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Consistency of spatial patterns of the daily precipitation field
in the western United States and its application
to precipitation disaggregation
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[1] We investigate spatial patterns of daily precipitation
field in the western United States, in order to improve
assessment and disaggregation of climate model simulation.
Empirical Orthogonal Function (EOF) analysis reveals that
the spatial pattern of daily precipitation has not changed
saliently in the region over the period 1948–2008. Results
show that, even at very fine spatial (.25° × .25°) and temporal
(daily) resolutions, a small number (∼15) of leading EOFs
can explain about 90% of the total variance of the time-
series of the entire precipitation field, having more than
6,000 grid cells. Moreover, the identified leading EOFs
demonstrate consistency over time and across different spa-
tial resolutions. Utilizing this consistency, an empirical
method of disaggregating the precipitation output of climate
models in this region is introduced. Illustrative results
exhibit the feasibility and potency of this method. The
advantages and limitations of this method are discussed as
well. Citation: Chu, W., X. Gao, T. J. Phillips, and S. Sorooshian
(2011), Consistency of spatial patterns of the daily precipitation field
in the western United States and its application to precipitation dis-
aggregation, Geophys. Res. Lett., 38, L04403, doi:10.1029/
2010GL046473.

1. Introduction

[2] Precipitation, especially over mountain ranges, is a
crucial source of freshwater in the western United States.
Furthermore, in this region, the spatial distribution of total
precipitation deposited does not match well with the distri-
bution of water demands from metropolitan, agricultural,
and industrial areas. Massive infrastructures, such as the
Federal Central Valley project and California State Water
Project, have been built to remediate the spatial imbalances
between water supply and demand. Therefore, understanding
precipitation spatial distribution in this region, especially at
high‐resolutions, is critical to ensuring a reliable water
supply in the face of increased climate variability.
[3] Numerous studies of the precipitation patterns in the

western U.S. have been reported [Cayan et al., 1998;
Dettinger et al., 1998], which identified the north‐south
precipitation patterns at interannual to interdecadal time
scales. These studies focused on investigating the physical
mechanisms responsible for the observed precipitation pat-

terns, linking the modes of precipitation patterns to climatic
forcings (such as sea level pressure and sea surface tem-
perature) and atmospheric circulations at both regional and
global scales. The analysis presented in these studies was
conducted on precipitation data of low spatial and temporal
resolution. Instead of explaining the physical processes
underlying the precipitation patterns, the objective of the
current study is to investigate the properties of these patterns
resolved at high spatial and temporal resolutions. We thus
conduct our analysis on a 0.25‐degree gridded field of daily
precipitation data over the region bounded by 110°–130°W
and 30°–50°N.
[4] Empirical Orthogonal Function (EOF) analysis [see,

e.g., Dunteman, 1989] is employed in this study to extract
the dominant spatial modes in the precipitation field. EOF
analysis has been used extensively in atmospheric research
to identify dominant orthogonal modes of the variance of
meteorological fields [Peltier and Tushingham, 1989;Wagner
et al., 1990; Mann et al., 1998a, 1998b; Deser et al., 1999;
Gong and Wang, 1999; Chen et al., 2002; Häkkinen and
Rhines, 2004]. Many studies have confirmed that modes
represented by dominant EOFs can be related to underlying
physical mechanisms [Semazzi et al., 1988; Kawamura,
1994; Finnigan and Shaw, 2000]. However, in this study,
we treat EOF analysis as a tool to extract the dominant sig-
nals, which are indicated by the variance explained by the
leading EOFs, in the timeseries of the precipitation field. The
remaining EOFs represent relatively trivial contributions to
the total variance resulting from several confounding sources
such as measurement or processing errors, fine‐scale noise,
localized precipitation features, etc.
[5] We initiatively apply EOF analysis to the precipitation

fields at very high temporal (daily) and spatial (.25°) reso-
lution in order to study the spatial patterns resolved at such
fine resolutions. The results reveal that a small number
(∼15) of leading EOFs can explain about 90% of the total
variance of the daily precipitation field over the western
U.S. Moreover, the leading EOFs demonstrate consistency
over time and across spatial resolutions. Encouraged by this
result, we propose a novel EOF‐based method for directly
disaggregating coarse‐grid, model‐simulated precipitation.
[6] Recently, Maraun et al. [2010] provided a compre-

hensive review of the state of the art of precipitation down-
scaling. However, the disaggregating method in this study
does not fall into any of the categories defined therein. In
general, standard statistical downscaling methods formulate
the links between precipitation and predictor variables, such
as geopotential height, sea level pressure, geostrophic
velocity, and wind speed. In contrast, our method directly
disaggregates low‐resolution precipitation based on the
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consistency of spatial patterns, which is very similar to the
conceptual basis of the singular value decomposition (SVD)
method introduced by Widmann et al. [2003]. In their study,
they disaggregated 150 × 200 km wintertime precipitation
(1958–94) of NCEP–NCAR reanalysis [Kalnay et al., 1996]
to a 50 × 50 km resolution over Oregon andWashington. Our
study demonstrates the feasibility and effectiveness of this
direct disaggregation procedure at high spatial and temporal
resolutions.
[7] Section 2 briefly describes the data and methodology.

Results are presented in section 3. Finally, we conclude with
discussion of the results in section 4.

2. Data and Methods

[8] Historical precipitation over this region is extracted
from US_Mexico daily precipitation analysis (retrospective)
and U.S. daily precipitation analysis (real‐time) [Higgins
et al., 2000] obtained from the Climate Prediction Center
(CPC) at the National Weather Service (ftp.cpc.ncep.noaa.
gov/precip/). The retrospective analysis spans the period
1948 to 2008 with spatial resolution of 1° × 1°, and the
real‐time analysis spans the period 1996 to the present at a
resolution of 0.25° × 0.25°. The datasets are derived from
two sources: the River Forecast Centers (RFC) that include
data from about 6000 gauge stations per day, and the
Climate Anomaly Data Base based on several hundred gauge
stations per day. Prior to March 4, 1998, only the RFC data,
with about 3000–6000 gauge stations per day, are available.
Consequently, for the 1996–1998 period, the total daily
precipitation of real‐time analysis does not agree well with
that of the retrospective analysis over the region. Table 1 lists

five subsets of data from the retrospective and real‐time
analysis for our experiment. As in the case ofWidmann et al.
[2003], we use observational data to represent climate model
simulation output in order to exclude the errors that are
introduced by a model, thus providing an accurate estimate
of the uncertainty associated with the disaggregation method
itself.
[9] Meteorological variables are usually represented as

time‐varying fields of geographical grids, where the value at
each grid point is viewed as a variable. For instance, 6561
(81 × 81) grids are needed to represent the precipitation field
at a given time over the entire study region at .25° resolu-
tion. Consequently, the timeseries of this precipitation field
is equivalent to a timeseries of 6561 variables. However,
owing to the correlations among neighboring grid values,
EOF analysis can reduce the number of variables required to
represent and characterize the precipitation field. EOF
analysis is a multivariate statistical analysis tool that
transforms a given dataset to a new orthogonal, independent
coordinate system so that the first coordinate (i.e. the first
EOF) has the largest projection of the dataset’s variance, the
second coordinate the second largest projection, and so on.
[10] Utilizing the leading EOFs’ consistency over time

and spatial resolution, we have developed a new method for
disaggregating model simulations of precipitation in the
western U.S. As an illustrative exercise, the method is
implemented as follows:
[11] 1. Conduct EOF analysis on precipitation observa-

tions at both low‐resolution, dataset A, and high‐resolution,
dataset B. The leading 15 EOFs in each analysis are then used
to form the matrixes Vl and Vh that each have 15 columns
corresponding to the EOFs.

Table 1. Subsets of Precipitation Data Used in the Experiments

Dataset Source Resolution Period Role

A Retropective analysis 1° × 1° 1998–2007 Historical observation at the typical GCM’s spatial resolution
B Real‐time analysis .25° × .25° 1998–2007 Historical observation at the target spatial resolution
C Retropective analysis 1° × 1° 2008 Model output to be disaggregated
D Real‐time analysis .25° × .25° 2008 Ground truth for validation of the disaggregation results
E Retropective analysis 1° × 1° 1948–1997 Observation to substantiate the long‐term temporal persistency of EOFs

Figure 1. (left) Fractional variance and (right) cumulative fractional variance explained by the first 15 EOFs of precipi-
tation fields of the .25° × .25° grid over 1998–2007, the 1° × 1° grid over 1998–2007, and the 1° × 1° grid over 1948–1997.
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[12] 2. Construct matrix Al, where each row in Al

represents the timeseries of a grid‐point value in dataset C.
Therefore Al has the size of 441(number of grid points in the
study region) × 366 (number of days in year 2008).
[13] 3. Given the EOFs’ temporal consistency, assume

that in a single year (e.g. 2008), the dominant EOFs of the
previous 10 years (1998–2007) still dominate. Then, we can
project Al onto the low‐resolution EOFs to obtain the
principal component (PC) timeseries:

Pl ¼ AlVl : ð1Þ

[14] 4. Since the EOFs are consistent across spatial re-
solutions, the PCs of high‐resolution EOFs are strongly
correlated to the PCs of low‐resolution EOFs, as shown by
the results described in Section 3 so that:

Ph / Pl: ð2Þ

[15] 5. Then, the high‐resolution precipitation timeseries
can be retrieved by projecting the PCs of high‐resolution
EOFs back onto the precipitation measurement space:

Ah ¼ PhV
T
h : ð3Þ

[16] 6. Now, Ah has the size of 6561(number of high‐
resolution grid points in the study region) × 366. Set neg-
ative values in Ah to zero, and normalize each column of Ah

to make the total daily precipitation consistent (i.e. the sums
of the corresponding columns in Ah and Al are equal).

3. Results

[17] EOF analysis is conducted on datasets A, B, and E of
Table 1. Results show that despite the differences in spatial
resolution and time period, three datasets yield very similar
EOF spectra (Figure 1, left). The corresponding leading

Figure 2. Comparison of the first five leading EOFs of (a) the precipitation field at different spatial resolutions: (top)
.25° × .25° grid and (bottom) 1° × 1° grid over the period 1998–2007; and (b) the precipitation on 1° × 1° grid over two
time periods: (top) 1998–2007 and (bottom) 1948–1997. R denotes the spatial correlation of corresponding EOFs.
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EOFs of the three datasets explain very similar amounts of
fractional variance. The leading EOFs are highly dominant,
with the first 15 explaining about 90% of the total variance
(Figure 1, right). This result implies that the timeseries of
15 EOFs retain the major part of the information (variance)
conveyed by the timeseries of the precipitation field.
[18] The consistency of EOF patterns across different

spatial resolutions is revealed by comparing results from
datasets A and B, which span the same time period, but are
represented at, respectively, 1° × 1° and 0.25° × 0.25°
spatial resolutions. The first five EOFs of both datasets are
plotted in Figure 2a. It is evident that the corresponding
EOFs resemble each other very well. Furthermore, quanti-
tative analysis is used to substantiate the resemblance per-
ceived by eye. Pixel‐wise correlation is a rigorous measure

of similarity between two digital images. The correlations
between the corresponding EOFs are computed by a two‐
step procedure: 1) for the .25° × .25° EOFs, the arithmetic
mean of each 4 × 4 pixel group is calculated to form an
image of 1° × 1°; and 2) the pixel‐wise correlation is cal-
culated between this new image and the corresponding EOF
of dataset A. The leading EOFs at two resolutions are found
to exhibit very high correlation coefficients (Figure 2a).
Furthermore, the PC timeseries corresponding to the leading
EOFs are also highly correlated, where the coefficients are
higher than 0.98 for the first seven PCs and the average
coefficient of the 15 PCs is greater than 0.90. To demon-
strate the consistency of EOF spatial patterns over time,
leading EOFs from datasets A and E are compared. Both
datasets have the same 1 ° × 1° spatial resolution, but dif-
ferent time coverage. The resemblance of the corresponding
EOFs is manifested by Figure 2b and by the high pixel‐wise
correlation coefficients. These results indicate that there is no
detectable change in the spatial pattern of precipitation over
the period 1948–2008.
[19] Correlations of disaggregated (from dataset C) and

observed (dataset D) daily precipitation of 2008 on the 0.25°
grid are shown in Figure 3. Compared with the results of the
analysis using the SVD method by Widmann et al. [2003],
our analysis yield much higher correlation coefficients over
the entire region. For all the pixels, the correlation coeffi-
cient is 0.89, and the root mean square error (RMSE) is
1.6285 mm/day. Since the method conserves the total
amount of precipitation (step 6, above), the bias between the
disaggregated and observed values is exactly the difference
between the total volumes of datasets C and D, which is not
related to the skill of the method.
[20] The fractional variance that is not explained by the

first 15 EOFs can be treated as a measure of uncertainty. Let
B* denote the precipitation timeseries retrieved by the first
15 EOFs and PCs of dataset B, according to equation (3).
Then U = B − B*, represents the uncertainty field. Since
there are 6561 pixels over the region, U contains 6561
timeseries. Next, we calculate the standard deviation (SD) of

Figure 3. Correlations of the .25° × .25° daily precipitation
disaggregated by the EOF method and the real‐time analysis
for the year 2008.

Figure 4. Maps of standard‐deviation measures of (a) the uncertainty of the disaggregated precipitation values estimated
from historical data, and (b) the residuals of the disaggregated result against the observation for 2008.
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each individual timeseries to quantify the uncertainty at the
corresponding grid point, yielding a SD map over the region
(Figure 4a). The SD map provides uncertainty estimation for
the disaggregated precipitation values at each grid point. To
validate this estimation, the SD map of the residual R in
2008, which is defined as R = value disaggregated from
dataset C ‐ observed precipitation (dataset D), is also con-
structed in the same way (Figure 4b). The two SD maps
agree very well with each other. The mean SD values are
1.30 mm/day for U and 1.27 mm/day for R. The spatial
correlation coefficient of the two maps is 0.88, and the RMS
difference is 0.22 mm/day.

4. Discussion

[21] In this study, spatial patterns of precipitation resolved
at fine temporal and spatial resolutions over the western
U.S. are retrieved through EOF analysis. It is demonstrated
that the variance of the entire high‐resolution precipitation
field can be approximated by a limited number of leading
EOFs. Even though it may not be easy to explicitly link the
EOFs with individual physical processes, these mathemati-
cal structures can still be productively used for practical
applications.
[22] The persistency of the EOF patterns over the past half

century suggests that there has not been significant change
in the spatial pattern of daily precipitation over the region.
Along with the consistency of leading EOFs across different
spatial resolutions, the persistent spatial pattern allows
maximum use of available observations for disaggregating
model simulations of precipitation. Since models maintain
precipitation fields’ spatial and temporal coherence, our
approach does not need to include procedures for restoring
coherence, such as the Schaake Shuffle [Clark et al., 2004],
that are required by many statistical downscaling methods.
The approach also separates the dominant signals from the
trivial, allowing these two components with distinct char-
acteristics to be treated separately and properly.
[23] On the other hand, the EOF disaggregation method

also has its limitations. In order to take advantage of the
consistency of spatial patterns, the method requires long‐
term historical precipitation data. The historical data should
include the precipitation observations at both the resolution
of the model and of the target, such as Table 1 datasets A
and B. In addition, the method assumes that a model‐
generated precipitation field is reasonably accurate, so that
the coarse‐grid, simulated precipitation can be confidently
redistributed on a finer mesh. In practice, a validation and
bias‐correction of model‐generated precipitation is required
before carrying out the steps of the procedure outlined in
Section 2.
[24] In fact, validation and bias‐correction are other

potential applications of the EOF patterns revealed in this
study, as demonstrated by Nieto and Rodríguez‐Puebla
[2006] and Biau et al. [1999]. Our current focus is on
developing new metrics and procedures to evaluate climate
models based on their ability to simulate the consistent
precipitation patterns. It is expected the results will guide us
in selecting proper models to generate reliable ensemble
projection of precipitation in the region. The uncertainties
associated with this ensemble projection will also be quan-
titatively delineated.

[25] Acknowledgments. We are very grateful to two anonymous
reviewers for their valuable and constructive comments. This research was
supported by UCOP program of University of California (grant 09‐LR‐09‐
116849‐SORS), CPPA program of NOAA (grants NA08OAR4310876 and
NA05OAR4310062), and ROSES program of NASA (grant NNX09AO67G).
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