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I. Summary of Decay Energies

Figures 1 and 2 summarize total decay energies for the four radio-
active series. The alpha-decay energy obtained by measuring the energy of the
alpha particle leading to the ground state includes the energy of the recoil
nucleus. The legends indicate the meaning of superscripts attached to some of
the. energy values.

The curve shown in Figurej3j defines in broad outline the conditions
and regions of alpha instability. A great deal more is to be learned from a
more detailed examination of the region where alpha radiocactivity is prominent.

Of great value to the experimentalist is that he is able to predict
alpha energies, and the agreement betweeﬁ predicted and measured values often
serves as a criterion for isotopic assignment. A number of systems for corre-
lating alpha decay energies have been employed, and that perhaps most widely
used is illustrated in Fig. 4. Here the isotopes of each element on a
mass number vs. energy plot are joined, resulting in a family of curves which
over a wide region comprise a series of nearly parallel lines. It will be
noted that in this region (above mass number about 212) alpha energiés degrease
with increasing mass number for each element, i.e., with increasing neutron
number. The dramatic inversion in the alpha-energy trend around mass number
212 is a consequence of the major closed shells in this region at 126 neutrons

and 82 protons.
IT. Complex Alpha Spectra

Table I is a compilation of all alpha-particle energies and abundances
in‘the heavy-element region. Recent absolute energy measurements indicate all
the alpha particle energies based upon the Pozlu (RaC') absolute energy
measurements by G. H. Briggs2 should be revised upward about 0.1%. Pending

further clarification of this issue, however, we have used the Briggs value
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Fig. 1. Closed decay energy cycles for the 4n and Ln + 1 series:
No superscript, measured energy; c, calculated; cn, calculated
with neutron binding energies; e, estimated; ce, calculated from
a cycle containing estimated energies; ( ), uncertain by more than
about 0.1 Mev; t, isomers.
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No superscript, measured energy; c, calculated;
neutron binding energies; e, estimated;

MUB-579

Closed decay energy cycles for the 4n + 2 and Un + 3 series:
cn, calculated with

ce, calculated from a cycle

containing estimated energies; ( ), uncertain by more than about
0.1 Mev; t, isomers.
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Fig. 3. Alpha-decay energy profile. The segments connecting isotopes

of uranium, polonium, gadolinium, and samarium indicate the effects
of change in neutron number for these elements. The half-life guide
lines denote the alpha energies (Mev) which would be required to

Vprovide these half lives. All speciles which are beta-stable and

which lie below the "108 years" curve are sufficiently long lived
to have persisted since the creation of the element.
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for Po214 (RaC') 7.6804 Mev, as the primary energy standard.

As in other decay process, the appearance of multiple groups in the ¢
alpha-emission process may be considered as the result of competition in
populating available energy levels. Alpha~decay lifetimes are influenced by
a number of factors; among these is the sharp dependence of lifetime on decay
energy. There are, however, selection process operating which can delay the

highest-energy group and cause lower-energy groups to be the most prominent.

Even-even Alpha Emitters. The decay schemes for three typical even-even

alpha emitters are shown in Fig. 5. The similarities and differences will be
explained below.

PRINCIPAL AIPHA GROUPS (THE GROUND STATE AND FIRST EXCITED STATE):
With a high degree of certainty it can be said that the transition to the
ground state is the most abundant for this nuclear type. First excited
states reached by these alpha groups all have spin 2 and even parity (see
Fig. 5). The alpha population to this state is close to theoretical expecta-
tions.

A summary of the energy spacings between the ground state and first

excited state as a function of neutron number and proton number is shown in

Fig. 6. The points divide into families .according to atomic number and appear
to reach maxima for nuclei with 126 neutrons. _ ’
RARE ALPHA GROUPS (HIGHER EVEN STATES AND FIRST ODD STATE): Many of
the alpha emitters which have lent themselves to detailed'analysis have proven
to have one or more additional groups of lower energy ard in low intensity.
In each case which could be examined in the neceséary detail, there
was found a rare alpha group going to a state which decays by an EZ transition
only to the 2+ state. From the nature of the gamma ray transition the second
state could be O+, 2+, or 4+. In the alpha decay of Th23o, however (see
Fig. 5), a-y and y-y angular correlation measurements showed unambiguously
the second excited state had spin and parity of 4+. The U4+ assignment s o
made to nearly all of the remainder of the second excited states (Fig. 6),
largely from agreement with energy-level spacings predicted by the Bohr-
Mottelson theory of rotational states.
In a few cases a very weak alpha group has been observed which decays
to the L4+ state by an E2 transition. These cases, as well as others determined
from gamma-ray spectroscopy or coulomb excitation, are those designated as 6+ B
in Fig. 6a; the 6+ assignment is also made largely from agreement with energy-

level spacings predicted by the Bohr-Mottelson theory of rotational states.
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In the decay of szhz and Pu238

a very rare gamma ray has been.seen
which is in coincidence with the 6+ — U+ transition. Since the energy of
the state defined by the gamma ray corresponds closely with expectations if
it were the 8+ member of the Bohr-Mottelson rotational band, it has been so
designated (see Cm 2h2 spectrum Fig. 5)

In a number of cases a state with spin and parity, 1-, (see Fig. 6b)
has entered among the low lying even states. This state, as is shown in
Fig. 5, decays to both the ground state and first excited state by El
transitions. The multipolarities of most of these transitions have been
determined by conversion coefficlent and angular correlation measurements.

An additional characteristic feature of all of these El transitions concerns
the ratio of the gamma-ray intensities to the ground and first excited state.
After removing the third power energy dependence, this ratio is found to be
0.50, within experimental error. This particular value conforms with one of
the expectations of Bohr-Mottelson theory and has been used to tentatively
identify the 1- states where other means were not avallable. As shown 1In
Fig. 6b there seems to be a minimum in the energy of the 1~ states at 136
neutrons. Thére is no suitable explanation for this effect.

As shown in Fig. 5, 3- and 5- states have been tentatively assigned
in Ra226. The assignments were based on the choice of states populated by
the gamma rays de-exciting these levels and the agreement of the energy
separation between the 3~ and 5- states with that predicted by the Bohr~
Mottelson theory of rotational states. The 3- states (in Razzu and Ra226)
detected by alpha emission as well as several determined by beta decay are
shown in Fig. 6b.

As seen in the decay of Ra?26 to Rn22 (Fig. 5) a second state has been
tentatively assigned spin and parity 2+. This state 1s characterized by gamma
ray de-excitation to the first excited 2+ state with a much weaker tentative
crossover transition to the ground state. A seen in Fig. fba this 2+ assign~
ment is also made for states in anzo and Rn 2l 8, Analogous states have been
observed in the rare earth region where.the spin and parity assignments were
more definitely determined. ’

In a feﬁ.cases a second state with spin and parity O+ has been identi-
fied near 1 Mev excitation energy . This state is de-excited by an EO electron
transition to the ground state and an E2 transition to the first excited 2+

state. Fig. 6a shows the excited O+ states populated by the alpha decay of



12 " UCRL-952h

242 238 34

Cm , Pu , and U2 as well as others populated by.beta decay.

Odd-nucleon alpha emitters. In contrast to the even-even nuclides, the ground

state transition of an odd nucleon alpha emitter is usually not the most
abundant, as can be seen from Table 1. Indeéd its abundance is often orders
of magnitude smaller than the theoretical value. An exception to this general
rule is shown in Fig. 7, the decay scheme of E253. Thig decay scheme; however,
demonstrates another significant difference in that the odd-nucleon alpha emitters
have éonsiderably more complex alpha spectra than the even-even type.

In many cases, however, it has been found that a complex spectra can
be broken down into simpler components. In Fig. 7, for example, the 15 alpha
groups have been divided into three subgroups. The states within any subgroup
all have the same.parity, and their nuclear spins bear a simple relation to
one another, usually increasing one unit for each excited state at higher
energy . Theée subgroups bear a marked resemblance to the rotational bands
discussed for even-even nuclides and have been interpreted in terms of the
Bohr-Mottelson theory for odd-nucleon rotational states. Indeed some of the
spin and parity assignments shown in Fig. 7, were made because of the good
agreement of the energiés of these states with the theoretical expectations.

Not all of the odd-nucleon alpha spectra can be interpreted as readily
as that of EZS?’° The spectrum of Th227, for example, is one which still

defies: similar analysis.

III. Alpha decay Lifetimes and Theory

It 1s possible to correlate alpha-decay lifetimes empirically and to
arrive at systems which can be used to predict half lives.

Even-even alpha Emitters—— Ground-state Transitions. Figure 8 shows a plot

of the half life vs. energy relationship as a family of curves. The curves
are defined by the experimental half lives and are in this respect ewpirical.
If, however, we were to calculate half lives by using the measured alpha
energy for each point and assuming a function for the nuclear radius, 1.5 x
10713 Al/3, the resulting curves would lie close to these of Fig. 8.

In summary it can be said that the basic one-body theory of alpha
decay applied to the ground-state transitions of even-even alpha emitters
gives a remarkably consistent picture. When reasonable and consistent assump-
tions for thé values of the nuclear radii are used, the theory explains observed

half lives which differ by a factor of lOZh° It should be pointed out that

-
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different formulations of the theory will give somewhat different "best values"
for the radius parameter, but each is internally consistent. It will be noted

210’ P0208 210 EleZ

that some .points (e.g., Po , Em™T, ) lie off their respective

curves. These are the alpha emitters with 126 neutrons or fewer which have
abnormally long lifetimes.

Even-even Alpha Emitters-— Transitions to Excited States. For any particular

case, one can calculate the partial half-life to any excited state under the
assumption that the only factor influencing the relative decay rates is the
energy functlon. It is found that the populations of the fifst excited 2+
states are not far from the calculated values while the populations to the
higher spin even-parity rotational members are quite hindered and show consi-
derable variation as shown in Fig. 9a,‘ An explanation for the variation in
population of these states has been developed in terms of the interaction of
the emitted alpha particle wave with the nuclear quadrupole moment.

The hindrance factors (ratio of experimental half-life to calculated
value) for the odd-parity states are shown in Fig. 9b. An explanation for
the variation with mass number has not yet been developed.

Odd-nucleon g;pha emitters. One of the most obvious questions about this

category is why the ground state transition is often highly hindered and why
the hindrance is so irregular. Although a completely satisfactory answer
has not yet been obtained, some promising leads have been uncovered. It has
been shown, for example, that the alpha population to the various members of
the rotational band populated by the least hindered aipha transition (usually
the most abundant) can be calculated from the Bohr, Froman and Mottelson
theory for unhindered alpha decay. The nuclear configuration of the band
receiving this type of alpha decay is assumed to be the same as the parent
alpha emitter. The alpha populations are then calculated semi-empirically
by analogy with even-even emitters. In general, the ground states of the
parent and daughter in an alpha decay do not have the same type of nuclear
configuration; hence, the ground state alpha transition would generally not

253 shown in Fig. 7 illustrates

be the most abundant. The decay scheme of E
one of the few cases where the parent and daughter ground states do have the

same. nuclear configuration.
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The alpha populations to states with different nuclear configurations
than the ground state are not well understood as yet. Some progress is being
made, however., by detailed consideration of the nuclear wave functions.

0dd-odd alpha emitters. These types of spectra are extremely complex and as
yet very little understood.
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TABLE I. - ALPHA-PARTICLE ENERGIES AND ABUNDANCES

Alpha emitter Alpha-particle Relative . = = Type of
energy, Mev sbtundances % 7 measurement
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51199 5.7 ‘ ion ch
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= jon chamber

= magnetic spectograph

= oy, Qee, or y~y coincidences

= energy or intensity measurement in an emuleion

© gemms ey energy meaaixremerm :

= converslon électron energy meagurement

energy determined from closed decay energy cycles
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G4 This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee

of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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