtures of Lévy processes, after they are defined,

in order to reflect this analogy. In order to aid our discussion, we recall:

Lemma 3.33 (Lévy Khintchine Formula). Let Z = (Zt)t≥0 be a Lévy process. Then there

exist unique β, σ2, ν such that ν is a finite measure on R with ν({0}) = 0, σ2 ≥ 0, β ∈ R

and ∀u ∈ R, t ≥ 0 we have

E[eiuZt ] = exp

{
iutβ − u2tσ2

2
+ t

∫
R

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
dν(x)

}
. (3.50)

Furthermore, every β ∈ R, σ2 ≥ 0, ν a finite measure on R with no atom at 0 corresponds

to a unique (up to distributional equality) Lévy process with characteristic function given by

(3.50).

We would now like to define the notion of a mixture of Lévy processes. For techni-

cal reasons, we downplay the role of exchangeability. For the moment, we also focus on

characteristic functions in order to be able to state the definition before worrying about

measurability concerns associated with generalizing (3.4). Then we will show how the def-

initions we make are directly analogous to those of the previous section. These claims are
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mostly for checking intuition about what a mixture of Lévy Processes should mean, but they

will also be used in Subsection 3.3.2. (They will not be featured as prominently in the next

subsection.)

Given parameters β ∈ R, σ2 ≥ 0, ν finite measure on R with no atom at 0, we will use

the notation φβ,σ2,ν,t1,...,tn for the n-variate characteristic function of (Zt1 , . . . , Ztn) where the

Lévy process Zt is chosen for parameters β, σ2, ν. We will use M+
0 to denote the collection of

nonnegative finite measures on R that vanish at {0}. From now on, we will always implicitly

assume (β, σ2, ν) ∈ R × [0,∞) ×M+
0 . We will use Lβ,σ2,ν :=

(
(Zt)t≥0

)∗
(P) to mean the

pushforward of P (the probability measure on whichever space the process under study is

defined on) via the Lévy process Z = (Zt)t≥0, i.e. the (joint) distribution of the Lévy Process.

Definition 3.34. A mixture of Lévy processes is S = (St)t≥0 such that there exist a

probability measure Θ on R × [0,∞) ×M+
0 for which the joint characteristic function of S

is specified by ∀n ≥ 1,∀0 ≤ t1 ≤ · · · ≤ tn, u1, . . . , un ∈ R we have

E[ei
∑n
j=1 ujStj ] =

∫
R×[0,∞)×M+

φβ,σ2,ν,t1,...,tn(u1, . . . , un)dΘ(β, σ2, ν) (3.51)

We call Θ the mixing measure.

By using discrete time de Finetti, it follows that in this case Θ is uniquely determined

by the distribution of S.

In the discrete time case, we were able to obtain a discrete time process (namely Sn)

from the mixing measure Θ. It is reasonable to ask if the same can be done here.

Lemma 3.35. Given a probability measure Θ on R × [0,∞) ×M+
0 , there is a unique (up

to joint distributional equality) stochastic process S = (St)t≥0 for which Θ is the mixing

measure.

Proof. First we check existence. Restrict to finite dimensional distributions, using (3.51) to

define these finite dimensional distributions. Then check Kolmogorov consistency and use

Kolmogorov extension theorem.
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The uniqueness up to distributional equality is built into the definition of mixture of

Lévy processes.

From Lévy continuity, stationarity of increments and the fact that distributional conver-

gence to 0 is the same as in probability convergence to 0, it follows that all mixtures of Lévy

processes are continuous in probability.

We will use the following notation: S = (St)t≥0, T = (Tt)t≥0 will be the mixture of Lévy

processes, with mixing measures Θ1,Θ2. We will have no need for trying to define some

analog of α1, α2 in this context.

The set I of infinitely divisible distributions is closed in P (R), hence measurable.

We regard (3.50) as specifying a bijection between R× [0,∞)×M+
0 and the collection L

of distributions of Lévy processes

(
(Xt)t≥0

)∗
(P). So L ⊂ P (R[0,∞)). L is given the smallest

σ algebra so that passage from an element of L to its marginals is measurable from L to

I. That is, ∀t0 ≥ 0, (Xt)
∗
t≥0(P) 7→ X∗t0(P) should be measurable. It follows from standard

proofs of (3.50) that the bijection specified by (3.50) is a measurable isomorphism. There is

also a natural measurable isomorphism between L and I via

(
(Xt)t≥0

)∗
(P) 7→ X∗1 (P).

Because P (R) with vague convergence is a Polish space, and I is closed in P (R), we have

that L is a standard Borel space. Therefore, our definition of a mixture of Lévy processes is

entirely parallel to the notion of mixture from the last section.

Because of these observations, it is sensible to state and we have proven the following:

Lemma 3.36. S is a mixture of Lévy processes if and only if there exists Θ a probability

measure on L for which ∀A ⊂ R[0,∞) product measurable,

P(S ∈ A) =

∫
L

γ(A)dΘ(γ) (3.52)

if and only if there exists Θ a probability measure on R× [0,∞)×M+
0 for which ∀A ⊂ R[0,∞)

product measurable,

P(S ∈ A) =

∫
R×[0,∞)×M+

0

Lβ,σ2,ν(A)dΘ(β, σ2, ν). (3.53)
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In any case, Θ is unique.

Thus, when speaking of Θ being a mixing measure or related topics, we will freely use

these identifications. For example, we will allow ourselves to say “mixtures of Brownian

motions”. Also, we will no longer use the notation R× [0,∞)×M+
0 and will use L instead.

These identifications needed to be measurable in order for it to be possible to discuss mixtures

using any of the descriptions, reconciling with the intuition that Lévy processes are truly

the same as their Lévy Khintchine parameters and as infinitely divisible distributions.

The interested reader can combine what we have done so far with [9] to see that being a

mixture of Lévy processes is equivalent to being continuous in probability and satisfying a

certain kind of exchangeable increments hypothesis.

Again, we will use a notion of a class being mixture-restricting to abbreviate our discus-

sion.

Definition 3.37. We will say that a measurable subset L of L is mixture-restricting if

whenever Θ1,Θ2 are concentrated on L and ∀t ≥ 0, St =d Tt we have S =d T .

3.3.1 The Case of Brownian Motions

Recall that a Brownian motion is a Gaussian Lévy process, and can have drift and can

proceed at any positive rate. (i.e. we only require that the variance at t = 1 is positive.)

We denote the space of Brownian motions by BM ⊂ L. BM corresponds to the requirement

that the ν component of the Lévy Khintchine formula is 0. We claim that

Proposition 3.38. BM is mixture-restricting.

Proof. Using (3.51) for one value of t at a time, we have ∀u ∈ R, t ≥ 0

∫
R×[0,∞)×{0}

exp{iutβ − tu2σ2/2}dΘ1(β, σ, 0)

=

∫
R×[0,∞)×{0}

exp{iutβ − tu2σ2/2}dΘ2(β, σ, 0). (3.54)
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Lemma 3.31 now finishes the proof.

Notice that in the discrete time normal case, we had the last equation only for t = 1/n but

now we have it for all t ≥ 0, which is important in eliminating the need for assumptions about

convergence of MGFs. Because the discrete set of rationally related numbers 1/n, arising via

application of r 7→ 1/r to N in the proof of Proposition 3.32, is replaced with a continuum

in the above proof, this can be thought of as a destruction of the arithmetic structure. As

promised, this is a case in which passage to the continuous time problem implies not only the

additional information of infinite divisibility, but crucially the observations at a continuum

of times rather than only a discrete set.

3.3.2 A Poisson-Flavored Case

All functions of u of the form

exp

{∫
R
(eiux − 1)dµ(x)

}
(3.55)

are characteristic functions of infinitely divisible distributions, as long as µ is a finite non-

negative Borel measure. This can be seen by taking a vague limit of sums of independent

Poisson Processes with various rates and jump sizes.

Call LISPP the subset of L determined by (3.55). (Here LISPP stands for “limits of

independent sums of Poisson Processes.”) We may think of the elements of LISPP as “inde-

pendent integrals” of Poisson Processes, which is a different notion than a mixture of Poisson

Processes and also different from compound Poisson processes. By a calculation, we have

Lemma 3.39. LISPP is measurable in L because it is actually determined by the conditions∫
R

1+x2

x2 dν(x) <∞, β =
∫
R

1
x
dν(x).

It follows from the description of LISPP above that µ is uniquely determined by the

infinitely divisible distribution. Moreover,
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(Xt)
∗
t≥0(P) ∈ LISPP 7→ µ ∈M+(R) (3.56)

is a measurable isomorphism, which is defined on LISPP. Therefore, we may identify each

element of LISPP with a nonnegative finite measure on R via this correspondence. Also, if

LISPP+ is the subset of LISPP corresponding to µ supported in [0,∞) (i.e. we only allow

positive jump size Poisson Processes to enter the independent integral), then LISPP+ is of

course measurable in LISPP.

Since (3.55) specifies the distribution of a nonnegative infinitely divisible distribution for

elements of LISPP+, the Laplace transform can be calculated by analytic continuation: ∀µ

finite Borel measure on [0,∞), we have the function

exp

{∫
[0,∞)

(e−sx − 1)dµ(x)

}
(3.57)

of s is the Laplace transform of a member of LISPP+, and moreover these are the only

Laplace transforms of members of LISPP+.

We will also refer to LISPP1,LISPP+
1 to denote the requirement that µ be a probability

measure. These are also measurable subsets of LISPP.

If Θ is concentrated on LISPP,LISPP+,LISPP1 or LISPP+
1 , then µ can be regarded as

a random measure defined on LISPP,LISPP+,LISPP1 or LISPP+
1 . We now show how the

last section on the discrete problem can be embedded into the current problem.

Lemma 3.40. Let L be a measurable subset of LISPP+
1 . Then L is mixture-restricting if

and only if ∀Θ1,Θ2 concentrated on L, we have

∀s ≥ 0, Lµ1(s) =d Lµ2(s) (3.58)

implies

Θ1 =d Θ2. (3.59)
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Here, we regard µ 7→ µ as a map from LISPP+
1 to P ([0,∞)), and we regard Θ1,Θ2 as giving

the structure of a probability space to LISPP+
1 in two different ways. We use µ1, µ2 to mean

random probability measures with the same distribution as µ under Θ1 and Θ2 respectively.

Therefore, even though there is no ideological connection between the mixing measure

of the last section and the measures µ from this section (which are similar to the Lévy

Khintchine measure), at the level of the mathematical formalisms the problems are related.

Proof. Observe first that if S, T are mixtures from L, then ∀t ≥ 0, St =d Tt if and only if

∀t ≥ 0, s ≥ 0, n ≥ 0 we have

E[exp{nt
∫

[0,∞)

(e−sx − 1)dµ1(x)}] = E[exp{nt
∫

[0,∞)

(e−sx − 1)dµ2(x)}] (3.60)

by using (3.51) for one value of t at a time. Then we know that (3.60) is equivalent to

∀t ≥ 0, s ≥ 0, n ≥ 0

E[exp{t
∫

[0,∞)

(e−sx − 1)dµ1(x)}n] = E[exp{t
∫

[0,∞)

(e−sx − 1)dµ2(x)}n] (3.61)

which, by the bounded moment problem is equivalent to ∀t ≥ 0, s ≥ 0

exp{t
∫

[0,∞)

(e−sx − 1)dµ1(x)} =d exp{t
∫

[0,∞)

(e−sx − 1)dµ2(x)}. (3.62)

But this last statement is equivalent to ∀t ≥ 0, s ≥ 0

t

∫
[0,∞)

(e−sx − 1)dµ1(x) =d t

∫
[0,∞)

(e−sx − 1)dµ2(x) (3.63)

which is the same as ∀s ≥ 0

∫
[0,∞)

(e−sx − 1)dµ1(x) =d

∫
[0,∞)

(e−sx − 1)dµ2(x) (3.64)

and therefore also the same as ∀s ≥ 0
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∫
[0,∞)

e−sxdµ1(x) =d

∫
[0,∞)

e−sxdµ2(x) (3.65)

because µ1, µ2 are always probability measures.

We have that S =d T if and only if Θ1 = Θ2.

Remark 3.41. Notice how it did not matter that we made a continuum of observations

because the nonnegativity assumption LISPP+ allowed us to use the Laplace transform. Since,

when restricted to real arguments, exponentiation is invertible, we were able to cancel an

exponentiation and then cancel the t. Therefore, a measurable subset of LISPP+
1 , when

viewed as a subset of I, is mixture-restricting if and only if it is mixture-restricting as in

the last section. That is, to tell apart two mixtures of LISPP+
1 s, we only need to observe at

natural number times. This manipulation was not available in the BM case because there we

were dealing with complex exponentiation, which also forbids the use of the bounded moment

problem above.

For the next result, ∀A ⊂ P (R) measurable, we use

LISPP(A) := {(Xt)
∗
t≥0(P) ∈ LISPP|µ ∈ A} (3.66)

where µ is the measure in (3.55) giving the characteristic function of X1. For example,

LISPPF{0,1,2,3} denotes the collection of Lévy processes that can be written as an independent

sum of of a Poisson Process of rate 0 and jump size x0, one of rate 1 and jump size x1, one

of rate 2 and jump size x2, and one of rate 3 and jump size x3 such that (x0, x1, x2, x3) ∈ T4.

Since we will always use A such that all measures in A are supported in [0,∞), our LISPP(A)

will always be a subset of LISPP+
1 so we will be able to use the above lemma.

The fact that the continuum of observations does not destroy any arithmetic structure

suggests that the situation with LISPP+
1 will be more nuanced than the situation with BM,

where uniqueness of S = (St)t≥0 held without further conditions. Indeed, we now know that

the variety of possibilities of mixture-restricting classes is at least as much as that of the

discrete time problem:
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Theorem 3.42. Let A ⊂ P+ be measurable, and consist only of compactly supported mea-

sures. Then A is mixture-restricting (in the only sense that is available, i.e. from the

discrete time problem) iff LISPP(A) is mixture-restricting (in either equivalently the sense

of the present section or the last when LISPP(A) is viewed as a subset of I ⊂ P (R)).

Proof. This is a consequence of Lemma 3.40

Remark 3.43. The upshot of this theorem is that any set of probability measures that is

mixture-restricting when in the role of the allowed components of the mixture are also mixture-

restricting when in the role of µ. One could iterate this. If A is mixture-restricting, then

LISPP(A) is mixture-restricting, then LISPP(LISPP(A)) is mixture-restricting and so on.

After all, thanks to the fact that knowing each Sn is enough, as long as we only concern

ourselves with mixtures of Lévy processes, there is no difference between the continuous time

and discrete time problems.

Corollary 3.44. Let ν1, ν2, ν3 be probability measures on [0,∞). Let C be the convex hull

of {ν1, ν2, ν3}. Then LISPP(C) is mixture-restricting. Also, if A is a discrete, countable set

of real numbers that is linearly independent over Q then LISPP(FA) is mixture-restricting.

LISPP(F{0,1,2,3}) is not mixture-restricting.

Remark 3.45. Of course, most of the other results of the last section could be generalized

just as easily, but they are not as meaningful as the ones listed above in the context of mixtures

of Lévy processes.

Notice the comparison with Remark 3.15, which is a reasonable comparison because we

already saw that in this case knowing all St is no different than knowing only the Sn. In

Remark 3.15 we were concerned with mixtures of Poissons (with jump size 1 and rate λ) and

we were mixing over different rates. There, uniqueness of Sn was true, which can also be

deduced from our present machinery by applying Theorem 3.42 to the mixture-restricting

set A = {δx|x ∈ [0,∞)}.

In general, uniqueness fails in the present setting for even jump sizes restricted to

{0, 1, 2, 3}, because we allow the rates to vary as long as they add up to 1. Both this
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and Remark 3.15 are different than the situation in Proposition 3.28, where the rate was

fixed, but the jump size was allowed to be 0, 1, 2, or 3 and we were allowed to take convex

combinations of these distributions before mixing them.

Another different situation occured in the context of Proposition 3.25 applied to Poisson

distributions, where the jump size was fixed at 1, the rate was fixed at λ, but we allowed

independent sums and convex combinations to come in before we take the mixture.

These show that the mixture-restricting property concerns not only the type of distribu-

tions used to build up a class, but also the specifics of how the class is assembled from those

distributions.

3.4 A Class of Uniqueness Problems

From now on we will use

∀s ∈ R,Mµ(s) =

∫
R
esxdµ(x) (3.67)

to mean the MGF (at s ∈ R) of a probability measure µ on R. Here, µ may be random or

deterministic. We will often make assumptions about finiteness of the MGF, which we will

state as needed. We also use

∀t ∈ R, φµ(t) =

∫
R
eitxdµ(x) (3.68)

to mean the characteristic function (at t ∈ R) of a probability measure µ on R. Here, µ may

be random or deterministic.

In this section, we will discuss a variety of uniqueness problems regarding determining

the distribution of a random probability measure from limited information. These problems

will all run parallel to classical versions of various uniqueness results.

Definition 3.46. Given a probability measure µ defined on R, let µk :=
∫
R x

kdµ(x) denote

the moment of order k of µ, when it exists. Define C to be the collection of µ ∈ P (R) that

obey the Carleman condition that all the moments exist, are finite, and
∑∞

j=0 1/µ
1/2j
2j = ∞
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with the convention that 1/0 = ∞. Let M<∞ denote the collection of µ ∈ P (R) with finite

MGF in some neighborhood of 0.

Sometimes µ will denote a random measure.

We will sometimes make the assumption that the random measure µ is uniformly bounded

a priori. This means there exists M > 0 such that µ is a.s. supported in [−M,M ].

We will use the notation µk :=
∫
R x

kdµ(x) to indicate the (random) moment of order k

for µ, wherever this is defined.

For any of the classes in Definition 3.46 or for P+, we will say µ is a member of that class

if this holds a.s. Observe that all of these conditions are measurable. Notice this implies

no uniformity, for instance each sample from µ ∈ M<∞ may correspond to a different open

interval about which the MGF is finite.

For now, let us assume that µ is deterministic and state the classical uniqueness results

for comparison:

Proposition 3.47. Let µ, ν be deterministic probability measures on R. Then µ = ν provided

any of the following hold:

1. φµ = φν

2. µ, ν ∈ P+ and Lµ = Lν.

3. µ, ν ∈M<∞ and Mµ =Mν.

4. µ, ν ∈ C and ∀k ≥ 0, µk = νk

Let Sφ, SL, SM denote respectively the collections of functions that arise from some µ

as in case (1), (2), (3), with the value +∞ possible in case (3). Let SMOM denote the

collection of sequences of real numbers that arise as the moments of some µ as in case (4),

which we regard as a function of k ≥ 0. On each of these spaces of functions, we use the

Borel σ algebra generated by the evaluation maps. Then the content of the last theorem is

that µ 7→ φµ is a bijection from P (R) to Sφ, µ 7→ Lµ is a bijection from P+ to SL, µ 7→ Mµ
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is a bijection from the M<∞ to SM, and µ 7→ (µk)k≥0 is a bijection from C to SMOM .

Observe that all of these maps are measurable isomorphisms. It follows that

Proposition 3.48. Let µ, ν be random probability measures. Then µ =d ν provided any of

the following hold:

1. (φµ(t))t∈R =d (φν(t))t∈R

2. µ, ν ∈ P+ and (Lµ(s))s≥0 =d (Lν(s))s≥0.

3. µ, ν ∈ M<∞ and (Mµ(s))(s))s∈R =d (Mν(s))s∈R (which may be valued ∞ for some s

and some sample points.)

4. µ, ν ∈ C and (µk)k≥0 =d (νk)k≥0

To summarize, under suitable conditions, knowing the characteristic function, laplace

transform, MGF, or moments jointly tells us the joint distribution of a random measure. It

is natural to ask what happens when this type of information is only known marginally. (We

call these the marginal problems, as opposed to joint.) Actually, we can already provide

an answer to 2 of these problems. One counterexample that is uniformly bounded will

simultaneously witness the failure of both statements.

Theorem 3.49. There exist µ, ν uniformly bounded random measures in P+ such that µ 6=d ν

while yet ∀s ≥ 0, Lµ(s) =d Lν(s) and ∀s ∈ R,Mµ(s) =dMν(s).

Proof. By Proposition 3.23, we obtain random variables U, V ∈ T4 with U 6=d V such

that ∀y ∈ R, c4(y) · U =d c4(y) · V . Define random probability measures µ, ν supported in

{0, 1, 2, 3} via µ = U0δ0+U1δ1+U2δ2+U3δ3 and ν = V0δ0+V1δ1+V2δ2+V3δ3. Upon calculating

the transforms of these random measures, the fact that ∀y ∈ R, c4(y)·U =d c4(y)·V translates

into the fact that the (3’) holds, and thus that (2’) does as well.

It is not difficult to believe that the moment problem will require a different argument to

handle in the marginal case, but it may be surprising that the characteristic function marginal
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problem could not be handled in the above proof. That is because the characteristic function

is a complex valued random variable. Indeed, we have been avoiding this situation partly

because the methods of the last two sections cannot deal with complex valued uniqueness

problems, and partly because we did not have to since the problem had already been solved in

the negative, and special subclasses of interest already were nonnegative anyway. However,

here we arrive at a case where the signed question has not been solved yet, and our methods

with some adjustment will actually be applicable. We will present a proof of nonuniqueness

for the marginal characteristic function case in Subsection 3.4.1. From this proof, it will be

plausible that the arithmetic dependencies of the allowed support set is the culprit, because

it reduces the analysis to one of polynomials, for which we will be able to use Lemma 3.22.

In Subsection 3.4.2 we will present a proof of nonuniqueness in the moment marginal

case, even if the restriction is made to a finite support set, hence to the uniformly bounded

hypothesis. In Subsection 3.4.3, we will show how the relevant arithmetic structure from

Subsection 3.4.2 was multiplicative, and that therefore if the set of allowed values consists

of coprime numbers, then uniqueness of the distribution of a random measure with a given

set of moments does hold.

We display our results concerning random uniqueness problems in the following table.

We remind the reader that the assumption for the MGF case is finite MGF in a neighbor-

hood around 0 (a.s.), the assumption for Laplace transform is nonnegativity, there are no

assumptions for characteristic function, and the Carleman condition is assumed to hold (a.s.)

for the moment problem. The entries “yes” and “no” refer to whether or not uniqueness

holds. All answers “no” come with a uniformly bounded (pair of) counterexamples.

joint marginal

MGF yes no

Nonnegative Laplace Transform yes no

Characteristic Function yes no

Moment Problem yes no
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3.4.1 Uniqueness Fails for Characteristic Function Problem

In this subsection, we will use z = x + iy to denote a complex number. We define ∀n ≥

0, Pn(x, y) = <(zn) and Qn(x, y) = =(zn) which are homogeneous polynomials in the two

variables x, y of degree n. By default, our polynomials will be defined on a Euclidean space

Rd where d ≥ 1 is the number of variables of the polynomial. We will make use of the fact

that the dimension of the vector space of degree l, N -variable homogeneous polynomials with

coefficients in R is
(
N+l−1

l

)
. This fact can be derived from recasting the counting problem as

sorting l balls into N bins, which is equivalent to inserting N − 1 partition barriers between

l balls arranged in a line. There are thus N + l− 1 objects total, all N − 1 partition barriers

are equivalent and all l balls are equivalent. The total number of ways of arranging these

objects is
(
N+l−1

l

)
.

Moving on to the main program of this subsection, we first we need a lemma.

Lemma 3.50. For N, l ∈ N large enough, there exists p, a nonzero degree l homogeneous

polynomial in N variables such that ∀s, t, x, y ∈ R we have

p(sP0(x, y) + tQ0(x, y), . . . , sPN−1(x, y) + tQN−1(x, y)) = 0. (3.69)

Proof. We first note that if some N, l satisfies the conditions of the lemma, then all greater

pairs would work as well, so our use of the phrase “large enough” is justified. We now only

need to find one pair N, l for which (3.69) holds.

For any l, N, let Sl,N denote the real vector space of polynomials in s, t, x, y of degree at

most lN and let Tl,N denote the real vector space of degree l homogeneous polynomials in

N (commuting) variables.

Observe that

p(sP0(x, y) + tQ0(x, y), . . . , sPN−1(x, y) + tQN−1(x, y)) (3.70)
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defines a polynomial (not necessarily homogeneous) of degree at most lN in the 4 variables

s, t, x, y. Define the corresponding evaluation map

Φ : Tl,N → Sl,N (3.71)

via

Φ(p) = p(sP0(x, y) + tQ0(x, y), . . . , sPN−1(x, y) + tQN−1(x, y)). (3.72)

Observe that Φ is linear. The dimension of its codomain is
∑lN

j=0

(
j+3

3

)
≤ (lN + 4)4. If we

restrict to l = N then the dimension of the domain is
(

2N−1
N

)
.

Therefore, for N = l large enough, the kernel of Φ is nontrivial.

As before, we will construct a precursor to the counterexample by constructing merely

bounded random vectors with the desired property, and then we will adjust them so as to

turn them into random probability vectors. The following can be thought of as the complex

analog of a part of the argument used in the proof of Proposition 3.23. The equality in

distributions are meant for complex-valued random variables.

Lemma 3.51. For N large enough, there exist

U = (U0, . . . , UN−1), V = (V0, . . . , VN−1) (3.73)

bounded random vectors taking values in RN for which ∀z ∈ C we have

N−1∑
j=0

zjUj =d

N−1∑
j=0

zjVj (3.74)

while yet U 6=d V

Proof. Take N large enough so that the set
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{(sP0(x, y) + tQ0(x, y), . . . , sPN−1(x, y) + tQN−1(x, y)) ∈ RN |s, t, x, y ∈ R} (3.75)

is contained in a projective variety. This is possible by the last lemma. By Lemma 3.22 we

may find U, V bounded random vectors so that ∀s, t, x, y we have

(sP0(x, y) + tQ0(x, y), . . . , sPN−1(x, y) + tQN−1(x, y)) · U

=d (sP0(x, y) + tQ0(x, y), . . . , sPN−1(x, y) + tQN−1(x, y)) · V (3.76)

while yet U 6=d V .

By the Cramér Wold device, we have that ∀x, y ∈ R, the R2-valued random vectors

(
(P0(x, y), . . . , PN−1(x, y)) · U, (Q0(x, y), . . . , QN−1(x, y)) · U

)
(3.77)

and

(
(P0(x, y), . . . , PN−1(x, y)) · V, (Q0(x, y), . . . , QN−1(x, y)) · V

)
(3.78)

have the same distribution. But by real isomorphism of R2 with C, this is the same as saying

that

(P0(x, y), . . . , PN−1(x, y)) · U + i((Q0(x, y), . . . , QN−1(x− y)) · U)

=d (P0(x, y), . . . , PN−1(x, y)) · V + i((Q0(x, y), . . . , QN−1(x, y)) · V ) (3.79)

But by the definition of the Pn, Qn this is the same as saying ∀z ∈ C we have

(z0, . . . , zN−1) · U =d (z0, . . . , zN−1) · V (3.80)

as complex-valued random variables. Thus, U and V have the required properties.
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Lemma 3.52. There is N ′ large enough so that there exist

U ′ = (U ′0, . . . , U
′
N−1) 6=d V

′ = (V ′0 , . . . , V
′
N−1), (3.81)

both valued in

TN ′ := {(x0, . . . , xN ′−1)|∀j : 0 ≤ j ≤ N ′ − 1, xj ≥ 0,
N ′−1∑
j=0

xj = 1}, (3.82)

for which ∀z ∈ C

N ′−1∑
j=0

zjU ′j =d

N ′−1∑
j=0

zjV ′j . (3.83)

Proof. Take N,U, V from the last lemma. Set N ′ = N + 1. Notice that (3.74) still holds

if we rescale or translate U, V in the same way. Consider H := {(x0, . . . , xN−1)|1 ≥ x0 ≥

· · · ≥ xN−1 ≥ 0}. Since H has nonempty interior, we may take U, V ∈ H without loss of

generality. Then when we define U−1 = 1 = V−1, UN = 0 = VN , and ∀j : 0 ≤ j ≤ N, U ′j =

Uj−1 − Uj, V ′j = Vj−1 − Vj, observe that U ′, V ′ are TN ′ valued. Furthermore, U ′ 6=d V
′. A

calculation shows that we have ∀z ∈ C

(z0, . . . , zN−1) · (U ′1 + · · ·+ U ′N , U
′
2 + · · ·+ U ′N , . . . , U

′
N)

=d (z0, . . . , zN−1) · (V ′1 + · · ·+ V ′N , V
′

2 + · · ·+ V ′N , . . . , V
′
N). (3.84)

From this it follows that

(z0)U ′1 + (z0 + z1)U ′2 + · · ·+ (z0 + · · ·+ zN−1)U ′N

=d (z0)V ′1 + (z0 + z1)V ′2 + · · ·+ (z0 + · · ·+ zN−1)V ′N . (3.85)

By multiplying by (z − 1), using the definition of TN ′ , and adding 1 to both sides, we

obtain ∀z ∈ C
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N ′−1∑
j=0

zjU ′j =d

N ′−1∑
j=0

zjV ′j (3.86)

Thus, U ′ and V ′ have the required properties.

We use the homeomorphism, hence measurable isomorphism of TN ′ with the collection

of probability measures supported in {0, . . . , N ′ − 1} given by v 7→ v0δ0 + · · · + vN ′−1δN ′−1

in order to see the following:

Theorem 3.53. For N ′ large enough, there are two random probability measures µ, ν with

distinct distributions which are a.s. supported in {0, . . . , N ′ − 1} for which ∀t ∈ R, φµ(t) =d

φν(t).

Proof. Obtain U ′, V ′, N ′ as in the last lemma, and set µ = U ′0δ0 + · · · + U ′N ′−1δN ′−1 and

ν = V ′0δ0 + · · · + V ′N ′−1δN ′−1. Set z = eit in (3.83) so that its left side is the random

characteristic function of µ and its right side is the random characteristic function of ν. This

construction has the required properties.

3.4.2 Too Many Multiplicative Relationships Spoils Uniqueness of the Marginal

Moment Problem

Let us see that 4 values is again enough to prove nonuniqueness in the marginal version of

the random moment problem:

Theorem 3.54. There exist µ, ν random measures a.s. supported in {1, 2, 4, 8} for which

∀k ≥ 0, µk =d νk while yet µ 6=d ν.

Proof. By the identification of T4 with the collection of probability measures supported in

{1, 2, 4, 8} (given by v 7→ v0δ1 +v1δ2 +v2δ4 +v3δ8) we have that it suffices to find two random

probability vectors U = (U0, U1, U2, U3), V = (V0, V1, V2, V3) for which U 6=d V and ∀k ≥ 0
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∀k ≥ 0, U0 ∗ 1k + U12k + U24k + U38k =d V0 ∗ 1k + V12k + V24k + V38k. (3.87)

That this suffices is because upon defining µ = U0δ1 + U1δ2 + U2δ4 + U3δ8 and ν = V0δ1 +

V1δ2 + V2δ4 + V3δ8, which are random probability measures a.s. supported on {1, 2, 4, 8}, we

would have that the left side of (3.87) is µk and the right side is νk.

We may write (3.87) as

∀k ≥ 0, U0 ∗ 20k + U121k + U222k + U323k =d V0 ∗ 20k + V121k + V222k + V323k. (3.88)

Pick U, V from Lemma 3.23.

3.4.3 How The Right Kind of Arithmetic Independence Can Help

Let a0, . . . , aN−1 be a list of nonzero natural numbers which are pairwise coprime.

Theorem 3.55. If µ, ν are random probability measures which are a.s. supported in the set

{a0, . . . , aN−1} and ∀k ≥ 0, µk =d νk then µ =d ν.

Proof. First we consider the homeomorphism between the space of probability measures sup-

ported on {a0, . . . , aN−1} with TN := {(x0, . . . , xN−1)|∀j : 0 ≤ j ≤ N−1, xj ≥ 0,
∑N−1

j=0 xj =

1} given by θ 7→ (θ({a0}), . . . , θ({aN−1})). It suffices to show that if U, V are TN valued and

∀k ≥ 0 we have

N−1∑
j=0

(aj)
kUj =d

N−1∑
j=0

(aj)
kVj (3.89)

then U =d V . Once this is shown, if µ, ν are a.s. supported on {a0, . . . , aN−1}, then upon

defining

U =

(
U0, . . . , UN−1

)
=

(
µ({a0}), . . . , µ({aN−1})

)
(3.90)
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and

V =

(
V0, . . . , VN−1

)
=

(
ν({a0}), . . . , ν({aN−1})

)
(3.91)

we would have that the left side of (3.89) is µk and the right side is νk.

By Lemma 3.22, it suffices to show that {(ak0, . . . , akN−1)|k ≥ 0} is not contained in any

projective variety.

Suppose to the contrary that there exists some nonzero homogeneous polynomial p in

N variables of degree l > 0 for which ∀k ≥ 0, p(ak0, . . . , a
k
N−1) = 0. Enumerate (without

repetitions) the monomials {Mi}Kj=1 of degree l, and write p =
∑K

j=1 bjMj where bj ∈ R. For

each j, ∃Cj ∈ N such that

∀k ≥ 0, Mj(a
k
0, . . . , a

k
N−1) = (Cj)

k. (3.92)

Because the Mj are distinct, and a0, . . . , aN−1 are all coprime, we find that all the Cj

are distinct. Find j0 such that Cj is the largest, subject to the constraint that bj 6= 0.

This is a feasible optimization problem because p 6= 0. There will be only one optimal

solution because the Cj are all distinct, and a solution exists because the list of Cj is fi-

nite. Consider limk p(a
k
0, . . . , a

k
N−1)/Ck

j0
= bj0 6= 0 for a contradiction with the fact that

∀k ≥ 0, p(ak0, . . . , a
k
N−1)/Ck

j0
= 0. This completes the proof.
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CHAPTER 4

Long Range Percolation

Many real life and mathematical situations are modeled by random networks. For example,

it is often stated that any two people are six handshakes apart. We would like to use a

model to assess if this is true. We may model this by assuming that people have friends

who are randomly selected, but more likely to be from their immediate locale than from

halfway across the world. In other words, our model of such a problem could consist of a

random graph, where the vertices represent people, and there is an edge for every friendship,

or handshake. Edges are more likely to occur between nearby points than points separated

by a great distance. The question of whether or not everybody is within six handshakes of

one another, it turns out, depends on how quickly the friendship probability decays with

geographical distance. The following work considers an intermediate rate of decay that does

not quite lead to an upper bound on the number of handshakes between any two people, but

rather a polylogarithmic (in their geographical distance) bound.

Another situation is network theory. Suppose that we have computers communicating to

one another, and sometimes, a signal has to be sent between many intermediate computers

before it reaches its final destination. But some communications are lost (at random) because

of various kinds of failures of components or software. What is the most efficient path that a

signal should travel? An analogous question could be asked for fluids flowing through pipes,

with a probability of blockage.

Let us think of these two case studies as instances of the following abstract setting,

called percolation. Fix a graph G. Percolation is the study of the connectivity of random

subgraphs of G obtained by keeping all the vertices, and randomly keeping or discarding
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each edge independently from every other edge. Sometimes, a kept edge is referred to as

“open” or “present.” The word “open” refers to the fact that percolation models a fluid

flowing through a random network where edges that are passable to the fluid are “open.”

Specific questions of interest in percolation theory concern the size of clusters, the (random)

notions of distance, and other graph theoretic concepts. For a general survey of percolation,

see [10].

Fix an integer d ≥ 1. We will discuss a discrete problem first and then its continuous

analog. In our case, we are dealing with G being the complete graph (no loops) on the set of

vertices Zd. For edges 〈x, y〉 not between nearest neighbors, the probability that it is open

is given by

pxy, dis = min(ρ/|x− y|s, 1) (4.1)

for some ρ > 0, s ∈ (d, 2d). Unqualified norm and modulus symbols refer to the Euclidean

norm. If x, y are nearest neighbors, then the edge between them is open a.s. We will use

γ =
s

2d
(4.2)

and

∆ = (log2(1/γ))−1 ∈ (1,∞). (4.3)

We will use Ddis(x, y) to mean the graph distance from x ∈ Zd to y ∈ Zd restricted to the

subgraph imposed by a sampling from the percolation problem. This is often called the

chemical distance.

The reason for the restriction s ∈ (d, 2d) is that if s < d, then there exists a constant

C such that ∀x, y we have Ddis(x, y) ≤ C. If s > 2d, then the problem resembles nearest

neighbor percolation, where the asymptotic behavior of Ddis(x, y) is linear in the underlying

separation. As noted earlier, the selected condition on s, the rate of decay of the probability

an edge is open, is intermediate in that Ddis(x, y) scales polylogarithmically with |x−y|. For

a summary of the cases outside of our selected range of s, see [3].

Sometimes, we will actually deal with a continuum percolation model instead, and then

we eliminate the discrete subscripts. A broad overview of the setup is that edges appear
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randomly between any two x, y ∈ Rd, according to a Poisson Point Process, and a walker

trying to go from point a to point b seeks the quickest possible path. To travel from x to y

requires |x − y| time if it is done in the Euclidean space, but if it is done via a long range

edge, it requires 1 unit of time. Let us make this more precise in what follows. Let Q be a

Poisson Point Process on {(x, y) ∈ Rd×Rd
∣∣|x| > |y|} with intensity measure ρ

|x−y|sdxdy. We

think of Q as a random subset of {(x, y) ∈ Rd × Rd
∣∣|x| > |y|}. Define P , a random subset

of Rd × Rd, by the rule (x, y) ∈ P if and only if either (x, y) ∈ Q or (y, x) ∈ Q. We think

of P as a random set of unoriented edges. We chose the set {(x, y) ∈ Rd × Rd
∣∣|x| > |y|}

because this set, together with its image under the swapping of x and y coordinates, covers

Rd×Rd except a null set under the intensity measure. We shall refer to P as a symmetrized

Poisson Point Process with intensity measure ρ
|x−y|sdxdy. For measurability reasons and for

simplicity, we shall assume that any Poisson Point Processes mentioned in the sequel are

exactly countably additive, not just almost surely. We define ∀x, y ∈ Rd,

D(x, y) = inf
n≥0,x1,...,xn,y1,...,yn:〈x1,y1〉,...,〈xn,yn〉∈P

{n+ f(n, x, y, x1, . . . , xn, y1, . . . , yn)} (4.4)

where

f(0, x, y) = |y − x| (4.5)

and ∀n ≥ 1,

f(n, x, y, x1, . . . , xn, y1, . . . , yn) = |x− x1|+ |y − yn|+
n−1∑
j=1

|xj+1 − yj|. (4.6)

Notice that although there could be infinitely many edges in a finite ball that connect points

that are separated by less than one distance in Euclidean norm, such edges don’t matter

because an optimal path could never use them. We call the reader’s attention to the fact that

the underlying norm implied by the presence of all the nearest neighbor edges in the discrete

case is the l1 norm on Zd, whereas we are using the Euclidean norm in the continuum model

for spherical symmetry. The distribution of D(x, y) is translation and rotation invariant,

and D(x, y) ≤ |x− y|.

Considering the paths allowed by the infimum in the definition of D, it is possible for two

balls that are separated by a considerable distance to have pairs of points where the shortest
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paths between those points each intersect the other ball. Thus, we use a restriction in order

to guarantee independence in that setting. Define a restricted notion of the (continuum)

distance Dres given by

Dres(x, y) = inf
n≥0,x1,...,xn,y1,...,yn∈B

{n+ f(n, x, y, x1, . . . , xn, y1, . . . , yn)} (4.7)

where the infimum is taken over all paths whose long-distance edges are entirely contained

within the closed ball (all balls are closed here) B of radius 10|x− y| centered at x.

In [2] and [3], Biskup makes use of a path construction algorithm that proceeds down

a binary hierarchy to furnish a path of the desired polylogarithmic asymptotics. Roughly

speaking, given x and y that are to be connected by some path, the gap from x to y can

be considered one gap. At each stage in the algorithm, for each gap from a to b, with

overwhelming likelihood, an edge is found that is close to connecting a to b, but its two

endpoints are slightly different from a and b, consuming the gap from a to b, but leaving

behind two gaps. This algorithm is continued, with each gap leaving behind two smaller

order gaps, until the probability of failure cannot be maintained close to 0. We would like

to refine this strategy in the following lemma, stating it in a form that is more amenable to

moment estimates, which we use in the sequel.

Lemma 4.1. ∀α, β ∈ (0, 1) such that dα + dβ = s, ∀x ∈ Rd, there is an event Ax,α,β such

that

Dres(0, x) ≤d Dres(0, Zx,α|x|α) +D′res(0, Z
′
x,β|x|β) + 1 + |x|1Ax,α,β , (4.8)

where on the right side, the entire families Dres, D
′
res together with the two single random

variables Zx,α and Z ′x,β are independent as a family of four objects. Zx,α and Z ′x,β have

continuous densities that are nowhere 0. D′, D are identically distributed and P (Ax,α,β) ≤

k1e
−k2|x|d−s/2 with k1 and k2 depending on α, β, s, d only. In the special case α = γ = β we

have that Zx,γ =d Z
′
x,γ and the common distribution does not depend on x.

Remark 4.2. Often times not all subscripts will be explicitly stated.

The reader should consider that (4.8) is plausible because it effectively says that one

special kind of path among the many possible is the kind of path that is formed by the
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following: take a long edge connecting a small neighborhood of 0 to a small neighborhood

of x. This long edge exists with high probability, similarly to [2] and [3]. On the right side

of (4.8) then, the two distances represent the distances from 0 and x to the endpoints of the

long edge that reside in their neighborhoods. These are analogous to the gaps mentioned

above. The reason there are Z’s in the distances’ arguments is that the endpoints of the

long edge are random.

Proof. The outline of the proof is that we will define an optimization game, a decomposition

of the intensity measure of P , the notion of an admissible path and the error event Ax.

Lastly, we will use these to prove the lemma. The idea of an admissible path makes precise

the kind of special path mentioned in the last remark.

First we define the optimization game and its associated random variables. We will have

need for a special norm on Rd × Rd, defined by

N(x, y) = (|x|2d + |y|2d)
1
2d . (4.9)

Let α, β ∈ (0, 1) be such that dα + dβ = s. Assume x ∈ Rd is large enough so that

both |x|(α+1)/2 and |x|(β+1)/2 are bounded by |x|/100. Consider a symmetrized Poisson Point

process P ′ like above P , except P ′ has intensity with a constant density ρ(98|x|/100)−s. (x

is fixed already.) Among all the present edges in this process P ′, we select the edge from

x1 to x2 that minimizes N(x1 − 0, x2 − x). Notice that reversing x1 and x2 may change

N(x1 − 0, x2 − x), so the optimization problem involves, among other things, choosing the

correct orientation. This defines x1 and x2 almost surely. Thus, X1,x and X2,x are defined as

the random variables that take the value x1 and x2 arising from this optimization respectively.

The joint density of X1,x and X2,x as a function of two variables (which we also call x1 and

x2) is

C1ρ(98|x|/100)−se−C2ρ(98|x|/100)−s((|x1−0|2d+|x2−x|2d)
1
2d )

2d

(4.10)

thanks to our choice of N , for some constants C1, C2 that do not depend on x. This shows

that X1,x and X2,x are independent. Notice that the distributions of X1,x and X2,x − x are
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spherically symmetric because the intensity measure is of constant density. Let us define

Z1,x,α = X1,x/|x|α and Z2,x,β = (X2,x − x)/|x|β. The two Zs are independent of one another.

Sometimes we will replace the 1 or 2 subscripts with unprimed or primed superscripts re-

spectively. Notice that in the special case of α = γ and therefore β = γ, we have that the

distribution of the Zs are both the same, and also the same as x varies. In order to see this,

it suffices to show that Zx/|x| =d Zx. Observe that the marginal distribution of X1,x, say, has

density √
C1ρ(98|x|/100)−seC2ρ(98|x|/100)−s|x1|2d . (4.11)

This means that for B Borel, we have

P (Zx ∈ B) =

∫
|x|γB

√
C1ρ(98|x|/100)−seC2ρ(98|x|/100)−s|x1|2ddx1. (4.12)

Applying the change of variables y = x1/|x|γ, we obtain

P (Zx ∈ B) =

∫
B

√
C1ρ(98|x|/100)−seC2ρ(98|x|/100)−s|x|2dγ |y|2d|x|γddy. (4.13)

After cancellation of some factors, we obtain

P (Zx ∈ B) =

∫
B

√
C1ρ(98/100)−seC2ρ(98/100)−s|y|2ddy = P (Zx/|x| ∈ B). (4.14)

Observe the |Z|s have finite moment generating functions on the entire real line, and the Zs

have densities that are everywhere nonzero and continuous.

Next we decompose the intensity measure for P into two pieces, which we think of as a

Poisson thinning. Consider α, β ∈ (0, 1) such that dα+dβ = s and fixed x, y distant enough

such that |x − y|(1+α)/2 ≤ |x − y|/100, |x − y| ≥ 1 and |x − y|(1+β)/2 ≤ |x − y|/100. Let

us do a Poisson thinning in Bx × By where Bx is the ball of radius |x − y|(1+α)/2 around x

and By is the ball of radius |x− y|(1+β)/2 around y, considering the intensity to be the sum

of ρ(98|x − y|/100)−s and the rest. (If necessary, change probability spaces to enable this

thinning.) Let us say that an edge that is present in the ρ(98|x − y|/100)−s sample is red

and the rest are blue. The notions of red edge and blue edge are relative to a choice of x

and y, or often, relative to the choice of 0 and a choice of x.
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Let us call a path x, x1, y1, . . . , xn, yn, y admissible for α, β ∈ (0, 1) such that dα+dβ = s

if x and y are sufficiently distant as above, and the path has a red edge from Bx to By, say

this edge goes between xj and yj. We then require that xj is in Bx and yj is in By. We also

require that in the ordered list x1, y1, x2, y2, . . . xn, yn, all elements to the left of xj, inclusive,

are in the ball centered at x of radius 10|x− y|(1+α)/2, and the rest are in the ball centered

at y of radius 10|x− y|(1+β)/2. Observe that admissible paths are allowed in the infimum in

the definition of Dres.

Aα,β,x is the event that there are no admissible paths from 0 to x for the given α, β, or

the condition that |x|(1+α)/2 > |x|/100 or |x| < 1 or |x|(1+β)/2 > |x|/100. All conditions but

the first are deterministic, and those deterministic conditions ensure x is large enough that

all balls mentioned in the above paragraph centered at 0 are disjoint from those centered at

x. The requirements also ensure that the Poisson intensity between the two balls of radii

|x−0|(1+α)/2 around 0 and |x−0|(1+β)/2 around x has intensity at least ρ(98|x−0|/100)−sdxdy.

Observe that P (Ax) ≤ k1e
−k2|x|d−s/2 . This is because the volume of B0 × Bx is proportional

to |x|d+s/2 and the intensity measure for P ′ is proportional to |x|−s.

With all the setup, we have thus ensured that ∀α, β ∈ (0, 1) such that dα + dβ = s,

∀x ∈ Rd,

Dres(0, x) ≤ 1AcDres(0, x) + |x|1A (4.15)

and

1AcDres(0, x) ≤ 1Ac(Dres(0, Y1,x) +D′res(x, Y2,x) + 1). (4.16)

where Y1,x, Y2,x denotes the pair arising from the optimization game played with the intensity

measure of P ′ on B0 × Bx and the intensity measure of P elsewhere. Because the event

Ac guarantees that this optimization occurs within B0 × Bx, Y1,x, Y2,x can be replaced by

X1,x, X2,x, with the qualification that these together with Dres and D′res are independent.

This last independence claim holds because Dres depends on only edges within B0, D′res only

depends on edges within Bx, and the pair (Y1,x, Y2,x) depends only on edges of length of order

|x|, which cannot possibly include any edges within B0 nor within Bx due to the conditions in

Ac on x. Therefore, when the two Y s are exchanged for the two Xs, which are independent,
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the coupling of the two Xs with the two Dres’s is also independent. Writing Z’s instead of

X’s, we have

Dres(0, x) ≤d Dres(0, Zx|x|α) +D′res(0, Z
′
x|x|β) + 1 + |x|1A, (4.17)

where on the right side, the entire families Dres, D
′
res together with the two single random

variables Zx and Z ′x are independent as a family of four objects.

Other properties of the above objects that we shall use freely are:

1. The distribution of Dres(0, x) depends only on |x| and this distribution is continuous

as a function of |x|.

2. Dres ≥ D.

3. Dres(x, y) ≤ |x− y|

and

4. The distribution of Dres is translation invariant.

Often times, when one of the arguments of any of the objects D,Dres, Ddis is 0, only the

other argument is indicated. (e.g. D(x) = D(0, x).) We will often make use of the following

lemma as well.

Lemma 4.3. For h being either D or Dres, the relations

∀c ≤ 1, h(cx) ≥d ch(x) (4.18)

and

∀c ≥ 1, h(cx) ≤d ch(x) (4.19)

hold true.

Proof. We consider the case of h = D and prove the first inequality. The rest is left to the

reader. Assume c ≤ 1. Consider a coupling of two continuum percolation processes together,
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where one process P1 is according to a symmetrized Poisson Point Process with intensity

measure ρ
|x−y|sdxdy, and the second process P2 simply takes each edge 〈x, y〉 occurring in P1

and duplicates it as 〈cx, cy〉. Observe that every path from 0 to x in P1 corresponds exactly

with a path from 0 to cx in P2. For the moment, let us use D1 to mean the distance from

0 to x in P1 and D2 to mean the distance from 0 to cx in P2. In both the expressions cD1

and D2, paths pay a cost of c|a − b| to use the underlying Euclidean space to travel from

point a to b in P1, or ca to cb in the corresponding path in P2. However, traversing an edge

costs c for cD1 and 1 for the corresponding edge in D2. Therefore, cD1 ≤d D2. The intensity

measure for P2 is dominated by the intensity measure for P1 by a factor of cs−2d > 1. From

this, we deduce that D2 ≤d D(cx). Putting this together yields the first result for h = D,

and the rest are similar.

Our program is to prove a lower bound for D, and then a scaling limit result for Dres,

followed by an upper bound for D, with each of these steps using the last. However, it is

most convenient to state the scaling limit result first:

Theorem 4.4. There is a continuous function φ : (1,∞) → (0,∞) such that φ(r) = φ(rγ)

holds when r > 1, and for each x ∈ Rd nonzero, we have

Dres(rx)

φ(r)log(r)∆
→ 1 (4.20)

in probability as r →∞.

Remark 4.5. The reader is cautioned that φ does not include r = 1 in its domain.

In [2] and [3], Biskup establishes that

lim
L→∞

P (log(L)∆−ε ≤ Ddis(0, Le1) ≤ log(L)∆+ε) = 1 (4.21)

for each ε > 0, where e1 is the first standard basis vector for Rd. We will improve this to

Theorem 4.6. There are c, C > 0 such that

lim
L→∞

P (c log(L)∆ ≤ Ddis(0, Le1) ≤ C log(L)∆) = 1. (4.22)
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The l1 norm of the underlying nearest neighbor connections in the discrete case and

the use of the Euclidean norm in the continuum case may strike the reader as not parallel.

However, the choice of the norms used in the definition of f , and the choice between the

continuum or discrete version of the problem are all immaterial, as Theorem 4.6 is equiva-

lently valid for any choice. The validity of Theorem 4.6 is not affected by the choice of the

Euclidean norm in the definition of either the intensity measure or pxy, dis. To see that the

validity of the lower bound is unaffected by a change of the norm, compare to a model with

a higher ρ if necessary. Similarly for upper bound. Also, in the continuum versions of this

theorem, the validity is unaffected by whether the limit is taken over natural numbers L or

real numbers L. We formalize this below in a lemma and a remark.

Lemma 4.7. There are ρu, c > 0, and a coupling of the entire D with the entire Ddis, the

latter with edge probabilities min(ρu/|x− y|s, 1), such that

cDdis(x, y) ≤ D(x, y) (4.23)

pointwise, for every x, y ∈ Zd with |x− y| > 1.

There are ρl, C > 0, and a coupling of the entire D with the entire Ddis, the latter with

edge probabilities min(ρl/|x− y|s, 1), such that

D(x, y) ≤ CDdis(x, y) (4.24)

pointwise, for every x, y ∈ Zd with |x− y| > 1.

Proof. We prove the first. If a path x, x1, y1, . . . , xn, yn, y is given with edges 〈xj, yj, 〉 all

present in the symmetrized Poisson Process with intensity ρ/|x − y|s, then we refer to the

(x, x1), (y1, x2), . . . , (yn, y) segments as gaps. An analogous definition is also used in discrete

settings. We can assume for this proof, without loss of generality, that continuum gap

traversal is done according to the l1 norm. We will assume that in discrete settings, nearest

neighbors are always connected. We describe below how to deal with other edges. From the

continuum process, we split Rd into hypercubes of sidelength 1, and decree that two points

are connected for the discrete process if and only if they are the lower left corners of two
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boxes in the grid that are connected by at least one edge in the continuum process of length

at least 1. (edges of length less than 1 are never relevant anyway.) This means that the

discrete process has independent edges with probability

p1,xy = 1− e−
∫
B×B′

ρ
|x−y|s 1|x−y|≥1dxdy (4.25)

to be open where B and B′ are two distinct hypercubes in the grid that are not nearest neigh-

bors. We call D1 the discrete chemical distance for this percolation with edge probabilities

p1. There exists ρu such that for all B,B′ we have

1− e−
∫
B×B′

ρ
|x−y|s 1|x−y|≥1dxdy ≤ min(ρu/|x− y|s, 1) (4.26)

where x and y are the lower left corners of the hypercubes B and B′. We call D2 the discrete

chemical distance for the percolation based on edge probabilities p2 = min(ρu/|x − y|s, 1).

Since p1 ≤ p2, we have D1 ≥d D2. What remains is to compare D1, which came with a

coupling with D, to D itself.

For every path used in the infimum defining D, there is a corresponding discrete path that

occurs in the infimum defining D1. There is the issue that a gap may be much shorter than 1

unit of distance, but span multiple hypercubes. In any case, each gap can be overestimated

by the discrete distance by no more than d units . If n edges are used, then there are n+ 1

gaps. Notice that if n = 0 then the number of gaps is 1 and that gap has length greater than

1, and this consideration leads to the need for an extra factor of 1/(d + 1) in c. If n > 0,

then the number of gaps is no more than double the number of long range edges. Therefore,

this consideration inserts a factor of at most 1/(3(d + 1)) in c. Therefore, D ≥ cD1 ≥d cD2

with c = 1/(3(d+ 1)), which completes the proof of the first inequality

For the second inequality, the proof is similar, with the additional following detail when

comparing D to D1. In the continuum distance, there is the need to locally connect two

endpoints of edges in the same hypercube. Thus, the continuum distance might involve paths

that overestimate their discrete counterparts by no more than d per gap. As before, this is

accounted for in the constant C, whether or not n = 0 where n is the number of gaps.
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Remark 4.8. Changes of the choice of norms in any of the definitions correspond to at

worst a change in ρ (if the norm in the intensity density or edge probability is changed) or

a constant multiplier on the chemical distance (if the norm for the underlying short ranged

travel of gaps is changed). Neither type of change affects the existence of upper and lower

bounds.

4.1 The Lower Bound

We will borrow a method from [2] in order to prove the lower bound portion for the discrete

problem. By the above reasoning, the lower bound will also hold for the continuum problem.

This section is copied nearly verbatim from section 3 in [2]. We will actually prove the

lower bound assuming only that pxy, dis ≤ ρ|x − y|s. The lower bound is a corollary of the

next theorem

Theorem 4.9. There are constants c1, c2 ∈ (0,∞) such that, for ∆ := 1/ log2(2d/s), x 6= 0

P
(
Ddis(0, x) ≤ n

)
≤ c1

(
e c2 n

1/∆

|x|

)s
, n ≥ 1. (4.27)

We present some lemmas:

Lemma 4.10. Abbreviate Bk := B(0, k) for k ≥ 0. If k > 0 and x ∈ Zd with x 6= 0, then

P
(
Ddis(0, x) ≤ k

)
≤ ρ
( |x|
k

)−s k∑
j=0

E|Bj|E|Bk−j| (4.28)

Proof. If D(0, x) ≤ k, then there exists a (vertex) self-avoiding path from 0 to x such that

at least one edge has length at least |x|/k. If this edge occurs at the j-th step and it goes

from vertex y to vertex z, then we must have D(0, y) ≤ j and D(z, x) ≤ k − j. These

events should actually occur spatially-disjointly. By conditioning on j and (y, z), the van

den Berg-Kesten inequality (or, alternatively, a careful conditioning on the first part of the

path) yields

P
(
Ddis(0, x) ≤ k

)
≤

k∑
j=1

∑
y,z∈Zd

|y−z|≥|x|/k

P
(
Ddis(0, y) ≤ j

)
pyz, dis P

(
Ddis(z, x) ≤ k − j

)
. (4.29)
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We can bound pyz, dis ≤ ρ(|x|/k)−s. Dropping the condition on |y−z| we can now sum over y

and z to get the right-hand side of (4.28).

Lemma 4.11. There is an a = a(d, s) ≥ 1 such that all j ≥ 1, K ≥ j have the property

that the bound ∀x ∈ Zd such that |x|/j ≥ 1, P (Ddis(0, x) ≤ j) ≤ [K/|x|]s implies that

E|Bj| ≤ aKd.

Proof. Note that |x| > K implies |x|/j ≥ 1. Thus

E|Bj| =
∑
x∈Zd

P
(
Ddis(0, x) ≤ j

)
≤

∑
x : |x|≤K

1 +
∑

x : |x|>K

(
K

|x|

)s
. (4.30)

It is easy to check that the first term is bounded by a constant a1 = a1(d) times Kd, while

the sum over |x|−s over |x| > K is at most a constant a2 = a2(d, s) times Kd−s. Putting

these contributions together, the desired claim follows.

We need one more lemma.

Lemma 4.12. For each p > s+1
2d−s and each c0 > 0 there is C = C(p, c0) ∈ (0,∞) such that

for each c ≥ c0 the sequence {Kn}n≥0 given by

K(n) :=
1

C
(n+ 1)−pe c n

1/∆

, (4.31)

obeys

ρ
n∑
j=0

K(j)dK(n− j)d ≤ n−sK(n)s, n ≥ 1. (4.32)

Proof. Without loss of generality, to prove this lemma, we may assume ρ = 1.

Consider the function ν(x) := x1/∆ + (1 − x)1/∆ and note that the exponentials in

K(j)dK(n− j)d combine into exp{cn1/∆ν(j/n)d}. Note also that ν is maximized at x := 1
2

where it equals 21−1/∆ = s/d. Let

δ := s− d max
0≤x≤1/4

ν(x) (4.33)
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and observe that δ > 0. Splitting the sum over j into the part when |j − n/2| ≤ n/4 or not,

and using the symmetry j ↔ n− j we thus get

n∑
j=0

K(j)dK(n− j)d ≤ 2
∑
j≤n/4

K(j)dK(n− j)d +
∑

j : |n/2−j|≤n/4

K(j)dK(n− j)d

≤ 2
∑
j≤n/4

C−2d e c n
1/∆(s−δ)

(j + 1)pd(n− j + 1)pd

+
∑

j : |n/2−j|≤n/4

C−2d e c n
1/∆s

(j + 1)pd(n− j + 1)pd
.

(4.34)

Using that j + 1 ≥ (n + 1)/8 and n − j + 1 ≥ (n + 1)/8 for all integers j such that

|j − n/2| ≤ n/4, we now get ∀n > 0,

LHS of (4.32) ≤ 2(n+ 1)C−2de c n
1/∆(s−δ) + C−2d82pd(n+ 1)1−2pde c n

1/∆s

≤ h(n)n−s
[ 1

C
(n+ 1)−pe c n

1/∆
]s (4.35)

where

h(n) := Cs−2d
(
82pd(n+ 1)1−2pd + 2(n+ 1)e−cδ n

1/∆)
(n+ 1)s+ps. (4.36)

Observe that 1 − 2pd + s + ps < 0 under the assumed condition on p and so the term

multiplying Cs−2d is bounded uniformly in n for all c > 0. Given c0 > 0, we can thus choose

C so small that h(n) ≤ 1 holds for all n ≥ 1 and all c ≥ c0. This defines C(p, c0) and proves

the claim.

Remark 4.13. By choosing C even smaller if necessary, we may arrange for the previous

lemma to be satisfied for the sequence K ′ given by K ′(n) = K(n) if n > 0, and K ′(0) = a−
1−dq
d

where q := 2
2d−s and a is as in Lemma 4.11.

Proof of Theorem 4.9. Let p > s+1
2d−s , set q := 2

2d−s and let a = a(d, s) be as in Lemma 4.11.

Pick c0 > 0 and let C(p, c0) be as in the preceding remark. Finally, pick c ≥ c0 so large that

K(n) :=
1

C(p, c0)
(n+ 1)−pe c n

1/∆ ≥ aqnmax{1, ρ1/s}, n ≥ 1. (4.37)

We will show by induction that, for each n ≥ 1, x 6= 0,

P
(
Ddis(0, x) ≤ n

)
≤
(
a−qK(n)

|x|

)s
. (4.38)
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Notice that this is trivially true for |x| < a−qK(n) and so we may thus always suppose that

|x| ≥ a−qK(n) which by (4.37) implies |x| ≥ n.

For convenience, we define K(0) = a−
1−dq
d . This way E[B0] = 1 = a1−dqK(0)d.

To start the induction we note that (4.38) holds for n = 1 as, for x away from the origin,

P (Ddis(0, x) ≤ 1) = p0x, dis which is less than or equal to the right-hand side by the bound

a−qK(1) ≥ ρ1/s. So let us now suppose (4.38) holds for all n ≤ m ∈ {1, 2, . . . } and let us

prove it for n := m+1. Notice that as we may assume |x| ≥ (m+1) ≥ j for j = 0, . . . ,m+1,

Lemma 4.11 can be used for E|Bj| with K := a−qK(j) for all j = 1, . . . ,m + 1. By

Lemma 4.10 and Lemma 4.11 we thus get

P
(
Ddis(0, x) ≤ m+ 1

)
≤ ρ
( |x|
m+ 1

)−s
a2−2dq

m+1∑
j=0

K(j)dK(m+ 1− j)d. (4.39)

The estimate even includes the j = 0 and j = m+ 1 terms in the sum because of the special

definition of K(0).

Invoking Lemma 4.12, the sum can be further bounded with the result

P
(
Ddis(0, x) ≤ m+ 1

)
≤ a2−2dq

(
K(m+ 1)

|x|

)s
. (4.40)

Since 2− 2dq = −sq, we get (4.38) for n := m+ 1. Thus (4.38) holds for all n ≥ 1; choosing

c1 := a−qsC(p, c0)−s and c2 := c we then get also (4.27).

We now prove the lower bound as a corollary.

Corollary 4.14. There is c > 0 such that

lim
L→∞

P (c ∗ log(L)∆ ≤ Ddis(0, Le1)) = 1. (4.41)

Proof. For given x, in Theorem 4.9, plug in n =
⌊
(log(|x|)/c2)∆

⌋
.

4.2 The Scaling Limit

We will work towards a proof of Theorem 4.4.
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We will prove first and second moment estimates that will be used in the sequel. At first

we will only use (4.8) for α = β = γ.

Since Zx = Z does not depend on x (distributionally) and has faster than exponentially

decaying tails, we define the random variable

W := Z
∞∏
j=1

|Zj|γ
j

. (4.42)

where the Zj, Z are all iid.

Lemma 4.15. The product defining W converges, W is finite, positive almost surely. W

has probability density that is nonzero Lebesgue a.e. If Z and W are independent, then

Z|W |γ =d W. (4.43)

This last identity shows why we defined W this way. W is for absorbing copies of Z

obtained from iterating (4.8).

Proof. Observe that P (Z = 0) = 0 since Z has a density. Taking the logarithm of the partial

products defining W and applying the Kolmogorov Three Series Theorem shows that the

product in W converges, and that W ∈ (0,∞). Since Z has continuous probability density

that is nowhere zero, and W is defined as Z multiplied by a random variable that is a.s.

never 0, we see that W has a density as well, and it is nonzero Lebesgue a.e. We can verify

(4.43) with a calculation.

From (4.8), we derive ∀r > 1,

Dres(0,Wr) ≤d Dres(0, |W |γZrγ) +D′res(0, |W |γZ ′rγ) + 1 + r|W |1ArW (4.44)

where the joint distribution of the W,Z,Z ′, Dres, D
′
res is all independent, and also the entire

family of Ax, though not necessarily independent of one another, are all independent from W .

Lemma 4.16. limnEDres(0,Wrγ
−n

)/2n exists. Moreover, there exist numbers an → 0 such

that EDres(0,Wrγ
−n

)/2n + an is a decreasing sequence. In particular, EDres(0,Wrγ
−n

)/2n

is bounded uniformly in n and compact sets of r.
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Proof. Taking expectations of (4.44) with rγ
−n

replacing r, and then dividing by 2n, we

obtain

EDres(0,Wrγ
−n

)/2n ≤ EDres(0,Wrγ
−n+1

)/2n−1 + 1/2n + C/2n (4.45)

where C is a constant bound for the function t 7→ |t|k1e
−k2|t|d−s/2 . Setting an =

∑∞
j=n+1(1 +

C)/2n gives way to the decreasing property we require. Since EDres(0,Wr) is continuous

and nonnegative, we know that EDres(0,Wrγ
−n

)/2n is bounded uniformly in n and compact

sets of r.

We define L(r) = limnEDres(r
γ−nW )/2n which exists by Lemma 4.16. We now show a

second moment estimate as part of the proof of

Theorem 4.17. Let r > 1. Then for Lebesgue a.e. x ∈ Rd, the limit

Dres(r
γ−nx)/2n → L(r) (4.46)

in probability.

We can use (4.18) and (4.19) to derive

Corollary 4.18. In the above, the same convergence can be claimed in probability for every

x other than 0.

Proof of Theorem 4.17. Square (4.44) to get ∀r > 1,

E(Dres(rW )2) ≤ 2E(Dres(r
γW )2) + 2E(E(Dres(r

γZ|W |γ)
∣∣W )2) + F0 (4.47)

where for r > 1,

F0 = F0(r) = 1 + 4E[Dres(0, r|W |γZ)]

+E[(r|W |)21ArW ] + 2E[r|W |1ArW ] + 4E[|rW |γ+1|Z|1ArW ].
(4.48)

We also define for n > 0,

Fn = Fn(r) = F0(rγ
−n

). (4.49)
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Notice that each term of Fn/2
n is bounded uniformly in n and compact sets of r, hence

Fn/2
n is bounded uniformly in n and compact sets of r, so that Fn/4

n is summable uniformly

on compact sets of r > 1. Here, we have used Lemma 4.16, the fact that W is independent

of all random objects, the decay of P (Ax), property 3, Cauchy Schwarz on the last term, and

the faster than exponentially decaying tails of Z. We remind the reader that Ax = Aγ,γ,x

is the event that at least one of the following failure modes occur: there are no admissible

paths from 0 to x for the given α = γ, β = γ, or |x|(1+α)/2 > |x|/100 or |x| < 1 or |x|(1+β)/2 >

|x|/100.

Now we rewrite the second term using conditional variance, and then subtract suitable

terms on both sides to get ∀r > 1

Var(Dres(rW )) ≤ 2Var(Dres(r
γW )) + 2Var(E(Dres(r

γZ|W |γ)|W )2)

+ 4E(Dres(r
γW ))2 − E(Dres(rW ))2 + F0 (4.50)

Replacing W by Z|W |γ in the first two variances above and using that

Var(X) = E(Var(X|Y )) + Var(E(X|Y )) (4.51)

then gives

Var(E(Dres(rZ|W |γ)|W )) + E(Var(Dres(rZ|W |γ)|W ))

≤ 4Var(E(Dres(r
γZ|W |γ)

∣∣W )) + 2E(Var(Dres(r
γZ|W |γ)|W ))

+ 4E(Dres(r
γW ))2 − E(Dres(rW ))2 + F0 (4.52)

Denoting

An :=
1

4n
Var(E(Dres(r

γ−nZ|W |γ)|W ))

Bn :=
1

4n
E(Var(Dres(r

γ−nZ|W |γ)|W ))

Cn :=
1

4n
E(Dres(r

γ−nW ))2

(4.53)

we then get the inequality

An +Bn + Cn ≤ An−1 +
1

2
Bn−1 + Cn−1 +

Fn
4n

(4.54)
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because Fn = Fn(r) = F0(rγ
−n

). Iterating shows

An +
1

2
Bn + Cn ≤ A0 +

1

2
B0 + C0 −

1

2

n∑
k=1

Bk +
n∑
k=1

Fk
4k
. (4.55)

Since all An, Bn, Cn are all positive and Fn/4
n is summable in n > 0, the sum of Bk must

remain bounded uniformly in n. We have thus proved:

Lemma 4.19. We have

∞∑
n=1

E(Var(2−nDres(r
γ−nZ|W |γ)

∣∣W )) <∞ (4.56)

We now consider again the independent copies D̃ and Z̃ of the quantities D and Z.

Formula (4.56) then yields

∞∑
n=1

E

[(
D̃res(r

γ−nZ̃|W |γ)
2n

− Dres(r
γ−nZ|W |γ)
2n

)2
]
<∞ (4.57)

Now pick a compact set U ⊂ Rd \ {0} with non-empty interior, let ε ∈ (0, 1) and let us

restrict the expectation to the event {Z|W |γ ∈ U} ∩ {ε < |W | < 1/ε}. Let |U | denote the

Lebesgue measure of U . From the fact that Z has a continuous nonzero density, it follows

that

f(z)|w|−dγ ≥ c
1

|U |
, z|w|γ ∈ U, ε < |w| < 1/ε (4.58)

for some constant c = c(U, ε) > 0. Using this bound in the above expectation permits us to

change variables to x := z|w|γ and conclude that for X uniform on U , and independent of

all other random objects, we have

∞∑
n=1

E

[(
D̃res(r

γ−nZ̃|W |γ)
2n

− Dres(r
γ−nX)

2n

)2
∣∣∣∣∣ ε < |W | < 1/ε

]
<∞ (4.59)

where we also used that P (ε < |W | < 1/ε) > 0 for ε ∈ (0, 1). Using Jensen’s inequality, we

can now pass the expectation over D̃, Z̃ and W inside the square to get

∞∑
n=1

E

[(
E

[
Dres(r

γ−nZ|W |γ)
2n

∣∣∣∣ ε < |W | < 1/ε

]
− Dres(r

γ−nX)

2n

)2
]
<∞ (4.60)
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By Monotone Convergence Theorem, this implies

Dres(r
γ−nX)

2n
− E

[
Dres(r

γ−nZ|W |γ)
2n

∣∣∣∣ ε < |W | < 1/ε

]
−→
n→∞

0, a.s. (4.61)

with the exceptional set not depending on ε.

The above reasoning (namely, the fact that An +Bn + Cn is bounded) shows

c̃ := sup
n≥1

E

((Dres(r
γ−nZ|W |γ)
2n

)2
)
<∞ (4.62)

and so, denoting qε := 1− P (ε < |W | < 1/ε), from Cauchy-Schwarz we have∣∣∣∣∣(1− qε)E
[
Dres(r

γ−nZ|W |γ)
2n

∣∣∣∣ ε < |W | < 1/ε

]
− E

[
Dres(r

γ−nW )

2n

]∣∣∣∣∣ ≤√c̃qε (4.63)

Since qε → 0 as ε ↓ 0, we thus conclude that, a.s. for Lebesgue a.e. x ∈ U , we have

lim
n→∞

Dres(r
γ−nx)

2n
= lim

n→∞
E

[
Dres(r

γ−nW )

2n

]
, (4.64)

As this holds for any choice of U as above, the claim follows.

In the proof of Theorem 4.17, we already provided most of the details for another useful

fact, which we now formalize.

Lemma 4.20. E[(Dres(r
γ−nW ))2]/4n is uniformly bounded in n and compact sets of r > 1.

Proof. From the above, we have

An +Bn + Cn ≤ A0 +B0 + C0 +
∞∑
k=1

Fk
4k
. (4.65)

A0, B0, C0 are all continuous in r, and the series is uniformly convergent on compact sets of

r, hence E[(Dres(r
γ−nW ))2]/4n = An +Bn +Cn is bounded uniformly in n and compact sets

of r.

We will need a third moment bound.

Lemma 4.21. E[(Dres(r
γ−nW ))3]/8n is uniformly bounded in n and compact sets of r > 1.
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Proof. By cubing (4.44) and taking conditional expectation on W and then expectation,

using Holder’s inequality on the cross terms on the right side, and using Xn to denote

Dres(r
γ−nW ), we find that

E[X3
n] ≤ 8E[X3

n−1] + En. (4.66)

Here En, similar to Fn, is the error term, where any term in it that involves the family Ax

is uniformly bounded in r and n, and terms that do not involve the Ax’s can only involve

Xn up to the second moment, which are bounded uniformly on compact sets of r > 1 by

the previous lemma. Therefore, En/4
n is uniformly bounded on compact sets of r, much as

Fn/2
n is uniformly bounded on compact sets of r. Therefore, En/8

n is uniformly summable

on compact sets of r, much as Fn/4
n is uniformly summable on compact sets of r. Thus,

Dres(r
γ−nW )/2n is an L3 bounded family, namely the bound on the third moment can be

taken to be E[X3
0 ] +

∑∞
k=1Ek/8

k.

For convenience,

Definition 4.22. Fix r > 1. Any of the x above that admit (4.46) is called a valid multi-

plier for r.

Valid multipliers are never 0.

Theorem 4.17 gives way to limits in probability along the sparse sequences rγ
−n

. We now

derive some properties of L(r) in order to generalize to other sequences.

Lemma 4.23. L(rγ) = L(r)/2, L(r) > 0, and L(r) is continuous.

Proof. We leave the first claim to the reader. L(r) > 0 for every r > 1 because of the lower

bound established in the previous section, and because of property 2. This is the only place

where the lower bound of the last section is used. We move towards a proof of the continuity

of L(r).

Observe that L(r) is a limit of continuous functions, hence Borel measurable, as a function

of r > 1.
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Let α, β ∈ (0, 1) be such that α+β = s/d. Define θ so that (1−θ)γ = α and (1+θ)γ = β.

By (4.8), we have

Dres(0,Wr) ≤d Dres(0, |W |αZWr,αr
α) +D′res(0, |W |βZ ′Wr,βr

β) + 1 + rW1ArW (4.67)

where the α, β decorations on Z,Z ′ indicate that they are for α and β, thus representing

distributions different from Z and Z ′ that we have seen so far in this section, and thus not

interacting with W in the same way. Additionally, the first subscripts arise from the fact

that, without knowing α = γ, the Z and Z ′ may depend on Wr, as per equation (4.8).

Here, W is independent from all other random objects appearing. Thus, we still know that

ZWr,α, Z
′
Wr,β have distributions that have the same null sets as the Lebesgue measure on Rd.

Thus, we can take (4.67) with rγ
−n

substituted in for r and divide by 2n and take the limit in

probability as n→∞ to conclude that L(r) ≤ L(rα) + L(rβ). The coupling across different

n can be done in any way the reader pleases. This is the same as

L(r) ≤ L(r1−θ) + L(r1+θ)

2
. (4.68)

By varying α, β among possible choices, or equivalently varying θ over a sufficiently

small open interval centered around 0, this implies that the function g(r) := L(er) defined

for r > 0 is midpoint convex on sufficiently small open intervals about each point in its

domain of definition. Since L is Borel, so is g. Thus, by [5], which contains the proof that

midpoint convexity implies continuity for real-valued Lebesgue measurable functions on the

real line, we see that g(r) is continuous. Hence L(r) is continuous in r.

Lemma 4.24. We have
EDres(rW )

L(r)
→ 1 (4.69)

as r →∞ and the limit in Theorem 4.16 is uniform on compact sets of r > 1.

Proof. Let hn(r) := EDres(0,Wrγ
−n

)/2n, so we know hn → L(r) uniformly for compact sets

of r, by the previous lemma, Lemma 4.16 and Dini’s Theorem. By applying this to the

compact set [eγ, e], we find that ∀ε > 0,∃n0 ≥ 1 such that ∀n ≥ n0, r ∈ [eγ, e] we have
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|hn(r)− L(r)| ≤ ε. This is the same as saying

sup
n≥n0

sup
eγ−n+1≤r≤eγ−n

∣∣∣EDres(rW )

2n
− L(rγ

n

)
∣∣∣ ≤ ε (4.70)

This is the same as

sup
n≥n0

sup
eγ−n+1≤r≤eγ−n

∣∣∣EDres(rW )

2n
− L(r)

2n

∣∣∣ ≤ ε. (4.71)

Notice that φ(r) := L(r)/ log(r)∆ is periodic in the sense that L(r) = L(rγ) because

γ∆ = 1/2. Therefore φ(r) is bounded away from both 0 and ∞. From this, we can conclude

that the L(r)/2n term above is bounded away from both 0 and∞ as n and r vary over their

allowed domains. Specifically, 1/(2 maxφ) ≤ 2n/L(r) ≤ 2/min(φ), so that the bounds have

no dependence on ε, r, n. We thus conclude that

sup
n≥n0

sup
eγ−n+1≤r≤eγ−n

∣∣∣EDres(rW )

L(r)
− 1
∣∣∣≤ 2ε/min(φ). (4.72)

This is the same as

sup
r≥eγ−n0+1

∣∣∣EDres(rW )

L(r)
− 1
∣∣∣ ≤ 2ε/min(φ). (4.73)

Thus, we have learned that
EDres(rW )

L(r)
→ 1 (4.74)

as r →∞.

Remark 4.25. Observe that the φ defined here has the required continuity and periodicity

properties in the statement of Theorem 4.4.

Dini’s Theorem was paramount in establishing convergence of first moments in the con-

tinuum parameter r rather than the discrete parameter n. We proceed to show how the

same tool can be used to deal with the second moments.

Lemma 4.26. We have

Var
(Dres(rW )

L(r)

)
→ 0 (4.75)

as r →∞.
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Proof. Fix r > 1. Almost every x (Lebesgue) is a valid multiplier, so W is a valid multiplier

with probability 1. Therefore, Theorem 4.17 with a copy of W that is independent of all

random objects plugged in implies that

Dres(r
γ−nW )/2n → L(r) (4.76)

almost surely.

Let us define Yn = Xn/2
n, where Xn was defined in the proof of Lemma 4.21. The L3

bound there implies that Y 2
n is uniformly integrable and Yn is uniformly integrable, so the

fact that Yn → L(r) in probability implies that Var(Yn)→ 0 so that An +Bn → 0 pointwise

in r. We would like to extract uniformity in r on compacts, so r is no longer fixed at this

point.

From the proof of Theorem 4.17, we learn that the sequence An +Bn +Cn−
∑n

k=1 Fk/4
k

is decreasing, and we already know its limit is L(r)2−
∑∞

k=1 Fk/4
k, which is continuous in r.

Dini’s Theorem tells us that the convergence is thus uniform on compact sets of r. Because

Cn converges uniformly to L(r)2 on compact sets of r and the partial sums of Fk/4
k converge

uniformly to their limit on compact sets of r, we thus conclude that An +Bn converges to 0

uniformly on compact sets of r.

By applying this uniform convergence to the compact set [eγ, e] we see that given ε > 0,

there exists n0 > 0 such that

sup
n≥n0

sup
eγ≤r≤e

Var[Dres(r
γ−nW )/2n] < ε (4.77)

so that

sup
n≥n0

sup
eγ−n+1≤r≤eγ−n

Var[Dres(rW )/L(r)] ≤ 2(minφ)−1ε. (4.78)

Thus, Dres(rW )/L(r) has variance converging to 0.

We now prove Theorem 4.4.

Proof of Theorem 4.4. So far, we know Dres(rW )/L(r) has variances converging to 0 and

expectations converging to 1, so it converges in probability to 1 as r →∞.
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Let x ∈ Rd be nonzero, and let t > 0. Find ε ∈ (0, |x|) such that c1 = (1+ε/|x|)(1−t) < 1

and c2 = (1− ε/|x|)(1 + t) > 1. We know that as r →∞,

P (Dres(0,Wr)/L(r) < c1

∣∣|W | ∈ [|x|, |x|+ ε)→ 0 (4.79)

and

P (Dres(0,Wr)/L(r) > c2

∣∣|W | ∈ (|x| − ε, |x|]→ 0. (4.80)

Observe that |x|/|W | ≤ 1 in the first of these, and ≥ 1 in the second. Therefore, using (4.18)

and (4.19),

P (Dres(0, xr)/L(r) < 1− t)

≤ P (Dres(0,Wr)|x|/(|W |L(r)) < 1− t
∣∣|W | ∈ [|x|, |x|+ ε))

≤ P (Dres(0,Wr)/L(r) < c1

∣∣|W | ∈ [|x|, |x|+ ε))→ 0

(4.81)

and

P (Dres(0, xr)/L(r) > 1 + t)

≤ P (Dres(0,Wr)|x|/(|W |L(r)) > 1 + t
∣∣|W | ∈ (|x| − ε, |x|])

≤ P (Dres(0,Wr)/L(r) > c2

∣∣|W | ∈ (|x| − ε, |x|])→ 0

(4.82)

Together, these imply the required convergence in probability.

We provide a proof of the upper bound within Theorem 4.6. It suffices to do it for D

instead of Ddis by Lemma 4.7. In fact, it suffices to do it for Dres instead of D.

Proof of Upper Bound: Pick |x| = 1 in 4.4. Using the definition of convergence in probability,

we conclude that P (Dres(0, rx)/L(r) > 2)→ 0. We have thus proved the upper bound with

C = 2 maxφ.
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CHAPTER 5

Conclusion

This work has explored a sampling of limit theorems in a diverse array of subfields of prob-

ability theory. Often times, limiting objects are easier to understand than the sequences

that approximate them. It is certainly true that stationary distributions, mixing measures,

the continuum version of the long range percolation problem, and the scaling limit of the

long range percolation chemical distances obey this general idea. This dissertation provides

a survey of how limiting objects could be used to better understand probabilistic processes.
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