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Research Article

Fine-Scale Mapping of the 4q24 Locus Identifies
Two Independent Loci Associated with Breast
Cancer Risk
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Abstract

Background: A recent association study identified a common
variant (rs9790517) at 4q24 to be associated with breast cancer
risk. Independent association signals and potential functional
variants in this locus have not been explored.

Methods: We conducted a fine-mapping analysis in 55,540
breast cancer cases and 51,168 controls from the Breast Cancer
Association Consortium.

Results: Conditional analyses identified two independent
association signals among women of European ancestry, repre-
sented by rs9790517 [conditional P ¼ 2.51 � 10�4; OR, 1.04;
95% confidence interval (CI), 1.02–1.07] and rs77928427 (P ¼
1.86 � 10�4; OR, 1.04; 95% CI, 1.02–1.07). Functional anno-
tation using data from the Encyclopedia of DNA Elements
(ENCODE) project revealed two putative functional variants,
rs62331150 and rs73838678 in linkage disequilibrium (LD)

with rs9790517 (r2 � 0.90) residing in the active promoter or
enhancer, respectively, of the nearest gene, TET2. Both variants
are located in DNase I hypersensitivity and transcription fac-
tor–binding sites. Using data from both The Cancer Genome
Atlas (TCGA) and Molecular Taxonomy of Breast Cancer Inter-
national Consortium (METABRIC), we showed that
rs62331150 was associated with level of expression of TET2
in breast normal and tumor tissue.

Conclusion:Our study identified two independent association
signals at 4q24 in relation to breast cancer risk and suggested that
observed association in this locus may be mediated through the
regulation of TET2.

Impact: Fine-mapping study with large sample size warranted
for identification of independent loci for breast cancer risk. Cancer
Epidemiol Biomarkers Prev; 24(11); 1680–91. �2015 AACR.
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Introduction
A common genetic variant at 4q24, rs9790517, was recently

identified to be associated with breast cancer risk, through a
combined analysis of genome-wide association studies
(GWAS) together with data from a large association study using
a custom array, iCOGS (1, 2). This risk variant, termed subse-
quently as the index SNP in this article, is located in intron 11
of TET2, a chromatin-remodeling gene that functions as a
tumor suppressor. TET2 has been found to be frequently
somatically mutated in multiple cancers, including breast can-
cer (3–9). However, the index SNP is located in a region with
no evidence of functional significance. The initial GWAS
reported only the most strongly statistically associated SNP in
this region, although many other SNPs at the same locus also
may be associated with breast cancer risk, one or more of which
are causally related to breast cancer risk. Comprehensive fine-
scale mapping may help to identify the variants most likely to
be functionally related to risk and may enable the identification
of additional independent signals.

Dense fine-scale mapping of GWAS-identified loci has suc-
cessfully identified novel putative causative variants for several
common diseases, including breast cancer (10–17). For exam-
ple, previous fine-mapping studies of 5p15, 20q16, 2q35,

5q11, and 11q13 have identified multiple independent risk
signals as well as potential causative variants in each region,
using data from the Breast Cancer Association Consortium
(BCAC; refs. 12, 13, 16, 18–20). The index SNP (rs9790517)
at 4q24 is close to another SNP, rs7679673 (r2 ¼ 0.42, 23 kb
apart), which has been associated with prostate cancer (21). In
this fine-mapping project, a dense set of SNPs in this 4q24
region was genotyped in gDNA samples obtained from 106,708
participants included in the BCAC. We then analyzed data from
3,912 genotyped and imputed SNPs in this region in an attempt
identify potential functional variants that may explain the
observed association of genetic variants in this locus with breast
cancer risk.

Materials and Methods
Study populations

The study included 55,540 breast cancer cases and 51,168
controls from 50 studies participating in the BCAC. Details of
the studies, sample selection, and genotypes are described else-
where (1). The dataset included 39 studies from European-ances-
try populations (48,155 cases and 43,612 controls), nine from
Asianpopulations (6,269 cases and6,624 controls), and two from
populations of African ancestry (1,116 cases and 932 controls).
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Genotyping of 4q24
A dense set of SNPs at 4q24 was selected for genotyping on

iCOGS based on evidence of a prostate cancer–associated SNP,
rs7679673 (17), as at the time of the assay design this region had
not yet been linked to breast cancer risk. An interval of 596 kb
(positions in chr4, 105932103–106528262 from hg19) was
identified on the basis of all SNPs with r2 > 0.1 with the SNP
rs7679673 based onHapMap 2CEU (22). All SNPs in the interval
were then identified from the 1000 Genomes Project CEU (April
2010; ref. 23), together with HapMap 3, and we selected SNPs for
genotyping which had a minor allelic frequency (MAF) > 2% in
Europeans and an Illumina Design score > 0.8. From this set, all
SNPs with r2 > 0.1 with SNP rs7679673 were selected, together
with an additional set of SNPs to tag the remaining SNPs at r2 >
0.9. In total, 490 SNPs were successfully genotyped and passed
quality control. We imputed genotypes for the remaining SNPs
using the program IMPUTE2 (24) and the March 2012 release of
the 1000 Genomes Project as a reference. Those imputed SNPs
with common SNPs (MAF > 0.02) and imputation r2 > 0.3 were
included in the current analysis.

Statistical analyses
For each genotyped and imputed SNP, we evaluated its asso-

ciation with breast cancer risk using a logistic regression model
with adjustment for age, study site, and principal components to
correct for potential population stratification (the first six princi-
pal components, plus one additional principal component for the
LMBC in analyses of the European ancestry data, or the first two
principal components in the analyses of the Asian and African
ancestry data), as previously described (1). ORs and 95% confi-
dence intervals (CI) were estimated under a log-additive model.

We conducted separate analyses within European, Asian, and
African American populations.

To identify independent association signals, we performed
stepwise forward logistic regression analyses for the associated
SNPs with an MAF > 0.02 showing association at P < 1 � 10�4

in the single marker SNP analysis. We used the Step function
implemented in the R package (25) with the penalty K ¼ 10 for
inclusion of additional SNPs in the model. Because no SNPs
showed P < 1 � 10�4 in the Asian or African populations, this
analysis was performed only in the European population. The
model was adjusted for the same factors as in the single SNP
analysis. To define potentially causative variants, we computed
a likelihood ratio for each SNP relative to the best associated
SNP in each signal and excluded SNPs with a likelihood ratio <
1/100. Haplotype-specific ORs were estimated using haplo.stats
in R, including age, study site, and the first six principal
components, plus one additional principal component for the
LMBC study.

Functional annotation
We annotated 29 candidate causative variants for potential

functional significance using chromHMM annotation across nine
ENCODE (26) cell lines: HMEC, GM12878, H1-hESC, K562,
HepG2, HSMM, HUVEC, NHEK, and NHLF (27). For each var-
iant, we investigated whether it is mapped to functional regions
(i.e., promoter and enhancer) through chromatin states annota-
tion from the UCSC Genome Browser (28). The epigenetic land-
scape of histone markers H3K4Me1, H3K4Me3, and H3K27Ac
was also examined through layered histone tracks on seven
ENCODE cell lines includingGM12878,H1-hESC, K562,HSMM,
HUVEC, NHEK, and NHLF from the UCSC Genome Browser.

University of Eastern Finland, Kuopio, Finland; Imaging Center, Department of
Clinical Pathology, Kuopio University Hospital, Kuopio, Finland. 63Vesalius
Research Center, Leuven, Belgium. 64Laboratory for Translational Genetics,
Department of Oncology, University of Leuven, Leuven, Belgium. 65University
of Hawaii Cancer Center, Honolulu, Hawaii. 66Department of Molecular Medicine
and Surgery, Karolinska Institutet, Stockholm, Sweden. 67Division of Health
Sciences, Warwick Medical School, Warwick University, Coventry, United King-
dom. 68Unit of Medical Genetics, Department of Preventive and Predictive
Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy.
69Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Swe-
den. 70National Center for TumorDiseases, University of Heidelberg, Heidelberg,
Germany. 71Department of Obstetrics andGynecology, University of Heidelberg,
Heidelberg, Germany. 72Department of Preventive Medicine, Kyushu University
Faculty of Medical Sciences, Fukuoka, Japan. 73Anatomical Pathology, The
Alfred Hospital, Melbourne, Victoria, Australia. 74Division of Gynaecology and
Obstetrics, Technische Universit€at M€unchen, Munich, Germany. 75Institute of
Population Health, University of Manchester, Manchester, United Kingdom.
76Beckman Research Institute of City of Hope, Duarte, California. 77Department
of Genetics, Institute for Cancer Research, Oslo University Hospital, Radium-
hospitalet, Ullernchausseen, Oslo, Norway. 78K.G. Jebsen Center for Breast
Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University
of Oslo, Kirkeveien, Oslo, Norway. 79Department of Health Sciences Research,
Mayo Clinic, Rochester, Minnesota. 80Division of Breast Cancer Research, Insti-
tute of Cancer Research, London, United Kingdom; Cancer Research, Institute of
Cancer Research, London, United Kingdom. 81IFOM, the FIRC Institute of Molec-
ular Oncology, Milan, Italy. 82Department of Pathology, National University
Health System, Singapore. 83National Cancer Institute, Bangkok, Thailand.
84Research Oncology, Guy's Hospital, King's College London, London, United
Kingdom. 85Division of Molecular Gyneco-Oncology, Department of Gynaecol-
ogy andObstetrics, University Hospital of Cologne, Cologne, Germany. 86Center
for Integrated Oncology, University Hospital of Cologne, Cologne, Germany.
87Center for Molecular Medicine, University Hospital of Cologne, Cologne,

Germany. 88Center of Familial Breast and Ovarian Cancer, University Hospital
of Cologne, Cologne, Germany. 89School of Public Health, China Medical Uni-
versity, Taichung, Taiwan. 90Taiwan Biobank, Institute of Biomedical Sciences,
Academia Sinica, Taipei, Taiwan. 91Department of Pathology, The University of
Melbourne, Melbourne, Victoria, Australia. 92Division of Genetics and Epidemi-
ology and Division of Breast Cancer Research, Institute of Cancer Research,
London, United Kingdom. 93Cancer Research Initiatives Foundation, Subang
Jaya, Selangor, Malaysia. 94Breast Cancer Research Unit, Cancer Research
Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia. 95Depart-
ment of Molecular Virology, Immunology, andMedical Genetics, Comprehensive
Cancer Center, The Ohio State University, Columbus, Ohio. 96Department of
Surgical Oncology, Leiden University Medical Center, Leiden, The Netherlands.
97Wellcome Trust Centre for Human Genetics and Oxford Biomedical Research
Centre, University of Oxford, Oxford, United Kingdom. 98Department of Clinical
Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
99Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical
Chemistry, University of Oulu, Oulu, Finland. 100Laboratory of Cancer Genetics
and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland.
101Servicio de Oncología M�edica, Hospital Universitario La Paz, Madrid, Spain.
102Shanghai Municipal Center for Disease Control and Prevention, Shanghai, PR
China.

Note: Supplementary data for this article are available at Cancer Epidemiology,
Biomarkers & Prevention Online (http://cebp.aacrjournals.org/).

Corresponding Author: Wei Zheng, Vanderbilt Epidemiology Center, Vander-
bilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville,
TN 37203. Phone: 615-936-0682; Fax: 615-936-8241; E-mail:
wei.zheng@vanderbilt.edu

doi: 10.1158/1055-9965.EPI-15-0363

�2015 American Association for Cancer Research.

Guo et al.

Cancer Epidemiol Biomarkers Prev; 24(11) November 2015 Cancer Epidemiology, Biomarkers & Prevention1682

on December 9, 2020. © 2015 American Association for Cancer Research. cebp.aacrjournals.org Downloaded from 

Published OnlineFirst September 9, 2015; DOI: 10.1158/1055-9965.EPI-15-0363 

http://cebp.aacrjournals.org/


DNase I hypersensitive and TF ChIP-Seq datasets were investigat-
ed in all available ENCODE cell lines, including breast normal cell
line, human mammary epithelial cell (HMEC), and breast cancer
cell lines, T-47D and MCF-7. Two publicly available tools, Reg-
ulomeDB (29) and HaploReg v2 (30), were also used to evaluate
those likely functional variants (9, 31). In addition, we also
investigated whether each variant is overlapped with regulatory
elements of enhancers and transcription start sites (TSS) from two
previous studies includingHnisz and colleagues (32) and Anders-
son and colleagues (FANTOM5 project; ref. 33). Chromatin
Interaction Analysis by Paired End Tag (ChIA-PET; mediated by
RNA polymerase 2) data from MCF7 cell were downloaded from
GEO (GSE39495), and the ggbio R package was used to represent
the interactions between cell enhancers (containing a strongly
associated variant) and a predicted gene promoter.

The Cancer Genome Atlas data resource and eQTL analysis
We downloaded RNA-Seq V2 data (level 3) of 1,006 breast

cancer tumor tissues from The Cancer Genome Atlas (TCGA) data
portal (34). DNA methylation data measured by the Illumina
HumanMethylation450 BeadChip were also retrieved from
TCGA level 3 data. We also downloaded level 3 SNP data geno-
typed using the Affymetrix SNP 6.0 array. Copy number alteration
(CNA) data for genes PPA2, ARHGEF38, INTS12, GSTCD,

and TET2 at 4q24 for TCGA samples were collected from the
CbioPortal (35). We analyzed a total of 645 breast tumor tissues
in Caucasian population including matched copy number vari-
ation, genotype, and expression data.

We performed eQTL analysis in TCGA tumor tissues described
above. We applied several steps to reduce the batch or other
technical effects on gene expressions following the approach
described by Pickrell and colleagues (36). First, the RNA-Seq by
eexpectation–maximization value of each gene was log2-trans-
formed and those geneswith amedian expression level of 0 across
tissues were removed. We then performed the principal compo-
nent correction on gene expression to remove potential batch
effects. A linear regression of expression values on the first five
principal components was constructed and the residuals were
used to replace the expression values of each gene among tissues.
Tomake the data better conform to the linear model for the eQTL
analysis, we further transformed the gene expression levels to fit
quantiles of N(0,1) distribution on the basis of the ranks of the
expression values to their respective quantiles. Residual linear
regressionmodels were constructed to detect eQTLs, while adjust-
ing for methylation and CNA, according to the approach used by
Li and colleagues (37).

We also extracted matched genotypes and gene expression
levels as described above in a total of 135 tumor-adjacent normal

Figure 1.
Regional plot of genetic variants
associated with breast cancer risk at
4q24. The index SNP rs9790517 is
plotted in diamond purple. The LD (r2)
for the index SNP with each SNP was
computed on the basis of European
ancestry subjects included in the 1000
Genome Mar 2012 EUR. P values were
from the single-marker analysis based
on logistic regression models after
adjusted for age, study sites, and the
first six principal components plus one
additional principal component for the
LMBC in analyses of data from
European descendants. The plot was
generated using LocusZoom (50).
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breast tissues in European ancestry individuals from the METAB-
RIC project (38). Gene expression profiling was generated on
the Illumina HT12 v3 microarray platform and probe-level mea-
surements were used. Genotyping was performed on the Affyme-
trix SNP 6.0 with genotypes being imputed using the 1000
Genomes March 2012 CEU reference panel. Matrix eQTL was
performed for evaluating the association between genotypes and
gene expression levels (39).

Results
Association analyses

We evaluated associations for 490 genotyped and 3,422 well-
imputed SNPs at 4q24 spanning 596 kb (positions in chr4:
105932103–106528262 from hg19) in 48,155 cases and
43,612 controls of European descent. A total of 29 variants
were significantly associated with breast cancer risk at P < 1 �
10�4 (Fig. 1; Supplementary Table S1). Of these, 15 variants were
directly genotyped and 14 were imputed with r2 > 0.9. All risk-
associated variants had MAF > 0.05. The index SNP, rs9790517,
showed strong evidence of a significant association with breast
cancer risk [OR, 1.05; 95% confidence interval (CI), 1.03–1.08;
P ¼ 5.44 � 10�6], which was consistent with the report from the
original study (1). The strongest association was, however, found
for an imputed SNP rs73838678 (OR, 1.12; 95% CI, 1.07–1.17;
P ¼ 1.29 � 10�6).

To identify potential independent association signals, we
carried out forward stepwise logistic regression analysis on

SNPs associated with breast cancer at P < 1 � 10�4. Two
independent association signals were revealed: index SNP
rs9790517 (conditional P ¼ 2.51 � 10�4, after adjustment for
the SNP in the second signal) and SNP rs77928427 (condi-
tional P ¼ 1.86 � 10�4 after adjusting for the index
SNP; Table 1). The index SNP rs9790517 in signal 1 was in
weak linkage disequilibrium (LD) with the SNP rs77928427 in
the second risk signal (r2 ¼ 0.04). These two SNPs are more
than 300 kb apart from each other.

We performed similar analyses, restricting to cases with estro-
gen receptor–positive (ERþ) cancer and identified 17 variants
associated with ERþ breast cancer risk at P < 1 � 10�4 in women
of European ancestry.NoSNPwas found tobe associatedwith ER-
negative (ER�) disease at P < 1 � 10�4. However, the per-allele
ORs for the two SNPs independently associated with overall
breast cancer risk were similar for ER� and ERþ disease (Table
1; all tests of heterogeneity by ER status: P > 0.10). Conditional
analysis yielded similar associations for ERþbreast cancer to those
for overall breast cancer for the two independently associated
SNPs.

We performed haplotype analysis on the basis of the top SNPs
from the two signals: rs9790517 and rs77928427 in European
descendants. Three major haplotypes were observed. Compared
with the most common haplotype carrying the common allele at
both SNPs, haplotype TA carrying two risk alleles showed the
strongest association with breast cancer risk (OR, 1.11; 95% CI,
1.07–1.15; P ¼ 2.31 � 10�8; Table 2). The frequency of this
haplotype was 9.4%. Haplotypes CA and TC, carrying the risk
allele in either signal 1 or 2, alsowere associatedwith elevated risk
of breast cancer, although the association was only marginally
significant. Thus, the haplotype analyses were consistent with the
hypothesis that there are two independently associated variants in
the region.

We compared the average age among those cases carrying risk
and non-risk alleles of rs9790517. Interestingly, we observed that
the cases carrying risk alleles were slightly younger than those
carrying non-risk alleles (average age: 57.54, 57.62, and 57.64,
respectively, for patients carrying alleles TT, TC, and CC of
rs9790517; P < 2 � 10�16). No such pattern was observed for
rs77928427.

Table 1. Identification of two independent association signals for overall breast cancer risk among women of European ancestry

Single marker analysis Conditional analysis

Signal SNPs Position (hg 19) Allelesb RAF LDc (r2) OR (95% CI)d Ptrend
d OR (95% CI)e Ptrend

e

All cases (48,155 cases and 43,612 controls)
1f rs9790517a 106,084,778 T/C 0.23 — 1.05 (1.03–1.08) 5.44 � 10�6 1.04 (1.02–1.07) 2.51 � 10�4

2g rs77928427 106,356,761 A/C 0.24 0.04 1.05 (1.03-1.08) 4.07 � 10�6 1.04 (1.02–1.07) 1.86 � 10�4

ERþ (28,038 cases and 43,612 controls)
1 rs9790517a 106,084,778 T/C 0.23 — 1.06 (1.03–1.09) 1.20 � 10�5 1.05 (1.02–1.08) 2.49 � 10�4

2 rs77928427 106,356,761 A/C 0.24 0.04 1.05 (1.02–1.08) 1.40�10�4 1.04 (1.01–1.07) 3.07 � 10�3

ER� (7,786 cases and 43,612 controls)
1 rs9790517a 106,084,778 T/C 0.22 — 1.04 (0.99–1.08) 0.16 1.02 (0.98–1.07) 0.3396
2 rs77928427 106,356,761 A/C 0.24 0.04 1.05 (1.01–1.09) 0.03 1.04 (1.00–1.09) 0.0508

Abbreviation: RAF, risk allele frequency.
aIndex SNP.
bRisk/reference allele; risk alleles are shown in bold.
cr2 for LD with the index SNP rs9790517.
dAdjusted for age, study, and the first six and an additional PC for LMBC study.
eIncluded both top SNPs and adjusted for other top SNPs, age, study sites, and the first six and an additional PC for LMBC study.
fA total of 23 SNPs cannot be excluded using LR < 1/100 as candidate causal variants (see Supplementary Table S1).
gA total of 4 SNPs cannot be excluded using LR < 1/100 as candidate causal variants (see Supplementary Table S1)

Table 2. Haplotype analyses of the lead SNPs in two independent signals in
relation to breast cancer risk among women of European ancestry

Signal
rs9790517a rs77928427 %b OR (95% CI)c Ptrend

c

Reference C C 62.1 Reference (1.00)
1 C A 15.1 1.03 (1.00–1.06) 0.06
2 T C 13.4 1.03 (1.00–1.06) 0.09
3 T A 9.4 1.11 (1.07–1.15) 2.31 � 10�8

aIndex SNP.
bHaplotype frequency.
cAdjusted for age, study, and the first six PCs and an additional PC for LMBC
study.
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We carried out association analysis for all SNPs with
breast cancer in subjects of Asian and African descent. None
of the SNPs identified in women of European ancestry as
associated at P < 10�4 showed a significant association in
either Asians or African women at P < 0.05 (Table 3). However,
the 95% CI for the OR estimates in Asians and Africans
included the point estimate in Europeans for both of the two
top independent SNPs. We found one SNP associated with
breast cancer risk in Asians and three in Africans, at P < 0.01
(strongest signal rs1116764: OR, 1.10; 95% CI, 1.04–1.16; P ¼
4.21 � 10�4), none of these SNPs were in LD with the two
independent association signals identified in European wom-
en (Table 3).

Functional annotation
We used a likelihood ratio > 1:100 relative to the best

associated SNP in each signal to select candidate variants for
functional annotation to identify potentially causative variants
in this region (Supplementary Table S1). In total, 29 SNPs were
identified including 24 for signal 1 and 5 for signal 2. Of these,
17 SNPs in signal 1 were strongly correlated with the original
index SNP rs9790517, and the remainder was more weakly
correlated. All SNPs were evaluated using DNase-Seq and ChIP-
Seq data from the ENCODE project. The most promising
evidence for functionality was found for SNPs rs62331150 and
rs73838678, both in LD with rs9790517 (r2 ¼ 0.98 and r2 ¼
0.09, respectively) in signal 1. The annotation from chromatin
states (27) revealed that rs62331150 resides an active promoter
region, and rs73838678 in a strong enhancer region, on several
ENCODE cell lines including HMEC but not for other SNPs in
either signal 1 or 2 (Fig. 2A). The active promoter-associated
histone marks (H3K4Me3 and H3K27Ac) and enhancer-asso-
ciated histone marker H3K27Ac were enriched in the intervals
containing rs62331150 and rs73838678, respectively, in sev-
eral ENCODE cells, and both SNPs were also found to be
located in or near a DNase I hypersensitive site (DHS; Fig.
2A and B). In addition, both variants were found to overlap
with predicted enhancer regions of TET2 in multiple cells
including HMEC as reported in a recent study (32). None of
the other SNPs in signal 1, and none of the 5 SNPs in signal 2
fell into a strong annotated promoter or enhancer region in
those cells.

To identify putative gene targets, we examined the anno-
tation of TSS and TSS-associated enhancers using Cap Anal-

ysis of Gene Expression (CAGE) from the FANTOM5 project
(23). We found that rs62331150 and rs73838678 reside in
regulatory elements of enhancers associated with TSS and TSS
of TET2 in multiple cells (Fig. 2A). We also examined
potential functional chromatin interactions between distal
and proximal regulatory transcription factor (TF)-binding
sites and the promoters at the risk regions using ChIA-PET
data. ChIA-PET data for Pol2 in MCF-7 breast tumor–derived
cells showed multiple chromosomal interactions across the
entire region, but these interactions were particularly dense
in the vicinity of the TET2 promoter region, encompassing
the strongest candidate causal variant rs62331150 and
rs73838678 (Fig. 2A).

A search of RegulomeDB indicated that rs62331150 and
rs73838678 were annotated to lie in the breast cancer related
TF SP1 (specificity protein 1) and PR (progesterone receptor;
refs. 40, 41) predicted binding motifs, respectively (Fig. 2B).
We observed that the G nucleotide was more frequently found
in the SP1 motif than the T nucleotide, indicating that the SP1
may preferentially bind to the reference G allele (Fig. 2B). For
variant rs73838678, no significant allelic frequency difference
in the PR motif was observed. Using ChIP-Seq data from a
total of 161 TFs from the ENCODE project (ChIP-Seq V3), we
found that both variants are located in multiple TF-binding
sites (Fig. 2B). As an example, ChIP-Seq binding peaks of
breast cancer–related TFs, EGR1 and NIFC, harbor the variant
rs62331150 and rs73838678, respectively (42, 43). In partic-
ular, we observed that P300, marking the active enhancer, was
found to bind close to both variants in multiple ENCODE cell
lines, suggesting that the variant in the region may lead to
TET2 transcriptional activation.

Gene expression analyses
We used both TCGA and Molecular Taxonomy of Breast

Cancer International Consortium (METABRIC) data to exam-
ine the association of the putative functional SNP rs62331150
and rs73838678 with expression of TET2 and several other
neighboring genes, including PPA2, ARHGEF38, INTS12, and
GSTCD, in breast cancer tissues. No significant correlations
with any genes were observed for variant rs73838678. Variant
rs62331150 was weakly correlated with TET2 expression in
both datasets (P ¼ 0.039 and P ¼ 0.025, respectively, for
TCGA and METABRIC), the reference allele G being associated
with increased expression relative to the risk allele T (Fig. 3).

Table 3. Association of leadSNPs identified inwomenof European andnon-European descentwith breast cancer risk amongwomenofAsian (6,269 cases and6,624
controls) and African ancestry (1,116 cases and 932 controls)

Top SNPs Allelesb
Single marker analysis (Asian) Single marker analysis (African)

RAF LD (r2)c OR (95% CI)d Ptrend
d RAF LD (r2)c OR (95% CI)d Ptrend

d

Identified in women of European descent
Signal 1 rs9790517a T/C 0.60 — 1.00 (0.95–1.06) 0.93 0.06 — 1.21 (0.88–1.55) 0.28
Signal 2 rs77928427 A/C 0.06 0.01 1.02 (0.91–1.12) 0.50 0.16 0 1.03 (0.85–1.22) 0.86

Identified in women of non-European descent
rs1116764 G/A 0.66 0.13 1.10 (1.04–1.16) 4.21 � 10�4 0.89 0 1.02 (0.81–1.23) 0.98
rs79219151 C/T NA 0.95 0 1.63 (1.13–2.13) 7.44 � 10–3

rs112095278 C/T NA 0.95 0 1.65 (1.16–2.14) 4.13 � 10�3

rs144956461 A/T NA 0.93 0 1.56 (1.12–2.01) 6.73 � 10�3

Abbreviation: RAF, risk allele frequency.
aIndex SNP
bRisk/reference allele; risk alleles are shown in bold.
cr2 for LD with the index SNP rs9790517 in Asians and Africans, respectively.
dAdjusted for age, study, and the first six PC and an additional PC for LMBC study.
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The result was consistent with the observation from our
functional annotation that SP1 may preferentially bind to
the reference G allele, leading to a significant increase in TET2
transcription activation. No correlation between rs62331150
and the expression of any other gene in the region was found
in either dataset. Overall, our findings supported a hypothesis

that TET2 is the target gene for the signal 1 association and
that the association with breast cancer risk may be mediated
through regulation of TET2 gene expression. The result is also
in line with previous findings that TET2 functions as a tumor
suppressor and its high expression level may reduce breast
cancer risk (44, 45).

Figure 2.
Functional annotation of SNPs
association with breast cancer risk at
4q24. A, epigenetic landscape at 4q24
risk locus for breast cancer. From top
to bottom, RefSeq genes (TET2 and
PPA2), layered H3K4Me1, H3K4Me3,
and H3K27Ac histone modifications,
DNase clusters, annotation using
chromatin states on the ENCODE cell
lines, and H3K27Ac histone
modification in MCF-7, predicted
enhancers reported in the Hnisz and
colleagues study, regulatory elements
of enhancers associated with TSS and
TSSs from the FANTOM5 project and
ChIA–PET interactions in MCF-7 cell
(mediated by RNA polymerase 2)
between enhancers and TET2
promoter are shown. The signals of
different layered histone
modifications from the same ENCODE
cell line are shown in the same color
(detailed color scheme for each
ENCODE cell line described in the
UCSC genome browser). The red and
orange colors in chromatin states refer
to active promoter and strong
enhancer regions, respectively (the
detailed color scheme of the
chromatin states described in the
previous study; ref. 27). For ChIA–PET
track, black lines represented
interactions with the promoter region
(�1,500/þ500) of TET2, and gray
lines represent chromatin interactions
that do not involve the TET2 promoter
region. Purple and green lines
represent interactionswithin�500 bp
of rs73838678 and rs62331150
variants, respectively. B, epigenetic
signals of two potential functional
variants rs73838678 and rs62331150.
From top to bottom, lanes showing
that the variant mapped to TF-
predicted binding motifs, TF ChIP-Seq
binding peaks, and DHS. The
corresponding location of the variant
is indicated by dashed line. C, LD plot
for breast cancer–risk associated SNPs
at 4q24. In the top lane, two SNPs
representing independent association
signals are indicated by the black
arrows. The index SNP is indicated by
the red arrow. In the bottom lane, two
LDSNPblockswere shownbased on r2

values, which were computed on the
basis of the genotype data from the
BCAC.
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Discussion
In this study, we identified two independent association

signals at 4q24 in women of European ancestry. Statistical
analyses reduced the set of likely causative variants to 29. Using
functional genomic data, we provided strong evidence for two
variants as functional variants. Our study suggests that the
breast cancer risk may be mediated through their regulation
of TET2 gene expression.

In our initial single marker analysis, we observed that the
majority of variants, including the index SNP, were located in or
near theTET2 gene region. Through eQTL analysis based onTCGA
data, we found thatmultiple SNPs in signal 1were correlatedwith
TET2 expression, which was expected given their strong LD with
eachothers.Of those SNPs, rs62331150 resides in the promoter of
TET2. Although eQTL analysis is helpful to identify potential
target genes, it is difficult to use eQTL results to pinpoint the causal
variant particularly when multiple SNPs are in strong LD. In
addition to residing in the promoter region of the TERT2, the
variant rs62331150 was also found to be located in the binding
sites of multiple TFs including the breast cancer–related TF EGR1,
potentially affecting the binding affinities of specific TFs. Inter-
estingly, the putative functional SNP rs62331150 is close to SNP
rs7679673 that has been associatedwith prostate cancer risk (21),
indicating that TET2 genemay also be involved in prostate cancer
risk. In comparison to rs62331150, rs73838678 in signal 1 was
not found to have a significant association with TET2 and any
other nearby genes. One possible reason is that the statistical
power is low for rs73838678 due to its relative low allele fre-
quency (MAF, 0.049). We also could not exclude the other
possible target genes for rs73838678. Future studies using in vitro
and in vivo assays are warranted to verify this conclusion.

Cumulative evidence shows that TET2 has an important func-
tion in tumor suppression. This gene can alter the epigenetic status

of DNA base methylcytosine to 5-hydroxymethylcytosine and
therefore, have a genome-wide scale of influence on gene expres-
sion (46–48). Accordingly, TET2 gene dysregulation could cause
aberrant DNA methylations and consequently contribute to can-
cer development (3–6, 45, 49). Here, we reported TET2 as a
candidate susceptibility gene for both ERþ and ER� breast cancer
types. Although the associations for the top SNPs, rs9790517 and
rs77928427, with breast cancer risk in Asian- and African-ancestry
populations were not statistically significant, likely due to a small
sample size, the direction of the associations was mostly consis-
tent in all population, suggesting that the TET2 gene play a similar
role in the etiology of breast cancer in all three populations.

Although our fine-mapping analysis represents the most com-
prehensive analysis of variants at 4q24 thus far, many SNPs,
particularly rare variants, cannot be imputed. Deep sequencing
of this regionmay reveal additional risk variants for breast cancer.
For example, rs76682196, located 884 bp upstream of
rs62331150, was found to be potentially functional using the
ENCODE data. The variant is present in DHS and TF sites. In
particular, it lies in the ERa-predicted bindingmotif andChIP-Seq
peak in breast cancer cell line T-47D. However, this variant was
not included in the study due to its low frequency (MAF < 0.01) in
populations from all three ethnic groups.

In conclusion, this dense fine-mapping study identified two
independent association signals with breast cancer risk at 4q24,
increasing the estimated familial relative risk of breast cancer
explained by this locus from the original 0.07% to 0.15% among
women of European descent. Functional analyses revealed one
potentially functional variant, rs62331150. The risk allele is
associated with lower expression of TET2, consistent with previ-
ous findings that this gene acts as a tumor suppressor.
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