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Abstract
This hybrid of review and personal essay argues that models of visual construction are essential to extend spatial navigation
models to models that link episodic memory and imagination. The starting point is the TAM–WG model, combining the
Taxon Affordance Model and the World Graph model of spatial navigation. The key here is to reject approaches in which
memory is restricted to unanalyzed views from familiar places, and their later recall. Instead, we will seek mechanisms for
imagining truly novel scenes and episodes. We thus introduce a specific variant of schema theory and VISIONS, a cooperative
computation model of visual scene understanding in which a scene is represented by an assemblage of schema instances
with links to lower-level “patches” of relevant visual data. We sketch a new conceptual framework for future modeling,
Visual Integration of Diverse Multi-Modal Aspects, by extending VISIONS from static scenes to episodes combining agents,
actions and objects and assess its relevance to both navigation and episodic memory. We can then analyze imagination as a
constructive process that combines aspects of memories of prior episodes along with other schemas and adjusts them into a
coherent whole which, through expectations associated with diverse episodes and schemas, may yield the linkage of episodes
that constitutes a dream or a narrative. The result is IBSEN, a conceptual model of Imagination in Brain Systems for Episodes
and Navigation. The essay closes by analyzing other papers in this Special Issue to assess to what extent their results relate
to the research proposed here.

Keywords Affordances · Dorsal stream · Episodic memory · Cognitive map · Hippocampus · IBSENmodel of Imagination in
Brain Systems for Episodes and Navigation · Imagination · Navigation · Schema theory · Taxon Affordance Model · Ventral
stream · VISIONS model of visual scene understanding · World Graph model

1 Places versus episodes

This paper is based on a talk delivered at a workshop, “Latest
Advances in Complex Spatial Navigation in Animals, Com-
putational Models and Neuro-inspired Robots” (INSERM,
Lyon, September 28th, 2018), papers from which form the
core of this Special Issue. It is a review and personal essay,
rather than a research paper, offering a framework for extend-
ing the scope from spatial navigation to a unified theory of

Communicated by Jean-Marc Fellous.

This article is part of the special Issue entitled ‘Complex Spatial
Navigation in Animals, Computational Models and Neuro-inspired
Robots’.

B Michael A. Arbib
arbib@usc.edu
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the neuroscience of wayfinding in space and time, linking
spatial navigation to episodic memory and imagination.

There are two “facts” that “everyone” knows about the
hippocampus:

The first is that the hippocampus of a navigating rat con-
tains place cells that have “place fields” located in the space
within the current environment (O’Keefe and Dostrovsky,
1971). Activation of these place cells can depend on “in-
put data” (e.g., relative location of landmarks) or “dynamic
remapping” (updating on the basis of the animal’s move-
ment). I will argue that the hippocampus form only part of a
cognitive map.

The second is that surgery on a human, HM, that included
bilateral removal of hippocampus and adjacent tissue (Scov-
ille and Milner 1957) destroyed his ability to remember new
episodes, but left him with recall of pre-surgery episodes.
Such data (Squire 2009) suggest that episodes are units linked
in time (in some very general sense, and some more tightly
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than others1), that hippocampus is part of a system that
“packages” episodes for possible consolidation in cortex,
but that it is not necessary for working memory of current
episodes or for acquiring new skills (procedural memory).

The challenge, then, is to understand how the shared
capacity of rats and humans for recalling places as a basis
for navigation may relate to episodic memory in humans.

To proceed, I first need to distinguish two senses of place.
In the rat studies, place cells each have a place field located
round some arbitrary point in the arena in which the ani-
mal is being studied (and will, in general, differ from arena
to arena). In human experience, a place has some signifi-
cant characteristics—e.g., “near the sofa in the living room,”
rather than “2 m northwest of the door of the living room.” I
will occasionally use the terms episodic place and locomet-
ric place, respectively, to distinguish these two senses—but
in most cases I will simply use the term “place” and leave it
to the reader to understand which sense is employed.

Next, I suggest that memory of an episodic place with
some associated value (such as whether or not food can be
found there; cf. food caching in blue jays or squirrels) is
different from memory of an episode—located in space and
time, grounded in (but not restricted to) who did what and to
whom. For example, I don’t just remember where (the place)
I left my keys, I may remember a chain of episodes starting
when I got home last that may (but may not) include veridical
recall of stopping at a specific place to put down my keys.

I doubt that such processes are used by blue jays or
squirrels or rats in finding a significant drive-related place,
and yet it seems plausible to explore possible relationships
between episodic memory and the processes necessary for
their memory-based goal-driven behavior. For humans, we
may further ask how episodic memory may be extended to
brain mechanisms that support autobiographical memory. I
will sometimes have a vivid memory of an episode, but was
it “real,” or an episode from a dream or a movie, etc.? I can
usually decide the veridicality by determining whether or
not I can summon an autobiographical fragment in which
that episode is embedded.

Episodes can be in tight temporal sequence, or they can
be separated by hours or days or even more. For both places
and episodes, nesting of one level of detail in another seems
important. “In London” versus “Leicester Square” versus a
specific street corner. Similarly, “while I was at university,
around Christmas of my second year” could serve as a “con-
tainer” (higher-level reference episode) for episodes within
autobiographical memory. We need to assess the relation
between place and time. Though each can index the other,

1 The issue remains: For memory or prospection—how do we establish
before, near and after for episodes, and add somemeasure of “distance”
to these relationships, especially for events for which we would not
expect a direct associative link to have been stored?

place seems more fundamental since one can visit a place on
many occasions, but time is fleeting.

The paper explicitly rejects what I dub the VCE (video-
clips-with-extrapolation) model of episodic memory. In such
models, “recall” is limited to what has been viewed in an ear-
lier bout of navigation, and “imagination” consists solely of
extrapolation along a trajectory in a known environment. To
see why this is inadequate, imagine [sic] that you often walk
down a street and pass a high wall with a door in it. Trajec-
tory extrapolation can perhaps imagine a detour that brings
you up to the door, but it cannot explain the wonderful gar-
den your imagination conjures up for the other side. Buzsáki
and Moser (2013) and Byrne et al. (2007) are among those
who link a VCE account to the theta rhythm—I critique the
latter paper explicitly below, then later show how the new
conceptual model IBSEN (Imagination in Brain Systems for
Episodes and Navigation)2 presented in this paper offers a
very different view of episodic memory and imagination.

To close this section, here is a trivial example of imagi-
nation that I conducted while thinking about this paper. The
phrase “Therewas an oldwomanwho lived in a…” somehow
popped into mind. Since I was trying to imagine something
new, I consciously inhibited “shoe” as the next word. Perhaps
because I had just seen an episode of “The Crown” in which
the Queen rode in a coach lined with red velvet, this image,
coupled againwith the quest for novelty, yielded the final sen-
tence “There was an old woman who lived in a coach lined
with green velvet.” Here, I have used words to make explicit
this simple feat of imagination. Below, I will focus on visual,
rather than linguistic, construction. The point remains that
imagination goes far beyond what a VCE theory can explain.
In the section “Neuroscience linking episodic memory and
imagination,” I will briefly explore data that break away from
an emphasis on navigation and suggest that IBSEN provides
a step toward understanding such data.

With this, it is time to introduce the two pillars on which
IBSEN is built: the TAM–WG model of spatial navigation,
and the VISIONSmodel of visual scene understanding. Nei-
ther is the state of the art, but each clarifies concepts that
seldom enter analysis of the role of hippocampus in episodic
memory.

2 The acronym IBSENwas originally an acronym for “Integrated Brain
System for Exploration and Navigation” as the name of a model pro-
posed to complement new experiments by Jill and Stephan Leutgeb.
Rats were to be studied exploring a “doll house” in which two floors,
connected by a ramp, were somewhat similar: would the rats conserve
but modify a cognitive map of the first floor when initially exploring
the second floor? And, of course, the play A Doll House was written by
Henrik Ibsen. Alas, the proposal was not funded—despite or because
of the acronym.
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2 Amulti-level view of space: the TAM–WG
model, briefly revisited

2.1 Introducing cognitive maps

As the animalmoves in differentways, ormakes use of differ-
ent sensory cues in guiding its movement, its spatial behavior
exploits a variety of different representations in its brain.
Diverse “maps” include representations of oculomotor space,
representations that guide locomotion, representations that
guide reaching, and many more (Arbib 1997; Colby 1998).
The brain’s multiple maps gain their coherence not by their
subservience to one overall integrative map. But here, let’s
focus on the notion of a cognitive map. We first consider a
“map” in the sense of, e.g., a road map printed on paper:

A map M for a user U is a representation of a limited
“sample” of space S such that:

(1) U can find in M a representation M(A) of U’s current
location A

(2) U can find in M a representation M(B) of U’s desired
location B

(3) U can find in M a path PM(A, B) from M(A) to M(B)
(4) U can transform PM(A,B) into a path PS(A,B) from A

to B in S

Note that this definition depends as much on U’s capabili-
ties as it does onM’s properties, and themap is useless unless
(item 4) its paths can be turned into programs for directing
action.

In the case of a paper map, M—and thus M(A), M(B) and
PM(A,B)—are external to U. We speak of a cognitive map
when U and their attendant processes are all internal to the
animal or human’s brain. However, such maps—whether on
paper or in the brain—come in diverse forms. Here I focus on
the difference between subway maps and locometric maps.3

A subway map helps us navigate a city—its nodes repre-
sent stations; its colored edges tell us what lines connect one
station to the next—yet it has little metric structure. When
we descend from the train at a station we re-enter the world
of locomotion, so the subway map must be complemented
by a space that is “more metric” in nature—measuring the
world in terms of the actions (walking, swimming, driving,
etc., whereby we traverse it. I use the term locometric for this
way of measuring space: the animal measures the world in
terms of actions (e.g., how many steps taken) or perceived
measures of such actions (e.g., the visual effect of an action
such as the achievement of a goal). The notion of locometric

3 A Google map as used for driving directions is, perhaps, a cognitive
map for the computer (and its extension into a network that includes the
GPS satellite network) but not one for the human user—indeed, quite
to the contrary.

space is particularly relevant to the notion of path integra-
tion, the ability of a wandering animal to keep track of the
location of its home base relative to its current position, a
capability related to dynamic remapping of the hippocampal
map (Guazzelli et al. 2001).

We live in many “worlds.” In what follows, I use the
term World Graph (WG) for our knowledge of the signifi-
cant places (aka episodic places) in each world, and the links
between them.Wemay have aWG that represents our knowl-
edge of airports that have supported our global travels, but
after the plane lands, we might switch to a WG for driving
around our hometown, moving finally to a WG for walk-
ing around that very special world, our home. The WG for
driving around town might link important destinations with
key intersections for navigation, but this is distinct from the
charting of themeter bymeter traversal of the twists and turns
along a particular road, a locometric map. Similarly, we can
distinguish the WG for the overall layout of the house from
the locometric map that, for example, gets us safely from bed
to bathroom at night without turning on the light.

Hierarchy is crucial in linking these WGs to each other,
and not all need link directly to locometric maps. Getting
from one neighborhood to another is different from finding
a particular locometric place in that neighborhood. In fram-
ing our model (but not in the implemented version described
below—where we assume a WG and a corresponding loco-
metricmap have already been instantiated), we positmultiple
WGs, with in some cases nodes or small sub-networks being
able to trigger a switch to more local but also more detailed
WGs. We also note that at the most detailed level, there may
be more or less accuracy of locometric detail. Thus, in a
village, a person may know how to get to many different
destinations, but may be quite wrong about the orientation of
rooms or streets some distance away from each other.

Specifically, the WGmodel posits a two-level representa-
tion, with at any time a WG instantiated in prefrontal cortex
and a locometric map of (part of) the region covered by the
WG instantiated in hippocampus (HC). Why not postulate
that both WG and the locometric map are in HC? Consider
this quote from the abstract of Kjelstrup et al. (2008):

… we recorded neural activity at multiple longitudi-
nal levels of [HC] while rats ran back and forth on an
18-meter-long linear track. CA3 cells had well-defined
place fields at all levels. The scale of representation
increased almost linearly from < 1 m at the dorsal pole
to ~ 10 meters at the ventral pole. The results suggest
that the place-cellmap includes the entire hippocampus
and that environments are represented in the hippocam-
pus at a topographically graded but finite continuum of
scales.

This is evidence of locometric maps at different scales
for a lab rat whose “world” is restricted to a simple environ-
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ment in the laboratory. It offers no evidence that WGs are
encoded in HC. While some might argue that the locometric
map is encoded at the dorsal end of HC, whereas the cur-
rent WG is coded more toward the ventral end, they cannot
then (in humans, at least) presume that the same kind of rep-
resentation holds throughout its length. Another concern is
that the place fields in a lab rat may vary greatly as the rat
is moved from one arena to another—in widely separated
locales, a different “chart” is installed on the “hippocampal
chart table.”

Specifically,Wilson andMcNaughton (1993) used ensem-
ble recordings of rat hippocampal neurons to predict accu-
rately the animals’ movement through their environment. In
a novel space, the ensemble code was initially less robust
but improved rapidly with exploration. During this period,
the activity of many inhibitory cells was suppressed, which
suggests that new spatial information creates conditions in
the hippocampal circuitry that are conducive to the synaptic
modification presumed to be involved in learning. Crucially,
though, development of a new population code for a novel
environment did not substantially alter the code for a famil-
iar one, which suggests that the interference between the
two spatial representations was very small. Two charts, one
hippocampus. Where are the charts stored (from the loco-
metric maps to more and more abstract WGs) and how are
the relevant ones instantiated? A WG may expand its scope
indefinitely, so at some stage along the axis, if one accepted
the all-in-the-hippocampus view, we would have to transi-
tion to an abstract level that escapes scale—contrast a map
of the London Underground, an airline map of the world, and
a schematic of the solar system.

To pose the problem dramatically for the human brain,
consider the Maguire et al. (2006) study comparing Lon-
don taxi drivers with London bus drivers, who were matched
for driving experience and levels of stress, but differed in
that taxi drivers had mastered “the Knowledge” of all details
of London streets, whereas bus drivers follow a constrained
set of routes. Taxi drivers had greater gray matter volume
in mid-posterior hippocampus and less volume in anterior
hippocampus than bus drivers. Furthermore, years of navi-
gation experience correlated with hippocampal gray matter
volume only in taxi drivers, with right posterior gray matter
volume increasing and anterior volume decreasingwithmore
navigation experience. Maguire et al. conclude that spatial
knowledge, and not stress or driving, is associated with the
pattern of hippocampal gray matter volume in taxi drivers.
They then tested for the ability to acquire new visuo-spatial
information by using the Rey–Osterrieth complex figure
test—a neuropsychological assessment in which examinees
are asked to reproduce a complicated line drawing, first by
copying it freehand (recognition), and then drawing from
memory (recall)—and found bus drivers performed better
than taxi drivers. Maguire et al. speculate that the com-

plex spatial representationwhich facilitates expert navigation
might have come at a cost to new spatial memories and gray
matter volume in the anterior hippocampus (a very differ-
ent longitudinal shift from the change of scales offered by
Kjelstrup et al.). However, this may be misleading—per-
haps the issue is not reduced ability to form new spatial
memories but rather a reduced ability to form complex spa-
tial representations incompatible with the representational
system developed in the taxi driver’s brain to encode their
expert knowledge. For example, Tichomirov and Poznyan-
skaya (1966) found thatmaster chess players looked at boards
for less time than novices and remembered positions more
accurately, with the expert turning her gaze from one sig-
nificant feature of the board to another, while the novice
searched randomly. If the pieces are randomly arranged on
the board, so that the expert has no meaningful search strat-
egy, her performance on memorizing the board is much like
that of the novice. Here, the actions which scan the envi-
ronment are themselves constrained by the subject’s plan of
action, the plan to play a winning game of chess. Perhaps
analogous considerations apply to the taxi driver’s analysis
of spatial layouts. We see here the action-perception cycle
in full swing—we perceive the environment to the extent
that we are prepared to interact with it in some reasonably
structured fashion (Arbib 1989).

A more specific concern is whether the “hippocampal
chart table” notion is compatible with the observation of
enlarged gray matter volume in mid-posterior hippocampus
in London taxi drivers. Here are alternative hypotheses:

(1) All of “locometric London” is simultaneously present
as encoded by place cells of posterior hippocampus.

(2) A high-level view of London (and elsewhere) is carried
outside HC inWG (wherever that may be). At any time,
the place cells have place fields that correspond to a
limited region of London (cf. the data of Wilson and
McNaughton). For different regions, it is a state of the
neural network that needs to be “installed” by contextual
signals from WG.

On the latter view (the one I adopt in this paper), posterior
hippocampus becomes more complex both to “accommo-
date more detailed charts” and to “reset accurately for a
larger range of contextual cues.” I have not found any serious
attempts to assess this idea. Indeed, in sampling the literature
related to this paper, I feel as I might if reviewing reports of
someof the blindmen studying the elephant—localized areas
of study yielding accounts of limited scope; there is a lack
of overall coherence. I argue that the attempt to “go compu-
tational”—even if only conceptually—is important, but its
success will require large-scale efforts to explore interface
conditions between different models, with attendant restruc-
turing of themodels if such conditions are lacking. The Brain
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Operation Database, BODB (Arbib et al. 2014; Bonaiuto and
Arbib 2016), was designed to support this effort, but has not
been sufficiently adopted.

2.2 Two paradigms for navigation

O’Keefe and Nadel (1978) distinguished two paradigms for
navigation:

• The locale system for map-based navigation (proposed to
reside in the hippocampus)

• The taxon (behavioral orientation) system for route navi-
gation, based on egocentric spatial information.

We offer a modified view:

• The taxon (behavioral orientation) system supports reach-
ing a desired target based on egocentric localization of
currently perceptible affordances and does not need the
hippocampus.

• The locale system for map-based navigation involves at
least 2 levels:

• A “world graph” of “significant” places, presumed to be
in prefrontal cortex (as argued earlier)

• The local chart of locometric places installed in hip-
pocampus on the basis of the current locale in the current
WG.

It is often suggested that the place cells of hippocampus
(and more recently, the grid cells of entorhinal cortex) fur-
nish a cognitive map. However, this can only be part of the
story. Recalling our distinction between high-level maps and
locometric spaces, we note that the “hippocampal chart” pro-
vided by place cells and grid cells differs radically when a
rat is placed in different environments and so a higher-level
organization is needed to link these charts into an overall cog-
nitive map of the rat’s world. Even without a hippocampus,
a rat can exploit much of the spatial structure of its world by
exploiting affordances (O’Keefe 1983; Olton et al. 1980).

Modeling provides a way to address O’Keefe and Nadel’s
dichotomy, while also exploring the two-level view of “sig-
nificant place” and “locometric place” implicit above. In
presenting the TAM–WG model (Guazzelli et al. 1998), I
am in no way claiming that this 20-year-old paper is the state
of the art in modeling spatial navigation, but my hope is that
the discussion here may provide a framework for integrat-
ing certain aspects of current models, such as those in this
Special Issue, and building upon them to model aspects of
episodic memory and imagination.

The TAM–WG model combines TAM, the Taxon Affor-
dance Model, and WG, the World Graph model. We
(Guazzelli et al. 1998) argued that the hippocampus is not
a cognitive map but is, rather, a subsystem of the cognitive

map. A follow-up paper addressed multiple levels of spatial
organization and employs spatial difference learning (Arbib
and Bonaiuto 2012). The WG component is a sequel to my
collaboration with Israel Lieblich (Arbib and Lieblich 1977;
Lieblich and Arbib 1982) on motivational learning of behav-
ior based on multiple representations of space.

2.3 The TAMmodel

In the Taxon system, behavior is guided by the currently
available affordances. For example, if one is on a street
with several restaurants, the signs of the restaurants may
provide affordances for choosing which way to turn, per-
haps depending on one’s currentmotivation—ahankering for
French rather than Chinese food. The TAM model captures
the notion that affordances are extracted by the rat poste-
rior parietal cortex and that these guide action selection by
the premotor cortex. Expectations of future reinforcement—
learning which affordance and action is most likely to be on
the path to positive reinforcement, are derived using rein-
forcement learning.

A crucial point here is that affordance-guided navigation
is just one of many ways in which parietal affordances may
be linked with premotor cuing of actions. For example, my
group has modeled both

• the role of lateral intraparietal (LIP) neurons in setting
up goals for eye movements (Dominey and Arbib 1992,
included the role of corticostriatal interactions in mod-
eling simple, memory and double saccades; Dominey
et al. 1995, extended this to include learning of saccade
sequences, employing a precursor of what is now known
as reservoir computing), and

• the role of anterior intraparietal (AIP) neurons in control
of hand movements (Fagg and Arbib 1998, for the model;
Jeannerod et al. 1995, for the empirical background)

The point here is that both of these involve interactionwith
the visual environment, but neither has an obligatory relation
to navigation and locomotion. More generally, our experi-
ence of a visual scene may focus more on what others are
doing rather than necessarily involving planning or execution
of one’s own actions, as in the study of action recogni-
tion engaging mirror neurons (Bonaiuto et al. 2007; Gallese
et al. 1996; Oztop and Arbib 2002). In general, a memo-
rable episode may include one’s own behavior (whether or
not involving navigation), the behavior of others, or both in
relationship.

Returning to TAM, our model of affordance-guided nav-
igation: The specification of the direction of movement is
refined by current affordances and motivational information
to yield an appropriate course of action: (i)What oneobserves
in the visual (or other sensory) field depends on one’s current
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Fig. 1 The TAM model: The
linkage between posterior
parietal affordances and
premotor action selection is
modified by reinforcement
learning that evaluates
consequences in attempts to
reach desirable goals (or avoid
unpleasant ones)

motivation—those restaurant signs may attract our attention
if we are hungry, but otherwise may merit only a passing
glance. (ii) We observe not only objects but also their affor-
dances. If Google tells us to turn left, we do not immediately
execute a 90° leftward turn but make that turn in relation to
the angle at which the left-hand road leads off the current
roadway at the next intersection.

Figure 1 offers a high-level view of the TAM model (see
Guazzelli et al. 1998, for the computational details). Posterior
parietal cortex extracts affordances on the basis of sensory
input. (The TAM implementation considers only a limited
number of affordances and thus does not limit them to a
motivation-relevant subset). The affordances gate the premo-
tor selection of an action. Crucially, TAM includes a learning
model that gates this selection in relation to the regnant affor-
dance—e.g., if the rat sees a T-junction, it will learn to turn
left or right dependent on its experience of getting food more
at one than the other. (Note that this does not involve a cog-
nitive map—the hungry rat’s proclivity to turn to the left
at T-junctions is no more place-specific than your ability to
recognize the affordance of a sign for a Chinese restaurant.)
The success or lack of success of the consequences of the
action is adjudged by the nucleus accumbens which serves
to strengthen or weaken the last acted-upon link depending
on whether or not the rat received positive reinforcement.

2.4 World graph,WG

Arbib and Lieblich (1977), Lieblich and Arbib (1982) not
only introduced the notion of the World Graph (WG) but
also embedded it in a model for analyzing how rats running
mazes can exhibit detour behavior, with their paths depend-
ing on their currentmotivation. Butwe posit that it is a crucial
feature of human cognition, too. In our formalization, a WG
(there can be many encoded in a single brain) is a collec-
tion of nodes, some of which are connected by (possibly
uni-directional) edges:

• A node corresponds to a recognizable place or situation
in the animal’s world that has distinctive features that may
make itmemorable. A single place or situation in theworld
may be represented by more than one node in the graph
if, e.g., the animal comes upon a place in the maze for
the second time but does not recognize that it has been
there before, perhaps because it encounters the place in a
different situation or motivational state.

• Each edge represents a known path from a recognizable
“place/situation” to the next. There is an edge from node
x to node x’ in the graph for each distinct and memorable
path the animal has traversed from the situation it recog-
nizes as x to the situation it recognizes as x’without passing
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through or “taking into account” another recognizable sit-
uation. Appended to each edge, there are sensorimotor
features associated with the corresponding path.

Lieblich’s crucial contribution was to stress that the world
graph as a model of motivated learning of spatial behavior.
The animal came with a set of drives such as hunger, thirst,
sex drive and fear. Each node came with a vector describing
its drive reduction (e.g., likely availability of water or food)
or fearfulness, as in the case of electric shock. Autonomous
mechanisms serve, e.g., to increase thirst and hunger over
time, while various incentive signals (such as the smell of
food) can increase the strength of a drive; drinking decreases
the strength of the thirst drive, and so on. The edges provide
the actions that let one get fromone state to another.However,
since the animal’s navigation depends on its drive state—it
wants to get to places where it can perform consummatory
actions, as described by the drive-reduction vector for a node.
Thus, if it is hungry, it wants to get to a place where it can
eat or, for example, procure food that it might eat elsewhere.

This basic structure is augmented by a high-level account
of how WG changes, and its role in animal behavior (see
Arbib andLieblich 1977, for details). Crucially,WGsupports
exploration and latent learning and can change over time:

• Edges with unknown termini (corresponding to unex-
plored affordances) can compete with edges that lead to
no known nodes. If movement occurs along a new edge,
thus encountering a new situation, a new x′ becomes x(t +
1): the new node x′ will be added to the world graph, and
the edge from x to x′ will be tagged with the appropriate
defining features.

• Another form of structural change merges nodes: If the
animal thinks it is at P(x′), the place represented by node
x′ ofWG, but recognizes a place represented by a different
node x′′, then x′ will be merged with x′′

The internal state of the animal at time t includes the cur-
rent world graph WG(t); the node x(t) of WG(t) which is
the animal’s internal representation of its current position or
situation; and the vector of its drive levels [d1(t),…, dk(t)].
The full WG model explains the dynamics of each of these;
the TAM–WGmodel expands upon this by linking TAM and
WG: At any time, the current node x(t) signals the neigh-
borhood in which the animal finds itself. This signals to the
hippocampus to encode (or continue using) a “locometric
chart” of that neighborhood. As the animal moves, the hip-
pocampus signals current location to theWorld Graph (WG),
posited to be in prefrontal cortex; WG combines this with
desired location to plan possible paths. Arbib and Bonaiuto
(2012) made explicit how to adapt temporal difference learn-
ing (TD, Sutton 1988) to “spatial difference learning” in
WG which makes explicit how the expected reinforcement

depends on the current drive state. While WG supplies the
data for moving between “significant places,” hippocampus
supplies the data for moving between “locometric places.”
Our 1999 model of WG was algorithmic—temporal differ-
ence learning operated on nodes and edges of the graph,
rather than on neural representations of them. Certainly, as
this special issue attests, there are neural models of com-
plex spatial navigation, but is there a biologically plausible
neural net model out there that captures all the properties of
motivated learning and control of spatial behavior charted in
WG?4

Figure 2 shows the integration of the TAM with the WG
model. Now, the posterior parietal affordances can be modu-
lated by knowledge of the animal’s whereabouts. Locometric
data from HC can update estimates of the current and next
node in WG. (The model does not include the switching of
WGs and the attendant switching in and out of locometric
maps for the current WG or portion thereof.) Spatial dif-
ference learning applies at the WG level, but while WG
supplies the data for moving between “significant places,”
hippocampus supplies the data for moving between “loco-
metric places.” This may require modeling at two scales, as
seen in studies by Strain (1953) and the intriguing twist intro-
duced by Miller (1959). Strain constructed a linear maze as
a chain of boxes connected by passages, and WG represents
the maze shown in Fig. 3 (top). If the animal is repeatedly
shocked at F, then, when placed in E it will move to D rather
than F, as in the WG model’s account of aversive drives like
fear.

In Neil Miller’s (1959) variation on this theme, when the
animal was placed in F, it received an electric shock on some
occasions but food on others.Modeling this purely at theWG
level would predict that if the food ismore attractive (perhaps
because the animal is very hungry) than the shock is painful,
the rat will always move toward F; in the reverse situation it
will move away from F. But what Miller found was that the
rat oscillated back and forth between E and F!We could only
succeed in modeling this by adding a locometric map of the
passageways/edges, with a gradient of attraction (food) or
repulsion (shock) that varies with distance from E and F. The
key was to posit that each gradient rose continuously from E
to F, but that at E the attractionwas greater than the repulsion,
while at F the reverse was the case. In other words, the appet-
itive attraction of food as a function of locomotory space in

4 Rather than temporal difference learning, Schmajuk and Thieme
(1992) use a vicarious trial and error strategy to find the shortest path
using a cognitive map (so that decreasing distance is the only correlate
for increased reinforcement). Of course, random exploration is also nec-
essary to provide the data on which TD learning operates. Their paper
also makes the point that finding a path in graphs provides a model of
many different tasks (as is familiar from GOFAI)—they demonstrate
that their method can be applied to problem-solving paradigms such as
the Tower of Hanoi puzzle.
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Fig. 2 The TAM–WG model

Fig. 3 Indication (top) of how the WG model can explain the data of
Strain (1953); and (bottom) how the addition of a locometric model can
address the data of Miller (1959)

E–F remains high at E, whereas the aversive repulsion of fear
in E–F is low at E. There is thus a cross-over point X not at
the WG-level of the cognitive map but rather at the level of
the local “locometric chart” current in hippocampus. As a
result, the rat runs from E toward F, but on passing X turns
tail and runs back toward E, passing X again and reaching a
point where hunger overcomes fear and thus ends up oscil-

lating between the E and F nodes. In general, the idea is that
WG can navigate from one “significant place” to another via
various intermediates; the locometric space can capture the
motion details once a start and end place are selected within
the map at that level.

This completes the exposition of TAM–WG. Before turn-
ing to IBSEN’s second pillar, the VISIONS model of visual
scene understanding, we present a specific video-clips-with-
extrapolation (VCE) model of memory and recall to serve as
a comparison point.

3 A video-clips-with-extrapolation (VCE)
model of memory and recall

Byrne et al. (2007)—henceforthB3—present in their account
of “Remembering the past and imagining the future,” a strong
example of aVCE(video-clips-with-extrapolation)model. In
this model, memory is restricted to unanalyzed views along
a path, and later recall reactivates a prior view or a small
extrapolation of such a view from a prior trajectory—i.e.,
there is no mechanism for imagining anything particularly
new, as suggested by the earlier “garden door” scenario.5

5 Both Susan Becker and Neil Burgess have made many contributions
to the study of the hippocampus and its environs. As of December
20, 2019, Google Scholar listed 729 citations of the B3 paper, with
4 by Becker and 39 by Burgess. A review of the citing articles may
reveal updates to the B3 model of importance to the issues discussed in
developing IBSEN, but I have not conducted this review.
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B3 assume the location and shape of the firing fields of
hippocampal place cells is driven by the activity of a popula-
tion of boundary vector cells (BVCs), hypothesized to exist
within parahippocampal cortex, that show maximal firing
when an animal is at a given distance and allocentric direc-
tion from an environmental boundary. O’Keefe and Burgess
(1996) based this hypothesis on recording from the same cell
in four rectangular boxes that differed solely in the length of
one or both sides, a far cry from the environments relevant
to our autobiographical memory unless we have spent years
in solitary confinement.

Figure 4 shows an overview of their model, here called
the B3 model. The model is restricted to the spatial function
of the hippocampus. Hippocampal neurons in the model are
associated with a Cartesian grid covering allocentric space
such that a given neuron fires maximally when the model is
localized at its corresponding grid point. (Caution: B3 are
not talking here about grid cells.) This single layer of place
cells corresponds to CA3, an area that is heavily recurrently
connected. In the model, this recurrent connectivity allows
for recall/pattern completion.

A given HD (head direction) neuron fires maximally for a
given head direction. This drives Retrospl, posited to repre-
sent retrosplenial cortex, the head-modulated transformation
between egocentric and allocentric representations.A second
set of top-down weights, represented by the curved-dashed
arrow from Retrospl layer to PW, are gated by egocentric
velocity signals to allow for spatial updating/mental explo-
ration.

The model specifies an underlying grid large enough to
cover the ground plan for the current scene. An environment
E is established by placing boundaries and objects at differ-
ent points on the plane. Key visual input enters the model
via PW (the parietal window), presumably a dorsal path. The
egocentric frame is generated in PW by the activity of BVCs,
for the animal at its current position and head direction, giv-
ing the distance to the nearest boundary in each direction by
lighting up (with exponential fall off) the cells that repre-
sent that boundary. An unaddressed problem is that different
simulations address the Piazza del Duomo in Milan and a
small two-part chamber for a rat, so the spatial scales are
very different indeed.

The allocentric frame is then simply the egocentric frame
for a reference vector with a location and head direction fixed
within that base plane. The retrosplenial cortex (Retrospl),
exploiting head direction encoding from HD cells, gener-
ates this allocentric frame by an appropriate transformation
based on head rotation (translation is handled separately).
It is unclear why CA3 place cells are linked to the allocen-
tric frame—one would expect that current place would be
inferred from the current egocentric frame. Another issue is
that the whole model seems ill-suited to the general power
of a cognitive map—to know the relative position of objects

that are out of sight as well as those that are visible, and use
this to plan routes.

Further, direct or indirect reciprocal connectivity of the
hippocampal formation and parahippocampal regions with
each other and with the perirhinal cortex, an area that is
known to be important for object recognition may allows
for the positions and identities of landmarks visible at a par-
ticular location to be bound to that location.6 Based on this,
the model has a PR (perirhinal) path for object identity, pre-
sumably ventral. The model specifies a fixed set of object
types, with one PR cell for each type. While no mechanism
is offered for scene perception, each point of the allocentric
frame that corresponds to the visible boundary of a particular
type of object Oi is linked to the cell Pri that corresponds to
Oi. These cells play a key role in a simulation addressing
representational neglect—the lack of awareness of the side
contralateral to the lesion of internal representations derived
from memory (Bisiach et al. 1986).

Noting results indicating a possible role for theta in human
navigation and a role for theta coherence between hippocam-
pus and nearby neocortical areas in modulating encoding
into memory, B3 postulate alternate ‘bottom-up’ (parietal
to temporal) and ‘top-down’ (temporal to parietal) flows of
information that they link to different phases of the theta
rhythm.

For an animal to recall the details of its surroundings
from a particular imagined point of view, B3 assume that
the suggestion of (in the case of humans) or memory of a
highly salient environmental feature located at some point
in the animal’s egocentric space might be enough to orient
the head direction system. The correct perirhinal units could
also be activated by this process, and activity corresponding
to the location of the feature could be sent to the parietal
window. During the next bottom-up phase, the processes of
pattern completion and directed attention would then follow
as described above.

If an animal wishes to plan a route through a familiar
environment, the ability to performmental exploration of the
surrounding spacewould be useful. B3 suggest that parietally
generated egocentric mental imagery can be manipulated via
real or mentally generated idiothetic (self movement) infor-
mation in order to accomplish spatial updating or mental
exploration in familiar environments. B3 assume that in the
case of rotation, the ego motion signal causes head direc-
tion cell activity to advance sequentially through the head

6 Epstein and Baker (2019) offer a current review of neuroimaging
studies for "Scene Perception in the Human Brain." They identify three
cortical regions that respond selectively to scenes: parahippocampal
place area, retrosplenial complex/medial place area, and occipital place
area. Scene-selective regions exhibit retinotopic properties and sensitiv-
ity to low-level visual features that are characteristic of scenes.However,
their review does not include actions or episodes—scenes are layouts
of objects.
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Fig. 4 The basic structure of the
B3 model, a strong example of a
VCE (video-clips-with-
extrapolation) model (Byrne
et al., 2007, Fig. 6)

direction map, thus rotating the image that is projected into
the parietal window from the BVCs. For forward transla-
tion, the ego motion signal gates the top-down connections
from the parietal transformation layer to the parietal window
such that the “normal” top-down weights connecting these
regions are down-regulated, while a second, alternate set of
top-down weights are up-regulated. When the next bottom-
up phase begins, the shifted spatial information, represented
as parietal window activity, flows through the transformation
and BVC layers to activate place cells that correspond to the
location slightly ahead of the model’s current location. This
process repeats itself during the next top-down/bottom-up
cycle until the velocity signal dissipates, resulting in a con-
tinuous relocation of the model’s internal representation of
its location in space.

Consider, then, the nature of recall and “imagination”
in B3. The model simply provides a representation of
boundaries within view of the observer, plus the ability to
interrogate any point of the boundary by “directing atten-
tion” as to what object that boundary is part of. However,
this seems not to get us even as far as the TAM model.7 For
example, there is no recognition of affordances. Although
this might be addressed partially by enriching the PR repre-
sentation to include affordances as well as objects, it should
be noted that a gap between boundaries (consider an open
doorway) may be more salient for navigation. Even more

7 Note that (in common with the papers in this special issue) B3 makes
no attempt, unlike theTAMmodel, to explorewhat aspects of navigation
can be handled without support of the hippocampus.

crucial for our move to IBSEN, though, is that B3 does not
address recall of an environment other than the present one. It
can simply “imagine” how the egocentric views may change
as the imagined viewpoint changes, and then answer ques-
tions about which objects are located on the boundary in any
selected direction from that viewpoint.

The key extension to the model, then, would be that other
cues would be able to install an appropriate allometric repre-
sentation of an environment associated with those cues. This
might then look like the notion in theWGmodel that the pre-
frontal cortex can activate an appropriateWG and that virtual
motion at theWG level can activate a hippocampalmap in the
formof a locometric chart for the current region of the current
WG. I am not convinced by B3′s notion that an allocentric
map is provided simply by elevating a single egocentric map,
but like the idea gleaned from them that knowing the place
of the agent in the locometric map and its head direction
can activate top-down at least a degraded version of the cor-
responding egocentric view, whereas bottom-up processing
leads from the egocentric view to activation of the appropri-
ate place in the locometric map. This leaves open the nature
of the allocentric map, and I suggest that may be akin to a
mini-WG associated with the local environment. However,
even with this extension, we would still have an “imagina-
tion” that can visualize the view from a possibly novel place
but only one that is within a familiar environment. To take a
step toward “real” imagination, we need a more imaginative
view of vision.
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4 The VISIONSmodel of scene
understanding

To go further, I need to suggest howvisual analysis can enrich
the TAM–WG model. I will do this in two steps. First, I
will introduce a specific version of schema theory I have
developed, and then I will introduce the VISIONS system
for the understanding of visual scenes. This will then set the
stage for the outline of IBSEN as a conceptual model that
may guide new modeling addressing episodic memory and
an enriched sense of imagination.

4.1 Elements of a schema theory

The specific variant of schema theory offered here was moti-
vated by a concern for modeling action-oriented perception
(Arbib 1972), inspired in great part by work on visuomotor
coordination in frogs and its implication for mammals (Ingle
1968; Ingle et al. 1967; Lettvin et al. 1959). It was further
stimulated by study of the visual control of hand movements
(Arbib 1981; Jeannerod et al. 1995; Jeannerod and Biguer
1982). However, in the following subsection, we abandon
action and introduce a schema-theoretic (cooperative com-
putation)model of visual scene understanding (theVISIONS
model). As we start to sketch IBSEN, we will outline how
VISIONS might be extended to recognize episodes to pro-
vide our stepping stone to imagination.

In linking function and structure in the brain, we seek to
bridge between neurons and the cognition and behavior of
the person or animal. My claim is that although, in some
cases, we can bridge directly from high-level function to
neural networks, in many cases we need intermediate units
of functional analysis. To this end I introduce schemas as
“composable programs in the mind,” but they differ from a
serial computer program or neural network in that a schema
may have multiple instances that are concurrently active. A
schema constitutes the “long-term memory” of a perceptual
and/or motor skill or more abstract functions, including coor-
dinating such skills; while the process of perception or action
is controlled by active copies of schemas, called schema
instances. A schema may be instantiated to form multiple
schema instances as active copies of the process to apply
that knowledge. For example, given a schema that represents
generic knowledge about some object, we may need several
active instances of the schema, each suitably tuned to sub-
serve our perception of a different instance of that object.
For certain behaviors, there may be no distinction between
schema and instance—a single neural network may embody
the skill memory and provide the processor that implements
it. However, in more complex behaviors (as in the VISIONS
model), the different mobilizations of a given “skill-unit”
must be carefully distinguished. A schema assemblage is a
network of schema instances, and its characteristics are sim-

ilar to that of a single schema if committed to long term
memory.

Perceptual schemas are those used for perceptual anal-
ysis, as in VISIONS (next subsection). They embody the
processes whereby the system determines whether a given
object or domain of interaction is present in the environment.
They not only serve as pattern-recognition routines but can
also provide the appropriate parameters concerning the cur-
rent relationship of the organism with its environment. Each
schema instance has an activity level which indicates its cur-
rent salience for the ongoing computation. If a schema is
implemented as a neural network then all the schema param-
eters would be implemented via patterns of neural activity. It
is thus important to distinguish “activity level” as a particular
parameter of a schema from the “neural activity” which will
vary with different neural implementations of the schema.
The activity level of a perceptual schema signals the cred-
ibility of the hypothesis that what the schema represents is
indeed present, whereas other schema parameters represent
other salient properties such as size, location, and motion of
the perceived object. Given a perceptual schema, we may
need several schema instances, each suitably tuned, to sub-
serve our perception of several instances of its domain.

Motor schemas provide the control systems which can
be coordinated to effect the wide variety of movement. A
set of basic motor schemas is hypothesized to provide sim-
ple, prototypical patterns of movement. Crucially, perceptual
schemas can pass parameters that can be exploited by the
motor schemas to control behavior. The activity level of a
motor schemamay signal its “degree of readiness” to control
some course of action.

An assemblage of perceptual schema instances provides
an estimate of environmental state with a representation
of goals and needs. New sensory input as well as internal
processes update the schema assemblage as the action-
perception cycle progresses. The internal state is also updated
by knowledge of the state of execution of current plans made
up of motor schemas. We use the term coordinated con-
trol program (Arbib 1981) for a schema assemblage which
processes input via perceptual schemas and delivers its out-
put via motor schemas, interweaving the activations of these
schemas in accordancewith the current task and sensory envi-
ronment to mediate more complex behaviors.

Schema theory uses the paradigmof cooperative computa-
tion, a shorthand for “computation based on the competition
and cooperation of concurrently active agents”, as its style
of interaction. Cooperation yields a pattern of “strengthened
alliances” betweenmutually consistent schema instances that
allows them to achieve high activity levels to constitute
the overall solution of a problem (as perceptual schemas
become part of the current model of the environment, or
motor schemas contribute to the current course of action).
It is as a result of competition that instances which do not
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meet the evolving (data-guided) consensus lose activity, and
thus are not part of this solution (though their continuing sub-
threshold activity may well affect later behavior). A schema
network does not, in general, need a top-level controller.
Schema instances can combine their effects by distributed
processes of competition and cooperation (i.e., interactions
which, respectively, decrease and increase the activity levels
of these instances), rather than the operation of an inference
engine on a passive store of knowledge. This may lead to
apparently emergent behavior, due to the absence of global
control.

Schemas, then, provides abilities for recognition and
guides to action, but schema theory is a learning theory too.
In the spirit of Piaget (e.g., 1971), schemas must provide
expectations about what will happen so that we may choose
our actions appropriately. These expectations may be wrong,
and so it is that we sometimes learn from our mistakes. In a
general setting, there is no fixed repertoire of basic schemas.
Rather, new schemas may be formed as assemblages of old
schemas; but once formed a schema may be tuned by some
adaptive mechanism. This tunability of schema assemblages
allows them to start as composite but emerge as primitive,
much as a skill is honed into a unified whole from constituent
pieces. For this reason, a model expressed in a schema-level
formalism may only approximate the behavior of a model
expressed in a neural net formalism. When used in conjunc-
tion with neural networks, schema theory provides a means
of providing a functional/structural decomposition, and is to
be contrasted with models which employ some learning rule
to train an otherwise undifferentiated network to respond as
specified by some training set.

In the rest of this section, we chart informally how schema
theory views human memory, perception, and action, to set
the stage for the next section. Note that the scientist’s explicit
analysis of schemas does not imply that we normally have
explicit, conscious access to all, or evenmost, of the schemas
that direct our behavior. The schema theorist seeks to under-
stand the overall network of schemas by looking at some
subnetwork in isolation, but always aware that this is an
approximation to an incredibly complex whole.

We view the working memory (WM) of an organism as a
schema assemblage combining an estimate of environmental
state based on a variety of instances of perceptual schemas
with a representation of goals and needs. Long-termmemory
(LTM) is provided by the stock of schemas from which WM
may be assembled. New sensory input as well as internal pro-
cesses can update WM. The internal state is also updated by
knowledge of the state of execution of current plans which
specify a variety of coordinated control programs for possi-
ble execution. To comprehend a situation we may call upon
tens or hundreds of schemas in our current schema assem-
blage, but this “working memory” puts together instances of
schemas drawn from a long-term memory which encodes a

lifetime of experience in a vast network of perhaps hundreds
of thousands interconnected schemas.

Perception involves a continual updating of our initial
comprehension of the more salient aspects of the current
environment/situation by noting discrepancies between what
we expect and what our senses now tell us. We view WM
as a working memory of data organized for their possi-
ble relevance to the organism’s current behavior—a schema
assemblage combining an estimate of environmental state
with a representation of goals and needs. (“Pure” percep-
tion and action are but two points on a continuum, and most
schemas are not purely perceptual or motor, but intermesh
perceptual and motor skills with more abstract forms of
knowledge.) This WM is different from the view held by
some psychologists of short term memory as simply a repos-
itory for traces of recent stimuli.

A schema model becomes a biological model, as distinct
from a purely functional model, when explicit hypotheses
are offered as to how the constituent schemas are played
over particular regions of the brain. A given schema, defined
functionally, may be distributed across more than one brain
region; conversely, a given brain region may be involved in
many schemas.Hypotheses about the localization of schemas
in the brain may be tested by lesion experiments or func-
tional imaging, with possible modification of the model
(e.g., replacing one schema by several interacting schemas
with different localizations) and further testing. Given robust
hypotheses about the neural localization of schemas, wemay
then model a brain region by seeing if its known neural cir-
cuitry can indeed be shown to implement the posited schema.
When the model involves properties of the circuitry that have
not yet been tested, it lays the ground for new experiments.

4.2 Visual scene understanding with the VISIONS
system

Famously, Hubel andWiesel found neurons in primary visual
cortex that were responsive to edges in a small receptive
field, with different cells specific for different orientations in
different locations. Cells could also respond to other local
features, but processing in regions of the visual system fur-
ther from the retina could aggregate ambiguous information
to determine key contours that would separate the image into
different regions. Around 1961, Horace Barlow, in telling
me of this “Hubel–Wiesel hierarchy” commented that this
contour extraction was what enables us to recognize a face
from a caricature. I responded, “But then how do I see you
are not a caricature?” Flippant perhaps, but actually making
an important point. The important point implicit here is that
visual processing cannot be purely hierarchical. To the extent
that higher levels of processing may extract key properties
of an object, person or scene, our awareness is still enriched
by the scene’s lower-level aspects (e.g., shape, motion, color
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and texture). I will call this crucial point—that brains exploit
computation “up” and “down” to bring diverse representa-
tions into a harmonious whole—the Barlovian principle. We
have seen it exemplified in the bidirectional relation between
PW and HC in the B3 model (Fig. 4) where input at either
end can initiate a cycle of bottom-up and top-down pro-
cessing that converges on coherent representations across
the network. Another instance was provided by Arbib and
House (1987) who showed how two depth maps, one based
on monocular and the other on stereoscopic cues, could be
brought into congruence to provide a more coherent repre-
sentation than either might achieve alone.

A crucial step toward IBSENwill be to insist that a scene is
represented by an assemblage of schema instances with links
to lower-level “patches” of relevant visual data according to
the Barlovian principle. The VISIONSmodel of visual scene
understanding (Hanson and Riseman 1978) exhibits this cru-
cial property: Successive (or otherwise distributed) levels
of processing (which include top-down activity) do not dis-
card the lower levels but instead integrate (and modify) and
interpret activity at other levels to yield an integrated view
enriched by subtle undertones that can be brought to the fore
by attention.Although theVISIONSmodel does not touch on
this, the “experiential aspect” includes the emotional shad-
ing present in an episode, whether this precedes or follows
from the interpretive process. Again, where VISIONS con-
centrates on processing static visual scenes, recognizing an
episode requires integration over some time interval in which
dynamic changes in relationships can be observed, including
“who did what and to whom (or which)” for persons and/or
objects that attract the observer’s attention (bottom-up), or to
which the observermay direct attention (top-down) in pursuit
of providing the perceptual base for a current task. Assess-
ing how this might be achieved provides challenges for the
development of IBSEN.

In low- and intermediate-level vision, competition and
cooperation at the level of local image features grows con-
tours based on local edges, and regions based on boundaries
and continuities in color, texture, depth, etc., to yield a first-
pass subdivision of the image to ground semantic analysis,
stored in a working memory (WM) called the intermediate
database.

High-level vision then recruits perceptual schemas for
vision. These are stored in long-termmemorywhich includes
not only bottom-up cues for linking a schema instance to a
region, such as “a large region at the top of an image may
be sky” but also cues that include top-down relations with
already activated instances, such as “a parallelepiped shaped
region below a putative sky region may be a roof.” One or
more “instances” of schemas may be associated with each of
the more salient regions of the image, each with an “activ-
ity level” that varies dynamically. This constitutes the Visual
WM,which, alongwith the intermediate database, defines the

current state of visual interpretation. Schema instances may
compete (lowering each other’s activity levels) and cooper-
ate (raise each other’s activity levels as in the above spatial
relation that supports the interpretation of a roof region if
it is immediately below a sky region) to interpret different
regions. Activation may be both “bottom-up” (as in activat-
ing an instance of the sky-schema on the basis of cues in
the intermediate database) and top-down (activation of an
instance of the roof-schemamay initiate a search for the activ-
ity level of window- or door-schemas of regions below it).
(Of course, top-down and bottom-up refer to position in the
processing stream, not position in the image.) Crucially, the
intermediate database is dynamic, too: activity in the Visual
WM may suggest that regions need to be merged (e.g., not
treating shadows or highlights as regions for interpretation)
or new boundaries need to be formed (when there was too
little contrast in color or texture for regions of distinct objects
to be distinguished on a first pass on segmentation).

To exemplify this last point, consider howVISIONSmight
process an image of an outdoor scene in which a house is set
against a wintry sky, and is such that a lack of contrast leads
low-level vision to overlook a crucial edge separating wall
and sky. The sky-schema runs on the segmented image and
finds a region reasonably high in the image and with a high
value for its initial activation level msky. However, because
the segmentation left out the crucial edge, the “sky” in fact
includes one of the walls of the house. The roof region, of a
slate color, also has sky-like properties, but since it is lower in
the image, the color is not quite sky, and it has more texture,
its initial msky(r) is much lower. Meanwhile, an instance of
the roof-schema finds that the roof region has just the right
geometrical characteristics and is in the right position of the
image to yield a high value of mroof and thus activates an
instance of the roof-schema with a high activation level. As
a result of competition between the two instances, the low
confidence hypothesis that it might be sky does not play any
further part in the computation.

The roof-hypothesis leads to the formation of a house-
hypothesis, and this in turn leads to the goal of finding
confirming context, invoking an instance of the wall schema
to search underneath the posited roof to see if the criteria for
a wall are met, as indeed they are. But because of the missing
edge in the roof-line, there is now a big region which is inter-
preted both as wall and sky. We saw in the case of the roof
that if one confidence level were much stronger than another,
further interactions would tend to ignore the low confidence
schema instance. But here the two hypotheses are both too
strong to be ignored. One solution is to reprocess the sensory
data to extract missing details, for example to re-segment the
offending region with a lower threshold for edges. Instances
of the sky and wall schemas can now compete over just these
regions to quickly yield their contribution to the final inter-
pretation. Other schemas can then continue their competition
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Fig. 5 Overview of the VISIONS system for interpreting visual scenes.
Schemas for scene interpretation are linked within a network stored
in long-term memory (LTM). Instances of these schemas compete and

cooperate in visual working memory (Visual WM) to provide interpre-
tations of regions defined by low-level processes such as segmentation
and feature measurement, and to request new data

and cooperation to yield the overall interpretation (see Arbib
1989, Sec. 5.2, for further exposition).

In summary, competition and cooperation at the level of
local image features grows contours based on local edges and
regions based on boundaries and continuities in color, tex-
ture, depth, etc., to yield a first-pass subdivision of the image
to ground semantic analysis, built up in a working mem-
ory (WM) called the intermediate database. “High-Level”
Vision then recruits perceptual schemas for vision. These
are stored in long-term memory One or more “instances” of
schemas may be associated with each of the more salient
regions of the image, each with an “activity level” that varies
dynamically. This constitutes another WM, the Visual WM,
which, along with the intermediate database, defines the cur-
rent state of visual interpretation. Schema instances may
compete (lowering each other’s activity levels) and coop-
erate (raise each other’s activity levels as in the above spatial
relation that supports the interpretation of a roof region if
it is immediately below a sky region) to interpret different
regions. Activation may be both bottom-up and top-down.
Crucially, the intermediate database is dynamic, too: activ-
ity in the Visual WM may suggest that regions need to be
merged (e.g., not treating shadows or highlights as regions
for interpretation) or request new information, as when new

boundaries need to be formed (when there was too little con-
trast in color or texture for regions of distinct objects to be
distinguished on a first pass on segmentation) (Fig. 5).

With this, we can build on the TAM–WG model and
VISIONS to develop this paper’s first pass on IBSEN,
our conceptual model of Imagination in Brain Systems for
Episodes and Navigation.

5 Toward IBSEN, a conceptual model
of Imagination in Brain Systems
for Episodes and Navigation

Don’t bite the end of my finger, look where I’m pointing
Warren Sturgis McCulloch

The key message we derive from VISIONS is that under-
standing of a visual scene is a process of construction. It
is not simply a matter of matching one image to another
based solely on the spatial layout of low-level features.
Rather, it involves the dissection of the scene into meaning-
ful regions, each of which is then associated with a schema
instance which specifies that that region is an instance of
a particular object; downward paths associate each instance
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with attributes like location, depth, color and texture. More-
over, the objects are in various spatial relationships. Work
on VISIONS (Weymouth 1986) extended the processes
described above to inferring 3D relationships from the dis-
position of perceived objects as seen in 2D. Our goal is now
to extend VISIONS in combination with TAM–WG to pro-
vide the initial description of our conceptual model, IBSEN,
of how brain systems for episodes and navigation could be
extended to support imagination. The key notion, as by now
should be clear, is thatwhereVISIONScan construct a scene-
representation by processing visual input, and where models
like B3 posit that visual images can be reinstated from a trace
in some form of a previously observed scene (or one slightly
extrapolated from such scenes), we are concernedwith imag-
ination as a process whereby novel scenes quite different
from any observed before can be constructed through a pro-
cess that links a schemaassemblage to a variety of lower-level
representations.

The first step toward IBSEN, then, is to sketch how
VISIONSmight be extended to process episodes rather static
scenes. I emphasize that the model will be conceptual, and
primarily schema-theoretic rather than linked to modeling
at the level of biologically plausible neural network models.
However, my aim will be to sketch IBSEN in a way that is
explicit enough to invite detailedmodeling of various compo-
nents, or in some cases the “plugging in” of specific models
of this kind. But before embarking on this level of model
specification, I devote a section to my own motivation for
the proposed effort.

5.1 From architecture to neuroscience

The inspiration for developing IBSEN, in the present sense
of a conceptual model of Imagination in Brain Systems
for Episodes and Navigation, came while writing a paper
exploring how neuroscience might be relevant to architec-
tural design (Arbib 2013). This effort led me to the essay
“A way of looking at things” by the Swiss architect Peter
Zumthor in his book Thinking Architecture (Zumthor 2012).
Here are the key quotes:

When I think about architecture, images come into my
mind. When I design, I frequently find myself sinking
into old, half-forgotten memories …. Yet, at the same
time, I know that all is new and that there is no direct
reference to a former work of architecture …
Construction is the art of making a meaningful whole
out of many parts.… I feel respect for the art of joining,
the ability of craftsmen and engineers… the knowledge
of how to make things …

The word “construction” in the second quote is the con-
struction of physical things. However, the first quote is the
one that links episodic (and other) memory to imagination.

But how can a bunch of old memories lead to novel designs?
My answer (as will by now have been anticipated by the
reader) was to understand that the memories are themselves
constructs (though in a metaphorical or neural sense) in the
formofmalleable schema assemblages. Imagination can then
proceed by extracting salient subassemblages from different
memories and meld and transform them to develop a new
assemblage that meets certain criteria that guide design.

This led me to search for neuroscience literature on neural
correlates of memory and imagination. The first hit was the
paper by Schacter et al. (2012) on “The Future of Memory:
Remembering, Imagining, and theBrain”which reported that
there are striking similarities between remembering the past
and imagining or simulating the future. Schacter et al. distin-
guish between temporal and non-temporal factors in analyses
of memory and imagination, i.e., imagining the future is a
special case of imagination more generally. They observed
a “common brain network” that underlies both memory and
imagination. However, as they and others demonstrate, there
are distinct brain networks for memory and imagination, but
the finding is that brain imaging reveals a notable overlap.
The underlying networks can couple flexibly with other net-
works to support complex goal-directed simulations. Further
data and discussion are contained in many papers, and the
next subsection will briefly review some key findings that
complement their work. This is a limited sample, but I hope
that it will stimulate others to link further empirical data to
new modeling efforts that build on the conceptual founda-
tions offered below.

5.2 Neuroscience linking episodic memory
and imagination

Thebrain often acts “prospectively,” using stored information
to imagine, simulate and predict possible future events. This
underlies the quest for linkages between recall and imagina-
tion—though note that prospection may engage fact memory
and procedural memory as much as episodic memory, with
the relative importance varying from task to task. Addis et al.
(2007) used an fMRI study to assess the common and dis-
tinct neural substrates during construction and elaboration of
past and future events. (As already noted, imagination is in
no way restricted to imagining what events may occur along
a future timeline.) “Participants were cued with a noun for
20 s and instructed to construct a past or future event within
a specified time period (week, year, 5–20 years). Once par-
ticipants had the event in mind, they made a button press and
for the remainder of the 20 s elaborated on the event.”

Their data indicated that left hippocampus was com-
monly engaged by past and future event construction, along
with posterior visuospatial regions. However, future events
recruited regions putatively involved in prospective think-
ing and generation processes, specifically right frontopolar

123



154 Biological Cybernetics (2020) 114:139–167

cortex and left ventrolateral prefrontal cortex, respectively.
Furthermore, future event construction uniquely engaged the
right hippocampus, possibly as a response to the novelty of
these events. In contrast to the construction phase, elabo-
ration was characterized by remarkable overlap in regions
comprising the putative autobiographical memory retrieval
network. Addis et al. (2007) attribute this to the common pro-
cesses engaged during elaboration, including self-referential
processing, contextual and episodic imagery. The diversity
and lateralization of processes they observed, and their puta-
tive localization, set challenges for future modeling in which
wemay expect to see how each process involves competition
and cooperation between diverse subregions.

Noting that hippocampus is in some cases more engaged
when imagining the future than when remembering the past,
Addis and Schacter (2012) suggest that this hippocampal
activation reflects recombining details into coherent scenar-
ios encoding scenarios into memory as a combination of
details, as well as recombining details into novel but coherent
scenarios. They thus reviewpatient studies and neuroimaging
literature to highlight three component processes of simu-
lation: accessing episodic details, recombining details, and
encoding simulations. We suggest that different component
processes may be differentially affected by hippocampal
damage and, in any case, involve hippocampal interaction
with other regions.

The hippocampal memory indexing theory (Teyler and
DiScenna 1986; Teyler and Rudy 2007) proposes that the
role of the hippocampus in the storage of information is
to form and retain a hippocampal index whose reactivation
will also reactivate the activity in an array of neocortical
areas associated with the indexed information, to yield the
memorial experience and help establish a cortically based
memory trace. Consequently, a partial cue that activated
the index could activate the neocortical patterns and thus
retrieve the memory of the episode. Building on the indexing
theory, Moscovitch et al. (2016) developed a dynamic per-
spective on episodic memory and the hippocampus that runs
from perception to language and from empathy to problem
solving. Their component process model holds that, when
encoding episodes, hippocampus obligatorily binds together
into a memory trace or engram those neural elements in the
medial temporal lobe and neocortex that give rise to the
perceptual, emotional, and conceptual experience together
with a sense of autonoetic consciousness that engages the
self in some form of reliving of the experience. However,
our episodic memory may engage scenes for which we have
been an observer rather than an engaged participant so the
autonoetic component may be optional. Similarly, when we
turn from episodic memory to imagination—and especially
to imagination related to architectural design—the sense of
self-engagement need not be involved in all cases. For our
purposes, the component process model leaves open two

complementary questions: (i) What binds together the dif-
ferent aspects of a memory, and (ii) what would then permit
“unbinding” so that fragments from different episodes could
get activated, then interact, and possibly cohere into a new
imagined episode?

Moreover, Moscovitch et al. consider the specialization of
the hippocampus along its longitudinal axis, citing research
demonstrating greater precision and detail in the grain of hip-
pocampal representations and reduced receptive field size of
place cells as one moves from anterior to posterior regions.
Here they seem more aligned with the data of Kjelstrup et al.
(2008) than that of Maguire et al. (2006), and offer no insight
into our “hippocampal chart table” hypothesis. However,
I think the latter is implicit in work on episodic memory
(as distinct from navigation) since episodes are viewed as
encoded by linked patterns of hippocampal-neocortical acti-
vation—there seems no appetite in the literature (at least as
far as I have read) for talk of episode-cells with episode-
fields!

Perhaps more relevant for future modeling are the data
Moscovitch et al. summarize on the relevant neuroanatomy:
posterior hippocampus is preferentially connected to percep-
tual regions in the posterior neocortex, whereas the anterior
hippocampus is preferentially connected to anterior regions,
such as the ventromedial prefrontal cortex (vmPFC) and
the lateral temporal cortex extending into the temporal pole
and the amygdala, which are associated with the process-
ing of schemas (in a different sense from mine; see Sect.
5.3), semantic information, and social and emotional cues,
respectively. On this basis, they propose that the anterior hip-
pocampus may code information in terms of the general or
global relations among entities, and the posterior hippocam-
pus might code information in terms of precise positions
within some continuous dimension (Poppenk et al. 2013).

A further caution is that it may be mistaken to place the
construction processes engaged in “scene understanding” in
interpreting a novel scene (as distinct from “episode recog-
nition,” the sense that one is seeing a scene similar to one
experienced before) so firmly in the hippocampus. H.M.
lacked hippocampus and adjacent temporal lobe bilaterally,
and yet could understand visual scenes—he just could not
commit them to episodic memory.

Elward and Vargha-Khadem (2018, and Vargha-Khadem,
personal communication) describe the clinical presentation
of patients with developmental amnesia, associated with
oxygen deprivation during neonatal heart surgery. They
have bilateral hippocampus atrophy (with greater atrophy
of posterior hippocampus), but preservation of the bilateral
parahippocampal gyrus. Typically, they show relatively pre-
served semantic memory and factual knowledge about the
natural world despite severe impairments in episodic mem-
ory. Children with developmental amnesia seem normal for
3 years or so, but at age 4 show amnesia symptoms: they
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forget belongings, repeat questions, forget instructions, etc.
A parent will describe the child as “living in the moment,
with flat affect”; a teacher will say the child is “friendly and
polite, seems able but cannot deliver”; and the child will say,
“I listen in class and understood everything, but a little later
I forget everything.” Although these subjects cannot remem-
ber events of their life, they have excellent fact memory and
recognition of what they have seen before—they can encode,
consolidate, retrieve and recall the scene but cannot recollect
it in the sense of autonoetic consciousness.

In terms of our conceptual model, the suggestion is that
neocortical systems can support visual scene understanding
(or episode perception generally) without involvement of the
hippocampus. Rather, the hippocampus provides a supple-
mental loop that evaluates episodes for “memorability” and
the consequent strength with which an index (in the sense of
Teyler and others) is formed as a candidate for neocortical
consolidation.

Indeed, data from Baldassano et al. (2016), who meta-
analyze functional connectivity, may support the idea that
scene processing relies upon two distinct networks that
distinguish posterior and anterior regions of the Parahip-
pocampal Place Area (PPA), as distinct from posterior and
anterior regions of the hippocampus: The posterior network
involves the Occipital Place Area (OPA/TOS) and poste-
rior PPA, which contain retinotopic maps and does not show
strong memory or context effects, processes visual features
from the current view of a scene. The anterior network
involves the caudal Inferior Parietal Lobule (cIPL), Retro-
splenial Complex (Hassabis et al. 2007, RSC), and anterior
PPA, which connect to the hippocampus and are involved in
a much broader set of tasks involving episodic memory and
navigation, connecting information fromacurrent sceneview
with a much broader temporal and spatial context. (Below, I
further stress that many visual pathways do not involve hip-
pocampus, but may nonetheless be relevant to navigation as
well as to episodic memory and imagination.)

We have already discussed theMaguire et al. (2006) study
of hippocampal correlates of the navigational abilities of
London taxi drivers. Maguire’s group has also provided a
steady stream of papers relevant to probing neural correlates
of episodic memory and imagination. For example, “The
construction system of the brain” (Hassabis and Maguire
2009)—based on data from “Using imagination to under-
stand the neural basis of episodic memory” (Hassabis et al.
2007)—looked at healthy participants engaged in three tasks
while in the scanner:

(i) vivid recall of recent real memories,
(ii) construction of new imaginary experiences for the first

time in the scanner.
(iii) vivid recall of previously created imaginary experi-

ences (as in (ii), but constructed outside the scanner)

Their Fig. 4 shows the brain regions activated in common
by the three tasks and then claims that “this networkof areas is
probably involved in scene or event construction, the primary
process these three conditions have in common.” They call
this the construction network.

• The construction network includes hippocampus bilater-
ally, parahippocampal gyrus, retrosplenial and posterior
parietal cortices, middle temporal cortices and medial pre-
frontal cortex.
Hassabis et al. (2007, Fig. 2) contrast the network for
episodicmemory retrieval and for imagining newfictitious
experiences.

• The episodic memory retrieval scan only adds right thala-
mus to the overlap.

• The new fictitious experiences scan is actually a subset of
the overlap [even though it was claimed to be a superset],
differing only in omitting left hippocampus.

Hassabis and Maguire (2009) assert that the construction
network accounts for a large part of the episodic memory
recall network and bears a “striking resemblance” to net-
works activated by navigation, spatial and place tasks, and
even those associated with mind wandering and the default
network. They then suggest that there is a key component
process underlying all of these cognitive processes, namely
scene construction. However, this claim is unsatisfying in at
least two ways:

(1) We have already noted (Elward and Vargha-Khadem
2018) that scene understanding can proceed in the
absence of hippocampus. In other words, the fact that
these areas may be engaged in diverse tasks related to
scene construction does not rule out the engagement of
areas outside their “construction network” also being
engaged in scene construction. As suggested earlier, the
resolution may be that the normal brain may employ
hippocampus for preparing scenes for possible memo-
rization in concert with other areas, and hippocampus
(but in association with other brain regions) then plays
a key role in indexing retrieval of what has been mem-
orized. Indeed, a shortcoming of VISIONS is that it
models visual scene understanding based solely on
semantic memory and enriched by linkage with prior
episodes. It does not evaluate scenes as memorable and
decide whether or not to commit (aspects of) the asso-
ciated interpretation to memory.

(2) In summary, saying that “a network including hip-
pocampus is engaged in these diverse processes” seems
not to advance us beyond saying “hippocampus is
engaged in these diverse processes” unless one can offer
more explicit statements about the differential engage-
ment of these regions in the very different tasks listed
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by Hassabis and Maguire. Other papers fromMaguire’s
group offer relevant data and discussion, including
“Deconstructing episodic memory with construction”
(Hassabis and Maguire 2007), “Constructing, Perceiv-
ing, andMaintaining Scenes:HippocampalActivity and
Connectivity” (Zeidman et al. 2014), “Differentiable
Processing of Objects, Associations, and Scenes within
the Hippocampus” (Dalton et al. 2018), and “Remote
Memory and the Hippocampus: A Constructive Cri-
tique” (Barry and Maguire 2019), to name just a few.
And, of course, there is an overwhelming flood of pos-
sibly relevant data fromother researchers such as the few
sampled earlier in this section. These papers offer a rich
trove of data on scene construction and reconstruction as
engaged in episodic memory and imagination, but none
offer the process-by-process computational/conceptual
analysis that we offer here in seeking to learn from
both TAM–WG and VISIONS as we begin to build
bridges from spatial navigation via visual construction
to episodic memory and imagination. The next section
will show how an extension of VISIONS-style model-
ing may begin to fill the gap in a way that addresses the
challenges offered by the quote from the architect Peter
Zumthor.

5.3 Schema theory can link understanding episodes
and navigation

Where VISIONS concentrates on processing static visual
scenes, recognizing an episode requires integration over
some time interval inwhich dynamic changes in relationships
can be observed, including “who did what and to whom (or
which)” for persons and/or objects that attract the observer’s
attention (bottom-up), or to which the observer may direct
attention (top-down) in pursuit of providing the perceptual
base for a current task. As a step toward defining IBSEN, we
here sketch an approach to how to approach integration of
diverse multi-modal aspects, including action, as a concep-
tual extension of the VISIONS System from static scenes to
episodes combining agents, actions and objects and assess
its relevance to both navigation and episodic memory. My
aim here is not to document a recent advance in “Complex
Spatial Navigation in Animals, Computational Models and
Neuro-inspired Robots,” the theme of the special issue, but
rather to suggest future research that may link work on nav-
igation to the cognitive neuroscience of human memory and
imagination.

Consider, for example, a still image of a woman and a
man,with thewoman’s hand near theman’s cheek.One needs
to extend the observation for a short period of time, before
and after, to establish a salient fact about the scene: Is the
woman caressing the man or slapping him? In general, we
may recognize the agent and patient of an action, with the

spatial extent of the action encompassing the smaller spatial
extents of the agent and patient.

A crucial component, then, is to have available a set
of schemas for recognizing different actions. Consider, for
example our MNS model for the recognition of manual
actions (Bonaiuto et al. 2007; Oztop and Arbib 2002). To
set up activation, the system needs visual input from two
objects in the visual scene—a hand, and an object. Through
learning, the model becomes able early on during the tra-
jectory of the hand to assign differing confidence values as
to which manual action is being employed, with—in gen-
eral—the values coming to strongly favor one candidate as
motion proceeds. In coming to perceive the scene, then, we
integrate over shifts of attention and periods of time, with the
schema instance of the hand linked to the schema instance for
the person whose hand it is, and the activation of the schema
for action recognition that encompasses hand and object.

The relation between attention and recognition of
episodes, and its relevance to language, was explored by
Itti and Arbib (2006). It is worth noting that even though
action recognition requires attention to a trajectory, for most
people the details of that trajectory will not be attended to
consciously; for the non-expert, it will only be the recog-
nition that an action has been completed with a certain end
state that is committed to memory (Abreu et al. 2012; Aglioti
et al. 2008).

Complementing VISIONS, which emphasized coopera-
tive computation of schema instances in a spatial work-
ing memory (WM), consider the roughly contemporaneous
HEARSAY model of speech understanding (Erman et al.
1980; Lesser et al. 1975). HEARSAY used a WM which
extended in time, and a blackboard architecture which could
hold elements of the speech stream at levels from the phono-
logical to the lexical all the way up to syntactic and semantic
interpretation. Where VISIONS might have various percep-
tual schema instances competing to interpret a given region
of the visual scene as competition and cooperation lowers
and raises their confidence values, so linguistic units at var-
ious levels compete to interpret different segments of the
speech stream—time rather than visual space provides the
key underlying dimension. For example, it might be hard to
distinguish a particular /p/ versus /b/ sound. However, con-
text that could yield the interpretation “birthday” would shift
the balance in favor of /b/. Nonetheless, prior context could
set top-down biases to change even this favored interpreta-
tion. My audiences find it near-impossible to hear the /p/ if I
say “Happy pirthday,” yet will hear it clearly if I say “Today
is the anniversary of the settlement of Perth. Happy Perth
day!”

Such considerations (though not this example) influenced
the design of HEARSAY. Interaction between the levels
changed confidence values of the various units until ambigu-
ities in the phonological stream were removed as they came
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to be linked to words that had become parts of coherent syn-
tactic and semantic interpretations. In extending VISIONS,
then, we must have a spatiotemporal WM of many levels
but—despite the Barlovian two way flow of information—-
many details will be lost in the encoding into memory. For
comparison, contrast how we may remember every word of
an oft-repeated song or poem, yet may, when reading a story
or a news item or a journal article, recall only the gists of
whole paragraphs and a few key words therein. These may
prove robust enough to support appreciation of later para-
graphs inmost cases; but every nowand againwemust search
back through the earlier pages in search of details that we had
not retained but that now prove crucial.

Robin and Moscovitch (2017) propose that perceptu-
ally detailed, highly specific representations are mediated
by the posterior hippocampus and neocortex, gist-like rep-
resentations by the anterior hippocampus, and schematic
representations by ventromedial prefrontal cortex:

A gist representation may not be richly detailed but
is still specific to a single episode (‘my tenth birthday
party’), while a schema is a more abstract representa-
tion based on multiple similar episodes or memories
(birthday parties in general). Crucially, schema, gist
and detailed representations are not mutually exclu-
sive. These differing representations may co-exist and
support one another or may be preferentially retrieved
at the expense of the other(s) based on the particular
demands of a task. Thus, it is the quality or nature
of the memory representation, rather than its age, that
determines whether it is dependent on the hippocam-
pus. (Robin and Moscovitch 2017, p. 114)

However, this raises a flag in that the term “schema”
is being used differently from that used in our schema
theory (e.g., VISIONS). There, the distinction between
schema instances inworkingmemory (WM) and the schemas
in long-term memory is crucial: we might say that the
highly specific representation is the network of parameter-
ized schema instances linked to the temporo-spatial regions
within the episode; the gist might then comprise the more
general schema instances that provide the context for top-
down influences on this highly specific representation, while
the schema-in-their-sense is more like the generic trace in
long-term memory of what can be construed as a very high-
level schema-in-our sense, but is more often referred to as a
frame or script (Minsky 1975; Schank and Abelson 1977).
The invocation of scripts emphasizes the crucial extension of
VISIONS in going from spatial to spatiotemporal schemas,
as exemplified in our modeling of neural networks for action
recognition—networks that exploit object recognition as
the basis for recognizing static and dynamic relationships
between them, and which do not engage the hippocampus.

Recall our earlier caution that it may be mistaken to
place all the construction processes engaged in “scene under-
standing” in interpreting a novel scene in the hippocampus.
Nonetheless, hippocampusmay be crucial to “episode recog-
nition,” the sense that one is seeing a scene similar to one
experienced before) so firmly in the hippocampus, and the
recall of a prior episode may provide a top-down input to
understanding the current novel episode that one is expe-
riencing—both by rapidly activating instances of schemas
linked to the previous episode, and by allowing brain mech-
anisms of the kind to be explained by extending VISIONS
with the ability to flag regions associated with the activa-
tion of schemas not linked to the current episode as possible
candidates for special attention.

At this point, it helps to recall the component process
model of Moscovitch et al. (2016). This holds that, when
encoding episodes, hippocampus obligatorily binds together
into a memory trace or engram those neural elements in the
medial temporal lobe and neocortex that give rise to the
perceptual, emotional, and conceptual experience (for the
present discussion, I leave aside the possible role of auto-
noetic consciousness).We can place thiswithin our emerging
framework for IBSEN as follows:

• Schema theory provides a coherent framework for an
above-the-neuron analysis for cognitive neuroscience.

• Competition and cooperation between schema instances
can both make sense of the current environment and deter-
mine assemblages of motor schemas that control action,
with perceptual schemas passing parameters for relevant
affordances to the motor schemas.

• More generally, though, the brain can engage diverse
schemas beyond those immediately linked to perception
and action, and these can undergird mechanisms that
underlie abstract thought, memory and imagination.

• In each case, the activation of, and interaction between,
schema instances involves bottom-up influences (e.g.,
from sensory inputs), lateral interactions (between already
activated instances in diverse “regions”), and top-down
influences (created by context, motivation, tasks, and
more).

The implication of our analysis is that the hippocampal
trace of an episodic memory can provide a top-down influ-
ence on current schema interactions. However, there is no
reason to claim that traces of prior experience are limited to
hippocampus—and, indeed, traces in neocortex may serve
to activate episodic memory traces in hippocampus, since
competition and cooperation can be reciprocal.

An episode may be as narrow as a single action or, more
often, may embed key actions within a context that enriches
their meaning. And that context may itself be based on mem-
ories that were formed by earlier episodes. The first step from
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remembering episodes to autobiographicalmemorymay thus
be at the level of linking two episodes—the one that created
the context and the one that exploited the context—in tempo-
ral relationship. Note, however, that this linkage may more
generally be one of “narrative coherence” rather than tempo-
ral contiguity. One episode may lead me to recall an earlier
episode that led up to it, or something that followed from
it, perhaps even years later, as when I switch from recalling
my time at high school to an episode that occurred at a class
reunion 40 years after graduation. Clearly, there is no clock
ticking in my brain that kept track of the passing minutes for
40 years. Rather, I have a general idea of the years of my
life, and a high school episode links to a specific few years
of my life. By contrast, it was a distinctive feature of that
class reunion that it occurred after 40 years. It then involves
calendrical calculation, not a neurally ticking timeline, to
determine the year that reunion took place, and even then I
cannot place the month, let alone the day, of its occurrence.

The reader eager for implementation details may by now
be protesting, but my point is to create a broad framework
that may make clear that certain approaches are wrong. The
above example shows that a video-clips-with-extrapolation
model of memory and recall like that of Byrne et al.
(2007)—characterizing an episodic memory as something
like a video clip of the view along a specific trajectory that
has been traversed in the past—is simply inadequate if we
seek to model episodic memory as we humans know it, as
part of autobiographicalmemory (Conwayet al. 2004; Fivush
2011; Nelson and Fivush 2004).

However, let’s consider an example of human memory
that is not episodic but is relevant to the notion that study of
spatial navigation may hold cues for developing a theory of
episodic memory. We have all had the experience of driving
repeatedly down certain streets where we have command of
enough cues to navigate successfully, perhaps even antici-
pating certain sharp bends rather than responding to external
affordances. But here’s the rub. One day, when driving down
a street after a prolonged absence, we recognize that there is
a new house on our route—and yet, try hard as we may, we
cannot remember what the previous house there looked like.
On the other hand, there may be a house that provides a dis-
tinctive cue (it has been promoted to a WG node, one might
say, as a “landmark”) such as “when you get to that house,
start looking for a right hand turn that is hard to spot behind
the trees.” If that house is replaced, wewill be able to recall it.
The point?The mechanisms that give a place enough salience
to be promoted from the locometric map may be comparable
to those that construct an episodic memory from the salient
details of a salient episode.An important distinction, though,
is that “promotion” to a WG node may be a cumulative pro-
cess, whereas episodic memory will be a variety of one-shot
learning if it constitutes an episode of brief duration—though

many episodes that constitute an episodicmemory are indeed
prolonged, but can frame a host of subepisodes.

AWG node represents a memorable place linked to ancil-
lary information about how one may recognize it and what
one may do there. In addition, it is associated withWG edges
that relate to navigation in its vicinity. The overall system can
then retrieve familiar paths and create new ones to get to a
destination that meets certain criteria. Finding such a path
may involve linkage of multiple maps—(1) getting from the
kitchen to the car, (2) getting to the airport and parking the
car, (3) flying from A to B to C, (4) and so on. In cases (1)
and (2) there is linkage to two distinct locometric maps; in
(3) one might observe a flight map on a video screen, but
this is irrelevant to your own self-controlled movements. In
(4) one might, having arrived at a novel airport, build a new
cognitive map as one finds one’s way from airplane to a wait-
ing car, and this might be forgotten or, in piecemeal form,
speed the construction of a cognitive map on the next visit
to that airport. In short, reliance on TAM (following signs)
may suffice, but may also contribute to a small and possibly
fragmentary WG. The multiple WGs have interfaces—one
(usually) knows when to switch from one WG to another,
or to rely on affordances specific to one’s current navigation.
But the crucial point is that, even though we have certain rote
routes in our lives, there is no fixed path through our super-
graph of WGs. Thus, as in planning a vacation, one need
not retrace a known route, but may (by resources outside the
WG) choose several desirable destinations, and then—com-
bining one’s personal experience with a range of tools for
travel planning—hone in on more details (that hotel here,
those friends there, that touristic destination, and so on) and
come up with a detailed itinerary for a route that links places
known and unknown—truly an important feat of the imagi-
nation.

Howmight this relate to the construction view of imagina-
tion suggested by the earlier quote from Zumthor? Consider
that high-level (in both senses!) air transportWGand the spe-
cific node for London.8 Perhaps you only think of London
as the place where you can see the changing of the guards
at Buckingham Palace—seeing them is the only consumma-
tory behavior associated with that node for you. But as you
read guide books and travel brochures and watch videos and
talk to friends you—as a human, and unlike a nonhuman ani-
mal—can use vicarious experience to build a set of vicarious
or imagined episodes—possible excursions for your stay in
London. These episodes become linked with your own vicar-
ious sub-WG for London, one that may have multiple nodes,
like visiting St. Paul’s and going to the theater in the West

8 There is a certain melancholy in writing these words while the Covid-
19 pandemic is still gaining momentum (March 2020). I hope they will
be read at a time when planning travel is once again part of normal life,
rather than a fantasy or memory.
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End, that have as yet no connecting path. It is only when you
arrive that you begin to connect the nodes with how to get
from one to the other, with portions of the relatively abstract
map of “the Tube,” the London Underground, linked to loco-
metric maps of areas you explore on foot.

Perhaps, to complement this,we need to explore the notion
of AMGs, for autobiographical memory graphs whose
nodes are particular episodic memories. Some of these, may
be linked to particular places—you return to a restaurant
because of times you enjoyed the food and the ambience
there, or to a particular vantage point because you remem-
ber seeing a spectacular sunset there, though conversely you
may avoid the site where some disaster befell you—and your
experiences at these places may determine what makes a
place “node-worthy,” establishing the properties of that place
encoded with the node, as well as information on how to get
there or detour around it. But, of course, episodes may be
memorable whether or not you can recall the place in which
they occurred. More to the point, the linkages in a WG are
spatial, even if the construction of a path depends on one’s
current motivational state. By contrast, only a few linkages
between episodes will be explicitly stored, and few will have
an explicit timeline.When a series of episodes are linked, that
may be because their temporal relation is explicitly recalled,
but the ordering may be ad hoc and may vary with associa-
tions that are facilitated by the context in which recall occurs,
but also by some level of narrative structure—something out-
side the scope of any imminent version of IBSEN.

The key point for now is that, because each memory is a
construct (and so, in fact, recollection may yield variant, and
variously veridical, versions on different occasions) there are
many different aspects of the underlying schema assemblage
that may guide the association of one episodic memory with
another. An oft-told story is then like an oft-travelled route.
And, again, the hierarchical linkage of AMGs reflects the
hierarchical linkage of WGs and the underlying locometric
maps. We may recall a linked series of episodes in terms
of a few salient details, or live an embarrassing experience
in excruciating detail. The issue is how emotion can control
what becomesmemorable, while context and association can
suddenly bring together memories whose relationship one
had never realized before, and this may change drastically
the high level structure of autobiographical memory.

Traversing a path in spatial navigation takes time that can
be measured, but the “time” involved in temporal relation-
ships between memorable events is rarely one that can be
parceled out in seconds, minutes or hours. More often it will
be qualitative, as in “just before,” “earlier that day,” or “some
days before, during that memorable visit to Carcassonne.”
This last example tells us that, just as for our nested set of
WGs which may or may not link to locometric maps, so
may episodes range from those that occupy a few seconds,
“I turned the corner, and had the most beautiful view across

the valley,” to the high-level episodes that come to mind as
we try to recreate a year-by-year chronology of some period
of our lives. All these linkages—within episodes, between
episodes, and up and down the hierarchy—are fallible and
may change over time. However, returning to our insights
fromVISIONS to the extended perspective needed to support
IBSEN, the crucial point is that each episode is an assem-
blage of schema instances—but one that is enriched by links
(recall that top-down path to the intermediate database) to
memorable samples of lower-level analysis.

Thus, extending episodic memory to brain mechanisms
that support autobiographical memory seems to tap into a
general mechanism that, in complex behaviors, uses various
actions to “set the stage” or provide the affordances for other
actions. This yields amore or less flexible timeline. The issue,
then, is to what extent there are different mechanisms for (i)
the sub-second timing of particular movements, (ii) the sec-
onds to minutes or more timing of actions in the exhibition
of a particular behavior, and (iii) what I would call “true”
episodic memory, the ability of humans to think in terms of
hours, days, months, seasons and years (let alone concep-
tually extending this into the historical past and imagined
distant future).

I suggest that (iii) is truly distinct from (i) and
(ii)—without in any way discounting the importance of evo-
lutionary and comparative studies. For example, consider
again the food caching of a squirrel. Different behaviors by
the squirrel are triggered by changes in the environment: food
caching when nuts are plentiful; retrieval and consumption
in the winter. However, this does not require (though, also, it
does not preclude) any concept of the passing of the seasons
or their annual repetition. Similarly, all animals have diurnal
rhythms, and their behavior varies across the cycle, but this
need not involve a conceptual awareness that can ground the
inclusion of novel behaviors within the pattern of the day.

With this, we have completed an initial sketch of key
mechanisms that define IBSEN as an integrative framework
that builds on the study of visual scene perception to link the
recognition of places and the experience of episodes (extend-
ing VISIONS) with both spatial navigation (as modeled at
different levels by the TAM–WGmodel) and episodic mem-
ory. But does IBSEN also accommodate imagination?

5.4 Themove to imagination

The move to imagination in the sense motivated by the
Zumthor quote requires that new scenes be created. This can
involve extraction of fragments of the LTM schema network;
extraction of portions of priormemories, and adjustment both
at the “graph”-level and the detailed level that includes per-
ceptual parameters like affordances that can be passed to
motor schemas. Our imagination may also polish how well
two objects fit together—in a sense, each offers affordances
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for the action of joining to the other. Consider also the crucial
role of predictions and expectations (Sitnikova et al. 2008).
Each scene creates expectations on what may happen next.

My amateurish notion (not based on scientific analy-
sis) of dreaming is that the brain creates episodes (lack-
ing in peripheral detail, perhaps) such that some features
may trigger changes that propagate without constraint from
other features. Thus imagination involves this-leads-to-that
sequencing of the spatial assemblages that constitute the
basis for successive episodes. The temporal sequencing of
events abstracted to the verbal level may predominate in
story-telling—though these unfolding episodes trigger the
imagination of the reader or listener, as they begin to imag-
ine the faces and demeanors and even the mental states of
people and their surroundings, with earlier episodes creating
expectations that shape those later imaginings, and whose
contradiction may contribute greatly to the drama of the nar-
rative. Note the distinction from spatial navigation. Here,
whether modeled by TAM or WG, we find a path through
actual places—one may say that navigation is “clamped” by
the changing sensory input one receives within that actual
context. Imagination is creating a new scenario in which the
people, places and interactions may be novel. By contrast,
and counter-intuitively, my “home” in a dream is almost
never my actual home or one I have ever visited. Leaving
dreams aside, consider the formation of a new sentence, or
the creation of a scene in a novel or film, or a new building.

In the previous section, I suggested that in “episode recog-
nition,” the recall of a prior episode may provide a top-down
input to understanding the current novel episode that one
is experiencing—both by rapidly activating instances of
schemas linked to the previous episode, and by allowing
brain mechanisms of the kind to be explained by extend-
ing VISIONS to flag regions associated with the activation
of schemas not linked to the current episode as possible
candidates for special attention. In imagination, one is not
facedwith the challenge of interpreting current sensory input.
Instead, diverse top-down influences, including those from
multiple episodic and spatial memories, can join the compe-
tition and cooperation that can create schema assemblages
clamped to some high-level challenge rather than the current
input.

More generally, external memory may supplement top-
down influences with bottom-up signals generated by earlier
efforts of imagination (just as I develop this article by contin-
ually updating a written text to capture data and arguments
that I might otherwise forget). The detailed imagination of a
spatial assemblage, perhaps down to the finest detail, may
predominate in drawing, painting or architectural design,
assisted by creation of external memory structures such as
drawings (Donald 1991). In particular, the architect may
assess different narratives in a current design as a basis for
refining it. Consider the “program” (in the architect’s sense

of the high-level specification of, e.g., the form, function
and siting of a building) as the seed for the growth of such
interlinked plans and scenarios for which the employment of
both locometric and WG-ish scales are highly relevant and
their linkage is crucial. Elsewhere, I use the design of the
Sydney Opera House to provide a case study of the way in
which the diverse memories of the architect can be formed
and combined and reformed as the imagination works within
the constraints of the design specs of the building (Arbib
2021).

6 Challenges for new research

In the next subsection, I briefly review the contributions of the
other papers from this special issue. The TAM–WG model
remains surprisingly pertinent to the models of spatial navi-
gation they present, and so I indicate some of the challenges
which the new models, often in concert with ideas from
TAM–WG, present for further studies of spatial navigation.
Disappointingly, though, none of the papers relate their work
to an observation that has been commonplace since the early
exploration of place-cell properties—that most place cells
are remapped randomly across different environments (Wil-
son and McNaughton 1993). As a result, none address the
resultant key question: As we move from one environment
to another, what mechanism activates the appropriate cog-
nitive map, and how is it distributed between PFC, HC and
other regions? Since they do not address even an impover-
ished version of imagination based on cognitive maps other
than the one that is currently installed, they a fortiori do not
consider our experience of imaginary worlds, let alone the
novel constructions supported by IBSEN. The concluding
subsection, then, offers a brief sketch of research challenges
that may exercise the imagination of the spatial navigation
community—to imagine imagination.

6.1 Revisiting the TAM–WGmodel for spatial
navigation

6.1.1 Cognitive swarming in complex environments
with attractor dynamics and oscillatory computing

Monaco et al. (2020) stress, as we do, the need to extend
models from simple environments to animals’ natural habi-
tats. However, where we stress the role of diverse WGs,
their concern is with autonomous systems technology, and
so they introduce the “NeuroSwarms” control framework
to investigate whether adaptive, autonomous swarm con-
trol of minimal artificial agents can be achieved by direct
analogy to neural circuits of rodent spatial cognition by
analogizing agents to neurons and swarming groups to recur-
rent networks. They present emergent behaviors including
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phase-organized rings and trajectory sequences that interact
with environmental cues and geometry in large, fragmented
mazes. Their hope is that NeuroSwarms, by integrating
autonomous control and theoretical neuroscience, has the
potential to uncover common principles to advance both
domains.

The only immediate connection I see here is to wonder
whether the NeuroSwarms approach might be extended to a
form of hierarchical control—the WG-analogue would dis-
tribute high-level control parameters to the lower-level agents
of the swarm to structure and speed their efforts.

Question: Can one distinguish twomodes ofNeuroSwarm
behavior analogous to TAM–WG? In TAM mode, agents
would look for cues related to task-relevant affordances, and
share these with other agents to collectively address the task.
In WG mode, the aim would be to develop and apply multi-
level cognitive maps for the territory, then use those maps
thereafter to speed the completion of a variety of tasks.

6.1.2 Amodel of path integration and representation
of spatial context in the retrosplenial cortex

Ju and Gaussier (2020) simulate animals moving in spiral
mazes and on a treadmill to test the performance of a sim-
ple model of the retrosplenial cortex (RSC). The connection
between the hippocampus, the RSC and the entorhinal cortex
(EC) is revealed through a novel perspective. They propose
that path integration (PI) is performed by information com-
ing from the RSC. Grid cells in the EC can be built on the
basis of projection of the RSC activity. In their model, PI is
modulated by the activation ofHeadDirection (HD) cells and
the velocity of the animal when using a classical condition-
ing mechanism. The place-cell-like activity on a treadmill
in the RSC can be explained as the result of the RSC self-
organizing in blobs, simulated by several one-dimensional
Kohonen maps. They show that the integration of a 1D HD
cell field is able to build the PI. These new results further
indicate that the grid cells in the EC can be explained by a
simple projection of the RSC activity.

My group has earlier modeled path integration (Guazzelli
et al. 2001), addressing data on rats navigating through envi-
ronments that unexpectedly change shape (Gothard et al.
1996), data that was also addressed by Byrne et al. in an
application of the B3 model. However, consideration of path
integration and entorhinal cortex is outside the scope of this
paper. Nonetheless, it would be worth assessing how their
model treats the retrosplenial cortex.

6.1.3 Conjunctive reward-place coding properties of dorsal
distal CA1 hippocampus cells

Gauthier and Tank (2018) developed a virtual reality task
with shifting reward contingencies to distinguish place ver-

sus reward encoding. Recordings in CA1 and subiculum In
mice performing the task revealed a small cell population that
was only active near reward yet whose activity could not be
explained by sensory cues or stereotyped reward anticipation
behavior. Across different virtual environments, most cells
remapped randomly, but reward encoding consistently arose
from a single pool of cells, suggesting that they formed a ded-
icated channel for reward. Seeking to explicate the relation
between these cells’ spiking activity and goal-representation,
Xiao et al. (2020, this issue) analyzed data from experiments
in which rats underwent five consecutive tasks in which
reward locations and spatial context were manipulated. They
found CA1 populations with coding properties continuously
ranging from place cells to reward cells. In addition, they
found a small group of neurons that transitioned between
place cells and reward cells coding within each session. Xiao
et al. suggest that this conjunctive coding property prompts a
re-thinking of current computational models of spatial nav-
igation in which hippocampal spatial and subcortical value
representations are integrated outside these modules.

Perhaps puzzlingly, they found that reward cells mostly
responded to the reward delivery rather than to their expec-
tation—one might expect expectation to be crucial during
navigation. These reward cells seem, then, to be more
related to supply of reinforcement for learning than for
encoding expected reinforcement cues, as is needed in
our Strain–Miller example—but perhaps the encoding of
expected reinforcement is the task of place-and-reward cells.

6.1.4 Real-time sensory-motor integration of hippocampal
place cell replay and prefrontal sequence learning
in simulated and physical rat robots for novel path
optimization

Cazin et al. (2020) consider how previous exploratory expe-
rience is re-organized to create novel efficient navigation
trajectories, e.g., when rats discover the shortest path linking
baited food wells after a few exploratory traversals. In their
model of navigation sequence learning, sharp wave ripple
(SWR) replay of hippocampal place cells transmit “snippets”
of the recent trajectories that the animal has explored to the
prefrontal cortex (PFC)which ismodeled as a recurrent reser-
voir network that is able to assemble these snippets into the
efficient sequence. To explore integration of this dynamic
system into a real-time sensory-motor system, they test the
hypothesis that the PFC reservoir model can operate in a
real-time sensory-motor loop for simulated and physical rat
robots. Place cell activation encoding the current position of
the rat feeds the PFC reservoir which generates the successor
place cell activation that represents the next step in the repro-
duced sequence. This is played into the rat, which advances
to the coded location and then generates de-novo the current
place cell activation. They show how this integrated sensory-
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motor system can learn simple navigation sequences, and
then can synthesize novel efficient sequences based on prior
experience (Cazin et al. 2019). The model of hippocampal
replay generates a distribution of snippets as a function of
their proximity to a reward. The integrative PFC reservoir
reconstructs the efficient sequence based on exposure to this
distribution of snippets that favors paths that are most prox-
imal to rewards. This contributes to the understanding of
hippocampal replay in novel navigation sequence formation.

There is a major disagreement here between TAM–WG
and Cazin et al. They have PFC control successive “mini-
paths” by linking step-by-step snippets whereas inWG, PFC
would encode nodes for the baited food wells and for any
via points that mark obstacles to direct runs between places
already represented by nodes. To address their challenge,
WG would have to be augmented in two ways:

(i) If there is an edge discovered between two nodes,
WG would require experience at the locometric level
to determine the distance (or, more generally, effort)
required to traverse it. Spatial difference learning would
then use this measure, rather than number of nodes tra-
versed, in its discounting to establish the shortest path
from one node to a desired goal.

(ii) Classic studies (Olton et al. 1979, 1980) looked at rats
running a radialmaze.On each trial, the ends of the arms
of the maze were baited with food. As the rat reached
the end of an arm, it would consume all the food there.
The key observation was that the rat rarely revisited an
arm during a given trial—but would return to the end
of each arm on later trials. This suggests, importantly,
that their cognitive map included a working memory. In
our terms, the animal’s experience with the maze would
yield a WG with food-cues associated with the end of
each arm, but eating there would be remembered for
the length of a trial. Thus, when a hungry rat has visited
one or more food-sources, its working memory would
temporarily set the food-value of their nodes to zero.

WG-based navigation would then guide the rat to the
nearest place whose associated node still has the associated
hunger-reduction information. Returning to the scenario of
Cazin et al., WG as thus augmented would explain the ability
of the rat to find a sequence of relatively short paths linking
baited foodwells after a few exploratory traversals, but not to
discover the overall shortest path between them. However, in
the examples studied by Cazin et al., the two conditions are
equivalent. It seems unlikely that their model could find the
shortest overall path in an interestingly complicated maze.

6.1.5 Modeling awake hippocampal reactivations
with model-based bidirectional planning

Khamassi and Girard (2020) address the same type of recall
as B3, but offering new insights, since B3 do not address
planning or the issue of reward: Forward reactivations
are prominently found at decision-points while backward
reactivations are exclusively generated at reward sites. Addi-
tionally, the model can generate imaginary trajectories that
are not allowed to the agent during task performance. Hip-
pocampal online reactivations during reward-based learning,
usually categorized as replay and preplay events, have been
found to be important for performance improvement over
time and for memory consolidation. A key is the need to
transform reward information into state-action values for
decision-making and to propagate it over time and space.
They present a model-based bidirectional planning model
which accounts for a variety of hippocampal reactivations.
The model combines forward trajectory sampling from cur-
rent position and backward sampling through prioritized
sweeping from reward location until the two trajectories con-
nect. This is repeated until stabilization of state-action values
(convergence), which could explain why hippocampal reac-
tivations drastically diminishwhen the animal’s performance
stabilizes.

The special role here for decision-points and reward sites
is reminiscent of the creation of WG-nodes. Might the
explicit representation of such sites in WG enhance their
model?

6.1.6 A neural model of schemas andmemory encoding

Tse et al. (2007) offered a notion of neocortical “schemas”
that, while different from the schemas posited in the schema
theory presented earlier, serve to model simple knowledge
structures appropriately for neurobiological theories of sys-
temsmemory consolidation. They showed that consolidation
ofmemory in the neocortex can occur extremely quickly if an
associative “schema” into which new information is incor-
porated has previously been created. In experiments using
a hippocampal-dependent paired-associate task for rats, the
memory of flavor-place associations became persistent over
time as a putative neocortical schema gradually developed.
New traces, trained for only one trial, then became assim-
ilated and rapidly hippocampal-independent. Schemas also
played a causal role in the creation of lasting associative
memory representations during one-trial learning.

Building on this, Hwu and Krichmar (2020, this issue)
emphasize that the ability to rapidly assimilate new infor-
mation is essential for survival in a dynamic environment.
This requires experiences to be encoded alongside the con-
textual schemas in which they occur. To better understand
the neurobiological mechanisms for creating and maintain-
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ing schemas in the Tse sense, they constructed a biologically
plausible neural network to learn context in a spatial memory
task. Their model suggests that this occurs through two pro-
cessing streams of indexing and representation, in which the
medial prefrontal cortex and hippocampus work together to
index cortical activity. Additionally, their study shows how
neuromodulation contributes to rapid encoding within con-
sistent schemas. The level of abstraction of the model further
provides a basis for creating context-dependent memories
while preventing catastrophic forgetting in artificial neural
networks.

This raises several interesting questions. The first is to
assess the extent to which Hwu and Krichmar’s two pro-
cessing streams of indexing and representation, in which the
medial prefrontal cortex and hippocampus work together to
index cortical activity, might be reconciled with the rela-
tion between PFC and hippocampus posited in the WG
model (and recall Teyler’s hippocampal indexing theory).
The second is to better understand how the notion of schemas
introduced here may be expressed in, or lead to the updating
of, the schema theory presented earlier. It appears that the
Tse-based notion is not rich enough to support the schema
assemblage view of scene understanding (whether visual or
not) as a process of constructing a schema assemblage, and
thus cannot support a process flexible enough to support
imagination in the extended sense that motivated the devel-
opment of IBSEN.

6.1.7 A computational model for spatial cognition
combining dorsal and ventral hippocampal place field
maps: multi-scale navigation

Scleidorovich et al. (2020) address the finding that place cells
are organized along the dorso-ventral axis of the hippocam-
pus according to their field size, with dorsal hippocampal
place cells having smaller field sizes than ventral place cells.
They address the view that the entire longitudinal axis of the
hippocampus may be involved in navigation. Based on this,
they present a spatial cognition reinforcement learningmodel
inspired by themulti-scale organization of the dorsal–ventral
axis of the hippocampus and evaluate it in a goal-oriented
task where simulated rats need to learn a path to the goal
from multiple starting locations in various open-field maze
configurations. Their results show that smaller scales of rep-
resentation are useful for improving path optimality, whereas
larger scales are useful for reducing learning time andnumber
of cells required. Moreover, combining scales can enhance
the performance of the multi-scale model, with a trade-off
between path optimality and learning time. Their work thus
seems to directly complement the study summarized next.

6.1.8 Bio-inspired multi-scale fusion

Hausler et al. (2020) claim that heterogeneous mapping
approaches (typically locally metric and globally topolog-
ical—such as that of the WG model) starkly contrast with
the neural encoding of space in mammalian brains: a multi-
scale map underpinned by spatially responsive cells like the
grid cells found in the rodent entorhinal cortex. But what is
the evidence for ruling outWG-likemaps?Recall that the key
datum on multi-scale coding of Kjelstrup et al. (2008) was
gathered as rats ran back and forth on an 18-meter-long linear
track, and the fact that place cells are remapped in different
environments. When visiting a shop, one is rarely able to
accurately estimate distance from home, or orientation rela-
tive to some fixed axis in the house. It is mistaken to conflate
what works for robots with access to a Global Positioning
System and highly accurate odometers with what works for
animals and humans that have at best a range of moderately
accurate “Relatively Local Positioning Systems” and noisy
odometers. Thus, while I welcome their analysis of multi-
scale representations, using current robotic place recognition
techniques at each scale—how many scales should there be,
what should the size ratio between consecutive scales be and
howdoes the absolute scale size affect performance? –I argue
that a hybrid approach such as that of TAM–WG showsmore
promise in addressing human and animal spatial cognition.

To close on a more positive note, studies by Milford
and other colleagues introduce important issues for realis-
tic approaches to place recognition that challenge us to more
fully assess how brains analyze visual data. Milford (2013)
asks how little visual information, and of what quality, is
needed to localize along a familiar route. His experiments
confirm that place recognition using single images or short
image sequences is poor, but improves to match or exceed
current benchmarks as thematching sequence length increas-
es—a good argument for memory based on sequences of
views (the simplest form of episode?) as unit, rather than
static images. More generally, Lowry et al. (2016) discuss
how greatly the appearance of real-world places can vary.
To ground specification of the major components of a place
recognition system, they survey-the role of place recognition
in animals and how a “place” is defined in a robotics context.
Finally, they discuss the implications of work on deep learn-
ing, semantic scene understanding, and video description. It
will be intriguing to see how these might feed back into our
study of brain mechanisms.

6.2 From spatial navigation to imagination

In this final section, I highlight a few challenges in moving
from IBSEN as a conceptual model toward IBSEN as a com-
putational model. In some sense, what follows is a to-do list
for searching the literature to seewhat already exists, whether
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for empirical data to constrain the modeling, or for models
that might be adapted to provide subsystems for implement-
ing IBSEN, whether at the schema-theoretic or biologically
plausible neural network level.

We have noted that there are distinct brain networks for
memory and imagination, although brain imaging shows
overlap between the activated areas. What then are the pro-
cesses supported in the shared region; and which of these
processes are deployed in concert with the “distinctive” brain
regions (those not in the overlap, but the overlap may remain
crucial for both processes) for episodicmemory versus imag-
ination?

The reader may be disturbed that, with VISIONS and
HEARSAY, I emphasized models that are 40 years old. Cer-
tainly, there are thousands of articles published in those four
decades that explain crucial phenomena in more computa-
tional detail and with greater fidelity. In partial extenuation,
I suggest that they lay bare in their own ways, key aspects of
cooperative computation in the spatial and temporal domains,
respectively.Understanding thesewill help clarify the emerg-
ing design of IBSEN at a conceptual level even as we ransack
the treasure trove of the literature to determine how best to fill
in the details. However, note that VISIONS and HEARSAY
were implemented on very limited serial computers and their
detailed implementation reveals this serial constraint. Thus,
when I invoke themhere I am invoking their schema-theoretic
frameworks, not their computer code. I am arguing for a
hybrid architecture in which some parts of the model are
left at the level of interacting schemas (hypotheses on whose
localization may be linked to imaging and lesion data) while
others (informed by neurophysiological studies of behaving
animals, such as the grasping monkey and the navigating rat)
can already be interpreted in more detailed neurobiological
terms.

Work on the latter can build, in part, on detailed mod-
els of visual object recognition, the MNS models of action
recognition mentioned above, and my group’s modeling
of visuomotor coordination of hand movements (Fagg and
Arbib 1998). This focused on the coordination of two visual
pathways, a dorsal stream (V1 via parietal cortex) to extract
affordances for motor control, and a ventral stream (V1 via
inferotemporal cortex) to recognize objects in relationship as
a basis for motor planning. Subsequent work has established
the role of diverse dorsal streams.Kravitz et al. (2011) charted
three dorsal pathways that complement the ventral pathway:
The parieto–premotor pathway that supports visually guided
actions (the one my group has modeled), the parieto–medial
temporal pathway that supports navigation (the one whose
elaboration could extend the TAM–WG model, especially
the linkage of affordances to locometric space in TAM); and
the parieto–prefrontal pathway that supports spatial working
memory (perhaps relevant to the “neutralization” of WG). In
a complementary paper, Kravitz et al. (2013) synthesize data

from neuroanatomy and functional analysis to propose that
the ventral pathway is best understood as a recurrent occip-
itotemporal network containing at least six distinct cortical
and subcortical systems, with each system serving its own
specialized behavioral, cognitive, or affective function.

Intriguingly, in their abstract Scleidorovich et al. (2020)
note that there are studies suggesting that ventral place
cells that are primarily involved in context and emotional
encoding. Exploring this notion thus remains an interesting
challenge. Might a rapprochement between WG theory and
the current models of HC explore how a neighborhood in the
current WG installs a coarse-scale locometric chart in ven-
tral HC,with bidirectional links thus establishing context and
motivational state, while that this in turn re-establishes the
appropriate fine-scale locometric chart in dorsal HC? This
raises three questions:

(i) Howwould such “installation” fromWG to ventralHC,
and then from ventral to dorsal HC, get neurally instan-
tiated?

(ii) How might the role of motivation in WG theory get
extended to emotion? Perhaps earlier collaboration
with Fellous (Arbib and Fellous 2004; Fellous and
Arbib 2005) may offer clues.

(iii) In discussing the visual control of arm and hand move-
ments, we suggested that the ventral path needs only
a coarse-scale representation to guide overall planning
of manual action, whereas the dorsal path offers a fine-
scale analysis of affordances to guide action metrics.
Given the findings of Kravitz et al. (2011) re-assessing
the dorsal pathway, might this be a useful parallel
in assessing the dorsal–ventral axis in HC? Another
challenge is to assess whether the Scleidorovich et al.
(2020) approach to understanding the benefits of hav-
ing place fields that vary along the dorso-ventral axis of
the hippocampus might enrich, and be enriched by, the
robotics-oriented perspective of Hausler et al. (2020).

My assumption is that the ventral stream provides several
stages for anatomicalization of IBSEN. This requires care-
ful investigation of the dorsal–ventral trade-off for each of
the three dorsal (Kravitz et al. 2013) and six ventral (Kravitz
et al. 2011) functions/pathways. But there are further data
for the new model to address. Maguire considers parahip-
pocampal cortex and hippocampus as her loci for scene
construction, while Baldassano et al. (2016) find evidence
for a two-network model of scene perception with two dif-
ferent streams quite different from those charted above. On
their account, the occipital place area and posterior parahip-
pocampal place area process the current visual features of
a scene, whereas the caudal inferior parietal lobule, retro-
splenial complex, and anterior parahippocampal place area
perform higher-level context and navigation tasks (drawing
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on long-term memory structures including the hippocam-
pus).

Finally, a link to language: Hassabis and Maguire (2009)
report on scans that cover “Brain regions active when recall-
ing imagined fictitious experiences that were previously
created in a pre-scan interview.” The good news is that the
imagined experiences are rich in detail; the bad news is that
the scan does not address the construction process itself but
does involve memory and language—and so may have some
secondary process of construction to fill in details. There
may be useful parallels between describing an imagined
scene/episode and describing a detailed photo of a scene as
one observes it. Elsewhere, we have modeled the latter pro-
cess by coupling VISIONS to a language processing system
based on Template Construction Grammar (TCG), in which
constructions are active schemas yielding schema instances
akin to those inVISIONS (Arbib 2017;Barrès andLee 2014).
In particular, Lee (2012) observed andmodeled thedifference
between the well-articulated description of a fully analyzed
scene and the piecemeal description that emerges under time
pressure. Perhaps the latter may provide a bridge to the han-
dling of new vistas while navigating—experiencing the route
while uttering/behaving on the basis of current affordances.
Such analysis of verbal expression linked to navigation in
familiar versus unfamiliar environments might be a useful
tool for further assessing the role of the locale versus taxon
systems in relation tomemory,with perhaps the former impli-
cating episodic memory whereas the latter does not.

My aim here has been to create a broad framework within
which specific modeling efforts may be located that extend
analysis of spatial navigation (the theme of this special
issue) to incorporate episodic recall as well as imagination
in the sense of creating “virtual experiences that have not
been experienced before.” Such imagination does not live
in the WG space of navigation. Rather, it exists in some-
thing like theWorkingMemory in the extension of VISIONS
hypothesized as part of IBSEN, but now extracting material
from diverse images to create a new assemblage of schema
instances that satisfies some criteria. In autobiographical
memory, we extract certain related episodes that cohere into
some sort of narrative. In imagination, we form new “vir-
tual episodes” that form a new narrative that may involve
an equilibrium—as in drawing or writing—between exter-
nal and internal constructions, or which may be achieved
internally as a coherent pattern emerges in long-term mem-
ory. To go beyondmy sketch of IBSEN, futuremodelersmust
develop computationalmodels (whether at the schema and/or
neural network level). As McCulloch said, “look where I am
pointing.” As for the implications of all this in responding to
Zumthor’s thoughts on architectural design, I refer the reader
to the final chapter of When Brains Meet Buildings (Arbib
2021).
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