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Scalable Motion Planning Using Lazy SMT-Based Solving

Yasser Shoukry†§ Pierluigi Nuzzo† Indranil Saha∗∗

Alberto L. Sangiovanni-Vincentelli† Sanjit A. Seshia† George J. Pappas∗ Paulo Tabuada§

Abstract—We present a scalable robot motion planning al-
gorithm for reach-avoid problems. We assume a discrete-time,
linear model of the robot dynamics and a workspace described
by a set of obstacles and a target region, where both the
obstacles and the region are polyhedra. Our goal is to construct
a trajectory, and the associated control strategy, that steers the
robot from its initial point to the target while avoiding obstacles.
Differently from previous approaches, based on the discretization
of the continuous state space or uniform discretization of the
workspace, our approach, inspired by the lazy satisfiability
modulo theory paradigm, decomposes the planning problem
into smaller subproblems, which can be efficiently solved using
specialized solvers. At each iteration, we use a coarse, obstacle-
based discretization of the workspace to obtain candidate high-
level, discrete plans that solve a set of Boolean constraints, while
completely abstracting the low-level continuous dynamics. The
feasibility of the proposed plans is then checked via a convex
program, under constraints on both the system dynamics and
the control inputs, and new candidate plans are generated until
a feasible one is found. To achieve scalability, we show how to
generate succinct explanations for the infeasibility of a discrete
plan by exploiting a relaxation of the convex program that
allows detecting the earliest possible occurrence of an infeasible
transition between workspace regions. Simulation results show
that our algorithm favorably compares with state-of-the-art
techniques and scales well for complex systems, including robot
dynamics with up to 50 continuous states.

I. INTRODUCTION

Algorithmic control synthesis from formal specifications
captured by logic formalisms, such as Linear Temporal Logic
(LTL) [1], holds considerable promise for providing correct-
by-construction controllers for a rich set of tasks [2]–[8]
and safety-critical applications in robotics (e.g., in naviga-
tion, manipulation, and surgery) and autonomous systems
(e.g., unmanned aircraft and self-driving cars). However, the
complexity of today’s systems poses a set of unprecedented
challenges to synthesis techniques.

A major difficulty stems from the need to reason about the
tight integration of discrete abstractions (as in task planning)
with continuous motions (motion planning) [9]. This integra-
tion can become daunting for complex, high-dimensional sys-
tems, since a vast discrete/continuous space must be searched
while accounting for complex geometries, motion dynamics,
collision avoidance, and temporal goals. In complex systems,
effective discrete planning techniques may produce solutions
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that are not realizable due to constraints imposed by dynamics;
on the other hand, effective methods for generating collision-
free and dynamically-feasible trajectories may end up with
violating the constraints imposed by the task planner.

In this paper, we address these challenges by focusing on
an essential motion planning problem, which is embedded in
almost all robotics applications, i.e., the reach-avoid problem.
Given the robot dynamics, described as a discrete-time linear
system, an initial state, a description of the workspace, and
a target region, we aim at planning a collision-free and
dynamically-feasible motion trajectory that steers the robot
from its initial point to the target region. However, our
approach can be directly extended to motion planning from
generic LTL specifications by leveraging the bounded model
checking encoding technique for LTL model checking by
Biere et al. [10] to encode the discrete planning problem.

A growing body of work has focused, over the years, on the
synthesis of reactive controllers to perform high-level tasks. A
first category of techniques in the context of motion planning
utilizes a discrete abstraction of the system, often obtained by
partitioning the continuous state space into polytopes, and an
automata theoretic approach to synthesize the controller [2]–
[6]. However, these approaches are subject to the curse of
dimensionality and become usually impractical for systems
with more than five continuous states [11]. Moreover, some of
these approaches assume the availability of low-level feedback
controllers that are capable of generating feasible trajectories
that are compatible with each automaton action, which may
not always be the case for complex robotic systems. A second
category of approaches attempts at synthesizing the high-level
planner together with the associated low-level controller, by
either leveraging mixed integer linear programming (MILP)
encodings of task specifications [12], [13] or sampling-based
methods [14], [15]. MILP-based planners can leverage the
empirical performance of state-of-the-art solvers to solve for
both the discrete and continuous constraints at the same time;
however, they still tend to be impractical when the problem
size grows. On the other hand, sampling-based techniques tend
to perform poorly on the obstacle avoidance problem in the
presence of narrow passages [16], and do not have, in general,
control over the number of hops of the generated trajectory.

In this paper, we propose a scalable solution for the integra-
tion of task planning and robot motion planning. Differently
from previous approaches, based on the discretization of
the continuous state space or uniform discretization of the
workspace, our algorithm, inspired by the lazy Satisfiability
Modulo Theory (SMT) paradigm [17], aims at decomposing
the planning problem into smaller subproblems, involving only
Boolean or only convex constraints, which can be efficiently
solved using specialized solvers.
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Fig. 1. Pictorial representation of the workspace, obstacles, and target for
a reach-avoid problem. The initial state of the robot, including both position
and angle, is represented by the red star and arrow.

Our methodology differs from classical approaches to reach-
avoid problems [18]–[20], e.g., based on the solution of
a Hamilton-Jacobi-Isaacs equation. Rather than formulating
a complete, general optimization problem, which may be
computationally challenging, we focus on solving a special
case accurately and efficiently. We then aim at leveraging
this result as a building block to solve more general prob-
lems, e.g., by supporting complex LTL specifications, through
abstraction and refinement techniques. In this respect, our
methods are also inspired by the counterexample-based control
approaches [21]. Simulation results show that our algorithm
favorably compares with other state-of-the-art techniques. For
brevity, we omit here the proofs of the main technical results
and report them in an extended version of the paper [22].

II. PROBLEM FORMULATION

We consider a robot that moves in a workspace W ⊂ Rw
where w can be 2 or 3, corresponding, respectively, to a 2-
dimensional or 3-dimensional workspace. We use ||a|| to denote
the infinity norm of a and formulate the reach-avoid motion
planning problem as follows.

A. Robot Model

We assume the robot dynamics is described by a discrete-
time, input-constrained, linear system of the form:

xt+1 = Axt +But, (II.1)
x0 = x, ||ut|| ≤ u ∀t ∈ N (II.2)

where xt ∈ X ⊆ Rn is the state of the robot at time t ∈ N,
ut ∈ U ⊆ Rm is the robot input, x is the robot initial state and
u is the input constraint. The matrices A and B represent the
robot dynamics and have appropriate dimensions. For a robot
with nonlinear dynamics that is either differentially flat or
feedback linearizable, the state space model (II.1) corresponds
to its feedback linearized dynamics.

B. Workspace

We assume the robot must avoid a set of obstacles O =
{O1, . . . ,Oo}, with Oi ⊂ Rw, and represent the workspace
as W = W0 ∪ WG, where WG is a region of interest (the
target region or Goal) and W0 is the free space, characterized
by the absence of both obstacles and target. As pictorially
represented in Fig. 1, both the target region and the obstacles
are assumed to be polygons.

To better describe the interplay between discrete planner
and continuous planner in our algorithm, it is also useful
to uniquely associate to the target region and the free space
defined above an atomic proposition in the set Π = {π0, πG}.
We then denote by hW→Π :W → Π the map from each point
w ∈ W to the atomic proposition πi ∈ Π that evaluates to one
(true) at w. Moreover, a subset of the robot state variables,
describing its position (coordinates), is also used to describe
W . Therefore, we denote as hX→W : X → W the natural
projection of the state x onto the workspaceW , and by hX→Π

the map from the robot state to the set of atomic propositions,
obtained after projecting the state onto the workspace, i.e.,
hX→Π(x) = hW→Π(hX→W(x)).

Finally, given the set W = {W0,WG}, we introduce an
adjacency function Adj : W × W → B over the pairs of
non-overlapping elements in W such that Adj(Wi,Wj) = 1
if Wi and Wj are adjacent and 0 otherwise1. Because of the
one-to-one correspondence between elements inW and atomic
propositions in Π, we also write Adj(πi, πj) = 1 if πi and πj
are associated with adjacent regions in W and 0 otherwise.
Moreover, for all i, Adj(πi, πi) = 1 holds.

C. Problem Definition

Definition 2.1 (Input Problem Instance): An input problem
instance is defined as the tuple P = 〈W,Π, Adj, (A,B), x, u〉,
where:
• W is the workspace,
• Π is the set of atomic propositions corresponding to the

target and the free space,
• Adj is the adjacency function defining the connectivity

of the different regions in the workspace,
• (A,B) is the robot dynamics,
• x is the initial state of the robot,
• u is the bound on the robot inputs.
Definition 2.2 (Trajectory): A trajectory of a robot for an

input problem instance P = 〈W,Π, Adj, (A,B), x, u〉 is
defined as a pair of finite sequences (x, ρ) where x =
x0x1x2 . . . xL+1, with xi ∈ X , is a sequence of states
and ρ = ρ0ρ1ρ2 . . . ρL+1, with ρi ∈ Π, is a sequence of
propositions associated with the workspace regions, and such
that hX→Π(xi) = ρi for any 0 ≤ i ≤ L + 1. Because of
the one-to-one correspondence between workspace regions and
atomic propositions, we also use ρW to denote the sequence
of regions associated with ρ, and call ρ (or ρW ) the region
trajectory.

Definition 2.3 (Valid trajectory): For an input problem in-
stance P = 〈W,Π, Adj, (A,B), x, u〉, a trajectory (x, ρ) is
called a valid trajectory, if the following holds:
• Initial state constraint: x0 = x,
• Dynamics and input constraints: there exists ui such

that xi+1 = Axi +Bui and ||ui|| ≤ u,
• Workspace constraints: Adj(ρi, ρi+1) = 1 ∀ i : 0 ≤
i ≤ L+ 1,

• Final state constraints: ρL+1 = πG.

1Two polyhedra in Rw are adjacent if they share a facet of dimension w−1.
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Fig. 2. Coarse discretization of the free space for the workspace in Fig. 1,
for the same configuration of obstacles and target region. On the left side,
a candidate path to satisfy the reach-avoid specification with πG = π28 is
highlighted in blue. On the right side, an alternative path to the same goal is
proposed.

We now formally define the motion planning problem that
we solve in this paper.

Problem 2.4 (Motion Planning Problem): Given an input
problem instance P = 〈W,Π, Adj, (A,B), x, u〉, synthesize
a valid trajectory for the robot.

III. SMT-BASED SOLUTION

The problem of synthesizing a robot motion plan under
constraints on the continuous dynamics is traditionally solved
using expensive discretizations of the state space, which typi-
cally lead to state explosion as the number of continuous states
and the number of obstacles increases. Our strategy aims,
instead, at creating coarser abstractions of both the state space
and the workspace, thus effectively decoupling the problem
of generating an obstacle-free path from the one of checking
its physical realizability. By leveraging the lazy satisfiability
modulo theory (SMT) paradigm [17], we then partition the
planning problem into two smaller subproblems involving
reasoning, respectively, on sets of discrete and continuous
variables from the original problem. These subproblems can
be efficiently solved using specialized techniques, following a
similar approach as in the CALCS [23] and IMHOTEP-SMT
solvers [24]–[26].

As illustrated in Algorithm 1 and Fig. 2, we start by
computing a multi-resolution discretization of the free space
W0 based on the obstacles and the target. Unlike grid-based
methods, where the workspace is discretized using a grid (or
mesh) of (small) uniform resolution, the coarse abstraction
used by our method avoids state explosion. Our decomposition
procedure is similar to the ones previously proposed in the
literature for triangular [27] or polygonal [18] representations.
After the discretization step, we generate a new set Π∗ of
atomic propositions, representing the new abstraction, and the
corresponding adjacency function, denoted by Adj∗.

Based on the above discretization, our solution follows an
iterative approach combining a SAT solver (DIS-PLAN) and
a theory solver (CON-PLAN). At each iteration, we start by
generating a candidate high-level path ρ that satisfies the
set of constraints of the reach-avoid problem, encoded using
a Boolean formula ξ. Since this path is only defined over
the set of Boolean propositions Π∗, its computation will
ignore the robot dynamics and the input constraints. Because
of the coarse abstraction of the workspace, the number of
atomic propositions in Π∗ is only determined by the obstacle
configuration in the workspace and does not depend on the

Algorithm 1 SMT-BASED MOTION PLANNER

1: (Π∗,W∗, Adj∗) := WKSP.ABSTRACT(Π,W, Adj);
2: Initialize the horizon: L := 1;
3: while Trajectory is not found do
4: (DSTATUS, ρ) := DIS-PLAN(Π∗, Adj∗, ξ);
5: if DSTATUS == UNSAT then
6: Increase horizon: L := L+ 1;
7: else
8: (CSTATUS, x, u) := CON-PLAN.CHECK(x, u, ρ);
9: if CSTATUS == Infeasible then

10: φce := CON-PLAN.COUNTEREXAMPLE(x, u, ρ);
11: ξ := ξ ∧ φce;
12: return (ρ, x, u);

state dimension of the continuous dynamics. This step can
then be performed efficiently using off-the-shelf SAT solvers.

We can then check the feasibility of the generated path
ρ with respect to the system dynamics (A,B), the control
inputs u, and the robot initial state x, by casting it as a convex
optimization problem. In fact, while generating a path that sat-
isfies both the robot dynamics and the constraints imposed by
the reach-avoid problem may be, in general, non-convex, our
SMT-based architecture is able to reason about this complex
problem by decomposing it into a sequence of smaller sub-
problems, each combining a Boolean satisfiability problem,
defined only over Π∗, and a convex optimization problem,
defined only over the real-valued variables x (state) and u
(input). If both the Boolean and the real-valued constraints are
satisfied, we return a valid trajectory consisting of the proposed
plan and the corresponding state and control input trajectories.
Otherwise, the proposed sequence ρ is marked as infeasible
and new candidate plans are generated, such as the ones in
Fig. 2, until a feasible one is found.

In this iterative scheme, learning “succinct explanations”
that can capture the root causes for the infeasibility of a
plan, and rule out the largest possible number of invalid plans
per iteration, is instrumental to achieve fast convergence and
scalability. To do so, we exploit convex programming to check
the feasibility of a plan in terms of a conjunction of continuous
constraints while minimizing a certain cost. We then use a
relaxation of the continuous trajectory feasibility problem with
slack variables to detect the earliest possible occurrence of
an infeasible transition between two workspace regions and
suggest the generation of plans that can avoid such a transition.

In what follows, we provide details on both the discrete
and continuous plan generation mechanisms, including the
implementation of DIS-PLAN and CON-PLAN, as well as on
the generation of succinct infeasibility proofs.

IV. GENERATION OF THE HIGH-LEVEL DISCRETE PLAN

As represented in Fig. 1, a classic reach-avoid specification
defines an initial point, a Goal (target) region (WG =W1), and
a set of obstacles to avoid. Given an input problem instance
P = 〈W,Π, Adj, (A,B), x, u〉 for this problem, DIS-PLAN
performs a multi-resolution discretization of the free space
and generates a formula that represents any valid trajectory



(x, ρ) of the robot. The decision variables for the formula are
given by the sequence of atomic propositions associated with
the regions to be occupied by the robot. Given the new set Π∗

of atomic propositions associated to the workspace regions
after discretization of the free space, and the corresponding
adjacency function Adj∗, we represent the region trajectory
ρ as ρ = (ρ0ρ1 . . . ρL+1), where ρ0 = ρ = hX→Π∗(x) is
the atomic proposition associated with the initial state of the
system (π1 in Fig. 2), and ρL+1 is the Goal region (π28 in
Fig. 2). For instance, for the scenario in Fig. 2, we obtain
Π∗ = {π1, . . . , π30}.

The set of constraints for the workspace can be captured by
the following formula:

ξ ≡ (ρ0 = ρ) ∧ (ρL+1 = Goal) ∧
L+1∧
t=1

ρt ∈ N (ρt−1),

where N (ρi) = {πj ∈ Π∗ |Adj∗(πi, πj) = 1} denotes the
set of regions that are adjacent (neighbors) to ρi. The above
formula enforces that the trajectory starts with the initial
region, associated with ρ, and proceeds to the Goal region
while only visiting regions that are adjacent. We observe that
obstacle avoidance is implicitly encoded by the fact that Π∗

and Adj∗ are defined only over the regions of interest and the
free space. To support generic LTL specifications, DIS-PLAN
can use the bounded model checking encoding technique for
LTL model checking [10] to generate high-level plans that
satisfy the specifications. The Boolean formula ξ can then be
solved using a SAT solver to generate a model ρ.

V. GENERATION OF THE CONTINUOUS TRAJECTORY

Given a region trajectory ρ specifying (L + 1) polyhedra
to be visited by the robot, the continuous planner CON-PLAN
simultaneously performs two tasks: (1) it checks whether ρ is
feasible given the constraints on the robot dynamics (CON-
PLAN.CHECK); if ρ is not feasible, it generates counterex-
ample formulas describing the “minimal” set of inconsistent
constraints (CON-PLAN.COUNTEREXAMPLE). To detail these
tasks, we first consider the following definition.

Definition 5.1: Let B′ be a matrix chosen such that the map[
B B′

]
is surjective. Let s be defined as the least upper

bound on the value of the slack variable s = su+sv such that
the following constraints:

x = Ax′ +Bu+B′v

hX→W(x) ∈ ρW hX→W(x′) ∈ ρW′

||u|| ≤ u+ su ||v|| ≤ sv
0 ≤ su 0 ≤ sv

are feasible for any two adjacent regions W,W ′ and for any
two states x ∈ W and x′ ∈ W ′.

The value of s can be easily pre-computed offline for a
given workspace and obstacle configuration, and a given dis-
cretization associated with the set Π∗ of atomic propositions.
Then, for a constant tolerance ε ∈ R>0 and the same choice
of B′ we define the following problem:

Problem 5.2:

min
u0,...,uL∈Rm

v0,...,vL∈Rm

su0 ,...,s
u
L∈R

sv0 ,...,s
v
L∈R

x1,...,xL+1∈Rn

L∑
i=0

sui + svi

subject to
x0 = x,

hX→W(xi) ∈ ρWi , i = 1, . . . , L+ 1

xi+1 = Axi +Bui +B′vi i = 0, . . . , L

||ui|| ≤ u+ sui , i = 0, . . . , L

||vi|| ≤ svi , i = 0, . . . , L

0 ≤ sui , 0 ≤ svi i = 0, . . . , L

s

ε

(
i−1∑
k=0

suk + svk

)
≤ sui + svi i = 1, . . . , L

Because the region ρWi , for all i, is a polyhedron, Problem 5.2
is a linear program that can be efficiently solved. If the
condition

∑L
i=0(sui + svi ) ≤ ε is satisfied, then the high-level

plan is feasible and the state and input trajectories generated by
Problem 5.2 are valid trajectories. If, instead,

∑L
i=0(sui +svi ) ≤

ε is not satisfied, then we obtain a counterexample, i.e., an
infeasible trajectory that can be used to augment the original
SAT encoding with additional Boolean constraints that forbid
the current assignment. However, as anticipated in Sec. III,
we aim, instead, at generating succinct infeasibility proofs
that can precisely detect the origin of inconsistency and rule
out a broader class of assignments to Boolean variables. It is
possible to generate a more compact formula by detecting the
earliest possible occurrence of an infeasible transition between
two regions in ρ. The following theorem guarantees that this
infeasibility proof can be retrieved from the information in the
slack variables sui , s

v
i in Problem 5.2.

Theorem 5.3: Let s ∈ R>0, as in Definition 5.1, and
ε ∈ R>0 satisfy s ≥ ε. Define the function ZEROPREFIXε :
RL+1
≥0 → N as:

ZEROPREFIXε(s0, s1, . . . , sL) = min k s.t.
k∑
i=0

si > ε.

Then, an optimal solution of Problem 5.2 is also an optimal
solution of the following optimization problem:

max
u0,...,uL∈Rm

v0,...,vL∈Rm

su0 ,...,s
u
L∈R

sv0 ,...,s
v
L∈R

x1,...,xL+1∈Rn

ZEROPREFIXε((s
u
0 + sv0), . . . , (suL + svL))

subject to

x0 = x,

hX→W(xi) ∈ ρWi , i = 1, . . . , L+ 1

xi+1 = Axi +Bui +B′vi i = 0, . . . , L

||ui|| ≤ u+ sui , i = 0, . . . , L



Algorithm 2 (CSTATUS, x, u, φce) = CON-PLAN(ρ)

1: Solve Problem 5.2;
2: ∀ i : s∗i = sui + svi ;
3: if

∑L
i=0 s

∗
i = 0 then

4: CSTATUS = feasible;
5: return (CSTATUS, x∗, u∗, 1)
6: else
7: CSTATUS = infeasible;
8: Let k∗ := ZEROPREFIXε(s

∗
0 . . . s

∗
L+1);

9: φce :=
∨k∗+1
i=0 ¬ρi;

10: return (CSTATUS, x∗, u∗, φce);
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Fig. 3. Trajectories generated by the SMT-based motion planner for a maze-
like workspace with different numbers of passages.

||vi|| ≤ svi , i = 0, . . . , L

0 ≤ sui , 0 ≤ svi i = 0, . . . , L

Intuitively, for small ε, ZEROPREFIXε returns the number of
zero elements at the beginning of a sequence s = s0, . . . , sL,
i.e., the length of its “zero prefix.” Using this function, we can
then look for sequences of slack variables that maximize the
number of initial elements set to zero and introduce nonzero
elements only when necessary. Generating a compact formula
then amounts to finding the earliest occurrence of a nonzero
slack, i.e., the earliest occurrence of an infeasible transition
between two regions. The counterexample takes the following
form:

φce :=

k∗+1∨
i=0

¬ρi, (V.1)

where k∗ is equal to the ZEROPREFIX of the slack variables
sequence generated by solving Problem 5.2. This result is
summarized in Algorithm 2. By leveraging Theorem 5.3, we
can state the following guarantees of Algorithm 1.

Theorem 5.4: The SMT-based motion planning Algo-
rithm 1 generates a valid trajectory (x, ρ) for the reach-avoid
motion planning problem P = 〈W,Π, Adj, (A,B), x, u〉.

VI. RESULTS

We developed our theory solver in MATLAB and interfaced
it with the SAT solver SAT4J [28], to generate the discrete
plans, and CPLEX, to solve the LPs and generate the coun-
terexamples. All the experiments were executed on an Intel
Core i7 3.4-GHz processor with 8 GB of memory.

TABLE I
COMPARISON OF THE RUN TIME PERFORMANCE OF ALGORITHM 1 WITH

RESPECT TO THE RRT ALGORITHM [29] AND THE LTL OPT
TOOLBOX [13] FOR A MAZE-LIKE WORKSPACE (E.G., SEE FIG. 3).

Number SMT-Based Motion Planner [s] RRT LTL
of Discrete DIS-PLAN CON-PLAN [s] OPT

passages abstraction [s]
1 1.9975 0.1360 0.2542 10.4381 > 7200
2 7.1461 1.1290 0.9294 122.3017 time out
3 19.3267 3.6495 1.0053 423.6957 time out
4 43.0985 4.0913 1.9204 1002.4193 time out

A. Case Study 1: Dubin’s Vehicle

We demonstrate the effectiveness of our motion planning
algorithm by applying it to a reach-avoid problem for a
Dubin’s vehicle (also known as differential drive robot). The
kinematics of this robot can be transformed into a linear
chain of integrators using dynamic feedback linearization.
A discrete-time linear model is then computed from the
feedback linearized model. As shown in Table I, we consider
a 30m×30m maze-like workspace with increasing number of
passages, ranging from one to four. Since automata theoretic
approaches to control synthesis are known to be subject to state
explosion, we directly compare the performance of our SMT-
based motion planner against the rapidly exploring random
tree (RRT) algorithm with dynamics and input constraints [29]
and the LTL OPT toolbox [13], which implements a one-shot
MILP encoding of the specification. LTL OPT is configured to
use CPLEX as in our tool. We run each experiment 10 times
and report the average execution time of each of the three
algorithms. Fig. 3 shows some of the generated trajectories.

As shown in Table I, Algorithm 1 scales better than other
techniques. We observe that most of the execution time is spent
in the generation of the workspace discretization. Solving
multiple instances of SAT and LPs is efficiently performed
thanks to the proposed solver architecture and its underlying
abstractions. On our benchmarks, Algorithm 1 is at least an
order of magnitude faster than the RRT method, which is
known to significantly slow down in the presence of narrow
passages. Specifically, in the maze with one passage, RRT
explored 58397 samples to find a feasible trajectory, i.e., two
orders of magnitude more samples than the length of the
final trajectory. On the contrary, each passage is compactly
represented just as a polyhedron in our setup.

The execution time of LTL OPT exceeded the time-out
threshold (4 hours) in all the cases except for the 1-passage
maze. The degradation in performance may be due to the very
large number of variables (several thousands) of the resulting
MILP, the number of variables depending on the length of
the trajectory. Thanks to the separation between real-valued
and Boolean variable reasoning, Algorithm 1 requires, instead,
solving a set of very efficient LPs.

B. Case Study 2: Scalability Results

Curse of dimensionality is known to be a major concern
when applying formal methods to control synthesis and robotic
applications. In this case study, we assess the effectiveness of
the algorithms introduced in Sec. III-V in terms of scalability.
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Fig. 4. Execution time of the motion planner for different maze-like
workspace configurations as a function of the number of continuous states.

We consider again the maze-like workspace with increasing
number of passages as in Sec. VI-A, and we investigate the
execution time as we increase the number of states n. For
each test case, we randomly generate the matrices A and
B and average the computation time over 10 runs of the
same experiment. Albeit not offering a statistical significant
sample, our results are representative of the several simulations
performed while testing our solver.

Fig. 4 shows, on a logarithmic scale, the execution time
of the proposed motion planner as n increases. In all tests,
we report the cumulative time due to both the discrete and
continuous planners. The time to compute the discrete ab-
stractions is equal to the one reported in Tab. I. Thanks to
the proposed architecture, the dimension of the continuous
state space only affects the number of variables of the linear
programs in Sec. V. Even for systems with up to 50 state
variables, the execution time ranges from 1.64 s (maze with
one passage) to 152 s (maze with 4 passages), showing the
potential of our approach to be deployed on complex robotic
systems.

VII. CONCLUSIONS

We presented a scalable algorithm for reach-avoid robot
motion planning under the assumption of discrete-time, linear
dynamics and workspaces described by unions of polyhedra.
The proposed algorithm scales well for systems with up to
50 continuous states. Future work includes extending the
proposed techniques to motion planning from generic LTL
specifications, multi-robot motion planning, and planning in
the presence of uncertainties in the dynamics and bounded
disturbances.
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