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Abstract

Connecting Mean-field Games and Generative Adversarial Networks

by

Haoyang Cao

Doctor of Philosophy in Engineering – Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

The theory of mean-field games (MFGs) belongs to a branch of game theory that studies
a large population of (weakly) interacting players. It serves as an analytically feasible
framework to approximate stochastic differential games when the number of players is large
and detailed characterization of the interactions is computationally expensive. As an effective
modeling tool, the theory of MFGs attracts the attention of a variety of application fields in
economics, finance and engineering. On the computation front, the development of machine
learning provides abundant computational methods of solving for MFGs, which is remarkably
meaningful in practice. At the same time, people may also wonder if the theory of MFGs, or
stochastic analysis in general, could benefit the machine learning community.

This thesis starts with two MFG models, with singular and impulse types of controls,
respectively. Theses two control types allow certain degrees of discontinuity, making them
better mathematical models compared with regular controls where the interventions must be
absolute continuous. However, due to the theoretical challenges brought by the discontinuous
nature of the controls, these two models are less explored in existing literature compared with
MFGs with regular controls. Both models are motivated by real-world problems. Explicit
solutions to the MFGs are presented and shown to approximate Nash equilibria of the
corresponding N -player games with an error of the order O

(
1√
N

)
. Further analysis of the

solutions reveals the game effect from interacting with the mean-field.

Obtaining analytical solutions of MFGs is difficult in general. The thesis then turns to the
computation side of MFGs and establish the connection with generative adversarial networks,
a celebrated deep learning tool that enjoys tremendous empirical success since its introduction
to the machine learning community. It first shows a conceptual connection between GANs
and MFGs: MFGs have the structure of GANs, and GANs are MFGs under the Pareto
Optimality criterion. Interpreting MFGs as GANs, on one hand, enables a GANs-based
algorithm (MFGANs) to solve MFGs: one neural network (NN) for the backward HJB
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equation and one NN for the forward FP equation, with the two NNs trained in an adversarial
way. Viewing GANs as MFGs, on the other hand, reveals a new and probabilistic aspect of
GANs. This new perspective, moreover, leads to an analytical connection between GANs
and Optimal Transport (OT) problems, and sufficient conditions for the minimax games
of GANs to be reformulated in the framework of OT. Numerical experiments demonstrate
superior performance of this proposed algorithm, especially in higher dimensional case, when
compared with existing NN approaches.

Finally, the thesis explores the possibility of enriching the theoretical understanding of the
training of GANs from the perspective of stochastic analysis. It establishes approximations,
with precise error bound analysis, for the training of GANs under stochastic gradient
algorithms (SGAs). The approximations are in the form of coupled stochastic differential
equations (SDEs). The analysis of the SDEs and the associated invariant measures yields
conditions for the stability and the convergence of GANs training. Further analysis of
the invariant measure for the coupled SDEs gives rise to a fluctuation-dissipation relations
(FDRs) for GANs, revealing the trade-off of the loss landscape between the generator and
the discriminator and providing guidance for learning rate scheduling.
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Chapter 1

Introduction

The pioneering works of Lasry and Lions[121] and Huang, Malhamè and Caines [102] lead
to a rapid theoretical development of mean-field games (MFGs) studying decision making
among a large population of players. There are three primary inspirations for MFGs (see
[83]). The first is from particle physics, especially when the number of interacting particles
in the system is so large that detailed modeling of all interactions becomes ineffective. The
concept of mean-field serves as an approximation of such inter-particle interactions. The
second is from game theory. MFGs are to approximate N -player games when N is large and
exact characterization of an equilibrium becomes infeasible. The third is from economics.
MFGs model general economic equilibrium among rational people where each individual only
pays attention to her own interest and the market signals. The theory of MFGs has enjoyed
tremendous growth. The existence of a solution and the relation between MFGs and the
corresponding N -player games have been studied with both PDE approaches (see for instance
[121, 40, 22]) and probabilistic methods (see for example [45, 46, 47, 118, 117]). Besides the
development in theory, MFGs also attract the attention from various fields of applications,
such as systemic risk problem [48], price impact problem [41, 4], optimal execution [103],
algorithmic trading [51], portfolio management [120], growth theory [82], exhaustible resources
[15, 83], power grid [10], production and inventory management [177], and so on.

While the past decade has witnessed a remarkable growth in the theory of MFGs, a
majority of the theoretical results are established under regular control regime where the
intervenes are absolutely continuous. For many engineering and economic problems, however,
the interventions are not absolutely continuous and sometimes even discontinuous. Moreover,
the derivation of an analytical form of MFG solutions largely remains a challenge beyond
the linear-quadratic settings or other special cases. It calls for novel computational methods
for MFGs, especially those incorporating machine learning techniques. Among the various
computational tools in machine learning community, GANs are most active fields and have
been enjoying great empirical success. Nonetheless, there are well recognized issues in GANs
training, such as the vanishing gradient when the discriminator significantly outperforms the
generator [5], the mode collapse which is believed to be linked with gradient exploding [152],
and the challenge of GANs convergence [12].
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This thesis will first develop the theoretical results of MFGs beyond the regular control
paradigm, then propose a novel computational method for MFGs using generative adversarial
networks (GANs) and discuss the conceptual connection between GANs and MFGs, and finally,
analyze the convergence of GANs training via an approximation by stochastic differential
equations.

In particular, Chapter 2, based on [38], will analyze a class of infinite-time-horizon MFGs
with singular controls motivated from the partially reversible problem. It will first establish
the existence of a solution when controls are of bounded velocity adapting the method of
relaxed control from [118] to a new topological space. It then will provide an explicit solution
when the controls are of finite variation, present sensitivity analysis sensitivity analysis to
compare the MFG solution with that of the single-agent control problem and establish its
approximation to the corresponding N -player game in the sense of ε-NE, with ε = O

(
1√
N

)
.

Chapter 3, based on [14], will discuss a general class of nonzero-sum N -player stochastic
games with impulse controls, where players control the underlying dynamics with discrete
interventions. It will adopt a verification approach and provide sufficient conditions for the
Nash equilibria (NEs) of the game. It will then study the limit situation of N →∞, that is,
an MFG with impulse controls and show that under appropriate technical conditions, the
existence of unique NE solution to the MFG, which is an ε-NE approximation to the N -player
game, with ε = O

(
1√
N

)
. It will analyze in details a class of two-player stochastic games

which extends the classical cash management problem to the game setting. In particular, we
present numerical analysis for the cases of the single player, the two-player game, and the
MFG, showing the impact of competition on the player’s optimal strategy, with sensitivity
analysis of the model parameters.

Chapter 4, based on [39], will first show a conceptual connection between GANs and
MFGs: MFGs have the structure of GANs, and GANs are MFGs under the Pareto Optimality
criterion. It will then present a novel GANs-based algorithm to compute MFG solutions based
on the interpretation of MFGs as GANs: one neural network for the backward Hamilton-
Jacobi-Bellman equation and one neural network for the forward Fokker-Planck equation, with
the two neural networks trained in an adversarial way; numerical experiments will demonstrate
superior performance of this proposed algorithm, especially in higher dimensional case, when
compared with existing neural network approaches. Viewing GANs as MFGs, on the other
hand, will reveal a new and probabilistic aspect of GANs. This new perspective, moreover,
will lead to an analytical connection between GANs and Optimal Transport (OT) problems,
and sufficient conditions for the minimax games of GANs to be reformulated in the framework
of OT.

Finally, Chapter 5, based on [37], will establish approximations, with precise error bound
analysis, for the training of GANs under stochastic gradient algorithms (SGAs). The
approximations will be in the form of coupled stochastic differential equations (SDEs). The
analysis of the SDEs and the associated invariant measures will yield conditions for the
stability and the convergence of GANs training. Further analysis of the invariant measure
for the coupled SDEs will give rise to a fluctuation-dissipation relations (FDRs) for GANs,
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revealing the trade-off of the loss landscape between the generator and the discriminator and
providing guidance for learning rate scheduling.

1.1 Review on mean-field games

1.1.1 A simple example

We will use the following simple example from [83] to illustrate the essential ideas and
technical components of MFGs. A meeting scheduled from time t often starts some time later
than t, say T . The actual starting time T depends on the arrivals of participants. A rule is
imposed saying that the meeting will start once a certain quorum is reached, i.e. the meeting
starts at time t or after 90% of the participants have arrived, whichever is earlier. Assume the
number of participants is so large that we consider them as a continuum of players. Players
are rational, interchangeable and aware of all information provided. Let τi denote the time at
which a representative player i decides to arrive, and τ̃i denote time at which player i actually
arrives, that is,

τ̃i = τi + σiεi

where σiεi is the uncertainty player i is subject to; the distribution of σi among population is
m0 and εi∼N(0, 1), i.i.d. across all players. Player i makes her decision upon minimizing the
expectation of the total cost E[c(t, T, τ̃i)] where

c(t, T, τ̃i) = c1(t, T, τ̃i) + c2(t, T, τ̃i) + c3(t, T, τ̃i)

consists of c1(t, T, τ̃i) = α[τ̃i − t]+ the penalty on lateness compared to the scheduled time t,
c2(t, T, τ̃i) = β[τ̃i − T ]+ the penalty on lateness compared to the actually time T , and finally
c3(t, T, τ̃i) = γ[T − τ̃i]+ the cost of inconvenience due to the waiting time.

The game component of this problem, in contrast to a standard optimization problem,
is the interaction among players due to the actual starting time T in the decision making
process: on one hand, for player i, her optimal plan τi depends on T through the cost function;
on the other hand, once all the players make their decisions on their planned arrival times
τi’s, their actual arrival times τ̃i’s may collectively shift the actual starting time T through
the rule of 90% threshold. The stochastic nature of T comes from the randomness of τ̃i of all
the players. Here, T plays the role of the mean-field and this problem is a mean-field game.

To solve this mean-field game, one can adopt the following fixed point approach. First,
fix an arbitrary start time T and solve the optimization problem

min
τi

E[c(t, T, τ̃i)].

Second, update T to T̄ according to the 90% rule as well as the optimal

τ ∗i = τ ∗i (t, T ) = arg min
τi

E[c(t, T, τ̃i)]
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from the previous step. These two steps characterize the following mapping,

Γ : T
optimize7−−−−→ {τ ∗i (·;T )}i

i.i.d. noise εi7−−−−−−−→ {τ̃ ∗i (·;T )}i
90% quantile rule7−−−−−−−−−→ T ∗.

Given proper conditions on α, β and γ, Banach fixed point theorem cab be applied to Γ
to find the fixed point of the mapping denoted by T ∗. Then the pair (τ ∗i (·, T ∗), T ∗) is the
solution to the mean-field game.

This simple example characterizes three key aspects of MFGs. The first one is that the
interaction lies between each individual player and the mean-field as illustrated above. The
second aspect is the simplification from aggregation, highlighted during the step of updating
T : instead of considering the order statistics of N random arrival times {τ̃ ∗i }i, one can
simply apply a quantile rule to one particular τ̃ ∗i due to the assumption of indistinguishable
players. The last aspect is the use of fixed point theorems which plays a central role in many
of the prevailing methodologies of studying MFGs. Next in Section 1.1.2, some of these
methodologies to establish the existence of an MFG solution will be reviewed under a more
general MFG setting.

1.1.2 Existence of MFG solutions

A standard continuous-time MFG on Rd over a time horizon [0, T ] takes the following form,

v(s, x) = inf
{αt}t∈[0,T ]∈A

E
[∫ T

s

f(t,Xt, µt, αt)dt+ g(XT , µT )

∣∣∣∣Xs = x

]
(1.1)

subject to

dXt = b(t,Xt, µt, αt)dt+ σ(t,Xt, µt, αt)dWt, X0 ∼ µ0, µt = Law(Xt), ∀t ∈ [0, T ].

Here µ0 denotes the initial distribution of the state process with a density function m0(·).
{Wt}t≥0 denotes a standard Brownian motion on a filtered probability space (Ω,F ,F =
{Ft}t≥0,P). The flow of probability measures {µt}t = {Law(Xt)}t is the mean-field that
denotes an aggregated status of all the players. It can appear in both the cost and the
state dynamic, characterizing the interaction among players. For each individual player, her
objective is to choose the optimal control {αt}t from a suitable admissible control set A to
minimize the cost under the presence of the mean-field {µt}t.

Definition 1.1. If there exists a control policy {α∗t}t and a flow of probability measures {µ∗t}t
such that

• under {µ∗t}t, {α∗t}t solves the optimal control problem

v(s, x) = inf
{αt}t∈[0,T ]∈A

E
[∫ T

s

f(t,Xt, µ
∗
t , αt)dt+ g(XT , µ

∗
T )

∣∣∣∣Xs = x

]
subject to

dXt = b(t,Xt, µ
∗
t , αt)dt+ σ(t,Xt, µ

∗
t , αt)dWt, X0 ∼ µ0;
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• under {α∗t}t, the controlled process {X∗t }t given by

dX∗t = b(t,X∗t , µ
∗
t , α

∗
t )dt+ σ(t,X∗t , µ

∗
t , α

∗
t )dWt, X∗0 ∼ µ0

satisfies µ∗t = Law(X∗t ) for all t;

then the pair ({α∗t}t, {µ∗t}t) is called a solution to the MFG (1.1).

PDE approach

One of the central questions for MFGs is the existence of a solution. Generalizing the fixed
point approach in Section 1.1.1 leads to a coupled PDE system. First, fix an arbitrary
mean-field {µt}t and solve the corresponding optimal control problem for an optimal control
policy {α∗t}t. This step gives rise to the HJB equation

∂sv(s, x) +H(s, x,∇xv(s, x),∇2
xv(s, x)) = 0, v(T, x) = g(x, µT ), (1.2)

where the Hamiltonian is given by

H(s, x, y, z) = inf
α

{
b(s, x, µs, α) · y +

1

2
Tr(σσT (s, x, µs, α)z) + f(s, x, µs, α)

}
.

Denote the optimal control by

α∗s = arg min
α

{
b(s, x, µs, α) · ∇xv(s, x) +

1

2
Tr(σσT (s, x, µs, α)∇2

xv(s, x))

}
.

Next, the mean-field {µt}t is updated for the controlled dynamic {Xt}t under the optimal
policy {α∗t}t. This gives rise to the following FP equation for the corresponding density
function m(s, x) of µs = Law(Xs),

∂sm(s, x) + divx (b(s, x, µs, α
∗
s)m(s, x))− 1

2
Tr
[
∇2
x

(
σσT (s, x, µs, α)m(s, x)

)]
= 0,∫

x

m(s, x)dx = 1, ∀s; m(0, ·) = m0(·).
(1.3)

The coupled HJB-FP system characterizes a mapping

Γ : {µt}t
HJB7−−→ {α∗t}t

FP7−→ updated {µt}t.

If Γ admits a fixed point {µ∗t}t, then {µ∗t}t, together with its corresponding optimal control
{α∗t}t, will be a solution to the MFG in the sense of Definition 1.1. There are several fixed
point theorems to be adopted under suitable circumstances. Below is one of them that is
commonly used in the analysis of PDEs [74].

Proposition 1.1 (Schaefer’s Fixed Point Theorem). Suppose a mapping A : X → X is
continuous and compact, i.e. for any sequence {uk}∞k=1 in X.
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• limk→∞A(uk) = A(u) ∈ X if limk→∞ uk = u ∈ X;

• A(uk)
∞
k=1 is precompact in X if {uk}∞k=1 is bounded in a real Banach space X.

If the set
{u ∈ X|u = λA(u) for some λ ∈ [0, 1]}

is bounded, then A admits a fixed point.

The pioneering work [121] specifies the problem setting as follows.

• the drift b(s, x, µ, α) = −α and the volatility σ(s, x, µ, α) ≡ σ for some given σ;

• the running cost
f(s, x, µs, α) = L(x, α) + f̃(s, x,m(s, x)) (1.4)

and the terminal cost g(x, µT ) = g̃(x,m(T, x)).

Under this setting, [121] shows the existence of a MFG solution under proper technical
assumptions. There, the Hamiltonian is simplified as

H(s, x, y, z) =
1

2
Tr(σσT z)+f̃(s, x,m(s, x))−H̄(x, y) = f̃(s, x,m(s, x))−sup

α
{y ·α−L(x, α)}.

Consequently, the HJB becomes

−∂sv(s, x)−1

2
Tr(σσT∇2

xv(s, x))+H̄(x,∇xv(s, x)) = f̃(s, x,m(s, x)), v(T, x) = g̃(x,m(T, x))

with α∗s = arg maxα{α · ∇xv(s, x)− L(x, α)} and the FP becomes

− ∂sm(s, x) + divx(α
∗
sm(s, x)) +

1

2
Tr(σσT∇2

xv(s, x)) = 0,∫
x

m(s, x)dx = 1, ∀s; m(0, ·) = m0(·).

Theorem 1.2 (Existence [121]). Let C([0, T ],P1(Rd)) denote a set of continuous mappings
from [0, T ] to the set of probability measures P1(Rd) where

∫
Rd |x|µ(dx) < ∞ for any µ ∈

P1(Rd). For any integer k ≥ 0 and α ∈ (0, 1), Ck,α denotes the set of Ck functions with
bounded and Hölder continuous of exponent α derivatives up to order k. Suppose that

• if the density function m(s, x) belongs to C([0, T ],P1(Rd)), then f̃(s, x,m(s, x)) and
g̃(x,m(T, x)) are both (uniformly) bounded and continuous functions;

• f̃ is continuous with respect to the density function m ∈ C([0, T ],P1(Rd));

• if m ∈ Ck,α, then f̃, g̃ ∈ Ck+1,α;
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• H̄(x, y) is smooth on Rd×Rd and there exists a constant c > 0 such that for any (x, y),

|∂yH̄(x, y)| ≤ C(1 + |y|), |∂xH̄(x, y)| ≤ c(1 + |y|).

Then the HJB-FP system admits a pair of solutions v∗(s, x) and m∗(s, x) and the corresponding
control-mean pair ({α∗t}t, {µ∗t}t) is a solution of the MFG.

This method of HJB-FP system can also be seen in [83], [22], [46], [47] and the references
within. Another PDE approach for MFGs is to use master equation, see for instance [40] and
[42].

Uniqueness of a solution. [121] also provides monotonicity conditions to guarantee the
uniqueness of an MFG solution. Similar conditions are also discussed in [45].

Theorem 1.3 (Uniqueness). For any µ, µ′ ∈ P2(Rd), if for any s ∈ [0, T ], f̃ and g are
monotone, i.e.,∫

Rd
[f̃(s, x, µ)− f̃(s, x, µ′)](µ− µ′)(dx) ≥ 0,

∫
Rd

[g(x, µ)− g(x, µ′)](µ− µ′)(dx) ≥ 0,

and the Hamiltonian H̄ is strictly convex such that for any x, y ∈ Rd,

H(x, y + z)−H(x, y)− z · ∂yH(x, y) = 0⇒ z ≡ 0;

or for any s ∈ [0, T ], f̃ and g are strictly monotone, i.e.,∫
Rd

[f̃(s, x, µ)− f̃(s, x, µ′)](µ− µ′)(dx) ≤ 0⇒ µ = µ′,∫
Rd

[g(x, µ)− g(x, µ′)](µ− µ′)(dx) ≤ 0⇒ µ = µ′,

then there exists at most one MFG solution.

Probabilistic approach

The existence of an MFG solution in [121] is subject to a problem setting where the drift of
the state process is completely determined by the control process, the volatility is constant
and the running cost is of a separable type as in (1.4). An immediate question is whether the
existence still holds without such specifications. To allow a more general problem setup as in
(1.1), [118] discusses the existence of a solution to MFGs from a probabilistic perspective,
using the notion of relaxed controls from classical control theory [73, 97].

More precisely, it goes as follows. For any separable metric space (E, d), define P(E) the
set of all probability measures on E and Pp(E) ⊂ P(E) such that

∫
E
dp(x, x0)µ(dx) <∞ for

any µ ∈ P(E), equipped with a p-Wasserstein norm with

dE,p(µ, ν) = inf

{∫
E×E

dp(x, y)γ(dx, dy)|γ ∈ P(E × E) with marginal distributions µ, ν
} 1

p

.
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Let Cd = C([0, T ],Rd) denote the set of continuous process over [0, T ] on Rd equipped with
a supremum norm ‖ · ‖T . For µ ∈ P(Cd), let µt denote the image of µ under the mapping
x ∈ Cd 7→ xt ∈ Rd. Any µ ∈ P(Rd) is equipped with a norm ‖µ‖ = (

∫
Rd µ(dx)|x|p)

1
p where

| · | denotes Euclidean norm.

Definition 1.2 (Relaxed Control). A relaxed control is a probability measure q on [0, T ]×A
such that q([s, t]×A) = t− s for any 0 ≤ s ≤ t ≤ T and

∫
[0,T ]×A q(dt, da)|a|p <∞ for some

p ≥ 1.

Let V(A) be the set of all relaxed controls and Ω[A] the new sample space Cd × V(A).
For any (x, q) ∈ Ω[A], denote canonical processes X and Λ on Cd and V(A), respectively.

Definition 1.3. For a measure µ ∈ P(Cd), let R(µ) be the set of admissible control-state
joint laws P ∈ P(Ω[A]) satisfying

• P ◦X−1
0 = µ0;

• EP
[∫ T

0
|Λt|dt

]
<∞;

• Mµ,φ = {Mµ,φ
t }t≥0 is a P -martingale for any smooth and compactly supported function

φ, where

Mµ,φ
t (q, x) = φ(xt)−∫

[0,t]×A
q(ds, da)

[
b(s, xs, µs, as) · ∇xφ(xs) +

1

2
Tr(σσT (s, xs, µs, as)∇2

xφ(xs))

]
.

Define R∗ : Pp(Ω[A])→ 2P
p(Ω[A]) such that

R∗(µ) = arg min
P∈R(µ)

EP
[
g(XT , µT ) +

∫
[0,T ]×A

q(dt, da)f(t,Xt, µt, at)

]
.

P ∈ Pp(Cd) is called a relaxed MFG solution if P ∈ R∗(P ◦X−1); P is called a relaxed
Markovian MFG solution if it is a relaxed MFG solution and P (Λ = dtq̃(t,Xt)) = 1 for some
mapping q̃ : [0, T ]×A → P(A); P is called a strict Markvian MFG solution if it is a relaxed
MFG solution and P (Λ = dtδã(t,Xt)(da)) = 1 for some mapping ã : [0, T ]× Rd → A.

Theorem 1.4. Let pσ ∈ [0, 2] and p′ > p ≥ max{1, pσ}. Suppose that

• A is a closed Euclidean space;

• b, σ, f, g are measurable in t and continuous in x, µ, a;

• b and σ are Lipschitz in x; for any t ∈ [0, T ], the growth rate of b with respect to x, µ, a
is at most linear and the growth rate of σ with respect to x, µ, a is at most power of pσ;
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• The growth rate of g with respect to x ∈ Rd and µ ∈ Pp(Rd) is at most power of p;
there exists c1, c2 > 0 such that for any (t, x, µ, a) ∈ [0, T ]× Rd × Pp(Rd)×A,

−c2(1 + |x|p + ‖µ‖p + |a|p′) ≤ f(t, x, µ, a) ≤ c2(1 + |x|p + ‖µ‖p)− c3|a|p
′
;

• µ0 ∈ Pp′(Rd);

• for any (t, x, µ) ∈ [0, T ]× Rd × Pp(Rd),

K(t, x, µ) : −
{

(b(t, x, µ, a), σσT )(t, x, µ, a), z) : a ∈ A, z ≤ f(t, x, µ, a)
}

is a convex subset of Rd × Rd×d × Pp(Rd).

Then there exists a strict Markovian MFG solution equivalent to the one defined in Definition
1.1.

The idea of the proof starts from establishing the existence of a relaxed MFG solution,
then moving on to a relaxed Markovian MFG solution following a mimicking result in [31]
and finally, with a convexity condition, arriving at a strict Markovian MFG solution using
a measure selection technique [97] which is equivalent to the one given by Definition 1.1.
Fixed point theorems still lie at the center of this line of arguments, especially during the
first step of showing the existence of a relaxed MFG solution. There, a set-valued mapping
F : Pp(Cd)→ 2P

p(Cd) such that F (µ) = {P ◦X−1 : P ∈ R∗(µ)} is derived and therefore the
Kakutani-Fan-Glicksberg theorem applies, see Theorem 1 in [75].

Another probabilistic approach to solve mean-field games is stochastic maximum principle,
as introduced in [45]. In [45], the authors point out that in the solution to MFGs of the form
of (1.1) on finite time horizon, it involves a Mckean-Vlasov type of control problem, where
the dynamics of the state process is related to its own distribution, and derives a coupled
forward-backward stochastic differential equation. The forward equation corresponds to the
evolution of the state process; the backward equation is due to maximum principle and can
be seen as the evolution of state derivative of the value function. This backward stochastic
differential equation was systematically introduced in [147]. For the FBSDE approach, see
also [20], [46], [22] and the references within. Note that though the controlled martingale
approach can lead to the existence result under a generic problem setting, when deriving an
analytical form of a MFG solution, methods of coupled PDE systems and FBSDEs are usually
adopted as they lead to direct applicable forms of solutions in practice, see for instance [48,
20].

1.1.3 MFGs with singular controls

MFGs discussed in Section 1.1.2 assumes the continuity of the drift b and volatility σ with
respect to the control α as well as the boundedness of A, therefore the controlled state process
is continuous. To characterize real-world problems where intervenes and state processes are



CHAPTER 1. INTRODUCTION 10

mostly discontinuous, these assumptions of continuity need to be relaxed to incorporate
certain level of discontinuity. It is then natural to consider MFG models with other types of
controls.

The seminal work on fuel follower problem and its variants by Beneš, Shepp, and Witsen-
hausen [18] lays a foundation of studying singular control problems. It provides one of the
principal approaches to solve singular control problems, that is, via the smooth fit principle.
The simple and insightful solution structures have inspired many follow-up works in stochastic
controls. See, for instance, [29], [71], [96], [107], [158], and [62]. Such problems have had a
wide range of applications, including economics and finance [61], [157], [156], [104], [131] and
[162], operations research [89], and queuing theory [168] and [8].

To illustrate the idea of singular control problems, consider a partially reversible investment
problem in [91]. This control problem is formulated for a class of real option problems
originated in the classical work of [66]. It is an optimization problem for a company whose
revenue is based on the production level of a certain commodity, modeled by a geometric
Brownian motion. The company can decrease its production level with a savage value and
increase its production level with an investment cost, hence the term “partially reversible
investment”. That is, the dynamics of the production level at time t is given by

dXt = Xt(δdt+ γdWt) + dξt, X0− ∼ µ0,

where µ0 ∈ P2(R), and the control ξt representing the cumulative change in the production
level by time t is singular. The problem is to find an optimal investment strategy ξt over an
appropriate control set in order to maximize its overall expected net profit

E
[∫ ∞

0

e−rt[Π(Xt)dt− γ+dξ+
t − γ−dξ−t ]

]
. (1.5)

Here, the discount rate r > 0, Π(·) the revenue function satisfies the usual Inada condition
for utility functions, γ+ and γ− are the unit costs of increasing and decreasing the production
level respectively, subject to the assumption that γ+ + γ− > 0 for the well-posedness of the
problem.

The corresponding Hamiltonian is given by

H(x, y) = y · δx+ sup
∆ξ±∈[0,∞]

{y(∆ξ+ −∆ξ−)− γ+∆ξ+
t − γ−∆ξ−t }

= y · δx+ sup
∆ξ±∈[0,∞]

{(y − γ+)∆ξ+
t − (y + γ−)∆ξ−t }.

Then, it is easy to see that H takes the value of either ∞ or y · δx: for y > γ+, the optimal
control should be ∆ξ+

t = ∞ and ∆ξ−t = 0, with H(x, y) = ∞; for y < −γ−, the optimal
control should be ∆ξ+

t = 0 and ∆ξ−t =∞, with H(x, y) =∞; otherwise, the optimal control
should be no invention and that leads to H(x, y) = yδx. This divergent Hamiltonian prevents
the use of stochastic maximum principle. Alternatively, dynamic programming principle
applies and leads to the following HJB equation with gradient constraints,

0 = min{rv(x)− Π(x)− δxv′(x)− 1

2
γ2x2v′′(x), γ+ − v′(x), v′(x) + γ−}, (1.6)
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where v′(·) and v′′(·) denote the first and second order derivatives of v(·) respectively. In
particular, the gradient constraints γ+ − v′ ≥ 0 and γ− + v′ ≥ 0 occur when it is optimal to
make an instantaneous intervention. Considering an increase in the state by a small amount
∆ > 0, then by the optimality of the value function,

v(x) ≥ v(x+ ∆)− γ+∆.

Sending ∆ to 0, the constraint γ+ − v′ ≥ 0 naturally appears. The derivation of γ− + v′ ≥ 0
is similar.

In [91], the smooth fit principle in the sense of [18] is established via regularity analysis
for the value function, and the optimal control ξ∗· = (ξ∗,+· , ξ∗,−· ) to (1.5) is shown to be of
bang-bang type characterized by a pair of threshold (xb, xs). It suggests that the company
should spend the minimum effort to keep its production level within the interval [xb, xs].

It is a natural extension to consider a game version of such singular control problems.
In terms of MFGs with singular controls, there are extra technical challenges brought by
the divergent Hamiltonian and the HJB equation with (possibly) state-dependent gradient
constraints. To overcome these technical difficulties, [79] adopts the notion of relaxed controls
and the techniques developed in [118] to prove the existence of solutions to MFGs with
(monotone) singular controls over a finite-time horizon, with approximation analysis from
MFGs with purely regular controls.

Still, very little is known on the solution structure of MFGs with singular controls, except
for the recent work of [90]. They study MFGs of fuel follower problem and derive explicit
solutions by exploiting symmetric structure in the cost functional. However, due to this
symmetry, the optimal strategy for the MFG in [90] coincides with that for the single-agent
control problem, i.e., the fuel follower problem in [18], with no demonstrated game effect.

Indeed, there are essential technical difficulties for deriving explicit solutions without
certain symmetry structures in MFGs with singular controls. For instance, for a non-stationary
MFG, the time-dependent mean information process leads to a parabolic HJB equation instead
of an elliptic type, even in an infinite-time horizon game. This is different from classical
control problems with infinite-time horizon. Moreover, the probabilistic approach of forward-
backward stochastic differential equations (FBSDEs) does not work easily for the infinite-time
horizon case.

In Chapter 2, the MFG counterpart of the partially reversible investment problem will be
studied. This MFG with singular controls will be analyzed from two perspective: a general
existence result will be established for MFGs with singular control of bounded velocity and a
concrete example of MFG with singular control of finite variation will be analytically studied,
where an explicit solution will be presented and analyzed. It is worth mentioning that, unlike
[93], the analysis here does not rely on symmetry.

1.1.4 MFGs with impulse controls

Apart from singular controls, one can also consider control policies that solely consist of
strategic jumps. This type of controls belong to impulse controls. The discontinuous nature of
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impulse controls lies in both the time and state spaces: interventions occur in a discrete-time
fashion and each intervention shifts the state process instantaneously. Comparing to games
with regular controls and singular controls, impulse control is a more natural mathematical
framework for applied problems allowing for a discontinuous state space. See the examples of
cash management [58], inventory controls [94, 95, 164], transaction cost in portfolio analysis
[69, 136, 110, 111, 27, 146], insurance model [106, 34], liquidity risk [129], exchange rates
[105, 138, 25], and real options [166, 130, 21].

One of the classical works on impulse control problems is [58] under the setting of a
cash management problem. A manager possesses cash balance Xt ∈ R at time t. Without
intervention, the amount of cash fluctuates along with continuous demand (withdrawal or
deposit), i.e.

dXt = µdt+ σdWt, X0− ∼ µ0,

where {Wt}t≥0 a standard Wiener process on a filtered probability space (Ω,F , {Ft}t≥0,P).
Denote the control policy as ϕ = {τn, ξn}n≥0, where {τn}n≥1 is a sequence of stopping times
with respect to {Ft} such that τn ↑ ∞ almost surely, and the random interventions ξn ∈ Fτn .
There Fτn denotes the stopped filtration. Let A the set of all such controls. The objective of
the manager is to minimize the total cost of managing her cash balance, i.e.,

v(x) = inf
ϕ∈A

J(x, ϕ) = inf
ϕ∈A

E

[∫ ∞
0

e−rtC(Xt)dt+
∞∑
n=1

e−rτnφ(ξn)

∣∣∣∣X0− = x

]
(1.7)

subject to

dXt = µdt+ σdWt +
∞∑
n=1

δ(t− τn)ξn, X0− ∼ µ0.

Here, the running cost is C(x) = max{hx,−px} where h, p > 0. Discount rate is r > 0. The
cost of control is

φ(x) =

{
K+ + k+x, x ≥ 0;

K− − k−x, x < 0;
K+, K−, k+, k− > 0.

To distinguish zero control and no control, assume that φ(0) = K+ > 0. Due to the presence
of the fixed cost, this cost of control possesses a crucial property, called the K-convexity.
Intuitively, this property means that it is always better to shift the state in one move than to
split it into two and the advantage is at least K.

The presence of discontinuity makes the analysis of impulse control problems hard and even
harder for stochastic games. From a PDEs perspective, the corresponding quasi-variational
inequality (QVI) contains an additional non-local operator for which most PDEs techniques
are not applicable. Indeed, there was not much progress in the theory of impulse controls after
Bensoussan and Lions’ classical work [19], until the work of [92] where the non-local operator
was found to be connected with the infinitesimal differential operator in the nonlinear PDEs
via the payoffs in the action region and the waiting region. (See also [16].) [92] establishes
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the existence and uniqueness of the viscosity solution to the QVI with impulse control on
multidimensional diffusion processes and discusses the legitimacy of applying the smooth fit
principle to impulse control problems by analyzing the regularity of the value function.

The non-local operatorM is defined as

Mv(x) = inf
ξ∈R

v(x+ ξ) + φ(ξ),

and the QVI is given by

min{σ
2

2
v′′ − µv′ − rv + C, Mv − v} = 0.

In [58], an optimal impulse control strategy is constructed by applying smooth fit principle
on the QVI. In this case the policy is completely characterized by thresholds (d,D, U, u),
meaning that if the cash balance is below d, then we raise it back to D; if it is above u then
we decrease it to U . The authors also emphasize that if the proportional cost of decreasing
cash balance is relatively high, then the cash management problem will degenerate to an
inventory control problem. The discrete-time version of this inventory control problem was
studied in [155] proposing the well-known (S, s) policy. [164] studies the continuous-time
version of the inventory control problem and adopts the problem setting of the inventory
control problem as in [58] and proves the uniqueness of the policy and provides the solution
to the optimal S and s as the unique solution to a system of analytical equations. A similar
work on continuous-time inventory control problem is done in [94].

Despite the rapid growth in recent literature on stochastic games and MFGs, the reservoir
of works related to MFGs with impulse is rather limited. The technical difficulties regarding
the approach HJB(QVI)-FP system are two-fold: in terms of QVI, the presence of the non-local
operator brings in extra obstacle in solving for the value function under a generic problem
setting; meanwhile, it still remains a challenging problem to characterize the controlled
dynamic under this threshold type of impulse controls. [26] studies MFGs with impulse
controls with finitely many possible choices of jumps. There, the FP equation for the
controlled dynamics is established via a penalized problem.

In Chapter 3, the MFG counterpart of the cash management problem will be formulated
and analyzed. Its game effect will be demonstrated through sensitivity analysis with respect
to the model parameters.

1.1.5 Approximation of N-player games

One of the biggest contributions of MFGs is that they are approximations of the corresponding
N -player games under the criterion of Nash equilibrium (NE). An NE of an N -player game
is a set of strategies of all players from which no players has the incentive to unilaterally
deviate. For more details, see Sections 2.2.5 and 3.1.

In terms of N -player stochastic differential games, some of the earliest works date back to
1970s, such as [169] and [167]. Both works consider regular type of controls. A majority of
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works focus on 2-player games. [23] and [78] consider 2-player stopping games, over finite
and infinite time horizons, respectively. [115] studies a two-player game with singular control
and optimal stopping. The authors defines strategies of a barrier type and Markovian perfect
equilibrium (MPE), where the latter represents NE of Markovian type. The analysis is through
verification theorem. The MPE is characterized and the conditions for the uniqueness of MPE
are also provided. In [52] and [53], the authors describe a nonzero-sum N-player game with
both regular and impulse control on a finite time-horizon. The timing of imposing impulse
control is, however, predetermined. They use an approach combing backward stochastic
differential equation and maximum principle. [2] proposes a nonzero-sum two-player impulse
game where the control policy consists of both a sequence of stopping times and corresponding
adjustment to make. In this paper, the authors provide a verification theorem and give an
example with explicit solution. Note that in this example, two players are controlling the
same one-dimensional dynamic from different directions. For 2-player impulse games, [59, 9]
focus on zero-sum impulse games, [35] studies mixed impulse-stopping games, [76] analyzes
nonzero-sum stochastic games involving impulse controls.

For a generic N , [48] studies an N -player game of systemic risk characterizing interaction
among banks. It provides an explicit form of NE for an N -player game of systemic risk
problem, under a linear-quadratic setting with regular controls. [120] also presents an explicit
NE for a class of portfolio management games. The exponential and power utility functions
are considered and control is again of regular type. [65] studies the a class of nonzero-sum
submodular monotone follower games, an N -player game with singular controls. There the
authors show the existence of an NE and also provide an approximation result from an
N -player game with singular controls of bounded velocity to that of finite variation. [93]
studies the N -player game version of the fuel follower problem in [18] and characterizes NE
under a symmetric problem setting via analyzing its corresponding Skorokhod problem.

Solving for an explicit NE is quite challenging when N is large. Nonetheless, due to strong
law of large numbers and propagation of chaos, starting from a solution to MFGs, one can
construct a set of strategies for the N -player games such that the corresponding costs J i’s
will be confined within a small neighborhood around the costs of an NE. This is the concept
of ε-Nash equilibrium (ε-NE). For more details, see Sections 2.2.5 and 3.2.3. The error term ε
depends on N and ε→ 0 when N →∞. The magnitude of ε can be derived using strong law
of large numbers and propagation of chaos according to the problem setting. For example,
[45] shows that for MFGs with regular controls, the error term can be ε = O

(
N−

1
d+1

)
; for a

linear-quadratic case, [20] shows that the error term can be ε = O
(

1√
N

)
. For MFGs with

singular controls, [93] shows that ε = O
(

1√
N

)
under its symmetric problem setting.

For the cases where an explicit NE is available, the comparison between NE and the MFG
solution con be conducted. For instance, [48] shows that the mean-field interaction create
stability quantified by the systemic risk. [120] shows the impact of heterogeneity among
players and the common noise in the solution structure of MFGs. In particular, without
common noise or the heterogeneity, the mean-field interaction will be factored out of the
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optimization problem of individual players, and therefore the equilibrium strategy in MFGs
solution coincides with the single-agent control problem case. [93] shows that due to the
symmetric nature of its problem setup, the optimal strategy in the MFG solution coincides
with that for the single-agent control problem, i.e., the fuel follower problem in [18], with no
demonstrated game effect.

Chapter 2 will provide an explicit solution to the MFGs with singular control under a non-
symmetric setting, analyze the difference between this MFG solution and its corresponding
single-agent control problem, and study its relation with the associated N -player game.
Chapter 3 will characterize the NE of an N -player game with impulse controls via a verification
theorem. It will present multiple explicit NE to a 2-player game and finally, establish the
approximation of the N -player games by the corresponding MFGs.

Discussion on the convergence of N-player games to MFGs. Apart from construct-
ing approximated NE from MFG solutions, there is second angle in studying the relation
between MFGs and N -player games, that is, to examine if the NE of an N -player game will
eventually converge into a solution to the corresponding MFG.

[11] studies such a convergence under a linear quadratic setting. For N -player game,
HJB-FP system is applied to characterize an NE where the optimal control is of linear
feedback form. If assuming identical players, then the NE will eventually lead to a pair of
quadratic-Gaussian solutions to the HJB-FP system that characterizes the MFG.

[40] studies the convergence of N -player games to MFGs through the master equation of
the MFG. Compared with the value function as in (1.1) which is a function of time and state,
a solution to the master equation also depends on the mean-field, which is the probability
distribution of the state. The master equation is derived by generalizing Itô’s formula, Feyman
Kac formula and dynamic programming principle to functions of probability distribution.
The NE of the corresponding N -player game is characterized by the solution to a system of
HJB equations, called the Nash system. The convergence result relies on the uniqueness and
the regularity conditions of both the solution to the master equation and the Nash system.

Following the idea of relaxed control introduced [118], [117] and [119] establish the
convergence result for open- and closed-loop approximated NE towards a weak MFG solution,
respectively, via a compactness argument; in addition, a Markovian projection method is
adopted for the case of closed-loop equilibrium and the analysis relies on the application
of Girsanov theorem. It is worth noticing that neither of the convergence results relies on
uniqueness.

[142] analyzes the convergence of an N -player game of optimal stopping towards its
MFG counterpart where solutions possess a transversality property and both NE and MFG
solutions need not be unique. It also presents other classes of MFG solutions that cannot be
limit points of the N -player game equilibria.

These existing works on the convergence problem largely focus on MFGs with regular
controls. [93] studies the convergence of N -player game with singular controls towards its
MFG counterpart through the action boundaries. It will be an interesting future direction to
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study this convergence issue under other singular control settings or impulse control setting,
where the analytical tools become more restrictive.

1.1.6 Computation of MFGs

As shown in many existing works in MFGs literature, the establishment of analytical solutions
still remains a challenge except for linear-quadratic structures or certain special cases. State
processes in higher dimension will then bring in more difficulty. It is important to develop state-
of-the-art computational methods. Most existing computational approaches for solving MFGs
adopt traditional numerical schemes, such as finite differences [1] or semi-Lagrangian [44]
schemes. Some exceptions are [50, 49] and [88]. [88] designs reinforcement learning algorithms
with convergence and complexity analysis for learning MFGs, where the cost function of
the game as well as the parameters for the underlying dynamics are unknown. [50, 49]
propose deep neural networks (NNs) approaches for solving MFGs, with a particular Deep-
Galerkin-Method architecture, to approximate the density and the value function by NNs
separately.

Among all the computational tools from machine learning, generative adversarial networks
(GANs) are particularly promising. Section 1.2 will review some basics of GANs to prepare
us for the further discussions on the deeper connections between GANs, MFGs as well as
other aspects of stochastic analysis in later chapters.

1.2 Review on generative adversarial networks
Since the introduction in 2014 [80], GANs have celebrated great empirical success, especially
in image generation and processing. The key idea behind GANs is to interpret the process
of generative modeling as a competing game between two neural networks: a generator
network G and a discriminator network D. The generator network G attempts to fool the
discriminator network by converting random noise into sample data, while the discriminator
network D tries to identify whether the input sample is faked or true.

As minimax games, GANs provide a versatile class of generative models. Since the
introduction to the machine learning community, the popularity of GANs has grown expo-
nentially with numerous applications, including high resolution image generation [64, 149],
image inpainting [181], image super-resolution [123], visual manipulation [184], text-to-image
synthesis [150], video generation [173], semantic segmentation [128], and abstract reasoning
diagram generation [114], and recently for simulating financial time-series data [175], [176],
[182], and for asset pricing models [54].

Along with the empirical success of GANs, there is a growing emphasis on the theoretical
analysis of GANs. [24] proposes a novel visualization method for the GANs training process
through the gradient vector field of loss functions. In a deterministic GANs training framework,
[132] demonstrates that regularization improved the convergence performance of GANs; [57]
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and [68] analyze a generic zero-sum minimax game including that of GANs, and connect the
mixed Nash equilibrium of the game with the invariant measure of Langevin dynamics.

This section will focus on some fundamental aspects of GANs.

1.2.1 Mathematical foundation of GANs

GANs fall into the category of generative models. The procedure of generative modeling is
to approximate an unknown probability distribution Pr by constructing a class of suitable
parametrized probability distributions Pθ. That is, given a latent space Z and a sample space
X , define a latent variable Z ∈ Z with a fixed probability distribution Pz and a family of
functions Gθ : Z → X parametrized by θ. Then Pθ is defined as the probability distribution
of Gθ(Z), i.e., Law(Gθ(Z)).

As generative models, GANs consist of two competing neural networks: a generator
network G and a discriminator network D. In GANs, the parametrized function Gθ is
implemented using a neural network (NN), i.e., function approximations via specific graph
structures and network architectures. Meanwhile, another neural network for the discriminator
D will assign a score between 0 to 1 to the generated sample, either from the true distribution
Pr or the approximated distribution Pθ; denote the parametrized D as Dω. A higher score
from the discriminator D would indicate that the sample is more likely to be from the true
distribution. GANs are trained by optimizing G and D iteratively until D can no longer
distinguish between samples from Pr or Pθ.

GANs as minimax games

Mathematically, GANs are minimax games as

min
G

max
D
{EX∼Pr [logD(X)] + EZ∼Pz [log(1−D(G(Z)))]} . (1.8)

Now, fixing G and optimizing for D in (1.8), the optimal discriminator would be

D∗G(x) =
pr(x)

pr(x) + pθ(x)
,

where pr and pθ are density functions of Pr and Pθ = Law(Gθ(Z)) respectively. Plugging this
back to Equation (1.8), we see

min
G

{
EX∼Pr

[
log

pr(X)

pr(X) + pθ(X)

]
+ EY∼Pθ

[
log

pθ(Y )

pr(Y ) + pθ(Y )

]}
= − log 4 + 2JS(Pr,Pθ).

That is, training of GANs with an optimal discriminator is minimizing Jensen-Shannon (JS)
divergence between Pr and Pθ.

To address the instability of the vanilla GANs with JS divergence, variants of GANs
with different divergences have been proposed to improve the performance of GAN training:
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for instance, [141] uses f-divergence, [161] explores scaled Bregman divergence, [6] adopts
Wasserstein-1 distance, [87] proposes relaxed Wasserstein divergence, and [153] and [154]
utilize the Sinkhorn loss.

Equilibrium of GANs training

Under a fixed network architecture, the parametrized version of GANs training is to find

vGANU = min
θ

max
ω

LGAN(θ, ω),

where LGAN(θ, ω) = EX∼Pr [logDω(X)] + EZ∼Pz [log(1−Dω(Gθ(Z)))].
(1.9)

From a game theory viewpoint, the objective in (1.9), if attained, is in fact the upper value
of the two-player zero-sum game of GANs.

Meanwhile, the lower value of the game is given by the following maximin problem,

vGANL = max
ω

min
θ
LGAN(θ, ω). (1.10)

Clearly the following relation holds,

vGANL ≤ vGANU . (1.11)

Moreover, if there exists a pair of parameters (θ∗, ω∗) such that both (1.9) and (1.10) are
attained, then (θ∗, ω∗) is a Nash equilibrium of this two-player zero-sum game. Indeed, if
LGAN is convex in θ and concave in ω, then there is no duality gap hence the equality in
(1.11) holds by the minimax theorem (see [172] and [159]).

It is worth noting that conditions for such an equality in (1.11) is usually not satisfied in
many common GANs models, as pointed out by [183].

SGD for GANs.

As in most NNs, stochastic gradient descent (SGD) is the standard approach for solving the
optimization problem in GANs training. Accordingly, the evolution of parameters of θ and ω
in (1.9) by SGD from current step t to the next step t+ 1 is

ωt+1 = ωt + αd∇ωLGAN(θt, ωt),

θt+1 = θt − αg∇θLGAN(θt, ωt+1).
(1.12)

Here the αd and αg denote the step sizes of updating the discriminator and the generator,
respectively.

This evolution (1.12) corresponds to the alternating updating scheme of the algorithm in
[80] where at each iteration, the discriminator is updated before the generator. One of the
main challenges for GANs training is the convergence of such an alternating SGD.

Later, Chapter 4 will discuss the profound connection between GANs and MFGs, as
well as other aspects of stochastic analysis such as optimal transport (OT). A GANs-based
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algorithm for solving MFGs will be presented. Numerical experiments will demonstrates
clear advantage of this variational approach, especially in terms of computational efficiency
for high dimensional MFGs. Note that the idea of developing NN-based algorithm with
incorporation of adversarial training is promising for more general dynamic systems with
variational structures. In return, Chapter 5 will analyze the convergence of GANs training
through establishing the approximation by stochastic differential equations.
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Chapter 2

MFGs with singular controls

In this chapter, we analyze a class of infinite-time-horizon MFGs with singular controls,
without symmetric cost structures. As in the classical singular control theory, we consider
two types of singular controls: singular controls of bounded velocity and single controls of
finite variation. It is generally believed that singular controls of bounded velocity are similar
to regular controls and are easier to analyze. To our surprise, while we manage to establish
the existence of MFGs solutions, we find it hard to derive them explicitly. In contrast, we
are able to explicitly solve MFGs with finite-variation controls with a class of non-symmetric
cost functional. The analytical solutions allow us to analyze in details the game effect with
respect to model parameters.

In particular, we take the partially reversible investment model in [91], formulate its MFG
counterpart, provide an analytical solution to the MFG and study the difference between
this MFG with its corresponding single-agent control problem, as well as its relation with the
associated N -player game.

In the MFG framework, instead of one company, we consider a continuum of infinitely
many indistinguishable companies reacting to the market. We assume that the revenue
function f is affected by the aggregated production level made by all the companies on the
market, i.e., the game interaction among companies is through the revenue function f . We
analyze this MFG from two aspects. First, we establish the existence of a solution to the
MFG when controls are of bounded velocity. The approach is to adapt the technique by [118]
to the infinite-time-horizon setting with an appropriate modification of topological spaces.
Next, we analyze explicitly when the controls are of finite variation. We analyze explicitly
this MFG, and compare it in details with the single-agent control problem when the revenue
function is of the Cobb-Douglas type. In particular, we show that model parameters in the
MFG impact both the optimal strategies (as in the single-agent case), and the equilibrium
price. We then formulate the corresponding N -player game, and establish that this MFG
solution is an approximation to the N -player game in the ε-NE sense, with ε = O

(
1√
N

)
.
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2.1 MFGs with singular control of bounded velocity

2.1.1 Problem formulation and assumptions

In this section, we present the general mathematical framework of MFGs with singular
controls of bounded velocity for the partially reversible investment problem introduced in
Section 1.1.3.

Let (Ω,Ft, P ) be some filtered probability space supporting an Ft-adapted standard
Brownian motion W . Let P(R) be the set of probability measures over R. For p > 0, denote
Pp(R) = {µ ∈ P(R) :

∫
R |x|

pµ(dx) < ∞}. Fix θ > 0. Let A = [0, θ] × [0, θ] be the control
space, a compact subset of R2 with Euclidean norm | · |. Then [0,∞) × A contains the
trajectories of the processes {(ξ̇+

t , ξ̇
−
t )}t≥0 such that we can define {ξt}t≥0,

dξt = ξ̇tdt = (ξ̇+
t − ξ̇−t )dt,

where the velocity of ξ stays within [−θ, θ]. That is, {ξt}t≥0 is singular control of bounded
velocity.

Given an initial distribution λ ∈ P2(R), MFGs with singular controls of bounded velocity
are defined as follows:

sup
(ξ̇+,ξ̇−)∈Uθ

Eλ
[∫ ∞

0

e−rt
[
f(Xt, µt)− γ+ξ̇+

t − γ−ξ̇−t
]
dt

]
subject to dXt =

[
b(Xt, µt) + ξ̇+

t − ξ̇−t
]
dt+ σdWt, X0− ∼ λ,

µt = PXt , ∀t > 0.

(MFG-BV)

Here, PXt is the probability distribution of Xt for any t > 0. The function b : R×P1(R)→ R
is the drift function and σ > 0 be the volatility coefficient. For the cost structure, let
f : R× P1(R)→ R be the running revenue function, γ+ and γ− be the proportional costs of
per unit increase and decrease, respectively, with γ+ + γ− > 0, and finally r > 0 be the rate
of discount.

The set of admissible controls Uθ is given by

Uθ =
{

(ξ̇+, ξ̇−) : ξ̇+, ξ̇−Ft-adapted processes,

ξ̇+
t , ξ̇

−
t ∈ [0, θ], ∀t ≥ 0, E

[∫ ∞
0

e−rt(|ξ̇+
t |+ |ξ̇−t |)dt

]
<∞

}
.

2.1.2 Assumptions and notation

We adapt the approach in [118] for finite-time horizon to our problem setting with an infinite-
time horizon. The fundamental difference is that, due to the shift from finite to infinite time
horizon, we will need different topologies and therefore many of the statements and proofs
must be adjusted.

Throughout the discussion on the MFGs with singular controls of bounded velocity, the
following assumptions hold.
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Assumptions.

(A1) b(x, µ) and f(x, µ) are continuous, with b bounded and f nonnegative, concave and
nonlinear in x under any fixed µ.

(A2) There exists some constant c > 0 such that for any x, y ∈ R and µ ∈ P1(R),

|b(x, µ)− |b(y, µ)| < c|x− y|,

|b(x, µ)| ≤ c(1 + |x|+
∫
R
|z|µ(dz)) = c(1 + |x|+ |µ|).

(A3) There exists some constant c′ > 0 such that for any x ∈ R and µ ∈ P1(R),

|f(x, µ)| ≤ c′(1 + |x|+ |µ|).

With slight abuse of notation, for any t ∈ [0,∞), x ∈ R, µ ∈ P1(R) and a ∈ A, define

b(x, µ, a) = b(x, µ) + a1 − a2,

f(x, µ, a) = f(x, µ)− γ+a1 − γ−a2;

K(t, x, µ) ≡ K(x, µ) =
{(
b(x, µ, a), σ2, z

)
: a ∈ A, z ≤ f(x, µ, a)

}
.

Remark 2.1. It is easy to check the assumptions above, plus the facts that the volatility σ is
a positive constant and there is no terminal cost, ensure Assumptions (A), (B) and (Convex)
of [118] hold:

Assumption (A): the Lipschitz and growth rate conditions on b, σ and f ;

Assumption (Convex): the convexity of the K(t, x, µ) of all (t, x, µ);

Assumption (B): the additional boundedness of b and σ as well as compactness of A.

To facilitate our discussion on (MFG-BV) which is over an infinite-time horizon, we will
introduce the following topological spaces.

Notations. To start, let C = C ([0,∞),R) denote the set of continuous functions from
infinite time horizon [0,∞) to R. For any T ∈ (0,∞), let CT = C ([0, T ],R) denote the set of
continuous functions from finite time horizon [0, T ] to R, with a supremum norm ‖ · ‖T ,

‖y‖T = sup
t∈[0,T ]

|yt|, ∀y ∈ CT .

Define ϕT : C → CT such that for any x ∈ C, y = ϕT (x) ∈ CT such that yt = xt for all
t ∈ [0, T ]. That is, ϕT truncates any continuous trajectory on infinite-time horizon to that
up to time T . Denote

d(x, x′) =
∞∑
T=1

1

2T
‖ϕT (x)− ϕT (x′)‖T

1 + ‖ϕT (x)− ϕT (x′)‖T
, ∀x, x′ ∈ C. (2.1)
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Then (C, d) is a Polish space, see Section 1.3 in [163]. Denote P(C) the set of probability
measures over C with topology of weak convergence. Then for any µ ∈ P(C), µt is the
image of µ under x 7→ xt. On top of P(C), define P1(C) ⊂ P(C), where for µ ∈ P1(C),∫
C d(x, xo)µ(dx) <∞ for some xo ∈ C. Let dC,1(µ, ν) be the 1-Wasserstein distance between
any µ, ν ∈ P1(C), where

dC,1(µ, ν) = inf
π∈Π(µ,ν)

∫
C×C

π(dx, dx′)d(x, x′), (2.2)

with Π(µ, ν) the set of all possible coupling of µ and ν. Note that the way in which the
metric space (P1(C), dC,1) is defined can be generalized to other Polish space (E, ρ). For a
fixed T > 0, given p ≥ 0, write

‖µ‖pT =

∫
C
‖ϕT (x)‖pTµ(dx).

2.1.3 Existence of solutions to (MFG-BV)

The key idea of analyzing (MFG-BV) is to consider a controlled martingale problem, as in
[118]. The first step is to show the existence of a relaxed solution and then construct a strict
Markovian solution based on the relaxed one.

MFGs with relaxed control

We first introduce the notion of relaxed controls.

Relaxed controls. Let V denote the collection of measures q on [0,∞)× A, with

q(dt, da) = dt[qt](da)

for some qt ∈ P(A), such that∫
[0,∞)×A

e−rtq(dt, da)|a| =
∫

[0,∞)×A
e−rtdtqt(da)|a| <∞. (2.3)

Each q ∈ V is a relaxed control. From a game theory point of view, this can be interpreted as a
mixed strategy in the sense that at any time point t ≥ 0, the player chooses her action among
A according to the probability distribution qt. Given Equation (2.2), define the following
metric for V ,

dV(q1, q2) = d[0,∞)×A,1(re−rtq1, re−rtq2), ∀q1, q2 ∈ V . (2.4)

Notice re−rtq(dt, da) for any q ∈ V is a probability measure on [0,∞)×A. Then (V , dV) is a
complete and separable metric space.

Remark 2.2. Equation (2.3) implies
∫

[0,T ]×A q(dt, da)|a| <∞ for any T ∈ [0,∞).
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Remark 2.3. To define dV as in (2.4), q
T
is used for finite-time horizon [0, T ] in [118]. That

is, the time marginal is a uniform distribution. It is consistent with the definition of the
objective functional on [0, T ]. Since this chapter deals with discounted total payoff over an
infinite-time horizon with a discount rate r, an exponential distribution is chosen instead.

Remark 2.4. If there exists some measurable α : [0,∞) → A such that qt = δαt for all t,
then such a q is called a strict control. It corresponds to a pure strategy in game theory.
Note that if q is indeed a strict control for some measurable α, then Equation (2.3) becomes∫ ∞

0

e−rt|αt|dt <∞,

restricting the control trajectory α to be of finite variation.

Denote Ω = V × C and let B(Ω) be its Borel σ-field. Define Λ : V → V and X : C → C
such that Λ(q) = q and X(x) = x for any (q, x) ∈ Ω. Denote Ft = FΛ

t

⊗
FXt , where

FXt = σ(Xs : s ∈ [0, t]) on C and

FΛ
t = σ

(
1[0,t]Λ

)
= σ (Λ(C) : C ∈ B([0, t]× A))

on V. With a natural extension, X is said to be process on both C and V. To define the
canonical process on V , we can extend Lemma 3.2 in [118] to an infinite-time horizon.

Lemma 2.5. There exists a FΛ
t -predictable process Λ : [0,∞) → P(A) such that ∀q ∈ V,

Λ(t, q) = qt for almost all t ≥ 0. Specifically, q = dtΛ(t, q)(da) for all q ∈ V.

For simplicity of notation, write Λt = Λ(t, ·) as the canonical process on V. That is,
Λ(dt, da) = dtΛt(da).

Now we are ready to connect (MFG-BV) to controlled martingale problems.

Controlled martingale problems. A controlled process is defined by its infinitesimal
generator,

Lφ(x, µ, a) = b(x, µ, a)φ′(x) +
σ2

2
φ′′(x), ∀φ ∈ C∞0 (R),

for any x ∈ R, µ ∈ P1(R) and a ∈ A. Here φ ∈ C∞0 (R) denotes any compactly supported
smooth function on R. For any µ ∈ P1(C) and φ ∈ C∞0 (R), define Mµ,φ

t such that

Mµ,φ
t (q, x) = φ(xt)−

∫
[0,t]×A

q(ds, da)Lφ(xs, µs, α)

Now we are ready to discuss the law of the joint control-state pair.

Definition 2.6. For a measure µ ∈ P1(C), define R(µ) ⊂ P(Ω) to be a set of probability
measures over the joint control-state process such that any P ∈ R(µ) satisfies the following:
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1. P ◦X−1
0 = λ;

2. EP
[∫∞

0
e−rt|Λt|dt

]
<∞;

3. Mµ,φ = {Mµ,φ
t }t≥0 is a P -martingale for any φ ∈ C∞0 (R).

The following proposition illustrates the connection between R(µ) in Definition 2.6 and
the controlled processes in (MFG-BV) defined as solutions to stochastic differential equations.
It follows from Theorem IV-2 in [72].

Proposition 2.7. For µ ∈ P1(C), R(µ) is the set of laws P ′ ◦ (Λ, X)−1 as follows.

1. (Ω′,F ′t, P ′) is a filtered probability space supporting a one-dimensional F ′t-adapted process
X as well as a standard Brownian motion W ;

2. P ′ ◦ (X0)−1 = λ;

3. EP ′
[∫∞

0
e−rt|Λt|dt

]
<∞;

4. The following state equation holds,

dXt =

∫
A

b(Xt, µ, a)Λt(da)dt+ σdWt. (2.5)

Note that Assumption (A2) ensures that Equation (2.5) admits a unique strong solution.
Now we can define MFGs using controlled martingale problem. For x ∈ C, µ ∈ P1(C) and

q ∈ V , define the objective functional

Γµ(q, x) =

∫
[0,∞)×A

e−rtq(dt, da)f(xt, µt, a), (2.6)

define the objective function J : P1(C)×P1(Ω)→ R ∪ {−∞}, and define optimal control(s)
in the form of set-valued function R∗ : P1(C)→ 2P

1(Ω) as follows:

J(µ, P ) :=

∫
Ω

ΓµdP,

R∗(µ) := arg max
P∈R(µ)

J(µ, P ).

Assumptions (A1)–(A3) ensure that both J and R∗(µ) are well-defined. Now we introduce
the notion of relaxed MFG solutions:

Definition 2.8 (Relaxed MFG solution). P ∈ P1(Ω) is called a relaxed MFG solution if

J(P ◦X−1, P ′) =

∫
Ω

ΓP◦X
−1

dP ′,

P ∈ R∗(P ◦X−1) = arg max
P ′∈R(P◦X−1)

J(P ◦X−1, P ′).
(MFG)

P ◦X−1 ∈ P1(C) may also be interpreted as a relaxed MFG solution to (MFG).
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Definition 2.9 (Relaxed Markovian MFG solution). For P ∈ P1(Ω) satisfying (MFG), if
P (Λ = dt[q̂(t,Xt)](da)) = 1 for some measurable function q̂ : [0,∞)× R→ P(A), then P is
called a relaxed Markovian solution to (MFG).

Definition 2.10 (Strict Markovian solution). For P ∈ P1(Ω) satisfying (MFG), if P (Λ =
dt[δα̂(t,Xt)](da)) = 1 for some measurable function α̂ : [0,∞) × R → A, then P is called a
strict Markovian solution to (MFG).

Remark 2.11. If P ∈ P1(Ω) is a strick Markovian solution to (MFG) in the sense of
Definition 2.10, that is,

P (Λ = dtδα̂(t,Xt)(da)) = 1

for some measurable function α̂ : [0,∞)×R→ A, then (ξ̇+, ξ̇−) = α̂ together with µ = P ◦X−1

is the solution to (MFG-BV).

The following theorem concerns the existence of a relaxed MFG solution to (MFG).

Theorem 2.12. Under Assumptions (A1)–(A3), there exists a relaxed MFG solution to
(MFG).

Theorem 2.12 is established by applying the Kakutani-Fan-Glicksberg theorem, see
Theorem 1 in [75], on the following set-value mapping F defined as

F : P1(C) 3 µ 7→ {P ◦X−1 : P ∈ R∗(µ)} ∈ 2P
1(C). (2.7)

Its continuity is defined through the notion of upper and lower hemicontinuity. In general, for
any fixed metric spaces E and F , a set-value function h : E → 2F is lower hemicontinuous
if for any converging sequence {xn} in E with limit x ∈ E and y ∈ h(x), there exists a
subsequence {xnk} such that ∃ynk ∈ h(xnk) converging to y. Provided that h(x) is closed
in F for all x, h is upper hemicontinuous if for any converging {xn} in E to x ∈ E and
yn ∈ h(xn), {yn} has a limit point y ∈ h(x). It is continuous if it is both upper and lower
hemicontinuous.

To verify the conditions of Kakutani-Fan-Glicksberg theorem, we need Lemmas 2.16–2.21
specified in Section 2.1.4. To summarize, Lemmas 2.16–2.19 ensure Lemmas 2.20 and 2.21
which in turns ensure that F is upper hemicontinuous and has non-empty compact convex
values. The techniques are similar with [118]. The outline of the proof is provided in Section
2.1.4 with key steps and major differences from [118] highlighted.

From relaxed to strict Markovian MFG solution

Theorem 2.12 ensures the existence of a relaxed MFG solution P . Write µ = P ◦X−1. Now
we are going to adopt the similar technique of constructing a strict Markovian control as in
Theorem 3.7 of [118].

Theorem 2.13. Under Assumptions (A1)–(A3), there exists a strict Markovian MFG solution
to (MFG).
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Proof. First, we can construct a Markovian control by conditioning. Notice that in our setting,
σ is uncontrolled. Therefore, considering EP [Λt|Xt] would suffice for finding a measurable
function q̂ : [0,∞)× R→ P(A) such that∫

A

φ(t,Xt, a)q̂(t,Xt)(da) = EP
[∫

X

φ(t,Xt, a)Λt(da)|Xt

]
, P − a.s., a.e. t ≥ 0, (2.8)

for any bounded measurable function φ : [0,∞)× R× A→ R.
This idea of construction can also be found in Proposition 5.1 of [31]. Define probability

measure η on [0,∞)× R× A such that for any C ∈ B([0,∞)× R× A),

η(C) := EP
[∫ ∞

0

re−rt
∫
A

1C(t,Xt, a)Λt(da)dt

]
,

with η(dt, dx, da) = η1,2(dt, dx)[q̂(t, x)](da). Then for any bounded measurable function
h : [0,∞)× R→ R and for any T > 0,

EP
[∫ T

0

h(t,Xt)

∫
A

φ(t,Xt, a)q̂(t,Xt)(da)dt

]
= EP

[∫ ∞
0

1[0,T ](t)h(t,Xt)

∫
A

φ(t,Xt, a)q̂(t,Xt)(da)dt

]
=

∫
[0,∞)×R

1[0,T ](t)
ert

r
h(t, x)

∫
A

φ(t, x, a)q̂(t, x)(da)η1,2(dt, dx)

=

∫
[0,∞)×R×A

1[0,T ](t)
ert

r
h(t, x)φ(t, x, a)η(dt, dx, da)

= EP
[∫ T

0

h(t,Xt)

∫
A

φ(t,Xt, a)Λt(da)dt

]
(2.9)

By Lemma 5.2 of [31], Equation (2.9) implies Equation (2.8).
Corollary 3.7 of [31] implies that there exists (Ω′,F ′t, P ′) supporting a standard F ′t-

Brownian motion W ′ and a F ′t-adapted process X ′ such that

dX ′t =

∫
A

b(X ′t, µt, a)q̂(t,X ′t)(da)dt+ σdW ′
t ; P ′ ◦X ′−1 = µt, ∀t ≥ 0.

Itô’s formula implies P0 := P ′ ◦ (dtq̂(t,X ′t)(da), X ′)−1 ∈ R(µ). By Fubini’s theorem and
towering property of conditional expectation, it is easy to verify that J(µ, P ) = J(µ, P0) and
hence P0 ∈ R∗(µ). Define µ0 = P0 ◦X ′−1. Since

(P0 ◦X ′−1)t = (P ′ ◦X ′−1)t = µt, ∀t ≥ 0,

then R(µ0) = R(µ), J(µ0, ·) = J(µ, ·) and hence, R∗(µ0) = R∗(µ). Therefore P0 is a relaxed
Markovian MFG solution.

P0 can be made into strict, combining the arguments in [118] with results in [97] on infinite-
time horizon, therefore the exact same technique can be used with minimal adjustment.
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Now the existence of a strict Markovian solution to (MFG) immediately follows.

Theorem 2.14. [Existence of strict Markovian MFG solution.] Assume Assumptions (A1)-
(A3). Then there exists µ ∈ P1(C) and a measurable function ξ̇ : [0,∞)× R→ A satisfying
the following:

(1) There exists a probability space (Ω,Ft, P ) supporting a standard Ft-Brownian Motion
W and Ft-adapted process X such that{

dXt = b(Xt, µt)dt+ σdWt + ξ̇1(t,Xt)dt− ξ̇2(t,Xt)dt, P ◦X−1
0 = λ;

P ◦X−1 = µ.

(2) For any other (Ω′,F ′t, P ′), W ′, X ′ and ξ̇′,

EP
[∫ ∞

0

e−rt[f(Xt, µt)− γ+ξ̇1(t,Xt)− γ−ξ̇2(t,Xt)]dt

]
≥ EP ′

[∫ ∞
0

e−rt[f(X ′t, µt)− γ+ξ̇′1,t − γ−ξ̇′2,t]dt
]

with dX ′t = b(X ′t, µt)dt+ σdW ′
t + ξ̇′1,tdt− ξ̇′2,tdt, P ◦X ′−1

0 = λ.

Remark 2.15. Using the language of controlled martingale problems, condition (1) in
Theorem 2.14 means P ∈ R(P ◦ X−1) while condition (2) means P ∈ R∗(P ◦ X−1). Let
Λ = dtδξ̇t(da), then P corresponds to a strict Markovian MFG solution.

2.1.4 Proof of Theorem 2.12

The proof is established through a series of lemmas.

Lemma 2.16. Given Assumptions (A1)–(A3) with c the Lipschitz constant appeared in
Assumption (A2), fix any γ ∈ [1, 2] and any T > 0, then there exists a constant c′′(T ) =
c′′γ,λ,θ,c(T ) > 0 such that for all µ ∈ P1(C) and P ∈ R(µ),

EP‖X‖γT ≤ c′′(T ).

In particular, P ∈ P1(Ω). Moreover, if P ◦X−1 = µ, then

‖µ‖γT ≤ c′′(T ).

It follows directly from the definition of R(µ) and the boundedness of b and the control
set A. In fact, Lemma 2.16 is a stronger version of Lemma 4.3 in [118] due to our problem
setting.
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Lemma 2.17. Suppose K ⊂ P(Ω) satisfies {P ◦X−1 : P ∈ K} is tight in P(C), and

sup
P∈K

EP‖X‖T <∞

for any T > 0. Then K is relatively compact in P1(Ω).

Proof. The proof is by Theorems 16.8 and 16.10 in [28]. Since supP∈K EP‖X‖T <∞ for any
T > 0 and {P ◦X−1 : P ∈ K} is tight, we see that {P ◦X−1 : P ∈ K} is relatively compact
in P1(C). The rest of the proof fis similar to the proof of Proposition B.3 in [118].

Lemma 2.18. Fix any µ ∈ P1(C). Let Q ⊂ P(Ω) be the set of laws P ◦ (Λ, X)−1 of Ω-valued
random variables (Λ, X) defined on some filtered probability space (Ω,Ft, P ) such that

(1) dXt =
∫
A
b(Xt, µt, a)Λt(da)dt+ σdWt.

(2) W is a standard Ft-Brownian motion.

(3) X0 has law λ and F0-measurable.

Then Q is relatively compact in P1(Ω).

Proof. By Lemmas 2.16 and 2.17, it suffices to verify the Aldous criterion for tightness for any
T > 0. Now the same technique in the proof of Proposition B.4 of [118] can be applied.

Lemma 2.19. Let φ : [0,∞)× R× A→ R be measurable, with φ(t, ·, ·) jointly continuous
for any t ≥ 0. Suppose for some k > 0 and x0 ∈ R such that |φ(t, x, a)| ≤ k(1 + |x−x0|+ |a|)
for all (t, x, a) ∈ [0,∞)× R× A, then

C × V 3 (x, q) 7→
∫
e−rtq(dt, da)φ(t, xt, a)

is a continuous mapping.

Proof. Adapt the proof for Corollary A.5 in [118] by considering the following jointly contin-
uous mapping

C × V 3 (x, q) 7→ re−rtq(dt, da)δxt(de) ∈ P1([0,∞)× A× R).

Lemma 2.20. Under Assumptions (A1)–(A3), J is continuous.

Lemma 2.20 is a direct consequence of Lemma 2.19.

Lemma 2.21. Given Assumptions (A1)–(A3), the range R(C) := {P ∈ R(µ) : µ ∈ P1(C)}
is relatively compact in P1(Ω), and the set-valued function R is continuous.



CHAPTER 2. MFGS WITH SINGULAR CONTROLS 30

Proof. Having established Lemmas 2.18 and 2.19, same techniques in proving Lemma 4.4 in
[118] can be applied to show R(C) is relatively compact in P1(Ω) and R is upper hemicontin-
uous.

Next, we show R is lower hemicontinuous. Let µn → µ in P1(C) and P ∈ R(µ). By
Lemma 2.7, there exists (Ω′,F ′t, P ′) supporting a standard F ′t-Brownian motion such that
P ′ ◦ (Λ, X)−1 = P . Assumption (A2) ensures the existence of a strong solution to the SDE

dXn
t =

∫
A

b(Xn
t , µ

n
t , a)Λt(da)dt+ σdWt, Xn

0 = X0.

For any fixed T > 0, similar as Lemma 4.4 in [118], we have EP ′‖Xn −X‖T → 0 as n→∞.
Define P n := P ′ ◦ (Λ, Xn)−1. By Theorem 16.7 in [28], P n → P in P1(Ω). Itô’s formula
implies P n ∈ R(µn). Therefore, R is lower hemicontinuous.

Proof of Theorem 2.12. First, Lemma 2.21 and 2.20 imply that the set-valued function
F defined in Equation (2.7) is upper hemicontinuous and has non-empty compact convex
and for any µ ∈ P1(C), R∗(µ) is convex. Define

F (P1(C)) = {P ◦X−1 : µ ∈ C, P ∈ R∗(µ)} ⊂ P1(C).

Then, Lemma 2.16 ensures that for any T > 0, MT := sup{‖µ‖2
T : µ ∈ F (P1(C))} < ∞.

Boundedness of b implies that for any φ ∈ C∞0 (R), there exists Cφ ∈ (0,∞) such that for any
(x, µ, a),

|Lφ(x, µ, a)| < Cφ.

Define Q ⊂ P(C) such that for any P ∈ Q,

(1) P ◦X−1
0 = λ.

(2) EP‖X‖T ≤MT for all T > 0.

(3) {φ(Xt) + Cφt}t≥0 is a P -submartingale for nonnegative φ ∈ C∞0 (R).

Then Theorem 4.1 in [118] ensures Q is compact under the weak convergence topology
M(C) of bounded signed measures of C. Clearly F (P1(C)) ⊂ Q. That is, F is an upper
hemicontinuous maps Q back into itself that has nonempty, compact and convex values.
Kakutani-Fan-Glicksberg theorem implies the existence of a fixed point of F , which is a
relaxed MFG solution.

2.2 MFGs with singular control of finite variation
In the previous section, we have shown the existence of a strict Markovian MFG solution with
singular control of bounded velocity. In this section, we will analyze a particular MFG with
singular control of finite variation inspired by the partially reversible investment problem.
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2.2.1 Preliminary on partially reversible investment problem

The basic idea of the partially reversible investment problem goes as follows. A company
profits from producing and selling a commodity. The revenue function depends on the
production level with fluctuations according to, for instance, the market demand. The
company has the flexibility to adjust its production level at any time, with the expansion
incurring a cost and the contraction bringing a smaller salvage value. The objective of the
company is to choose an optimal investment strategy in terms of its production level to
maximize the overall expected net profits.

In [91], this partially reversible investment problem is formulated as follows. Take a
filtered probability space (Ω,F ,F = {Ft}t≥0,P) supporting a standard Brownian motion
W = {Wt}t≥0. Assume that FW is the augmented filtration generated by W that satisfies
the usual condition. The production level of a company xt at time t is characterized by a
geometric Brownian motion with an initial distribution µ0 ∈ P2(R) such that

dXt = Xt(δdt+ γdWt), X0− ∼ µ0,

where δ, γ > 0 are drift and volatility coefficients, representing respectively the average and
fluctuation in market demand. The production level can be adjusted at any time t, and
possibly in a discontinuous fashion such that

dXt = Xt(δdt+ γdWt) + dξt, X0− ∼ µ0, ξ0− = 0. (2.10)

Here, ξt = ξ+
t − ξ−t , ξ±0− = 0 with ξ+

· and ξ−· adapted and nondecreasing cádlág processes
representing the accumulated increased and decreased production level by time t respectively.
(Note that when the control is of finite variation, such decomposition of ξ· by ξ+

· and ξ−· is
unique).

The objective of the company is to adjust its production level xt according to a policy
ξ· = (ξ+

· , ξ
−
· ) chosen from an appropriate admissible control set U , in order to maximize its

discounted expected total profit over an infinite-time horizon. That is to find

v(x) = sup
(ξ+
· ,ξ
−
· )∈U

E
[∫ ∞

0

e−rt[Π(Xt)dt− γ+dξ+
t − γ−dξ−t ]

∣∣∣∣X0− = x

]
, ∀x > 0. (2.11)

Here the discount rate r > 0, Π(·) the revenue function satisfies the standard Inada condition
for utility functions, γ+ = p > 0 is the unit investment cost to increase production level,
and −γ− = p(1− λ) is the unit gain for reducing production level, with λ ∈ (0, 1) to ensure
no-arbitrage.

Finally, the admissible control set U is

U =
{

(ξ+
· , ξ

−
· ) : ξ+

· , ξ
−
· nondecreasing càdlàg processes adapted to FW ,

ξ+
0− = ξ−0− = 0, E

[∫ ∞
0

e−rtdξ+
t

]
<∞, Xt ≥ 0.

} (2.12)
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In [91], the smooth fit principle in the sense of [18] is established via regularity analysis
for the value function, and the optimal control ξ∗· = (ξ∗,+· , ξ∗,−· ) to (2.11) is shown to be of
bang-bang type. Moreover, the value function is shown to be the unique classical C2 solution
to the following Hamilton-Jacobian-Bellman (HJB) equation,

0 = min{rv(x)− Π(x)− δxv′(x)− 1

2
γ2x2v′′(x), p− v′(x), v′(x)− p(1− λ)}, (2.13)

where v′(·) and v′′(·) denote the first and second order derivatives of v(·) respectively.
When the revenue function Π(x) is of the Cobb-Douglas type, i.e., Π(x) = cρxα with

constants ρ > 0, c > 0 and α ∈ (0, 1), then the optimal control is characterized by two
thresholds 0 < xb < xs <∞, which are explicitly given by

xb =

{
2cα(yn0−yα0 )

γ2p(1−m)(n−α)[yn0−(1−λ)y0]

} 1
1−α

ρ
1

1−α ,

xs =

{
2cαy1−α

0 (yn0−yα0 )

γ2p(1−m)(n−α)[yn0−(1−λ)y0]

} 1
1−α

ρ
1

1−α ,

where

m = −
(
δ

γ2
− 1

2

)
−

√(
δ

γ2
− 1

2

)2

+
2r

γ2
, n = −

(
δ

γ2
− 1

2

)
+

√(
δ

γ2
− 1

2

)2

+
2r

γ2
,

and y0 > 1 is a root of the following equation

1− λ =
(n− 1)(α−m)ym−1(yα − yn) + (1−m)(n− α)yn−1(ym − yα)

(n− 1)(α−m)(yα − yn) + (1−m)(n− α)(ym − yα)
.

The value function is then derived by solving the following QVI via the smooth fit principle,
p− v′ = 0, x ≤ x < xb,

rv − cρxα − δxv′ − 1
2
γ2x2v′′ = 0, xb ≤ x ≤ xs,

v′ − p(1− λ) = 0, x > xs.

This bang-bang type of control, that is, the optimal control ξ∗· characterized by a pair of
threshold (xb, xs), suggests that the company should spend the minimum effort to keep its
production level within the interval [xb, xs].

2.2.2 Formulation of MFGs

Having reviewed a classical partially investment problem of [91], it is natural to consider
the game version of this partially reversible investment problem. We will first consider an
MFG in which there are infinite number of rational and indistinguishable companies, and
derive an explicit solution to this MFG. We will then compare this (much simpler) MFG with
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the single-agent problem (in Section 2.2.4), and study its relation with the corresponding
N -player game (in Section 2.2.5).

Let (Ω,F ,F = {Ft}t≥0,P) be a filtered probability space supporting a standard Brow-
nian motion W = {Wt}t≥0. Assume that FW is the augmented filtration generated by W
that satisfies the usual condition. As in the single-agent control problem, in the MFG a
representative company adjusts its production level xt according to a policy chosen from the
admissible control set U defined as

U =
{

(ξ+
· , ξ

−
· ) : ξ+

· , ξ
−
· nondecreasing càdlàg processes adapted to FW ,

ξ+
0− = ξ−0− = 0, E

[∫ ∞
0

e−rtdξ+
t

]
<∞, xt ≥ 0.

} (2.14)

to maximize its discounted total profit over an infinite-time horizon,

sup
(ξ+
· ,ξ
−
· )∈U

E
[∫ ∞

0

e−rt[f(Xt, µ)dt− pdξ+
t + p(1− λ)dξ−t ]

∣∣∣∣x0− = x

]
, ∀x > 0, (MFG-FV)

subject to
dXt = Xt(δdt+ γdWt) + dξ+

t − dξ−t , X0− ∼ µ0. (2.15)

Unlike the single agent problem, the revenue function for a representative company in
this game (MFG-FV) depends on both its own production level x and the aggregation of all
other companies, denoted by a probability distribution µ. More precisely, f(x, µ) the revenue
function of a Cobb-Douglas type takes the form of f(x, µ) = F (µ)xα for some α ∈ (0, 1),
with µ being the distribution of the production level in the long run, i.e., µ = Law(x∞). If
we consider the inverse demand function, then the price will be given by

ρ = ρ(µ) = EX∼µ[ρ̃(X)] =

∫
(a0 − a1y

1−α)µ(dy),

and F (µ) = cρ(µ). Effectively one can write

f(x, µ) = cρxα.

Note that in this MFG companies interact through the revenue function f . It is also worth
noting that, unlike the revenue function for the single-agent control problem in Section 1.1.3
where the unit price ρ is exogenously given and fixed, here in the game (MFG-FV) ρ is
endogenously determined.

We will look for a solution to the (MFG-FV) in the following sense.

Definition 2.22. If there exists a control ξ∗· = (ξ+,∗
· , ξ−,∗· ) ∈ U and ρ∗ > 0 such that

1. Under ρ∗, ξ∗· is an optimal control for

ṽ(x) = sup
(ξ+
· ,ξ
−
· )∈U

Eµ0

[∫ ∞
0

e−rt[cρ∗Xα
t dt− pdξ+

t + p(1− λ)dξ−t ]

∣∣∣∣X0− = x

]
, ∀x > 0,

(2.16)
subject to (2.15).
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2. Under ξ∗· the controlled process x∗ = {x∗t}t≥0 given by

dX∗t = X∗t (δdt+ γdWt) + dξ+,∗
t − dξ−,∗t , X∗0− ∼ µ0 (2.17)

admits a limiting distribution Px∗∞ and ρ∗ =
∫

(a0 − a1y
1−α)Px∗∞(dy).

then the control-mean pair (ξ∗· , ρ
∗) is said to be an NE solution to the game (MFG-FV).

To ensure the well-posedness of (MFG-FV), we assume 2δ + γ2 < r and 2δ
γ2 6∈ {α, 1}.

Remark 2.23. There is an alternative and equivalent definition of the solution to the game
(MFG-FV) . That is, for any fixed ρ ∈ R, we may define

ṽ(µ0) = sup
(ξ+,ξ−)∈U

Eµ0

[∫ ∞
0

e−rt
[
cρXα

t dt− pdξ+
t + p(1− λ)dξ−t

]]
subject to (2.15). Then these two solutions are equivalent in the sense that ṽ(µ0) =
Eµ0 [ṽ(X0−)].

2.2.3 Explicit solution to MFG

Solution to the (MFG-FV)

We shall now solve the game (MFG-FV), with the fixed-point approach as in [121].

Step 1. Control problem under fixed mean information. Fix a ρ > 0, then the
game (MFG-FV) is a singular control problem,

ṽ(x) = sup
(ξ+
· ,ξ
−
· )∈U

E
[∫ ∞

0

e−rt[cρXα
t dt− pdξ+

t + p(1− λ)dξ−t ]

∣∣∣∣X0− = x

]
, x > 0, (Control-S)

subject to (2.15). The dynamic programming principle leads to the following HJB equation
associated with the problem (Control-S) under the fixed ρ,

0 = min{rṽ(x)− cxαρ− δx∂xṽ(x)− 1

2
γ2x2∂xxṽ(x), p− ∂xṽ(x), ∂xṽ(x)− p(1− λ)}. (2.18)

Similar to the argument in [91], we see that the optimal policy is a bang-bang type and is
characterized by an expansion threshold x̃b and a contraction threshold x̃s so that xt ∈ [x̃b, x̃s]
almost surely.

More precisely, at time t = 0, if x ∈ (0, x̃b), then ξ+
0 = x̃b − x and ξ−0 = 0; if x ∈ (x̃s,∞),

then ξ+
0 = 0 and ξ−0 = x − x̃s. Note that x0 = x0− + ξ+

0 − ξ−0 ∈ [x̃b, x̃s]. For t > 0, it is
optimal to impose a minimum amount of adjustment so that xt ∈ [x̃b, x̃s].
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Accordingly, the solution ṽ is of the form

ṽ(x) =


px+ C1, 0 ≤ x ≤ x̃b,
Axm +Bxn +Hxα, x̃b < x < x̃s,
p(1− λ)x+ C2, x̃s ≤ x,

where x̃b = inf{x : ∂xṽ(x) = p}, x̃s = sup{x : ∂xṽ(x) = p(1 − λ)} with 0 < x̃b ≤ x̃s (see
Lemma 4.4 in [91]), and since it is assumed that 2δ + γ2 < r and hence δ < r,

m = −
(
δ

γ2
− 1

2

)
−

√(
δ

γ2
− 1

2

)2

+
2r

γ2
< 0, n = −

(
δ

γ2
− 1

2

)
+

√(
δ

γ2
− 1

2

)2

+
2r

γ2
> 1,

H =
2cρ

γ2(n− α)(α−m)
.

Moreover, by the smooth-fit principle, we have

Ax̃mb +Bx̃nb +Hx̃αb = px̃b + C1,

mAx̃m−1
b + nBx̃n−1

b + αHx̃α−1
b = p,

m(m− 1)Ax̃m−2
b + n(n− 1)Bx̃n−2

b + α(α− 1)Hx̃α−2
b = 0,

Ax̃ms +Bx̃ns +Hx̃αs = p(1− λ)x̃s + C2,

mAx̃m−1
s + nBx̃n−1

s + αHx̃α−1
s = p(1− λ),

m(m− 1)Ax̃m−2
s + n(n− 1)Bx̃n−2

s + α(α− 1)Hx̃α−2
s = 0.

(2.19)

Some algebraic manipulations yield

A =
p(n− 1)x̃b − α(n− α)Hx̃αb

m(n−m)x̃mb
=
p(1− λ)(n− 1)x̃s − α(n− α)Hx̃αs

m(n−m)x̃ms
; (2.20)

and

B =
p(m− 1)x̃b − α(m− α)Hx̃αb

n(m− n)x̃nb
=
p(1− λ)(m− 1)x̃s − α(m− α)Hx̃αs

n(m− n)x̃ns
. (2.21)

Furthermore, denote y0 = x̃s
x̃b

and y0 ≥ 1. By (2.20) and (2.21), we have{
p(n− 1) [(1− λ)y0 − ym0 ] = α(n− α)Hx̃α−1

b (yα0 − ym0 ) ,

p(m− 1) [(1− λ)y0 − yn0 ] = α(m− α)Hx̃α−1
b (yα0 − yn0 ) ,

(2.22)
(2.23)

and

(n− 1)(α−m)ym−1
0 (yα0 − yn0 ) + (1−m)(n− α)yn−1

0 (ym0 − yα0 )

(n− 1)(α−m)(yα0 − yn0 ) + (1−m)(n− α)(ym0 − yα0 )
= 1− λ. (2.24)
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Figure 2.1: y0 increases along with λ.

Now, to show that there exists a y0 for (2.24), define F (y) for y > 1 that

F (y) =
(n− 1)(α−m)ym−1(yα − yn) + (1−m)(n− α)yn−1(ym − yα)

(n− 1)(α−m)(yα − yn) + (1−m)(n− α)(ym − yα)
.

Since limy→1+ F (y) = 1, limy→∞ F (y) = 0, and F is continuous, there exists a y0 > 1
satisfying F (y0) = 1 − λ ∈ (0, 1) (see also Figure 2.1). Note that the function F does not
depend on ρ, therefore y0 is independent of ρ. From (2.23), we can conclude that

x̃b =

{
2cα(yn0 − yα0 )

γ2p(1−m)(n− α) [yn0 − (1− λ)y0]

} 1
1−α

ρ
1

1−α . (2.25)

where
{

2cα(yn0−yα0 )

γ2p(1−m)(n−α)[yn0−(1−λ)y0]

} 1
1−α

does not depend on ρ, and

x̃s = x̃by0 =

{
2cαy1−α

0 (yn0 − yα0 )

γ2p(1−m)(n− α) [yn0 − (1− λ)y0]

} 1
1−α

ρ
1

1−α . (2.26)

After plugging in (2.25) and (2.26), A and B are given by (2.20) and (2.21), respectively, and

C1 = Ax̃mb +Bx̃nb +Hx̃αb − px̃b, C2 = Ax̃ms +Bx̃ns +Hx̃αs − p(1− λ)x̃s.

To justify that the above analytical solution is indeed the solution to the problem
(Control-S), one way is via the verification theorem, see for instance [93]. Alternatively, one
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can first show that the value function is the unique viscosity solution to the corresponding
HJB and then establish the uniqueness of a classical C2 solution to the HJB, see for instance
[91]. Here we adopt the second approach and claim that under any given ρ > 0, ṽ derived
above is the value function of problem (Control-S). The proof is similar to that for the
single-agent case in [91], therefore omitted here.

Step 2. Updating the price ρ and the locating the fixed point. Under any fixed
ρ > 0, the optimal controlled process xt is a geometric reflected Brownian motion within the
interval [x̃b, x̃s]. By [30], for any x ∈ [x̃b, x̃s], the scale density is given by

s(x) = exp

{
−
∫ x

θ

2δ

γ2y
dy

}
= θ

2δ
γ2 x
− 2δ
γ2 , ∀θ ∈ (x̃b, x̃s),

the speed density is

m(x) =
2

γ2x2s(x)
=

2

γ2θ
2δ
γ2

x
2δ
γ2−2

,

and finally

M(x) =

∫ x

x̃b

m(y)dy =
2

γ2θ
2δ
γ2

x
2δ
γ2−1 − x̃

2δ
γ2−1

b
2δ
γ2 − 1

.

The density function of Px∞ , the limiting distribution of xt, is thus

f(x) =
m(x)

M(x̃s)
=

2δ
γ2 − 1

x̃
2δ
γ2−1

s − x̃
2δ
γ2−1

b

x
2δ
γ2−2

, ∀x ∈ [x̃b, x̃s].

The updated price ρ̄ under the limiting distribution µ̄ = Law(x∞) is

ρ̄ = Γ(ρ) = a0 − a1

∫ x̃s

x̃b

x1−αf(x)dx = a0 − a1
2δ − γ2

2δ − αγ2

x̃
2δ
γ2−α
s − x̃

2δ
γ2−α
b

x̃
2δ
γ2−1

s − x̃
2δ
γ2−1

b

= a0 − ρ · a1
2δ − γ2

2δ − αγ2

y
2δ
γ2−α
0 − 1

y
2δ
γ2−1

0 − 1

2cα(yn0 − yα0 )

γ2p(1−m)(n− α) [yn0 − (1− λ)y0]
,

(2.27)

where the coefficient a1
2δ−γ2

2δ−αγ2

y

2δ
γ2−α

0 −1

y

2δ
γ2−1

0 −1

2cα(yn0−yα0 )

γ2p(1−m)(n−α)[yn0−(1−λ)y0]
does not rely on ρ. Clearly, for

a1 such that

a1 > 0, a1
2δ − γ2

2δ − αγ2

y
2δ
γ2−α
0 − 1

y
2δ
γ2−1

0 − 1

2cα(yn0 − yα0 )

γ2p(1−m)(n− α) [yn0 − (1− λ)y0]
< 1, (2.28)
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the mapping Γ is a contraction and therefore admits a unique fixed point

ρ∗ =
a0

1 + a1
2δ−γ2

2δ−αγ2

y

2δ
γ2−α

0 −1

y

2δ
γ2−1

0 −1

2cα(yn0−yα0 )

γ2p(1−m)(n−α)[yn0−(1−λ)y0]

. (2.29)

Substitute ρ∗ of (2.29) into (2.25) and (2.26), we can derive optimal action boundaries x̃∗b
and x̃∗s. Denote the singular control characterized by (x̃∗b , x̃

∗
s) as ξ∗· . Under Definition 2.22,

(ξ∗· , ρ
∗) is a solution to the game (MFG-FV).

Remark 2.24. Note that under the assumption 2δ + γ2 < r, the uncontrolled process
X = {Xt}t≥0 satisfies E

[∫∞
0
e−rtX2

t dt
]
<∞, and this property is preserved for the controlled

process X∗ = {X∗t }t≥0 under ξ∗· , as it is restricted to a bounded region.

2.2.4 Sensitivity analysis and comparison with single-agent
control problem

As seen from (2.27), the iterations do not stop after the first round, indicating that the game
(MFG-FV) demonstrates a genuine game effect from the weak interactions among the players.
Moreover, we can see that in the game (MFG-FV), model parameters λ, δ, γ, r and α affect
both the optimal strategy of as in the single-agent control problem (2.11) and the equilibrium
price ρ∗.

To illustrate, consider the following case where δ = 1, γ = 2, r = 3, α = 0.6, λ = 0.6,
p = 0.5, c = 1, a0 = 1 and a1 = 0.1. Suppose the iterative process starts from a fixed value
ρ = 1. In the single-agent setting (2.11) where the price ρ = 1 is seen as exogenously given
and fixed, the optimal thresholds are given by xb = 0.053 and xs = 0.264. Figure 2.2 shows
that both xb and xs increase along with the value of ρ and the non-action region [xb, xs]
expands. In the game (MFG-FV), in contrast, the equilibrium price is ρ∗ = 0.96 under which
the optimal thresholds are x̃∗b = 0.048 and x̃∗s = 0.239. Figure 2.3 shows the difference in
the thresholds of intervention between the single-agent control problem (2.11) and the game
(MFG-FV).

Impact of λ. λ ∈ (0, 1) measures the irreversibility of the investment: the closer λ to 1,
the more irreversible the investment. For the single-agent control problem (2.11) (Figures
2.4a and 2.4b), the expansion threshold xb stays relatively insensitive with respect to an
increasing λ, the contraction threshold xs however increases dramatically along with λ. This
means that for an individual company, if the investment is more irreversible, it becomes less
profitable to frequently decrease the production level; consequently, the contraction threshold
is raised to a higher level. Under the game (MFG-FV) setting, the irreversibility does not
have an immediate impact on the optimal strategies (Figure 2.4c); instead, it drives down
the equilibrium price (Figure 2.4d). This suggests that as it becomes less profitable to reduce
production when λ approaches 1, companies in the game (MFG-FV) tend to keep a higher
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Figure 2.2: Thresholds under different values of ρ.

Figure 2.3: Single-agent v.s. MFG

production level and this tendency collectively reduces the price due to the risk-aversion
implied by the Cobb-Douglas function.

Impact of δ and γ. The drift coefficient δ represents the expected growth rate of the
production and γ measures the volatility of the growth. The decision of whether or not to
adjust the production level is the trade-off between the running payoff cρxαt and the profit
from direct intervention p(1−λ)dξ−t −pdξ+

t , with α ∈ (0, 1). Without any intervention within
the time interval [t, t+ ∆t], xαt+∆t is given by

xαt exp

{
[αδ − γ2

2
α(1− α)]∆t

}
exp

{
αγ(Wt+∆t −Wt)−

α2γ2

2
∆t

}
, (2.30)
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(a) Expansion threshold under different values
of λ: single-agent v.s. MFG

(b) Contraction threshold under different values
of λ: single-agent v.s. MFG

(c) MFG optimal thresholds versus λ (d) Equilibrium price versus λ

Figure 2.4: Impact of λ.

therefore αδ − γ2

2
α(1− α) represents the expected growth rate of xαt . Under the single-agent

setting (2.11), when δ increases, the revenue function grows faster, leading to higher expansion
and contraction thresholds, as shown in Figures 2.5a and 2.5b. Moreover, the growth in δ
has larger impact on the contraction threshold xs compared to the the expansion threshold
xb. It also implies that each company tends to maintain a higher production level as δ grows.
Under the game (MFG-FV), this tendency on the individual level is aggregated, driving down
the equilibrium price ρ∗, as shown in Figure 2.5d.

The impact of an increasing γ on both the single-agent control problem and the MFG can
be seen from the following two perspectives. As γ increases, the growth rate of the revenue
function αδ − γ2

2
α(1 − α) decreases, potentially causing lower expansion and contraction

thresholds. An increasing γ indicates a larger volatility in the growth rate of the production
level and the company can take advantage of the high volatility and reduce the frequency of
intervention, potentially decreasing the expansion threshold and increasing the contraction
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(a) Expansion threshold under different values
of δ: single-agent v.s. MFG

(b) Contraction threshold under different values
of δ: single-agent v.s. MFG

(c) MFG optimal thresholds versus δ (d) Equilibrium price versus δ

Figure 2.5: Impact of δ.

threshold.
Under both perspectives, the expansion threshold is expected to decrease when γ increases.

But an increase in γ potentially has opposite effects on the contraction threshold. In the
single-agent control problem (2.11), the expansion threshold xb decreases as expected (Figure
2.6a); the contraction threshold xs first increases and then decreases (Figure 2.6b). In the
game (MFG-FV), the prevailing impact of a decreasing growth rate of xαt leads to higher the
equilibrium price ρ∗, as shown in Figure 2.6d.

Impact of r. In the single-agent control problem (2.11), as the discount rate r increases,
the revenue decays faster as time goes by, thus it becomes more beneficial to decrease the
production level for profit and consequently, a significant drop in the contraction threshold
in Figure 2.7b. In the game (MFG-FV), the tendency of decreasing production for each
company ultimately drives up the equilibrium price, as shown in Figure 2.7d.
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(a) Expansion threshold under different values
of γ: single-agent v.s. MFG

(b) Contraction threshold under different values
of γ: single-agent v.s. MFG

(c) MFG optimal thresholds versus γ (d) Equilibrium price versus γ

Figure 2.6: Impact of γ.

Impact of α. α ∈ (0, 1) measures the elasticity of the profit with respect to the production.
Under the single-agent setting (2.11), both thresholds first increase and then decrease as
α approaches 1. In the game (MFG-FV), the more sensitive the revenue with respect to
production, the lower the equilibrium price, as shown in Figure 2.8d.

2.2.5 Approximation of N-player game

In Section 2.2.4, we compare the solution to game (MFG-FV) with the solution to the
single-agent control problem (2.11), and demonstrate the game effect by analyzing the impact
of the model parameters. In this section, we will show that the game (MFG-FV) is an
approximation of its associated N -player game, in the sense of ε-NE.

Take the filtered probability space (Ω,F ,F = {Ft}t≥0,P) that supports a standard
Brownian motion W = {Wt}t≥0. Take N identical copies of the Brownian motion W ,
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(a) Expansion threshold under different values
of r: single-agent v.s. MFG

(b) Contraction threshold under different values
of r: single-agent v.s. MFG

(c) MFG optimal thresholds versus r (d) Equilibrium price versus r

Figure 2.7: Impact of r.

W i = {W i
t }t≥0 with i = 1, . . . , N , such that W i’s are i.i.d. and independent of W .

Suppose there are N companies participating in the game of partially reversible investment.
For each company i, denote X i = {X i

t}t≥0 as its production level on R, with initial states
X i

0−
i.i.d.∼ µ0 ∈ P2(R). Similar to (2.14) and considering Remark 2.24, define the set of

admissible controls UN for each company,

UN =
{

(ξ+
· , ξ

−
· ) : ξ±· adapted to F(W 1,...,WN ), nondecreasing, càdlàg,

ξ+
0− = ξ−0− = 0, E

[∫ ∞
0

e−rtdξ+
t

]
<∞,

controlled process Xt ≥ 0, ∀t ≥ 0, E
[∫ ∞

0

e−rtX2
t dt

]
<∞

}
,

(2.31)

where F(W 1,...,WN ) = {F (W 1,...,WN )
t }t≥0 is the filtration generated by (W 1, . . . ,WN). For any
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(a) Expansion threshold under different values
of α: single-agent v.s. MFG

(b) Contraction threshold under different values
of α: single-agent v.s. MFG

(c) MFG optimal thresholds versus α (d) Equilibrium price versus α

Figure 2.8: Impact of α.

ξi· = (ξi,+· , ξi,−· ) ∈ UN , assume that the process xi = {xit}t≥0 is driven by

dX i
t = X i

t(δdt+ γdW i
t ) + dξi,+t − dξ

i,−
t , X i

0− ∼ µ0. (2.32)

Here we consider a similar payoff function for each individual company as in problem
(2.11). However, unlike (2.11) where the price in the revenue function is exogenously given,
here in the N -player game ρi the price for company i is assumed to depend on the average of
all its opponents’ limiting product levels

∑
j−1 X

j
∞

N−1
, and the price is assumes to be determined

by the inverse demand function

ρ̃(x) = a0 − a1x
1−α,

where a0, a1 are some positive constants with a1 satisfying (2.28).
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Under a given set of other companies’ controls, ξ−i· = (ξ1
· , . . . , ξ

i−1
· , ξi+1

· , . . . , ξN· ), for any
x ∈ RN , the payoff function for company i, is given by

J i(x, ξi· ; ξ
−i
· ) = E

[∫ ∞
0

e−rt

[
c(xit)

α

N − 1

∑
j 6=i

ρ̃(xj∞)dt− pdξi,+t + p(1− λ)dξi,−t

] ∣∣∣∣X0− = x

]
,

(2.33)
where X0− = (X1

0−, . . . , X
N
0−). The objective of company i is to choose the best control policy

ξ∗,i ∈ UN to maximize the above payoff. That is,

sup
ξi,+· ,ξi,−· ∈UN

J i(x, ξi· ; ξ
−i
· ) (N-player-S)

subject to (2.32).
There are various solution criteria for an N -player game. In this section, we focus on the

notion of the Nash equilibrium (NE). An NE of an N -player game is a set of strategies of all
agents from which no players has the incentive to unilaterally deviate. More specifically,

Definition 2.25 (NE). ξ∗· = (ξ∗,1· , . . . , ξ∗,N· ) is called an NE to the game (N-player-S) if for
any i = 1, . . . , N ,

Eµ0

[
J i(X0−, ξ

∗,i
· ; ξ∗,−i· )

]
≥ Eµ0

[
J i(X0−, ξ

i
· ; ξ
∗,−i
· )

]
, ∀ξi· ∈ UN ,

where xk0−
i.i.d.∼ µ0, k = 1, . . . , N .

Solving for such an NE analytically is challenging especially when N is large. We will
show that the solution for the game (MFG-FV) in Section (2.2.3) provides an approximation
of the game (N-player-S) in the following sense.

Definition 2.26 (ε-NE). For some ε > 0, ξ∗· = (ξ∗,1· , . . . , ξ∗,N· ) is called an ε-NE to the game
(N-player-S) if for any i = 1, . . . , N ,

Eµ0

[
J i(X0−, ξ

∗,i
· ; ξ∗,−i· )

]
≥ Eµ0

[
J i(X0−, ξ

i
· ; ξ
∗,−i
· )

]
− ε, ∀ξi· ∈ UN ,

where xk0−
i.i.d.∼ µ0, k = 1, . . . , N .

To see the approximation, first recall the definition of a solution (ξ∗· , ρ
∗) to the (MFG-FV)

given by Definition 2.22 and its explicit form given in Section 2.2.3 characterized by the pair
of reflection boundaries and mean information (x̃∗b , x̃

∗
s, ρ
∗).

Now, for any company k = 1, . . . , N , consider the following admissible control policy
ξ̄k· characterized by the reflection boundaries (x̃∗b , x̃

∗
s) such that for the controlled process

X̄k = {X̄k
t }t≥0, X̄k

t ∈ [x̃∗b , x̃
∗
s] for almost all t ≥ 0. Fix a representative company i. Suppose

that for any j 6= i, company j decides to take the policy ξ̄j· ∈ UN . Then X̄j’s are i.i.d.;
moreover, according to Definition 2.22, the consistency condition of the solution to the game
(MFG-FV) guarantees that ρ∗ = E[ρ̃(x̄j∞)].



CHAPTER 2. MFGS WITH SINGULAR CONTROLS 46

Now denote the set of strategies consisting of ξ̄k· ’s by the following vector

ξ̄· = (ξ̄1
· , . . . , ξ̄

N
· ). (2.34)

Then we have

Theorem 2.27. For any fixed N , ξ̄· given in (2.34) is an ε-NE to the game (N-player-S)
where ε = O

(
1√
N

)
.

Proof. It suffice to show that

Eµ0

[
J i(X0−, ξ̄

i
· ; ξ̄
−i
· )
]
≥ sup

ξi·∈UN
Eµ0

[
J i(X0−, ξ

i
· ; ξ̄
−i
· )
]
−O

(
1√
N

)
.

Note that the strategies of other companies are fixed as ξ̄j· , where j 6= i. By the continuity

of ρ̃(·) and boundedness of X̄j’s, ρ̄ :=
∑
j 6=i ρ̃(X̄j

∞)

N−1
is bounded by a sufficiently large number

R > 0. Therefore for any ξi· ∈ UN ,

J i(x, ξi· ; ξ̄
−i
· ) ≤ Ju,i(x, ξi· ; ξ̄

−i
· )

:= E
[∫ ∞

0

e−rt
[
cR(xit)

αdt− pdξi,+t + p(1− λ)dξi,−t
] ∣∣∣∣X0− = x

]
.

From [91], clearly supξi∈UN J
u,i(x, ξi· ; ξ̄

−i
· ) is finite and

U := sup
ξi∈UN

Ju,i(x, ξi· ; ξ̄
−i
· ) <∞.

For some d > 0 such that U − d√
N
> 0, take ξ̂i· ∈ UN such that J i(x, ξ̂i· ; ξ̄−i· ) ≥ U − d√

N
and

denote the production level under policy ξ̂i· by x̂i = {x̂it}t≥0. According to (2.31), there exists
L > 0 Eµ0

[∫∞
0
e−rt(X̂ i

t)
2dt
]
< L. Consider ξi· ∈ UN such that the corresponding controlled

process xi satisfies

Eµ0

[∫ ∞
0

e−rt(X i
t)

2dt

]
< L. (2.35)

Take such a control policy ξi· .

c(X i
t)
α

N − 1

∑
j 6=i

ρ̃(X̄j
∞) = c(X i

t)
α

{
ρ∗ +

∑
j 6=i
[
ρ̃(X̄j

∞)− ρ∗
]

N − 1

}
.

Since x̄j· ∈ [x̃∗b , x̃
∗
s] almost surely, ρ̃(x̄i∞) is also bounded almost surely. For j 6= i, x̄j’s are

i.i.d., then

Eµ0

∣∣∣∣∣
∑

j 6=i
[
ρ̃(X̄j

∞)− ρ∗
]

N − 1

∣∣∣∣∣ ≤ Eµ0

∣∣∣∣∣
∑

j 6=i
[
ρ̃(X̄j

∞)− ρ∗
]

N − 1

∣∣∣∣∣
2
 1

2

= O

(
1√
N

)
.
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Therefore, ∣∣∣∣∣Eµ0

[∫ ∞
0

e−rt
c(X i

t)
α

N − 1

∑
j 6=i

ρ̃(X̄j
∞)dt

]
− Eµ0

[∫ ∞
0

e−rtcρ∗(X i
t)
αdt

]∣∣∣∣∣
≤ Eµ0

[∫ ∞
0

e−rtc

∣∣∣∣∣
∑

j 6=i
[
ρ̃(X̄j

∞)− ρ∗
]

N − 1

∣∣∣∣∣ (X i
t)
αdt

]

≤ Eµ0

∣∣∣∣∣
∑

j 6=i
[
ρ̃(X̄j

∞)− ρ∗
]

N − 1

∣∣∣∣∣
2
 1

2

Eµ0

[(∫ ∞
0

e−rt(X i
t)
αdt

)2
] 1

2

≤ Eµ0

∣∣∣∣∣
∑

j 6=i
[
ρ̃(X̄j

∞)− ρ∗
]

N − 1

∣∣∣∣∣
2
 1

2

Eµ0

[
1

r

∫ ∞
0

e−rt(X i
t)

2αdt

] 1
2

,

where the last inequality is by the Jensen inequality. By (2.35), we have

Eµ0

[∫ ∞
0

e−rt(X i
t)

2αdt

]
= Eµ0

[∫ ∞
0

e−rt(X i
t)

2α
1{X i

t ≤ 1}dt
]

+ Eµ0

[∫ ∞
0

e−rt(X i
t)

2α
1{X i

t > 1}dt
]

≤ r + Eµ0

[∫ ∞
0

e−rt(X i
t)

2dt

]
≤ r + L.

Therefore,

Eµ0

[∫ ∞
0

e−rt
c(X i

t)
α

N − 1

∑
j 6=i

ρ̃(X̄j
∞)dt

]
= Eµ0

[∫ ∞
0

e−rtcρ∗(X i
t)
αdt

]
+O

(
1√
N

)
.

In particular,

sup
ξi·∈UN

Eµ0

[
J i(X0−, ξ

i
· ; ξ̄
−i
· )
]
−O

(
1√
N

)
≤ Eµ0

[
J i(X0−, ξ̂

i
· ; ξ̄
−i
· )
]

= Eµ0

[∫ ∞
0

e−rt

[
c(X̂ i

t)
α

N − 1

∑
j 6=i

ρ̃(Xj
∞)dt− γ+dξi,+t − γ−dξ

i,−
t

]]

= Eµ0

[∫ ∞
0

e−rt
[
cρ∗(X̂ i

t)
αdt− γ+dξi,+t − γ−dξ

i,−
t

]]
+O

(
1√
N

)
≤ Eµ0

[
J i(X0−, ξ̄

i
· ; ξ̄
−i
· )
]

+O

(
1√
N

)
,

where the last inequality is due to the optimality of ξ̄i· according to Step 1 of Section 2.2.3.
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2.3 Conclusion and remarks
This chapter analyzes a class of MFGs with singular controls motivated from the partially
reversible problem.

It establishes the existence of a solution to the MFG when controls are of bounded velocity
where the approach is adapted from the technique in [118] to the infinite-time-horizon setting
with an appropriate modification of topological spaces. It provides an explicit solution to
the MFG when the singular controls are of finite variation, presents sensitivity analysis
to compare the solution to the MFG with that of the single-agent control problem, and
establishes its approximation to the corresponding N -player game in the sense of ε-NE, with
ε = O

(
1√
N

)
.

The natural next step is to study the problem of convergence of the N -player game to
the associated MFG. Note that this problem has been studied for regular controls in [119, 43,
142]. It will be interesting to explore the case when controls are possibly discontinuous.

Another class of stochastic games with possibly discontinuous controls is impulse control
games. Recently there are progresses in this direction, including [3] and [36] for explicit
solutions of two-player games and [14] showing solutions of impulse MFGs being ε-NE for
their corresponding N -player impulse games, with ε = O( 1√

N
). Similar to MFGs with singular

controls, it is challenging to establish general NE structures for impulse games, except for
some special cases. The main challenge comes from the non-local operator associated with
impulse controls, even with one-dimensional state processes.

Finally, it is well known that under proper technical conditions, singular controls of finite
variation can be approximated by singular controls of bounded velocity. See for instance [98].
More recently, under the finite-time horizon setting, [90] establishes an ε-Nash Equilibrium
(ε-NE) approximation of N-player games with singular controls of finite variation by MFGs
with singular controls of bounded velocity; [65] studies in an N -player game setting the
convergence of singular control of bounded velocity to that of finite variation, assuming
sub-modularity of the cost function and via the notion of weak NE. An immediate question is
whether the convergence relation holds in a MFG framework, and if so, under what form of
equilibrium. This is an intriguing question to be answered in future works.
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Chapter 3

Nonzero-sum stochastic games and
mean-field games with impulse controls

Motivated by the classical cash management problem [58] reviewed in Section 1.1.4, this
chapter will focus on the analysis of stochastic games with impulse controls, for both N
players and its corresponding MFGs.

Consider N players, each managing a flow of cash balance. For player i ∈ {1, . . . , N}, the
uncontrolled cash balance is driven by

dX i
t = bi(X

i
t−)dt+ σi(X

i
t−)dW i

t , X i
0− = xi,

where W i are independent real Brownian motions. Each player, say player i, chooses a
sequence of random (stopping) times (τi,1, τi,2, · · · , τi,k, · · · ) to intervene and exercise her
control. At each τi,k, the time of this player’s k-th intervention, her control is denoted as ξ̃i,k.
Given the sequence {(τi,k, ξ̃i,k)}k≥1 for player i, the dynamic of X i becomes

dX i
t = bi(X

i
t−)dt+ σi(X

i
t−)dW i

t +
∑
τi,k≤t

δ(t− τi,k)ξ̃i,k, X i
0− = xi,

with δ(·) the Dirac function. The payoff for player i is

Ex

[∫ ∞
0

e−rtfi(Xt)dt+
∞∑
k=1

e−rτi,kφi(ξ̃i,k) +
∑
j 6=i

∞∑
k=1

e−rτj,kψi,j(ξ̃j,k)

]
. (N-player-I)

Here Xt = (X1
t , · · · , XN

t ) with x = (x1, · · · , xN) the starting state, r > 0 the discount rate,
fi the running cost, φi the cost of control for player i, and ψi,j the cost for player i incurred
from player j’s control, subject to appropriate conditions to be specified in Section 3.1.3. The
goal of each player i is to find the best policy to minimize her cost among a set of admissible
game strategies.

For this N -player game, it establishes a general form of system of QVIs and provides the
sufficient conditions for the Nash equilibria (NEs) of the game, via the verification theorem
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approach. For the corresponding MFG, it presents sufficient conditions for the existence of
NEs and shows that the solution of the MFG is an ε-NE approximation to the N -player game,
with ε = O

(
1√
N

)
. Through sensitivity analysis and comparisons among N = 1, 2 and N =∞

(i.e., MFG), it analyzes the cash management game problem and the effect of competition
in games and the collapse of MFG to the single-player game. In particular, it shows that
in a game setting players have to take the opponents’ strategies into consideration due to
competition. Consequently, it is optimal (in the NE sense) that players choose to intervene
less frequently; but once set to intervene, players will exert larger amount of controls. In
some sense, competition induces more efficient control strategies from players.

3.1 N-Player stochastic games with impulse controls.

3.1.1 Problem formulation.

In this section, we provide the mathematical definition for the N -player stochastic games
with impulse controls. The idea is clear and intuitive: N players intervening on a stochastic
process by discrete-time intervention. However, the precise mathematical definition presents
some non-trivial technicalities with the presence of discontinuous multi-dimensional controlled
process.

Domain and underlying process. Let (Ω, F , {Ft}t≥0, P) be a filtered probability space
and let {Wt}t≥0 be an M -dimensional Brownian motion with natural filtration {Ft}t≥0. Let
S be a fixed non-empty subset of Rd, representing the set where the game takes place, in
the sense that the game ends when the controlled process exits from S. For example, in
portfolio optimization problems the game ends in case of bankruptcy, which may be modelled
by choosing S = (0,∞).

For t ≥ 0 and ζ ∈ L2(Ft), we denote by Y t,ζ = {Y t,ζ
s }s≥t a solution to the stochastic

differential equation {
dY t,ζ

s = b(Y t,ζ
s )ds+ σ(Y t,ζ

s )dWs, s ≥ t,

Y t,ζ
t = ζ.

(3.1)

Here, b : S → Rd and σ : S → Rd×M are given Lipschitz-continuous functions, i.e., there
exists a constant K > 0 such that for all y1, y2 ∈ S,

|b(y1)− b(y2)|+ |σ(y1)− σ(y2)| ≤ K|y1 − y2|.

The equation in (3.1) models the underlying process when none of the players intervenes.
Since we are going to stop the process as soon as it exits from S, in our framework it is
enough to have the functions b and σ defined only on S.
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Interventions of the players and impulse controls. N players, indexed by i ∈
{1, . . . , N}, can intervene on the process in (3.1) by means of discrete-time interventions.
Namely, if player i intervenes with impulse δ ∈ Zi, where Zi is a fixed subset of Rli , the
process is shifted from state x to state Γi(x, δ), where Γi : S ×Zi → S is a given function. In
most applied settings, the process shifts with a simple translation, i.e., Γi(x, δ) = x+ δ.

The interventions of player i are described by the sequence {(τi,k, ξi,k)}k≥1 (impulse control),
where {τi,k}k≥1 represent the intervention times and {ξi,k}k≥1 the corresponding amount of
adjustment. Mathematically, τi,k is a stopping time with respect to a suitable filtration
{F̃t}t≥0 (see Remark 3.1 below for details), with τi,k+1 ≥ τi,k, and ξi,k is a F̃τi,k-measurable
variable, for each k ≥ 1 and i ∈ {1, . . . , N}.

Intervening has a cost or a gain, both for the acting player and for all her opponents.
Namely, if x is the current state and player i intervenes with an impulse δ, her cost is φi(x, δ),
whereas the cost for player j 6= i is ψj,i(x, δ), for given functions φi, ψj,i : S × Zi → R. For
the game to be well defined, it is necessary to have φi > 0. That is, intervening corresponds
to a cost, otherwise the game degenerates and the players could improve their payoff by
continuously intervening.

Action regions, impulse functions, strategies. As seen, players’ interventions on the
underlying process are modelled by impulse controls. In the model we propose here, impulse
controls originate from a precise strategy that each player preliminarily fixes.

Definition 3.1. A strategy for player i ∈ {1, . . . , N} is a pair ϕi = (Ai, ξi), where Ai is a
fixed closed subset of Rd (action region) and ξi : S → Zi is a continuous function (impulse
function). We denote by Φi the set of strategies for player i.

Strategies determine the behaviour of the players, as follows. Fix a starting point x ∈ S
and an N -tuple of strategies ϕ = (ϕ1, . . . , ϕN), where ϕi = (Ai, ξi) ∈ Φi is the strategy of
player i and the sets Ai are pairwise disjoint, that is, Ai ∩Aj = ∅ for i 6= j. Then, N impulse
controls {(τx;ϕ

i,k , ξ
x;ϕ
i,k )}k≥1 (the players’ interventions), a right-continuous process Xx;ϕ (the

controlled process), a stopping time τx;ϕ
S (the end of the game) are uniquely defined by the

following two rules.

1. Player i intervenes if and only if the process enters the set Ai, in which case the
impulse is given by ξi(y), where y is the current state. Recall that choosing ξi(y) as
the intervention impulse means that player i shifts the process from state y to state
Γi(y, ξi(y)), as introduced earlier.

2. The game ends when the process exits from S.

More precisely, {(τx;ϕ
i,k , ξ

x;ϕ
i,k )}k≥1, Xx;ϕ, τx;ϕ

S are defined in the following Definition 3.2, where
we use the conventions inf ∅ =∞ and [∞,∞) = ∅.

Definition 3.2. Let x ∈ S and ϕ = (ϕ1, . . . , ϕN), where ϕi = (Ai, ξi) ∈ Φi is a strategy
for player i ∈ {1, . . . , N}. Assume that Ai ∩ Aj = ∅, for i 6= j. For k ∈ {0, . . . , k̄}, where
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k̄ = sup{k ∈ N ∪ {0} : τ̃k < αSk}, we define by induction τ̃0 = 0, x0 = x, X̃0 = Y τ̃0,x0,
αS0 =∞, and

αOk = inf{s > τ̃k−1 : X̃k−1
s /∈ O}, [exit time from O ⊆ S]

τ̃k = min{αA1
k , . . . , αANk }, [intervention time]

mk = 1{τ̃k=α
A1
k }

+ · · ·+N1{τ̃k=α
AN
k }, [index of the player interv. at τ̃k]

ξ̃k = ξmk
(
X̃k−1
τ̃k

)
, [impulse]

xk = Γmk
(
X̃k−1
τ̃k

, ξ̃k
)
, [starting point for the next step]

X̃k = X̃k−1
1[0,τ̃k[ + Y τ̃k,xk1[τ̃k,∞[. [contr. process up to the k-th interv.]

Let k̄i be the number of interventions by player i ∈ {1, . . . , N} before the end of the game,
and, in the case where k̄i 6= 0, let η(i, k) be the index of her k-th intervention (1 ≤ k ≤ k̄i):

k̄i =
∑

1≤h≤k̄
1{mh=i}, η(i, k) = min

{
l ∈ N :

∑
1≤h≤l

1{mh=i} = k
}
.

Assume now that the times {τ̃k}0≤k≤k̄ never accumulate strictly before αS
k̄
. That is, we assume

that limk→k̄ τ̃k = αS
k̄
in the event {k̄ = +∞}, with the convention αS∞ = supk α

S
k . The

controlled process Xx;ϕ and the exit time τx;ϕ
S are defined by

Xx;ϕ := X̃ k̄, τx;ϕ
S := αSk̄ = inf{s ≥ 0 : Xx;ϕ

s /∈ S},

with the convention X̃∞ = limk→+∞ X̃
k. Finally, the impulse controls {(τx;ϕ

i,k , ξ
x;ϕ
i,k )}k≥1, with

i ∈ {1, . . . , N}, are defined by

τx;ϕ
i,k :=

{
τ̃η(i,k), k ≤ k̄i,

τx;ϕ
S , k > k̄i,

ξx;ϕ
i,k :=

{
ξ̃η(i,k), k ≤ k̄i,

0, k > k̄i.
(3.2)

Notice that, if player i intervenes a finite number of times, i.e., k̄i = k̄i(ω) is finite, then
the tail of the control is conventionally set to (τi,k, ξi,k) = (τS, 0) for k > k̄i. The following
lemma characterizes precisely the controlled process Xx;ϕ.

Lemma 3.3. Let x ∈ S and ϕ = (ϕ1, . . . , ϕN), where ϕi = (Ai, ξi) ∈ Φi is a strategy for
player i ∈ {1, . . . , N}. Let X = Xx;ϕ, τS = τx;ϕ

S , τi,k = τx;ϕ
i,k , ξi,k = ξx;ϕ

i,k be as in Definition
3.2, for i ∈ {1, . . . , N} and k ≥ 1. Then,

- X admits the following representation, with τ̃k, xk as in Definition 3.2 and Y as in
(3.1):

Xs =
k̄−1∑
k=0

Y τ̃k,xk
s 1[τ̃k,τ̃k+1[(s) + Y τ̃k̄,xk̄

s 1[τ̃k̄,∞[(s). (3.3)
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- X is right-continuous. More precisely, X is continuous in [0,∞) \ {τi,k : τi,k < τS}
and discontinuous in {τi,k : τi,k < τS}, where

Xτi,k = Γi
(
X(τi,k)− , ξi,k

)
, ξi,k = ξi

(
X(τi,k)−

)
, X(τi,k)− ∈ ∂Ai. (3.4)

- X never exits from the set (A1 ∪ · · · ∪ AN)c.

Proof. We just prove the first property in (3.4), the other ones being immediate. Let
i ∈ {1, . . . , N}, k ≥ 1 with τi,k < τS and set σ = η(i, k), with η as in Definition 3.2. By (3.2),
(3.3) and Definition 3.2, we have

Xτi,k = Xτ̃σ = Y τ̃σ ,xσ
τ̃σ

= xσ = Γi
(
X̃σ−1
τ̃σ

, ξ̃σ
)

= Γi
(
X̃σ−1

(τ̃σ)− , ξ̃σ
)

= Γi
(
X(τ̃σ)− , ξ̃σ

)
= Γi

(
X(τi,k)− , ξi,k

)
,

where the fifth equality is by the continuity of the process X̃σ−1 in [τ̃σ−1,∞) and the
next-to-last equality follows from X̃σ−1 ≡ X in [0, τ̃σ).

Remark 3.1. For x ∈ S and ϕ ∈ Φx, let {FXt }t≥0 denote the natural filtration of the process
X = Xx;ϕ. Then, by construction, τi,k is a stopping time with respect to the filtration {FXt−}t≥0

and ξi,k is a FXτi,k-measurable random variable, for i ∈ {1, . . . , N} and k ∈ N.

Remark 3.2. In single-player impulse control problems (e.g., [146]), the optimal intervention
times are recursively defined by

τk+1 = inf{s ≥ τk : Xk
t ∈ A}, (3.5)

for a suitable set A, where Xk represents the controlled process after the k-th intervention.
Notice that this procedure cannot be directly extended to N -player impulse games: In a game
setting, the intervention times of player i also depend on her opponents’ past interventions,
so that (3.5) would not be well defined in this case. To overcome this technical difficulty and
provide a rigorous framework, we have introduced the definition of strategy.

Objective functions. Each player aims at minimizing her objective function, made up of
four terms: a continuous-time running cost in [0, τS], the discrete-time costs associated to
her own interventions, the discrete-time costs associated to her opponents’ interventions, a
terminal cost if the game ends.

More precisely, let fi, hi : S → Rd be given functions, and let ρi > 0 be strictly positive
constants, for i ∈ {1, . . . , N}. For more technical details on the existence and uniqueness
of the solution to impulse control problems, see [92]. The functional that player i aims at
minimizing is defined as follows.
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Definition 3.4. Let x ∈ S and ϕ = (ϕ1, . . . , ϕN) be a N-tuple of strategies. For i ∈
{1, . . . , N}, provided that the right-hand side exists and is finite, we set

J i(x;ϕ) := Ex
[ ∫ τS

0

e−ρis fi(Xs)ds+
∑
k∈N

τi,k<τS

e−ρiτi,k φi
(
X(τi,k)− , ξi,k

)
+
∑

1≤j≤N
j 6=i

∑
k∈N

τi,k<τS

e−ρiτj,k ψi,j
(
X(τj,k)− , ξj,k

)
+ e−ρiτS hi(XτS)1{τS<+∞}

]
, (3.6)

with X = Xx;ϕ, τS = τx;ϕ
S , {(τi,k, ξi,k)}k≥1 = {(τx;ϕ

i,k , ξ
x;ϕ
i,k )}k≥1 as in Definition 3.2.

The subscript in the expectation denotes, as in control theory, conditioning with respect
to starting point Xx;ϕ

t = x. To shorten the notations, we will often omit the initial state and
write E. Also, notice that in the summations we only consider times strictly smaller than τS:
indeed, since the game ends in (τS)−, interventions in the form τi,k = τS are meaningless for
the game.

Admissible strategies and Nash equilibria. Before defining a Nash equilibrium (NE)
for the game, we define, for each starting point x ∈ S, the set Φx of admissible strategies,
i.e., strategies as in Definition 3.1 with additional properties assuring that the game is well
defined.

Definition 3.5. Let x ∈ S and ϕi = (Ai, ξi) be a strategy for player i ∈ {1, . . . , N}. We say
that the N-tuple ϕ = (ϕ1, . . . , ϕN) is x-admissible, written as ϕ ∈ Φx, if:

1. the sets A1, . . . , AN are pairwise disjoint, that is, Ai ∩ Aj = ∅ for i 6= j;

2. for i, j ∈ {1, . . . , N} with i 6= j, the following random variables are in L1(Ω):∫ τS

0

e−ρis|fi|(Xs)ds, e−ρiτS |hi|(XτS),∑
τi,k<τS

e−ρiτi,k |φi|(X(τi,k)− , ξi,k),
∑

τi,k<τS

e−ρiτi,k |ψi,j|(X(τj,k)− , ξj,k);
(3.7)

3. for each i ∈ {1, . . . , N} and p ∈ N, the random variable ‖X‖∞ = supt≥0 |Xt| is in
Lp(Ω):

E[‖X‖p∞] <∞; (3.8)

4. for i ∈ {1, . . . , N}, we have
lim

k→+∞
τi,k = τS. (3.9)
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The first condition in Definition 3.5 ensures that there are no conflicts due to two or
more players willing to intervene at same time (see Remarks 3.3 and 3.4 below for further
comments on this condition). The second condition assures that the functionals J i(x;ϕ) in
(3.6) are well-defined, for each i ∈ {1, . . . , N}. The third condition will be used in the proof
of the verification theorem where sufficient conditions for the NEs are specified. Finally, the
fourth condition prevents the players from accumulating the interventions before the end of
the game.

We now provide the definition of NE and payoffs. Given a tuple of strategies ϕ =
(ϕ1, . . . , ϕN), an index i ∈ {1, . . . , N} and a strategy ϕ̄ ∈ Φi, we denote by (ϕ−i, ϕ̄) the
N -tuple we get when substituting the i-th component of ϕ by ϕ̄, that is

(ϕ−i, ϕ̄) := (ϕ1, . . . , ϕi−1, ϕ̄, ϕi+1, . . . , ϕN).

Definition 3.6. Given x ∈ S, we say that the admissible N-tuple of strategies ϕ∗ ∈ Φx is a
NE of the game if

J i(x;ϕ∗) ≤ J i(x; (ϕ∗,−i, ϕi)),

for each i ∈ {1, . . . , N} and each ϕi ∈ Φi such that (ϕ∗,−i, ϕi) ∈ Φx. Finally, if x ∈ S and
ϕ∗ ∈ Φx is a NE, then the payoff associated with the equilibrium ϕ∗ for player i ∈ {1, . . . , N}
is

Vi(x) := J i(x;ϕ∗).

Remark 3.3. If the action regions are not pairwise disjoint (i.e., two or more players would
like to intervene at the same time), one sets specific rules deciding which player has the
priority. For example, player i may have priority over player j whenever i > j; otherwise,
priority may be given to the player who is the farthest away from the state he would shift the
process to.

Several formulation are possible to handle priorities among players. Our formulation is
based on the idea that, since priority rules practically partition the conflict regions, it is not
restrictive to assume that the action regions are pairwise disjoint, as we now detail.

Let Ã1, . . . , ÃN denote the action regions before any priority rules is set, so that the sets
Ãi are possibly non-disjoint. Let C denote the region where two or more players would like
to simultaneously intervene, C := ∪i 6=j(Ãi ∩ Ãj). Deciding which player has the priority
corresponds to choosing a partition C1, . . . , CN of C, with the additional property that Ci ⊆ Ãi:
namely, if a point belongs to the conflict region, x ∈ C, then it is player i who intervenes,
where i is the only index such that x ∈ Ci. The actual action regions Ai are then defined
by Ai = (Ãi \ C) ∪ Ci, clearly pairwise disjoint. Hence, whatever the priority rule is, we
get a N-uple of pairwise disjoint action regions, so that condition 1 in Definition 3.5 is not
restrictive.

The advantage of this formulation is twofold. On one hand, no specific priority rules are
embedded in the model, which provides more flexibility with respect to, e.g., the approach in
[2] (if N = 2, choosing A1 = Ã1 and A2 = Ã2 \ Ã1 in our setting retrieves the priority rules
in [2]). On the other hand, this helps relieving the notational burden, since we do not have to
deal with multiple intersections of the action regions when defining the controlled process.



CHAPTER 3. NONZERO-SUM IMPULSE GAMES 56

Remark 3.4. We remark that the present setting allows two or more players to intervene,
one right after the other, at a same instant t ≥ 0. For example, if the present state is
Xt− = x ∈ Ai1, then player i1 intervenes and move it to x′. If x′ happens to be in Ai2, for
some i2, then player i2 immediately intervenes, moving again the state to x′′. Overall, the
state jumped from Xt− = x to Xt = x′′. In order to have a well-defined process, only finitely
many players can intervene in t, which is guaranteed by condition (3.9) above.

3.1.2 Verification theorem.

In this section we establish a verification theorem for the games defined in Section 3.1,
providing sufficient conditions to determine the payoffs and an NE. This verification theorem
links the impulse games with a suitable system of quasi-variational inequalities (QVI). Note
that a special case of this verification theorem for N = 2 was presented in [2].

In Section 3.1.2 we heuristically introduce the system of QVIs, providing the intuition
behind each equation involved. These arguments are made rigorous in Section 3.1.2, with the
precise statement and proof of the verification theorem.

The quasi-variational inequalities.

We start by heuristically guessing an expression for a NE ϕ∗ = (ϕ∗1, . . . , ϕ
∗
N) and for the

corresponding payoffs Vi of the game.
Consider a game as in Section 3.1. Assume for a moment that the payoffs Vi, i ∈ {1, . . . , N}

are known. Moreover, assume that for every i there exists a (unique) function ξi : S → Zi
such that

{ξi(x)} = arg min
δ∈Zi

{
Vi(Γ

i(x, δ)) + φi(x, δ)
}
, (3.10)

for each x ∈ S. We define the intervention operators by

MiVi(x) = Vi
(
Γi(x, ξi(x))

)
+ φi

(
x, ξi(x)

)
,

Hi,jVi(x) = Vi
(
Γj(x, ξj(x))

)
+ ψi,j

(
x, ξj(x)

)
,

(3.11)

for x ∈ S and i, j ∈ {1, . . . , N}, with i 6= j.
The functions in (3.10) and (3.11) are intuitive. If x is the current state of the process, and

player i (resp. player j) intervenes with impulse δ, the payoff for player i can be represented
as Vi(Γi(x, δ)) +φi(x, δ) (resp. Vi(Γj(x, δ)) +ψi,j(x, δ)), that is, as the sum of the intervention
cost and the payoff in the new state. As a consequence, ξi(x) in (3.10) is the impulse that
player i would use in case she decides to intervene. Similarly, MiVi(x) (resp. Hi,jVi(x))
represents the payoff for player i when player i (resp. player j 6= i) takes the best immediate
action and behaves optimally afterwards.

Notice that it is not always optimal to intervene, soMiVi(x) ≥ Vi(x), for each x ∈ S,
and that player i should intervene (with impulse ξi(x)) only if MiVi(x) = Vi(x). As a
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consequence, provided that an explicit expression for Vi is available, an NE is heuristically
given by ϕ∗ = (ϕ∗1, . . . , ϕ

∗
N), where ϕ∗i = (A∗i , ξ

∗
i ) is given, for each i ∈ {1, . . . , N}, by

A∗i = {MiVi − Vi = 0}, ξ∗i = ξi.

Practically, this means that player i intervenes when the process enters the region {MiVi−Vi =
0}, i.e, when MiVi(x) = Vi(x). When this happens, her impulse is ξi(x), where x is the
current state. The verification theorem in the next section will give a rigorous proof to this
heuristic argument.

To complete the argument, we need to determine the payoffs Vi. Assume that Vi are
smooth enough so that we can define

LVi = b · ∇Vi +
1

2
tr
(
σσtD2Vi

)
, (3.12)

where b, σ are as in (3.1), σt denotes the transpose of σ and ∇Vi, D2Vi are the gradient and
the Hessian matrix of Vi, respectively. Then Vi should satisfy the following quasi-variational
inequalities (QVIs), where i, j ∈ {1, . . . , N}:

Vi = hi, in ∂S,

MjVj − Vj ≥ 0, in S,

Hi,jVi − Vi = 0, in
⋃
j 6=i{MjVj − Vj = 0},

min
{
LVi − ρiVi + fi,MiVi − Vi} = 0, in

⋂
j 6=i{MjVj − Vj > 0}.

(3.13a)
(3.13b)
(3.13c)

(3.13d)

Notice that there is a small abuse of notation in (3.13a), as Vi is not defined in ∂S, so that
(3.13a) means limy→x Vi(y) = hi(x), for each x ∈ ∂S.

Intuition behind each in (3.13): the terminal condition (3.13a) is obvious, and (3.13b),
already stated above, is a standard condition in impulse control theory. As for (3.13c), if
player j intervenes (i.e.,MjVj − Vj = 0), by the definition on NE, we expect no losses for
player i 6= j, that is Hi,jVi− Vi = 0. Meanwhile, if all the players except i are not intervening
(hence,MjVj − Vj > 0 for all j 6= i), then player i faces a classical one-player impulse control
problem, so that Vi satisfies the corresponding QVI of min

{
LVi − ρiVi + fi,MiVi − Vi} = 0,

which is (3.13d). In short, the latter condition says that LVi − ρiVi + fi = 0 when she does
not intervene, whereas LVi − ρiVi + fi ≥ 0 when she intervenes.

Remark 3.5. For any player i, the region where she chooses not to intervene, as in (3.13d)
when min{LVi − ρiVi + fi,MiVi − Vi} = LVi − ρiVi + fi = 0, is decided by not just player
i but all N players; it is indeed the common non-action region C. On C, it is necessary to
have LVi − ρiVi + fi = 0 for all i ∈ {1, . . . , N}. The condition thatMiVi − Vi ≥ 0, however,
needs an extra verifying step: it is not entirely player i’s decision to wait, yet this choice has
to be the best one she can make at a NE. This marks the subtlety of the NE and one crucial
difference between the single-player control problem and the multi-player game.
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Statement and proof.

We now provide a rigorous proof of the results heuristically introduced in the previous section.
Notations and assumptions from Section 3.1 are adopted from now on.

Theorem 3.7 (Verification Theorem). Let V1, . . . , VN be functions from S to R, assume
that

{ξi(x)} = arg min
δ∈Zi

{
Vi(Γ

i(x, δ)) + φi(x, δ)
}

holds and set Di := {MiVi − Vi > 0}. Moreover, for i ∈ {1, . . . , N} assume that:

(i) Vi is a solution to (3.13a)-(3.13d);

(ii) Vi ∈ C2(∩j 6=iDj \ ∂Di) ∩ C1(∩j 6=iDj) ∩ C(∩j 6=iDj) and it has polynomial growth;

(iii) ∂Di is a Lipschitz surface, and Vi has locally bounded derivatives up to the second order
in some neighbourhood of ∂Di.

Finally, let x ∈ S and define ϕ∗ = (ϕ∗1, . . . , ϕ
∗
N), with

ϕ∗i := (A∗i , ξ
∗
i ), A∗i := {MiVi − Vi = 0}, ξ∗i := ξi,

where i ∈ {1, . . . , N} and the function ξi is as in (3.10). Then, provided that ϕ∗ ∈ Φx,

ϕ∗ is an NE and Vi(x) = J i(x;ϕ∗) for i ∈ {1, . . . , N}.

Proof. Let x ∈ S, i ∈ {1, . . . , N} and ϕi ∈ Φi such that (ϕ∗,−i, ϕi) ∈ Φx. Notice that
(ϕ∗,−i, ϕi) corresponds to the case where all the players except player i behave optimally. By
Definition 3.6, we have to prove that

Vi(x) = J i(x;ϕ∗), Vi(x) ≤ J i(x; (ϕ∗,−i, ϕi)).

Step 1: Vi(x) ≤ J i(x; (ϕ∗,−i, ϕi)). To simplify the notations, we omit the dependence on
i, x, ϕ and write

X = Xx;(ϕ∗,−i,ϕi), τj,k = τ
x;(ϕ∗,−i,ϕi)
j,k , ξj,k = ξ

x;(ϕ∗,−i,ϕi)
j,k . (3.14)

The properties in Lemma 3.3 imply that, for j 6= i, s ≥ 0, τj,k <∞,

(MjVj − Vj)
(
Xs

)
> 0, (3.15a)

(MjVj − Vj)
(
X(τj,k)−

)
= 0, (3.15b)

ξj,k = ξj
(
X(τj,k)−

)
. (3.15c)

We first approximate Vi with regular functions. Since (ii) and (iii) hold, by [144, proof of
Thm. 10.4.1 and App. D] there exists a sequence of functions {Vi,m}m∈N such that:
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(a) Vi,m ∈ C2(∩j 6=iDj) ∩ C0(∩j 6=iDj) for each m ∈ N (in particular, the function LVi,m is
well-defined in ∩j 6=iDj);

(b) Vi,m → Vi as m→∞, uniformly on the compact subsets of ∩j 6=iDj;

(c) {LVi,m}m∈N is locally bounded in ∩j 6=iDj and LVi,m → LVi as m→∞, uniformly on
the compact subsets of ∩j 6=iDj \ ∂Di.

For each r > 0 and ` ∈ N, we set

τr,` = τr ∧ τ1,` ∧ · · · ∧ τN,`, (3.16)

where τr = inf{s > 0 : Xs /∈ B(0, r)} is the exit time from the ball with radius r. By (3.15a)
we have that Xs ∈ ∩j 6=iDj for each s > 0. Since Vi,m ∈ C2(∩j 6=iDj) by (a), for each m ∈ N
we can apply Itô’s formula to the process e−ρitVi,m(Xt) over the interval [0, τr,`). Taking the
conditional expectations, we get

Vi,m(x) = Ex
[
−
∫ τr,`

0

e−ρis(LVi,m−ρiVi,m)(Xs)ds−
∑

τi,k<τr,`

e−ρiτi,k
(
Vi,m

(
Xτi,k

)
−Vi,m

(
X(τi,k)−

))
−
∑
j 6=i

∑
τj,k<τr,`

e−ρiτj,k
(
Vi,m

(
Xτj,k

)
− Vi,m

(
X(τj,k)−

))
+ e−ρiτr,`Vi,m(X(τr,`)−)

]
. (3.17)

Notice that (3.17) is well defined: since τr,` ≤ τr, X belongs to the compact set B(0, r), where
the continuous function Vi,m is bounded; moreover, the two summations consist in a finite
number of terms since τr,` ≤ τi,` for each i ∈ {1, . . . , n}. Also, notice that in (3.17) we need
to write Vi,m(X(τr,`)−), as we have a jump at time τr,`. We now pass to the limit in (3.17) as
m→∞: since X belongs to the compact set B(0, r), by the uniform convergence in (b) and
(c) we get

Vi(x) = Ex
[
−
∫ τr,`

0

e−ρis(LVi − ρiVi)(Xs)ds−
∑

τi,k<τr,`

e−ρiτi,k
(
Vi
(
Xτi,k

)
− Vi

(
X(τi,k)−

))
−
∑
j 6=i

∑
τj,k<τr,`

e−ρiτj,k
(
Vi
(
Xτj,k

)
− Vi

(
X(τj,k)−

))
+ e−ρiτr,`Vi(X(τr,`)−)

]
. (3.18)

We now estimate each term in the right-hand side of (3.18). As for the first term, since
(MjVj − Vj)(Xs) > 0 for each j 6= i by (3.15a), from (3.13d) it follows that

(LVi − ρiVi)(Xs) ≥ −fi(Xs), (3.19)
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for all s ∈ [0, τS]. Let us now consider the second term: by (3.13b) and the definition ofMiVi
in (3.11), for every stopping time τi,k < τS we have

Vi
(
X(τi,k)−

)
≤MiVi

(
X(τi,k)−

)
= inf

δ∈Zi

{
Vi
(
Γi
(
X(τi,k)− , δ

))
+ φi

(
X(τi,k)− , δ

)}
≤ Vi

(
Γi
(
X(τi,k)− , ξi,k

))
+ φi

(
X(τi,k)− , ξi,k

)
= Vi

(
Xτi,k

)
+ φi

(
X(τi,k)− , ξi,k

)
. (3.20)

As for the third term, let us consider any stopping time τj,k < τS, with j 6= i. By (3.15a) we
have (MjVj − Vj)

(
X(τj,k)−

)
= 0; hence, the condition in (3.13c), the definition of Hi,jVi in

(3.11) and the expression of ξj,k in (3.15c) imply that

Vi
(
X(τj,k)−

)
= Hi,jVi

(
X(τj,k)−

)
= Vi

(
Γj
(
X(τj,k)− , ξj

(
X(τj,k)−)

))
+ ψi,j

(
X(τj,k)− , ξj

(
X(τj,k)−)

)
= Vi

(
Γj
(
X(τj,k)− , ξj,k

))
+ ψi,j

(
X(τj,k)− , ξj,k

)
= Vi

(
Xτj,k

)
+ ψi,j

(
X(τj,k)− , ξj,k

)
. (3.21)

By (3.18) and the estimates in (3.19)-(3.21) it follows that

Vi(x) ≤ Ex
[ ∫ τr,`

0

e−ρisfi(Xs)ds+
∑

τi,k<τr,`

e−ρiτi,kφi
(
X(τi,k)− , ξi,k

)
+
∑
j 6=i

∑
τj,k<τr,`

e−ρiτj,kψi,j
(
X(τj,k)− , ξj,k

)
+ e−ρiτr,`Vi(Xτr,`)

]
.

Thanks to the conditions in (3.7) and (3.8) together with the polynomial growth of Vi in (ii),
we now use the dominated convergence theorem and pass to the limit, first as r →∞ and
then as `→∞, so that the stopping times τr,` converge to τS by (3.9). In particular, for the
fourth term we notice that by (ii) and (3.8) we have

Vi(X(τr,`)−) ≤ C(1 + |X(τr,`)−|
p) ≤ C(1 + ‖X‖p∞) ∈ L1(Ω), (3.22)

for suitable constants C > 0 and p ∈ N. Therefore, the corresponding limit for the fourth
term immediately follows by the continuity of Vi in the case τS <∞ and by (3.22) itself in
the case τS =∞ (as a direct consequence of (3.8), we have ‖X‖p∞ <∞ a.s.). Hence,

Vi(x) ≤ Ex
[ ∫ τS

0

e−ρisfi(Xs)ds+
∑

τi,k<τS

e−ρiτi,kφi
(
X(τi,k)− , ξi,k

)
+
∑
j 6=i

∑
τj,k<τS

e−ρiτj,kψi,j
(
X(τj,k)− , ξj,k

)
+ e−ρiτShi(X(τS)−)1{τS<+∞}

]
= J i(x; (ϕ∗,−i, ϕi)).

Step 2: Vi(x) = J i(x;ϕ∗). Similar as in Step 1, except that all the inequalities are
equalities by the properties of ϕ∗.
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3.1.3 Example: two-player cash management game.

Now let us revisit the cash management game in Section 1.1.4, using the notations introduced
in Section 3.1. We here consider the two-player game: N = 2, bi = 0, σi = σ > 0. The
uncontrolled cash level of the two players Xt = (X1

t , X
2
t ) is

dX i
t = σdW i

t , X i
0− = xi,

where W is a two-dimensional standard Brownian motion and x ∈ R2. Let

ϕ = (ϕ1, ϕ2), ϕ1 = (A1, ξ1), ϕ2 = (A2, ξ2),

denote the strategies of the players for this game, as in Definition 3.1. Since player i ∈ {1, 2}
intervenes by shifting her own component X i of the cash level, we have

Γi(x, δ) = x+ δ, Z1 = {(δ1, 0) : δ1 ∈ R}, Z2 = {(0, δ2) : δ2 ∈ R}.

This means that player 1 (resp. player 2) intervenes by moving the process from state (x1, x2)
to state

ξ1(x1, x2) =
(
x1 + ξ̃1(x1, x2), x2

) (
resp. ξ2(x1, x2) =

(
x1, x2 + ξ̃2(x1, x2)

) )
,

for suitable functions ξ̃i. Notice that, as a consequence, the controlled process Xt = (X1
t , X

2
t )

satisfies
dX i

t = σdW i
t +

∑
τi,k≤t

δ(t− τi,k)ξ̃i,k, X i
0− = xi,

where
ξ̃i,k = ξ̃i

(
X1

(τi,k)− , X
2
(τi,k)−

)
.

Let now i, j ∈ {1, 2} with j 6= i. The cost function for player i under the control policy
ϕ = (ϕ1, ϕ2) is given by

J i(x;ϕ) = Ex

[∫ ∞
0

e−rtfi(Xt)dt+
∑
k≥1

e−rτi,kφi(ξi,k) +
∑
k≥1

e−rτj,kψi,j(ξj,k)

]
,

where 
fi(x) = h

∣∣∣∣∣xi − 1

N

N∑
j=1

xj

∣∣∣∣∣ , x ∈ R2, N = 2,

φi(ξ) = K + k|ξ|, ξ ∈ R,
ψi,j(ξ) = c, ξ ∈ R,

for positive constants h,K, k, c. The goal of player i is to minimize the cost J i: we are
interested in finding ϕ∗ = (ϕ∗1, ϕ

∗
2) such that Definition 3.6 holds.
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By the symmetry of the problem structure, we seek for an NE where the action regions
take the form of

A1 = {x : x1 − x2 ≥ u}, A2 = {x : x2 − x1 ≥ u}

for some u > 0, with appropriate impulse functions such that

ξ1(x) = (U − x1 + x2, 0), ξ2(x) = (0, U − x2 + x1)

for some U < u. Recall that this means that player 1 (resp. player 2) intervenes when
X1
t −X2

t ≥ u (resp. X2
t −X1

t ≥ u) and shifts her component so as to have X1
t −X2

t = U
(resp. X2

t −X1
t = U). Note that A1 ∩ A2 = ∅ and that C = {x : −u < x1 − x2 < u} is the

common waiting region, i.e., where no player intervenes.
By the same symmetry argument, we look for payoffs in the form of

Vi(x1, x2) = wi(xi − xj), i, j ∈ {1, 2}, i 6= j,

for some functions wi. In this case, player 1 and player 2 are indistinguishable, therefore
it suffices to study the payoff of player 1. Now the waiting region for player 1 is D1 = {x :
x1−x2 < u}, and define D−1 = {x : x2−x1 < u} = {x : x1−x2 > −u}. By the corresponding
QVI and the regularity requirement in the Verification Theorem 3.7, the function w1 : R→ R
need to satisfy the following system of equations and inequalities:

w1(s) =


w1(u) + k(s− u), s ≥ u;
h2

r
s+ c1e

λ2s + c2e
−λ2s, 0 ≤ s ≤ u;

−h2

r
s+

(
c1 + h2

rλ2

)
eλ2s +

(
c2 − h2

rλ2

)
e−λ2s, −u ≤ s ≤ 0;

w1(−u), s ≤ −u;

ẇ1(u) = ẇ1(U) = k;

w1(u) = w1(U) +K + k(u− U);

w1(−u) = w1(−U) + c;

Mw1(s)− w1(s) ≥ 0, ∀s ∈ D−1;

(3.23a)

(3.23b)
(3.23c)
(3.23d)
(3.23e)

where h2 = h
2
, σ2 =

√
2σ, λ2 =

√
2r
σ2

and (c1, c2, u, U) remain to be determined. Accordingly,
w2(s) = w1(−s) for any s ∈ R.

Now, similar argument as in [58] shows that when h2 − rk > 0, c > 0, there exists a
solution w1 to Equations (3.23a) to (3.23d) satisfying c1 < 0, c2 > 0, 0 < U < u. Moreover,
if such solution w1 as above satisfies (3.23e), then an NE to the cash management problem
ϕ∗ = (ϕ∗1, ϕ

∗
2) is characterized by{

A∗1 = {x : x1 − x2 ≥ u}, A∗2 = {x : x2 − x1 ≥ u},
ξ∗1(x) = (U − x1 + x2, 0), ξ∗2(x) = (0, U − x2 + x1).

(NE-1)
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The corresponding payoffs are given by

V1(x1, x2) = w1(x1 − x2), V2(x1, x2) = w1(x2 − x1).

The optimality of (NE-1) can be easily verified by checking the conditions in the Verification
Theorem 3.7.

Figure 3.1a shows the equilibrium payoffs for both players if they adopt the control policy
specified in (NE-1). Figure 3.1b illustrates the control policy, with h = 2, K = 3, k = 1,
r = 0.5, σ =

√
2

2
and c = 1, where the thresholds can be solved as U = 0.686 and u = 5.658,

with c1 = −0.003 and c2 = 1.972.

(a) Payoffs after change of variables. (b) Control policy.

Figure 3.1: A Nash equilibrium and the payoffs

Multiple NEs. In general, NE for nonzero-sum games may not be unique. In this example,
an alternative NE can be derived by switching action regions between the two players. For
instance, if player 1 is to dictate the game whereas player 2 is a complete follower, the action
region for player 1 can be characterized by A1 = {x ∈ R2 : |x1 − x2| > u}, and A2 = ∅. That
is, let s = x1 − x2 then V1(x) = w1(x1 − x2) and V2(x) = w2(x1 − x2), where

w1(s) =


w1(u) + k(s− u), s ≥ u;
h2

r
s+ c1e

λ2s +
(
c1 + h2

rλ2

)
e−λ2s, 0 ≤ s ≤ u;

w1(−s), s ≤ 0;

ẇ1(u) = ẇ1(U) = k;

w1(u) = w1(U) +K + k(u− U);

Mw1(s)− w1(s) ≥ 0, s ∈ R;

(3.24a)

(3.24b)
(3.24c)
(3.24d)
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w2(s) =


w2(u), s ≥ u;
h2

r
s+ c2e

λ2s +
(
c2 + h2

rλ2

)
e−λ2s, 0 ≤ s ≤ u;

w2(−s), s ≤ 0;

w2(u) = w2(U) + c;

Mw2(s)− w2(s) ≥ 0, −u ≤ s ≤ u.

(3.25a)

(3.25b)
(3.25c)

Now, assume that h2 − rk > 0, c > 0, then again one can show that there exists a solution
w1 satisfying Equations (3.24a) to (3.24d) with c1 ∈ (− h2

rλ2
, 0) as well as 0 < U < u, and w2

satisfying Equations (3.25a) to (3.25b). Moreover, if such solution w2 satisfies (3.25c), then
an NE to the cash management problem in Section 3.1.3 ϕ∗ = (ϕ∗1, ϕ

∗
2) is characterized by

A∗1 = {x : |x1 − x2| ≥ u}, A∗2 = ∅;

ξ∗1(x) =

{
(U − x1 + x2, 0), if x1 − x2 ≥ u,

(−U − x1 + x2, 0), if x1 − x2 ≤ −u.
(NE-2)

Notice that we do not need to define ξ∗2 , as player 2 never intervenes.
Figure 3.2a shows the payoffs and Figure 3.2b demonstrates the NE, under the same

values of h, K, k, r and σ, with thresholds U = 0.993 and u = 1.999, and c1 = −0.101 and
c2 = −0.133.

(a) Player 1 is the sole controller. (b) Control policy.

Figure 3.2: Alternative Nash equilibrium and the payoffs

3.2 MFGs with impulse controls.
As seen from the previous section, it is difficult to solve analytically the general N -player
impulse control game. We will now introduce an MFG framework for the impulse control



CHAPTER 3. NONZERO-SUM IMPULSE GAMES 65

game and show that this MFG provides a reasonable approximation to the N -player game.
More precisely, we show that under appropriate technical conditions, the existence of unique
NE solution to the MFG, which is an ε-NE approximation to the N -player game, with
ε = O

(
1√
N

)
.

3.2.1 Formulation of MFGs with impulse controls.

Given the N -player stochastic game formulation (N-player-I), its natural MFG formula-
tion goes as follows. Let (Ω,F , {Ft}t≥0,P) be a filtered probability space supporting an
{Ft}t≥0-adapted standard Brownian motion W . Consider an infinite number of rational and
indistinguishable players who interact through the cost structure consisting of a running cost
f and the cost of control φ. For each player, her uncontrolled state process is given by

dXt = b(Xt)dt+ σ(Xt)dWt, X0− ∼ µ.

Each player seeks for the optimal impulse control policy ϕ∗ among the set of admissible
impulse controls A to minimize the total discounted cost. Controls ϕ ∈ A are here represented
by ϕ = (A, ξ), where A, a closed subset of R, is called the action region and ξ : R→ R is a
measurable function. Under the control policy ϕ, the state process becomes

dXt = b(Xt−)dt+ σ(Xt−)dWt +
∑
n≥1

δ(t− τn)ξn, X0− ∼ µ,

where µ denotes the initial distribution of the state, and

τ1 = inf{t ≥ 0 : Xt− ∈ A}, τn = inf{t > τn−1 : Xt− ∈ A}, n ≥ 2;

ξn = ξ(Xτn−) ∈ Fτn , n ≥ 1.

Therefore, the control policy ϕ can also be characterized by a sequence of stopping times
and the associated random variables, ϕ = {(τn, ξn)}n≥1. The optimization problem faced by
individual player is given by,

V (x|m) = inf
ϕ∈A

J∞(x, ϕ|m),

J∞(x, ϕ|m) = Eµ

[∫ ∞
0

e−rtf(Xt,m)dt+
∞∑
n=1

e−rτnφ(ξn)

∣∣∣∣∣X0− = x

]
,

dXt = b(Xt−)dt+ σ(Xt−)dWt +
∑
τn≤t

δ(t− τn)ξn, X0− ∼ µ,

(MFG-I)

where m denotes the mean information:

m = lim sup
t→∞

Eµ[Xt].
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Finally, for x,m ∈ R, we define the functionMV (x|m) in the usual way:

MV (x|m) = inf
δ∈R

{
V (x+ δ|m) + φ(δ)

}
.

Compared to (N-player-I) for N -player games, individual players in an MFG now lose sight
of individual opponents, hence the term ψi,j has disappeared in the MFG formulation. As for
the intervention costs, we chose them in the form φ(ξn) in order to have simpler notations in
this section; however, one may also consider intervention costs in the form φ(ξn, X(τn)− ,m).

Definition 3.8. A pair of control policy and mean information (ϕ∗ = (A∗, ξ∗),m∗), with
ϕ∗ ∈ A and m∗ ∈ R, is said to be a solution to the (MFG-I) if

• V (x|m∗) = J∞(x, ϕ∗|m∗),

• m∗ = lim sup
t→∞

Eµ [X∗t ], where

dX∗t = b(X∗t−)dt+ σ(X∗t−)dWt +
∑
τ∗n≤t

δ(t− τ ∗n)ξ∗n, X∗0− ∼ µ,

such that

τ ∗1 = inf{t ≥ 0 : X∗t− ∈ A∗}, τ ∗n = inf{t > τ ∗n−1 : X∗t− ∈ A∗}, n ≥ 2;

ξ∗n = ξ∗(X∗(τ∗n)−) ∈ Fτ∗n , n ≥ 1.

3.2.2 Solution to symmetric MFGs with impulse controls.

We first analyze the existence of the solution to (MFG-I), under some technical assumptions.
In particular, we impose symmetry on the dynamics and cost functions.

(A1) The uncontrolled dynamics is symmetric in the sense that

dXt = σdWt, X0− ∼ µ,

where σ > 0 is a constant, and µ, with
∫
R |x|µ(dx) <∞, is symmetric around its mean.

(A2) The cost of control satisfies

K := inf
ξ∈R

φ(ξ) > 0,

φ ∈ C(R \ {0}),

lim
|ξ|→∞

φ(ξ) = +∞, sup
ξ∈R

φ(ξ)

1 + |ξ|
≤ k for some k > 0,

φ(ξ1) + φ(ξ2) ≥ φ(ξ1 + ξ2) +K, ∀ξ1, ξ2 ∈ R,
φ(−ξ) = φ(ξ), ∀ξ ∈ R.

(3.26)

(3.27)

(3.28)

(3.29)
(3.30)
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(A3) The running cost f : R × R → R, jointly continuous with f(x,m) ≥ 0, satisfies the
following properties, for any fixed m ∈ R.

(A3-1) There exists Cf = Cf (m) > 0 such that, for each x, y ∈ R,

|f(x,m)− f(y,m)| < Cf |x− y|;

(A3-2) For each δ ∈ R,
f(m+ δ,m) = f(m− δ,m).

(A4) For each m ∈ R fixed, the strategy ϕ̃(m) = (Am, ξm) defined by

Am = {x ∈ R :MV (x|m)− V (x|m) = 0}, ξm(x) = arg min
δ∈R
{V (x+ δ|m) + φ(δ)},

(3.31)
is admissible and is the unique strategy ϕ such that V (x|m) = J∞(x, ϕ|m).

Remark 3.6. We remark that, when m ∈ R is fixed, problem (MFG-I) becomes a standard
single-player impulse control problem, whose typical solution has the form (3.31) in Assumption
(A4): see [145] for an introduction to single-player impulse problems and e.g. [13], [32], [33],
[109], [134] and [137] for some applications having solutions in the form (3.31).

Theorem 3.9. Under Assumptions (A1)–(A4), (MFG-I) admits a solution in the sense of
Definition 3.8.

Proof. Theorem 3.9 is proved using a three-step approach (solution for generic m, mean
information update, fixed point of the composite function).

First, if the mean information m is given, we solve the corresponding optimal control
problem. By (A4), the unique optimal strategy is given by ϕ̃(m) = (Am, ξm) ∈ A. Define a
mapping from space of mean information R to the admissible control set A, as

Γ1 : R→ A, Γ1(m) = ϕ̃(m) = (Am, ξm).

Next, we update the mean information m. Given any ϕ = (A, ξ) ∈ A, under Assumption
(A1), define the corresponding controlled process

dXϕ
t = σdWt +

∑
n≥1

δ(t− τn)ξn,

where
τ1 = inf{t ≥ 0 : Xϕ

t− ∈ A}, τn = inf{t > τn−1 : Xϕ
t− ∈ A}, n ≥ 2;

ξn = ξ(Xϕ
τn−), n ≥ 1.

Define a mapping from the admissible control set A to the extended real line [−∞,∞], as

Γ2 : A → [−∞,∞], Γ2(ϕ) = lim sup
t→∞

Eµ [Xϕ
t ] .
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Finally, define the composite mapping Γ : R→ [−∞,∞], as

Γ : m
Γ17→ ϕ̃(m)

Γ27→ lim sup
t→∞

Eµ
[
X
ϕ̃(m)
t

]
.

This is where we utilize the symmetric cost structures. By Lemma 3.10 below, the waiting
region Dm = R \ Am and the optimal control function ξm are symmetric with respect to
m. Given the symmetry and L1 condition of µ in Assumption (A1), let m∗ = Eµ[X0−] ∈ R,
then by symmetry, Γ(m∗) = lim supt→∞ Eµ

[
X
ϕ̃(m∗)
t

]
= m∗. Therefore, (ϕ∗ = ϕ̃(m∗),m∗) is a

solution to (MFG-I) in the sense of Definition 3.8.

Lemma 3.10. Let (A1)-(A4) hold and let m ∈ R be fixed. Then:

(i) the function V (· |m) in (MFG-I) is symmetric with respect to m, i.e., V (m+ x|m) =
V (m− x|m) for each x ∈ R;

(ii) the continuation region Dm = {x ∈ R :MV (x|m)− V (x|m) > 0} is symmetric with
respect to m, i.e., m− x ∈ Dm if and only if m+ x ∈ Dm, for each x ∈ R;

(iii) the optimal impulse function ξm = arg minδ∈R{V ( · + δ) + φ(δ)} satisfies ξm(m+ x) =
−ξm(m − x), for each x ∈ R. As a consequence, if x, x′ are symmetric with respect
to m, then x + ξm(x), x′ + ξm(x′) are symmetric as well (i.e., optimal interventions
preserve symmetry).

Proof. (i) By [92], the function V ( · |m) is the only viscosity solution to the QVI

min{LV (x|m)− rV (x|m) + f(x,m),MV (x|m)− V (x|m)} = 0, (3.32)

with L = σ2

2
d2

dx2 . We will prove that x 7→ V (2m− x|m) is a viscosity solution to (3.32), so
that by uniqueness we get V (x|m) = V (2m − x|m) for each x ∈ R, i.e., the claim in (i).
To prove that Ṽ (x) := V (2m− x|m) is a viscosity subsolution to (3.32) (the supersolution
argument is similar), let us consider x0 ∈ R and ϕ̃ ∈ C2(R) such that Ṽ − ϕ̃ has a local
maximum at x0 and (Ṽ − ϕ̃)(x0) = 0. If we set x1 = 2m− x0 and ϕ(x) := ϕ̃(2m− x), we see
that V ( · |m)− ϕ has a local maximum at x1 and (V ( · |m)− ϕ)(x1) = 0. Since V ( · |m) is
viscosity subsolution to (3.32), we have that

0 ≥ min
{
Lϕ(x1)− rV (x1|m) + f(x1,m), MV (x1|m)− V (x1|m)

}
= min

{
Lϕ̃(x0)− rṼ (x0) + f(x0,m), MṼ (x0)− Ṽ (x0)

}
,

where in the last step we have used the definitions of Ṽ, ϕ̃, x1 and the symmetry properties in
(3.30) and (A3-2).

(ii) For each x ∈ R, we have

MV (m− x|m) = inf
δ∈R

{
V (m− x+ δ|m) + φ(δ)

}
= inf

δ̃∈R

{
V (m− (x+ δ̃)|m) + φ(−δ̃)

}
= inf

δ̃∈R

{
V (m+ (x+ δ̃)|m) + φ(δ̃)

}
=MV (m+ x|m)

(3.33)
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where in the second equality we have used the change of variable δ̃ = −δ, while in the
second-to-last equality we have used (i) and (3.30). The claim in (ii) immediately follows
from (3.33) and (i).

(iii) By arguing as in (ii), for every x ∈ R we have

ξm(m+ x) = arg min
δ∈R
{V (m+ x+ δ|m) + φ(δ)}

= − arg min
δ̃∈R
{V (m− x+ δ̃|m) + φ(δ̃)} = −ξm(m− x).

3.2.3 MFGs vs N-player games.

Next, we will demonstrate that the solution to (MFG-I) is an approximation to the corre-
sponding N -player game with identical players under the symmetric setting. Here the state
process of the N -player game on RN is denoted by {Xt}t≥0 = {(X1

t , . . . , X
N
t )}t≥0, with player

i only controlling her own state process X i, i = 1, . . . , N .
Recall the notations in Section 2: for player i, with i = 1, . . . , N , fi : RN → R denotes

the running cost, φi denotes the individual cost of control and ψi,j denotes the cost of control
done by another player j. To be consistent with the MFGs setting, we assume

(A1′) Player i’s uncontrolled state process is given by

dX i
t = σdW i

t , X i
0− ∼ µ,

where (W 1, . . . ,WN ) denotes the N -dimensional standard Brownian motion, σ > 0 is a
constant and µ is symmetric around its mean.

(A2′) The cost of individual control φi equals φ that satisfies Assumption (A2) and the costs
of other players’ control, ψi,j are identical for all i and j.

(A3′) The cost function fi takes the form of

fi(x) = g

(
xi −

1

N

N∑
j=1

xj

)
, ∀x ∈ RN ,

f(x,m) = g(x−m), ∀x ∈ R,

for some function g : R→ R+, g(x) = g(−x), with

|g(x)− g(y)| ≤ L|x− y|, ∀x, y ∈ R,

where L > 0 is the Lipschitz constant.
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Note that the running cost of (MFG-I) under Assumption (A3′) also satisfies Assumption
(A3).

Definition 3.11 (ε-Nash equilibrium). A strategy ϕ∗ = (ϕ∗1, . . . , ϕ
∗
N ) is a called an ε-Nash

equilibrium to the N-player game introduced in Section 3.1 if

Eµ
[
J i(X0−;ϕ∗)

]
≤ Eµ

[
J i(X0−; (ϕ∗,−i, ϕi))

]
+ ε, ∀ϕi ∈ Φi(X0−) s.t. (ϕ∗,−i, ϕi) ∈ Φ(X0−),

where X i
0−

i.i.d.∼ µ, i = 1, . . . , N .

Let (ϕ̃∗,m∗) be a solution to the (MFG-I) under Assumptions (A1)-(A4), where m∗ is the
expectation of initial distribution µ, the control policy ϕ̃∗ is characterized by action region
Ã∗ and impulse function ξ̃∗ : R→ R; denote the corresponding waiting region as D̃∗ and the
state process on R under ϕ̃∗ as X̃. As illustrated in Theorem 3.9, the waiting region D̃∗ as
well as the impulse function ξ̃∗ will be symmetric around m∗. Define the following priority
sets

Pi = {x ∈ RN : |xi−m∗| > |xj−m∗| , ∀j > i; |xi−m∗| ≥ |xk−m∗|, ∀k > i}, ∀i ∈ {1, . . . , N}.

Then for i = 1, . . . , N , define the action region for Player i as A∗i = {x ∈ RN : xi ∈ Ã∗} ∩ Pi
and her impulse function ξ∗i : RN → R such that

ξ∗i (x) = ξ̃∗(xi), ∀x ∈ RN .

Denote ϕ∗i = (A∗i , ξ
∗
i ) and ϕ∗ = (ϕ∗1, . . . , ϕ

∗
N).

Theorem 3.12. Let Assumptions (A1-A3) and (A1′-A3′) hold. Suppose that, under ϕ̃∗, we
have D̃∗ ⊂ [m∗ − u∗,m∗ + u∗] for some positive constant u∗ and that X̃∗t ∈ D̃∗ almost surely
for all t ≥ 0. Then ϕ∗ is an ε-NE for the N-player cash management game introduced in
Section 3.1.3 for generic N , with ε = O

(
1√
N

)
.

Proof. Fix i ∈ {1, . . . , N}. Consider ϕ̄ = (ϕ∗,−i, ϕi) such that ϕi ∈ Φi(x) and ϕ̄ ∈ Φ(x). For
j 6= i, ϕ̄j = ϕ∗j whose action region independent from the strategy of player i.

We first look at the running cost.

X i
t −

1

N

N∑
j=1

Xj
t =

(
X i
t −m∗

)
− 1

N

(
X i
t −m∗

)
−
∑

j 6=i(X
j
t −m∗)
N

,

so that ∣∣fi(Xt)− f(X i
t ,m

∗)
∣∣ =

∣∣∣∣∣g
(
X i
t −

1

N

N∑
j=1

Xj
t

)
− g

(
X i
t −m∗

)∣∣∣∣∣
≤ L

(
1

N
|X i

t −m∗|+
∑

j 6=i |X
j
t −m∗|

N − 1

)
.
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Note that ∣∣∣∣∣
∑

j 6=i(X
j
t −m∗)

N − 1

∣∣∣∣∣ ≤ u∗

and by the i.i.d. assumption,

Eµ

∣∣∣∣∣
∑

j 6=i(X
j
t −m∗)

N − 1

∣∣∣∣∣ ≤
Eµ

∣∣∣∣∣
∑

j 6=i(X
j
t −m∗)

N − 1

∣∣∣∣∣
2
 1

2

⇒ Eµ

∣∣∣∣∣
∑

j 6=i(X
j
t −m∗)

N − 1

∣∣∣∣∣ = O

(
1√
N

)
.

Without loss of generality, let us consider ϕi such that

Eµ
[∫ ∞

0

e−rtL|X i
t −m∗|dt

]
< M,

for some sufficiently large M > 0. Then∣∣∣∣Eµ [∫ ∞
0

e−rtfi(Xt)dt

]
− Eµ

[∫ ∞
0

e−rtf(X i
t ,m

∗)dt

]∣∣∣∣
≤ 1

N
Eµ
[∫ ∞

0

e−rtL|X i
t −m∗|dt

]
+ Eµ

[∫ ∞
0

e−rtL

∣∣∣∣∣
∑

j 6=i(X
j
t −m∗)

N − 1

∣∣∣∣∣ dt
]

=
1

N
Eµ
[∫ ∞

0

e−rtL|X i
t −m∗|dt

]
+

∫ ∞
0

e−rtLEµ

[∣∣∣∣∣
∑

j 6=i(X
j
t −m∗)

N − 1

∣∣∣∣∣
]
dt (Fubini’s)

= O

(
1

N

)
+O

(
1√
N

)
⇒ Eµ

[∫ ∞
0

e−rtfi(Xt)dt

]
= Eµ

[∫ ∞
0

e−rtf(X i
t ,m

∗)dt

]
+O

(
1√
N

)
and therefore
Eµ
[
J i(X0−; ϕ̄)

]
= Eµ

[∫ ∞
0

e−rtfi(Xt)dt+
∑
n≥1

e−rτi,nφ(ξi,n) +
∑
j 6=i

∑
n≥1

e−rτj,nψi,j(ξ
∗
j,n)

]

= Eµ

[∫ ∞
0

e−rtf(X i
t ,m

∗)dt+
∑
n≥1

e−rτi,nφ(ξi,n)

]
+ Eµ

[∑
j 6=i

∑
n≥1

e−rτj,nψi,j(ξ
∗
j,n)

]
+O

(
1√
N

)

≥ V (µ) + Eµ

[∑
j 6=i

∑
n≥1

e−rτj,nψi,j(ξ
∗
j,n)

]
+O

(
1√
N

)
= Eµ

[
J i(X0−;ϕ∗) +O

(
1√
N

)]
,

where we have denoted by V (µ) the payoff of the impulse MFG with initial distribution
µ.
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Remark 3.7. Among the assumption of Theorem 3.12, we ask that D̃∗ ⊂ [m∗ − u∗,m∗ + u∗]
is bounded. Heuristically, if f(x,m)→ +∞ as x→∞ and diverges at a greater rate than
the intervention costs, we expect that, for |x| big enough, intervening is cheaper than keeping
the state as it is (in other words, we expect that the continuation region is bounded). For
examples of bounded continuation regions in impulse control theory, see e.g. the references
in Remark 3.6, i.e. [13], [32], [33], [109], [134], [137]. For a two-player stochastic impulse
game with bounded continuation regions, see [76]. In Section 3.2.4 below, we will provide an
example of impulse MFG where this condition is satisfied.

3.2.4 Explicit solutions: MFGs for cash management problems.

In this section, we explicitly solve the MFGs cash management problems, i.e., a (slightly
more general) mean-field counterpart to the two-player game in Section 3.1.3.

(A1′′) The uncontrolled dynamics follow

dXt = σdWt, X0− ∼ µ, (3.34)

where σ > 0 is a constant.

(A2′′) The cost of control satisfies

φ(ξ) =

{
K+ + k+ξ, ξ ≥ 0,

K− − k−ξ, ξ < 0,
(3.35)

where K±, k± > 0.

(A3′′) The running cost takes the form

f(x,m) = C (x− α(m)) ,

where C : R→ R is defined by

C(x) = max{hx,−px}, x ∈ R, (3.36)

with parameters h, p > 0 satisfying

h− k+r > 0, p− k−r > 0,

and where α : R→ R is a contraction, i.e.,

|α(x)− α(y)| ≤ k|x− y|, 0 < k < 1, x, y ∈ R.

Here the function α can be interpreted as target level depending on the mean information m.
The assumption that α is a contraction mapping is for analytical tractability.
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Theorem 3.13. Under Assumptions (A1–A4), (MFG-I) admits a unique analytical solution
in the sense of Definition 3.8.

Proof. We will in fact explicitly derive the solution. Let us fixm ∈ R. Then the corresponding
QVI for the control problem is

min {LV − rV + C(x− α(m)),MV − V } = 0. (3.37)

Similar to [58], one can find an optimal policy characterized by the vector (d,D, U, u) with
d < D < 0 < U < u, by smooth-fit principle. The payoff corresponding to 3.13 has to satisfy
(we set λ =

√
2rσ2

σ2 )

V (x) =



V (u+ α(m))− k− (u− x+ α(m)) , x− α(m) ≥ u,

h
r

(x− α(m)) + c1 exp {λ (x− α(m))}
+c2 exp {−λ (x− α(m))} , 0 ≤ x− α(m) ≤ u,

−p
r

(x− α(m)) +
(
c1 + h+p

2rλ

)
exp {λ (x− α(m))}

+
(
c2 − h+p

2rλ

)
exp {−λ (x− α(m))} , d ≤ x− α(m) ≤ 0;

V (d+ α(m)) + k+ (d− x+ α(m)) , x− α(m) ≤ d;

V̇ (U + α(m)) = V̇ (u+ α(m)) = k−, V̇ (D + α(m)) = V̇ (d+ α(m)) = −k−;

V (u+ α(m)) = K− + k−(u− U) + V (U + α(m)) ,

V (d+ α(m)) = K+ + k+(D − d) + V (D + α(m)) .

(3.38)

(3.39)

(3.40)

Recall that K±, k± > 0 and h − rk−, p − rk+ > 0. By [58], there exists a 6-tuple
(c1, c2, d,D, U, u) satisfying (3.38), (3.39) and (3.40) such that d < D < 0 < U < u and

c1 =
h+ p

rλ

(e−λu − e−λU)[cosh(λd)− cosh(λD)]

(eλu − eλU)(e−λd − e−λD)− (e−λu − e−λU)(eλd − eλD)
∈ (−h+ p

2rλ
, 0),

c2 = c1
eλu − eλU

e−λu − e−λU
∈
(

0,
h+ p

2rλ

)
,

K− −
(
h

r
− k−

)
(u− U)− 2c1(eλu − eλU) = 0,

λ
(
c1e

λu − c2e
−λu)+

(
h

r
− k−

)
= 0,

K+ −
(p
r
− k+

)
(D − d)− 2

(
c1 +

h+ p

2rλ

)
(eλu − eλU) = 0,

λ

[(
c1 +

h+ p

2rλ

)
eλu −

(
c2 −

h+ p

2rλ

)
e−λu

]
−
(p
r
− k+

)
= 0,

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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where the thresholds d,D, u, U only depend on K±, k±, h, p, r, σ. The optimal simple control
policy ϕ∗ = ((−∞, α(m) + d] ∪ [α(m) + u,+∞), ξ∗) = {(τ ∗n, ξ∗n)}n≥1 is given by

ξ∗(x) =


U − x+ α(m), if x− α(m) ≥ α(m) + u,

D − x+ α(m), if x− α(m) ≤ α(m) + d,

0, otherwise.

τ ∗1 = inf{t ≥ 0 : |Xt− − α(m)| 6∈ (α(m) + d, α(m) + u)},
τ ∗n = inf{t > τ ∗n−1 : |Xt− − α(m)| 6∈ (α(m) + d, α(m) + u)}, n ≥ 2;

ξ∗n = ξ∗(Xτn−)

(3.47)

Assume that the initial position X0− follows any given distribution µ. Recall from (MFG-I)
that

V (x) = inf
ϕ
Ex

[∫ ∞
0

e−rtf(Xt,m)dt+
∑
n≥1

e−rτnφ(ξn)

]

= inf
ϕ
Eµ

[∫ ∞
0

e−rtf(Xt,m)dt+
∑
n≥1

e−rτnφ(ξn)

∣∣∣∣∣X0− = x

]
.

Denote the updated mean information as m̄ = lim supt→∞ Ex [Xt]. We will show that this
m̄ is well-defined and invariant with respect to x.

Notice that m̄ = lim supt→∞ Ex[Xt] = lim supn→∞ Ex[Xτ∗n ] by symmetry and a Fubini
argument. Note that Ex[Xτ∗n ] = α(m)+UP{Xτ∗n = α(m)+U}+D

[
1− P{Xτ∗n = α(m) + U}

]
.

For simplification, denote P{Xτ∗n = α(m) + U |X0− = x} as pn(x). Then, by the strong
Markovian property of X̄t

q1 ≡ P{Xτ∗n+1
= α(m) + U |Xτ∗n = α(m) + U} =

U − d
u− d

,∀n ∈ N,

q2 ≡ P{Xτ∗n+1
= α(m) + U |Xτ∗n = α(m) +D} =

D − d
u− d

,∀n ∈ N,

pn+1(x) = pn(x)q1 + [1− pn(x)] q2.

Therefore, we have

pn+1(x) = q2 + (q1 − q2)pn(x)⇒ pn(x)− q2

1− q1 + q2

= (q1 − q2)n−1

[
p1(x)− q2

1− q1 + q2

]
.

Hence, limn→∞ pn(x) = q2
1−q1+q2

and this is independent of the initial position x. We then
have m̄ = α(m) + uD−dU

u−U+D−d . Define the update of mean information Γ : m 7→ m̄ as
Γ(m) = α(m) + uD−dU

u−U+D−d . Since α is assumed a contraction mapping, so is Γ. Denote the
fixed point of Γ as m∗ and let ϕ∗ = ϕ(m∗) be be as in (3.47). Then (ϕ∗,m∗) is a solution to
the (MFG-I) in the sense of Definition 3.8.
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Remark 3.8. Notice that in the example of Section 3.1.3, the cash management setting is
under a symmetric cost structure with h = p, K± = K, k± = k. Its mean-field counterpart,
by considering a similar derivation as in the proof of Theorem 3.13, has a symmetric solution
structure with d = −u and D = −U . Therefore uD−dU

u−U+D−d = 0, and m∗ = Eµ[X0−] is a
solution.

3.3 Sensitivity analysis.
In this section, we come back to the symmetric cash management problem, and compare
the solutions in the cases N = 1 (‘monopoly’, described in [58] and here recalled in Section
1) and N = 2 (‘duopoly’, introduced in Section 3.1.3 as the multi-player extension of the
problem in [58]).

Namely, we want to study see how parameters h, K, k, r and σ influence the control
policies and the thresholds d, D, U , u, we conduct a series of sensitivity analysis. We start
with h = 2, K = 3, k = 1, r = 0.5, σ =

√
2

2
and c = 1.

We shall see similar behaviors for both the monopoly and the duopoly cases in terms of
the thresholds and policy changes with respect to the underlying parameter changes. One
distinction is that the thresholds and policy changes are more sensitive to parameter changes
in the duopoly case due to competition.

Finally, we will study the sensitivity analysis for the MFG counterpart.

3.3.1 Duopoly vs monopoly.

Putting the thresholds for the duopoly and those of the monopoly together in Figure 3.3, one
can see that due to competition in a game setting, players take the opponents’ strategies into
consideration.

We notice that the continuation region gets bigger in the duopoly case. Equivalently,
interventions on the underlying process are less frequent in the duopoly case than in the
monopoly case. Also, notice that the intervention size when the process reaches the lower or
upper threshold are equal, due to the symmetric structure of the problem. In summary, the
player of the monopoly makes frequent but cautious interventions whereas each player in the
duopoly intervenes less often but each time with bolder moves.
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Figure 3.3: Thresholds: Duopoly vs. Monopoly

Running Cost h. When the running cost h increases, players have the incentive to intervene
more frequently to prevent controlled process from deviating too far away from the target
level. See Figure 3.4a. On the other hand, the presence of the cost of control makes players
more cautious when exercising controls. Thus, an increased running cost encourages the
players to intervene more frequently but with smaller amount of adjustment. See Figure 3.4b.

(a) Action Boundary of Monopoly and
Duopoly

(b) Amount of Adjustment of Monopoly
and Duopoly

Figure 3.4: Sensitivity w.r.t. h

Cost of Control K and k. The parameter K is the fixed cost when players choose to
intervene. High fixed cost K discourages the player from intervening too frequently. Therefore
players have the incentive to tolerate a larger deviation from the target; and once a player
chooses to intervene, the size of control needs to be bigger to compensate for less frequent
controls. Meanwhile, a decreasing frequency of intervention leads to an increasing action
boundary u. See Figure 3.5a and Figure 3.5b. For the per unit control cost k, similar results
are shown in Figure 3.6.
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(a) Action Boundary of Monopoly and
Duopoly

(b) Amount of Adjustment of Monopoly
and Duopoly

Figure 3.5: Sensitivity w.r.t. K

(a) Action Boundary of Monopoly and
Duopoly

(b) Amount of Adjustment of Monopoly
and Duopoly

Figure 3.6: Sensitivity w.r.t. k

Discount Rate r. When the discount rate r increases, players are more tolerant with a
larger deviation from the target level as the penalty is discounted by a larger factor. That is,
a higher discount rate r effectively reduces both the running and control cost, hence resulting
in a decreased intervention frequency with an increased size of controls, as shown in Figure
3.7.
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(a) Action Boundary of Monopoly and
Duopoly

(b) Amount of Adjustment of Monopoly
and Duopoly

Figure 3.7: Sensitivity w.r.t. r

Volatility σ. When the volatility σ is bigger, players tend to intervene less as the controlled
process is more likely to move closer to the target level with a higher volatility. Therefore, a
higher volatility allows players to intervene less frequently with a larger amount of adjustment,
as shown in Figure 3.8.

(a) Action Boundary of Monopoly and
Duopoly

(b) Amount of Adjustment of Monopoly
and Duopoly

Figure 3.8: Sensitivity w.r.t. σ

3.3.2 Sensitivity analysis of the MFG.

Here we present the sensitivity analysis of the MFG solution with respect the model parameters.
In particular, we look into the impact of the list of parameters, namely h, p, K±, k±, r and
σ, on the optimal impulse control policy and on the value of the mean information in the
solution. Here we take one particular form of the α function α(m) = αm with 0 < α < 1.

Running cost h and p. Parameters relevant to running costs are holding cost h and
penalty cost p. When running cost increases, players have the incentive to intervene more
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frequently to prevent the state from deviating too far away from the target level α; at the
meantime, players pay extra precaution for each intervention so the jump size reduces. Figure
3.9 shows the impact of increasing holding cost h with p = 2, K− = 3, k− = 0.5, K+ = 3.25,
k+ = 1.5, r = 0.5, σ = 1. It primarily affects the upper action boundary u, causing it to
decreases. Meanwhile the gap between the u and U decreases as well. As for the mean
information, eventually, increasing h causes the mean information to decrease. Figure 3.10
illustrates the effect of increasing p with h = 1, K− = 3, k− = 1, K+ = 3.25, k+ = 1.5,
r = 0.5, σ = 1. As opposed to increasing h, increasing p primarily impacts d, causing to
increase, while the gap between d and D decreases. Mostly it leads the mean information to
increase.

(a) All thresholds (b) Fixed point

Figure 3.9: Sensitivity w.r.t. h

(a) All thresholds (b) Fixed point

Figure 3.10: Sensitivity w.r.t. p



CHAPTER 3. NONZERO-SUM IMPULSE GAMES 80

Cost of instant decrease K− and k−. The parameter K− is the amount of fixed cost
to pay every time a player chooses to decrease the state. A high fixed cost K− discourages
the player from deceasing the state too often. Therefore the players have the incentive to
tolerate a high state value compared with the reference point α and once a player chooses
to decrease its state, the amount is adjustment will be larger. The more obvious impact is
that the distance between α and the upper bound of the non-action region, i.e. u, increases;
the impact on U is trickier, as the per unit cost of decreasing the state stays unchanged.
The impact of the increasing K− on the rest of the thresholds becomes the trade-of between
unchanged holding cost, penalty cost, cost of increasing the state, and the costs associated
with potentially more frequent but larger in scales, instantaneous increases in the state
variables.

(a) All thresholds (b) Fixed point

Figure 3.11: Sensitivity w.r.t. K−

Figure 3.11 illustrates the effect of varying K− from 1 to 5 under fixed values of the rest
of the parameters, where h = 1, p = 2, k− = 1, K+ = 3.25, k+ = 1.5, r = 0.5, σ = 1. We can
see from Figure 3.11a that as K− grows, u is affected the most and it increases significantly
indicating a decreased frequency of intervention, with a larger jumper size. Similar impact
on control policy can be observed with an increasing k−, shown in Figure 3.12. It pushes the
equilibrium mean information to a lower level, as shown in Figure 3.11b.
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(a) All thresholds (b) Fixed point

Figure 3.12: Sensitivity of the thresholds w.r.t. k−

A lower frequency of decreasing can lead the state to move right while larger jump size
may push the state to the left. While, as shown in Figure 3.11b, increasing K− results in
a decreasing mean information, increasing k− causes mean information to increasing, see
Figure 3.12b.

Cost of instant increase K+ and k+. The parameter K+ is the amount of fixed cost to
pay every time a player chooses to increase the state. A high fixed cost K+ discourages the
player from increasing the state too often. Therefore the players have the incentive to tolerate
a low state value compared with the reference point α and once a player chooses to increase its
state, the amount is adjustment will be larger. The more obvious impact is that the distance
between α and the lower bound of the non-action region, i.e. d, decreases; the impact on D
is trickier, as the per unit cost of increasing the state stays unchanged. The impact of the
increasing K+ on the rest of the thresholds becomes the trade-of between unchanged holding
cost, penalty cost, cost of decreasing the state, and the costs associated with potentially more
frequent but larger in scales, instantaneous decreases in the state variables.
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(a) All thresholds (b) Fixed point

Figure 3.13: Sensitivity w.r.t. K+

Figure 3.13 illustrates the effect of varying K+ from 1 to 5 under fixed values of the rest
of the parameters, where h = 1, p = 2, K− = 3, k− = 1, k+ = 1.5, r = 0.5, σ = 1. We can
see from Figure 3.13a that as K+ grows, d gets the most influence and decreases significantly,
indicating a lower frequency of intervention with larger jump size. Similar impact on control
policy can be seen if k+ increases.

(a) All thresholds (b) Fixed point

Figure 3.14: Sensitivity w.r.t. k+

A lower frequency of increase motivates the state to go left while larger jump size can
push the state to the right. The impacts on the mean information by varying K+ and k+ are
different as shown in Figure 3.13b and Figure 3.14b.
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Discount rate r. Figure 3.15 illustrates the effect of varying r from 0.2 to 1.2 under fixed
values of the rest of the parameters, where h = 1.5, p = 2.5, K− = 3, k− = 1, K+ = 3.25,
k+ = 1.5, σ = 1. We can see in Figure 3.15a that as r grows, d and u get influenced the

(a) All thresholds (b) Fixed point

Figure 3.15: Sensitivity w.r.t. r

most indicating a decreased intervention in both directions, with a larger jump size. A lower
decreasing frequency and a higher intensity of instant increases can both push the state the
right while a lower increasing frequency and a higher intensity of instant decreases can both
cause the state to go left. The influence on the mean information is shown in Figure 3.15b,
that the mean first increases and then decreases as r grows.

Individual volatility σ. Figure 3.16 illustrates the effect of varying σ from 0.5 to 2 under
fixed values of the rest of the parameters, where h = 1, p = 2, K− = 3, k− = 1, K+ = 3.25,
k+ = 1.5, r = 0.5. We can see from Figure 3.16a that as σ grows, d and u get influenced the
most indicating a decreased intervention in both directions, with a larger jump size. The
influence on the mean information is shown in Figure 3.16b, that the mean increases as σ
grows.

3.4 Conclusion and remarks
In this chapter, we study the nonzero-sum stochastic differential games with impulse controls.
In particular, we characterize NEs for a generic N -player games with impulse controls via a
verification theorem and provide explicit forms of multiple NEs for a 2-player cash management
game. We then formulate the MFG counterpart of the cash management problem and provide
an explicit solution. We establish the ε-NE approximation from the MFG solution to its
N -player NE. Finally, we compare the original control problem with the 2-player game via
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(a) All thresholds (b) Fixed point

Figure 3.16: Sensitivity w.r.t. σ

a sensitivity analysis with respect to the model parameters to demonstrate the impact of
competition; the sensitivity analysis for the MFG counterpart is also presented.

MFGs with impulse controls under a generic problem setting is still an under explored
topic. On one hand, for impulse control problems with generic cost structures, there is little
known about characterization of the optimal impulse control policy other than the existence,
uniqueness and regularity of the solution to QVI. On the other hand, it is remained to
generalize the work of [26] on the FP equation for the controlled dynamics into a general
framework. These two directions are worth further exploring. Alternative ways of studying
general MFGs with impulse controls include the use of relaxed controls as well as analyzing a
corresponding stopping problem as in [92].
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Chapter 4

Connecting GANs, MFGs and OT

Up to date, theories of GANs, MFGs, and OT have been developed independently. In this
chapter, we will show that they are intriguingly connected. In particular, GANs can be
understood and analyzed from the perspective of MFGs and OT. More precisely,

• We first show a conceptual connection between GANs and MFGs: MFGs have the
structure of GANs, and GANs are MFGs under the Pareto Optimality criterion. This
intrinsic connection is transparent for a class of MFGs for which there is a minimax
game representation.

• We then interpret MFGs as GANs and propose a GANs-based algorithm (MFGANs)
to solve MFGs: one neural network (NN) for the backward HJB equation and one NN
for the forward FP equation, with the two NNs trained in an adversarial way. Our
numerical experiments demonstrate superior performance of this proposed algorithm
when compared with existing approaches, especially in higher dimensional case.

• Finally, by viewing GANs as MFGs, we present new and probabilistic characteristics of
GANs. This new perspective leads to an analytical connection between a broad class
of GANs and Optimal Transport (OT) problems. This representation is explicit for
Wasserstein GANs, by virtue of Kantorovich-Rubinstein duality theorem. Moreover, we
identify sufficient conditions under which the minimax game of GANs can be redefined
in the framework of OT: any form of divergence in GANs can be represented as the
OT cost between the generated and the true data, provided that the OT admits a dual
formulation. In this case, the discriminator corresponds to the price functions in the
dual problem.

Notations. Throughout this chapter, the following notations will be adopted, unless
otherwise specified.

• X denotes a Polish space with metric l.

• P(X ) denotes the set of all probability distributions over the space X .
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• P(Rd) denotes the set of probability distributions on Rd that admit corresponding
density functions. That is, µ ∈ P(Rd) if there exists a mapping m : Rd → R such that∫
Rd µ(dx) =

∫
Rdm(x)dx = 1.

• For p > 0, Pp(Rd) =

{
µ ∈ P(Rd)

∣∣∣∣∫Rd ‖x‖ppµ(dx) <∞
}
, with ‖ · ‖p the p-norm on Rd.

• For p ≥ 1, Lp(X ) :=

{
µ ∈ P(X )

∣∣∣∣∫X d(x, x0)pµ(dx) <∞
}

for some fixed x0 ∈ X .

• For any µ ∈ P(X ), L1(µ) :=

{
ψ : X → R

∣∣∣∣∫X |ψ(x)|µ(dx) <∞
}
.

4.1 Preliminaries

4.1.1 PDE system of MFGs.

As introduced in Chapter 1.1, MFGs have been introduced to tackle Nash equilibria in games
with many players by considering a game with infinitely many agents. To customize into the
discussion of this chapter, let us consider a class of MFGs as follows. Take (Ω,F , {Ft}t≥0,P)
as a filtered probability space where {Ft}t≥0 supports a standard d-dimensional Brownian
motion W = {Wt}t≥0. Let W i be i. i. d. copies of W . In MFGs, take any representative
player i from infinitely many rational and indistinguishable players, her objective is to choose
the optimal control over an admissible control set A = {{αt}t≥0 : αt ∈ Rd, ∀t ≥ 0} for the
following minimization problem for any s ∈ [0, T ] and x ∈ Rd:

u(s, x) = u(s, x; {µt}t∈[0,T ]) = inf
{αt}t≥0∈A

E

[∫ T

s

f(t,X i
t , µt, αt)dt

∣∣X i
s = x

]
(MFG)

subject to the state dynamics

dX i
t = b(t,X i

t , µt, αt)dt+ σdW i
t , X

i
0 ∼ µ0,∫

Rd
µ0(dx) =

∫
Rd
m0(x)dx = 1.

Here, the mean-field information is characterized by a flow of probability measures {µt}t≥0

with µ0 = µ0 ∈ P2(Rd), and the initial state of player i satisfies X i
0 ∼ µ0 ⊥ σ(Wt, t ≥ 0).

Moreover, µt is the limiting empirical distribution of players’ states, and by strong law of
large numbers µt = limN→∞

1
N

∑N
i=1 δXi

t
= Law(X i

t) for all t ∈ (0, T ].
In the cost function, f : [0,∞)×Rd×P(Rd)×Rd → R is the running cost. Moreover µ0 is

the initial condition which is assumed to have a density denoted by m0. In the state dynamics
σ > 0 is a constant diffusion coefficient and the drift term b : [0,∞)×Rd×P(Rd)×Rd → Rd

satisfies appropriate conditions. These conditions ensure that there exists a unique solution
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{X i
t}t≥0 for the state dynamics such that for any t ≥ 0, µt = Law(X i

t) ∈ P2(Rd) ([151] and
[74]).

We will denote by m(t, ·) the density function of µt for any t ≥ 0, and with slight abuse
of notation, for any µ ∈ P(Rd) with density function m, denote b(t, x, µ, α) := b(t, x,m, α)
and f(t, x, µ, α) := f(t, x,m, α).

Definition 4.1. A control and mean-field pair ({α∗t}t≥0, {µ∗t}t≥0), with initial distribution
µ∗0 = µ0, is called the solution to (MFG) if the following conditions hold.

• (Optimal control) Under {µ∗t}t≥0, {α∗t}t≥0 solves the following optimal control problem
that for s ∈ [0, T ] and x ∈ R,

u(s, x; {µ∗t}) = inf
α∈A

E

[∫ T

s

f(t,X i
t , µ
∗
t , αt)dt

∣∣X i
s = x

]
subject to

dX i
t =b(t,X i

t , µ
∗
t , αt)dt+ σdW i

t , X0 ∼ µ0.

• (Consistency) {µ∗t}t≥0 is the flow of probability distribution of the optimally controlled
process, i.e., µ∗t = Law(X i,∗

t ) for t ≥ 0, where X i,∗ is given by the following stochastic
differential equation,

dX i,∗
t = b(t,X i,∗

t , µ∗t , α
∗
t )dt+ σdW i

t , X
i,∗
0 ∼ µ0.

The solution of this MFG (MFG) can be characterized by the following PDE system,

∂su(s, x) +
σ2

2
∆xu(s, x) +H (s, x,∇xu(s, x)) = 0,

u(T, x) ≡ 0;

 (HJB)

∂sm(s, x) + div [m(s, x)b(s, x,m(s, x), α∗)] =
σ2

2
∆xm(s, x),

m(t, ·) ≥ 0,

∫
Rd
m(t, x)dx = 1, ∀t ∈ [0, T ];

∫
Rd
m(0, x)dx =

∫
Rd
m0(dx).

 (FP)

Here the Hamiltonian H(s, x, p) in (HJB) is given by

H (s, x, p) = min
α∈Rd
{b(s, x,m(s, x), α)p+ f(s, x,m(s, x), α)} s ∈ (0, T ), x, p ∈ Rd,

and α∗ in (FP) is the optimal control, with

α∗t = arg min
α∈Rd
{b(t, x,m(t, x), α)∇xu(t, x) + f(t, x,m(t, x), α)} . (4.1)

Note that from (4.1), the optimal control is determined by the value function u.
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4.1.2 Basics of OT

Theory of optimal transport (OT), originated from Monge [135], studies the optimization
problem of transporting one given initial distribution to another given terminal distribution
so that the transport cost functional is minimized. Deeply rooted in linear programming,
many theoretical works on the existence and uniqueness of an optimal transport plan focus on
the duality gap between the primal optimization problem and its dual form. For instance, the
Kantorovich-Rubinstein duality in [171] characterizes sufficient conditions of the existence of
optimal transport plans (i.e., when there is no duality gap), and [81] studies the multi-marginal
case.

Martingale optimal transport problem is motivated mostly by problems from finance,
starting with the problem of super-hedging, see for instance [67], [126], and [143]. [17]
establishes a complete duality theory for generic martingale OT problems via a quasi-sure
formulation of the dual problem; and [86] studies a continuous-time martingale OT problem
and establishes the duality theory via the S-topology and the dynamic programming approach.

To compute for the optimal transport plan, [85] proposes a computational method for
martingale optimal transport problem based on linear programming via proper relaxation of
the martingale constraint and discretization of the marginal distributions; [70] proposes a
deep learning algorithm to solve multi-step, multi-marginal optimal transport problem via its
dual form with an appropriate penalty term.

It is worth pointing out that OT theory has been applied to analyze and improve the
stability of GANs training, see, for instance, [84], [154], and [55]. There are earlier studies
connecting GANs and OT, by different approaches and from different perspectives. [153]
defines a novel divergence based on solutions of three associated optimal transport problems.
This new divergence is then used to replace the JS divergence for the vanilla GANs. In [124],
an interpretation of Wasserstein GANs (WGANs) from the geometric perspective of optimal
transport is provided. In our work, we provide sufficient conditions for which the minimax
game of general GANs, including WGANs, can be reformulated analytically in the framework
of OT. (See Remark 4.2 for more detailed discussions).

Mathematically, the OT is defined as follows (see [171]).

Definition 4.2. Take a Polish space X with metric d : X × X → [0,∞). Let c : X × X →
R
⋃
{+∞} be a lower semi-continuous function such that c(x, y) ≥ a(x) + b(y), where a and

b are upper semi-continuous functions on X . For any µ, ν ∈ P(X ), the OT problem between
µ and ν with cost function c is defined as

Wc(µ, ν) = inf
π∈Π(µ,ν)

∫
X×X

c(x, y)π(dx, dy), (OT)

Π(µ, ν) is the set of all possible couplings between µ and ν.

The well-definedness of this OT, i.e., the existence of an optimal cost Wc, is guaranteed
by Theorem 4.1 of [171].

The dual problem of this OT goes as follows.
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Definition 4.3. Let µ, ν ∈ P(X ). The dual Kantorovich problem of (OT) is

Dc(µ, ν) =

sup
ψ∈L1(µ),φ∈L1(ν)

{∫
X
φ(x)ν(dx)−

∫
X
ψ(x)µ(dx)

∣∣∣∣φ(x)− ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × X
}
.

It is easy to see that Dc(µ, ν) ≤ Wc(µ, ν). The following Kantorovich-Rubinstein duality
provides sufficient conditions under which the equality holds.

Theorem 4.4 (Theorem 5.10(i) in [171]). Take µ, ν ∈ P(X ). Let c : X × X → R
⋃
{+∞}

be a lower semi-continuous function such that c(x, y) ≥ a(x) + b(y) where a ∈ L1(µ) and
b ∈ L1(ν) are upper semi-continuous functions on X . Then,

Wc(µ, ν) = Dc(µ, ν) = sup
ψ∈L1(µ)

∫
X
ψc(x)ν(dx)−

∫
X
ψ(x)µ(dx).

Here ψ : X → R
⋃
{+∞} is taken from the set of all c-convex functions: ψ is not constantly

+∞ and there exists a function ζ : X → R
⋃
{+∞} such that

ψ(x) = sup
y∈X

[ζ(y)− c(x, y)] , ∀x ∈ X .

ψc : X → R
⋃
{−∞} is its c-transform

ψc(y) = inf
x∈X

[ψ(x) + c(x, y)] , ∀y ∈ X .

If the transport cost c takes the particular form of c = dp for some p ≥ 1, then the
corresponding optimal cost gives rise to the Wasserstein distance between µ and ν of order p,
or simply the Wasserstein-p distance,

Wp(µ, ν) =

[
inf

π∈Π(µ,ν)

∫
X×X

l(x, y)pπ(dx, dy)

] 1
p

.

Note that for p = 1, the Wasserstein-1 distance is adopted in Wasserstein GANs (WGANs)
in [6] to improve the stability of GANs.

4.2 MFGs as GANs.
As stochastic differential games with a continuum of players, MFGs in general are different
from 2-player minimax games such as GANs. However, there is a class of MFGs that indeed
can be view as minimax games. It becomes a spark to explore the conceptual connection
between GANs and MFGs of a broader class. In this section, we first establish the conceptual
connection between MFGs and GANs, we then present a class of MFGs for which such
connection to GANs is explicit. Based on this connection, we proposal a GANs-based
algorithm (MFGANs) for solving MFGs.
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4.2.1 A class of MFGs with minimax structure

As pointed out by [56], a class of periodic MFGs on flat torus Td and a finite time horizon
[0, T ] admits an explicit minimax structure. Consider such an MFG that minimizes the
following cost,

Jm(t, α) = E
[∫ T

t

L(Xα
t , α(Xα

t )) + f(Xα
t ,m(Xα

t ))dt

]
, t ∈ [0, T ] (4.2)

where Xα = (Xα
t )t is a d-dimensional process with dynamics

dXα
t = α(Xα

t )dt+
√

2εdWt.

Here α is a control policy, L and f constitute the running cost and m(t, ·), for t ∈ [0, T ],
denotes the probability density of Xα

t at time t. We then introduce the convex conjugate of
the running cost L, namely,

H0(x, p) = sup
α∈Rd
{α · p− L(x, α)} ,

and denote F (x,m) =
∫ m

f(x, z)dz. From a PDE perspective, this class of MFGs can be
characterized by the following coupled PDE system as illustrated in [56],

−∂su− ε∆xu+H0(x,∇xu) = f(x,m),

∂sm− ε∆xm− div (m∇pH0(x,∇u)) = 0,

m > 0, m(0, ·) = m0(·), u(T, ·) = uT (·),
(4.3)

where the first equation is an HJB equation governing the value function and the second is
an FP equation governing the evolution of the optimally controlled state process; here m0

and uT are the initial functions for m(t, ·) and u(t, ·), respectively. The system of equations
(4.3) is equivalent to the following minimax game

inf
u∈C2([0,T ]×Td)

sup
m∈C2([0,T ]×Td)

Φ(m,u), (4.4)

where

Φ(m,u) =

∫ T

0

∫
Td

[m(−∂tu− ε∆xu) +mH0(x,∇xu)− F (x,m)] dxdt

+

∫
Td

[
m(T, x)u(T, x)−m0(x)u(0, x)−m(x, T )uT (x)

]
dx.

From (4.4), one can see that the connection between GANs and MFGs is transparent.
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4.2.2 Conceptual connection

Having this transparent connection between GANs with a particular class of MFGs, one may
continue asking if such a connection can be extended to a broader class of MFGs. We claim
that

MFGs in the form of (MFG) are GANs.

To see this connection more precisely, recall that in classical GANs, the generator G is to
mimic the sample data to generate new one to minimize the difference between the true
distribution Pr and Pθ. The discriminator D measures the performance of the generator by
some divergence between Pθ and Pr. Meanwhile, observe that in MFGs:

• The latent space Z = Rd and sample x of latent variable Z are drawn from the
probability distribution Pz = µ0.

• The generator G = u maps the element x into R so that it mimics the optimal cost
and its gradient dictates the optimal strategy in the equilibrium state of the MFGs.
We can then define a loss function

LG(u,m) = LHJB(u,m) + βGLterm(u,m),

where βG > 0 denotes the weight on the penalty of the terminal condition,

LHJB(u,m) =
1

T

∫ T

0

∫
Rd

[
∂su(s, x;m) +

σ2

2
∆xu(s, x;m) +H (s, x,∇xu(s, x;m))

]2

µ0(dx)ds,

and
Lterm =

∫
Rd
u(T, x;m)2µ0(dx).

Here we use u(·, ·;m) to denote the value function u, as from the PDE system (HJB)-
(FP), the value function u is coupled with the mean information m; later on we will
also use m(·, ·;u) to denote the mean information m.

• The equilibrium state of the MFGs, just as the true distribution Pr in GANs, exists
but is not explicitly available. The characterization of the equilibrium is through
a consistency condition between value function and the controlled dynamics. The
discriminator D = m helps to measure the distance from the current state process to
the equilibrium state process by checking if m is indeed the density function of the
state dynamic (4.1.1) under the optimal control given by the generator. Its loss, in
place of the divergence function between Pθ and Pr, is defined as

LD(u,m) = LFP (u,m) + βDLinit(u,m),
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where βD > 0 denotes the weight on the penalty of the initial condition,

LFP (u,m) =
1

T

∫ T

0

∫
Rd

[
∂sm(s, x;u) + div [m(s, x;u)b(s, x,m(s, x;u), α∗(u,m))]

− σ2

2
∆xm(s, x;u)

]2

µ0(dx)ds,

and

Linit =

∫
Rd

[
m(0, x;u)−m0(x)

]2

µ0(dx).

Here α∗(u,m) denotes the optimal control solved under current u and m.

• In MFG the generator solves the HJB equation via an NN and the discriminator
computes an appropriate differential residue of the FP equation via another NN.

The comparisons of the roles of generator and discriminator between general MFGs and
GANs are summarized in Table 4.1.

Table 4.1: A first link between GANs and MFGs

GANs MFGs

Generator G NN for approximating
the map G : Z 7→ X

NN for solving HJB

Characterization of
Pr

Sample data FP equation for consistency

Discriminator D NN measuring diver-
gence between Pθ and
Pr

NN for measuring differential residual
from the FP equation

In fact there is more than one way to see this connection between MFGs and GANs.
Alternatively, one can switch the roles of the generator and discriminator and view the
mean-field term as a generator and the value function as a discriminator.

4.2.3 Computing MFGs via GANs

The above discussion points to a new computational approach for MFGs using NNs, assuming
that the equilibrium of MFGs can be computed via the coupled HJB-FB system.

That is, one can compute MFGs using two neural networks in an adversarial way:

• uθ being the NN approximation of the unknown value function u for the HJB equation,
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• mω being the NN approximation for the unknown mean information function m.

This new computational algorithm for MFGs is summarized in Algorithm 1.
Note that Algorithm 1 can be adapted for broader classes of dynamical systems with

variational structures. Such GANs structures have been exploited in [179] and [180] to
synthesize complex systems governed by physical laws.

4.3 GANs as MFGs.
Having established MFGs as GANs, we next show that GANs are MFGs, under the Pareto
Optimality criterion.

Theorem 4.5. GANs in [80] are MFGs under the Pareto Optimality criterion, assuming
that the latent variables Z and true data X are both i.i.d. sampled, respectively, with
E[| log(D(X))|],E[| log(1−D(G(Z)))|] <∞ for all possible D and G.

Proof. Let Pr denote the probability distribution from which the real data is sampled on
the sample space X ⊂ Rd, and let Pz be the prior distribution of the input on Z ⊂ Rk. A
generator G maps any z ∈ Z to G(z) ∈ X . A discriminator D, on the other hand, takes
any sample x ∈ X and returns some probability of x being sampled from Pr. The objective
function of this GAN is

min
G

max
D

EX∼Pr [logD(X)] + EZ∼Pz [log (1−D(G(Z)))] , (4.5)

where G and D are selected from appropriate functional spaces.
Consider a group of N indistinguishable players, each holding an initial belief distributed

as Pz, i.e., Zi
i.i.d∼ Pz for i = 1, . . . , N . Players can access the sample data from a masked

model Pr, independent from Pz; each one is asked to find a strategy transforming the initial
belief into a mimic version of the sample data so that on average the group can fool the best
discriminator.

First, define the set of admissible strategies and the candidate pool for discriminators.
Denote the set of admissible strategies as G, which is the collection of mappings from Z to X
and let the collection of possible discriminators D be the collection of mappings from X to
(0, 1]. Fix any i ∈ {1, . . . , N}, let Zi be player i’s initial belief and suppose Zi ∈ Z. Let Xj,
j = 1, . . . ,M , be the sample data. When player k chooses strategy Gk ∈ G, k = 1, . . . , N ,
each player is subject to the same cost

J(G) = max
D∈D

∑N
k=1

∑M
j=1 log [D(Xj) (1−D(Gk(Zk)))]

N ·M
,

where G = (G1, . . . , GN) ∈
⊗N

k=1 G denotes the profile of strategies for all N players.
Recall that a profile of strategies G∗ is called a Pareto optimal point (PO) if J(G∗) ≤

J(G), for all G ∈
⊗N

k=1 G.
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Algorithm 1 MFGANs
At k = 0, initialize θ and ω. Let Nθ and Nω be the number of training steps of the
inner-loops and K be that of the outer-loop. Let βi > 0, i = 1, 2.
for k ∈ {0, . . . , K − 1} do
Let m = 0, n = 0.
Sample {(si, xi)}Bdi=1 on [0, T ]×Rd according to a predetermined distribution pprior, where
Bd denotes the number of training samples for updating loss related to FP residual.
Let L̂D(θ, ω) = L̂FP (θ, ω) + βDL̂init(ω), with

L̂FP =
1

Bd

{ Bd∑
i=1

[
∂smω(si, xi) + div

[
mω(si, xi)b(si, xi,m(si, xi), α

∗
θ,ω(si, xi))

]
− σ2

2
∆xmω(si, xi)

]2}
,

L̂init =

∑Bd
i=1 [mω(0, xi)−m0(xi)]

2

Bd

,

where m0 is a known density function for the initial distribution of the states and βD > 0
is the weight for the penalty on the initial condition of m.
for m ∈ {0, . . . , Nω − 1} do
ω ← w − αd∇ωL̂D with learning rate αd.
Increase m.

end for
Sample {(sj, xj)}Bgj=1 on [0, T ]×R according to a predetermined distribution pprior, where
Bg denotes the number of training samples for updating loss related to HJB residual.
Let L̂G(θ, ω) = L̂HJB(θ, ω) + βGL̂term(θ), with

L̂HJB =
1

Bg

{ Bg∑
j=1

[
∂suθ(sj, xj) +

σ2

2
∆xuθ(sj, xj) +Hω (sj, xj,∇xuθ(sj, xj))

]2}
,

L̂term =

∑Bg
j=1 uθ(T, xj)

2

Bg

,

where βG > 0 is the weight for the penalty on the terminal condition of u.
for n ∈ {0, . . . , Nθ − 1} do
θ ← θ − αg∇θL̂G with learning rate αg.
Increase n

end for
Increase k.

end for
Return θ, ω
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Notice that the players are indistinguishable. Then there must be a symmetric PO
consisting of the same strategy for all the players, provided that a PO exists. Let S ⊂

⊗N
k=1 G

denote the set of symmetric strategies, i.e.,

min
G∈

⊗N
k=1 G

J(G) = min
G∈S

J(G) = min
G∈G

max
D∈D

∑N
k=1

∑M
j=1 log [D(Xj) (1−D(G(Zk)))]

N ·M
.

When the number of players as well as the size of the sample data becomes large, by strong
law of large numbers, almost surely we have∑N

k=1

∑M
j=1 log [D(Xj) (1−D(G(Zk)))]

N ·M
→ EX∼Pr [logD(X)] + EZ∼Pz [log (1−D(G(Z)))] ,

Now define mN = 1
N

∑N
k=1 δG(Zk). Then by the strong law of large numbers, mN

N→∞
=⇒

Law(G(Z)), with Z ∼ Pz. Here, PG = Law(G(Z)) is called the mean field. Therefore, by
strong law of large numbers, sending M and N to ∞ the original loss for vanilla GANs is
recovered,

min
G∈G

max
D∈D

EX∼Pr [logD(X)] + EY∼Pθ [log (1−D(Y ))] .

4.4 GANs and OT.
As discussed in Section 4.1, through optimization over discriminators, GANs are essentially
minimizing proper divergences between true distribution and the generated distribution over
some sample space X . The flexibility of choosing appropriate divergence allows us to connect
GANs and OT problems, and to identify sufficient conditions for which GANs can be recast
in the framework of OT.

Intuitively, this connection between GANs and OT is very natural: GANs as generative
models are minimax games with the goal to minimize the “error” of the generated sample data
against the true sample data; this error is measured under appropriate divergence functions
between the true distribution and the generated distribution. Now if this error is viewed as
a cost of transporting/fitting the generated distribution into the true distribution, GANs
become an OT.

Indeed, this connection between GANs and OT is explicit in the case of WGANs.

Theorem 4.6. Suppose that Pr ∈ L1(X ) and G ∈ L1(Pz) where

L1(Pz) =

{
f : Z → R :

∫
Z
|f(z)|Pz(dz) <∞

}
.

WGAN is an OT problem between Law(G(Z)) and Pr.
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Proof. Recall the objective function of WGAN introduced in [6],

min
G

max
D s.t. ‖D‖L≤1

EX∼Pr [D(X)]− EZ∼Pz [D(G(Z))].

Define a cost function c : X × X → R,

c(x, y) = l(x, y), (4.6)

with l being the metric of X . Take a fixed generator G ∈ L1(PZ), then the cost function
(4.6) is the cost of transporting mass from a distribution Law(G(Z)) = Pθ to a different
distribution Pr. Then, consider the following OT problem

inf
π∈ΠG

∫
X×X

c(x, y)π(dx, dy), (OT-WGAN)

where ΠG = Π(Law(G(Z)),Pr) is the set of couplings between Law(G(Z)) and Pr, where
Z ∼ Pz, for a fixed G.

By Theorem 4.4, when c = l, any c-convex function is Lipschitz with Lipschitz constant 1,
and ψc = ψ. Therefore, the OT problem (OT-WGAN) becomes

inf
π∈ΠG

∫
X×X

c(x, y)π(dx, dy) = sup
D s.t. ‖D‖L≤1

∫
X
D(x)Pθ(dx)−

∫
X
D(y)Pr(dy), (4.7)

which is exactly the Wasserstein-1 distance between Pθ and Pr. The role of the discriminator
is to locate the best coupling among ΠG for (OT-WGAN) under a given G, whereas the
role of the generator is to refine the set of possible couplings ΠG so that the infimum in
(OT-WGAN) becomes 0 eventually. Therefore, the following equivalence holds,

min
G

max
D s.t. ‖D‖L≤1

EX∼Pr [D(X)]− EZ∼Pz [D(G(Z))]⇐⇒ min
G
W1(Law(G(Z)),Pr).

Remark 4.1 (Sufficient condition). Rechecking the proof, it is clear that this connection
between GANs and OT goes beyond the framework of WGANs. Indeed, take any Polish space
X with metric l, then X × X is also a Polish space with metric l′. Denote P(X ) as the set
of all probability distributions over the sample space X . Define a generic divergence function

W : P(X )× P(X ) 7→ R+,

and take a class of GANs with this divergence W . If W can be written as the optimal cost
Wc as in (OT), and if such an OT problem has a duality representation. Then GAN is an
OT problem with the discriminator locating the best coupling among ΠG for (OT-WGAN)
under a given G, and with the generator refining the set of possible couplings ΠG to minimize
(OT-WGAN).
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Remark 4.2. Note that there are earlier studies connecting GANs and OT, by different
approaches and from different perspectives. [153] defines a novel divergence called the minibatch
energy distance, based on solutions of three associated optimal transport problems. This new
divergence is then used to replace the JS divergence for the vanilla GANs. Note that this
minibatch energy distance itself is not an optimal transport cost. In [124], an interpretation
of Wasserstein GANs (WGANs) from the perspective of optimal transport is provided: the
latent random variable from the latent space is mapped to the sample space via an optimal
mass transport so that the resulted distribution can minimize its Wasserstein distance against
the true distribution. In our work, we provide sufficient conditions for which the minimax
game of GANs, including WGANs, can be reformulated in the framework of OT.

4.5 Experiments.
We now assess the quality of the proposed Algorithm 1, with a class of ergodic MFGs, for
both one-dimension and high-dimension cases. This class of MFGs is chosen because of their
explicit solution structures, which facilitate numerical comparison.

4.5.1 A class of ergodic MFGs.

Specifically, take (MFG) and consider the following long-run average cost,

Ĵm(α) = lim inf
T→∞

1

T
E
[∫ T

t

L(Xα
t , α(Xα

t )) + f(Xα
t ,m(Xα

t ))dt

]
, (4.8)

where the cost of control and running cost are given by

L(x, α) =
1

2
|α|2 + f̃(x), f(x,m) = ln(m), ε =

1

2
,

with,

f̃(x) = 2π2

[
−

d∑
i=1

sin(2πxi) +
d∑
i=1

| cos(2πxi)|2
]
− 2

d∑
i=1

sin(2πxi).

Then the PDE system (HJB)–(FP) becomes
−ε∆u+H0(x,∇u) = f(x,m) + H̄,

−ε∆m− div (m∇pH0(x,∇u)) = 0,∫
Td u(x)dx = 0; m > 0,

∫
Tdm(x)dx = 1,

(4.9)

where the convex conjugate H0 is given by

H0(x, p) = sup
α
{α · p− 1

2
|α|2} − f̃(x).
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Here, the periodic value function u, the periodic density function m, and the unknown H̄
can be explicitly derived. Indeed, assuming the existence of a smooth solution (m,u, H̄), m
in the second equation in (4.9) can be written as

m(x) =
e2u(x)∫

Td e
2u(x′)dx′

. (4.10)

Hence the solution to (4.9) is given by

u(x) =
d∑
i=1

sin(2πxi)

and
H̄ = ln

(∫
Td
e2

∑d
i=1 sin(2πxi)dx

)
.

The optimal control policy is also explicitly given by

α∗ = arg max
α
{∇xu · α− L(x, α)}

= ∇xu = 2π
(
cos(2πx1) . . . cos(2πxd)

)
∈ Rd.

4.5.2 Experiment setup

We will compute the above MFGs in Section 4.5.1 by exploiting its GANs structure and by
using Algorithm 1.

Implementation. Both the value function u and the density function m are computed via
NN with parameters θ and ω respectively. Moreover,

• The NN approximate mω is assumed to be a maximum entropy probability distribution,
i.e., mω ∝ exp fω. This is due to the lack of information about the density function m.
(See also [77] for the use of maximum entropy probability distribution).

• The network architecture for implementing both uθ and fω adopts the Deep Galerkin
Method (DGM), proposed in [160]. The DGM architecture is known to be useful for
solving PDEs numerically. (See for instance [50]).

Adaptation. Since the MFG in Section 4.5.1 is of an ergodic type with a specified periodicity,
Algorithm 1 is adapted accordingly. More precisely,

• To accommodate the periodicity given by the domain flat torus Td, for any data point
xi = (xi,1, . . . , xi,d) ∈ Rd, we use

yi = (sin (2πxi,1), . . . , sin (2πxi,d),

cos (2πxi,1), . . . , cos (2πxi,d))

as input. The x′is and y′is here are the latent variables in the vanilla GANs.
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(a) Value function u. (b) Density function m.

(c) Optimal control α∗.

Figure 4.1: One-dimensional test case.

• An additional trainable variable H̄ is introduced in the graphical model.

• The loss functions LHJB and LFP are modified according to the first and second
equations of (4.9). The generator penalty becomes

L̂term =

[∑Bg
i=1 uθ(y

i)

Bg

]2

.

Due to the structure mω, the discriminator penalty on mω being a probability density
function can be ignored, i.e. βD = 0.

• We train the generator first; and in each inner loop we take more SGD steps and with a
larger learning rate compared with those in the discriminator. Note that this is opposite
to the typical GANs training.
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(a) Relative l2 error of u. (b) Relative l2 error of m.

(c) Error of m first 20k iterations. (d) Error of m after 20k iterations.

(e) HJB residual loss. (f) FP residual loss.

Figure 4.2: Losses and errors in the one-dimensional test case.

Performance evaluations. To assess the performance of our algorithm, the following
procedure is adopted.

• Given the explicit solution to the MFG (4.9), we compare the learned value function,
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(a) Relative l2 error of u. (b) Relative l2 error of m.

Figure 4.3: Impact of generator learning rate on relative l2 error.

the learned density function and the learned optimal control against their perspective
analytical form.

• We adopt the evolution of relative l2 errors between the learnt and true value and
density functions. The relative l2 error of a function f against another function g, with
f, g : Td → R and g not constant 0, is given by

errrel−l2(f, g) =

√∫
Td [f(x)− g(x)]2dx∫

Td g(x)2dx
.

Moreover, to facilitate comparisons for broader classes of MFGs whose analytical solutions
may not be available, additional loss functions are adopted. Here we take differential residuals
of both the HJB and the FP equations as measurement of the performance.

4.5.3 Result of one-dimensional case.

We first conduct numerical experiment with one-dimensional input.

• The DGM network for both uθ and fω contains 1 hidden layer with 4 nodes. The
activation function for uθ is hyperbolic tangent function and that of fω is sigmoid
function.

• Within each iteration of training, i.e., one complete outer loop, SGD is performed to
update parameters of both the generator and the discriminator; the inputs of the SGD
steps are mini-batches of size Bg = Bd = 32, where Bg and Bd denote the batch sizes
for the generator and the discriminator updates, respectively.
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(a) α0
g = 5× 10−4. (b) α0

g = 5× 10−2.

Figure 4.4: HJB residual loss under different generator learning rate.

(a) α0
g = 5× 10−4. (b) α0

g = 5× 10−2.

Figure 4.5: FP residual loss under different generator learning rate.

• As mentioned in the adaptation, the number of SGD steps for the generator is Nθ = 5
with initial learning rate 1×10−3 , whereas the number of SGD steps for the discriminator
is Nω = 2 with initial learning rate 1× 10−4. The number of total iterations, i.e., the
number of outer loops is K = 105. Adam optimizer is used for the updates.

• The weight for the generator penalty is βG = 1.

The result is summarized in Figures 4.1 and 4.2. Figures 4.1a and 4.1b show the learnt
functions of u and m against the true ones, respectively, and 4.1c shows the optimal control.
Both show the accuracy of the learnt functions versus the true ones. This strong performance
is supported by the plots of loss in Figures 4.2a and 4.2b, depicting the evolution of relative
l2 error as the number of outer iterations grows to K. Within 105 iterations, the relative l2
error of u oscillates around 3× 10−2, and the relative l2 errors of m decreases below 10−3.
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(a) Relative l2 error of u. (b) Relative l2 error of m.

Figure 4.6: Impact of minibatch size on relative l2 errors.

To facilitate comparisons for broader classes of MFGs whose analytical solutions are not
necessarily available, we also take differential residuals of both the HJB and the FP equations
to measure the performance. The evolution of the HJB and FP differential residual loss is
shown in Figures 4.2e and 4.2f, respectively. In theses figures, the solid line is the average
loss among 3 experiments, with standard deviation captured by the shadow around the line.
Both differential residuals first rapidly descend to the magnitude of 10−2 and then the descent
slows down accompanied by oscillation.

One may notice the difference between the training results of u and m. One reason is
that u and m are implemented using different neural networks. The other is that different
loss functions are adopted for training u and m.

(a) Bg = Bd = 32. (b) Bg = Bd = 256.

Figure 4.7: HJB residual loss under different minibatch size.
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(a) Bg = Bd = 32. (b) Bg = Bd = 256.

Figure 4.8: FP residual loss under different minibatch size.

Ablation study. To understand possible contributing factors for the oscillation in the loss,
especially for u, an ablation study on the learning rate of the generator αg is conducted. In
our test, the initial learning rate for the Adam Optimizer α0

g takes the values of 5 × 10−4,
1× 10−3, 1× 10−2 and 5× 10−2, respectively.

From Figures 4.2a and 4.2b, the relative l2 error on u oscillates more than that of m.
Similar phenomenon is observed in Figure 4.3. In particular, from Figure 4.3a, a drastic
decrease in oscillation can be seen as the generator learning rate αg decreases.

Turning to the differential residual losses, one can observe from Figures 4.4 and 4.5 that,
if decreasing α0

g from 5× 10−2 to 5× 10−4, the residual losses for both HJB and FP decrease
to a lower level with less oscillation.

Another parameter of interest is the number of samples in each minibatch, i.e., Bg and
Bd in Algorithm 1. Setting Bg = Bd, the cases of 32, 64, 128 and 256 are tested. Figure 4.6a
shows that the relative l2 error of u oscillates less as Bg and Bd increases from 32 to 256.
Moreover, comparing the case of Bg = Bd = 32 and Bg = Bd = 256, the residual losses for
both HJB and FP decrease to a lower level with less oscillation as minibatch size increases,
as shown in Figures 4.7 and 4.8.

4.5.4 Results of multi-dimensional case.

We next test with input of dimension 4 and relative l2 errors are shown in Figure 4.9.

• Just as in the one-dimensional case, the DGM network for both uθ and fω contains 1
hidden layer with 4 nodes. The activation function for uθ is hyperbolic tangent function
and that of fω is sigmoid function.

• Within each iteration of training, i.e., one complete outer loop, SGD is performed to
update parameters of both the generator and the discriminator; the inputs of the SGD



CHAPTER 4. CONNECTING GANS, MFGS AND OT 105

(a) Relative l2 error of u. (b) Relative l2 error of m.

(c) Error of m first 80k iterations. (d) Error of m after 80k iterations.

Figure 4.9: Input of dimension 4.

steps are mini-batches of size Bg = Bd = 32.

• The number of SGD steps for the generator is Nθ = 5 with initial learning rate
αg = 5 × 10−4, whereas the number of SGD steps for the discriminator is Nω = 2
with initial learning rate αd = 1 × 10−4. The number of outer loops is increased to
K = 2× 105. Adam optimizer is used for the updates.

• The weight for the generator penalty is β2 = 1.

Within 2× 105 iterations, the relative l2 error of u decreases below 2× 10−2 and that of
m decreases to 4× 10−3.

Finally, it is worth noting that similar experiment for dimension 4 has been conducted in
[50]; see Test Case 4. In comparison, their algorithms need significantly larger number of
iterations: 106 of iterations vs our 2× 105 to achieve the same level of accuracy.
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4.6 Conclusion and remarks
This chapter focuses on the connection of GANs and MFGs. In particular, the algorithm 1
is shown to be an effective computational method for MFGs. It is worth noticing that this
algorithm is based on the HJB-FP approach for solving MFGs. The potential implementation
of probabilistic approach such as FBSDEs via GANs, the development of GANs-based
algorithms for MFGs with singular and impulse types of controls, as well as the application
of Algorithm 1 on real-world problems such as price impact models and principal agent
problems, will be exciting follow-up works. Also, as the popularity of big data in financial
industry grows, we could formulate the impact of incorporating large amount of new data
into prevailing models, methods and algorithms in the industry as an optimal transport
problem and use GANs as computational tools to provide proper measurement and even
feasible method of amendment.
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Chapter 5

Approximation and Convergence of
GANs Training: An SDE Approach

As introduced in Section 1.2, generative adversarial networks (GANs) [80] are generative
models between two competing neural networks: a generator network G and a discriminator
networkD. The generator network G attempts to fool the discriminator network by converting
random noise into sample data, while the discriminator network D tries to identify whether
the input sample is faked or true. Since its introduction to the machine learning community,
the popularity of GANs has grown exponentially with a wide range of applications.

Despite the empirical success of GANs, there are well recognized issues in GANs training,
such as the vanishing gradient when the discriminator significantly outperforms the generator
[5], the mode collapse which is believed to be linked with gradient exploding [152], and the
challenge of GANs convergence [12].

In response to these issues, there has been a growing research interest in the theoretical
understanding of GANs training. [24] proposed a novel visualization method for the GANs
training process through the gradient vector field of loss functions. In a deterministic
GANs training framework, [132] demonstrated that regularization improved the convergence
performance of GANs. [57] and [68] analyzed a generic zero-sum minimax game including that
of GANs, and connected the mixed Nash equilibrium of the game with the invariant measure
of Langevin dynamics. In addition, various approaches have been proposed for amelioration,
including different choices of network architectures, loss functions, and regularization. See for
instance, a comprehensive survey on these techniques [174] and the references therein.

In this chapter, we will establish approximations for the training of GANs under stochastic
gradient algorithms (SGAs), with precise error bound analysis. The approximations are
in the form of coupled stochastic differential equations (SDEs). It then demonstrates the
convergence of GANs training via invariant measures of SDEs under proper conditions. This
work builds theoretical foundation for GANs training and provides analytical tools to study
its evolution and stability. In particular,

a) the SDE approximations characterize precisely the distinction between GANs with alter-
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nating update and GANs with simultaneous update, in terms of the interaction between
the generator and the discriminator; the error bound analysis for the SDEs supports
the claim that GANs with alternating update converges faster and are more stable than
GANs with simultaneous update;

b) the drift terms in the SDEs show the direction of the parameters evolution; the diffusion
terms prescribes the ratio between the batch size and the learning rate in order to
modulate the fluctuations of SGAs in GANs training;

c) regularity conditions for the coefficients of the SDEs provide constraints on the growth
of the loss function with respect to the model parameters, necessary for avoiding the
explosive gradient encountered in the training of GANs; they also explain mathematically
some well known heuristics in GANs training, and confirm the importance of appropriate
choices for network depth and of the introduction of gradient clipping and gradient
penalty;

d) the dissipative property of the training dynamics in the form of SDE ensures the existence
of the invariant measures, hence the convergence of GANs training; it underpins the
practical tactic of adding regularization term to the GANs objective to improve the
stability of training;

e) the invariant measures for the SDEs give rise to the dynamics of training loss and the
fluctuation-dissipation relations (FDRs) for GANs. These FDRs reveal the trade-off
of the loss landscape between the generator and the discriminator and can be used to
schedule the learning rate.

Our analysis on the approximation and the convergence of GANs training is inspired by [125]
and [127]. The former established the SDE approximation for the parameter evolution in
SGAs applied to pure minimization problems (see also [101] on the similar topic); the latter
surveyed theoretical analysis of deep learning from two perspectives: propagation of chaos
through neural networks and training process of deep learning algorithms.

Throughout this chapter, the following notations will be adopted.

• The transpose of a vector x ∈ Rd is denoted by xT and the transpose of a matrix
A ∈ Rd1×d2 is denoted by AT .

• The set of k continuously differentiable functions over some domain X ⊂ Rd is denoted
by Ck(X ) for k = 0, 1, 2, . . . ; in particular when k = 0, C0(X ) = C(X ) denotes the set
of continuous functions.

• Let p ≥ 1. Lploc(Rd) denotes the set of functions f defined on Rd such that for any
compact subset X ,

∫
X ‖f(x)‖ppdx <∞.
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• Let J = (J1, . . . , Jd) be a d-tuple multi-index of order |J | =
∑d

i=1 Ji. For a function
f ∈ L1

loc(Rd), its J th-weak derivative DJf ∈ L1
loc(Rd) is a function such that for any

smooth and compactly supported test function g,∫
Rd
DJf(x)g(x)dx = (−1)|J |

∫
Rd
f(x)∇Jg(x)dx.

• The Sobolev space W k,p
loc (Rd) is a set of functions f on Rd such that for any d-tuple

multi-index J with |J | ≤ k, DJf ∈ Lploc(Rd).

5.1 GANs training
GANs fall into the category of generative models to approximate an unknown probability
distribution Pr. GANs are minimax games between two competing neural networks, the
generator G and the discriminator D. The neural network for the generator G maps a latent
random variable Z with a known distribution Pz into the sample space to mimic the true
distribution Pr. Meanwhile, the other neural network for the discriminator D will assign
a score between 0 to 1 to the generated sample. A higher score from the discriminator D
indicates that the sample is more likely to be from the true distribution. GANs are trained
by optimizing G and D iteratively until D can no longer distinguish between true samples
and generated samples.

GANs training is performed on a data set D = {(zi, xj)}1≤i≤N, 1≤j≤M , where {zi}Ni=1 are
sampled from Pz and {xj}Mj=1 are real image data following the unknown distribution Pr.
Let Gθ denote the generator parametrized by the neural network with the set of parameters
θ ∈ Rdθ , and let Dω denote the discriminator parametrized by the other neural network with
the set of parameters ω ∈ Rdω . Then the objective of GANs is to solve the following minimax
problem

min
θ

max
ω

Φ(θ, ω), (5.1)

for some cost function Φ, with Φ of the form

Φ(θ, ω) =

∑N
i=1

∑M
j=1 J(Dω(xj), Dω(Gθ(zi)))

N ·M
. (5.2)

For instance, Φ in the vanilla GANs model [80] is given by

Φ(θ, ω) =

∑N
i=1

∑M
j=1 logDω(xj) + log(1−Dω(Gθ(zi)))

N ·M
,

while Φ in Wasserstein GANs [6] takes the form

Φ(θ, ω) =

∑N
i=1

∑M
j=1Dω(xj)−Dω(Gθ(zi))

N ·M
.
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In practice, stochastic gradient algorithm (SGA) is performed in order to solve the minimax
problem (5.1), where the full gradients of Φ with respect to θ and ω are estimated over a
mini-batch B of batch size B. One way of sampling B is to choose B samples out of a total
of N ·M samples without putting back, another is to take B i.i.d. samples. The analyses
for both cases are similar, here we adopt the second sampling scheme. More precisely, let
B = {(zIk , xJk)}Bk=1 be i.i.d. samples from D. Let gθ and gω be the full gradients of Φ with
respect to θ and ω such that

gθ(θ, ω) = ∇θΦ(θ, ω) =

∑N
i=1

∑M
j=1 g

i,j
θ (θ, ω)

N ·M
,

gω(θ, ω) = ∇ωΦ(θ, ω) =

∑N
i=1

∑M
j=1 g

i,j
ω (θ, ω)

N ·M
.

(5.3)

Here gi,jθ and gi,jω denote∇θJ(Dω(xj), Dω(Gθ(zi))) and∇ωJ(Dω(xj), Dω(Gθ(zi))), respectively,
with differential operators defined as ∇θ :=

(
∂θ1 · · · ∂θdθ

)T and ∇ω :=
(
∂ω1 · · · ∂ωdω

)T .
Then, the estimated gradients for gθ and gω corresponding to the mini-batch B are

gBθ (θ, ω) =

∑B
k=1 g

Ik,Jk
θ (θ, ω)

B
, gBω (θ, ω) =

∑B
k=1 g

Ik,Jk
ω (θ, ω)

B
. (5.4)

Moreover, let ηθt > 0 and ηωt > 0 be the learning rates at iteration t = 0, 1, 2, . . . , for θ and
ω respectively, then solving the minimax problem (5.1) with SGA and alternating parameter
update implies descent of θ along gθ and ascent of ω along gω at each iteration, i.e.,{

ωt+1 = ωt + ηωt g
B
ω (θt, ωt),

θt+1 = θt − ηθt gBθ (θt, ωt+1).
(5.5)

Furthermore, within each iteration, the minibatch gradient for θ and ω are calculated on
different batches. In order to emphasize this difference, we use B̄ to represent the minibatch
for θ and B for that of ω, with B̄ i.i.d.∼ B. That is,{

ωt+1 = ωt + ηωt g
B
ω (θt, ωt),

θt+1 = θt − ηθt gB̄θ (θt, ωt+1).
(ALT)

Some practical training of GANs uses simultaneous parameter update between the discrimina-
tor and the generator, corresponding to a similar yet subtly different form{

ωt+1 = ωt + ηωt g
B
ω (θt, ωt),

θt+1 = θt − ηθt gBθ (θt, ωt).
(SML)

For the ease of exposition, we will assume throughout the chapter, an constant learning
rates ηθt = ηωt = η, with η viewed as the time interval between two consecutive parameter
updates.
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5.2 Approximation and error bound analysis of GANs
training

In this section, we will establish continuous time approximations and error bounds for the
GANs training process prescribed by (ALT) and (SML). The approximations are in the form
of coupled SDEs.

To get an intuition of how the form of SDEs emerges, let us start by some basic properties
embedded in the training process. First, let I and J denote the indices independently and
uniformly drawn from {1, . . . , N} and {1, . . . ,M}, respectively, then

E[gI,Jθ (θ, ω)] = gθ(θ, ω), E[gI,Jω (θ, ω)] = gω(θ, ω).

Denote the correspondence covariance matrices as

Σθ(θ, ω) =

∑
i

∑
j[g

i,j
θ (θ, ω)− gθ(θ, ω)][gi,jθ (θ, ω)− gθ(θ, ω)]T

N ·M
,

Σω(θ, ω) =

∑
i

∑
j[g

i,j
ω (θ, ω)− gω(θ, ω)][gi,jω (θ, ω)− gω(θ, ω)]T

N ·M
,

then as the batch size B gets sufficiently large, the classical central limit theorem leads to

EB[gBθ (θ, ω)] = E

[∑B
k=1 g

Ik,Jk
θ (θ, ω)

B

]
= gθ(θ, ω),

EB[gBω (θ, ω)] = E

[∑B
k=1 g

Ik,Jk
ω (θ, ω)

B

]
= gω(θ, ω),

V arB(gBθ (θ, ω)) = V arB

(∑B
k=1 g

Ik,Jk
θ (θ, ω)

B

)
=

1

B
Σθ(θ, ω),

V arB(gBω (θ, ω)) = V arB

(∑B
k=1 g

Ik,Jk
ω (θ, ω)

B

)
=

1

B
Σω(θ, ω),

as well as the following approximation of (ALT),
ωt+1 = ωt + ηgBω (θt, ωt) ≈ ωt + ηgω(θt, ωt) +

η√
B

Σ
1
2
ω(θt, ωt)Z

1
t ,

θt+1 = θt − ηgBθ (θt, ωt+1) ≈ θt − ηgθ(θt, ωt+1) +
η√
B

Σ
1
2
θ (θt, ωt+1)Z2

t ,
(5.6)

with independent random variables Z1
t∼N(0, Idω) and Z2

t ∼ N(0, Idθ), t = 0, 1, 2, . . . .
If ignoring the difference between t and t+ 1, then the approximation could be written in

the following form

d

(
Θt

Wt

)
=

(
−gθ(Θt,Wt)
gω(Θt,Wt)

)
dt+

√
2β−1

(
Σθ(Θt,Wt)

1
2 0

0 Σω(Θt,Wt)
1
2

)
dWt, (5.7)
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with β = 2B
η

and {Wt}t≥0 be standard (dθ + dω)-dimensional Brownian motion. This would
be the approximation for GANs training of (SML).

If emphasizing the difference between t and t+1 thus the interaction between the generator
and the discriminator, then the precise approximation for the GANs training process of
(ALT) should be

d

(
Θt

Wt

)
=

[(
−gθ(Θt,Wt)
gω(Θt,Wt)

)
+
η

2

(
∇θgθ(Θt,Wt) −∇ωgθ(Θt,Wt)
−∇θgω(Θt,Wt) −∇ωgω(Θt,Wt)

)(
−gθ(Θt,Wt)
gω(Θt,Wt)

)]
dt

+
√

2β−1

(
Σθ(Θt,Wt)

1
2 0

0 Σω(Θt,Wt)
1
2

)
dWt.

(5.8)
Equations (5.7) and (5.8) can be written in more compact forms

d

(
Θt

Wt

)
= b0(Θt,Wt)dt+ σ(Θt,Wt)dWt, (SML-SDE)

d

(
Θt

Wt

)
= b(Θt,Wt)dt+ σ(Θt,Wt)dWt. (ALT-SDE)

where b(θ, ω) = b0(θ, ω) + ηb1(θ, ω), with

b0(θ, ω) =

(
−gθ(θ, ω)
gω(θ, ω)

)
, (5.9)

b1(θ, ω) =
1

2

(
∇θgθ(θ, ω) −∇ωgθ(θ, ω)
−∇θgω(θ, ω) −∇ωgω(θ, ω)

)(
−gθ(θ, ω)
gω(θ, ω)

)
= −1

2
∇b0(θ, ω)b0(θ, ω)−

(
∇ωgθ(θ, ω)gω(θ, ω)

0

)
, (5.10)

and σ(θ, ω) =
√

2β−1

(
Σθ(Θt,Wt)

1
2 0

0 Σω(Θt,Wt)
1
2

)
. (5.11)

Note the term −
(
∇ωgθ(θ, ω)gω(θ, ω)

0

)
for (ALT-SDE), which highlights the interaction

between the generator and the discriminator in GANs training process.
We will show that these coupled SDEs are indeed the continuous time approximations of

GANs training processes, with precise error bound analysis. Our error bound analysis helps
to explain why GANs with alternating update tend to be more stable and converge faster
than GANs with simultaneous update.

More precisely, we have the following theorems.

Theorem 5.1. Fix an arbitrary time horizon T > 0 and take the learning rate η ∈ (0, 1∧ T )

and the number of iterations N =
⌊
T
η

⌋
. Suppose that

1. gi,jω is twice continuously differentiable, and gi,jθ and gi,jω are Lipschitz, for any i =
1, . . . , N and j = 1, . . . ,M ;
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2. Φ is of C3(Rdθ+dω), Φ ∈ W 4,1
loc (Rdθ+dω), and for any multi-index J = (J1, . . . , Jdθ+dω)

with |J | =
∑dθ+dω

i=1 Ji ≤ 4, there exist k1, k2 ∈ N such that

|DJΦ(θ, ω)| ≤ k1

(
1 +

∥∥∥∥(θω
)∥∥∥∥2k2

2

)
for θ ∈ Rdθ , ω ∈ Rdω almost everywhere;

3. (∇θgθ)gθ, (∇ωgθ)gω, (∇θgω)gθ and (∇ωgω)gω are all Lipschitz.

Then, given any initialization θ0 = θ and ω0 = ω, for any test function f ∈ C3(Rdθ+dω) such
that for any multi-index J with |J | ≤ 3 there exist k1, k2 ∈ N satisfying

|∇Jf(θ, ω)| ≤ k1

(
1 +

∥∥∥∥(θω
)∥∥∥∥2k2

2

)
,

we have the following weak approximation,

max
t=1,...,N

|Ef(θt, ωt)− Ef(Θtη,Wtη)| ≤ Cη2 (5.12)

for constant C ≥ 0, where (θt, ωt) and (Θtη,Wtη) are given by (ALT) and (ALT-SDE),
respectively.

Theorem 5.2. Fix an arbitrary time horizon T > 0, take the learning rate η ∈ (0, 1 ∧ T )

and the number of iterations N =
⌊
T
η

⌋
. Suppose

1. Φ(θ, ω) is continuously differentiable, Φ ∈ W 3,1
loc (Rdθ+dω) and for any multi-index J =

(J1, . . . , Jdθ+dω) with |J | =
∑dθ+dω

i=1 Ji ≤ 3, there exist k1, k2 ∈ N such that DJΦ satisfies

|DJΦ(θ, ω)| ≤ k1

(
1 +

∥∥∥∥(θω
)∥∥∥∥2k2

2

)
for θ ∈ Rdθ , ω ∈ Rdω almost everywhere;

2. gi,jθ and gi,jω are Lipschitz for any i = 1, . . . , N and j = 1, . . . ,M .

Then, given any initialization θ0 = θ and ω0 = ω, for any test function f ∈ C2(Rdθ+dω) such
that for any multi-index J with |J | ≤ 2 there exist k1, k2 ∈ N satisfying

|∇Jf(θ, ω)| ≤ k1

(
1 +

∥∥∥∥(θω
)∥∥∥∥2k2

2

)
,

we have the following weak approximation,

max
t=1,...,N

|Ef(θt, ωt)− Ef(Θtη,Wtη)| ≤ Cη (5.13)

for constant C ≥ 0, where (θt, ωt) and (Θtη,Wtη) are given by (SML) and (SML-SDE),
respectively.

Detailed proofs of Theorems 5.1 and 5.2 will be deferred to the Section 5.5.1.
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Implications for GANs. Approximations of GANs training by the SDEs (ALT-SDE) and
(SML-SDE) enable analyzing the evolution of GANs parameters. For instance,

i. the difference between GANs with alternating update and GANs with simultaneous up-

date can be seen in two aspects: first is the term −
(
∇ωgθ(θ, ω)gω(θ, ω)

0

)
for (ALT-SDE)

which highlights the interaction between the generator and the discriminator; the second
is the difference in the orders of error bounds between (5.12) and (5.13), which explains
why in practice GANs with alternating update converges faster and are more stable
than GANs with simultaneous update;

ii. the drift terms in the SDEs show the direction of the parameters evolution; the diffusion
terms represent the fluctuations of the learning curves for these parameters; the form
of SDEs prescribes the ratio between the batch size and the learning rate in order to
modulate the fluctuations of SGAs in GANs training;

iii. the regularity conditions for the drift, the volatility, and the derivatives of loss function
Φ, on one hand ensure mathematically the well-posedness of (ALT-SDE), on the other
hand provide constraints on the growth of the loss function with respect to the model
parameters, necessary for avoiding the explosive gradient encountered in the training of
GANs; these regularity conditions explain mathematically some well known heuristics in
GANs training, and confirm the importance of appropriate choices for network depth
and of the introduction of gradient clipping and gradient penalty.

5.3 Convergence of GANs training via invariant
measure of SDE

5.3.1 Convergence of GANs training

In addition to the evolution of parameters in GANs, the convergence of GANs training can be
derived through these SDEs (ALT-SDE) and (SML-SDE). This is by analyzing the limiting
behavior of SDEs, characterized by their invariant measures. Recall the following definition
of invariant measures in [60].

Definition 5.3. A probability measure µ∗ ∈ P(Rdθ+dω) is called an invariant measure for a

stochastic process
{(

Θt Wt

)T }
t≥0

if for any measurable bounded function f ,

∫
E [f(Θt,Wt)|Θ0 = θ,W0 = ω]µ∗(dθ, dω) =

∫
f(θ, ω)µ∗(dθ, dω).

Following [170], we have

Theorem 5.4. Assume the following conditions hold for (ALT-SDE).
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1. both b and σ are bounded and smooth and have bounded derivatives of any order;

2. there exist some positive real numbers r and M0 such that for any
(
θ ω

)T ∈ Rdθ+dω ,

(
θ ω

)
b(θ, ω) ≤ −r

∥∥∥∥(θω
)∥∥∥∥

2

, if
∥∥∥∥(θω

)∥∥∥∥
2

≥M0;

3. A is uniformly elliptic, i.e., there exists l > 0 such that for any
(
θ
ω

)
,

(
θ′

ω′

)
∈ Rdθ+dω ,

(
θ′ ω′

)T
σ(θ, ω)σ(θ, ω)T

(
θ′

ω′

)
≥ l

∥∥∥∥(θ′ω′
)∥∥∥∥2

2

,

then (ALT-SDE) admits a unique invariant measure µ∗ with an exponential convergence rate.
Similar results hold for the invariant measure of (SML-SDE) with b replaced by b0.

The proof of the Theorem 5.4 is deferred to the Section 5.5.2.

Implications for GANs. Condition 2 is a dissipative property of the training dynamics
(ALT-SDE): the drift should drive the parameters towards a compact region. It ensures the
existence of the invariant measure, hence the convergence of GANs training. This condition
underpins the practical tactic of adding regularization term to the GANs objective to improve
the stability of training.

5.3.2 Dynamics of training loss and FDR

In fact, one can further analyze the dynamics of the training loss based on the SDE approxi-
mation; and derive a fluctuation-dissipation relation (FDR) for the GANs training, given the
existence of the invariant measure.

To see this, let µ = {µt}t≥0 denote the flow of probability measures for
{(

Θt

Wt

)}
t≥0

given

by (ALT-SDE).
Itô’s formula to the smooth function Φ (see [151] for more details) gives the following

dynamics of training loss,

Φ(Θt,Wt) = Φ(Θs,Ws) +

∫ t

s

AΦ(Θr,Wr)dr +

∫ t

s

σ(Θr,Wr)∇Φ(Θr,Wr)dWr; (5.14)

where
Af(θ, ω) = b(θ, ω)T∇f(θ, ω) +

1

2
Tr
(
σ(θ, ω)σ(θ, ω)T∇2f(θ, ω)

)
, (5.15)

is the infinitesimal generator for (ALT-SDE), given any test function f : Rdθ+dω → R.

The existence of the unique invariant measure µ∗ for (ALT-SDE) suggests that
(

Θt

Wt

)
in
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(ALT-SDE) converges as t → ∞ to some
(

Θ∗

W∗
)
∼ µ∗. By the Definition 5.3 of invariant

measure, from (5.14) we have
Eµ∗ [AΦ(Θ∗,W∗)] = 0.

By (5.15),

AΦ(θ, ω) =b0(θ, ω)T∇Φ(θ, ω) + ηb1(θ, ω)T∇Φ(θ, ω) +
1

2
Tr(σ(θ, ω)σ(θ, ω)T∇2Φ(θ, ω))

=− ‖∇θΦ(θ, ω)‖2
2 + ‖∇ωΦ(θ, ω)‖2

2

− η

2

[
∇θΦ(θ, ω)T∇2

θΦ(θ, ω)∇θΦ(θ, ω) +∇ωΦ(θ, ω)T∇2
ωΦ(θ, ω)∇ωΦ(θ, ω)

]
+ β−1Tr

(
Σθ(θ, ω)∇2

θΦ(θ, ω) + Σω(θ, ω)∇2
ωΦ(θ, ω)

)
.

In other words, the evolution of loss function (5.14) leads to the following FRD for GANs
training.

Theorem 5.5. Assume the existence of an invariant measure µ∗ for (ALT-SDE), then

Eµ∗
[
‖∇θΦ(Θ∗,W∗)‖2

2 − ‖∇ωΦ(Θ∗,W∗)‖2
2

]
= β−1Eµ∗

[
Tr

(
Σθ(Θ

∗,W∗)∇2
θΦ(Θ∗,W∗)

+ Σω(Θ∗,W∗)∇2
ωΦ(Θ∗,W∗)

)]
−η

2
Eµ∗
[
∇θΦ(Θ∗,W∗)T∇2

θΦ(Θ∗,W∗)∇θΦ(Θ∗,W∗)

+∇ωΦ(Θ∗,W∗)T∇2
ωΦ(Θ∗,W∗)∇ωΦ(Θ∗,W∗)

]
.

(FDR1)
The corresponding FDR for the simultaneous update case of (SML-SDE) is

Eµ∗
[
‖∇θΦ(Θ∗,W∗)‖2

2 − ‖∇ωΦ(Θ∗,W∗)‖2
2

]
=

β−1Eµ∗
[
Tr

(
Σθ(Θ

∗,W∗)∇2
θΦ(Θ∗,W∗) + Σω(Θ∗,W∗)∇2

ωΦ(Θ∗,W∗)
)]
.

Implications for GANs. This FDR relation for the minimax games in GANs connects
the microscopic fluctuation caused by the noise of SGA with the macroscopic dissipation
phenomena related to the loss function under a stationary status. The quantity Tr(Σθ∇2

θΦ +
Σω∇2

ωΦ) demonstrates the link between noise covariance matrices from SGAs and the loss
landscape of Φ. It reveals the trade-off of the loss landscape between the generator and the
discriminator. Note that this FDR relation is the counterpart of that for stochastic gradient
descent (SGD) algorithm on a pure minimization problem in [178] and [127], which exposes
the direct evaluation of the loss landscape such as gradient and Hessian.
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Further analysis of the invariant measure can lead to a different type of FDR that will be
practically useful for learning rate scheduling.

For example, applying Itô’s formula to the squared norm of the parameters
∥∥∥∥(Θt

Wt

)∥∥∥∥2

2

,

we have the following dynamics

d

∥∥∥∥(Θt

Wt

)∥∥∥∥2

2

= 2

(
Θt

Wt

)T
d

(
Θt

Wt

)
+ Tr

(
σ(Θt,Wt)σ(Θt,Wt)

T

)
dt.

Theorem 5.6. Assume the existence of an invariant measure µ∗ for (SML-SDE), then

Eµ∗
[
Θ∗,T∇θΦ(Θ∗,W∗)−W∗,T∇ωΦ(Θ∗,W∗)

]
= β−1Eµ∗

[
Tr(Σθ(Θ

∗,W∗) + Σω(Θ∗,W∗))
]

(FDR2)

Proofs of Theorems 5.5 and 5.6 will be deferred to the Section 5.5.3.

Implications for GANs. Notice that the quantities in (FDR2), including the parameters
(θ, ω) and first-order derivatives of the loss function gθ, gω, gi,jθ and gi,jω , are computationally
inexpensive and can be evaluated on the fly. Therefore, instead of using a predetermined
scheduling of learning rate such as Adam or RMSprop optimizer, one can customize the
scheduling based on (FDR2).

For instance, recall that gBθ and gBω are respectively unbiased estimators for gθ and gω, and

Σ̂θ(θ, ω) =

∑B
k=1[gIk,Jkθ (θ, ω)− gBθ (θ, ω)][gIk,Jkθ (θ, ω)− gBθ (θ, ω)]T

B − 1
,

Σ̂ω(θ, ω) =

∑B
k=1[gIk,Jkω (θ, ω)− gBω (θ, ω)][gIk,Jkω (θ, ω)− gBω (θ, ω)]T

B − 1

are respectively unbiased estimators of Σθ(θ, ω) and Σω(θ, ω); now to improve GANs training
result with the simultaneous update, one can introduce two tunable parameters ε > 0 and
δ > 0 to have the following scheduling:

if
∣∣∣ ΘT gBθ (Θt,Wt)−WT

t g
B
ω (Θt,Wt)

β−1Tr(Σ̂θ(Θt,Wt)+Σ̂ω(Θt,Wt))
− 1
∣∣∣ < ε, then update η by (1− δ)η.

5.4 Verifiability of the assumptions.
Theorems 5.1, 5.2, and 5.4 provide assumptions under which the convergence of GANs
training could be established via the SDEs approximation. These assumptions are essentially
assumptions on the gradients of the objective functions with respect to the parameters. These
assumptions are easy to verify for many choices of GANs structures for a wide range of
applications. We illustrate this via the example of WGANs for image processing:
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1. Smoothness and boundedness of drift and volatility. Given that sample data
in image processing problems are supported on compact domain, these assumptions are
easily satisfied with proper prior distribution and activation function: first, the prior
distribution Pz such as the uniform distribution is naturally compactly supported; next,
take Dω = tanh (ω · x), Gθ(z) = tanh (θ · z), and the objective function

Φ(θ, ω) =

∑N
i=1

∑M
j=1 Dω(xj)−Dω(Gθ(zi))

N ·M
.

Then the assumptions of Lipschitz continuity, differentiability and boundedness are
guaranteed by boundedness of the data {(zi, zj)}1≤i≤N,1≤j≤M and property of

ψ(y) = tanh y =
ey − e−y

ey + e−y
= 1− 2

e2y + 1
∈ (−1, 1).

More precisely, the first and second order derivatives of ψ are

ψ′(y) =
4

(ey + e−y)2
∈ (0, 1], ψ′′(y) = −8

ey − e−y

(ey + e−y)3
= −2ψ(y)ψ′(y) ∈ (−2, 2).

Any higher order derivatives can be written as functions of ψ(·) and ψ′(·) and therefore
bounded.

2. Dissipative property. The dissipative property specified by second assumption in
Theorem 5.4 essentially prevents the evolution of the parameters from being driven to
infinity. In fact the weights clipping technique in WGANs, for instance, is consistent
with this assumption.

3. Elliptic condition. The elliptic property of volatility term is trivially satisfied given
its expression in (5.11).

5.5 Detailed Proofs

5.5.1 Proofs of Theorems 1 and 2

In this section we will provide a detailed proof of Theorem 1; proof of Theorem 2 is a simple
analogy. Note that in this work, we establish the approximation of GANs training through
SDEs with error bound analysis. We will tailor the methodology from [125] to our analysis of
GANs training. Here we highlight the adaptation we make, which mostly concentrates on
the preliminary analysis part.
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Preliminary analysis

One-step difference. Recall that under the alternating update scheme and constant
learning rate η, the GANs training is as follows,{

ωt+1 = ωt + ηgBω (θt, ωt),

θt+1 = θt − ηgB̄θ (θt, ωt+1),
(ALT)

where B and B̄ are i.i.d., emphasizing the fact that the evalutions of gradients are performed
on different mini-batches when updating θ and ω alternatively.

Let (θ, ω) denote the initial value for (θ0, ω0) and

∆ = ∆(θ, ω) =

(
θ1 − θ
ω1 − ω

)
(5.16)

be the one-step difference. Let ∆i,j denote the tuple consisting of the i-th and j-th component
of one-step difference of θ and ω, respectively, with i = 1, . . . , dθ and j = 1, . . . , dω.

Lemma 5.7. Assume that gi,jθ is twice continuously differentiable for any i = 1, . . . , N and
j = 1, . . . ,M .

1. The first moment is given by

E[∆i,j] = η

(
−gθ(θ, ω)i
gω(θ, ω)j

)
+ η2

(
{−∇ω[gθ(θ, ω)i]}T gω(θ, ω)

0

)
+O(η3).

2. The second moment is given by

E[∆i,j(∆k,l)T ] =η2

[
1

B

(
Σθ(θ, ω)i,k 0

0 Σω(θ, ω)j,l

)
+

(
−gθ(θ, ω)i
gω(θ, ω)j

)(
−gθ(θ, ω)k
gω(θ, ω)l

)T]
+O(η3),

where Σθ(θ, ω)i,k and Σω(θ, ω)j,l denote the element at position (i, k) and (j, l) of
matrices Σθ(θ, ω) and Σω(θ, ω), respectively.

3. The third moments are all of order O(η3).

Proof. By a second-order Taylor expansion, we have

∆(θ, ω) = η

(
−gB̄θ (θ, ω)
gBω (θ, ω)

)
+ η2

(
−∇ωg

B̄
θ (θ, ω))gBω (θ, ω)

0

)
+O(η3). (5.17)



CHAPTER 5. STOCHASTIC ANALYSIS OF GANS TRAINING 120

Then,

∆i,j(θ, ω) = η

(
−gB̄θ (θ, ω)i
gBω (θ, ω)j

)
+ η2

({
−∇ω[gB̄θ (θ, ω)i]

}T
gBω (θ, ω)

0

)
+O(η3), (5.18)

∆i,j(θ, ω)[∆k,l(θ, ω)]T = η2

(
gB̄θ (θ, ω)ig

B̄
θ (θ, ω)k −gB̄θ (θ, ω)ig

B
ω (θ, ω)l

−gB̄θ (θ, ω)kg
B
ω (θ, ω)j gBω (θ, ω)jg

B
ω (θ, ω)l

)
+O(η3), (5.19)

and higher order polynomials are of order O(η3). Notice that B̄ ⊥ B and recall the definition
of Σθ and Σω. The conclusion follows. �

Now consider the following SDE,

d

(
Θt

Wt

)
= b(Θt,Wt)dt+ σ(Θt,Wt)dWt, (ALT-SDE)

where b(θ, ω) = b0(θ, ω) + ηb1(θ, ω), with

b0(θ, ω) =

(
−gθ(θ, ω)
gω(θ, ω)

)
, (5.20)

b1(θ, ω) =
1

2

(
∇θgθ(θ, ω) −∇ωgθ(θ, ω)
−∇θgω(θ, ω) −∇ωgω(θ, ω)

)(
−gθ(θ, ω)
gω(θ, ω)

)
= −1

2
∇b0(θ, ω)b0(θ, ω)−

(
∇ωgθ(θ, ω)gω(θ, ω)

0

)
, (5.21)

and σ(θ, ω) =
√

2β−1

(
Σθ(Θt,Wt)

1
2 0

0 Σω(Θt,Wt)
1
2

)
. (5.22)

With the same initialization like (5.16), define the corresponding one-step difference for
(ALT-SDE),

∆̃ = ∆̃(θ, ω) =

(
Θ1×η − θ
W1×η − ω

)
. (5.23)

Let ∆̃k be the k-th component of ∆̃, k = 1, . . . , dθ + dω and ∆̃i,j be the tuple consisting of the
i-th and j-th component of one-step difference of Θ and W , respectively, with i = 1, . . . , dθ
and j = 1, . . . , dω.

Lemma 5.8. Suppose b0, b1 and σ, given by (5.20),(5.21) and (5.22), are from C3(Rdθ+dω)
such that for any multi-index J of order |J | ≤ 3, there exist k1, k2 ∈ N satisfying

max{|∇Jb0(θ, ω)|, |∇Jb1(θ, ω)|, |∇Jσ(θ, ω)|} ≤ k1

(
1 +

∥∥∥∥(θω
)∥∥∥∥2k2

2

)
and they are all Lipschitz. Then
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1. The first moment is given by

E[∆̃i,j] = η

(
−gθ(θ, ω)i
gω(θ, ω)j

)
+ η2

(
{−∇ω[gθ(θ, ω)i]}T gω(θ, ω)

0

)
+O(η3).

2. The second moment is given by

E[∆̃i,j(∆̃k,l)T ] =η2

[
1

B

(
Σθ(θ, ω)i,k 0

0 Σω(θ, ω)j,l

)
+

(
−gθ(θ, ω)i
gω(θ, ω)j

)(
−gθ(θ, ω)k
gω(θ, ω)l

)T]
+O(η3).

3. The third moments are all of order O(η3).

Proof. Let ψ : Rdθ+dω → R be any smooth test function. Under the dynamic (ALT-SDE),
define the following operators

L1ψ(θ, ω) = b0(θ, ω)T∇ψ(θ, ω),

L2ψ(θ, ω) = b1(θ, ω)T∇ψ(θ, ω),

L3ψ(θ, ω) =
1

2
Tr

(
σ(θ, ω)σ(θ, ω)T∇2ψ(θ, ω)

)
.

Apply Itô’s formula to ψ(Θt,Wt), Liψ(Θt,Wt) for i = 1, 2, 3, and L2
1ψ(Θt,Wt), we have the

following,

ψ(Θη,Wη) = ψ(θ, ω) +

∫ η

0

(L1 + ηL2 + L3)ψ(Θt,Wt)dt+

∫ η

0

[∇ψ(Θt,Wt)]
Tσ(Θt,Wt)dWt

= ψ(θ, ω) + η

(
L1 + L3

)
ψ(θ, ω) + η2

(
1

2
L2

1 + L2

)
ψ(θ, ω) (5.24)

+

∫ η

0

∫ t

0

∫ s

0

L3
1ψ(Θu,Wu)dudsdt+

∫ η

0

∫ t

0

(
L3L1 + L1L3 + L2

3

)
ψ(Θs,Ws)dsdt

+η

∫ η

0

∫ t

0

(
L2L1 + L1L2 + L3L2 + L2L3

)
ψ(Θs,Ws)dsdt

+η2

∫ η

0

∫ t

0

L2
2ψ(Θs,Ws)dsdt


(5.25)

+Mη, (5.26)

where Mη denotes the remaining martingale term with mean zero. Given the regularity
conditions of b0, b1 and σ, [113, Theorem 9 in Section 2.5] implies that (5.25) is of order
O(η3). Therefore,

E
[
ψ(Θη,Wη)

∣∣∣∣Θ0 = θ,W0 = ω

]
= ψ(θ, ω) + η

(
L1 + L3

)
ψ(θ, ω) + η2

(
1

2
L2

1 + L2

)
ψ(θ, ω).

Take ψ(Θη,Wη) as ∆̃i, ∆̃i∆̃j and ∆̃i∆̃j∆̃k for arbitrary indices i, j, k = 1, . . . , dθ + dω, then
the conclusion follows. �
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Estimate of moments. In this section, we will bound the moments of GANs parameters
under (ALT).

Lemma 5.9. Fix an arbitrary time horizon T > 0 and take the learning rate η ∈ (0, 1 ∧ T )

and the number of iterations N =
⌊
T
η

⌋
. Suppose that gi,jθ and gi,jω are all lipschitz, i.e. there

exists L > 0 such that

max
i,j
{|gi,jθ (θ, ω)|, |gi,jω (θ, ω)|} ≤ L

(
1 +

∥∥∥∥(θω
)∥∥∥∥

2

)
.

Then for any m ∈ N, maxt=1,...,N E
[∥∥∥∥(θtωt

)∥∥∥∥m
2

]
is uniformly bounded, independent from η.

Proof. Throughout the proof, positive constants C and C ′ may vary from line to line. The
Lipschitz assumption suggests that

max{|gBθ (θ, ω)|, |gBω (θ, ω)|} ≤ L

(
1 +

∥∥∥∥(θω
)∥∥∥∥

2

)
.

For any k = 1, . . . ,m

max{|gBθ (θ, ω)|k, |gBω (θ, ω)|k} ≤ L · k
(
k

bk
2
c

)
·
(

1 +

∥∥∥∥(θω
)∥∥∥∥k

2

)
,

and ∥∥∥∥(θω
)∥∥∥∥k

2

+

∥∥∥∥(θω
)∥∥∥∥m

2

≤ 2

(
1 +

∥∥∥∥(θω
)∥∥∥∥m

2

)
.

For any t = 0, . . . , N − 1,∥∥∥∥(θt+1

ωt+1

)∥∥∥∥m
2

≤
∥∥∥∥(θtωt

)∥∥∥∥m
2

+
m∑
k=1

(
m

k

)∥∥∥∥(θtωt
)∥∥∥∥m−k

2

ηk
∥∥∥∥(−gBθ (θt, ωt)

gBω (θt, ωt)

)∥∥∥∥k
2

≤
∥∥∥∥(θtωt

)∥∥∥∥m
2

+Cη
m∑
k=1

(
m

k

)∥∥∥∥(θtωt
)∥∥∥∥m−k

2

(
1 +

∥∥∥∥(θtωt
)∥∥∥∥m

2

)
≤
(

1 + Cη

)∥∥∥∥(θtωt
)∥∥∥∥m

2

+C ′η.

Denote amt =

∥∥∥∥(θtωt
)∥∥∥∥m

2

. Then, amt+1 ≤ (1 + Cη)amt + C ′η that leads to

amt ≤ (1 + Cη)t
(
am0 +

C ′

C

)
−C

′

C

≤ (1 + Cη)
T
η

(
am0 +

C ′

C

)
−C

′

C

≤ eCT
(
am0 +

C ′

C

)
−C

′

C
.
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The conclusion follows. �

Mollification. Notice that in Theorem 1 (and Theorem 2), the condition about the differ-
entiability of loss function Φ is in the weak sense. For the ease of analysis, we will adopt the
following mollfication, given in [74].

Definition 5.10 (Mollifier). Define the following function ν : Rdθ+dω → R,

ν(u) =

C exp

{
− 1
‖u‖22−1

}
, ‖u‖2 < 1;

0, ‖u‖2 ≥ 1,

such that
∫
Rdθ+dω ν(u)du = 1. For any ε > 0, define νε(u) = 1

εdθ+dω ν
(
u
ε

)
.

Note that the mollifier ν ∈ C∞(Rdθ+dω) and for any ε > 0, supp(νε) = Bε(0) where Bε(0)
denotes the ε ball around the origin in the Euclidean space Rdθ+dω .

Definition 5.11 (Mollification). Let f ∈ L1
loc(Rdθ+dω) be any locally integrable function. For

any ε > 0, define f ε = νε ∗ f such that

f ε(u) =

∫
Rdθ+dω

νε(u− v)f(v)dv =

∫
Rdθ+dω

νε(v)f(u− v)dv.

By a simple change of variables and integration by part, one could derive that for any
multi-index J ,

∇f ε = νε ∗ [DJf ].

Here we quote some well-known results about this mollification from [74, Theorem 7 of
Appendix C.4].

Lemma 5.12. 1. f ε ∈ C∞(Rdθ+dω).

2. f ε −→ f almost everywhere as ε −→ 0.

3. If f ∈ C(Rdθ+dω), then f ε −→ f uniformly on compact subsets of Rdθ+dω .

4. If f ∈ Lploc(Rdθ+dω) for some 1 ≤ p <∞, then f ε −→ f in Lploc(Rdθ+dω).

To give a convergence rate for the pointwise convergence in Lemma 5.12, we have the
following proposition.

Lemma 5.13. Assume f ∈ W 1,1
loc (Rdθ+dω) and there exist k1, k2 such that |Df(u)| ≤ k1(1 +

‖u‖2k2
2 ), then for any u ∈ Rdθ+dω , there exists ρ : R+ → R that limε→0 ρ(ε) = 0 and

|f ε(u)− f(u)| ≤ ρ(ε).
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Proof.
|f ε(u)− f(u)| =

∣∣∣∣∫
Bε(0)

νε(v)[f(u− v)− f(u)]

∣∣∣∣dv
=

∣∣∣∣∫
Bε(0)

νε(v)

∫ 1

0

[Df(u− hv)Tv]dhdv

∣∣∣∣
≤ ε

∫
Bε(0)

νε(v)

∫ 1

0

|Df(u− hv)|dhdv

.

Since there exist k1, k2 such that |Df(u)| ≤ k1(1 + ‖u‖2k2
2 ),

|f ε(u)− f(u)| ≤ ε

∫
Bε(0)

νε(v)

∫ 1

0

[
k1(1 + ‖u− hv‖2k2

2 )

]
dhdv

≤ ε

∫
Bε(0)

νε(v)

∫ 1

0

[
k1(1 + ‖u‖2k2

2 + h2k2‖v‖2k2
2 )

]
dhdv

≤ ε

∫
Bε(0)

νε(v)

[
k1(1 + ‖u‖2k2

2 ) +
k1

2k2 + 1
‖v‖2k2

2

]
dv

≤ ε[k1(1 + ‖u‖2k2
2 )] +

k1

2k2 + 1
ε2k2+1.

Let ρ(ε) = ε[k1(1 + ‖u‖2k2
2 )] + k1

2k2+1
ε2k2+1. Then ρ(ε) −→ 0 as ε −→ 0. �

It is also straightforward to see that mollification preserves Lipschitz conditions.
Consider the following SDE under componentwise mollification of coefficients,

d

(
Θε
t

Wε
t

)
= [bε0(Θε

t,Wε
t )dt+ ηbε1(Θε

t,Wε
t )] + σε(Θε

t,Wε
t )dWt. (SDE-MLF)

Lemma 5.14. Assume b0, b1 and σ are all Lipschitz. Then

E
[

max
t=1,...,N

‖
(

Θε
tη

Wε
tη

)
−
(

Θtη

Wtη

)
‖2

2

]
ε→0−→ 0,

where
(

Θε
tη

Wε
tη

)
and

(
Θtη

Wtη

)
are given by (SDE-MLF) and (ALT-SDE), respectively.

Proof. With Lemma 5.13, the conclusion follows from [113, Theorem 9 in Section 2.5]. �

Remaining proof

Given the conditions of Theorem 1 and the fact that mollification preserves Lipschitz
conditions, bε0, bε1 and σε inherit regularity conditions from Theorem 1. Therefore, the
conclusion from Lemma 5.8 holds. Lemmas 5.7, 5.8, 5.9 and 5.13 verify the condition in [125,
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Theorem 3]. Therefore, for any test function f ∈ C3(Rdθ+dω) such that for any multi-index J
with |J | ≤ 3 there exist k1, k2 ∈ N satisfying

|∇Jf(θ, ω)| ≤ k1

(
1 +

∥∥∥∥(θω
)∥∥∥∥2k2

2

)
,

we have the following weak approximation,

max
t=1,...,N

∣∣Ef(θt, ωt)− Ef(Θε
tη,Wε

tη)
∣∣ ≤ C[η2 + ρ(ε)] (5.27)

for constant C ≥ 0, where (θt, ωt) and (Θtη,Wtη) are given by (ALT) and (SDE-MLF),
respectively, and ρ is given as in Lemma 5.13.

Finally, taking ε to 0, Lemma 5.14 and the explicit form of ρ lead to the conclusion.
The proof of Theorem 2 can be executed in a similar fashion.

5.5.2 Proof of Theorem 3

In this section, we will prove Theorem 3. One of the key components is to identify a
suitable Lyapunov function given the conditions of Theorem 3. The associated Lyapunov
condition leads to the existence of an invariant measure for the dynamics of the parameters.
We highlight this very technique since it can be used in the analysis of broader classes of
dynamical systems, for both stochastic and deterministic cases; see for instance [116].

Consider the following function V : [0,∞)× Rdθ+dω → R,

V (t, u) = exp{δt+ ε‖u‖2}, ∀u ∈ Rdθ+dω , (Lyapunov)

where the parameters δ, ε > 0 will be determined later. Note that V is a smooth function,
and

lim
‖u‖2→∞

inf
t≥0

V (t, u) = +∞, (5.28)

for any fixed δ, ε > 0. Under (ALT-SDE), applying Itô’s formula to V gives

dV (t,Θt,Wt) = V (t,Θt,Wt)

ε(Θt Wt

)
b(Θt,Wt)∥∥∥(Θt Wt

)T∥∥∥
2

+ δ +
1

2
Tr
(
σ(Θt,Wt)σ(Θt,Wt)

T

×

ε
∥∥∥(Θt Wt

)T∥∥∥2

2
I + (ε2

∥∥∥(Θt Wt

)T∥∥∥
2
− ε)

(
Θt Wt

)T (
Θt Wt

)
∥∥∥(Θt Wt

)T∥∥∥3

2



 dt

+ εV (t,Θt,Wt)

(
Θt Wt

)
σ(Θt,Wt)∥∥∥(Θt Wt

)T∥∥∥
2

dWt.



CHAPTER 5. STOCHASTIC ANALYSIS OF GANS TRAINING 126

Define the Lyapunov operator

LV (t, u) = V (t, u)

[
ε
uT b(u)

‖u‖2

+ δ +
1

2
Tr

(
σ(u)σ(u)T

ε‖u‖2
2I + (ε2‖u‖2 − ε)uuT

‖u‖3
2

)]
.

Given the boundedness of σ, i.e. there exists K > 0 such that ‖σ‖F ≤ K, and dissipative
property given by condition 2, i.e. there exists l,M0 > 0 such that for any u ∈ Rdθ+dω with
‖u‖2 > M0,

uT b(u) ≤ −l‖u‖2,

we have that

LV (t, u) ≤ V (t, u)

[
δ − lε+

1

2

(
ε
‖σ‖2

F

‖u‖2

+ ε2‖σ‖2
F

)]
≤ V (t, u)

[
δ +

K2ε2

2
−
(
l − K2

2‖u‖2

)
ε

]
.

Now take M > max
{
K2

2l
,M0

}
, 0 < ε < 2l

K2 − 1
M

and δ = −1
2

[
K2ε2

2
+
(
K2

2M
− l
)
ε
]
> 0, then

for any ‖u‖2 > M ,
LV (t, u) ≤ −δV (t, u).

Therefore,
lim

‖u‖2→∞
inf
t≥0
LV (t, u) = −∞. (5.29)

Following [108, Theorem 2.6], (5.28) and (5.29) ensure the existence of a invariant measure
µ∗ for (ALT-SDE). By the uniform elliptic condition, uniqueness follows from [100, Theorem
2.3]. The exponential convergence rate follows from [170, Main result].

5.5.3 Proofs of Theorems 4 and 5

The proofs of Theorems 4 and 5 are relatively simple, as we have already derived the
infinitesimal generator for (ALT-SDE), The conclusions of Theorems 4 and 5 follow from a
direct computation.

5.6 Conclusion and remarks
This chapter analyzes the convergence of GANs training via the approximation by SDEs. There
are a few problems that remain open. The first one is to establish similar approximations
when generator and discriminator are trained under different time-scales. Currently we
consider the case where both networks are updated once every iterations. It will be interesting
to see the difference in the SDE approximation if they are updated under two frequencies
within an iteration. The second one is the explicit characterization of the invariant measure.
These will be interesting potential topics to explore. Also, given the interactions between
the generator and discriminator during the training process, it would be a delicate issue to
choose proper filtration when developing the continuous-time approximation in the form of
SDEs. The filtration enlargemenet problem associated with SDE approximation of GANs
training will be a challenging and profound problem that is worth probing.
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Appendix A

Preliminary on neural networks

Neural networks (NNs) are building blocks of any GANs model. Though there are numerous
variations of networks structures, the following three types are among the most commonly
used ones, namely feedforward networks (FFNs) [165], recurrent neural networks (RNNs)
[133] and convolutional neural networks (CNNs) [112].

A.1 Feedforward networks and multilayer perceptron
NNs are introduced as function approximators. FFNs are a class of NNs that are presented
by directed acyclic graphs. The most common type of FFNs is the multilayer perceptron
(MLP). As a graphical model, the basic components of MLP are nodes and edges. Nodes are
more commonly referred as neurons. The neurons are arranged in layers from left to right,
denoting input and output sides respectively. The number of layers is often referred to as the
depth of the NN. The edges only link neurons from two adjacent layers and the direction of
the edges are from left to right. For a MLP with L+ 1 layers, L = 1, 2, . . . , the leftmost layer
is the input layer, layer 0, while the rightmost, layer L, is the output layer. The layers in
between are called hidden layers. Suppose neuron i in layer l − 1 denoted by nl−1,i is linked
with neuron j in layer l denoted by nl,j , l = 1, . . . , L. The output of nl−1,i is the input of nl,j ,
denoted by hl−1,i; if l = 1, then the h0,i = xi. The computation happening at nl,j is

hl,j = σl

 ∑
i:nl−1,i→nl,j

wl,i,jhl−1,i + bl,j

 , (A.1)

where σl is a nonlinear function called an activation function, wl,i,j is the weight and bl,j is
the bias. If l = L then hL,j becomes a part of the output of the MLP; otherwise, it is taken as
input in the computations for the next layer. The input x = (x1, . . . , xN ) is mapped through
all the layers and output as the image of some nonlinear function.
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A.2 Recurrent neural networks and long-short term
memory.

RNNs are a class neural networks that takes sequential data as input. If FFNs are interpreted
as one-dimensional computation along the depth direction, the computation of RNNs is
two-dimensional involving both the depth direction and the temporal direction. At each
time step, along the depth direction, similar computation like (A.1) occurs; the difference
is that not only information at the current time step is taken into consideration but also
the information from the previous time steps. There are different ways to incorporate this
past information manifested through different network architectures. One particular way
is through the long-short term memory (LSTM) units [99]. At time step t, an LSTM unit
produces an output ht and also keeps track of a quantity called cell state, denoted by ct. The
LSTM unit takes the data at t, xt, as well as the output and cell state of LSTM unit from
the previous time step, ht−1 and ct−1, as the input. The computation of the output at current
time step t involves three regulators, the input gate it, the output ot and the forget gate ft,

ft = σg (Wf,txt + Uf,tht−1 + bf,t) , (forget gate)
it = σg (Wi,txt + Ui,tht−1 + bi,t) , (input gate)
ot = σg (Wo,txt + Uo,tht−1 + bo,t) , (output gate)

where σg is the activation function chosen for the computation for these regulators, W· and
U· are weight matrices for current input xt and past output ht−1, respectively and b· is the
bias. Having computed the regulators, the current cell state is given by

ct = ft ◦ ct−1 + it ◦ σc (Wc,txt + Uc,tht−1 + bc,t) , (cell state)

and the output is given by
ht = ot ◦ σh (ct) , (output)

where σc and σh are activation functions chosen for the computations of cell state and output,
respectively, and the operator ◦ means element-wise multiplication.

A.3 Convolutional neural networks and temporal
convolutional networks.

When dealing with high dimensional data such as images, fully connected MLPs will suffer
from high variance due to the large number of weights. CNNs can help ameliorate this issue.
The distinct characteristic of CNNs is the introduction of convolutional layer and pooling
layers.

Consider an input of dimension W ×H ×D, denoted by X = (xi,j,l). In a convolutional
layer, a kernel of size w × h × D is introduced, denoted by K = (ki,j,l). The output is a
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matrix Y = (yi,j) = X ∗K of size (W − w + 1)× (H − h+ 1) given by

yi,j = [X ∗K]i,j =
w∑
a=1

h∑
b=1

D∑
l=1

xi+a−1,j+b−1,l × ka,b,l. (A.2)

Multiple kernels can be introduced in which case their outputs will be stacked together and
each individual output will be referred to as a channel. The computation in (A.2) has the
filter stride across the input by a single tuple. To save memory, it can stride by multiple
tuples. To control the size of the output from the convolution, we can apply zero-padding,
that is, to add suitable number of zero terms around the original input.

The pooling layer, a hidden layer, is to downsample the previous layer. In a pooling layer,
the size of kernel and stride are to specified. Instead of performing convolution to get each
element of the output matrix, a representative element of the corresponding sub-matrix of the
output from the previous layer will be chosen. For instance, in max-pooling the maximum
will be chosen and in average-pooling the average value will be recorded.

Unlike CNNs, in temporal convolutional networks (TCNs) [122] the convolution happens
along the temporal direction. The inputs for TCNs are sequential data. The fundamental
building block is causal convolutional layer where a computation called dilated causal
convolution takes place. Denote the input as x = (x1, . . . , xT ) where xt ∈ RnI for t = 1, . . . , T .
The kernel of the causal convolutional layer is W = (wi,j,l)i,j,l ∈ RK×nI×nO where K is the
kernel size and let Wi ∈ RnI×nO denote the 2-dimensional matrix (wi,j,l)j,l for i = 1, . . . , K.
The output of this causal convolutional layer with dilation D is a sequence of length T −
D(K−1), denoted by y = (yD(K−1)+1, . . . , yT ), where yt ∈ RnO , for t ∈ {D(K−1)+1, . . . , T},
is given by

yt =
K∑
i=1

W T
i xt−D(K−i).

A vanilla TCN consists of multiple such causal convolutional layers combined with activation
functions. Note that the depth of the TCN and the kernel size K and dilation D at each
layer are properly chosen so that the output sequence has length no less than 1.
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Appendix B

More on Nash equilibrium and Pareto
optimality

The two major components of this thesis, MFGs and GANs, are centered around games.
Among the various concepts of equilibrium, Nash equilibrium (NE) (see Definitions 2.25 and
3.6) and Pareto optimality (see Section 4.3) are most commonly seen in literature. We will
use several simple 2-player games to make some more illustrations.

B.1 Difference between NE and PO
The difference between NE and PO can be summarized as follows.

Definition B.1. For a generic N -player game, consider a set of strategies s = (s1, . . . , sN).

• If no players has the incentive to make a unilateral deviation from s, then s is called an
NE for the game.

• If there is no other set of strategies s′ = (s′1, . . . , s′N) such that, compared with s,
s′ can strictly improve the benefit of one player without harming the other players, then
s is called PO point for the game.

To make a more concrete distinction, let us consider a classical Prisoners’ Dilemma
problem (see [148] for more details).

Ted and Jack are arrested because of a crime they committed together. They will be
facing interrogation next morning. If Ted confesses and Jack remains silent, then Jack will
be sentenced to 5 years in prison while Ted can be freed and vice versa. If, one the other
hand, both of them confess, then both get a sentence of 3 years in prison; if both of them
keep silent, then both get a sentence of 1 year in prison. Suppose they are not allowed to
communicate prior to the interrogation. Looking at this game from Jack’s perspective, no
matter ted confesses or not, according to the payoff described in Table B.1, making the
confession is a better strategy for Jack. So is ted. Therefore, by the description of NE in



APPENDIX B. MORE ON NE AND PO 144

Table B.1: Prisoner’s dilemma

Jack confesses Jack silent

Ted confesses (-3, -3) (0, -5)

Ted silent (-5, 0) (-1, -1)

Definition B.1, both of them making the confession is an NE and in this case, the unique
NE. However, if given the chance of communication, then Jack and Ted may quickly realize
that both of them remaining silent will get them the lightest sentence, thus it is indeed the
unique PO point of this game according to Definition B.1. This Prisoners’ Dilemma case is a
straightforward illustration on the difference between NE and Po.

B.2 (Non-)uniqueness of NE and PO
The sensational works of Nash [139, 140] establish the existence of NE for non-cooperative
games. However, uniqueness of NE is not a guarantee; in Chapter 3, we have provided
multiple NE for the 2-player impulse game. PO is extensively studied in the field of welfare
economics, see for instance the classical works [7, 63]. Again, uniqueness is an exception for
PO. The non-uniqueness can be better seen from the following two cases.

B.2.1 Case 1: unique NE and multiple PO

Consider a 2-player game where each player can his/her strategy from a binary set {0, 1}.
The utility functions for the players are given by

u1(s1, s2) = (s1 + s2)− 1.5s1 = s2 − 0.5s1, u2(s1, s2) = (s1 + s2)− 1.5s2 = s1 − 0.5s2.

The possible outcomes of utilities are given by Table B.2 as follows. To maximize individual

Table B.2: Utilities of players

s2 = 0 s2 = 1

s1 = 0 (0, 0) (1, -0.5)

s1 = 1 (-0.5, 1) (0.5, 0.5)

utility, s1 = 0 is a better strategy for player 1 than s1 = 1 no matter which strategy player 2
chooses. So is for player 2. Then according to Definition B.1, (0, 0) is the unique NE in this
2-player game. To examine the all 4 set of strategies according to the description of PO in



APPENDIX B. MORE ON NE AND PO 145

Definition B.1, (0, 1), (1, 0) and (1, 1) are all PO points while (0, 0) is strictly dominated by
(1, 1) therefore not a PO point.

B.2.2 Case 2: multiple NE and unique PO

Consider a game of distributing fruits between Alex and Bob. There are 100 apples and 100
bananas. In the end, each of them will have to take away exactly 100 fruits. Their preferences
of the fruits (evaluated in real numbers) are given by Table B.3 as follows. Player i’s strategy,

Table B.3: Individual preferences

An apple A banana

Alex 1 -1

Bob -1 1

with i = 1, 2, can be characterized as si = (ni1, n
i
2), where ni1 and ni2 denote the numbers of

apples and bananas player i takes, respectively; i = 1 stands for Alex and i = 2 stands for
Bob. A set of strategies (s1, s2) is admissible if ni1 + ni2 = 100 and n1

j + n2
j = 100 for all

i = 1, 2 and j = 1, 2. Consider only the set of admissible strategies, denoted by S. Then
immediately any s ∈ S is an NE for the game, since unilateral deviation is not possible if
restricted to S. For PO, on the other hand, (s∗,1, s∗,2) where s∗,1 = (100, 0) and s∗,2 = (0, 100)
is the unique PO point.
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