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ABSTRACT OF THE DISSERTATION

Assessing the Use of Quantitative Structure-Activity Relationship Models in Previously
Unevaluated in the European Union Registration, Evaluation, Authorization and Restriction of

Chemicals Analysis of Alternatives

Kazue Kelly Chinen

Doctor of Environmental Science and Engineering

University of California, Los Angeles, 2019

Professor Michael K Stenstrom, Co-Chair

Professor Timothy Malloy, Co-Chair

Untested chemicals released into the market could have harmful effects on human health

and the environment. Non-testing methods such as quantitative structure-activity relationship
(QSAR) models may prevent these harmful consequences. However, without a meaningful
evaluation of QSAR usage and proper documentation under the European Union’s (EU)

Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) authorization

process, the European Chemicals Agency (ECHA) will continue to make decisions as to whether

to authorize Annex XIV chemicals are based on uncertain quality of these QSAR predictions.
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The four major research questions of this study are: 1) To what extent are QSARs used in AoAs
to support, eliminate or evaluate in a weight of evidence (WoE) context an alternative to an
Annex XIV chemical?; 2) How did applicants document their QSAR use in AoAs?; 3) How was
WoE using QSAR predictions in AoAs used to assess priority endpoints?; 4) How can battery
ITS QSAR models further the evaluation of potentially harmful chemicals in AoAs? In order to
conduct an analysis on QSARs, it was important to first have a firm understanding of how
regulatory models work in the European Union. To become familiar with this process, two
regulatory models were built at the Technical University of Denmark (DTU) for predicting
agonism and antagonism of the Constitutive Androstane Receptor (CAR) for future upload to the
Danish (Q)SAR Database. Applying this knowledge, data were collected from 189 AoAs
through May 2017 to assess QSAR usage in AoAs, however, low numbers suggested that
QSARSs may not have been fully utilized. To explore possible reasons behind these statistics, an
assessment of proper documentation of QSAR predictions in AoAs well as a review on the
completeness of WoE using QSARs for higher-tier endpoints were performed. Results indicated
that several completeness criteria were not met, including one of our priority criteria, structural
analogues. In addition, only a limited number of AoAs used Woe with QSARs. A comparison of
WoE using QSARs from the AoA sample with Danish EPA battery ITS QSAR predictions

suggested that current use of single QSAR models continues to be limited.
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1. Chapter 1: Introduction to Assessing the Use of Quantitative Structure-Activity
Relationship Models in Previously Unevaluated Analyses of Alternatives in the European

Union Registration, Evaluation, Authorization and Restriction of Chemicals

Every day thousands of untested industrial and synthetic chemicals put humans and
wildlife at risk for long-term, serious human health and environmental effects. Traditional testing
of chemicals is expensive and oftentimes employs the use of animal-testing, which is subject to
both ethical and quality considerations (Akhtar 2015). Over the last decade, the search for cost-
effective testing has shifted towards advanced technologies, such as quantitative structure-
activity relationship (QSAR) models and human cell testing (Knudsen et al. 2013; NRC 2007;
NRC 2014b). As computational models, QSARs predict the potential toxicity of untested
chemicals based on the assumption that chemicals that are similar in structure have similar toxic

endpoints (Malloy et al. 2017).

Under the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)
authorization process, higher-tier endpoint substances known as Substances of Very High
Concern (SVHC), are prioritized though limited testing data can impede their identification.
According to ECHA, SVHCs are substances that have: a) carcinogenic, mutagenic, reprotoxic
(CMR); or b) Persistent, bioaccumulative toxic chemical (PBT)/ very persistent or very
bioaccumulative or toxic chemical (vPvB) high-tier endpoint criteria; or ¢) other toxicological
properties of concern such as endocrine disrupting properties or PBT/vPvB properties, which do
not fulfill the criteria of Annex XIII (ECHA 2019g). If placed on the Candidate list, SVHCs may
be subject to further restriction (ECHA 2019¢). Once an SVHC is included on the final Annex
XIV list, however, companies must formally apply for authorization if they want continued use

of their priority substance.



As part of the information requirements for authorization, applicants must submit health
and environmental effects data to the Environmental Chemicals Agency (ECHA) in an analysis
of alternatives (AoAs) application. Under authorization, ECHA’s Committees for Risk
Assessment (RAC) and Socio-Economic Analysis (SEAC) assess risks as well as the availability
and feasibility of possible alternatives in the analysis of alternatives (AoA) report for Annex XIV
substances (ECHA 2019a). Yet, for many untested alternative chemicals, data gaps exist (OECD
2014; Tickner and Jacobs 2016), for which QSARs can play a critical role in helping to fill in

data gaps.

Despite ECHA’s recommended use of non-testing methods, particularly in cases of data
gaps (ECHA 2011b), there is limited insight into the extent to which AoA applicants use
QSARs. Recent evaluations performed by ECHA on QSAR use have focused exclusively on
registration dossiers, for which ECHA noted “poor justifications for using alternatives to
vertebrate animal testing” (ECHA 2017a). However, with QSARSs receiving so little attention
under authorization, there is little knowledge available on the variations in quality of QSAR
predictions and supporting information in REACH AoAs. This scenario is troubling, especially

when QSARs generate vital and sometimes the only available data on a chemical.

Because of the advances in QSAR modeling and software platforms, quantitative
structure-activity relationship (QSAR) models have been recognized for their ability to aid in
certain SVHC detection (Jacobs 2004). QSARSs can be used to screen both large inventories of
chemicals and individual compounds to predict the toxicity of untested chemicals for a variety of
endpoints. Currently, there are a limited number of in silico tools and QSAR models designed to
predict toxicity for CMR/PBT or vPvB endpoints that modulate the constitutive androstane

receptor (CAR), which is implicated in human thyroid regulation (Maglich et al. 2004; Qatanani
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et al. 2005; Yan and Xie 2016), energy metabolism (Gao and Xie 2012; Wahlang et al. 2014),
and fetal development (Qatanani and Moore 2005; Wyde et al. 2005). Kiiblbeck et al. (2008)
selected CAR agonists based on ligand-binding by conducting a virtual screening study that
included a preliminary screening of the Tripos LeadQuest® database of approximately 85,000
compounds to identify potentially active compounds. In a later study, Kiiblbeck et al. (2011)
used his molecular docking technique along with other approaches to identify CAR inverse
agonists. Lee et al. (2017) developed a predictive model to classify compounds as either
activators or inactivators. A variety of CAR QSAR models have also captured 3-D modeling

with precise predictions (Dring et al. 2010; Jyrkkérinne et al. 2008; Kato et al. 2017).

While these valuable studies predicted compounds that could either activate CAR and
possibly trigger harmful metabolites, or, deactivate CAR, thereby interfering with vital metabolic
actions, none of these models were developed on a robust gHTS dataset based on a wide range of
concentrations tested on human cell lines. Moreover, 3-D QSAR modeling is limited by its
inability to replicate ligand binding in real-time and its initial structural dataset (Jacobs 2004).
Thus, having a large sample of high-quality data is important for a robust QSAR model, because
it is a prerequisite for the development of a model having a large applicability domain and a high

predictive accuracy.

The purpose of this paper is to understand the extent to which QSARs are being used in
REACH AoAs. This research is important because no one has evaluated QSARs under
authorization. In addition, all REACH QSAR evaluations have been performed at the level of
registration. Thus, for chapters three and four, assessments are provided on how QSARs are used
in AoAs as well as if required documentation that supports these predictions is provided. In

addition, evaluations are made on the completeness of WoE using QSARs and the benefits of
3



ITS battery QSAR models. However, in order to assess QSARs in AoAs, a practical
understanding of how QSARs work needed to be established. Chapter two therefore details the
importance and development of two QSAR models for CAR at the Technical University of
Denmark (DTU) based on a new data optimization approach to QSAR development for large

inventory screening.

This study, which identifies QSAR model usage and target endpoint trends will allow
ECHA regulators and stakeholders to gain insight into how applicants are applying QSAR
guidance typically reserved for registrants. This research can help strengthen ECHA’s risk
assessment programs by providing additional information for regulatory decision-making, more
specifically, on how how higher-tier endpoints can be better supported with QSAR predictions.
Finally, implementing new guidance to support ITS battery QSAR testing is another forward-
looking way to adapt to more integrated chemicals assessments. While this is the first step in
providing information on QSAR usage in AoAs, this information may support ECHA’s efforts in
monitoring AoA applicants. Additionally, data generated from this study may facilitate the
selection of safer alternatives by industry when seeking authorization, thereby reducing the
number of opportunities to maintain the status quo. Finally, expanding the Danish (Q)SAR
Database with more freely accessible QSARs and QSAR predictions may help to improve the

quality of AoAs.



2. Chapter 2: QSAR modeling of different minimum potency levels for in vitro human

CAR activation and inhibition and screening of 80,086 REACH and 54,971 US substances

Abstract:

Along with the Pregnane X Receptor (PXR), the Constitutive Androstane Receptor
(CAR) is a key regulator of the metabolism and excretion of xenobiotics and endogenous
compounds. Currently, tens-of-thousands of untested industrial compounds are released into the
environment potentially exposing large parts of the population to chemical substances that have
properties that may inhibit or activate crucial receptors, such as CAR. Inhibition or activation of
CAR by xenobiotics can alter protein expression, leading to decreased or enhanced turnover of
both xenobiotics and endogenous substances. Impacts from these alterations can potentially
disturb physiological homeostasis and cause adverse effects. In the present study, the U.S. Tox21
high-throughput in vitro assay results for human CAR (hCAR) inhibition and activation are
optimized in a comprehensive in-house process to derive training sets for different potency cut-
offs and develop suites of quantitative structure-activity relationship (QSAR) models with binary
outputs. Final expanded models, which include substances from the external validation sets, are
developed for select minimum potency models. Rigorous cross- and external validations are used
to demonstrate good predictive accuracies for the models. The final expanded models were
applied to screen 80,086 European Union (EU) and 54,971 United States (U.S.) substances, and
the models predicted around 60% of the substances within their respective applicability domains
(AD). Finally, statistical comparisons of hCAR predictions and QSAR predictions for a number
of other endpoints related to Pregnane X, aryl hydrocarbon, estrogen and androgen receptors, as
well as mutagenicity, sensitization, cancer and teratogenicity from the Danish (Q)SAR database

were made to investigate the possible implications of hCAR antagonists and agonists. The final



models and predictions made with these models for 650,000 substances will be made available
on the free Danish (Q)SAR Database, which can aid in priority setting, read-across cases and

weight-of-evidence assessments of chemicals.

Introduction

The constitutive androstane receptor (CAR) belongs to the human nuclear receptor (NR)
superfamily, a 48-member group (Honkakoski et al. 2003; Maglich et al. 2001) of “orphan” and
“adopted-orphan” NRs (di Masi et al. 2009; Kachaylo et al. 2011; Sonoda et al. 2008). In
humans, the CAR protein is encoded by the NR113 gene from the NR subfamily 1, group I,
member 3. The NR subfamily 1 group I also includes the Vitamin D Receptor (VDR) and the
Pregnane X Receptor (PXR) (Alexander et al. 2015; Molnar et al. 2013; Wang et al. 2011). CAR
is known for its ‘constitutive’ state. In the absence of a ligand, CAR has activity (Kretschmer and
Baldwin 2005; Moore et al. 2003). Many known CAR agonists are also species-specific (Gong
and Xie 2008; Qatanani and Moore 2005). CAR is expressed mainly in the liver and small
intestine (di Masi et al. 2009; Honkakoski et al. 2003; Lu and Xie 2017) and mediates the
induction of metabolizing enzymes, such as cytochrome P450 3A (CYP3A) isoenzymes,
conjugation enzymes such as UDP glucuronosyltransferase family 1 member A1, and
transporters such as P-glycoprotein (J.G. DeKeyser and C.J. Omiecinski 2010; Tabb and
Blumberg 2006; Xu et al. 2005; Yan and Xie 2016). Along with the NR PXR, CAR is a principal
regulator of the metabolism of xenobiotic compounds (Hakkola et al. 2018; Poso and
Honkakoski 2006; Tabb and Blumberg 2006) . Both PXR and CAR cross-regulate their target
genes cytochrome P450 (CYP) CYP2B and CYP3A (Francis et al. 2003) . CAR also plays an

important role in the metabolism of a number of endogenous substances such as thyroid and



steroid hormones, cholesterol, bile acids, bilirubin, glucose, and lipids (Hakkola et al. 2018;

Tabb and Blumberg 2006).

In some cases, the CAR upregulation of xenobiotic metabolism may lead to increased
turnover of hormone and other endogenous substances, and subsequent decreased hormone
levels in the body (Qatanani et al. 2005). Such interference in the regulation of endogenous
hormones may have negative consequences in thyroid regulation (Miller et al. 2009), which is
reflected in the adverse outcome pathway (AOP): 8 (under development) (Friedman et al. 2016).
According to this AOP, activation of CAR or other NRs like PXR and the arylhydrocarbon
receptor (AhR) can cause upregulated thyroid hormone (TH) catabolism, and lead to reduced TH
levels, which may result in adverse neurodevelopmental outcomes in mammals (Friedman et al.

2016).

CAR is also involved in a number of other health outcomes. According to AOP: 107
(under review) (Peffer et al. 2018) CAR activation is the molecular initiating event that can lead
to hepatocellular adenomas and carcinomas in the mouse and the rat. When mice were exposed
to xenobiotics, CAR activation was found to be an important factor for tumor development
(Huang et al. 2005; Kretschmer and Baldwin 2005; Yamamoto et al. 2004). Yet, CAR activation
has been found to ameliorate diabetes (Dong et al. 2009). Alternatively, CAR inhibition may
have negative consequences, namely, decreased metabolizing potential in the body, which leads
to decreased turnover of endogenous hormones as well as decreased detoxification and excretion
of xenobiotics (NIH 2019¢). Furthermore, according to AOP: 58 (under development), CAR

suppression may lead to hepatic steatosis (Angrish and Chorley 2018).



In an effort to reduce animal testing and increase the toxicity-related information level on
chemical substances, Organisation for Economic Co-operation and Development (OECD)
developments and European Union (EU) Registration, Evaluation, Authorization and Restriction
of Chemicals (REACH) regulation have established guidance and policy to increase regulatory
use of quantitative structure-activity relationship (QSAR) models (Benfenati et al. 2018; ECHA
2018; OECD 2018). QSARs are mathematical models that predict properties, (e.g. biological
activities), based on chemical structure (Benfenati 2012; ECHA 2008; OECD 2007). Because
QSAR predictions can be generated for large inventories of substances in a short amount of time,
their use is well-suited for screening and priority setting (Rosenberg et al. 2017b). In some cases,
QSAR predictions may also be used for a 1:1 replacement of experimental tests (ECHA 2008).
For higher-tier health endpoints, QSAR predictions may contribute to Integrated approaches to

testing and assessment (IATA) weight-of-evidence (WoE) assessments and read-across cases.

The primary objective of this study was to develop global binary QSAR models that can
be used for screening purposes and single-compound identification of possible hCAR antagonists
or agonists. A secondary interest in this study was to process the experimental training set data
specifically for the development of QSAR models for prediction of minimum potency. We used
high-throughput in vitro data sets from the U.S. Tox21 Program’s qHTS assay for hCAR
agonism and for hCAR antagonism (NIH 2019b), and the results were used to train and validate

a number of QSAR models for hCAR inhibition and activation.

For priority setting purposes, the U.S. Tox21 Program applies quantitative high-
throughput (QHTS) screening with the aim of identifying substances that may adversely affect
human health. To date, the Tox21 chemical library holds approximately 10,000 diverse chemical

substances, such as commercial chemicals, pesticides, food additives/contaminants, and medical
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compounds (NTP 2019). The Tox21 CAR agonism data has previously been used as the basis for
QSAR modeling (Matsuzaka and Uesawa 2019) , and others have also modeled CAR agonism

using other smaller data sources (Jyrkkirinne et al. 2008; Kato et al. 2017; Lee et al. 2017).

In this study, we developed a set of criteria to process the data for our QSAR model
development, including setting a minimum absolute effect, which should be observed at a
maximum concentration threshold and occur at a non-cytotoxic concentration. We also filtered
out luciferase inhibitors as likely false positive agonists and false negative antagonists. The
processed data was ultimately used to build four final “expanded” models. For the validation
procedures, all initial models underwent a DTU in-house two times 5-fold cross-validation (CV)
as well as external validations with unused actives and inactives. The final models underwent the
same CV procedure and external validation for specificity. These models were used to screen
80,086 structurally diverse pre-registered and/or registered substances under the EU and REACH
regulation (DTU Food 2018a; DTU Food 2019), and 54,971 unique chemical structures from the
U.S. Environmental Protection Agency (U.S. EPA) COMPARA inventory (U.S. EPA 20194d).
Generated QSAR predictions have the potential uses for: 1) priority setting; 2) single substance
IATA WoE assessments; and 3) read-across support, (e.g. identifying quality source analogs and
contributing to the hypothesis justification). To explore the possible roles of the hCAR receptor
in relation to other biological activities, hCAR predictions were then statistically correlated with
predictions from other QSAR models from the free online Danish (Q)SAR database (DTU Food
2019) including PXR binding/activation (Rosenberg et al. 2017b), AhR activation (Klimenko
KO et al. 2019), thyroperoxidase inhibition (Rosenberg et al. 2017a), estrogen receptor (ER)
activation, androgen receptor (AR) antagonism (Vinggaard et al. 2008), genotoxicity, cancer and

teratogenicity.



The QSAR predictions from these screenings will be published on the free online Danish
(Q)SAR Database. In addition, all final models will be published on the free, online Danish
(Q)SAR models website for real-time prediction of user-submitted structures and download of

detailed results in the QSAR Model Reporting Format (QMRF).

Materials and methods

Experimental datasets, definition of endpoints and developed QSAR-targeted data processing

We used results from the U.S. Tox21 Program available from the Tox21 Data Browser
(NIH 2019¢) and structures for the Tox21 substances from PubChem (NIH 2018). As part of the
U.S. Tox21 Program, the U.S. NIH screened a total of 9,667 chemical substances for hCAR
agonism and antagonism assays and for cell viability (NIH 2019c; NIH 2019d). Substances in
the chemical library were not specifically selected to target hCAR agonism and/or hCAR
antagonism nor were they previously suspected of affecting the hCAR receptor.

Previous publications have described the chemical structures, hCAR assays and Tox21
data analysis in more detail (Huang 2016; Lynch et al. 2018). For the cell culture, Tox21 qgHTS
testing used human hepatoma (HepG2) cells transfected with a double-stable human CAR and
CYP2B6-2.2kb, in both agonist and antagonist mode (NIH 2019d; NIH 2019f). In addition, both
assays screened 16 different response concentrations with varying concentration ranges among
the different substances (NIH 2019e). Screening statistics of the agonist assay generated a Z’
factor, which reflects the assay signal dynamic range and data variation associated with signal
measurements, of 0.687 (Zhang et al. 1999), and a coefficient of variance close to 6.04% + 1.56
(Lynch et al. 2018). Z’ factors. Thus, an indicator of good performance is a Z’ factor above 0.5
(Lynch et al. 2018; Zhang et al. 1999). In addition to these datasets, computer-readable structure

data files (SDF) on the tested chemicals substances structures from PubChem: a) AID 1224893
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on small molecule antagonists of the hCAR signaling pathway, and b) AID 1224892 on small
molecule agonists of the hCAR signaling pathway) were used as a basis for our study. Assay

results were provided by the U.S. Tox21 Program.

The US Tox21 activity profiling is primarily aimed at identifying potential mechanisms
of action to prioritize substances for further in-depth toxicological evaluation. As part of the U.S.
Tox21 data processing, concentration-response series (CRS), typically three per substance per
assay, are fit to four-parameter Hill equations, and the outcomes are ranked into qHTS curve
classes specific to this program, accounting for efficacy, p-value, asymptotes and inflection
(Huang 2016). Furthermore, concentrations of half-maximal relative (AC50) rather than absolute
activity (AC50) are calculated for activity and cell viability. For instance, if the maximum
activity of a substance is 30% inhibition, Tox21’s dose-response modeling Hill curve will give
an AC50, (i.e. the concentration that causes half-maximal activity) of 15% inhibition. In the end,
half-maximal AC50 values for activity and cell viability were applied to make activity outcome
summary calls specific to this program, which in some cases also integrated results from

additional counterscreens.

Rather than use the Tox21 summary calls (NIH 2019¢c; NIH 2019d), in this study, we
undertook further QSAR-targeted processing of the Tox21 hCAR data by setting criteria for
absolute activity for actives and setting criteria to only select the most robust inactives (Figure 2-
1). Because we did not find any information from regulations, AOPs, scientific literature or other
sources that would tell us which potency cut-offs we should apply to identify most relevant
agonists/antagonists from a health impact perspective, or, if certain potency cut-offs formed a
better basis for QSAR modeling than others, we decided to apply different potency cut-offs with

a 25% effect (Vinggaard et al. 2008) occurring at or below six different thresholds: 10 uM, 20
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uM, 30 uM, 40 uM 50 uM, and No Upper Limit (NUL) to construct our endpoint definitions.
We then used each threshold to construct a data set. A lower cut-off equaled to a higher
minimum potency, which could potentially form the basis for stronger alerts in a model, given a
training set that contains a sufficient number of observations. On the other hand, NUL implied

that we did not impose a concentration cut-off.

For each substance, our QSAR-targeted process led to the assignment of one of the
following outcomes: “active”, “inactive”, or “inconclusive,” for which only actives and inactives
were used for QSAR development and validation. For the data processing, we filtered each test
CRS through in-house tools, specifically developed for the purpose of determining active
responses with non-cytotoxic concentrations showing at least 25% effect (in absolute value), and
accepted only the best Tox21 Hill curve classes. For inactives, we also required an initial Tox21
classification of curve class 4 (i.e. inactive) that exhibited no cytotoxicity up to 10 uM
concentration (Vinggaard et al. 2008). In the end, the complete refinement procedure for each

substance for both hCAR agonism and antagonism for each of the selected concentration

thresholds (10 uM, 20 uM, 30 uM, 40 uM, 50 uM, and NUL) fell into five main data steps:

1. For agonism activity, only Tox21 curve classes 1.1, 2.1, 1.2 and 2.2, (i.e. all complete
and incomplete curves with inflection, p-value < 0.05 and efficacy > 3 standard
deviations (SD) of control) were accepted.

2. For antagonism activity, only curve classes -1.1, -1.2, -2.1 and -2.2, (i.e. all complete and
incomplete curves with inflection, p-value < 0.05 and efficacy > 3SD of control) were

accepted.
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3. The highest concentration with non-cytotoxicity was calculated as the median for all cell
viability CRSs for the analyzed substance, using the highest concentration with at least
80% viable cells for each CRS.

4. For agonist “actives”, two-thirds of all hCAR activity CRS for the substance were
required to fulfill the requirement of step 1 and have at least 25% effect at a non-
cytotoxic concentration (as defined in “3”) at or below the selected concentration
threshold. For antagonist “actives”, two-thirds of all h(CAR activity CRS for the
substance were required to fulfill the requirement of step 2 and have at least 25% effect at
a non-cytotoxic concentration (as defined in “3”) at or below the selected concentration
threshold.

5. Substances for which all hCAR activity CRS were curve class 4 with no cytotoxicity up

to at least 10 pM were assigned “inactive”.

A small number of substances for both agonism and antagonism had at least 50% but not two-
thirds of all hCAR activity CRS fulfilling the requirement of step 4 and were considered to be

‘active’ by manual expert judgment.

Because both hCAR agonism and antagonism assays were luciferase-based, we removed
substances, which were luciferase inhibitors. Under certain circumstances, luciferase inhibitors
may stabilize the enzyme, giving significant increases in luciferase levels in cells relative to
untreated wells within the typical assay incubation time, which can lead to increases in
luminescent signal by luciferase inhibitors in cell-based assays (Auld and Inglese 2018). As cell-
based luciferase counterscreens for the hCAR agonism and antagonism assays were unavailable,

we applied an in chemico luciferase inhibition screen for all Tox21 substances (NIH 2019a).
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Structure curation

All data set structures underwent structure curation after the QSAR-targeted data
processing (Figure 2-2). The curation was performed in OASIS Database Manager (DBM) 1.7.3
(Nikolov et al. 2006), which included additional in-house developed algorithms. First, we
identified compounds with acceptable structures: Only structures exclusively containing atoms
from the following list were kept: H, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and L.
Records with structure errors identified by OASIS DBM were removed from the dataset. We
then conducted a dissociation simulation by breaking ionic bonds and “neutralizing” the
remaining structures. After this, we removed substances containing two or more organic
components, (i.e. “mixtures”), and structures with less than two carbon atoms from the dataset.
Furthermore, to assure that every chemical structure was only represented once in the data set,
identical structures, (i.e. duplicates), were identified and removed according to the procedure

described in Figure 2-2.

Training and external validation sets preparation

For both antagonism and agonism, we randomly split each of the six concentration
threshold data sets into a training and a validation set (Figure 2-1). For each data set, we
randomly selected 20% of the active structures for the validation set. The remaining 80% active
structures were then assigned to the training set. Afterwards, we randomly selected ten times as
many training set inactives to make a training set with a 1:10 distribution as this is the maximum
ratio that the applied QSAR modeling software, Leadscope® Predictive Data Miner (LPDM)
3.5.3-5 can efficiently model. Any remaining inactives were used for the validation set. This
meant that for external validation sets, inactives greatly out-numbered the actives. After the

models were fully developed, we applied an independent external validation.
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Lastly, we combined the training set and the external validation set for each of a number
of selected concentration threshold to create four final 20uM and 50uM expanded models for the
hCAR antagonism and hCAR agonism (Figure 2-1). An aim of the expanded models was to
possibly improve model accuracy, robustness and/or applicability domain of the single training
set-based models. Due to the 1:10 limitation, some negatives were randomly left out of the
expanded models. These negatives were set aside to make independent external validations for

specificity for the expanded models.

OSAR modeling and selection

To build all models for both antagonism and agonism, we used the commercial software
Leadscope® Predictive Data Miner (LPDM), a component of Leadscope® Enterprise Server
version 3.5.3-5 (Leadscope® 2019b). Structures were first imported into LPDM. Nine
continuous molecular descriptors (AlogP, Hydrogen Bond Acceptors and Donors, Lipinski
Score, Molecular Weight, Parent Atom Number, Parent Molecular Weight, Polar Surface Area,
Rotatable Bonds) were calculated for each structure. Imported structures also underwent
LPDM’s systematic substructure analysis for indexing to facilitate faster data retrieval according
to the 27,000 pre-defined fragment descriptors (Leadscope® 2002; Roberts et al. 2000). LPDM
allows the user to generate additional training set-dependent fragment descriptors called
“scaffolds,” which may or may not coincide with the original library. From the entire descriptor
set, which includes structural features, scaffolds and molecular descriptors, LPDM automatically
selected the top 30% descriptors using the Yates X?-test. For specific models, we applied this
setting. LPDM models binary response variables using partial logistic regression (PLR).

According to Valerio et al., the PLR method minimizes autocorrelation (Valerio Jr. et al. 2010),
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PLR is used for a binary response variable and extracts factors by PLS using the
responses as continuous data followed by logistic regression for classifications; this
process is repeated until the criteria for optimum number of factors and features are
reached. The binary classification model results are given as outcome probabilities from

the logistic regression.

Training sets skewed towards a greater number of negatives, however, can often lead to
models with a higher specificity, (i.e. true negatives), at the expense of the sensitivity, (i.e. true
positives) (Valerio Jr. et al. 2010). LPDM, therefore, offers the option of building composite
models, a method bearing some resemblance to bagging (Breiman 1996) though with full
resampling of the smaller class and without replacement of the larger class. With this option, the
modeler can set the desired ratio between the two activity classes and include up to ten sub-
models with a 1:1 ratio, resampling the smaller class. In our experience, such models have close-
to-equal sensitivity and specificity. Previous research has applied a “cocktail” model approach
where the sub-models of composite models are aggregated with a model on the full skewed
training set (“single model”) (Rosenberg et al. 2017a). In earlier work, this approach has been
shown to both increase specificity with only a small penalty on sensitivity compared to the
composite models, as well as increase the balanced accuracy compared to either composite or

single models (Klimenko KO et al. 2019).

With the purpose of selecting the specific modeling approach for further hCAR model
development, we used the following approaches for all six agonism and six antagonism

concentration threshold training sets in the initial model development:

1) single model, i.e. a non-composite model drawing on the full training set
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2) composite model, i.e. 10 sub-models

3) composite ‘cocktail’ model, i.e. single model combined with the 10 composite sub-

models

For all models, scaffolds were generated in LPDM from the training set structures and used
along with the continuous descriptors and features. All models underwent a two times five-fold
CV (i.e. removing 20% and making models on the remaining 80% structures to predict the 20%
leave-out) by the LPDM algorithm. Currently, LPDM’s variable selection algorithm, transfers
knowledge of the selected descriptor set from the parent model when building the sub-models.
Subsequently, LPDM’s CV may give overly optimistic results. Thus, LPDM’s CV was only used
to assess the relative performance of the initial models for modeling approach selection. In the
end, we selected a number of concentration-thresholds for antagonism and agonism, for which
we used the expanded training set (i.e. combined initial training set and validation set for that

concentration threshold) to build new, expanded models (Figure 2-1).

Applicability domain definition

We defined the applicability domain (AD) of our models as a combination of the
following three components: 1) model-independent structure requirements; 2) LPMD’s
definition of a structural domain; 3) DTU Food’s in-house definition of class probability

refinement on the LPDM’s output. We considered a test structure to be in AD if:

1. The test structure exclusively contained H, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br,
and/or I, it is mono-constituent after de-salting, and it contains at least two carbon atoms.

2. The test structure met the following LPDM criteria:
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a) LPDM’s algorithms can calculate all molecular descriptors for the structure

b) the structure of the compound contains at least one structural feature used in the
model

c) the structure of the compound has at least 30% similarity using the Jaccard
(Jaccard 1901) (also known as Tanimoto) coefficient (Valerio Jr. et al. 2010) with

a training set substance (based on Leadscope’s built-in fragment library).

3. The test structure met the following criteria based on the positive prediction probability p
between 0 and 1 calculated by LPDM as part of the prediction, with actives having a p >
0.5 and inactives having a p < 0.5 (Valerio Jr. et al. 2010): p > 0.7 is required for an
active prediction call and a p < 0.3 for an inactive prediction call. Predictions closer to the

cutoff (p = 0.5) are excluded, as they are likely to be less reliable.

Validation of the models

After using LPDM to guide the selection of the modeling approach, we applied DTU
Food’s in-house two times five-fold cross-validation procedure to measure the robustness and
performance of the initial antagonism and agonism models (Figure 2-1). In this procedure, all
CV sub-models were developed in isolation from the parent model as completely new models in
Leadscope. Unlike LPDM’s cross-validation procedure, the DTU Food’s in-house CV conditions
prevent any transfer of knowledge from the parent model to the CV sub-models. The five-fold
approach was chosen as a robust leave-many-out cross-validation approach, and because
removing any more actives might cause too large of a perturbation in the training set for the

smaller active class.
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To execute the in-house five-fold cross-validations, we first randomly divided the
training set into five portions, each constituting 20% of the training set structures, while
preserving the ratio of inactives to actives (10:1). For each of these five portions, the following

steps were taken:

1) the 20% portion was removed from the full training set to create a sub-model’s training
set of 80%.

2) a CV sub-model was built from the reduced training set by applying the same
development approach as for the parent model, but without transferring any variable
selection information.

3) the 20% left-out portion was predicted by the 80% sub-model “external validation sets”.

The whole procedure was performed twice, resulting in 10 CV prediction sets per
threshold concentration. For all in-AD predictions in each threshold concentration’s 10
prediction sets, we also calculated overall sensitivity, specificity and balanced accuracy as well
as standard deviations (SD) between prediction results in the ten sub-models (Cooper II et al.
1979). In our study, we used Cooper et al.’s definitions: @) sensitivity is defined as the
percentage of experimental actives predicted accurately; ) specificity is the percentage of
experimental inactives predicted accurately; c¢) balanced accuracy (BA) as the average of
specificity and sensitivity (Cooper II et al. 1979). To determine the percentage of substances with
predictions within the AD of the DTU in-house CV models, we calculated the total coverage, i.e.
“the proportion of the full set predicted within the AD of the model” of each threshold

concentration’s total 10 CV models (Rosenberg et al. 2017a).
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To further evaluate the predictive performance of the initial DTU in-house CV threshold-
concentration models for antagonism and agonism, models were subjected to an external
validation using the 20% removed validation sets (Figure 2-1). Predictions, which were within
AD, were then compared with the experimental results. Sensitivity, specificity, balanced
accuracy and coverage were calculated for each model. Likewise, we applied the DTU Food’s
in-house cross-validation procedure to the expanded antagonism and agonism models for the
selected concentration thresholds (Figure 2-1). Since all expanded models contained all of the
actives from the initial training and validation sets, an external validation could only be

performed for specificity using the unused inactives from the expanded models.

Screening large chemical inventories

To identify possible hCAR activators and inhibitors among current industrial chemicals,
we applied the expanded QSAR models to two, large regulatory chemical libraries: the REACH
pre-registered and/or registered substances compiled for the Danish (Q)SAR Database (DTU
Food 2018a; DTU Food 2019), and a U.S. EPA substance list compiled for the U.S. EPA
CoMPARA project (Mansouri et al. 2017) (Figure 2-1). Both the REACH substances and U.S.
EPA set already underwent a similar structure preparation as described in the “Structure
preparation” section. For our study, 80,086 QSAR-ready REACH structures, and 54,971 QSAR-
ready U.S. EPA inventory structures were screened by the expanded QSAR models. As part of
the predictions, we calculated the proportion of QSAR-predicted U.S. EPA and REACH-PRS

substances within the AD, and of these, how many were predicted as active or inactive.

Statistical correlations of CAR predictions with QSAR predictions for other endpoints

To investigate possible associations between PXR, AhR, ER, AR, mutagenicity,

sensitization, cancer and teratogenicity large-inventory prediction results, we correlated
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screening results from the REACH set with Leadscope® QSAR predictions contained in the
DTU-developed free online Danish (Q)SAR Database. Detailed information on Leadscope®
QSAR models can be found in their QSAR Model Reporting Format (QMRF), which is freely
downloadable from the Danish (Q)SAR Database (DTU FOOD et al. 2019). To gauge the
strength of our correlations, specifically for predictions found in the common domain between
CAR and the individual models, we calculated a Matthews correlations coefficient (MCC), a chi
square (y?) test statistic, and sensitivity for CAR active antagonists and antagonists. Test
statistics demonstrated the ability of the hCAR models at ‘catching’ actives from other models as
well as how often hCAR models give positive predictions when the other models predict a
negative outcome. Moreover, test statstics showed how good other models were at ‘catching’
actives from the hCAR models in addition to how often the other models give positive
predictions when the hCAR models predict a negative response. For instance, when you compare
actives and inactives from two different models, you can calculate sensitivity and specificity both
ways, namely how good Model 1 is at ‘catching’ actives and inactives from Models 2, and how

good Model 2 is at ‘catching’ actives and inactives from Model 1.

Results and discussion

In this study we developed QSAR models for hCAR antagonism and hCAR agonism for
a number of different effect concentration thresholds and used final expanded models (for 25%
effect at 20 uM and 50 uM) to screen 80,086 REACH substances and 54,971 U.S. EPA

substances for hCAR antagonism and agonism.

The training and validation sets

We started with Tox21 experimental results for 9,667 substances for both hCAR

antagonism and hCAR agonism from the Tox21 Data Browser and structures from PubChem.
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After subjecting the initial data to our rigorous refinement process, each threshold concentration
training set was reduced to approximately one tenth of the original dataset size. Detailed results
from the QSAR-targeted data processing, structure curation, and training and validation sets can

be viewed in Table 2-1.

OSAR modeling and selection

QSAR models were developed in LPDM based on all initial training sets using the three
different modeling approaches. In all but one case (agonism 10 uM), the cocktail (“3”’) models
had the highest balanced accuracies, due to increased specificities and only slightly decreased
sensitivities compared to the composite (“2”) models. We therefore chose to continue with the

cocktail models.

We next chose the concentration thresholds to advance the modeling process and expand
the training sets with substances from the validation sets. For both the antagonism and the
agonism models, the differences in performance of the cocktail model across all concentration
thresholds were small (Table 2-2). In other words, we did not discern some concentration
thresholds as being more or less “modelable” than others. We also chose the 20 uM antagonism
and agonism models as ‘expansion models’ for predicting higher potency substances, and the 50
UM antagonism and agonism models as ‘screening models’ of possible hCAR substances (Table
2-2). One reason we selected the 20 uM models for higher potency prediction as opposed to the
10 uM models, more specifically, the agonism model, was that the 10 uM agonism model had a
rather small number of actives in the training set, making the training set more unstable. In
addition, the 10 uM agonism model had a smaller AD compared to the 20 uM models. For the

50 uM models, we considered this threshold as still ‘interpretable’ for minimum potency, as
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opposed to the NUL models, which indicate zero potency. More specifically, if one predicts an
active with the 50 uM model, this means that the model predicts that the chemical will have
minimum 25% effect at maximum 50 micro-M concentration, i.e. a minimum potency. The 20
uM and 50 uM expanded models for both hCAR antagonism and hCAR agonism were modelled

using the expanded training sets presented in Table 2-1 and by the chosen cocktail approach in

LPDM.

Predictive performance of all the initial QSAR models

All initial QSAR models underwent a two times five-fold DTU Food in-house cross-
validation (CV) procedure as well as external validation with both the left out 20% active and all
remaining inactives. Results are given in (Table 2-3). For antagonism, CV sensitivities ranged
from 54.3% and 74.7%. However, with rather high SD values (i.e. 11.0% and 16.1%, for Ant-10
uM-QSAR and Ant-30 pM-QSAR, respectively), the CV sensitivities were not significantly
different from each other. The high standard deviations (SD) of sensitivities for the CV results of
both endpoints are likely due to the 20% removal of the relatively small sets of actives, which
removes valuable information for classes not highly represented in the sets (Table 2-3). In
contrast, CV specificities ranged between 92.4% and 97.2%. These high specificities had a
smaller SD range of values, (i.e. 1.2% to 2.9%), which reflected the bigger inactive classes in the

training sets. Balanced accuracies stayed between 75.7% and 84.0% (Table 2-3).

For the agonism models, CV sensitivity was much lower for the Ag-10 uM-QSAR, (i.e.
28.2% ) and and ranged between 61.6% and 71.7% for the remaining models (Table 2-3). SD
values had a higher range, (i.e. 12.2% and 32.3%) relative to the antagonism values (Table 2-3).

Higher SD values reflected the rather small size of the training set active classes. For example,
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the Ag-10 uM-QSAR initial model had only 26 actives compared to the Ant-10 pM-QSAR
initial model with 86 actives. On the other hand, the CV-derived specificities for the initial
agonism models ranged between 90.0% and 97.2%. Similar to the antagonism models, these high
specificities were attributed to larger inactive classes in the training sets. SD values ranged
between 2.2% for the Ag-No-Upper-Limit initial model and 6.3% for the Ag-10 uM-QSAR

initial model. Balanced accuracies had a slightly lower range between 55.0% and 81.4%.

Unlike the CV sensitivities, external validation sensitivities had a wider range for both
models, though specificities remained relatively high and within a narrow range. For antagonism,
the external validations with the 20% leave-out actives and the remaining inactives gave
sensitivities that ranged between 55.0% and 83.3% (Table 2-3). Specificities, however, were
higher, (i.e. 91.7% for the and 94.2%). The range for balanced accuracy was also slightly higher

(i.e. 73.8% to 88.4%) when compared to the CV balanced accuracies.

External validations for agonism with the 20% leave-out actives and the remaining
inactives demonstrated a wider range of sensitivities. Sensitivities ranged between 37.5% for the
Ag-30 uM-QSAR initial model and 100% for the Ag-10 pM-QSAR initial model (Table 2-3).
Specificities, however, were higher than antagonism, ranging between 89.4% for the Ag-No-
Upper-Limit initial model and 95.3% for the Ag-10 uM-QSAR initial model. Balanced
accuracies also had a wider range. BAs ranged between 65.0% and 97.6% for both the Ag-10

uM and the Ag-30 uM-QSAR initial models, respectively.

For both antagonism and agonism, sensitivities lacked a clear trend, and varied much
more than specificities. Variance was most likely due to the small number of actives in AD in the

validation sets, as reflected in the true positive (TP) and false negative (FN) numbers (Table 2-
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3). On the other hand, specificities were much more stable due to the high number of inactives in
the validation sets. In this case, high specificities are especially desirable because the models do
not generate a high percentage of false positives, which is important for endpoints such as hCAR
antagonism and agonism. If substances in a given chemical universe are rarely ‘positive’, (i.e. the
balance is very shifted towards negatives), then having a high specificity is even more important
in order to not to overly “pollute” the true positives with false positives, thereby giving low

positive prediction value (PPV), or low trust in positive predictions.

A possible trend for both antagonism and agonism models, however, could be the slight
decrease in specificity with increasing concentration thresholds. This slight trend could possibly
indicate that including actives with lower potency in the training set leads to decreasing quality
of the positive alerts in the models. Because of the uncertainties of the sensitivities, comparisons
between CV results and external validation results are most relevant for specificity. As shown in
Table 2-3, the specificities from the external validations are close to the specificities from the

CVs, with the latter being a few percent higher in some cases (SD taken into consideration).

Predictive performance of the 20 uM and 50 uM expanded QSAR models

All expanded QSAR models underwent a two times five-fold DTU Food in-house CV
procedure as well as external validation for specificity using the inactives not included in the
expanded training sets (Table 2-3). According to the CV results, the expanded antagonism 20
uM and 50 uM models had sensitivities of 58.4% and 72.4%, specificities of 97.1% and 82.0%,
and BAs of 77.8% and 82.0%. For the expanded agonism 20 uM and 50 uM models, sensitivities
were 72.2% and 78.4%, specificities were 93.5% and 91.4%, and BAs were 82.0% and 84.9%. In
all cases the results for the expanded antagonism and agonism models were not dissimilar from

the CV results of the corresponding initial models, taking SD into account. With the exception of
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sensitivity for the 20 uM antagonism model, for both antagonism and agonism, the SDs for
sensitivity and specificity were in all cases lower for the expanded models than the

corresponding initial models, indicating more stability.

According to the external specificity validation results, the expanded antagonism 20 uM
and 50 uM models had specificities of 93.2% and 92.0%. For the expanded agonism 20 uM and
50 uM models, external validation specificities were 91.5% and 90.6%. Notably, the specificity
results for all antagonism and agonism expanded models had a difference of less than 1% from
the external validation specificity results for the corresponding initial models. Although smaller
than the 50 pM models, the 20 uM antagonism and agonism expanded models had slightly
higher external validation specificities on these relatively large inactive validation sets. We
speculated that some less discriminating positive alerts entered into the 50 pM model compared
to the 20 uM models, especially for antagonism. Thus, when we included the “extra” actives for
the higher thresholds, in this case, the positives in the 50uM model) these actives also included

substances that are weaker than the ones in the 20uM model.

Screening results

We screened the U.S. EPA and REACH-PRS inventories using the expanded models for
hCAR 20 uM and 50 pM antagonism and agonism models (Table 2-4). The 20 uM and 50 pM
antagonism models had coverages between 54.3% and 63.1%. The two antagonism models
predicted between 15.8% and 17.0% of the active substances within their respective ADs from
the two inventories. The two agonism models predicted between 16.9% and 20.9% of the
substances in AD from the two inventories. The prevalences of actives, or the percent of actives
out of the total number of substances, were between 2.5% and 4%, after we conducted the

QSAR-targeted data processing and depending on the concentration threshold. (Prevalences can
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be derived from Table 2-1). It should be noted that the experimentally tested Tox21 library of
substances was not selected based on suspicion of hCAR antagonism or agonism. At the same

time, it is not known how well the library reflects the true prevalence of hCAR antagonists and

agonists of the U.S. EPA and REACH inventories.

According to the rather large external validations, both the applied antagonism and the
agonism models showed high specificities (90.7% - 93.2%) indicating that they do not give very
many false positive predictions. Nonetheless, the models may have still have false positive rates,
(which can be derived from the external validation specificity results), between 9.3% and 6.8%.
These false positive rates may explain some though not all of the high percents, (i.e. 15.8% -
20.9%), of active predictions for hCAR antagonism and agonism in the two large inventories,
thereby indicating a possible high number of hCAR antagonists and agonists in the U.S. EPA

and REACH inventories.

Statistical correlations of CAR predictions with QSAR predictions for other endpoints

REACH screening results for both the expanded CAR 50uM antagonism and agonism
models were statistically correlated with QSAR predictions within the same REACH set for
PXR, AhR, ER, AR, mutagenicity, sensitization, cancer and teratogenicity endpoints. Predictions
from these other QSAR models are stored in the free online Danish (Q)SAR Database (DTU
FOOD et al. 2019), which is developed and maintained by the DTU co-authors. This analysis
was performed to explore possible biological pathways and toxicities affected by CAR
antagonists and agonists. When performing the correlations, only molecules in the common

QSAR applicability domain of the relevant models were used.
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Each of the two lists in Table 2-5 is sorted by the percent of hCAR positives overlapping
with predictions from the respective other model (denoted by M1). As can be seen from Table 5,
there are endpoints related to AhR, AR antagonism, PXR/CYP3A4 induction, cancer in rats and
TPO inhibition on top of both lists for correlations with hCAR antagonism and agonism
predictions. In other words, hCAR positive predictions are found at a much higher percentage
among positive than among negative predictions from models for these endpoints. At the bottom
of both lists are CYP2C9, CYP2D6 and skin irritation, where CAR positives are not found at
very high percentages either among positives or among negatives from the other models. These

low percentages may be regarded as a random overlap.

Because CAR, PXR and AhR share some ligands, we also wanted to see how well the
three endpoints correlated to each other (Li et al. 2015). As expected, both CAR antagonism and
agonism correlated strongly with PXR. However, more surprisingly, CAR antagonism and

agonism correlated even more strongly with AhR (Table 2-6).

The tabulated counts in Table 2-6 show that 23,004 substances out of 80,086 REACH
substances in the Danish (Q)SAR Database are in the common domain of the three models. Of
these 23,004 substances, the vast majority were predicted negative by all three models, (i.e.
20,164 substances). hCAR had 561 positive predictions for which the other two models predicted
negative (corresponding to 2% of the common domain); hPXR had 738 (3%) positive predictions
for which the two other models predicted negative; and hAhR had 21 (0.1%) positive predictions
for which the two other models predicted negative. However, all three models gave positive
predictions for 243 substances. hCAR and hPXR shared the biggest number of common positive

predictions, namely, the 243 substances, which were positive in all three models plus the 1,233
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substances only positive in the hCAR and hPXR models. In addition, the AhR model rarely gave

a positive prediction when the hCAR model gave a negative prediction in a combined 24 cases.

Conclusions

Our study presents two main results: 1) We developed an in-house QSAR-targeted data
processing approach to extract Tox21 experimental results for QSAR development of different
absolute minimum potency classes; 2) We developed, validated, and applied global, binary
QSAR models for hCAR antagonism and agonism in vitro. All initial models were based on 10
uM, 20 uM, 30 uM, 40 uM, 50 uM and No Upper Limits threshold concentrations for both
agonism and antagonism. All initial models underwent CV and external validations and showed
high specificities of around 90-95% and good BAs. For both antagonism and agonism, new
expanded models were developed for the 20 uM and 50 uM thresholds by incorporating the
external validation set actives and ten times as many inactives into the training sets. These
expanded models also underwent cross-validation, and external validation but only for specificity
as there were no additional actives for a full external validation. In all but one case, the results
for the expanded antagonism and agonism models were slightly better compared to the
correspoinding initial models. However, results were not dissimilar from the CV results of the
corresponding initial models when taking SD into account. External validations of specificity

showed similar performance between initial and the corresponding expanded models.

Our four expanded models were used to screen two large chemical inventories from the
U.S. and EU. Of the substances predicted within the ADs of the expanded models, the 20 uM
agonism model predicted 8,265 (16.9%) REACH substances and 5,731 (17.4%) U.S. EPA
substances to be positive; the 20 uM antagonism model predicted 8,058 (16.0%) REACH

substances and 5,175 (15.8%) U.S. EPA substances to be positive. For antagonism, the 50 uM
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expanded models predicted a slightly higher number of positives than the 20 pM expanded

model.

Finally, we explored if a number of biological pathways and toxicity properties correlated
statistically, (i.e. not investigated for causality) with predicted hCAR antagonists and agonists.
This was done by correlating QSAR predictions from the expanded hCAR 50uM antagonism
and agonism models with QSAR predictions for endpoints related to PXR, AhR, ER, AR,
mutagenicity, sensitization, cancer and teratogenicity endpoints for 80,086 REACH substances

contained in the Danish (Q)SAR Database.

Our study aims to be forward looking. Results from the developed QSAR-targeted data
processing of Tox21 may contribute to future QSAR modeling studies. In addition, the
developed hCAR antagonism and agonism QSAR models may be utilized in the future for
support of screening, read-across or IATA WoE assessments. Predictions for 650,000 substances
from the expanded antagonism and agonism 20 pM models have long-term implications for
regulatory hazard assessments. These predictions will be published in the free online Danish
(Q)SAR Database, and the models themselves will be made available in the free online Danish

(Q)SAR Models website (DTU FOOD et al. 2019).
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Tables
Table 2-1. Number of processed structures through QSAR-targeted data processing and structure
curation, and resulting unique structures in the training and validation sets with the distribution

of active and inactive.

hCAR Antagonism hCAR Agonism
All Active Inactive All Active Inactive
Original data set 9667 9667

10 uM

After QSAR-targeted data processing 5868 160 5708 6977 108 6869

Acceptable structures 5430 136 5294 6422 106 6316

After luciferase inhibitors removal 5298 136 5162 6356 40 6316

After duplicates removal 4259 107 4152 5098 33 5065

Validation set (20% random for actives) 3313 21 3292 4812 7 4805

Training set (inactives = 10 * actives) 946 86 860 286 26 260
20 uM

After QSAR-targeted data processing 5897 189 5708 7098 229 6869

Acceptable structures 5459 165 5294 6609 227 6382

After luciferase inhibitors removal 5327 165 5162 6492 110 6382

After duplicate removal 4277 128 4149 5147 84 5063

Validation set (20% random for actives) 3155 26 3129 4410 17 4393

Training Set (inactives = 10 * actives) 1122 102 1020 737 67 670

Expanded training set 1408 128 1280 924 84 840

Reduced validation set (only inactives) 2869 4223
30 uM

After QSAR-targeted data processing 5920 212 5708 7126 257 6869

Acceptable structures 5481 187 5294 6636 254 6382

After luciferase inhibitors removal 5349 187 5162 6507 125 6382

After duplicate removal 4292 144 4148 5159 96 5063

Validation set (20% random for actives) 3027 29 2998 4312 19 4293

Training Set (inactives = 10 * actives) 1265 115 1150 847 77 770
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(Table 2-1 continued)

hCAR Antagonism hCAR Agonism
All Active Inactive All Active Inactive
Original data set 9667 9667

40 uM

After QSAR-targeted data processing 5925 217 5708 7129 260 6869

Acceptable structures 5485 191 5294 6639 257 6382

After luciferase inhibitors removal 5353 191 5162 6509 127 6382

After duplicate removal 4292 145 4147 5161 98 5063

Validation set (20% random for actives) 3016 29 2987 4303 20 4283

Training Set (inactives = 10 * actives) 1276 116 1160 858 78 780
50 uM

After QSAR-targeted data processing 5956 248 5708 7267 398 6869

Acceptable structures 5515 221 5294 6774 392 6382

After luciferase inhibitors removal 5383 221 5162 6592 210 6382

After duplicate removal 4314 170 4144 5234 173 5061

Validation set (20% random for actives) 2818 34 2784 3716 35 3681

Training Set (inactives = 10 * actives) 1496 136 1360 1518 138 1380

Expanded training set 1870 170 1700 1903 173 1730

Reduced validation set (only inactives) 2444 3331
NUL'

After QSAR-targeted data processing 5961 253 5708 7341 472 6869

Acceptable structures 5519 225 5294 6848 466 6382

After luciferase inhibitors removal 5387 225 5162 6641 259 6382

After duplicate removal 4315 172 4143 5271 212 5059

Validation set (20% random for actives) 2797 34 2763 3401 42 3359

Training Set (inactives = 10 * actives) 1518 138 1380 1870 170 1700

+ For No Upper Limit (NUL) a concentration threshold cut-off was not set.
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Table 2-2. Results from the LPDM two times five-fold cross-validation of all initial models by

three approaches: 1) single model, 2) composite model, 3) composite ‘cocktail’ model.

Cocktail models (initial) Approach ~ LPDMs two times five-fold cross validation results

Sensitivity (%)  Specificity (%) Balanced

accuracy
(%)
Antagonism

10 uM training set 1 54.1 99.0 76.6
2 91.2 89.9 90.6
3 86.6 97.4 92.0

20 uM training set 1 49.3 98.6 74
2 87.8 88.3 88.1
3 84.5 97.8 91.2
30 uM training set 1 52.9 98.5 75.7
2 87.2 89.1 88.2
3 84.9 97.2 91.1
40 puM training set 1 473 98.9 73.1
2 87.8 87.3 87.6
3 85.9 97.4 91.7
50 uM training set 1 46.0 99.0 72.5
2 84.1 87.2 85.7
3 83.5 97.9 90.7
No Upper Limit trainin 1 38.5 99 68.8
2 84.6 86.3 85.5
3 82.4 97.1 89.8
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(Table 2-2. continued)

Cocktail models (initial) Approach ~ LPDMs two times five-fold cross validation results

Sensitivity (%)  Specificity (%) Balanced

accuracy
(o)
Agonism

10 uM training set 1 23.5 99.4 61.5
2 94.7 88.2 91.5

3 81.3 96.8 89.1

20 uM training set 1 35.8 98.9 67.4
2 96.6 89.0 92.8

3 92.5 96.9 94.7

30 uM training set 1 21.1 99.5 60.3
2 91.4 88.8 90.1

3 87.7 98 92.9

40 uM training set 1 41.8 98.2 70.0
2 92.2 88.2 90.2

3 90.2 96.5 93.4

50 uM training set 1 40.4 98.6 69.5
2 92.0 87.6 89.8

3 90.3 97.9 94.1

No Upper Limit trainin 1 24.5 98.8 61.7
2 91.0 87.2 89.1

3 89.1 97.7 93.4

* TP: true positives, FP: false positives, TN: true negatives, FN: false negatives. The numbers are averages of the ten iterations as

given by LPDM.
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Table 2-4. The coverage (AD) and the number of active/inactive predictions of the U.S. EPA and
REACH-PRS inventories in the expanded 20 uM and 50 pM hCAR antagonism models and the

expanded 20 uM and 50 uM hCAR agonism models.

Datasets Total Predictions Ant-20 uM-QSAR (expanded) Ant-50 uM-QSAR (expanded)
In AD Active Inactive In AD Active Inactive
(%) (%) (%) (%)
REACH' 80,086 63.1% 8,058 (16.0) 42,441 (84.0) 57.0% 7,680 (16.8) 37,931 (83.2)
U.S.EPA™ 54,971 59.6% 5,175 (15.8) 27,577 (84.2) 54.3% 5,062 (17.0) 24,767 (83.0)
Datasets Total Predictions Ag-20 uM-QSAR (expanded) Ag-50 uM-QSAR (expanded)
In AD Active Inactive In AD Active Inactive
(%) (%) (%) (%) (%) (%)
REACH' 80,086 61.1% 8,265 (16.9) 40,631 (83.1) 63.7% 10,289 (20.2) 40,711 (79.8)
U.S. EPATT 54,971 59.8% 5,731 (17.4) 27,121 (82.6) 63.0% 7,254 (20.9) 27,389 (79.1)

TU.S. EPA QSAR-ready structures from a U.S. EPA inventory of synthetic chemical structures to which humans are potentially

exposed.

T REACH QSAR-ready structures from the REACH pre-registered substances (PRS) list and/or REACH registrered substances.
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Table 2-6. Correlations between prediction for REACH substances from the hCAR Ant-50 uM
(expanded) model and hPXR agonism and hAhR agonism (rational model) QSAR predictions
from the free online Danish (Q)SAR Database (only predictions in the domains of the pairwise

correlated models were counted).

hCAR agonism hPXR agonism hAhR agonism (rational) Count
Negative Negative Negative 20,164
Negative Negative Positive 21
Negative Positive Negative 738
Negative Positive Positive 3
Positive Negative Negative 561
Positive Negative Positive 41
Positive Positive Negative 1,233
Positive Positive Positive 243
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Figure 2-1. Overview of the process’ of making training and validation sets, modeling, and

predictions for hCAR antagonism and agonism activity.
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"The rectangular boxes are for experimental data sets, the ovals are for models and the triangles are for the screening sets. The

process was performed for both the agonism and antagonism sets.

Original datasets
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QSAR-targeted data processing
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Figure 2-2. Data processing and structure curation.
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3. Chapter 3: QSAR Use in REACH Analyses of Alternatives to Predict Human Health

and Environmental Toxicity of Alternative Chemical Substances

Abstract:

In 2007, the European Union (EU) enacted the Registration, Evaluation, Authorization,
and Restriction of Chemicals (REACH) to address growing concerns of hazardous chemicals in
the EU market. Under REACH, companies seeking authorization to use priority substances
identified as substances of very high concern (SVHCs) and included in the Authorization list,
must apply and submit health and environmental effects data in analyses of alternatives (AoAs)
to the Environmental Chemicals Agency (ECHA). To assess safer alternatives, especially in AoA
hazard assessment cases where vital information could be missing or insufficient, quantitative
structure activity relationship (QSAR) non-testing methods have gained increasing acceptance
and importance. This article assesses AoA applicants’ use of QSAR sources and QSAR
documentation while looking for meaningful trends. In this assessment, usage and frequency of
QSAR sources were evaluated in 189 analyses of alternatives for 15 physico-chemical properties
and 19 human health and environmental endpoints to determine the scope of purpose of QSAR
use in AoAs. We found that only 24 out of 189 applications cited QSAR sources to rank or
evaluate the safety of their alternative substances relative to the Annex XIV chemical. For
human health and environmental hazard endpoints, the Danish (Q)SAR Database (n=63) and
unidentified QSARs (n = 33) were the most frequently cited QSAR sources by applicants. For
QSAR usage, 7.9% per maximum opportunity (MOP) of alternatives with hazard endpoint
QSAR predictions and 12% per MOP of physico-chemical QSAR predictions were used to
report background information on an alternative. 3.0 % per MOP of hazard endpoint QSAR

predictions supported the safety of the alternative while 0.7% per MOP of physico-chemical
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QSAR predictions gave mixed support for their alternative’s safety. Documentation regarding
QSARs was absent in all 24 AoAs that used QSARs. Limited QSAR use and missing

documentation may be the result of several factors including inconsistent regulatory guidance.

KEY WORDS: QSAR, analyses of alternatives, REACH, non-testing methods, predictive

toxicology
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Introduction

Authorization decisions under the European Union’s (EU) Registration, Evaluation,
Authorization, and Restriction of Chemicals (REACH) aim to replace substances of very high
concern (SVHCs) with safer alternatives where economically and technically feasible (ECHA
2019). Under authorization, the European Chemicals Agency’s (ECHA) Committees for Risk
Assessment (RAC) and Socio-Economic Analysis (SEAC) assess risks as well as the availability
and feasibility of possible alternatives in the analysis of alternatives (AoA) report for Annex XIV
substances (ECHA 2019a). Guidance on the preparation of an application for authorization
recommends the use of non-testing methods such as quantitative structure-activity relationships
(QSARs), particularly in cases of data gaps (ECHA 2011b). QSARs, which are computational
models that predict biological activity from compounds through statistical means, have become
increasingly accepted in EU chemical regulation due to their cost-effectiveness and
independence from animal testing. Yet, there is limited insight into the extent to which QSAR
are used in AoAs. Recent evaluations performed by ECHA on alternative methods, (e.g. QSARs
and read-across), focused exclusively on registration dossiers, for which “poor justifications for
using alternatives to vertebrate animal testing” (ECHA 2016c), and several “deficiencies in the
use of alternative testing methods,” including the lack of proper documentation, supporting test
data, and carefully developed chemical profiles were noted (ECHA 2017a)

This paper evaluates how QSARs are used to assess the safety of alternative chemicals in
AoAs under REACH. Specifically, this study aims to answer three primary questions: @) What
QSARs were used by AoA applicants?; b)) How did applicants document their QSAR use in
A0As?; ¢) To what extent are QSARs used in AoAs to support, eliminate or evaluate in a weight
of evidence (WoE) context an alternative to an Annex XIV chemical? This assessment also looks

at the physico-chemical and human health and environmental hazard profiles of the alternatives
45



in order to look for trends in QSAR usage, support, and the role of WoE with respect to QSARs.
These findings report on the nature and scope of QSAR use in AoAs as well as the applicants’
use of the (Q)SAR modeling reporting format (QMRF) and the (Q)SAR prediction reporting
format (QPRF) documentation. This paper concludes with a discussion on the likely need for

additional regulatory guidance granted specifically for QSAR use under REACH authorization.

Background

Under REACH, the burden of establishing safety shifts from regulators to industry. In
order to register a chemical, companies must compile data on their substance if manufactured or
imported at greater than one ton per year (ECHA 2019d). All chemical properties, use and, when
relevant, hazard and risk information requirements on the chemical are compiled in a registration
dossier. Under Annex IV through X of the REACH regulation, a registrant may submit a
proposal for chemical testing to fulfill its information requirements (ECHA 2019f). ECHA, the
regulatory arm of REACH, and the Member States, assess dossier compliance and evaluate the
proposal for testing. For each testing proposal, the company must detail its use or consideration
of non-testing methods, including in silico modeling such as QSAR models, which give
quantitative property and activity information in lieu of vertebrate testing. For the purpose of this
study, we will use QSAR to indicate computational modeling, and (Q)SAR to signify both
computational modeling and the structure-activity relationship (SAR), (i.e. grouping approach)
(Benfenati 2012).

In the event that a chemical is identified and placed on a candidate list as an SVHC
during the prioritization process, the chemical becomes eligible for authorization under Annex
XIV. Assuming that the REACH Committee, with input from ECHA on high priority inclusions,

then decides to include a candidate list SVHC on the Annex XIV list, the substance/use becomes
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subject to a “sunset period,” a period after which a substance/process can no longer be used
unless authorization is obtained from the European Commission (EC) (EC 2019). However, to
obtain authorization, an applicant must demonstrate, at a minimum, an absence of suitable
alternatives. To assess if there are suitable replacements for an SVHC, an AoA is required
(Article 62(4)(e). As part of the authorization process, an AoA must review all possible
alternatives to Annex XIV substances based on the reduction of overall risks, and economic and
technical feasibility (ECHA 2011b). This assessment includes the identification of potential
alternatives, the screening process to select viable candidates, and an analysis of the suitability
and availability of final selected alternatives. Applicants must also create a property and hazards
profile for their alternative chemical(s), although, oftentimes, only limited toxicological
information is available (NRC 2014b). Data gaps and limited information could present a
significant obstacle to the identification of alternatives (Malloy et al. 2017). Still, QSARs can
play a critical role in helping to fill these data gaps. (For the full REACH process, see Appendix

S1).

OSAR Non-Testing Method Under REACH

Under REACH, QSARs are used to predict potential chemical toxicity of data-poor
chemicals. QSARs are considered a non-testing tool because of their ability to predict data
without further experimental testing (Worth 2010b). In general, QSARs are mathematical models
that relate structural properties in the form of molecular descriptors, e.g. logKow, to the biological
activity of a chemical (Benfenati 2012). As a computational model, QSARSs use algorithms, such
as regression, to predict toxicity. Additionally, QSARs must be statistically validated to ensure
model performance and prediction accuracy. Because of the uniqueness of each model, QSARs

are accepted on a case by case basis under REACH (Benfenati et al. 2013).
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Companies that use QSARs within a REACH process must first meet a number of
conditions, which are defined under Annex XI as four criteria (European Parliament and the
Council of the European Union 2006):

a) only scientifically validated models can be used

b) models have a defined domain of applicability;

¢) models have appropriate measures of goodness-of-fit, robustness and predictivity as a

prerequisite for use within “classification and labelling and/or risk assessment”

d) proper QSAR documentation must accompany the use of any QSAR

In addition to requiring valid QSARs, ECHA requires that companies provide reliable
QSAR predictions. In practical terms, this means that QSAR data should be integrated with other
in vivo and in vitro evidence. This is especially important when the experimental data are
missing or insufficient. In these cases, companies should consider multiple data sources for a
property or endpoint in a “totality of evidence” or weight of evidence (WoE) approach (ECHA
2016a). While ECHA has issued guidance that QSARs can be used to replace experimental data
as long as QSAR results are considered “relevant, reliable and adequate for the purpose” and
documented, in general, ECHA strongly advises a WoE approach that is based on experimental
data considerations (ECHA 2008).

Because ECHA needs to verify QSAR results for regulatory decision-making, companies
must formally document their QSAR predictions. Annex XI of the REACH regulation stipulates
that adequate and reliable documentation, which outlines the reliability and quality of the QSAR
model and prediction(s), must be provided by registrants when QSAR data is used (ECHA
2008). Currently, the main QSAR documents are the QMRF and the QPRF. QMRFs are
typically prepared by the model developer, and provide information on the “source, type,

development, validation, and possible applications of the model,” which are aligned with the
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OECD principles (ECHA 2008). QPRFs, on the other hand, detail the applicant’s rationale for
the predictions. QPRFs should include information on the environmental and human health
endpoints, physico-chemical properties, and an assessment on whether the predicted toxicity of
the alternative compared to the model’s experimental data set is within acceptable limits (ECHA
2008). According to ECHA, both reporting formats must be submitted together with their

company’s registration dossier or authorization application (ECHA, personal communication).

Materials and Methods

Data Collection

To prepare for the review, we identified: a) the relevant endpoints; b)) QSAR models,
platforms, and databases; and c) AoAs. We started with a literature review of commonly
targeted, regulatory properties and environmental and human health endpoints along with
QSARs developed by or accepted under U.S. and E.U. regulatory regimes (Figure 3-1 Box 1).
From this literature review, we created a list of 15 physico-chemical properties and 19 hazard
endpoints based on three well-known QSAR guidance documents: Guidance from ECHA'’s
Practical Guide: How to Use and Report (Q)SARS (ECHA 2016b), OECD’s Guidance
Document on the Validation of (Quantitative) Structure Relationships ([Q]SAR] Models (OECD
2007), and Cronin’s (2010) Prediction of Harmful Human Health Effects of Chemicals from
Structure (Figure 3-1 Box 2). Since ECHA does not endorse specific QSARs, we developed a
standard list of QSARs (Appendix S2) to help identify QSARSs tools and predictions used by
Ao0A applicants (Figure 3-1 Box 3). For our baseline list, we selected an initial set of QSARs
based on recommendations for QSARs applied under REACH (Benfenati 2012; ECHA 2016b;
Worth et al. 2014). Our final or “default” list totaled 25 QSAR sources (Appendix S2). For the

purpose of this study, we did not include a specific analyses of the OECD QSAR Toolbox, with
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the exception of general descriptive statistics, as we collected this data under different QSAR
codes. (For details on captured data for the OECD QSAR Toolbox, see Appendix 3).

Once we established our QSAR list, we reviewed 189 publicly available AoAs, located
online at “Adopted opinions and previous consultations on applications for authorization”
through May 2017 (ECHA 2019h) (Figure 3-1 Box 4). To collect data, we used a three-fold
strategy: a) data-mining the 189 AoAs for QSAR models, guided by our rolling “default” list as
a simple query; b) performing a visual inspection for QSAR usage; and c) recording any QMRFs
and/or QPRFs on the ECHA website for Public Consultations. During our visual inspection of
AoAs for QSAR usage, we targeted:

a) the citation and use of QSARSs from our baseline QSAR list including any mention of
applicability domain (AD) or the limits of the structural and information space of training
sets or the experimental data used to make model predictions;

b) information on QSAR usage, which included the role of QSARs in supporting alternatives,
and QSAR results in the chemical profiles, hazard assessments, reduction of overall risks,
and conclusions of safety for the alternative chemical; and

¢) QSAR results as part of WoE or as standalone evidence.

All data and findings were recorded in LibreOffice software Version 5.2.2.2.

In addition to data-mining AoAs for QSAR usage and models, we recorded all QSAR
models/sources and predictions by endpoint. Qualitative values, (e.g. “negative for skin
sensitization”), and quantitative values, (e.g. “LCso = 3.83 mg/L for acute toxicity for fish”)
(Dow Italia Srl and Rohm and Haas France S.A.S. 2016) immediately qualified as QSAR
predictions if a data point directly cited a QSAR source or if an AoA cited QSAR prediction(s)
generated by a QSAR model/platform. If an applicant did not identify the QSAR source, but did

specify a value as a QSAR prediction, we recorded the prediction as “unknown QSAR.” We also
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considered any value that reported its AD to be a QSAR prediction and used expert judgment for
any remaining values that might be viewed as QSAR predictions. Furthermore, we organized all
data, which we based on several assumptions when developing our approach, into two major
units of analysis, (i.e. consultation by alternative, and alternative by QSAR). (For full details on
units of analysis, see Appendix S4).

Lastly, we defined the “purpose” of the applicant’s use of QSAR predictions. “Purpose”
characterized the QSAR prediction’s role in either supporting or eliminating the alternative with
or without a WoE context (Table 3-1). All data were recorded for later use in our content
analysis.

During the course of this data collection, we looked for QMRF and QPRF attachments on
ECHA'’s consultations and opinions website (ECHA2019h), and recorded any instances where
we found documentation. We forwarded our questions on authorization documentation
requirements to ECHA regulatory officials and used these correspondences as informal

interviews.

Descriptive Statistics

We used descriptive statistics to examine QSAR use (Figure 3-1 Box 5). We totaled
counts across two dimensions: a) AoAs with cited QSAR use; b) QSAR predictions grouped by
QSAR source (i.e., database, platform or model used) (Figure 3-1 Box 6). We based this tally on
total QSAR prediction counts. Next, we tabulated the frequency of QSAR use. Data were
assigned to either one of four categories: @) “QSARs applied,” which meant an applicant cited a
QSAR from our list for at least one value for specific endpoint or property; b) “QSARs not
applied” or a QSAR from our list was not used for a specific endpoint or property; c¢) “No data

available,” which meant that the applicant reported “no data” in the value field, or “no
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information available” or “not relevant”; d) “Unidentified QSAR tests,” which meant that the
applicant provided a QSAR value but did not indicate the source. We then “normalized” these
values to reflect QSAR opportunities rather than strict counts. “Normalization” involved tallying
the actual count of QSARSs by the unit of consultation number by alternatives, and then dividing
this number by the total alternative population count, which we defined as the maximum times a
QSAR could have been used for either the 15 physico-chemical properties, or, the 19 hazard
endpoints. Afterwards, we calculated their percentages. In the end, our analysis told us the
maximum opportunities (MOP) a QSAR could be used in a hazard endpoint or property
category. (For more information on MOP, see Appendix S5). By adjusting counts to percentages,
we were able to align and scale the raw data to simple percentages for comparison. Finally, we
analyzed the purpose(s) for which a QSAR was used (Figure 3-1 Box 7). We analyzed by
elimination, support, and/or WoE by tabulating the count for each respective use and inspected
trends. If an endpoint or property lacked QSAR predictions, or, we could not determine if its
value was generated by a QSAR, the value received a non-applicability designation. (Full

information on non-applicable designations can be found in Appendix S6).

Results

Frequency of QSAR Use

Applicants used QSAR data to rank potential alternatives or evaluate the safety of
suitable alternative chemicals relative to the Annex XIV substance in approximately 13% of the
Ao0As or 24 out of 189 AoAs. Among the 24 AoAs, QSARs were used to assess 54 overlapping
and unique alternatives. In addition, 11 of the 25 QSARs on our list were used by applicants. Out
of the 24 AoAs, 19 of the AoAs cited QSAR predictions for eight of the 15 physico-chemical

properties. The physico-chemical properties with the greatest amount of QSAR predictions
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included water solubility (n = 37), surface tension (n = 24), and vapor pressure (n = 23). Physico-
chemical properties with the least number of predictions were flash point (n = 8), density (n = 7),

and boiling point (n = 11) (Table 3-2).

In the assessment of the toxicity of alternatives for human health and environmental
hazard endpoints, six of the 24 AoAs cited QSAR predictions for 16 out of the 19 hazard
endpoints. Endpoints with the most QSAR predictions included reproductive toxicity (n = 50),
short-term toxicity to fish (n = 18), short-term toxicity to aquatic invertebrates (n = 15), and skin
irritation/skin corrosion (n = 15). QSAR predictions were cited least for long-term toxicity to fish
(n = 2), short-term toxicity to terrestrial invertebrates (n = 2) and hydrolysis (n = 1). We did not
find QSAR predictions for acute toxicity, repeated dose toxicity or adsorption/desorption

screening (n = 0) (Table 3-3).

The types of QSAR sources that applicants cited when assessing human health and
environmental hazard endpoints consisted of a limited number of available QSARs though
applicants more generally referenced the OECD QSAR Toolbox 13 times. As illustrated in
Figure 3-2, applicants used the Danish (Q)SAR Database for nine out of the total 19 endpoints.
The other major QSARSs sources included ECOSAR, OASIS, and the FDA EDKB CoMFA
QSAR method. The most popular MultiCase models were endocrine disruption models for
estrogen receptor binding. A MultiCase model was also used to predict short-term toxicity for
aquatic invertebrates. In addition, TOPKAT® was used mainly for the ecotoxicological
endpoints. However, for physico-chemical properties, only MultiCASE, ACD/PhysChem and
EPI Suite™ QSAR sources were used or cited (Figure 3-3). (Full details on the major QSAR

sources can be found in Appendix S7).
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Regarding the frequency of QSAR usage in hazard endpoints, only 11% of the hazard
endpoints per MOP used a QSAR tool (Figure 3-4). In order of highest to lowest frequency of
counts of QSARs per MOP, reproductive toxicity (1.2%) had the most QSAR predictions out of
the 54 alternatives that could have potentially cited a QSAR prediction, while long-term toxicity
to fish (0.2%), short-term toxicity to terrestrial invertebrates (0.2%), and hydrolysis (0.1%) had
the least amount of QSAR use. No predictions were found for acute toxicity, repeated dose

toxicity or adsorption/desorption screening endpoints.

Purpose of QSAR Use

Meaningful trends for both hazard endpoints and physico-chemical properties emerged in
our assessment of QSAR use for elimination, support, and WoE. None of the QSARs were used
to overtly eliminate alternatives with or without WoE (Figure 3-5). On the other hand, smaller
trends emerged, which indicated a variety of QSARSs uses. Specifically, 7.9% per MOP of hazard
endpoint and 12% per MOP of physico-chemical and QSAR predictions were used to report
background information for an alternative. For example, an LCso QSAR prediction by ECOSAR
for acute toxicity to aquatic species, (i.e. 0.023 mg/L) was included in a table of ecological data
supporting Environment Canada decisions on methyl centralite for AoA consultation number
0005-02. Although this prediction, which according to ECOSAR guidelines (U.S. EPA 2012c¢)
qualifies as acutely toxic, the applicant never discussed this prediction in the context of a
possibly toxic estimate in either the environmental fate and behavior and ecotoxicology

discussion or the reduction of overall risks section (DEZA A.S. n.d.-a).

In addition, “other” reasons, which included QSARs used to rank potential alternatives,

emerged as a small trend. For “other” reasons, we observed a 2.9% per MOP frequency for
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hazard endpoints and 0.4% per MOP frequency for physico-chemical properties. For example, in
consultation numbers 0013-01 and 0013-02, applicants reported persistent, bioaccumulative and
toxic (PBT) QSAR estimates for the initial assessment of the polymeric flame retardant
alternative (INEOS Styrenics Netherlands BV et al. 2013a, b). In addition, consultation number
0077-01, the applicant used QSAR predictions to select reference values for the potential
alternative dichloromethane (Eli Lilly S.A. Irish Branch n.d.). Under “other” reasons, QSAR
predictions could also be used to compare endpoints for an alternative. For AoA consultation
number 0005-01, some QSAR predictions suggested a more benign mammalian hazard profile
for the alternative diisobutyl hexahydrophthalate (DIBE) relative to its Annex X VI chemical
dibutyl phthalate (DBP), while others, more specifically, predictions for reproductive toxicity,

gave warrant for concern (DEZA A.S. n.d.-b).

Trends changed slightly with respect to QSAR use for support of an alternative (Figure 3-
6). 3.0% per MOP of hazard endpoint QSAR predictions supported an alternative. In AoA
consultation number 0005-01, the applicant used QSAR outputs to support a more benign

assessment of DIBE relative to the Annex XIV chemical,

However, there is reason to believe that DIBE may have a more benign mammalian
hazard profile than DBP, given the lack of a REACH Registration dossier (so far) and

some aspects of the OECD QSAR outputs” (DEZA A.S. n.d.-b).

Notably, we identified several QSAR predictions that did not support an alternative. For
example, in consultation 0006-01, a logKew prediction for DIBE suggested a low chronic aquatic

toxicity category 2 classification (Sasol-Huntsman GmbH & Co. KG n.d.).
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Additionally, “other” reasons ranked high in terms of frequency of QSAR use for hazard
endpoints and physico-chemical properties, (i.e. 6.3% and 13% per MOP, respectively). Under
QSAR use for supporting an alternative, “other” reasons included QSAR predictions used for a
“background” purpose or to assess a potential alternative. For instance, consultation numbers
0037-01, 0038-01, 0039-01, 0040-01, 0041-01, and 0041-02, for the alternative Chromium III
(chloride), cited QSAR predictions for water solubility, but then never drew from these
predictions to indicate a direction of support for the alternative (AkzoNobel Pulp and
Performance Chemicals 2015; Caffaro Brescia S.r.l. 2015; Ercros S.A. 2015; Kemira Chemicals

Oy 2015; Solvay Portugal — Produtos Quimicos SA 2015).

Finally, we observed a small trend for “mixed” support for hazard endpoints and physico-
chemical properties, (1.2% and 0.7% per MOP, respectively). In “mixed” support, an applicant
could use QSAR predictions to show tentative support for an alternative as having a more benign
profile than the Annex XIV chemical, but then also include evidence indicating a potential
hazard(s). Consultation number 0005-02 for the alternative methyl centralite demonstrated this
version of support for the endpoint short-term toxicity to aquatic invertebrates. In their AoA, the
applicant referenced irritation and aquatic toxicity as areas of concern for methyl centralite in the
Reduction of overall risks, for which a positive QSAR prediction for skin irritation and possibly
toxic aquatic QSAR predictions were given by the Danish (Q)SAR Database) (DEZA A.S. n.d.-
a). However, for aquatic toxicity, the results were, in fact, both supportive and unsupportive of
methyl centralite. The applicant referenced several aquatic toxicity results from the Danish

(Q)SAR Database as a possible concern (DEZA A.S. n.d.-a),
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QSAR modelling of the ecotoxic profile of methyl centralite indicated possible concern
with regard to its aquatic toxicity, with predictions of LC50 or EC50 values < 1 mg/L in

invertebrate, algal and bacterial species.

Yet, in the Canada List QSAR predictions, all aquatic QSAR predictions, with the exception of
an ECso or LCso aquatic toxicity prediction for 0.023 mg/L reported, were greater than one mg/L

although the applicant did not reference this fact in their concluding argument (DEZA A.S. n.d.-

a).

Documentation of QSARs

None of the 24 AoAs using QSARs included or referred to documentation for the
relevant QSARs. As specified by ECHA guidance, there are two ways one can provide
documentation: a) QMRF and ») QPRF. However, neither was provided. Due to the specificity
of QMRF documentation for model development, we could not identify any QMFRs associated
with QSAR models in our study in either the JRC database (JRC 2019) or the Danish (Q)SAR

database (DTU FOOD et al. 2019).

Discussion

In this study, we assessed the extent to which QSARs were used in REACH AoAs
through March 2017. Our analysis demonstrated limited QSAR use in AoAs. Our study also
revealed that supporting documentation for QSAR predictions was missing for all 24 AoAs with
QSAR predictions. Lack of documentation is a significant potential obstacle for regulators and
stakeholders trying to determine the quality of QSAR tools and data in AoAs. Additionally,
existing regulatory guidance on QSAR documentation can be viewed as inconsistent, which may

have factored into the missing QMRFs and QPRFs. Specific guidance or enforceable standards
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for QSAR use and documentation in AoAs could help strengthen applicants’ understanding of

ECHA QSAR guidance for future AoAs.

Limited use of QSARs in AoAs

In our analysis, only 24 of the 189 AoAs used QSARs. In addition, while we identified
25 potential QSAR sources from literature, only 11 of these QSAR sources were actually used.
The limited usage of QSARSs in AoAs is similar to results reported in the 2014 ECHA report
regarding QSAR use in registration (ECHA 2014). We believe this to be a significant trend:
When companies do not exploit the gamut of QSAR sources, vital QSAR predictions could be
omitted from regulatory decision making (Cronin 2010). These observations ultimately raise the

important issue of whether QSARs are underused in AoAs.

More consistent use of appropriate QSARs in AoAs, however, will provide a better
picture of the degree of hazard posed by the SVHC(s) relative to the alternative(s). One reason
that QSAR predictions help create a more robust toxicological understanding is that animal
testing is often flawed and can be inconsistent (Akhtar 2015). In these cases, QSARs would help
to provide more accurate results (Lillicrap et al. 2016) as well as support uncertain test results
(Lahl and Gundert-Remy 2008). Second, in the face of diverse and uncertain information, it is
almost always better to have as much relevant information as possible. WoE perspective
encourages the use of everything available, including QSARs, to get the best answer (ECHA

2010).

At the same time, ECHA has also been known to promote the use of standalone QSAR

predictions for regulatory purposes, if only under ideal circumstances, though this allowance

could have the opposite effect and limit QSAR use (ECHA 2008). In their recent 2017 Endpoint
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specific guidance Version 6.0, ECHA addressed the opportunity for standalone non-testing
methods “where possible” in addition to their WoE recommendation (ECHA 2017d). AoA
consultation numbers 0006-01 and 0005-02 reflect this standalone QSAR approach. The
applicants provided non-testing data from the OECD QSAR Toolbox, more specifically, FDA
Teratogen Information System (TERIS) QSAR predictions from the Danish (Q)SAR Database,
for alternatives such as Akardite II to fill in the experimental data gap for the reproductive
toxicity and endocrine disruption potential of the alternative DIBE (DEZA A.S. n.d.-a; Sasol-
Huntsman GmbH & Co. KG n.d.). Applicants’ justifications for standalone QSAR use, such as
“no [experimental] information is available on the potential reproductive toxicity of this

substance” underscored the importance of QSAR predictions in their AoAs (DEZA A.S. n.d.-a).

Yet, we cannot ignore a potential alternative response of applicants: companies may
decline to provide any data when their only source is QSAR predictions. While this is solely
speculative, we have seen evidence of applicants rejecting QSAR data when it is the only
available information. In AoA consultation numbers 0078-01 and 0077-01, treatment of
standalone QSAR predictions reflect this viewpoint. Applicants dismissed a QSAR-based
Predicted No-Effect Concentration (PNEC) value (i.e. 130 ug/L (100)) when developing a
PNECieshwater value for methylene chloride (DCM), because it was based solely on QSAR
predictions (Dow Italia Srl and Rohm and Haas France S.A.S. 2016; Eli Lilly S.A. Irish Branch

n.d.),

All data regarding the individual submission by ECHA-CHEM are based on QSAR, only.
Because of this, the resulting PNEC is regarded as being not reliable and consequently

will not be discussed any further.
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Interestingly, the PNECipeshwater value was set at more than twice the concentration of the QSAR-
based PNEC value. Of course, without knowing the predicted or actual environmental
concentration, we cannot ascertain if the PNECfreshwater would actually amount to a higher or

lower acceptable risk (Syberg et al. 2009).

Because of the risk of not properly using QSARs brings to making a thorough assessment
of AoAs, we strongly believe that ECHA should: 1) more clearly require the use of valid QSARs
in an alternative’s assessment particularly in the absence of other information; and 2)
consistently communicate equal support and acceptance for both standalone predictions under
strict conditions, and for WoE QSAR evidence. Absent such direction, some applicants may

follow the practice of ignoring QSAR data as “unreliable” without discussion.

OMREF and QPRF documentation in AoAs

Under REACH, QSAR documentation serves an important role in establishing the
reliability of QSAR predictions and the robustness of QSAR models used in AoAs. Chapter R.6-
OSARs and Grouping of Chemicals explains that each document provides critical information
about the QSAR model and prediction, which aids in the regulatory decision-making process.
However, despite ECHA’s general guidance, QSAR documentation was missing for all 24 AoAs
that used QSARs. According to the ECHA Regulatory Advice Team, missing documentation
could be attributed to one of two factors: either the QMRF and QPRF were claimed as
confidential, or they were not included with the AoAs (ECHA, personal communication). Based
on our observations, it appears that QMRFs and QPRFs were missing for reasons other than
issues of confidentiality. We examined 24 non-confidential AoAs that applied QSAR predictions

in their assessments of their alternative(s); none of them had associated QMRFs or QPRFs.
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One reason for the missing documentation in AoAs could be the imprecise language in
regulatory guidance describing the requirements for QMRFs and QPRFs. The language appears
to alternate between strict and loose requirements, which may have even been interpreted by
applicants as creating voluntary options. For example, in the 2016 Practical Guide — How to use
and report (Q)SARs 3.1, ECHA stressed that a QPRF “should be prepared by the registrant,” and
its corresponding QMREF is “normally provided by the model developer” though it is
“recommended” that both be attached to the registration dossier (ECHA 2016b). On the other
hand, in Guidance on Information Requirements and Chemical Safety Assessment, Chapters R.7a
and R.7b: Endpoint specific guidance, ECHA discusses standard documentation and justification
of QSARs under Annex XI under terms such as “need” and “necessary” (ECHA 2017b; ECHA
2017d). Indeed, in personal communications ECHA’s Regulatory Advice Team used somewhat
inconsistent language regarding whether applicants must- as opposed to should- attach a QMRF
and QPRF to the AoA when addressing (Q)SAR documentation (ECHA, personal
communication). However, in a separate email to ECHA’s Risk Management Implementation
Unit, ECHA insisted that documentation was required for AoAs using QSARs (ECHA, personal
communication). In short, companies submitting AoAs may have looked to registration-targeted
guidelines for instructions on what to do when using a QSAR under authorization and concluded

that documentation for authorization was optional.

At the same time, the current QMRF and QPRF format may not be a “one size fits all”
framework for every type of QSAR model or QSAR source. For example, QSAR models may be
built as part of an expert system, (i.e. Toxtree). In these instances, an applicant may need to
modify some of the information such as supplementing decision tree-making rules in lieu of

algorithms. In more extreme cases, an applicant may need to give a more detailed explanation
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pertaining to which exact rules took place and how that impacts the quality of the prediction
(Benfenati 2012). However, as to the exact format that ECHA would accept this information

under authorization remains to be determined.

Ultimately, without QSAR model and prediction information, ECHA cannot determine
modelling components or how an applicant understands the relevance of endpoints, though, the
degree to which developers make their QSAR information available on their QSAR model(s)
varies. For registration, ECHA has enforced this guidance. In their 2013 evaluation, ECHA
reported an improvement of proper QMRF and QPRF documentation for registration dossiers
(ECHA 2013) from previous years. Although, in prior evaluations, some registration dossiers
lacked the required documentation for structure activity relationships (Schulte et al. 2012). In our
study, AoA applicants generally gave information on the applicability domain of their QSAR
prediction (For more information on applicability domain data, see Appendix S8). Yet,
applicants did not always provide an explanation as to whether their QSAR model covered their
alternative chemical. With a QPRF, ECHA would have been able to discern whether an applicant
used an out of domain prediction particularly if the applicant did not initially report this
information in their AoA. Perhaps in the future, an applicant will even be required to provide all
evidence of their due diligence even if only to show that their chemical(s) could not be covered
by the QSAR model due to an unacceptable structural feature such as counter ions, toxic metals
or complex molecules (Klimenko KO et al. 2019). Nonetheless, a developer’s proprietary rights
over their QSAR model may have also factored into the missing documentation. While some
QSARs are open access such as the JRC QSAR Model Database, Toxtree, Dart (Benfenati 2012)
and Danish (Q)SAR Database, commercial software such as CASE Ultra (MultiCase) and

OASIS CATALOGIC (LMC) and OASIS TIMES (LMC) does not lend the same level of QSAR
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model transparency, although some QMRFs for commercial software QSARs (though none
could be found for our study) can be found in the JRC QSAR Model Database (EURL ECVAM
2019). We believe that enforcement needs to extend to authorization if there are to be similar

improvements in AoAs.

The importance of including QMRFs and QPRFs under REACH clearly extends beyond
a formal compliance check list, yet, there is almost no regulatory guidance on QSAR
documentation for authorization, with the exception of a small excerpt in Chapter 3: Planning
for Substitution: Guidance on Analysis of Alternatives. In this excerpt, ECHA broadly states that
in situations where important information is missing, surrogate information from tools such as
QSARs may be used (ECHA 2011b). In short, almost all legislative language and guidelines
describing QSAR requirements are reserved for registration. For example, REACH’s Annex VI
of Title VII, which applies to “registration, evaluation and the duty of care,” states that
registrants must consider all available data on their substances, including alternative sources such

as QSARs (European Parliament and the Council of the European Union 2006).
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Study limitations

Several factors may have contributed to the limitations of our study. First, although our
sample of AoAs appears to be representative of AoAs as a whole, our sample had a significant
number of AoAs with redacted language, which could have impacted our analysis. Second,
unless the applicant made explicit reference to their QSAR models or sources, we only accepted
data on a conditional basis. Third, supplier confidentiality protocols prohibited a complete hazard
analysis on their product(s). Thus, for these AoAs, it was not possible to know the complete

spectrum of hazard analysis and potential QSAR usage.

In addition, depending on how the applicant cited their QSAR software package and how
we coded QSAR predictions, we may not have been able to identify the exact QSAR tool. In
addition, because we coded QSAR predictions based on a set list of regulatory endpoints and
QSAR sources, we may not have captured every QSAR in our sample of AoAs, particularly, if
an endpoint or source fell outside of this list. Finally, while we were successful in generating
descriptive statistics to illustrate rank, order, and frequency, these statistics were limited to
descriptions of prioritization and missing data and did not capture the capacity and
appropriateness of each QSAR in precise detail. For example, the frequency counts of certain
QSARs may have depended on the tool’s design for a specific hazard endpoint(s), which our
statistics did not capture, rather than its popularity. Furthermore, applicants may have chosen
their QSAR tool based on accessibility to the tool, (i.e. availability and user cost), ease of use,
and perhaps confidence in the model’s algorithm or platform’s navigability, though more
research is needed to confirm predisposing factors such as confidence or motivation. (For more

information on study limitations, see Appendix S9).
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Conclusions and Recommendations

The REACH regulation’s goal to protect human health and the environment by using
alternative non-testing methods in a competitive market has been partially met through the use of
QSARs. However, we identified potential obstacles in this path to achieving this goal. To our
knowledge, there is no other review of how QSARs are used in REACH analyses of alternatives.
At the time of our study, only 24 out of 189 AoAs in our sample used QSARs, and only 11 of the
25 QSARs on our list were used by applicants. These low numbers suggest that QSARs may not

have been fully utilized. We believe that our results point to three larger policy issues:

e apossible breach in policy whereby companies may not be exhausting all toxicity
data sources, including QSARs, for their chemical(s), particularly in cases of
insufficient or missing information;

e the necessity for clearer regulatory language and guidance on the use of QSARs
in concert with other data, and where appropriate, on a standalone basis;

e a critical need for more explicit language requiring proper QSAR documentation

under authorization.

While we conducted a preliminary examination of QSAR use within a limited number of
AoAs, future studies are needed to understand the extent to which ECHA accepts AoAs, which
do not fulfill ECHA QSAR requirements. In our sample, we identified 22 AoAs that used
QSARs for final, selected alternatives and two that used QSARSs to assess potential alternatives.
Of these 24 AoAs, the European Commission authorized 16 AoAs, which did not attach required
QSAR documentation, for continued use of an XIV chemical. However, to understand how
ECHA factors in varying trends of QSAR usage into accepted applications, future studies that

draw on a much larger AoA sample and include more recent AoAs are needed. In addition,
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applicants who exist outside of industry may have better training and follow ECHA’s QSAR
guidance more closely, which could impact the consideration of their AoAs. Even if the
European Committee authorizes an Annex XIV chemical where QSAR predictions are used to
assess the safety of the alternatives, it is important to garner information on patterns of QSAR

usage, and to target applications that do not fulfill QSAR guidance.

The REACH regulation highlights the need for applying new non-testing methods to
bridge data gaps, promoting their acceptance, and delineating data requirements to ensure data
quality in chemical risk assessment. As a non-testing method, QSARs play a critical role in the
evaluation of chemicals on the Annex XIV list. Although ECHA has applied a cautious
approach, QSARs are being used both in WoE and as standalone in AoAs. Focusing on the
quality of QSAR data in AoAs and building on previous QSAR guidance to develop consistent
regulatory language will likely increase the quality and volume of QSAR data. Thus, stronger
industry regulatory requirements to provide information on alternative chemicals (Jacobs et al.
2016) as well as greater access and availability to comprehensive QSAR warehouses of
predictions and models with demonstrated success, may be the key to reducing data gaps in
AoAs. However, ECHA must ensure that reliable information is evident on all levels of QSAR
documentation, and that high quality and user-friendly QSARs are accessible to industry. Along
with the continued evaluation of the effectiveness of regulatory tools for AoAs, particularly for
use by smaller companies (Tickner and Jacobs 2016), evaluation of data quality and
effectiveness of guidance will become increasingly important in regulatory agendas worldwide,
which accepts the predictive ability of QSARSs to provide toxicological information on unknown

chemical effects.
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Tables

Table 3-1. Definitions and classifications of purpose for QSAR predictions used in AoAs.

Purpose Definition Classifications
a) eliminate the alternative;
b) report background information for the alternative

Eliminat QSAR prediction(s) eliminated an alternative based without eliminating the alternative;

tnate on a more toxic profile than the Annex XIV chemical ¢) other reason e.g. QSAR prediction not discussed in
the final assessment of the alternative’s reduction of
overall risk or safety
d) non-applicable e.g. no QSAR prediction
a) show an alternative as less benign;
. . b) support an alternative;
QS{\R prediction(s) s.upported an alte.rnatlve as ¢) mixed support;
Support having an equally benign or more benign profile than

Weight of Evidence (WoE)

the Annex XIV chemical

QSAR prediction(s) were used with a combination of
soures to describe the alternative’s a hazard profile

d) other reason e.g. QSAR prediction not discussed in
the final assessment of the alternative’s reduction of
overall risk or safety

¢) non-applicable QSAR data and/or no QSAR use

a) elimination used in a WoE context;

b) elimination not used in a WoE context

¢) a combination of independent QSAR usage and
QSARs used in WoE context to eliminate alternative
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(Table 3-2 continued)

T QSAR count unit of analysis is by type of QSAR model for the 54 alternatives (n = 67).

* QSAR prediction was reported for that specific physico-chemical property.

> A QSAR was not applied to that physico-chemical property, which may be for other reasons such as that specific property not
being relevant to that QSAR source or no information is available.

¢ For 'no data available,' an applicant stated ’no data” in the value field for that physico-chemical property, or “no information

available” or “not relevant”" in the summary information for that alternative.
ry
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Figure 3-1. Flow chart for data collection and descriptive statistics.
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In vitro gene mutation in bacteria (Ames...

Mutagenicity, 1.0%
Repeated dose toxicity , 0%

Skin Sensitization, 0.7%
Eye Irritation, 0.9%

Carcinogenicity, 1.0%
Reproductive toxicity , 1.2%

Short-term toxicity to fish, 0.8%
Long-term toxicity to fish, 0.2%

Skin Irritation or skin corrosion, 0.9% L. L.
Short-term toxicity to aquatic invertebrates, 0.9%

Acute Toxicity, 0% Long-term toxicity to aquatic invertebrates, 0.7%

Toxicity to aquatic plants (algae) , 0.7%

Short-term toxicity to terrestrial invertebrates, 0.2%
Hydrolysis, 0.1%

Ready biodegradability, 0.7%

Bioaccumulation in aquatic species, 0.5%
Adsorption/desorption screening, 0%

m Acute Toxicity m SKin Irritation or skin corrosion u Eye Irritation

= Skin Sensitization = Repeated dose toxicity = Mutagenicity

H In vitro gene mutation in bacteria (Ames test) u Carcinogenicity H Reproductive toxicity

m Short-term toxicity to fish = Long-term toxicity to fish m Short-term toxicity to aquatic invertebrates

= Long-term toxicity to aquatic invertebrates = Toxicity to aquatic plants (algae) m Short-term toxicity to terrestrial invertebrates
Hydrolysis = Ready biodegradability = Bioaccumulation in aquatic species

m Adsorption/desorption screening = Remaining data

Figure 3-4. QSAR predictions for hazard endpoints by number of alternatives.
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HUMAN HEALTH AND ECOTOXICOLOGICAL HAZARD
ENDPOINTS

= Report background
alternative
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H Other
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PHYSICO-CHEMICAL PROPERTIES'f

u Report background
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background
alternative
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Combination
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0 4%“‘u‘,o.r%,

Figure 3-5. Percentages of AoA QSAR usage for the purpose of eliminating an alternative based

on 19 human health and ecotoxicological hazard endpoints, and 15 physico-chemical properties.
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HUMAN HEALTH AND ECOTOXICOLOGICAL HAZARD
ENDPOINTS'

u Report background
alternative

89%

u Other

Non applicable

PHYSICO-CHEMICAL PROPERTIES'f

u Report background
alternative

= WoE report
background
alternative
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Combination
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Non applicable

0 4%““‘a,o.7%

Figure 3-6. Percentages of AoA QSAR usage for the purpose of supporting an alternative as
more benign than the Annex XIV chemical based on 19 human health and ecotoxicological

hazard endpoints, and 15 physico-chemical properties.
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Supporting information

Additional information on the REACH process (Appendix S1), the QSAR “default” list
(Appendix S2), data collection methods and assumptions (Appendix S3), units of analysis
(Appendix S4), background on MOP and units of analysis (Appendix S5), non-applicable
category definition (Appendix S6), QSAR model/source descriptions (Appendix S7),

applicability domain data (Appendix S8), and study limitations (Appendix S9).
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Appendix S2

QSAR “default” list

Table 1S. QSAR “default” list

2 The only QSAR-related endpoint for Sarah Nexus is in vitro mutagenicity. However, the QMREF for In vitro mutagencity stated
that the QSAR was built under Derek Nexus. Thus, we put the In vitro mutagenicity model under Derek Nexus.

b Leadscope® does not advertise its capability of estimating REACH endpoint "Repeated Dose Toxicity" on its official website
but it is mentioned in 2016 ECHA QSAR report.

¢ This series of QSAR models for REACH endpoint "Short-term Aquatic Toxicity to Fish" were housed in the OECD QSAR
Toolbox. We could only find information regarding developer and its function in the toolbox.

4The capability of OECD QSAR Toolbox was simplified because 1) it is a repeat of many listed QSAR applications, and 2) the
OECD QSAR Toolbox does not categorize all QSAR sources under tab "QSAR," which limited our ability to confirm and pair
all QSAR sources with REACH physico-properties and hazard endpoints.

¢ Because TOPS-MODE is an approach and not a QSAR platform, we listed the developers of the two TOPS-MODE QSAR
QMREFs in the JRC database regarding Ames Test Mutagenicity.

[1] (ACD/Labs 2019)
[2] (EC JRC EURL ECVAM 2019)
[3] (Simulations Plus 2019)
[4] (DTU FOOD 2019)
[5] (DTU FOOD 2018a)
[6] (Lhasa Limited 2019a)
[7] (Lhasa Limited 2019b)
[8] (U.S. EPA 2012c)
[9] (U.S. EPA2019b)
[10] (U.S. EPA 2019¢)
[11] (U.S. EPA 2012a)
[12] (U.S. FDA 2018)
[13] (Shi et al. 2001)
[14] (Hong et al. 2003)
[15] (KREATIS 2019)
[16] (ChemAxon 2019)
[17] (ChemAxon 2014)
[18] (Viswanadhan et al. 1989)
[19] (Hou et al. 2004)
[20] (Maunz et al. 2013a)
[21] (Maunz et al. 2013b)
[22] (Leadscope® 2019a)
[23] (Leadscope® 2019b)
[24] (MultiCase 2019)
[25] (Molcode 2019a)
[26] (Molcode 2019b)
[27] (OECD 2019)
[28] (2019)
[29] (U.S. EPA 2012b)
[30] (Pudenz and Frére 2017)
[31] (Dassault Systemes Biovia 2019)
[32] (U.S. EPA 2019c¢)
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[33] (U.S. EPA 2016)

[34] (TerraBase Inc. 2019)
[35] (Estrada 2008)

[36] (IdeaConsult Ltd. 2018)
[37] AIRCCS 2019)
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Appendix S3

Data Collection Methods and Assumptions

For this study, we used two approaches: 1) a consultation number by alternative
approach, on which we based the maximum opportunities (MOP) approach, and 2) an alternative
by QSAR (ABQ) approach that captures the complete number of QSARs in the 189 AoAs. More
precisely, for the ABQ approach, we collected data on QSAR sources per consultation number
per alternative, and then grouped the sources by physico-chemical property or hazard endpoint.
For example, for every AoA, we recorded each alternative by line item, which included the
QSAR source. If more than one QSAR source was used to make a prediction for an individual
alternative, we included multiple line items of QSAR sources for the alternative. Unlike other
regulatory approaches, such as ECHA’s endpoint study records (ESR) approach for registration
dossiers (ECHA 2014, 2017a), our unique approach tracks key information from individual
applications as well as individual QSARs and how they are used. However, the 54 alternatives in
our sample are not unique. In fact, we recorded the same alternative(s) for multiple consultation

numbers.

Though our unique approach aims to examine how applicants used QSARs to fulfill
regulation requirements, part of the process involved making key decisions and assumptions. We
first excluded alternative processes that did not include a chemical substitution, even if the
process used chemicals. We assumed that QSAR predictions would not be generated in the
absence of a chemical substitution. In cases involving inconsistent reporting of QSAR
predictions from applicants or reporting of ‘no information,” we assumed that QSARs were
applied. In some cases where applicants simply reported that results were within a QSAR’s

applicability domain, we assumed that a QSAR source was used to generate this prediction, and
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therefore, included these QSAR predictions in our QSAR test totals. However, if “no
information” was listed under a hazard endpoint, (i.e. reproductive toxicity) and “no
information” listed under a sub-category, (i.e. developmental/teratogenic toxicity), we only
counted a QSAR prediction once. Additionally, if an applicant reported that a prediction was the
product of multiple QSARs, but only identified one QSAR source, we counted the identified
QSAR source. Due to the variance among AoAs, we also accepted several different phrasings for

99 ¢

applicability domain including: “within QSAR domain,” “outside of QSAR domain,” “undefined

99 ¢

with regard to domain applicability,” “operational limits,” and “model’s rules”.

It is worth mentioning that some QSAR models are packaged within integrated software
platforms incorporating a range of modeling and expert systems applications. When feasible, we
singled out QSAR model(s) under these platforms. For example, we coded Food and Drug
Administration (FDA) Endocrine Disruptor Knowledge Database (EDKB) Comparative
Molecular Field Analysis (CoOMFA) QSAR predictions as FDA EKDB CoMFA to specify the
QSAR model within the platform (Tong et al. 2002). We also reclassified EPI Suite™ software
and expressions of QSAR predictions to fit our study. Because EPI Suite™ software had several
different user interfaces such as KOWIN™ or WSKOWWIN™, we grouped all interfaces under
the EPI Suite™ software (EPA2019a). In addition, because EPI Suite™ employed the Modified
Grain method (MGM) to estimate vapor pressure (Barley and McFiggans 2010), we assigned all
vapor pressure QSAR predictions that cited MGM, but did not indicate a QSAR source, to EPI
Suite™. For all QSAR software output, we used expressions of QSAR estimation (Cronin et al.

2003) and QSAR prediction interchangeably.

In order to include only relevant QSAR information , we applied limits to our AoA

content analysis. All QSAR data for physico-chemical or hazard endpoint data in the AoA’s
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Appendix counted toward our data collection. If AoAs lacked alternatives, we excluded them
from our in-depth QSAR analysis. Any AoAs that were assigned ‘withdrawn’ at the time of our
study, were coded as “unavailable,” and were excluded from our QSAR analysis. However, in
order to obtain a robust sample and comprehensive understanding of practices used in REACH
applications for authorizations as of May 2017, we based our total sample size on the 189

original applications.

Finally, to prioritize the identification of specific models over larger platforms and to
control for falsely inflated frequency values, we did not include descriptive statistics specifically
labeled as OECD QSAR Toolbox in our analysis. Our first justification for doing this was
because an applicant oftentimes cited both the OECD QSAR Toolbox and the specific QSAR
model for the same QSAR prediction. We thus decided to only include the tallies for the specific
QSAR model even though we kept track of both specific models and OECD QSAR Toolbox
counts. Alternatively, an applicant may have identified the OECD QSAR Toolbox as their
QSAR source but then failed to cite the exact model. Upon locating the descriptor “prediction”
within the applicant’s explanation, which we used to justify that the value was actually a QSAR
prediction, we then coded these types of values as “unidentified QSAR.” However, we also
coded for OECD QSAR Toolbox references in the event that we needed this information though
we excluded OECD QSAR Toolbox data that did not cite a specific QSAR to be conservative.
As the QSAR Toolbox hosts a variety of platforms, models, and information sources, we could

not always confirm whether the value was a QSAR prediction or not.

85



Appendix S4

Details on the Consultation by Alternatives Unit of Analysis

For the total count of alternatives unit of analysis, we consolidated data that we initially
collected by consultation number per alternative per QSAR source because we could only
include one count per alternative. A simple decision-tree analysis approach was used to reduce

the unit of analysis to consultation number per alternative.
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Appendix S5
MOP

Total QSAR prediction counts included predictions that listed their QSAR models or
sources, no information outputs with unspecified sources, and QSAR predictions, which could

only be identified through references to their applicability domain.

To compare data, we “normalized” counts using the MOP approach to reduce bias for
otherwise potentially misleading tallies, such as low counts. For instance, a low count could have
been the result of a model’s limited endpoint range, which, in turn, may have limited its total
counts. As an example of an MOP calculation, we multiplied the total number of alternatives that
cited QSARSs (n = 54) within each AoA, and then multiple this amount by the total number of

hazard endpoints (n = 19) or physico-chemical properties (n = 15),

Equation 1.

Maximum opportunities (MOP) = (number of endpoints or properties) X (total alternatives)

Equation 2.

1,026 = (19) x (54)

To calculate the percentage of MOP, we then divided the total amount of QSAR predictions per

endpoint, for example, by its related MOP and then multiplied by 100,

Equation 3.

8
x 100 = 0.89
(1,026) %

In addition, for all calculations, we used either one of two basic units of analysis: a)

alternatives by QSAR tool/model (sample number varied per AoA) served as the unit of analysis
88



when analyzing trends in hazard endpoints or physico-chemical properties by QSAR tool/model
use or b) total count of alternatives (n=54) when examining data trends in QSAR use and
support, and in certain cases, for endpoints and properties, which did not pertain to QSAR

tools/models.
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Appendix S6

Non-applicable Category

In general, most data points fit under the “non-applicable” category, (i.e. QSAR
prediction data did not exist for that endpoint or we could not confirm if a certain value was in
fact a QSAR prediction). For example, under QSAR usage, we calculated non-applicable data
points for 86% per MOP and 89% per MOP for both physico-chemical properties and hazard

endpoints, respectively).
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Appendix S7

QSAR Model/Source Descriptions

The Danish (Q)SAR Database (n=63), a repository of over 600,000 estimates from more
than 200 QSAR models that generates “battery” predictions from three QSAR systems (DTU
2018b), and unidentified QSARs, or, QSARs for which the applicant did not specify the QSAR
model or tool, ranked second in frequency (n=36) were the most cited QSAR sources for human
health and environmental hazard endpoints. ECOSAR (n=24), which is a library of 711 QSARs
and which uses decision-tree analysis to predict aquatic toxicity (Mayo-Bean et al. 2012) was the
third most cited QSAR source. In descending order, OASIS, EKDB CoMFA, TOPKAT and
CASE Ultra (Multicase) were the next four most cited QSARs. OASIS or the Laboratory of
Mathematical Chemistry OASIS (n=15), includes software suites and models for environmental
fate and ecotoxicity endpoints (CATALOGIC) and human health endpoints (TIMES) (OASIS
2019). The FDA’s National Center for Toxicological Research (NCTR) project’s three-
dimensional EKDB CoMFA QSAR method (n=12) predicts receptor binding affinity (Tong et al.
2002). TOPKAT (n=12) or (Toxicity Prediction by Komputer Assisted Technology) relies upon
2-D descriptor QSAR models available in the BIOVIA Discovery Studio predictive science
application (Pudenz and Frere 2017). Finally, CASE Ultra (MultiCase) (n=11) includes statistical

and expert rule-based systems with both alerts and statistics (MultiCase 2019).
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(Table S2. Continued)

2 'Combination of information' means that we "combined" AD information when an applicant provided multiple AD information
for a single alternative in their AoA. For instance, in AoA 0005-02, the applicant DEZA a.s. generated multiple reproductive
toxicity QSAR predictions with different AD interpretations for the following alternatives: Akardite 11, Akardite III, DEHA,
ATBC and IDP. Within each "combined" data point, at least one of the AD’s met our AD criteria by including the wording:

99 ¢

“within QSAR domain,” “outside of QSAR domain,” “undefined with regard to domain applicability,” “operational limits,” and

“model’s rules”.
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Appendix S9

Study limitations

Example of an AoA with redacted language: AoA consultation number 0004-02 (DEZA
A.S. 2013b).

Examples of AoAs that did not directly cite after their reported values: AoA consultation
numbers 0062-02 and 0066-02 .

Examples of AoAs with confidentiality protocols that prohibited a complete hazard
analysis on their product(s): AoA consultation numbers 0063-02 and 0066-02 (Gentrochema BV
n.d.; MTU Aero Engines AG n.d.).

Example of an AoA that listed EPI Suite™ as their software package: AoA consultation
number 0080-01 (H&R Olwerke Schindler GmbH 2016; OECD 1997).

Examples of QSARSs not captured in our sample of AoAs: AoA consultation
number 0005-02 (DEZA A.S. n.d.-a).

e MITI (for the alternatives methyl centralite, ethyl centralite Akardite I, isodecyl

pelargonate (IDP): Because applicants did not provide enough information to confirm
whether the reported values identified as ‘Biodegradation’ (by MITI) came from a
MITI QSAR model or from the MITI-I screening test, which measures biological
oxygen demand (BOD) (Pavan and Worth 2006), these values could not be counted
towards our study’s QSAR prediction counts. Moreover, because the ‘MITI” QSAR
model exists as part of BIOWIN5™ and BIOWIN6™ (Posthumus et al. 2005), we
would have grouped ‘MITI” under EPI Suite™ regardless if we knew MITI specified
the QSAR model.

e GOBAS (for the alternatives methyl centralite, ethyl centralite Akardite I, isodecyl

pelargonate (IDP): In addition, we did not capture biodegradation predictions
95



identified as ‘GOBAS’ under GOBAS QSAR model, but instead, incorporated these
predictions under EPI Suite™. GOBAS BCF and BAF models are presently part of
the EPI Suite™ BCFBAF™ model (Garg and Smith 2014). However, we could not
find out exactly when GOBAS became part of BCFBAF™, thus, for consistency

across all AoAs, we grouped GOBAS QSAR predictions under EPI Suite™.,

Example of a QSAR designed for a specific hazard endpoints: FDA EDKB CoMFA. The
FDA EDKB CoMFA, which solely predicts receptor binding affinity, ranked as one of the least
cited QSAR tools in our study. Because our descriptive statistics were based on frequency of use,
we were unable to completely control for this design limitation, however, we attempted to reduce

biased interpretation of results by using percentages based on MOP.
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4. Chapter 4: Exploring QPRF, WoE and ITS aspects of QSAR use in REACH AoAs
Introduction

Under the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)
analysis of alternative’s (AoA) process, quantitative structure-activity relationship (QSAR)
models play an important role in information gathering and organizing frameworks. Already
recognized as an alternative to testing under registration (ECHA 2014, 2016c¢, 2017a, c), QSARs
have become increasing relevant tool in bridging data gaps and supporting weight of evidence
(WoE) when assessing alternative substances (ECHA 2016b). Additionally, QSARs are growing
in importance in integrated testing strategies (ITS) (Bassan and Worth 2008; Luechtefeld et al.
2018). For example, the REACH ITS framework for specific endpoints directs registrants to
consider non-testing results, including QSAR predictions, when deciding if further animal testing
is needed (ECHA 2017d). Despite the rising profile of QSARs within these frameworks, a gap
exists in the evaluation of QSAR use and QSAR documentation under authorization (pending
publication Chinen and Malloy 2019). Thus, an assessment of the different channels (e.g. WoE
and ITS) by which QSAR predictions play a role in evidence gathering and organizing remains
unaddressed for AoAs. For this study, we approached this disparity in information for QSAR
predictions by conducting a substantive review of 24 AoAs through May 2017, which contained
higher-tier endpoints under REACH. Understanding the manner in which applicants manage
QSAR prediction information in AoAs and assess their potential within ITS will be valuable in
promoting regulatory use of QSARSs, and building out future platforms in the face of rapidly

evolving technology.
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Background

Quantitative structure activity-relationship (QSAR) models provide vital information for
untested substances that lack or have limited experimental data due to the resource intensive
costs associated with traditional animal testing (Benfenati et al. 2011) and act as an increasingly
relevant tool under Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) to
bridge data gaps and support weight of evidence (WoE) when assessing alternative substances
(ECHA 2016a). Moreover, QSARs have been gaining importance in integrated testing strategies
(ITS) (Bassan and Worth 2008; Luechtefeld et al. 2018). QSARs are computational models that
mathematically relate chemical structure to biological activity (Benfenati 2012). Yet, as more
21% century toxicological methods, such as QSARs, are integrated into information gathering and
organizing frameworks for progressive regulations such as REACH, limited evaluations exist
that evaluate how QSARs are used within these frameworks for the authorization process
(pending publication Chinen and Malloy 2019). Proper supporting information and appropriate
testing, which includes alternative methods such as QSARs, are especially critical for chemicals
prioritized as hazards of highest concern (ECHA 2017¢c; ECHA 2019b). Without rigorous
monitoring of these frameworks, particularly those which draw on QSAR predictions for
authorization reports such as analyses of alternatives (AoAs), these highly toxic chemicals may

circulate in the market without proper labeling (EPA 2009; EPA 2013) or safer substitution.

AoAs, which cite QSAR predictions and lack the required QSAR documentation, are one
such example of the risks to proper assessment of alternative substances under authorization.
AoAs are applications that companies submit under REACH for continued use of an priority
Annex XIV substance (ECHA 2011b). Part of the purpose of AoAs is to examine whether safer

alternatives exist relative to the Annex XIV substance. Yet, without background information on

98



the QSAR prediction(s), traditionally found in the QSAR Prediction Report Format (QPRF) to
justify the reliability or adequacy of the prediction for a specific chemical by a specific model
(ECHA 2008; OECD 2007; Rorije et al. 2008; Worth et al. 2011), an applicant’s claims that a
QSAR prediction is reliable or not cannot be verified (ECHA 2008). These risks associated with
inconsistent monitoring of proper QSAR reporting and presentation in information frameworks
under authorization has serious potential implications similarly found in other data organizing
frameworks, which utilize QSARs. Two major information organizing frameworks that draw on
combined results, but may include QSARs, and which can either be found in AoAs or have the
potential to significantly impact AoAs are weight of evidence (WoE) and integrated testing
strategies (ITS). Under REACH, WoE is an important approach for drawing reliable conclusions
on a substance based on a collection of toxicity information with emphasis on avoiding
unnnecessary animal testing. According to ECHA, WoE is a process that combines multiple lines
of evidence while weighing the relative “strengths and weaknesses™ in order to reach a
conclusion on a substance’s property (ECHA 2016a). For example, results from predictive non-
testing methods, such as QSAR and read-across, could be combined to draw inferences on the
hazard of a substance. (For an example of a formal WoE, see Appendix S1). WoE has also been
used to develop ITS (ECHA 2016a). ITS is a method of collecting and combining results under a
scientific approach (Hartung et al. 2013). Advancements in in silico models, such as QSARs,
have enhanced the accuracy of predictions to even exceed animal tests (Luechtefeld et al. 2018).
As aresult, many tests are being combined in ITS as the next step forward in regulatory
toxicologist assessment. Though ITS does not have an inherent regulatory purpose, ITS is used
for regulatory decision-making, oftentimes in a WoE context (Worth 2010a). As an alternative
method, QSARs have expanded under WoE and ITS methods, though not without potential

challenges. Without clearer documentation and a more systematic WoE framework (Knudsen et
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al. 2015; Malloy et al. 2017; Rotella 2011), information contained within WoE and ITS, such as

QSAR predictions, may not be perceived as trustworthy information.

As a regulatory tool, WoE can be implemented according to a variety of approaches.
These approaches include a range of methods from narrative to more systematic and quantitative
types (Linkov et al. 2009; Martin et al. 2018). However, the degree of reproducibility and
transparency differ significantly between the evaluation forms even though the different types of
evaluations are equally considered under WoE (Linkov et al. 2009). For QSAR predictions in an
Ao0As, the high variability in WoE approaches may weaken the strength of supporting evidence,
particularly if the supporting evidence is not well documented for QSARs. WoE is limited
though; this framework may not always give the best outcome. In some cases, even if an
applicant’s WoE presents an articulate, well documented argument with a non-integrated battery
of QSAR predictions, an applicant may still select the wrong QSAR model or approach, or, a
non-integrated combination of predictions, which could include false positives. An integrated
QSAR screening approach, on the other hand, which combines predictions based on algorithms,
produces more powerful results. However, for AoAs, the potential benefits of using QSARs
especially for priority higher-tier chemicals in an integrated testing strategies (ITS) framework,
which combines predictions based on algorithms to produce more powerful results, remains

unknown.

Substances with carcinogenic, mutagenic, reproductive toxicity (CMR), persistent,
bioaccumulative and toxic/ very persistent and very bioaccumulative (PBT/vPvB) and certain
endocrine disrupting properties, which are considered of higher concern under REACH (ECHA
2019c), are a likely target of WoE and ITS strategies especially if these substances are deficient

in experimental data. Under REACH, QSARs within a WoE context have been increasingly used
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to identify potential CMR and PBT/vPvB substances (ECHA 2016¢). Some information
requirements for higher-tier endpoints under REACH even point towards the use of QSARSs to
identify targeted substances (European Parliament and the Council of the European Union 2006;
Lahl and Gundert-Remy 2008). The REACH ITS framework for specific endpoints, which
includes CMR, also directs registrants to consider non-testing results, (e.g. QSAR predictions)
when deciding if further animal testing is needed (ECHA 2017d). Despite their critical role in
information gathering and testing assessments for CMR and PBT/vPvB substances, QSARs in
AoAs have yet to be evaluated for these purposes, which could eventually become an issue for
regulators attempting to deter companies from using harmful chemicals in their processes such as

the European Chemicals Agency (ECHA), the regulatory arm of REACH.

Prompted by findings in several AoAs in a previous study, this study was used to address
three main questions pertaining to QSAR information is reported in QPRFs, WoE and ITS: 1) To
what degree do our sample AoAs contain information from the QPRF document? 2) How well
do applicants meet regulatory and best practices WoE criteria when using QSARs in AoAs? 3)
What are the differences in conclusions on toxicity between ITS battery QSAR model
predictions and QSAR predictions generated from either individual models or multiple models,
which do not employ ITS battery testing. We first data-mined 24 AoAs to see if applicants used
an equivalent method to QPRFs by providing at least partial information. We prioritized this
information because our research indicates this information could reveal the applicant’s
reasoning for using QSAR predictions. However, because we were also curious how WoE using
QSAR predictions in AoAs were used to assess priority CMR/ PBT vPvB endpoints, we
developed a checklist of criteria to assess the rigor of WoE analyses, or, what we call a

‘completeness review’ for our AoA sample (n=24). As the guidance document and the relevant
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research were individually inadequate for our purposes, we combined four approaches to create a
composite set of criteria. This checklist draws on ECHA WoE guidance as well as recent WoE
literature and other best practices. We then assessed the degree to which an applicant met our
WOE criteria in a completeness review of AoAs using QSAR predictions for higher-tier

endpoints.

In cases where two or more AoAs assessed the same chemical, we adopted a consistency
check review to see if applicants reached inconsistent conclusions. If the AoAs using QSAR
predictions on the same chemical arrived at different conclusions, we examined the substantive
aspects of the respective WoE analyses to understand why the analyses came out differently.
Because of the importance placed on higher-tier endpoints, we examined WoE only in the
context of CMR and PBT/vPvB endpoints. Our research underscores what we believe a regulator
would need to make a sound decision on an alternative’s relative safety in an AoA. Finally, to be
forward looking, we added an integrated approach to QSAR use, when appropriate, in our paper.
We compared the conclusions reached by applicants on the safety of the alternative relative to
the Annex XIV chemical with results from the Danish EPA advisory list (EPA 2018b). We argue
that the Danish EPA’s use of ITS for further evaluation is a potentially valuable tool to confirm

the identity of potentially harmful CMR chemicals.

We report findings regarding the breadth and context of QSAR usage in 24 REACH
AoAs in addition to the role of QSARSs in 21% toxicology strategies to increase our knowledge on
how QSARs are used in information gathering and organizing frameworks. We conclude with a
discussion on the need for enforcement of QSAR documentation under REACH authorization,

guidance specifying the WoE criteria that should be met when using QSARs, and the future
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direction of QSAR ITS modeling strategies within REACH. (For study limitations, see Appendix

32).

Methods
QPREF criteria

We collected data on 17 criteria (Table 4-1) from AoAs to investigate whether applicants
provided information normally required under a QPRF. Since we were looking for results that
had the most relevance in regulatory discussions, we focused on QSAR predictions for hazard
endpoints. For substance information, we surveyed chemical identifiers, coding for Chemical
Abstracts Service (CAS) number, European Community (EC) number, chemical name, structural
formula, and structure codes, (i.e. text representations of a chemical’s structure). For prediction
information, we selected model identifiers such as the model’s hazard endpoint and dependent
variable (ECHA 2008), model name and version, predicted value including prediction cut-off
values, input for the model used to generate the prediction such as the specific structure codes,
and descriptor values, which codes molecular value into numerical value (Todeschini and
Consonni 2008). We also focused on six QPRF “priority” criteria: a) applicability domain; b)
structural analogues; ¢) predicted value; d) model endpoint; e) uncertainty; f) chemical and
biological mechanisms to conduct a more in-depth analysis. (Table 4-1). For our study, we
define QPRF “priority” criteria as foundational criteria, which provides the most fundamental
information a regulator needs to draw a general conclusion on a QSAR prediction. Because we
were already aware that all QMRFs were missing from previous research, we did not code for
QMREF references in the QPRF. Lastly, we coded for applicability domain, (i.e. the limits used in
a model to make reliable estimations) (Hanser et al. 2016), the inclusion and identification of

structural analogues found in a model’s training and test sets, prediction uncertainty, and if
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appropriate, chemical and biological mechanisms, which according to Yuan et al. (2007) is the
biological response underlying the mode of toxic action (MOA). To streamline our data, we

excluded alternatives that did not employ a QSAR for a hazard endpoint.

During our analysis, we made several assumptions. First, we accepted multiple
definitions of applicability domain (see Chapter 2 Methods: Data collection). Regarding
uncertainty of QSAR predictions, we also accepted several versions including “acceptable,”

“limited similarity and no conclusion could be drawn,” “doubtful reliability,” “uncertain

9 ¢ 29 ¢¢

reliability,” “robustness of prediction,” “considered reliable,” and “no conclusion should be
drawn.” However, we did not accept “no indication that model was operating outside of its
operational limits,” as this interpretation did not answer the degree to which an applicant
considered the prediction trustworthy. For QSAR source/model names, we excluded “OECD
QSAR?” as a source because we could not confirm whether the applicant ran a QSAR model or if
the QSAR prediction was cited from within the OECD (Q)SAR Toolbox, which would then

mean the prediction could have been generated from any number of QSAR models. Finally, we

accepted partial endpoint definitions.

WoE Completeness review

Our WoE completeness review began with an evaluation of REACH’s approach to WoE
criteria set out in the 2016 Practical guide: How to use alternatives to animal testing to fulfil
your information requirements for REACH registration. For the purpose of our study, we define
completeness review as a critical evaluation of the process and steps applicants took to formulate
their WoE analysis for CMR and PBT/vPvB higher-tier endpoints when including QSAR
predictions. Criteria included assembling information that factored in relevance, reliability

adequacy and quantity, discrepancies in studies, proper documentation, expert judgement, and
104



“robust” summaries (Figure 4-1) (ECHA 2016a). However, in developing sub-criteria for this
approach to our study, we came across inconsistencies and gaps in ECHA’s guidance. In
addition, the criterion to “pool” information did not define “pooling,” nor were steps given on
how to weigh the evidence or what to consider during data integration. Thus, we drew on
elements from the 2018 National Resource Council’s (NRC) evaluation on the U.S. EPA IRIS
system, and best practices from Rhomberg et al.’s 2013 review 4 survey of frameworks for best
practices in weight-of-evidence analyses, Martin et al.’s 2018 review Weight of Evidence for
Hazard Identification: A Critical Review of the Literature, Suter et al.’s 2017 A Weight of
Evidence Framework for Environmental Assessments: Inferring Qualities, and the European
Safety Authority’s (EFSA) Guidance on weight of evidence. Together, these frameworks and
best practices formed a continuous framework that explicitly laid out a clear, transparent and
structured WoE approach (EFSA Scientific Committee et al. 2017; Martin et al. 2018; NRC
2018; Suter et al. 2017). (For WoE criteria checklist, see Appendix S3). These supplemental
regulatory guidances and best practices addressed three main deficiencies in ECHA’s WoE
guidance: @) creating a broad guidance to apply to other parts of REACH, particularly for study
summaries, b) providing accepted metrics for “weighing” evidence; c) setting out specific steps
for data integration. With this continuous framework, we developed a checklist to conduct a
completeness review for how “well” AoAs articulated their WoE analysis. In this completeness
review for WoE, the evaluation was limited to a procedural analysis and did not address
substantive questions related to the quality of higher-tier WoE using QSARs. We also only
considered WoE that used QSARs as opposed to all WoE used in an application (Benfenati

2012; ECHA 2016b).
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Using this technical approach, we looked at all WoE higher-tier hazard endpoints from
our original AoA sample citing QSARs (n = 24), which we collected through May 2017
(pending publication Chinen and Malloy 2019) . More specifically, our study focused on
measuring the completeness across WoE using QSARs to gauge the degree to which applicants’
efforts met our WoE criteria. (For sub-criteria coding for higher-tier endpoints used in WoE, see
Appendix S4). We rated completeness on an increasing scale ranging from 0 = no criteria
discussed to 5 = all criteria discussed (Figure 4-1). When endpoint data were not relevant to our
WoE completeness review, such as potential alternatives, which do not typically provide
sufficient hazard endpoint detail other than the type of data, or, the given information was not

used in WoE context, we coded this information as ‘6’ for non-applicable.

We recorded any WoE observations for each of the five main criteria in Libre Office
Version: 6.2.4.2. Based on our descriptive statistics, we assessed the degree to which applicants
met the criteria for a rigorous WoE analysis. For all descriptive statistics, we used “alternative
per AoA consultation number” as the unit of analysis. In this study, there were a total number of

54 opportunities per alternative per consultation number to provide information for criteria.

ITS comparative analysis

Despite the lack of international regulatory consensus on ITS (Rovida 2010), several ITS
frameworks, for which QSARs have been instrumental in assessing information, have already
been developed. Comparison of the 24 AoAs with integrated CMR predictions from the 2018
Danish EPA advisory list for self-classification of hazardous substances began with a verification
of Chemical Abstracts Service (CAS) numbers, which are unique numbers assigned to chemicals
used in the science field (ACS 2019) (Table 4-2). (For the 2018 Danish EPA advisory list for

self-classification of hazardous substances, see Appendix S5). To verify information, we inputted
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the name of the alternative substance, as listed in the AoA’s Table of Contents, into
SciFinder®’s substance identifier search engine, which generated a profile. We then used the
CAS number from the profile to verify if the given CAS number in the AoA correctly identified
the alternative. If SciFinder® could not find a match based on the alternative’s name, we queried
the alternative’s CAS number and used the molecular formula to confirm the correct identity of
the alternative. If the query did not provide a molecular formula, we used the EC, IUPAC or one
of the “other” names, as given in the AoA, to search for a matching CAS number; however, this
was the least reliable method for confirming the correct identity of the alternative. Because we

had repeating, non-unique alternatives, we verified each alternative by consultation number.

Once we confirmed the identity of each alternative, we compared AoA CAS numbers
with CAS numbers in the 2018 Danish EPA advisory list using Excel (Version 16.28) (EPA
2018b). For any matches, we recorded the ITS battery QSAR prediction Advisory classification:
Muta. 2 (Suspected of causing genetic defects); Carc. 2 (Suspected of causing cancer); or Repro.
2 (Suspected of damaging fertility or the unborn child) advisory classifications in an Excel
spreadsheet. ). CMR endpoints are defined under the Danish EPA’s battery of model endpoints

(Appendix S5).

For AoAs with matching CAS numbers, we visually inspected their applications for any
CMR identifiers for the alternative. We focused primarily on the following sections: Mammalian
hazard profile, Reduction of Overall Risk, Conclusion on suitability and availability, Comparison
of hazards, and the Annex. Any supporting, conflicting or missing information was reported

separately.
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Results
QPREF criteria

Figure 4-2 gives a broad overview of the 16 criteria. Overall, criteria were unevenly
distributed. No information was given in any AoA for the model’s dependent variable, cut-off
values for the prediction, model input for the prediction, structural analogues, and biological
mechanisms. However, all QSAR predictions provided information on the structural formula,
International Union of Pure and Applied Chemistry (IUPAC) name, and EC and CAS number
criteria of their alternative. For chemical structure codes, (i.e. the remaining criterion), only

Simplified Molecular Input Line Entry System (SMILES) codes were provided.

Results for four of the priority QPRF criteria were more evently distributed (Figure 4-2).
For the applicability domain priority criteria, predictions were discussed as in domain 259 times
while predictions were not discussed in the context of their applicability domains 109 times.
While applicants commented on the uncertainty of predictions 266 times, they did not comment
on a prediction’s uncertainty 100 times. Though predicted values were cited the majority of time
(n = 342), we identified qualitative or quantitative predicted values going unreported 26 times.
The QSAR model endpoint was defined, at least partially, 285 times, though applicants did not
report the model endpoint for 83 predictions. No information was given for either structural

analogues or chemical and biological mechanisms.

AoAs that used QSARs in WoE for higher-tier endpoints

Of the 24 AoAs, only three used QSARSs for at least one higher-tier endpoint (Table 4-3).
These AoAs performed WoE for higher-tier endpoints on 11 unique alternatives. Because data

were analyzed by the unit of alternative by consultation number, the same alternative may have

108



been assessed multiple times by different applicants. For instance, consultation numbers 0005-01

and 0006-1, both assessed the same alternative, diisobutyl hexahydrophthalate (DIBE).

One major issue that we encountered was that several PBT/vPvB QSAR predictions for
the alternative Tributyl citrate (TBC) in consultation number 0005-02 had missing QSAR
models/sources. When referencing information presented on the ECHA Dissemination Portal for
Environmental fate and behavior and ecotoxicology, DEZA, a.s. reported, “ [I]t was found to
have a calculated bioconcentration factor (BCF) of 94.7 L/kg wet-wt.” (DEZA A.S. n.d.-a).
However, after rigorously reviewing content on TBC in AoA consultation number 0005-02, the
value 94.7 L/kg wet-wt was the only BCF result for TBC, predicted or otherwise. Likewise, in
consultation number 0006-01, the applicant Sasol-Huntsman GmbH & Co. KG reported a series
of OECD Toolbox predictions for bioaccumulation for the alternative DIBE (DEZA A.S. n.d.-a).
However, the applicant did not identify the source of these predictions, nor could we find any
QSAR predictions in Table 4.2: Physico-chemical properties of DIBE or Table 4.5: Human

health and environmental hazard profile for DIBE (DEZA A.S. n.d.-a).

Completeness review

QSARs used in WoE to assess CMR endpoints varied in quality of completeness for the
five main criteria. Only one endpoint, reproductive toxicity, met all five WoE criteria for the
alternative bis(2-ethylhexyl) adipate (DEHA) in consultation number 0005-02 (Table 4-4). In the
same AoA, for the alternative Akardite II, the endpoint mutagenicity met four criteria: 1) “Pools"
information; 2) Conflicting results; 3) Assesses reliability, relevance, adequacy, and quantity; 4)
Assesses the overall WoE package. The endpoints that met the least amount of criteria were
ready biodegradability, which indicates rapid breakdown of the substance in most environments

(ECHA 2017b), and bioaccumulation or persistence (Pavan and Worth 2006) of the alternatives:
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Akardite I, ethyl centralite and methyl centralite. WoE for dioctyl azelate (DOZ) did meet two
criteria for bioaccumulation: 1) Assesses reliability, relevance, adequacy, and quantity; 2)
Assesses overall WoE package. Figure 4-3 illustrates a high level view of these trends. In this
figure CMR/PBT vPvB endpoint data are consolidated and organized by the number of criteria

met.

Consistency check

Despite the similarities in AoAs, when applying a WoE consistency check, we observed
less consistent results (Table 4-5). Only one pair of AoAs assessed the same alternative. For
Ao0A consultation numbers 0005-01 and 0006-01, the alternative diisobutyl hexahydrophthalate
(DIBE) was assessed using evidence for mutagenicity and carcinogenicity endpoints, and
outcomes from in vitro gene mutation in bacteria (Ames test) assays. Although both AoAs
acknowledged a concern for reproductive toxicity, both concluded that DIBE may be safer for
human health relative to its Annex XIV chemical dibutyl phthalate (DBP). Specifically, positive
QSAR predictions for teratogenicity and androgen receptor binding were suggestive of
reproductive toxicity. In addition, both AoAs gave QSAR predictions for aquatic toxicity that
suggested a low chronic toxicity (Dow Italia Srl and Rohm and Haas France S.A.S. 2016; Sasol-

Huntsman GmbH & Co. KG n.d.).

For the endpoints mutagenicity and in vitro gene mutation in bacteria (Ames test), both
applicants addressed the sub-criterion ‘consistency’ under the second main criterion (Figure 4-1).
Applicants employed WoE using QSARs to point out a lack of alerts for the two endpoints.
Furthermore, in the robust study summary (RSS) criterion, both applicant identified the single
positive result among the two mutagenicity tests and Ames test (DEZA A.S. n.d.-b; Sasol-

Huntsman GmbH & Co. KG n.d.). Each applicant also addressed the sub-criteria ‘adequacy’ or
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use of the in vitro gene mutation in bacteria (Ames test) predictions when they pointed out the
limited, peer-reviewed experimental data for DIBE (DEZA A.S. n.d.-b; Sasol-Huntsman GmbH

& Co. KG n.d.).

Agreement between the two AoAs, however, ended under the two main criteria: a)
‘Conflicting results’ for mutagenicity; and b) ‘Assess reliability, relevance, adequacy, quantity’
for carcinogenicity. In consultation 0005-01, DEZA, a.s. included an informal ‘scoring table,’
which described the degree of certainty assigned to mutagenicity (DEZA A.S. n.d.-b). In
contrast, a ‘scoring table’ was not included for for mutagenicity for consultation number 0006-
01. Finally, for carcinogenicity, while DEZA, a.s. focused on justifying the ‘adequacy’ of QSAR
and read-across predictions in the absence of experimental test results, Sasol-Huntsman GmbH
& Co. KG in consultation 0006-01 separately addressed the sub-criteria ‘quantity’. In addition, in
the assessment of the overall WoE package for consultation 0005-01, DEZA, a.s. was the only

applicant to address a concern for both reproductive toxicity and environmental toxicity.

ITS comparative analysis

The majority of AoA CAS numbers did not have a matching CAS number from the
Danish EPA advisory list (Table 4-6). We, however, did find matches for four CAS numbers:
103-23-1 (DEHA), 53306-54-0 (DPHP), 7790-7 (ATBC) and 77-94-1 (TBC). All matching
Danish EPA advisory list CAS numbers had a Repr. 2, Muta. 2 or Carc. 2 CLP classifications

were not assigned to any of the matching chemicals.

Upon further inspection of the alternatives’ AoAs, consultation numbers 0002-01, 0002-
02, 0003-01, 0003-02, 0004-01, 0004-02 and 0005-02 identified reproductive toxicity for the

alternative DEHA (Table 4-7). In each of the AoA’s Reduction of overall risk assessments,
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applicants reported CMR concerns in addition to DEHAs listing on ECHA’s Community
Rolling Action Plan (CoRAP) list, which frequently contains substances of PBT and CMR
concern (ECHA 2019i). Teratogenicity was also mentioned in each of the AoA’s Annexes. In
addition, applicants reported a Repro. 2 notified classification for DEHA in the “Notified
classification and labelling of DEHA according to CLP criteria” tables (ARKEMA 2013a, b;
DEZA A.S. 2013a, b, n.d.-a; GRUPA AZOTY ZAKLADY AZOTOWE KEDZIERZYN S.A.
2013a, b). Moreover, consultation number 0005-02 cited uncertain reproductive toxicity in the

Comparison of Hazards Table 4.53 (DEZA A.S. n.d.-a).

For the alternative bis(2-propylheptyl) phthalate (DPHP), no mention of reproductive
toxicity was made in the Reduction of overall risk assessment for consultation numbers 0002-01,
0002-02, 0003-01, 0003-02, 0004-01, and 0004-02. Similarly, for the alternative acetyl tributyl
citrate (ATBC), there is no mention of reproductive toxicity as a concern in the Reduction of
overall risk assessment or the Comparison of Hazards tables ro4 consultation numbers 0002-01,
0002-02, 0003-01, 0003-02, 0004-01, 0004-02, and 0005-02. However, for consultation number
0005-02, in the Mammalian hazard profile, the applicant mentions a reproductive toxicity effect

doses above 300 mg/kg bw/d (DEZA A.S. n.d.-a; SCENIHR 2015).

Finally, for the alternative tributyl citrate (TBC), the applicant stated a lack of
“documented data” on TBC’s reproductive toxic effects though a negative QSAR prediction
originating from the TERIS database is given in Table 4.68: Human health and environmental

hazard profile for TBC (DEZA A.S. n.d.-a).
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Discussion

QPRF Equivalency

We began this study by exploring transparency in REACH QSAR documentation in
AoAs. We collected data by prediction/QSAR source/alternative for hazard endpoints, and
tabulated information supplied for 17 main QPRF criteria (Table 4-1), which included six
priority criteria. We considered these criteria as fundamental information that a regulator would
need to know to determine whether a QSAR’s prediction is reliable or not. From our review, we
found that several criteria lacked any information, including one of our priority criteria,
structural analogues. The majority of applicants, however, provided prediction information for
uncertainty, AD, predicted value and model endpoint, though, a range of predictions, (i.e. 5% -
24%) lacked any information. In particular, f the ‘model endpoint’ priority criterion, applicants
provided some detailed information. Given the range of reported information on the model
endpoint, some model endpoint descriptions were better detailed than others. For example, for
consultation number 0005-02 for the alternative methyl centralite, the applicant DEZA, a.s.
indicated both the specific assay used to develop the QSAR model in addition to the hazard
endpoint: “genetic toxicity reported: In vivo — Mutagenicity, QSAR prediction for Rodent
dominant lethal assay from the Danish (Q)SAR Database (DQD)” (DEZA A.S. n.d.-a). However,
most endpoint descriptions did not contain the exact model endpoint or the experimental test. For
the alternative ethyl centralite, also from consultation number 0005-02, information in Table
4.17: Ecological data supporting decisions of Enviornment Canada only gave the hazard
endpoint, (i.e. EPI Suite (BCFWIN) Bioaccumulation potential: Log BCF (predicted by
BCFWIN)) without giving any information about the assay or species used to develop the model

(DEZA A.S. n.d.-a).
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Our comparison of 24 AoAs suggests that current use of single QSAR models continues
to be limited, and that ITS QSAR models could provide a huge benefit to the REACH AoA
community. Our study also revealed that ITS QSAR predictions can significantly contribute to a

broader understanding of a chemical in an alternative substance’s assessment.

Despite the large amount of missing QPRF information, questions surrounded the degree
to which a regulator would deem the existing information adequate if not fully sufficient. While
an alternative stream of information was embedded in AoAs albeit informally and in incomplete
form, including at least four of the priority criteria, this does not mean to say that the other
criteria were inferior. In fact, several of these criteria, though not essential for a regulator to
assess an AoA, if properly reported, could help a regulator more efficiently ascertain whether the
QSAR prediction was reliable or not. For example, although we found that predicted values were
reported 342 times, without cut-off values, especially for qualitative results, a regulator might not
be able to judge an alternative’s toxicity or safety without knowing the cut-off values ofthand. In

our study, missing cut-off values occurred for all QSAR predictions.

Similarly, the problem of missing model version information turned into a significant
issue when we attempted to verify AD information. (For analysis by consultation numbers, see
Appendix S6). For the alternative ‘methyl centralite’ in consultation number 0005-02 and the
hazard endpoint ‘Genetic toxicity: /n vivo — Chromosomal effect’ for the mouse bone marrow
sister chromosome exchange assay, the applicant used the Danish (Q)SAR Database (DQD) to
report an ‘equivocal’ result that was ‘within QSAR domain’ (DEZA A.S. n.d.-a). Yet, when we
downloaded the same prediction on March 15, 2019, an inconclusive result was generated from
battery QSAR models, which indicated the prediction was out of domain (DTU FOOD et al.

2019). Interestingly, the DQD reported a positive but out of domain result for each QSAR
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prediction i.e. Leadscope, CASE Ultra, and SciQSAR. If we could verify that both results came
from the same model version, perhaps we could identify a pattern where applicants cited QSAR
results as in domain when they are, in fact, out of domain. On the other hand, it could simply be
an isolated error. The DQD has been updated several times since the November 2015 launch

(DTU Food et al. 2019). Arguably, these errors may not make a difference in the outcome of the

relevant AoA. However, it is an indication of deficient practices that could matter in later AoAs.

We also looked at the quality of information that applicants provided. Based on our
review, applicants commented on a prediction’s uncertainty 266 times. However, these
comments lacked depth, and fell short of communicating the importance owed to a discussion on
a prediction’s uncertainty. For example, many of the comments were single responses or short
phrases such as “uncertain,” or, “acceptable,” or “doubtful reliability.” Of course, leading
regulators have established methodologies to fill out QPRFs, which provide well-substantiated
reasoning. In the Netherlands National Institute for Public Health and the Environment (RIVM)
Report 601779001/2007, several QPRF samples provided by the European Chemicals Bureau
(ECB), Italy, were included. Specifically, these sample QPRFs demonstrate how a prediction
could be explained in depth, which includes explaining a prediction’s uncertainty. In the QPRF
TOPKAT model prediction example for the substance cinnamaldehyde, prediction reliability (or
certainty in this QPRF) was actually assigned a ranking to score the degree of prediction
uncertainty/certainty. In addition, the training set’s structural analogues and AD were used to

justify their ‘reliability’ reasoning (Rorije et al. 2008),

Cinnamic aldehyde is within the domain of the models and is also in the training set of

both models. Structural analogues are weak and not thought to be particular similar since
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the driving factor in the sensitisation behaviour of CAD is thought to be the unsaturated

carbonyl system rather than the carbonyl group itself.

However, ECHA has yet to adopt or assign any of these compliance measures to REACH
AoAs. While the information in a QPRF is vital in decoding the reasoning behind an applicant’s
conclusion on whether a prediction is acceptable under regulatory terms, the QPRF template is in
no way perfect. Suggested changes to the QPRF format during the 2nd European Union (EU)
Technical Committee on New and Existing Chemical Substances (TCNES) / (Q)SAR Working
Group meeting (January 2006) included creating more defined headings such as ‘other
information regarding prediction reliability’ to provide more useful information (Rorije et al.
2008). In addition, Walker et al. (Voyer and Heltshe 1984; Walker et al. 2003) suggested that
predictions be accompanied by confidence intervals, especially, since descriptors are oftentimes
generated by other QSARs, “thus increasing the potential for error propagation.” Despite its
vulnerabilities, the value of having a QPRF is evident, without which, cases of ambiguity and
equivocal language such as stating four days for a chronic toxicity duration (H&R Olwerke
Schindler GmbH 2016) or defining the model endpoint but also writing the prediction was for an
undefined endpoint (DEZA A.S. n.d.-a), cannot be resolved and could leave the regulator in a

position of disregarding the QSAR prediction altogether.

AoAs that used QSARs in WoE for higher-tier endpoints and WoE completeness review

Findings from our completeness review of 24 AoAs, which assessed 54 non-unique
alternatives, revealed that only a limited number of AoAs used Woe with QSARs. In addition,
WoE completeness varied depending on the main criteria and hazard endpoint. (For WoE
completeness by hazard endpoint, see Appendix S7). Notably, the three AoAs that used WoE

involving QSAR predictions for reproductive toxicity, consistently met the majority of the five
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main criteria to a higher degree than the other CMR/PBT/vPvB endpoints (Table 4-4).
Ultimately, these results reveal the differences in completeness among the applicable sample

AoAs. Moreover, these gaps in completeness provide insight into areas that need to be

highlighted in future AoA WoE guidance.

The findings on completeness for WoE using QSARs for reproductive toxicity
demonstrate the progress made in bridging data gaps for this endpoint. In a 2011 article on
reproductive and developmental toxicity in REACH dossiers, the authors Rovida et al. (2011)
recommended more support for the development of non-testing methods for reproductive
toxicity testing. The article described how data gaps for endocrine disruptions also affected
REACH information requirements. While REACH did not set out explicit guidance requesting
information for this health endpoint, in our completeness review, applicants provided the most
information for WoE using QSARs under reproductive toxicity. One possible explanation for
this occurrence could be the increased access to the freely available, online QSAR models and
QSAR predictions in the DQD. Alternatively, with REACH’s increased focus on higher-tier

endpoints, AoA applicants may simply have been more diligent in providing this information.

In contrast, some applicants failed to identify the sources of QSAR predictions in their
WOoE or did not address positive QSAR predictions in their WoE. Since OECD QSAR Toolbox
houses a variety of sources and tools, which can generate different types of predictions, we could
not categorize these as QSAR predictions with any confidence (OECD 2019). Not knowing what
type of prediction was used in an AoA for a higher-tier endpoint has larger implications when
considering the impact this might have on a regulator making a decision on imprecise
information or disregarding important information because the analysis of alternatives is

deficient.
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Even so, DEZA, a.s. reported a positive biodegradation probability (i.e. Biodegradation =
0.0403) using an EPI Suite™ BIOWIN MITI QSAR model prediction in consultation number
0005-02, for the alternative methyl centralite. However, this prediction was not included in the

discussion on environmental fate and pathways toxicity (DEZA A.S. n.d.-a),

Available information, based largely on the outputs of various QSAR models, does not
raise concern for either the persistence or bioaccumulative potential of the substance in

the environment.

Even though there are other regulatory and best practice cut-off points for a substance to
be considered not-readily biodegradable, methyl centralite’s prediction of 0.0403 is far below
any of these other biodegradable cut-off points, which should have been addressed under the
conflicting results WoE criteria. According to Posthumus et al. (2005), a substance with a
biodegradable score of 0.0403 is considered persistent. In addition, Posthumus et al. reported that
for the EPI Suite™ BIOWIN MITI models, for a substance to be considered persistent, not only
must the probability of a substance be < 0.5, but the substance must also meet two other criteria

(Posthumus et al. 2005),

e the probability of the non-linear rapid BIODEG model is < 0.5 or

e the result of the ultimate survey model is < 2.2

Because the applicant was not transparent in how they weighted biodegradation, we
could not conclusively say if DEZA, a.s. factored this positive prediction for persistence into
their conclusions. Table 4.8 Ecological data supporting decisions of Environment Canada on

methyl centralite listed several predictions and experimental results for which any of the
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persistence and bioaccumulation data could have been part of the line of evidence for non-testing

data before any weighting (DEZA A.S. n.d.-a).

Consistency check

As demonstrated in our consistency check on DIBE, different aspects of the analysis
produced different outcomes (Table 4-5). For instance, while both applicants provided sub-
criteria information for ‘adequacy,’ one focused on information for mutagenicity while the other
gave evidence on reproductive and environmental toxicity. Needless to say, the lack of proper
documentation may have put the regulator at a disadvantage. At the same time, expert judgement
is viewed as an informal process, which could explain how an assessment ends up in different
places. According to Suter et al. (2017), WoE is viewed as an “inferential process” where expert
judgment is used to draw conclusions based on a variety of evidence. For our study, this means
that in close cases, such as our consistency check for AoAs consultation numbers 0005-01 and
0006-01 for DIBE, an applicant’s WoE, even on the same alternative, could come out differently.
Furthermore, different WoE outcomes do not mean that more restrictive, prescriptive
requirements for WoE are needed. Expert judgments are an acceptable approach in the eyes of
major regulators (Martin et al. 2018). In fact, if a WoE approach is too formal, assessors may
find the approach too cumbersome (Suter et al. 2017). However, from a regulator’s point of
view, companies are still required to explain how they assembled their WoE. A regulator could
then make a more informed decision rather than judge an AoA based on incomplete WoE

involving QSAR predictions for higher-tier endpoints.

ITS comparative analysis

Because ITS can be the precursor to evidence compiled in a WoE, we also compared 24

AoAs with the 2018 Danish EPA’s advisory list to screen for potential CMR substances that
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Ao0A applicants might have missed (Table 4-6). Findings from our comparison of 24 AoAs
suggest that ITS QSAR battery models could provide significant benefit to the REACH AoA
community. Our study revealed that ITS QSAR predictions can contribute to a broader
understanding of a chemical in an alternative substance’s assessment. For instance, the only
QSAR prediction for reproductive toxicity was negative for potential teratogenicity for the
alternative TBC in AoA consultation number 0005-02. However, the Danish EPA ITS battery
QSAR model prediction predicted a positive response for reproductive toxicity. Having a more
powerful result generated by a battery models such as the Danish EPA ITS battery QSAR
models could impact an applicant’s conclusion on the safety of TBC. Rather than drawing a
conclusion of no concern for the hazard profile of an alternative based, in part, on a negative
prediction for reproductive toxicity, an applicant could conclude that there is some degree of
concern for reproductive toxicity. For example, in contrast to the absence of any QSAR
predictions for reproductive toxicity for DEHA, DPHP, ATBC, the Danish EPA assigned a Repr.
2 advisory classification to the three alternatives. One possible explanation for this discrepancy
could be that DPHP does not exhibit reproductive toxicity based on available studies of
teratogenicity and reprotoxic effects at the highest doses (ARKEMA 2013a, b; DEZA A.S.
2013a, b; GRUPA AZOTY ZAKLADY AZOTOWE KEDZIERZYN S.A. 2013a, b). However,
under Article 12(1) and Annex VI (ECHA 2011a), companies are still required to report non-
testing methods when appropriate though these regulations specifically pertain to registration. At
the same time, in the same consultation number for TCB (0005-02), the applicant noted an

deficiency of information for reproductive toxicity (DEZA A.S. n.d.-a),

There is also an absence of documented data on its reproductive effects, while no

concerns have been raised with regard to either developmental or endocrine toxicity.
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Ultimately, these findings show that ITS QSAR models for CMR endpoints are powerful
tools that should be considered as part of the AoA process in identifying potentially toxic
endpoints among alternatives. For example, even though the hazard class of Repr. 2 was
similarly reflected in the AoAs for the alternative DEHA (ARKEMA 2013a, b; DEZA A.S.
2013a, b; GRUPA AZOTY ZAKLADY AZOTOWE KEDZIERZYN S.A. 2013a, b), in the end,
the applicants did not factor reproductive toxicity into their conclusions. When noting the
“slightly positive” response for the dominant lethal mouse assay, there is no mention of
reproductive toxicity which, according to the Danish EPA, has the resulting effect of “early
embryonic deaths” (EPA 2018a). We believe that an ITS framework that incorporates more
advanced tools such as battery QSAR models not only provides better WoE information, but also
serves to fill in data gaps. Ultimately, the advantage of using an ITS framework that incorporates
QSAR models, in particular, the DQD, far exceeds the information gains from single use models
in that both the applicant and regulator have even greater access to information, which allows a

more complete evaluation of the safety of an alternative chemical.

Interestingly, the alternative ATBC, which does not have a harmonized classification and
labeling (CLH), was reported by 12 companies to have Muta. 1B and Carc. 1B notified
classification and labeling, which is a self-reported C&L. In addition, applicants reported DEHA
as listed as group 3 of carcinogens (ARKEMA 2013a, b; DEZA A.S. 2013a, b, n.d.-a; GRUPA
AZOTY ZAKLADY AZOTOWE KEDZIERZYN S.A. 2013a, b), which the Danish EPA ITS
battery QSAR models for carcinogenicity or mutagenicity did not predict a positive response.
One can speculate that the impurities in the formulation of ATBC could explain the Carc. 1B and
Muta. 1B classification (ARKEMA 2013b). In addition, the IARC group 3 carcinogen

classification was established based on “limited evidence in animals” (ARKEMA 2013Db).
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However, according to ECHA, conflicting evidence is not only acceptable but accounted for in
their guidance on how to conduct a WoE assessment, and thus should have been included

(ECHA 2016a).

Conclusions

Identifying trends under REACH AoAs in QPRF, WoE and ITS frameworks, which draw
on QSAR predictions, is the first step towards understanding the degree to which QSAR
predictions fulfill regulatory expectations as well as play a role in driving these frameworks
forward. Our results suggest that without the enforcement of QPRF documentation, regulators
may be at a disadvantage due to their limited access to a QSAR prediction’s information. AoAs
under consideration for this evaluation failed to provide any information at all for several
criteria. Furthermore, results for meeting priority criteria showed that there is a baseline of

information that one ought to know if submitting or assessing an AoA.

For AoAs that use WoE with QSAR predictions, findings from our consistency check
provide important insight into the level of completeness. Gaps in consistency for meeting higher-
tier WoE requirements under REACH could have significant implications for human health and
the environment if positive predictions are not part of the final decision-making equation. One
such application that could help ECHA in monitoring WoE use in AoAs and to make the process
more standard and transparent could be the development of a platform for WoE in authorization
similar to that of registration. Martin et al. (Martin et al. 2018) supports a more prescriptive
approach though drawbacks to this approach include extra training and less flexibility in
conducting WoE. Grading of Recommendations Assessment, Development, and Evaluation
(GRADE) is another prescriptive approach, which uses a rating system to determine the “quality

of evidence in systematic reviews and guidelines and grading strength of recommendations in
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guidelines” (Guyatt et al. 2011). In fact, the NRC has already recommended this systematic
approach to WoE for IRIS (NRC 2014a). Finally, incorporating elements from a multi-criteria
decision analysis-based (MCDA) approach may help standardize the assigned weighting of
information beyond the Klimisch scores used for reliability. According to Linkov et al. (2009),
MCDA combines “value-based assessment” with expert decision-making and scientific
judgment by weighting the individual lines of evidence. Ultimately, these recommendations have
the potential to combine all steps into one unified process, integrating “social, political, and
economic considerations” into the WoE framework as a whole (Linkov et al. 2009). In the end,
there will no longer would be a need to separately analyze the Technical and Economic
Feasibility portions of the AoA. Moreover, building from an existing WoE platform for
alternative testing will likely increase the amounts of properly completed WoE. However, ECHA

must first provide the necessary guidance for authorization users in order for this to happen.

The comparison of alternatives with the 2019 Danish EPA advisory list illustrates the
narrow regulatory use of either single or ITS QSAR models. Limited consideration of these
QSAR models as appropriate tools appears to be a repeating barrier to regulatory transparency,
however, future studies will be needed to confirm this apparent trend. In conclusion, ECHA
should provide guidance on ITS QSAR models for authorization and other areas under REACH
that frequently encounter data gaps. For example, to encourage regulatory acceptance, ECHA
should draft guidance that includes ITS QSAR models such as the Danish EPA to meet
information requirements under authorization. Similarly, the Danish EPA and ECHA could

partner as change agents to develop an international ITS framework within the AoA community.
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Tables

Table 4-1. 17 QPRF criteria.

Category QPREF criteria

Substance information CAS number
EC number
Chemical name: IUPAC and CAS names
Structural formula

Structure codes (codes recognized by modeling software)

Prediction information Endpoint*
Dependent variable
Model or submodel name
Model version
Predicted value (model result)’
Predicted value (cut-off value)
Input for prediction
Descriptor values

Applicability domain Domains
Structural analoguesﬂ=
Uncertainty of the prediction*

Chemical and biological mechanisms”

* Priority criteria
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Table 4-3. Alternatives in AoAs that used QSARs* in WoE for higher-tier endpoints.

Consultation numbers Applicants Alternatives

0005-01 DEZA, as. Diisobutyl hexahydrophthalate (DIBE)

Methyl centralite

Ethyl centralite

Akardite I

Akardite I1

Akardite 11T

Bis(2-ethylhexyl) adipate (DEHA)
Acetyl tributyl citrate (ATBC)
Tributyl citrate (TBC)

Dioctyl azelate (DOZ)

Isodecyl pelargonate (IDP)

0005-02 DEZA, as.

0006-01 Sasol-Huntsman GmbH & Co. KG Diisobutyl hexahydrophthalate (DIBE)
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(Table 4-4 continued)

Notes:

(a) We only covered QSAR predictions in WoE, thus, hyphenated blank spaces meant that either there were no CMR/PBT
vPvB QSAR predictions in WoE to analyze, which we coded as non-applicable.

(b) Numbers 1-5 corresponds to the number of criteria that was met on our checklist, where the total number of criteria was
five.

(c) 0 indicates a QSAR prediction without a WoE context was cited for that endpoint.

(d) A hyphen '-' in the number of criteria column indicates that either the endpoint data not relevant to WoE e.g. evaluates

potential alternative ,or, a QSAR prediction did not exist.
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Structural formula

Chemical name CAS name
Chemical name ITUPAC name
EC number

CAS number

Descriptor values

Model input for prediction
Predicted value (cut off values)
*Predicted value (model result)
Model version

Model or submodel name
Model dependent variable
*Model Endpoint
*Mechanisms

*Uncertainty of prediction
*Structural analogues and consideration

*Applicability domain

=

50 100 150 200 250 300 350

® No information on criteria m Reported information on criteria Non-applicable

400

Figure 4-2. Descriptive statistics for 16 QPRF criteria in AoAs using QSAR predictions.

*Six priority criteria.
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20 m Bioaccumulation

=

§ u Ready

815 biodegradability

o) Reproductive
toxicity
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m Carcinogenicity

5 .

No One Two Three Four All
criteria criterion criteria criteria criteria criteria

Number of criteria met by higher-tier endpoint

Figure 4-3. Number of criteria met in criteria checklist by QSARs used in WoE sub-divided by

higher-tier endpoints.

Notes:
(a) Robust study summary: fully documented. Includes objectives, methods, results, conclusions of all studies.
(b) Assesses reliability, relevance, adequacy, and quantity. Considers consistency of results and severity of effects.

(c) "Pools" information by grouping evidence into lines of evidence and providing structured evidence tables.
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(d) Conflicting results: Rates or weighs (depending on test method, data quality, endpoint) using scoring table, and translates
confidence ratings into level of level of evidence for health effect.

(e) Assesses overall package. Scientifically justified/argued using expert judgment.
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Supporting information

Additional information on sample WoE template (Appendix S1), study limitations (Appendix
S2), WoE criteria checklist (Appendix S3), sub-criteria coding for the five main criteria
(Appendix S4), Danish EPA advisory self-classifications (Appendix S5), consultation numbers

(Appendix S6), WoE by CMR and PBT/vPvB endpoints (Appendix S7).
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Appendix S1

Sample WoE template

Table A.1: Optional tabular format for summarising weight of evidence assessment for an emerging
contaminant

Question: Hazard identification of an emerging contaminant

Assemble  Select evidence No toxicity data available: use read-across from already-tested similar

the compounds, in silico tools (QSAR) to predict toxicity

evidence Lines of Evidence  Identify lines of evidence for potential effect(s) from the presence of a
structural alert or QSAR models, read-across from similar compounds

Weigh the Methods Evaluate the reliability, relevance and consistency of the QSAR models. This

evidence a@n include weighing model results on a statistical basis (e.g. likelihood of a
compound with a structural alert to express (a) toxic property(ies))

Results Toxicity value for each line of evidence, with associated assessment of

reliability (e.g. through the applicability domain of the models used)

Integrate  Methods If the estimates from the different models converge, the level of uncertainty

the regarding the toxic property(ies) can be evaluated (e.g. through the

evidence applicability domain of the models used). If the estimates do not converge,

further modelling for the toxic property(ies) could be undertaken to evaluate
whether the results can be improved

Results Integrated the toxicity value and uncertainty factor to derive a health based
guidance value for the emerging contaminant: Summary Table

Table A.3: Optional tabular format for summarising weight of evidence assessment of an emerging

contaminant
Question Hazard identification of an emerging contaminant
Assemble Select evidence Nine QSAR models from two in silico platforms and a program for read-
the evidence acaross were used to estimate mutagenicity potential (as assessed through

bacterial reverse mutation test) of the target compound
Lines of evidence  Except two, all estimates indicated the compound to be non-mutagenic.
The exception was the QSAR model CAESAR within VEGA platform that
predicted the compound as mutagenic, and the read-across programme
ToxRead that showed one out of five similar compounds to be mutagenic
Weigh the Methods VEGA provides a quantitative measurement of reliability and values higher
evidence than 0.8 ADI are considered more reliable. T.E.S.T. applies a filter to
eliminate not reliable predictions. The results obtained from these platforms
in this case are therefore reliable. ToxRead indicates the alerts assodated
with the effect and similar compounds. In case of chemicals with the
toxicity value conflicting with the rule, the user should check if there are
rules present only in the similar compound and not in the target, explaining
the conflicting toxicity value. This is useful to evaluate the relevance of the
lines of evidence, disregarding those that are not relevant
Results T.E.S.T. results consistently indicated non-mutagenidty. The VEGA models
called SARpy and KNN showed higher indices for reliability, also predicted
non-mutagenicity. The CAESAR and ISS models within the VEGA models
showed relatively lower reliability. ToxRead results show that most of the
compounds similar to the target compound were not-mutagenic. The only
structural rule for mutagenidty found in one similar compound is not
present in the target compound, and therefore is not relevant
Integrate Methods The in silico estimates have been integrated while considering the reliability
the evidence and relevance of the individual values, together with the consistency of all
the predicted values, to make an informed expert judgement about the
probability that the target compound is not-mutagenic
Results The large majority of the in silico values are in concordance for non-
mutagenicity of the target compound. One conflicting estimate is less
reliable whereas the other is not relevant to the target compound.
Considering all the evidence from this in silico assessment, it was concluded
by informed expert judgement that the target compound is most likely
(about 90% probability) to be non-mutagenic

ADI: Applicability Domain Index.

Figure 4-1S. Sample WoE using a structured evidence table (EFSA 2017)
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Appendix S2

Study Limitations

Unless the description of the QSAR prediction was clearly ad-hoc and quantitative values
were missing for predictions where there was already evidence that the QSAR source produces
qualitative predictions, we assumed that qualitative and quantitative values reported in AoAs by
applicants were the results generated by QSAR platforms. For example, in consultation number
0078-01 for the alternative 1,2,4-trichorobenzene by BIOWIN 3, the applicant did not provide an
actual QSAR prediction and only said the biodegradation time frame predicted by BIOWIN 3 is
“months and longer” for the fluoroisomer compared to “weeks to months” for the chlorinated
benzene (p.105), However, in select instances, we could not go back and confirm the QSAR
sources if they were not identified by model name and version. In AoA consultation number
0005-02, the applicant reported “unknown” for irritation: eye irritation for the alternative methyl
centralite. Perhaps the applicant meant “inconclusive” for which we accepted “equivocal” in
instances of DQD predictions. Model endpoint information may also have been embedded in an
Ao0A, but this is information typically found in a QMRF. Without having this official document
or access to the original QSAR platform, we could not verify if sporadic information in an AoA
was what the developer actually described as the model endpoint. In cases where an applicated
reported a QSAR prediction twice, for example, consultation number 0005-02 for the alternative
ethyl centralite Irritation: Skin irritation/ corrosion (DEZA A.S. n.d.-a), we accepted it as two

separate predictions because we did not have the QPRF to verify the prediction either way.

In addition, all endpoints were based on our curated list of endpoints from Chapter 2.
While endpoints outside of this list may have excluded potential QSAR predictions from our

analysis, the consistency of this endpoint classification allowed us to subject previous research to
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a more in-depth analysis without further classification. However, if applicants did not report a
specific endpoint, such as in a scoring table, this endpoint did not get coded. For instance, in
consultation 0005-02, the applicant did not consider test results to be mutagenic, and
subsequently left off mutagenicity from Table 4.31 (DEZA A.S.) thereby removing it from our

coding.

Furthermore, our approach to data-mining and coding may have excluded some aspects
of an applicant’s WoE from our analysis. When analyzing each AoA, we maintained a narrow
research path, and did not track criteria outside of our classifications. Specifically, for
information to be considered under the final criteria “Assess overall WoE package,” the
applicant needed to make their scientific arguments within an AoA’s “Reduction in overall risk.”
In consultation number 0005-02, scientific arguments were made for the alternative, Akardite I,
however, the applicant made these arguments in the comparison of hazards sections. Therefore,
any scientific argument written under the “Comparison of Hazards” section would not be coded
under the “Assessment of Overall WoE” criteria but to another criteria such as criterion 3 ‘Pools
information’. Similarly, for the same consultation number, biodegradability QSAR predictions
for the alternative ethyl centralite are not discussed in either the RSS or Reduction of overall risk
even though PBT/vPvB is discussed in the WoE for the alternative ethyl centralite (DEZA A.S.
n.d.-a; Dow Italia Srl and Rohm and Haas France S.A.S. 2016). Because we are only considering
CMR and PBT/vPvB endpoints in AoAs that use WoE with QSAR predictions, this information
did not get coded. Furthermore, we did not always have the coding to explain when criteria were
not met. Although some AoAs did not meet our five criteria, in other instances, the criteria
simply did not exist in the AoA. For example, in consultation number 0005-02 for the alternative

ethyl centralite, we coded the WoE for the reproductive toxicity endpoint as not providing any
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conflicting results. However, we assigned this code because all of the information in the AoA for

this endpoint was consistent, which would then have been coded separately for “consistence.”

If an applicant specified certain endpoints in their approach to WoE, only these endpoints
could be considered when judging if the evidence met any of our five WoE criteria. For instance,
in consultation 0005-02, the applicant specified Table 4.86 as the basis for “additional insight”
into the alternative isodecyl pelargonate (IDP), thus, we could not factor any other endpoint that
was not on this list into our completeness review, when considering “adequacy” or the usefulness
of the information. More specifically, we could not code either biodegradation or
bioaccumulation for “adequacy” because their QSAR predictions were listed on another table

(DEZA A.S. n.d.-a).

Finally, because we used the 2018 Danish EPA advisory classifications list to screen for
potential CMR substances, our results were subject to the factors that went into Danish EPA’s
ITS QSAR model development, which has been subject to updates since 2001. For example,
endocrine disrupting (ED) models, which were not included in the Danish EPA’s battery of
QSAR models for reproductive toxicity, may be considered an important endpoint in
reproductive toxicity for other model developers (Evans 2015). Even so, ED models have been
used to identify mechanisms for reproductive toxicity (Jensen et al. 2008). Thus, while other ITS
QSAR model developers may have taken a different approach in selecting endpoints for battery
QSAR modelling as well as the selection of algorithms to integrate results, we based our results
on the Danish EPA’s decision-making. In addition, our sample of AoAs was collected through

May 2017; more current AoAs may have employed ITS QSAR modeling.
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Appendix S3

WoE criteria checklist

Robust Study Summaries. Our checklist began with an assessment of robust study

summaries (RSS) as the first criterion, which are provided as part of WoE under registration.

According to ECHA, an RSS is (ECHA 2012),

[A] detailed summary of the objectives, methods, results and conclusions of a full study
report providing sufficient information to make an independent assessment of the study

minimizing the need to consult the full study report (Article 3 (28) of REACH).

Under an endpoint study record (ESR), registrants must provide robust study summaries in the
technical dossier for each key study used as part of the WoE (ECHA 2016a). ESRs, which record
relevant endpoint information, are created for each study, such as an in vitro or in vivo study
(ECHA 2016a). However, in order to meet ECHA’s WoE criteria, a registrant needs to provide
sufficient evidence, which means that multiple ESRs should be included as well as proper
documentation (ECHA 2016a). For our checklist, we included the online ESR elements of
“objectives, methods, and conclusions” for each supporting material. We also examined whether

applicants provided full documentation for test study results (ECHA 2016a).

Reliability. The checklist’s second criterion judged whether an applicant’s WoE analysis
established the reliability of the WoE studies. Under ECHA guidance, reliability is defined by
whether the study is “relevant,” “adequate,” and “reliable.” (ECHA 2016a). In their 2016
practical guide, ECHA defines these scoring terms by their level of appropriateness to the hazard
endpoint of interest, using a Klimisch score to rate the reliability of the study (ECHA 2016a).

Reliability and relevance were also identified as fundamental WoE components in the 2017
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European Safety Authority (EFSA) Guidance on weight of evidence (EFSA Scientific
Committee et al. 2017). Due to the importance placed on these WoE principles by the different
regulatory agencies, we adopted these scoring terms as sub-criteria in our checklist, but excluded
the Klimisch score, which we considered too prescriptive. ECHA also requires that companies
gather as much information is available on the chemical (ECHA 2016a). We therefore added
‘quantity’ to our checklist as a sub-criterion to add rigor and transparency. In addition, because
our completeness review covers higher-tier endpoints, such as CMRs, which have chronic and
acute dose effects on human health and the environment, we counted consistency of results as

well as severity and type of effects towards this checkpoint.

Lines of evidence. Because an organizational framework for assembling this information

was missing in ECHA’s WoE guidance, we turned to Rhomberg et al. (2013) and Martin et al.’s
(2018) reviews on WoE framework and best practices. According to Martin et al. (2018), lines of
evidence (LOE) are a useful grouping tool for similar information when assessing a substance’s
hazard. Furthermore, structured tables can help to present evidence. The National Resource
Council (NRC) advises using structured tables so that different types of infromationc an be
organized into “individual data streams” that connect to the areas of studies (NRC 2018). Both
‘LOE’ and ‘structured tables’” were thus added as sub-criteria. Since WoE draws on multiple
LOEs for integration, we added these aspects to the third criteria of our checklist. However, we
excluded mechanistic basis (MOA) into data assembly due to the limited number of existing

MOAs (NRC 2018).

Conflicting results. When lines of evidence contain conflicting results, results need to be

considered in a weighted manner (Rhomberg et al. 2013). Thus, we added ‘conflicting results’ as

the fourth criterion in our checklist to consider the question of relative weight or strength of
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evidence. However, aside from stating that high quality in vivo and in vitro results and studies
should receive greater weight than QSAR results (ECHA 2016a), ECHA provided no further
steps for rating and weighting these results. For a more explicit weight of evidence framework,
we turned to Suter et al.’s (2017) assessment, which recommends the use of scoring tables.
According to Suter et al., a scoring table, which is based on general criteria, such as “reliability”
and “strength” of information, applies weighting with symbols such as “+, -, 0” to test the
hypothesis on the chemical (Suter et al. 2017). Included in this step are addressing differences
and inconsistencies in information. This step thus addresses risk factors that include

99 ¢

“uncertainty” as well as data integration on points such as “bias,” “rigor” and “cohesion” across
studies (Rhomberg et al. 2013). For our checklist, we adopted a more flexible version of Suter et
al.’s scoring table. We accepted any table that indicated and/or compared hazardous endpoints.
For conflicting results, we accepted if an applicant explained any ambiguities and discrepancies
(Suter et al. 2017). Because a regulator must be able to effectively infer the subject’s impact, or

in our case, the alternative chemical (Martin et al. 2018), we included the inference of any health

effects from weighting to our checklist.

Final assessment. Finally, all evidence, which has been carefully classified and weighed,

needs to be integrated into a final assessment based on expert judgment. ECHA notes that a WoE
expert must have knowledge in the “relevant endpoints™ and “study methods,” and must be able
to make scientific judgments (ECHA 2016a). Rhomberg et al. (2013) describes a WoE expert as
someone who is a specialized in toxicology, epidemiology or methodology. Yet, ECHA does not
lay out any expectations as to how this expert should be identified in a REACH AoA. While
“prescriptive reporting templates” have been discussed as a way to systemize collective expert

judgement, this type of large-scale regulatory change is beyond the scope of this paper (Martin et
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al. 2018). For our study on AoAs, the “Conclusions” and “Reduction of Overall Risks” sections
represent this final assessment, which we coded as “Assess overall WoE package.” To
determine whether expert judgment was used, we looked for any detailed discussion in the form
of a conclusion that considered the reliability, relevance and adequacy of WoE information,
which has been integrated and compared, and assigned a weight to each piece of data (ECHA
2016a). For this criterion, we examined the extent to which applicants drew conclusions on the

safety of the alternative relative to the Annex XIV chemical.
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Appendix S5

Danish EPA advisory self-classifications
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Appendix S6

Consultation numbers

e (0005-02 methyl centralite for Genetic toxicity: /n vivo — Chromosomal effect, the
applicant wrote “equivocal” instead of inconclusive, and also reported that the results
were in AD. But after querying the predictions myself in the DQD, we saw that results
for that endpoint were out of domain (DTU FOOD et al. 2019). The applicant therefore
appeared to incorrectly report the results.

e (0005-02 ethyl centralite for genotoxicity in vivo- For sister chromatid exchange in mouse
bone marrow cells, it appears that the applicant reported the same QSAR prediction
twice. Also the applicant wrote equivocal in domain, but the report says: “positive out of
domain (battery)” (DTU FOOD et al. 2019).

e (0005-02 Akardite II: QSAR prediction for unscheduled DNA repair response based on a
mouse bone marrow sister chromatid exchange assay, from the Danish (Q)SAR
Database: Danish (Q)SAR Database battery result reported inconclusive out of domain
but applicant stated equivocal in domain. And all 3 QSARs (Leadscope, Multicase
SciQSAR) had “Pos out of domain” (DTU FOOD et al. 2019).

e 0005-02 Akardite III: Applicant reported equivocal instead of inconclusive and said in
domain when the DQD report said out of domain. QSAR prediction for Chinese Hamster
Ovary (CHO) cell assay for chromosome aberration test, from the Danish (Q)SAR
Database (DTU FOOD et al. 2019).

e 0005-02 DOZ: QSAR prediction for chromosomal aberration in an in vitro COMET
assay in mouse cells, from the DQD: we queried the predictions for DOZ and could not

find a COMET assay for mouse cells in the DQD’s in vitro Genotoxicity Endpoints
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results. QSAR prediction for chromosome aberration in a Chinese Hamster Ovary (CHO)
assay, from the DQD reported Negative, in domain for Chromosome Aberrations in
Chinese Hamster Ovary (CHO) Cells (DTU FOOD et al. 2019).

0005-02 TBC: QSAR prediction for chromosome aberration in Chinese hamster ovary
(CHO) cells from the DQD: applicant reported equivocal but still in domain. Results

from the DQD reported negative in domain (DTU FOOD et al. 2019).
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Appendix S7

WoE completeness by CMR and PBT/vPvB endpoints
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5. Chapter 5: Conclusions

Although QSARs have been assessed under registration, no one has evaluated QSARs
used under authorization. More specifically, ECHA has yet to assess how AoA applicants use
alternative methods such as QSARs, which are important for filling in data gaps, identifying
positive alerts for higher-tier endpoints, and for strength of evidence systems such as WoE and
ITS. This study, therefore, serves as an initial foundation to help strengthen future regulatory
decisions within REACH authorization and more broadly for the future of alternatives

assessment.

The research I conducted begins by setting up a context for QSAR use, which I then
follow with a procedural examination of QSARs used in REACH AoAs. To advance the work
related to the usage and purpose of QSARSs in chapters three and four, I initiated a formal
background training on how QSARs operate and are developed as regulatory models. Namely, I
immersed myself in DTU’s QSAR lab and learned the nature and use of QSARs through the
development of four new QSARs for nuclear receptor CAR. Chapter three drew from this
understanding of the proper use of QSARs and focused on profiling QSAR usage by applicants
in REACH AoAs. Chapter four then provided a more in-depth analysis, revealing issues
regarding transparency and WoE criteria fulfillment, in addition to the potential benefits of ITS

battery QSAR predictions to identify potential CMR substances.

Future research needs

Limited use of QSARs

This analysis demonstrated limited QSAR use in AoAs. In this study, only 25 of the 189
AoAs utilized QSARs. One reason for limited QSAR use could be that in emphasizing the use

of QSARs in a WoE context under ECHA’s general approach to QSARs under REACH,
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applicants may have shied away from information on their alternative for which QSAR
predictions gave the only available data. In general, ECHA’s guidance seems to accept QSARs
mostly within the context of WoE, which requires all available historical and testing information
on the substance, with a priority on experimental data. In this study, I found evidence of
applicants prescribing to this guidance. In AoA consultation number 0078-01, the applicants
Dow Italia Srl and Rohm and Haas France S.A.S. excluded the PNECfreshwater Value for
methylene chloride (DCM) from ECHA CHEM under individual submission because it was
based solely on QSAR predictions (Dow Italia Srl and Rohm and Haas France S.A.S. 2016). The
applicant Eli Lilly S.A. - Irish Branch for AoA consultation number 0077-01, who also assessed
DCM, provided the same reasoning (Eli Lilly S.A. Irish Branch n.d.). At the same time, ECHA
has issued guidance that supports the use of standalone QSAR predictions, at least under ideal
conditions (ECHA 2008). In other AoAs, such as consultation numbers 0006-01 and 0005-02,
QSAR data were the only information available (DEZA A.S. n.d.-a; Sasol-Huntsman GmbH &
Co. KG n.d.). In these instances, standalone QSAR use may seemingly be interpreted as an
acceptable approach to QSAR use in REACH though missing QSAR documentation hampers the

ability of ECHA to corroborate whether the condition was “ideal” or not.

These conflicting regulatory points of views on whether QSARSs can be used as
standalone tools point to a larger regulatory debate: Does the greater good lie with QSARs being
used with the most conservative approach? Or will pushing the boundaries of how QSAR
predictions can be used ultimately prevent untested, toxic chemicals from escaping regulation?
Who could help push this debate is industry. Results from an ORCHESTRA online questionnaire
on QSARs allude to this point (Mays et al. 2012). If certain industries can successfully use

certain QSAR tools for REACH then others may view this as an example of a successful
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application of QSARs and in turn use QSARs themselves. Though not perfectly correlated, I
observed a similar trend in the use of the Danish (Q)SAR Database. With its user-friendly
interface, accurate predictions, and diverse database of over 600,000 substances (DTU FOOD et
al. 2019), the Danish (Q)SAR Database was the most used out of all of the QSAR sources on the

“default” list for most endpoints.

As part of this debate, definitive answers pertaining to the use of QSARs under REACH
may change as QSARs become more advanced (Luechtefeld et al. 2018), and as regulations
continue to evolve (Benigni et al. 2007; NRC 2014b; Worth 2010a). However, for now, unless
more companies are encouraged to use QSARSs, particularly under authorization, this debate may
languish unnecessarily, and standalone QSAR use may continue to be the rare exception. But
with the current awareness that a lack of data on alternative chemicals can lead to misinformed
decision-making (Jacobs et al. 2016) as well as impact the consistency in the alternatives
analysis process (Tickner et al. 2013), it is worth considering the implications of companies
operating on an inconsistent understanding of QSAR requirements, and leaving out standalone
QSAR data even if it is the only data that points to a safer alternative. I, therefore, recommend
that ECHA consider producing more specific guidance that provides a “fit-for-purpose”
approach to QSAR use for authorization and perhaps more generally for REACH to help
applicants understand how to use QSAR data in AoAs. This guidance should establish the
specific circumstances in which standalone use is required, those where is standalone is

permitted, and those where standalone is disallowed.

OSAR documentation

This study revealed that for all 25 AoAs, applicants did not attach required supporting

QMRF and QPRF documentation for QSAR predictions. Missing QMRF and QPRF
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documentation poses a potential obstacle if regulators and stakeholders are trying to determine
the quality of QSAR tools and data in AoAs. In addition, results from the QPRF information
review showed that in most instances, an equivalent method of providing QPRF criteria in AoAs
did not exist though applicants tended to provide the majority of priority criteria information as

part of the AoA.

Given the missing documentation, one of my conclusions pointed towards the need for an
explicit mandate to include QMRFs and QPRFs with AoAs if QSARs are used. Namely, because
without setting clearer requirements under authorization, companies, which may already be
disincentivized to find a safer alternative(s), particularly if their real motivation is the continued
use of their incumbent chemical, may never inquire as to their obligation to include proper
documentation, if by doing so, makes them more accountable. In fact, AoAs may already have
been submitted that do not properly examine their QSAR models or provide suitable support in
their WoE using QSARs. One of the most significant implications is that an Annex XIV
chemical could get authorized based on inaccurate or incomplete information. While these points
are hypothetical, I believe they lie on a possible trajectory of improperly documented AoAs that

are submitted to ECHA.

WoE using QSARs

Only a limited number of AoAs used WoE with QSARs. Based on this study, WoE
completeness depended on the main criteria and hazard endpoint. In addition, the completeness
review showed that certain sub-criteria played a role in whether the main criteria were fulfilled
or not, for example, expert judgment. For instance, as expert judgment comes into play, having a
clearly explained WoE in an acceptable format becomes increasingly important. After all,

regulators rely on the underlying logic of the author’s qualitative conclusions to make sound
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decisions (Rhomberg et al. 2013). In fact, according to the U.S. EPA, WoE hinges on expert
decision-making (ECHA 2016a; U.S. EPA 2011). ECHA notes that a WoE expert must have
knowledge of the “relevant endpoints” and “study methods,” and be able to make scientific
judgments (ECHA 2016a). Likewise, Rhomberg et al. (2013) describes a WoE expert as
someone who is a specialized in “toxicology” or “epidemiology” or an equivalent field. Yet,
REACH WoE guidance is missing any expectations as to how this expert should be identified in
an AoA. Thus, including the names of the WoE experts along with contact information, and
background could help shed light on their qualifications and possibly give a starting point for
where applicants could improve their WoE completeness. At the same time, given the unique
nature of WoE in regulatory submissions, which “inevitably requires subjective judgment,” room
needs to be made for the possibility that WoE conclusions may come out differently in similar

cases (Suter et al. 2017).

ITS

In this study, I compared all 24 AoAs from the previous sample that used QSARs to
assess final, selected alternatives (Chapter 2) with the 2019 Danish EPA QSAR Dangerous
Properties list to screen for potential CMR substances that AoA applicants might have missed.
Most AoAs did not have overlapping alternatives with chemicals on the Danish EPA advisory
classification list. However, I found overlap for four chemicals between the Danish EPA
advisory classification list and my CMR list, for which the Danish EPA assigned a Repr. 2
advisory classification for all four chemicals. More importantly, Danish EPA battery QSAR
predictions did not consistently compare with the applicants’ conclusions. While applicants did
identify reproductive toxicity for the alternative bis(2-ethylhexyl) adipate (DEHA), no

identification for reprotxicity was made by bis(2-propylheptyl) phthalate (DPHP), acetyl tributyl
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citrate (ATBC), or tributyl citrate (TBC) for reproductive toxicity under normal exposure. Thus,
the use of ITS not only has the potential to provide more information, but also, as demonstrated
by my evaluation, to provide contrasting outcomes. Advancements in in silico models, such as
QSARs, have enhanced the accuracy of predictions to exceed, at least under ideal conditions,
animal tests (Luechtefeld et al. 2018), which in the past have been considered the “gold
standard” for reliable results (Hartung et al. 2013). ITS is thus viewed as the next step forward in
regulatory toxicologist assessment, which for future AoAs and even registration dossiers, could
mean a greater breadth of information and perhaps a more complete hazard profile for
alternatives being assessed. Though ITS does not have an inherent regulatory purpose, ITS is
increasingly used for regulatory decision-making, oftentimes in a WoE context (Worth 2010a),
which has the potential for far-reaching benefits in cases where experimental information is

limited or missing.

Summary

This research highlights multiple areas of QSAR use in REACH AoAs, which contribute
to the determination of safety of alternatives. Initially, four CAR models for antagonism and
agonism were developed in Denmark at DTU to give a background and advance the analysis on
QSAR usage in chapters three and four. In chapter three, I identified trends in model use and
frequency upon data-mining 189 AoAs, which I further explored in chapter four. Results from
this second study gave more substantive answers regarding the limited use of WoE contexts for
QSARs as well as the small number of AoAs that met the five WoE criteria. Finally, a
comparative analysis between the Danish EPA’s advisory classification for overlapping
chemicals in this study indicated that more information could be made available for CMR
substances when using ITS battery QSAR models.
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Even though this research was extensive, additional studies are needed to analyze AoAs
from May 2017 to the present. More specifically, the small sample size of AoAs may not be
representative of the work performed by a larger sample of applicants. For this study, most of the
AoAs in my sample were conducted by companies or consultants who had little toxicological
knowledge. As a result, their degree of training would have made it nearly impossible for the
companies or consultants to know how to use a QSAR or to know to take advantage of available
predictions. So perhaps the real issue is how to convert QSARs into useful tools like ECOSAR
or the Danish (Q)SAR Database. Furthermore, with a larger sample size, additional comparisons
could be drawn with the Danish EPA advisory classifications. As a possible solution, generating
regulatory guidance for AoAs that defines rules to follow upon adopting QSAR strategies might
help applicants understand how to maximize QSAR opportunities in their AoAs. Some of the
methodologies employed in this study such as analyzing QSAR use by QSAR source could also
be applied to QSAR use in registration dossiers. Currently, ECHA analyzes QSAR usage in
registration by endpoint study records (ESR). However, tracking the types of QSAR sources
could provide further background information for limited or frequent QSAR use for certain

endpoints.

If monitoring the function of QSAR sources for filling in data gaps and generating high
quality information through WoE, ITS and proper documentation help to provide more
information in AoAs, they should be monitored with equal if not more stringency in other parts
of REACH as well. Additionally, it is important to focus on how QSAR data contributes to
assessing chemicals for higher-tier endpoints where vulnerable populations and wildlife are the
most susceptible to harm. While more research is needed to assess QSAR usage under REACH

authorization, ignoring the implications given in this study could subvert the purpose of AoAs
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and influence the attitude of industry, which could impact towards other forms of alternatives

assessment employed in other parts of the world.
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