Lawrence Berkeley National Laboratory

Recent Work

Title

DECAY-ENERGY SYSTEMATICS OF THE HEAVY ELEMENTS

Permalink

https://escholarship.org/uc/item/8z4730gr

Authors

Perlman, Isadore Asaro, Prank.

Publication Date 1961-01-17

UCRL 9524

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California

- i:..

Contract No. W-7405-eng-48

DECAY-ENERGY SYSTEMATICS OF THE HEAVY ELEMENTS

Isadore Perlman and Frank Asaro

January 17, 1961

DECAY-ENERGY SYSTEMATICS OF THE HEAVY ELEMENTS

Isadore Perlman and Frank Asaro

Lawrence Radiation Laboratory University of California Berkeley, California

January 17, 1961

I. Summary of Decay Energies

Figures 1 and 2 summarize total decay energies for the four radioactive series. The alpha-decay energy obtained by measuring the energy of the alpha particle leading to the ground state includes the energy of the recoil nucleus. The legends indicate the meaning of superscripts attached to some of the energy values.

The curve shown in Figure 3 defines in broad outline the conditions and regions of alpha instability. A great deal more is to be learned from a more detailed examination of the region where alpha radioactivity is prominent.

Of great value to the experimentalist is that he is able to predict alpha energies, and the agreement between predicted and measured values often serves as a criterion for isotopic assignment. A number of systems for correlating alpha decay energies have been employed, and that perhaps most widely used is illustrated in Fig. 4. Here the isotopes of each element on a <u>mass number</u> vs. energy plot are joined, resulting in a family of curves which over a wide region comprise a series of nearly parallel lines. It will be noted that in this region (above mass number about 212) alpha energies decrease with increasing mass number for each element, i.e., with increasing neutron number. The dramatic inversion in the alpha-energy trend around mass number 212 is a consequence of the major closed shells in this region at 126 neutrons and 82 protons.

II. Complex Alpha Spectra

Table I is a compilation of all alpha-particle energies and abundances in the heavy-element region. Recent absolute energy measurements indicate all the alpha particle energies based upon the Po²¹⁴ (RaC') absolute energy measurements by G. H. Briggs² should be revised upward about 0.1%. Pending further clarification of this issue, however, we have used the Briggs value

-3-

MUB-580

Fig. 1. Closed decay energy cycles for the 4n and 4n + 1 series: No superscript, measured energy; c, calculated; cn, calculated with neutron binding energies; e, estimated; ce, calculated from a cycle containing estimated energies; (), uncertain by more than about 0.1 Mev; †, isomers.

0.76

-Bi²⁰⁵ 2.65

> 205 119

20

MUB-579

Fig. 2. Closed decay energy cycles for the 4n + 2 and 4n + 3 series: No superscript, measured energy; c, calculated; cn, calculated with neutron binding energies; e, estimated; ce, calculated from a cycle containing estimated energies; (), uncertain by more than about 0.1 Mev; †, isomers.

Fig. 3. Alpha-decay energy profile. The segments connecting isotopes of uranium, polonium, gadolinium, and samarium indicate the effects of change in neutron number for these elements. The half-life guide lines denote the alpha energies (Mev) which would be required to provide these half lives. All species which are beta-stable and which lie below the "10⁸ years" curve are sufficiently long lived to have persisted since the creation of the element.

-6-

MU-11555

Fig. 4. Alpha decay energy vs. mass number.

٨

1

۱.

4

for Po²¹⁴ (RaC') 7.6804 Mev, as the primary energy standard.

As in other decay process, the appearance of multiple groups in the alpha-emission process may be considered as the result of competition in populating available energy levels. Alpha-decay lifetimes are influenced by a number of factors; among these is the sharp dependence of lifetime on decay energy. There are, however, selection process operating which can delay the highest-energy group and cause lower-energy groups to be the most prominent. <u>Even-even Alpha Emitters</u>. The decay schemes for three typical even-even alpha emitters are shown in Fig. 5. The similarities and differences will be explained below.

PRINCIPAL ALPHA GROUPS (THE GROUND STATE AND FIRST EXCITED STATE): With a high degree of certainty it can be said that the transition to the ground state is the most abundant for this nuclear type. First excited states reached by these alpha groups all have spin 2 and even parity (see Fig. 5). The alpha population to this state is close to theoretical expectations.

A summary of the energy spacings between the ground state and <u>first</u> <u>excited state</u> as a function of neutron number and proton number is shown in Fig. 6. The points divide into families according to atomic number and appear to reach maxima for nuclei with 126 neutrons.

RARE ALPHA GROUPS (HIGHER EVEN STATES AND FIRST ODD STATE): Many of the alpha emitters which have lent themselves to detailed analysis have proven to have one or more additional groups of lower energy and in low intensity.

In each case which could be examined in the necessary detail, there was found a rare alpha group going to a state which decays by an E2 transition only to the 2+ state. From the nature of the gamma ray transition the second state could be 0+, 2+, or 4+. In the alpha decay of Th^{230} , however (see Fig. 5), α - γ and γ - γ angular correlation measurements showed unambiguously the second excited state had spin and parity of 4+. The 4+ assignment is made to nearly all of the remainder of the second excited states (Fig. 6), largely from agreement with energy-level spacings predicted by the Bohr-Mottelson theory of rotational states.

In a few cases a very weak alpha group has been observed which decays to the 4+ state by an E2 transition. These cases, as well as others determined from gamma-ray spectroscopy or coulomb excitation, are those designated as 6+ in Fig. 6a; the 6+ assignment is also made largely from agreement with energylevel spacings predicted by the Bohr-Mottelson theory of rotational states.

-8-

MU - 21959

Ø

+ ر

MU-21960

Fig. 6. Energy levels in even-even nuclides:

- a. Even spin and parity levels.
- b. Odd spin and parity levels.

In the decay of Cm^{242} and Pu^{238} a very rare gamma ray has been seen which is in coincidence with the $6+ \rightarrow 4+$ transition. Since the energy of the state defined by the gamma ray corresponds closely with expectations if it were the 8+ member of the Bohr-Mottelson rotational band, it has been so designated (see Cm²⁴² spectrum Fig. 5).

In a number of cases a state with spin and parity, 1-, (see Fig. 6b) has entered among the low lying even states. This state, as is shown in Fig. 5, decays to both the ground state and first excited state by El transitions. The multipolarities of most of these transitions have been determined by conversion coefficient and angular correlation measurements. An additional characteristic feature of all of these El transitions concerns the ratio of the gamma-ray intensities to the ground and first excited state. After removing the third power energy dependence, this ratio is found to be 0.50, within experimental error. This particular value conforms with one of the expectations of Bohr-Mottelson theory and has been used to tentatively identify the 1- states where other means were not available. As shown in Fig. 6b there seems to be a minimum in the energy of the 1- states at 136 neutrons. There is no suitable explanation for this effect.

As shown in Fig. 5, 3- and 5- states have been tentatively assigned in Ra^{226} . The assignments were based on the choice of states populated by the gamma rays de-exciting these levels and the agreement of the energy separation between the 3- and 5- states with that predicted by the Bohr-Mottelson theory of rotational states. The 3- states (in Ra^{224} and Ra^{226}) detected by alpha emission as well as several determined by beta decay are shown in Fig. 6b.

As seen in the decay of Ra^{226} to Rn^{222} (Fig. 5) a second state has been tentatively assigned spin and parity 2+. This state is characterized by gamma ray de-excitation to the first excited 2+ state with a much weaker tentative crossover transition to the ground state. A seen in Fig. 6a this 2+ assignment is also made for states in Rn^{220} and Rn^{218} . Analogous states have been observed in the rare earth region where the spin and parity assignments were more definitely determined.

In a few cases a second state with spin and parity 0+ has been identified near 1 Mev excitation energy. This state is de-excited by an EO electron transition to the ground state and an E2 transition to the first excited 2+ state. Fig. 6a shows the excited 0+ states populated by the alpha decay of

-11-

 Cm^{242} , Pu^{238} , and U^{234} as well as others populated by beta decay. <u>Odd-nucleon alpha emitters</u>. In contrast to the even-even nuclides, the ground state transition of an odd nucleon alpha emitter is usually not the most abundant, as can be seen from Table 1. Indeed its abundance is often orders of magnitude smaller than the theoretical value. An exception to this general rule is shown in Fig. 7, the decay scheme of E^{253} . This decay scheme, however, demonstrates another significant difference in that the odd-nucleon alpha emitters have considerably more complex alpha spectra than the even-even type.

In many cases, however, it has been found that a complex spectra can be broken down into simpler components. In Fig. 7, for example, the 15 alpha groups have been divided into three subgroups. The states within any subgroup all have the same parity, and their nuclear spins bear a simple relation to one another, usually increasing one unit for each excited state at higher energy. These subgroups bear a marked resemblance to the rotational bands discussed for even-even nuclides and have been interpreted in terms of the Bohr-Mottelson theory for odd-nucleon rotational states. Indeed some of the spin and parity assignments shown in Fig. 7, were made because of the good agreement of the energies of these states with the theoretical expectations.

Not all of the odd-nucleon alpha spectra can be interpreted as readily as that of E^{253} . The spectrum of Th^{227} , for example, is one which still defies: similar analysis.

III. Alpha decay Lifetimes and Theory

It is possible to correlate alpha-decay lifetimes empirically and to arrive at systems which can be used to predict half lives. <u>Even-even alpha Emitters- Ground-state Transitions.</u> Figure 8 shows a plot of the half life vs. energy relationship as a family of curves. The curves are defined by the experimental half lives and are in this respect empirical. If, however, we were to calculate half lives by using the measured alpha energy for each point and assuming a function for the nuclear radius, 1.5 x 10^{-13} A^{1/3}, the resulting curves would lie close to those of Fig. 8.

In summary it can be said that the basic one-body theory of alpha decay applied to the ground-state transitions of even-even alpha emitters gives a remarkably consistent picture. When reasonable and consistent assumptions for the values of the nuclear radii are used, the theory explains observed half lives which differ by a factor of 10^{24} . It should be pointed out that

-12 -

MUB-497

Fig. 7. Decay scheme of E^{253} .

-13-

different formulations of the theory will give somewhat different "best values" for the radius parameter, but each is internally consistent. It will be noted that some points (e.g., Po^{210} , Po^{208} , Em^{210} , Em^{212}) lie off their respective curves. These are the alpha emitters with 126 neutrons or fewer which have abnormally long lifetimes.

Even-even Alpha Emitters — Transitions to Excited States. For any particular case, one can calculate the partial half-life to any excited state under the assumption that the only factor influencing the relative decay rates is the energy function. It is found that the populations of the first excited 2+ states are not far from the calculated values while the populations to the higher spin even-parity rotational members are quite hindered and show considerable variation as shown in Fig. 9a. An explanation for the variation in population of these states has been developed in terms of the interaction of the emitted alpha particle wave with the nuclear quadrupole moment.

The hindrance factors (ratio of experimental half-life to calculated value) for the odd-parity states are shown in Fig. 9b. An explanation for the variation with mass number has not yet been developed. Odd-nucleon alpha emitters. One of the most obvious questions about this category is why the ground state transition is often highly hindered and why the hindrance is so irregular. Although a completely satisfactory answer has not yet been obtained, some promising leads have been uncovered. It has been shown, for example, that the alpha population to the various members of the rotational band populated by the least hindered alpha transition (usually the most abundant) can be calculated from the Bohr, Fröman and Mottelson theory for unhindered alpha decay. The nuclear configuration of the band receiving this type of alpha decay is assumed to be the same as the parent alpha emitter. The alpha populations are then calculated semi-empirically by analogy with even-even emitters. In general, the ground states of the parent and daughter in an alpha decay do not have the same type of nuclear configuration; hence, the ground state alpha transition would generally not be the most abundant. The decay scheme of E²⁵³ shown in Fig. 7 illustrates one of the few cases where the parent and daughter ground states do have the same nuclear configuration.

-15 -

MU **-** 21961

Fig. 9. Hindrance factors for the alpha decay to energy levels in even-even nuclides:

a. Even parity ground state rotational bands.

b. Odd parity rotational bands.

The alpha populations to states with different nuclear configurations than the ground state are not well understood as yet. Some progress is being made, however, by detailed consideration of the nuclear wave functions. <u>Odd-odd alpha emitters</u>. These types of spectra are extremely complex and as yet very little understood.

REFERENCES

- 1. The data used in this compilation were originally drawn from many primary sources. Figures 1 to 2 are from B.M. Foreman, Jr. and G.T. Seaborg, <u>Nuclear Thermodynamics of the Heaviest Elements</u>, II, J. Inorg. and Nuclear Chem. 7, 305 (1958). Figures 3 and 4 are from Perlman and Rasmussen, Alpha Radioactivity, <u>Encyclopedia of Physics</u>, Vol. XLII, Springer-Verlag Berlin (1957).
- 2. G. H. Briggs, Proc. Roy. Soc. (London) 157A, 183 (1936).

Alpha emit	ter	Alpha-particle energy, Mev	Relative abundances, \$	Type of measurement
Bi ^{198.}		5 .83		ion ch
Bi 199		5.47		ion ch
B1 201		5 15	-	ion ch
Bi 203		L. 85		emula
,210 . O	3	4.09 h 681	ho	maat
br 9.00	*	4.664	60	spect
Bi ²¹⁰ 2.6	10 ⁶ y	4.955	60	ion ch
	·	4.90	30	ton ch
		4.64	10	ion ch
B1 ²¹¹	(ACC)	6.617	83	spect
		6.273	17	spect
B1 212	(The C)	6.082	27.1	anort
	(24 0)	6.043	69.7	apect
		5.760	1.78	spect
		5 .618	0.165	spect
		5.599	1.19	spect
		5.473	0.014	spect
		5•337 5•00b	0.001	spect
		5.184	5x10 ⁵	spect
₈₁ 213		5.86		ton ch
on h		2.00		LOH CH
31 ²¹⁴	(Ra C)	5.507	39.2	spect
		5.443	53.9	spect
		5.263	5.8	spect
		5.179	0.61	spect
,		5.010 h 036	0.21	spect
	· · ·	4.30	(a)	spect
20 ^{192,193}	0.5s	6.58		spect
,193,194	4s	6.47		spect
,194,195	13s	6.38		spect
,0195,196	30s	6.26		spect
, 196 , 19 7	1.8m	6.13		ion ch

Po ^{197,198} ~	, 4m	6.040		spect
Po ^{198,199} ~	• 6m	5.935	1 - A	spect
Po ^{199,200}	<u>l</u> lm	5.846		spect
Po ²⁰⁰ ,201	8m	5.770	en e	spect
Po ²⁰¹		5.671		spect
Po ²⁰²		5.575	۰ بر ک	spect
Po ²⁰³		5.48		ion ch
Po ²⁰⁴		5.370	•	spect
Po ²⁰⁵		5.2		ion ch
Po ²⁰⁶		5.218	~100	spect
Po ²⁰⁷		5.10	· .	ion ch
Po ²⁰⁸	•	5.108	~100	spect
Po ²⁰⁹		4.877	99.4	spect
		4.62	0.6	a-y
Po ²¹⁰	(Ra F)	5.299 4.512	100 1.07x10 ⁻³	spect spect
Po ²¹¹ 0.520	(A cC')	7.44 6.88	99.0 0.53	spect
		6.56	0.50	spect
Po ²¹¹ 25s		8.70	7	ion ch
		7.85	2.5 90.5	ion ch
Po ²¹²	(Th C')	8.7 76	~100	spect
Po ²¹³		8.35	-100	spect
Po ²¹⁴	(RaC ⁺)	7.680	100	spect
		6.892	.01	spect
Po ²¹⁵	(AcA)	7.36	~100	spect
Po ²¹⁶	(ThA)	6.775	~100	spect
Fo ²¹⁷		6.54		ion ch
Po ²¹⁸	(RaA)	5.998 5.175	100	spect spect
At ²⁰¹		6.348	~100	spect
At ²⁰²	•••	6.231 6.133	36 64	spect
At ²⁰³		6.086	~100	spect
onti		5,950	~100	spect
At 9.3 min		1.1.1.4	· · · · · · · · · · · · · · · · · · ·	

•

•

-19-

At ²⁰⁶	22 min	5.699		spect
At 207		5.750		spect
At ²⁰³	1.6 hr	5.65 5.53	~97 ~ 3	ion ch a-y
At ²⁰⁹		5.642	~100	spect
At ²¹⁰		5.519	32	spect
		5.437	31	spect
. 211		2+277 # 940	27	apect
AU		2.002	~***	spece
		0.0		
At		y.2 0 m0		emuis
At		0. (0 8. 00		ton ch
At 216		3.00		ion ch
At , 217	· .	(• (¥		10h ch
At		7.05 6.69m	ch	apec c
At		6.640	~ 6	spect
At		6.27		ion ch
Rn ²⁰⁴	•	6.28		ion ch
Rn ²⁰⁶		6.25		ion ch
Rn ²⁰⁷		6.14		ion ch
Rn ²⁰⁰		6.141	~100	spect
Rn ²⁰⁹		6.037		spect
Rn ²¹⁰		6.037	~100	spect
Rn ²¹¹		5.847	33.5	spect
		5.613	2	spect
Rn ²¹²		6.264	~100	spect
Rn ²¹⁵		8.6		ion ch
Rn ²¹⁶		8.04	~100	ion ch
Rn ²¹⁷		7.735	~100	spect
Rn ²¹⁸		7.127	99.8	spect
_ 219	4	0.529	0.2	7
Kn	(An)	0.013 6.547	02	spect
		6.419	5	spect
		6.807	69	spect
		6.542	15	spect
		6.418	12	spect
		6.197	4	spect

-20-

-21-

UCRL-9524

					1. I.
Rn ²²⁰		(In)	6.282 5.747	99.7 0.3	spect spect
Rn ²²¹			6.0	•	ion ch
Rn ²²²		(Rn)	5.486 4.982	99•9 0•078	spect spect
Fr ²¹²	r F		6.411 6.387 6.342	37 39 24	spect spect spect
Fr ²¹⁷			8.3		emuls
Fr ²¹⁸	•	· · ·	7.85		ion ch
Fr ²¹⁹			7.30		ion ch
Fr ²²⁰	•		6.69		ion ch
Fr ²²¹			6.33 6.12	84 16	spect spect
Fr ²²³		(AcK)	5.34		emuls
Rs ²¹³			6.90		ion ch
Ra ²¹⁹			8.0		ion ch
Ra ²²⁰			7.45 6.99	99 1	ion ch a-y
Ra ²²¹			6.754 6.665 6.606 6.583 6.573	31 20 38 8 3	spect spect spect spect spect
Ra ²²²			6.551 6.233 5.914 5.76 5.72	95.6 4.4 .01 .03 .002	spect G-Y Y-Y Y-Y Y-Y
Ra ²²³		(A cX)	5.867 5.853 5.742 5.712 5.602 5.534 5.497 5.429 5.360 5.334 5.282	,96 0.3 10.5 50.4 23.6 10.3 .86 2.4 0.20 0.07 0.3	apect apect apect apect apect apect apect apect apect apect apect
Ra ²²⁴		(Th X)	5.681 5.444 5.16 5.04	95 4.9 .01 .01	spect spect,γ γ-γ γ-γ

nnk		Υ		
Ra	(Ra)	4.777	94.6	spect
		4.504	5.4	anect
		4. 835	.0051	anact
	· .	4.178	7×10-4	anact v
221		41210	1240	apaco, 1
Ac		7.6	×	emuls
Ac 222		6.96		ion ch
Ac ²²³		6.657	40	spect
		6.643	46	spect
·		6.561	14	spect
A-224		6 17		ton on
225			· .	TOU CU
Ac		5.818	54	spect
		5.782	28	spect
		5.721	9.5	spect
	:	5.713	2.6	spect
		5.672	0.8	spect
		5.627	3,.8	spect
		5 .599	0.6	spect
		5.570	0.7	spect
		5.543	0.07	spect
Ac 227		h aha	ho	anart
	•	1 026	*6	apoot
		1. 966	Ão	anaat
		1. Aho	0.J 5 5	ana at
		1. 796	1.0	apeco
• . •		4.700	1.0	spect
		4.(29	T.0	apecc
008		4. /04	V14	space
Theres		7.55		ion ch
m ²²⁴		7.17	79	ton ch
		7.00	10	ton ch.
		6.77	1.5	
		6.70	0.5	0-1
825			. .	u j
Th		6.793	9	spect
414 2		6.739	7	spect
		6.695	2	spect
		6.645	3	spect
		6.622	3	spect
		6.496	14	spect
•		6.473	43	spect
•		6.436	15	spect
		6,340	2	spect
		6.307	2	spect
Th ²²⁶		6.330	79	spect
		6.221	19	spect. e
		6.095	1.7	spect
		6.029	0.6	spect

To ²²⁷	(Ra Ac)	6.036 6.007 5.976 5.958 5.914 5.865 5.805 5.793 5.793 5.712 5.712 5.718 5.708 5.699	23 2.8 24 3.5 0.9 3.0 1.0 0.3 0.3 21 5.0 8.7 4.0	spect spect spect spect spect spect spect spect spect spect spect spect
Th ²²⁸	(Rđ Th)	6.692 5.667 5.421 5.338 5.208 5.173 5.173	1.5 1.9 71 28 0.4 0.2 0.03	apect apect apect apect apect apect apect
Th ²²⁹		5.048 5.028 5.003 4.971 4.961 4.925 4.894 4.837 4.806 4.788 4.751 4.678	6.7 ~0.2 ~0.1 3.4 6.0 0.25 10.7 58.2 11.4 1.0 1.5 0.4	spect spect spect spect spect spect spect spect spect spect spect
Th ²³⁰	(I0)	4.682 4.615 4.476 4.433 4.368 4.273 4.245	74 26 0.2 0.03 0.001 8×10-6 8×10-6	spect spect spect,y 7-7 7-7 7-7 7-7 7-7
Th ²³²	(Th)	4.007 3.949 3.825	76 24 0.2	ion ch ion ch, α-e ion ch, α-e
Pa ²²⁶	· · ·	6.81		ion ch
P3 ²²⁷	• • • •	6.526 6.515 6.460 6.418 6.410 6.396 6.371	2.3 0.3 50 11.5 14.8 9.3 2.6	epect spect spect spect spect spect spect

-23-

J

ę.

e.

UCRL-9524

ب ۲

6.351 6.331 6.321 6.294

6.138 6.114

6.101

6.087 6.074 6.062

6.037 6.024

6.007 5.994 5.985

5.978 5.971

5.943 5.937 5.918

5.903 5.870

5.854 5.839 5.801 5.795 5.761 5.756 5.756 5.752 5.707

5.665 5.625 5.610

5.586

5.575 5.560 5.531

5.512 5.496 5.474

5.417 5.408 5.315

5.047 5.018

5.002

4.939 4.922

Pa²²⁸

Pa 229
F 8

Pa²³¹

7.8	spect
0.7	spect
0.4	spect
0.8	spect
2.5	spect
10	spect
12	spect
2.3	spect
21	spect
1.0	spect
2.3	spect
9	spect
0.8	spect
0.3	spect
1.1	spect
2.8	spect
2.7	spect
0.6	spect
0.5	spect
0.8	spect
1.1	spect
1.4	spect
0.3	spect
0.4	spect
7.3	spect
11	spect
1.4	spect
2.0	spect
1.4	spect
2.5	spect
1.0	spect
19	spect
10	spect
13	spect
5	spect
37	spect
3.9	spect
9	spect
0.6	spect
0.7	spect
1.8	spect
0.07	spect
0.15	spect
0.05	spect
10	spect
23	spect
24	spect
2 .3	spect
22	spect
2.8	spect

		4.840	1.4	spect
		4. (2)		Bpec v
		4.697 4.667	2,1	apect
v ²²⁷		6.8		ion ch
u ²²⁸		6.68	70	ion ch
•		6.59	29	ton ch
		6.44	0.7	any
. •		6.40	0.5	ary
v ²²⁹		6.355	64	spect
		6.327	20	spect
•		6.292	11	spect
		6.255	1	spect
		6.218	2	spect
		6.100	A	spect
v ²³⁰		5.884	67.2	spect
•		5.813	32.1	spect
		5.662	0.4	e e
	·.	5.658	0.3	r
v ²³¹		5.45		ion ch
1232	·	5.318	68	spect
U I		5.261	32	spect
		5.135	0.32	spect. e
		4.998	.01	Ŷ
		1. 876	A),	mant
U .		4.010	74	epect a
		4.74G	0.3	enect
		4.720	1.9	spect. e
		4.655	0.06	spect, e
		4.503	0.033	spect
		4.457	0.004	e
,,234	(17)	1. 768	70	spect
<u> </u>	(UII)	4.700	28	sneet
		4.601	0.35	ion ch $(\alpha - e)$
		4.27	3x10-5	v.
."		4.14	1.6x10 ⁻⁵	Ŷ
1239	(Amiri)	h 500	⁴⁵⁵	smeet.
Ų ·	(we')	4.578		spect
		4.550	~3	spect
		4.496	-1	spect
		4.438	~3	spect
		4.412	-2	spect
	. ¹	4.394	62	spect
		4.368	6	spect

	4.362	11	spect
	4.339	1.5	spect
	4.320	3	spect
	4.214	5.5	spect
u ²³⁶	4.499	73	ion ch
	4,451	27	a-e (emuls)
	4.339	_0 .5	Y
258	• • •	,	
υ	4.195	. 77	ion ch
· · · ·	4.148	23	ion ch (u-e)
	4.038	0.23	ion ch (a-e)
	6 08		ton ch
ND _	0.20	· .	XOII CII
Nn 233	4、 克文		for ch
мЪ	المتركز المجمع		
Np ²³⁵	5.095	3.8	ion ch
	5.015	83.6	ion ch
·	4.925	11.8	ion ch
	4.864	0.8	ion ch
0.27			
Np^{23}	4.866	3	spect
	4.860	ĭ	spect
	4.810	1.4	spect
	4.798	1.5	spect
	4.781	42	spect
	4.764	28	spect
	4.759	5	spect
·	4.726?	0.8	spect
	4.703	2.2	spect
	4.687	1.6	spect
	4.656	5.5	spect
	4.631	6.0	spect
	4.59	0.5%	1on ch
	4.52	0.02%	ion ch
232	¢ =Ò		A sum with
Pu	0.20		tou cu
 233	6 80		ton ch
	0.00	•	2044 044
Pu ²³⁴	6.196	68	spect
	6.145	32	spect
	6.025	0.4	spect
OXE			
Pu ^c))	5.85		ion ch
236		()	
Pu	5.763	68.9	spect
	5.716	30.9	spect
	5.610	.18	apect
	5.448	.002	Q-7

-26-

1	•		
P.,237	5 65	01	ton ob
6 M	5.36	79	10n ch
Pu	5.491	71	spect
· · · · ·	2.440	29	spect
	5.000	0.12	spect, e
,	5.000	7-10-6	8
	4.695	1.2x10 ⁻⁴	7-7 7
230			•
Pu	5.147	72.5	spect
	5.134	16.8	spect
•	2.090 5.06h	10.7	spect
,	5.000	0.07	spect
•	4.975	0.005	meet
	4.917	0.005	spect
анан сайтаан алаан ал	4.780	0.002	spect
	4.728	0.005	spect
- 240			-
Pu	5.159	76	spect
	3.11 3	24	spect
	1.95h	.09	spect
AI-	410,24	·004	epect
Pu ²⁴¹	4.74		N 1
	4.747		· · ·
	4.890	75	spect
	4.845	25	spect
p. 242	1. 904	aw).	· · · · ·
<i>K</i> u.	4.097 h 851	74	spect
***	4.075	20	spear
Am ²⁵⁷	6.01		ton ch
230			
An	5.83		α-γ
	5.78	-100	ion ch
Am 241	a	m	
	2.541	0.39	spect
	5.482	85	epect
	5.439	12.8	spect
	5.416	0.008	spect
	5.385	1.7	spect, e
	5.321	.015	spect
242	5.241	•004	spect
Am	5.53	**	*
	5.201	~100	spect
Am ²⁴³	5. 745	0.17%	anant
	5.314	0.16%	spect
	5.272	87%	spect
	5.230	11.5%	spect
	5.175	1.1%	spect

Ċ

	Cm ²³⁸	6.50		ion ch
•	Cm ²¹⁴⁰	6.287 6.243 6.143	72 28 .04	spect spect spect
	Cm ²⁴¹	6.078 5.935 5.925 5.879	< 35 70 17 13	γ spect spect
•	cm ²⁴²	6.110 6.067 5.967 5.812 5.606 5.515 5.185 5.185 5.12	73.7 26.3 0.030 0.005 3x10-5 3.2x10-4 1.4x10-4 4x10-6	spect, e spect, e spect spect spect spect spect spect
•	Cm ²⁴³	6.061 6.005 5.987 5.900 5.872 5.780 5.736 5.680 5.676 5.634 5.584	1 5 0.9 6 0.1 0.5 73 11.5 1.6 0.2 0.15 0.05	spect, e spect, e spect, e spect, e spect spect, e spect, e spect, e spect spect spect spect
•	Cm ²⁴⁴	5.802 5.760 5.663 5.515	76.7 23.3 0.017 0.004	spect spect spect Y
	Cm ²⁴⁵	5.55 5.36 5.31	~92 ~8	a-y ion ch 7-y
	Cm 246	5-37		ion ch
	cm ²¹⁴⁸	5.05	·	ion ch
	Bk ²⁴³	6.72 6.55 6.20	30 53 17	ion ch ion ch ion ch

-28-

Bk ²⁴⁴	6.67		ion ch
Bk ²⁴⁵	6.37 6.17	33 41	ion ch ion ch
0h7	5.09	20	ton cu
Bk	5.75	-Jio	any an
· · · · · · · · · · · · · · · · · · ·	5.51	-60	ion ch
	5.30	~5	ion ch
Bk ²⁴⁹	-5.46		a-7
	5.42	96	ion ch
	5.08	4	ion ch. α -y
			· · · · · · · · · · · · · · · · · · ·
Cr ²⁴⁴	, 7.17		ion ch
cr ²⁴³	7.11	, , ,	ion ch
246	·	>	
CT	6.753	78	spect
	0.711	22	spect
· · ·	6,013	0.2	ary
	0.400	0.02	a-y
Cr ²⁴⁸	6.26	82	ton ch
	6.22	18	Qe
alia			· · · · · · · · · · · · · · · · · · ·
Cf ²⁴⁹	6.194	1.9	spect
	6.139	1.1	spect
	6.072	0.4	spect
	5.990	0.08	spect
	5.941	3.3	spect
	5.898	1.2	spect
	5.842	3.0	spect
	5.806	84	spect
	5.778	0.5	spect
	5. (49	4.4	spect
	2.001	0.4	spect
250	6 pab	Âz.	maat
V 4	5 080	17	apeco
	5.880	0.30	Spec C
	1.000	the states	Blace
Cr ²⁵¹	5 ALL	50	enart
	5.667	50	spect
252	4 m m m g	₽ *	
CI	6.112	84	spect
	6.069	15.5	spect
	5,968	0.28	spect
_246			
R.	7.3		ion ch
" 248	(0m		
₽ 	0.07		ion ch

6.76

-29-

î. Ç

80

E²⁴⁹

UCRL-9524

ion ch

.,К

¥³

E ²⁵¹	6.48		ion ch
E ²⁵²	6.64		ion ch
B ²⁵³	6.633 6.624 6.594 6.592 6.552 6.541 6.498 6.480	90 0.8 0.7 6.6 0.75 0.85 0.26 0.08	gect spect spect spect spect spect spect
	6.246 6.206 6.156	0.04 0.04 0.015	spect spect
x ²⁵⁴ (480a)	6.43		spect
Fm ²⁴⁸	7.8		ion ch
Fm ²⁴⁹	7.9		emuls
Fm ²⁵⁰	7.43		ion ch
Pn ²⁵¹	6.89		ion ch
Fm ²⁵²	7.04		ion ch
Bm ²⁵³	6.9	• * • • •	ion ch
Pm ²⁵⁴	7.20 7.16 7.06	85 14 0.9	ion ch, spect spect spect
Bm ²⁵⁵	7.12 7.09 7.03 6.97 6.90	< 0.4 0.4 94 5 0.8	a-e spect spect spect spect
Mv ²⁵⁵	7.34		ion ch
102 ²⁵³	8.8		ion ch
102 ²⁵⁴	8.3		ion ch

-30-

1

ion ch	= ion chamber
spect	- magnetic spectograph
a-y, a-e, or y-y	= a-y, a-e, or y-y coincidences
remuls	= energy or intensity measurement in an emulsion
γ .	- gamma ray energy measurement
.e.,	= conversion electron energy measurement
*	= energy determined from closed decay energy cycles

N de

<u>ن</u>

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

 $[\alpha_{i}]$

