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ABSTRACT OF THE DISSERTATION 

 

Assessing the Use of Quantitative Structure-Activity Relationship Models in Previously 

Unevaluated in the European Union Registration, Evaluation, Authorization and Restriction of 

Chemicals Analysis of Alternatives 

 

by 

 

Kazue Kelly Chinen 

Doctor of Environmental Science and Engineering 

University of California, Los Angeles, 2019 

Professor Michael K Stenstrom, Co-Chair 

Professor Timothy Malloy, Co-Chair 

 
 

Untested chemicals released into the market could have harmful effects on human health 

and the environment. Non-testing methods such as quantitative structure-activity relationship 

(QSAR) models may prevent these harmful consequences. However, without a meaningful 

evaluation of QSAR usage and proper documentation under the European Union’s (EU)  

Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) authorization 

process, the European Chemicals Agency (ECHA) will continue to make decisions as to whether 

to authorize Annex XIV chemicals are based on uncertain quality of these QSAR predictions. 



 iii 

The four major research questions of this study are: 1) To what extent are QSARs used in AoAs 

to support, eliminate or evaluate in a weight of evidence (WoE) context an alternative to an 

Annex XIV chemical?; 2) How did applicants document their QSAR use in AoAs?; 3) How was 

WoE using QSAR predictions in AoAs used to assess priority endpoints?; 4) How can battery 

ITS QSAR models further the evaluation of potentially harmful chemicals in AoAs? In order to 

conduct an analysis on QSARs, it was important to first have a firm understanding of how 

regulatory models work in the European Union. To become familiar with this process, two 

regulatory models were built at the Technical University of Denmark (DTU) for predicting 

agonism and antagonism of the Constitutive Androstane Receptor (CAR) for future upload to the 

Danish (Q)SAR Database. Applying this knowledge, data were collected from 189 AoAs 

through May 2017 to assess QSAR usage in AoAs, however, low numbers suggested that 

QSARs may not have been fully utilized. To explore possible reasons behind these statistics, an 

assessment of proper documentation of QSAR predictions in AoAs well as a review on the 

completeness of WoE using QSARs for higher-tier endpoints were performed. Results indicated 

that several completeness criteria were not met, including one of our priority criteria, structural 

analogues. In addition, only a limited number of AoAs used Woe with QSARs. A comparison of 

WoE using QSARs from the AoA sample with Danish EPA battery ITS QSAR predictions 

suggested that current use of single QSAR models continues to be limited.  
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1. Chapter 1: Introduction to Assessing the Use of Quantitative Structure-Activity 

Relationship Models in Previously Unevaluated Analyses of Alternatives in the European 

Union Registration, Evaluation, Authorization and Restriction of Chemicals  

Every day thousands of untested industrial and synthetic chemicals put humans and 

wildlife at risk for long-term, serious human health and environmental effects. Traditional testing 

of chemicals is expensive and oftentimes employs the use of animal-testing, which is subject to 

both ethical and quality considerations (Akhtar 2015). Over the last decade, the search for cost-

effective testing has shifted towards advanced technologies, such as quantitative structure-

activity relationship (QSAR) models and human cell testing (Knudsen et al. 2013; NRC 2007; 

NRC 2014b). As computational models, QSARs predict the potential toxicity of untested 

chemicals based on the assumption that chemicals that are similar in structure have similar toxic 

endpoints (Malloy et al. 2017). 

Under the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) 

authorization process, higher-tier endpoint substances known as Substances of Very High 

Concern (SVHC), are prioritized though limited testing data can impede their identification. 

According to ECHA, SVHCs are substances that have: a) carcinogenic, mutagenic, reprotoxic 

(CMR); or b) Persistent, bioaccumulative toxic chemical (PBT)/ very persistent or very 

bioaccumulative or toxic chemical (vPvB) high-tier endpoint criteria; or c) other toxicological 

properties of concern such as endocrine disrupting properties or PBT/vPvB properties, which do 

not fulfill the criteria of Annex XIII (ECHA 2019g). If placed on the Candidate list, SVHCs may 

be subject to further restriction (ECHA 2019e). Once an SVHC is included on the final Annex 

XIV list, however, companies must formally apply for authorization if they want continued use 

of their priority substance. 
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As part of the information requirements for authorization, applicants must submit health 

and environmental effects data to the Environmental Chemicals Agency (ECHA) in an analysis 

of alternatives (AoAs) application. Under authorization, ECHA’s Committees for Risk 

Assessment (RAC) and Socio-Economic Analysis (SEAC) assess risks as well as the availability 

and feasibility of possible alternatives in the analysis of alternatives (AoA) report for Annex XIV 

substances (ECHA 2019a). Yet, for many untested alternative chemicals, data gaps exist (OECD 

2014; Tickner and Jacobs 2016), for which QSARs can play a critical role in helping to fill in 

data gaps.  

Despite ECHA’s recommended use of non-testing methods, particularly in cases of data 

gaps (ECHA 2011b), there is limited insight into the extent to which AoA applicants use 

QSARs. Recent evaluations performed by ECHA on QSAR use have focused exclusively on 

registration dossiers, for which ECHA noted “poor justifications for using alternatives to 

vertebrate animal testing” (ECHA 2017a). However, with QSARs receiving so little attention 

under authorization, there is little knowledge available on the variations in quality of QSAR 

predictions and supporting information in REACH AoAs. This scenario is troubling, especially 

when QSARs generate vital and sometimes the only available data on a chemical.  

Because of the advances in QSAR modeling and software platforms, quantitative 

structure-activity relationship (QSAR) models have been recognized for their ability to aid in 

certain SVHC detection (Jacobs 2004). QSARs can be used to screen both large inventories of 

chemicals and individual compounds to predict the toxicity of untested chemicals for a variety of 

endpoints. Currently, there are a limited number of in silico tools and QSAR models designed to 

predict toxicity for CMR/PBT or vPvB endpoints that modulate the constitutive androstane 

receptor (CAR), which is implicated in human thyroid regulation (Maglich et al. 2004; Qatanani 
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et al. 2005; Yan and Xie 2016), energy metabolism (Gao and Xie 2012; Wahlang et al. 2014),    

and fetal development (Qatanani and Moore 2005; Wyde et al. 2005). Küblbeck et al. (2008) 

selected CAR agonists based on ligand-binding by conducting a virtual screening study that 

included a preliminary screening of the Tripos LeadQuest® database of approximately 85,000 

compounds to identify potentially active compounds. In a later study, Küblbeck et al. (2011) 

used his molecular docking technique along with other approaches to identify CAR inverse 

agonists. Lee et al. (2017) developed a predictive model to classify compounds as either 

activators or inactivators. A variety of CAR QSAR models have also captured 3-D modeling 

with precise predictions (Dring et al. 2010; Jyrkkärinne et al. 2008; Kato et al. 2017). 

While these valuable studies predicted compounds that could either activate CAR and 

possibly trigger harmful metabolites, or, deactivate CAR, thereby interfering with vital metabolic 

actions, none of these models were developed on a robust qHTS dataset based on a wide range of 

concentrations tested on human cell lines. Moreover, 3-D QSAR modeling is limited by its 

inability to replicate ligand binding in real-time and its initial structural dataset (Jacobs 2004). 

Thus, having a large sample of high-quality data is important for a robust QSAR model, because 

it is a prerequisite for the development of a model having a large applicability domain and a high 

predictive accuracy.  

The purpose of this paper is to understand the extent to which QSARs are being used in 

REACH AoAs. This research is important because no one has evaluated QSARs under 

authorization. In addition, all REACH QSAR evaluations have been performed at the level of 

registration. Thus, for chapters three and four, assessments are provided on how QSARs are used 

in AoAs as well as if required documentation that supports these predictions is provided. In 

addition, evaluations are made on the completeness of WoE using QSARs and the benefits of 
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ITS battery QSAR models.  However, in order to assess QSARs in AoAs, a practical 

understanding of how QSARs work needed to be established. Chapter two therefore details the 

importance and development of two QSAR models for CAR at the Technical University of 

Denmark (DTU) based on a new data optimization approach to QSAR development for large 

inventory screening.  

This study, which identifies QSAR model usage and target endpoint trends will allow 

ECHA regulators and stakeholders to gain insight into how applicants are applying QSAR 

guidance typically reserved for registrants. This research can help strengthen ECHA’s risk 

assessment programs by providing additional information for regulatory decision-making, more 

specifically, on how how higher-tier endpoints can be better supported with QSAR predictions. 

Finally, implementing new guidance to support ITS battery QSAR testing is another forward-

looking way to adapt to more integrated chemicals assessments. While this is the first step in 

providing information on QSAR usage in AoAs, this information may support ECHA’s efforts in 

monitoring AoA applicants. Additionally, data generated from this study may facilitate the 

selection of safer alternatives by industry when seeking authorization, thereby reducing the 

number of opportunities to maintain the status quo. Finally, expanding the Danish (Q)SAR 

Database with more freely accessible QSARs and QSAR predictions may help to improve the 

quality of AoAs. 
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2. Chapter 2: QSAR modeling of different minimum potency levels for in vitro human 

CAR activation and inhibition and screening of 80,086 REACH and 54,971 US substances  

Abstract: 

Along with the Pregnane X Receptor (PXR), the Constitutive Androstane Receptor 

(CAR) is a key regulator of the metabolism and excretion of xenobiotics and endogenous 

compounds. Currently, tens-of-thousands of untested industrial compounds are released into the 

environment potentially exposing large parts of the population to chemical substances that have 

properties that may inhibit or activate crucial receptors, such as CAR. Inhibition or activation of 

CAR by xenobiotics can alter protein expression, leading to decreased or enhanced turnover of 

both xenobiotics and endogenous substances. Impacts from these alterations can potentially 

disturb physiological homeostasis and cause adverse effects. In the present study, the U.S. Tox21 

high-throughput in vitro assay results for human CAR (hCAR) inhibition and activation are 

optimized in a comprehensive in-house process to derive training sets for different potency cut-

offs and develop suites of quantitative structure-activity relationship (QSAR) models with binary 

outputs. Final expanded models, which include substances from the external validation sets, are 

developed for select minimum potency models. Rigorous cross- and external validations are used 

to demonstrate good predictive accuracies for the models. The final expanded models were 

applied to screen 80,086 European Union (EU) and 54,971 United States (U.S.) substances, and 

the models predicted around 60% of the substances within their respective applicability domains 

(AD). Finally, statistical comparisons of hCAR predictions and QSAR predictions for a number 

of other endpoints related to Pregnane X, aryl hydrocarbon, estrogen and androgen receptors, as 

well as mutagenicity, sensitization, cancer and teratogenicity from the Danish (Q)SAR database 

were made to investigate the possible implications of hCAR antagonists and agonists. The final 
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models and predictions made with these models for 650,000 substances will be made available 

on the free Danish (Q)SAR Database, which can aid in priority setting, read-across cases and 

weight-of-evidence assessments of chemicals. 

Introduction 

The constitutive androstane receptor (CAR) belongs to the human nuclear receptor (NR) 

superfamily, a 48-member group (Honkakoski et al. 2003; Maglich et al. 2001) of “orphan” and 

“adopted-orphan” NRs (di Masi et al. 2009; Kachaylo et al. 2011; Sonoda et al. 2008). In 

humans, the CAR protein is encoded by the NR1I3 gene from the NR subfamily 1, group I, 

member 3. The NR subfamily 1 group I also includes the Vitamin D Receptor (VDR) and the 

Pregnane X Receptor (PXR) (Alexander et al. 2015; Molnár et al. 2013; Wang et al. 2011). CAR 

is known for its ‘constitutive’ state. In the absence of a ligand, CAR has activity (Kretschmer and 

Baldwin 2005; Moore et al. 2003). Many known CAR agonists are also species-specific (Gong 

and Xie 2008; Qatanani and Moore 2005). CAR is expressed mainly in the liver and small 

intestine (di Masi et al. 2009; Honkakoski et al. 2003; Lu and Xie 2017) and mediates the 

induction of metabolizing enzymes, such as cytochrome P450 3A (CYP3A) isoenzymes, 

conjugation enzymes such as UDP glucuronosyltransferase family 1 member A1, and 

transporters such as P-glycoprotein (J.G. DeKeyser and C.J. Omiecinski 2010; Tabb and 

Blumberg 2006; Xu et al. 2005; Yan and Xie 2016). Along with the NR PXR, CAR is a principal 

regulator of the metabolism of xenobiotic compounds (Hakkola et al. 2018; Poso and 

Honkakoski 2006; Tabb and Blumberg 2006) . Both PXR and CAR cross-regulate their target 

genes cytochrome P450 (CYP) CYP2B and CYP3A (Francis et al. 2003) . CAR also plays an 

important role in the metabolism of a number of endogenous substances such as thyroid and 
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steroid hormones, cholesterol, bile acids, bilirubin, glucose, and lipids (Hakkola et al. 2018; 

Tabb and Blumberg 2006).  

In some cases, the CAR upregulation of xenobiotic metabolism may lead to increased 

turnover of hormone and other endogenous substances, and subsequent decreased hormone 

levels in the body (Qatanani et al. 2005). Such interference in the regulation of endogenous 

hormones may have negative consequences in thyroid regulation (Miller et al. 2009), which is 

reflected in the adverse outcome pathway (AOP): 8 (under development) (Friedman et al. 2016). 

According to this AOP, activation of CAR or other NRs like PXR and the arylhydrocarbon 

receptor (AhR) can cause upregulated thyroid hormone (TH) catabolism, and lead to reduced TH 

levels, which may result in adverse neurodevelopmental outcomes in mammals (Friedman et al. 

2016).  

CAR is also involved in a number of other health outcomes. According to AOP: 107 

(under review) (Peffer et al. 2018) CAR activation is the molecular initiating event that can lead 

to hepatocellular adenomas and carcinomas in the mouse and the rat. When mice were exposed 

to xenobiotics, CAR activation was found to be an important factor for tumor development 

(Huang et al. 2005; Kretschmer and Baldwin 2005; Yamamoto et al. 2004). Yet, CAR activation 

has been found to ameliorate diabetes (Dong et al. 2009). Alternatively, CAR inhibition may 

have negative consequences, namely, decreased metabolizing potential in the body, which leads 

to decreased turnover of endogenous hormones as well as decreased detoxification and excretion 

of xenobiotics (NIH 2019e). Furthermore, according to AOP: 58 (under development), CAR 

suppression may lead to hepatic steatosis (Angrish and Chorley 2018).   
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In an effort to reduce animal testing and increase the toxicity-related information level on 

chemical substances, Organisation for Economic Co-operation and Development (OECD) 

developments and European Union (EU) Registration, Evaluation, Authorization and Restriction 

of Chemicals (REACH) regulation have established guidance and policy to increase regulatory 

use of quantitative structure-activity relationship (QSAR) models (Benfenati et al. 2018; ECHA 

2018; OECD 2018). QSARs are mathematical models that predict properties, (e.g. biological 

activities), based on chemical structure (Benfenati 2012; ECHA 2008; OECD 2007). Because 

QSAR predictions can be generated for large inventories of substances in a short amount of time, 

their use is well-suited for screening and priority setting (Rosenberg et al. 2017b). In some cases, 

QSAR predictions may also be used for a 1:1 replacement of experimental tests (ECHA 2008). 

For higher-tier health endpoints, QSAR predictions may contribute to Integrated approaches to 

testing and assessment (IATA) weight-of-evidence (WoE) assessments and read-across cases. 

The primary objective of this study was to develop global binary QSAR models that can 

be used for screening purposes and single-compound identification of possible hCAR antagonists 

or agonists. A secondary interest in this study was to process the experimental training set data 

specifically for the development of QSAR models for prediction of minimum potency. We used 

high-throughput in vitro data sets from the U.S. Tox21 Program’s qHTS assay for hCAR 

agonism and for hCAR antagonism (NIH 2019b), and the results were used to train and validate 

a number of QSAR models for hCAR inhibition and activation.  

For priority setting purposes, the U.S. Tox21 Program applies quantitative high-

throughput (qHTS) screening with the aim of identifying substances that may adversely affect 

human health. To date, the Tox21 chemical library holds approximately 10,000 diverse chemical 

substances, such as commercial chemicals, pesticides, food additives/contaminants, and medical 
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compounds (NTP 2019). The Tox21 CAR agonism data has previously been used as the basis for 

QSAR modeling (Matsuzaka and Uesawa 2019) , and others have also modeled CAR agonism 

using other smaller data sources (Jyrkkärinne et al. 2008; Kato et al. 2017; Lee et al. 2017).  

In this study, we developed a set of criteria to process the data for our QSAR model 

development, including setting a minimum absolute effect, which should be observed at a 

maximum concentration threshold and occur at a non-cytotoxic concentration. We also filtered 

out luciferase inhibitors as likely false positive agonists and false negative antagonists. The 

processed data was ultimately used to build four final “expanded” models. For the validation 

procedures, all initial models underwent a DTU in-house two times 5-fold cross-validation (CV) 

as well as external validations with unused actives and inactives. The final models underwent the 

same CV procedure and external validation for specificity. These models were used to screen 

80,086 structurally diverse pre-registered and/or registered substances under the EU and REACH 

regulation (DTU Food 2018a; DTU Food 2019), and 54,971 unique chemical structures from the 

U.S. Environmental Protection Agency (U.S. EPA) CoMPARA inventory (U.S. EPA 2019d). 

Generated QSAR predictions have the potential uses for: 1) priority setting; 2) single substance 

IATA WoE assessments; and 3) read-across support, (e.g. identifying quality source analogs and 

contributing to the hypothesis justification). To explore the possible roles of the  hCAR receptor 

in relation to other biological activities, hCAR predictions were then statistically correlated with 

predictions from other QSAR models from the free online Danish (Q)SAR database (DTU Food 

2019) including PXR binding/activation (Rosenberg et al. 2017b), AhR activation (Klimenko 

KO et al. 2019), thyroperoxidase inhibition (Rosenberg et al. 2017a), estrogen receptor (ER) 

activation, androgen receptor (AR) antagonism (Vinggaard et al. 2008), genotoxicity, cancer and 

teratogenicity. 



 10 

The QSAR predictions from these screenings will be published on the free online Danish 

(Q)SAR Database. In addition, all final models will be published on the free, online Danish 

(Q)SAR models website for real-time prediction of user-submitted structures and download of 

detailed results in the QSAR Model Reporting Format (QMRF).  

Materials and methods 

Experimental datasets, definition of endpoints and developed QSAR-targeted data processing  

We used results from the U.S. Tox21 Program available from the Tox21 Data Browser 

(NIH 2019e) and structures for the Tox21 substances from PubChem (NIH 2018). As part of the 

U.S. Tox21 Program, the U.S. NIH screened a total of 9,667 chemical substances for hCAR 

agonism and antagonism assays and for cell viability (NIH 2019c; NIH 2019d). Substances in 

the chemical library were not specifically selected to target hCAR agonism and/or hCAR 

antagonism nor were they previously suspected of affecting the hCAR receptor.  

Previous publications have described the chemical structures, hCAR assays and Tox21 

data analysis in more detail (Huang 2016; Lynch et al. 2018). For the cell culture, Tox21 qHTS 

testing used human hepatoma (HepG2) cells transfected with a double-stable human CAR and 

CYP2B6-2.2kb, in both agonist and antagonist mode (NIH 2019d; NIH 2019f). In addition, both 

assays screened 16 different response concentrations with varying concentration ranges among 

the different substances (NIH 2019e). Screening statistics of the agonist assay generated a Z’ 

factor, which reflects the assay signal dynamic range and data variation associated with signal 

measurements, of 0.687 (Zhang et al. 1999), and a coefficient of variance close to 6.04% ± 1.56  

(Lynch et al. 2018). Z’ factors. Thus, an indicator of good performance is a Z’ factor above 0.5 

(Lynch et al. 2018; Zhang et al. 1999). In addition to these datasets, computer-readable structure 

data files (SDF) on the tested chemicals substances structures from PubChem: a) AID 1224893 
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on small molecule antagonists of the hCAR signaling pathway, and b) AID 1224892 on small 

molecule agonists of the hCAR signaling pathway) were used as a basis for our study. Assay 

results were provided by the U.S. Tox21 Program.   

The US Tox21 activity profiling is primarily aimed at identifying potential mechanisms 

of action to prioritize substances for further in-depth toxicological evaluation. As part of the U.S. 

Tox21 data processing, concentration-response series (CRS), typically three per substance per 

assay, are fit to four-parameter Hill equations, and the outcomes are ranked into qHTS curve 

classes specific to this program, accounting for efficacy, p-value, asymptotes and inflection 

(Huang 2016). Furthermore, concentrations of half-maximal relative (AC50) rather than absolute 

activity (AC50) are calculated for activity and cell viability. For instance, if the maximum 

activity of a substance is 30% inhibition, Tox21’s dose-response modeling Hill curve will give 

an AC50, (i.e. the concentration that causes half-maximal activity) of 15% inhibition. In the end, 

half-maximal AC50 values for activity and cell viability were applied to make activity outcome 

summary calls specific to this program, which in some cases also integrated results from 

additional counterscreens.  

Rather than use the Tox21 summary calls (NIH 2019c; NIH 2019d), in this study, we 

undertook further QSAR-targeted processing of the Tox21 hCAR data by setting criteria for 

absolute activity for actives and setting criteria to only select the most robust inactives (Figure 2-

1). Because we did not find any information from regulations, AOPs, scientific literature or other 

sources that would tell us which potency cut-offs we should apply to identify most relevant 

agonists/antagonists from a health impact perspective, or, if certain potency cut-offs formed a 

better basis for QSAR modeling than others, we decided to apply different potency cut-offs with 

a 25% effect (Vinggaard et al. 2008) occurring at or below six different thresholds: 10 µM, 20 
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µM, 30 µM, 40 µM 50 µM, and No Upper Limit (NUL) to construct our endpoint definitions. 

We then used each threshold to construct a data set. A lower cut-off equaled to a higher 

minimum potency, which could potentially form the basis for stronger alerts in a model, given a 

training set that contains a sufficient number of observations. On the other hand, NUL implied 

that we did not impose a concentration cut-off. 

 For each substance, our QSAR-targeted process led to the assignment of one of the 

following outcomes: “active”, “inactive”, or “inconclusive,” for which only actives and inactives 

were used for QSAR development and validation. For the data processing, we filtered each test 

CRS through in-house tools, specifically developed for the purpose of determining active 

responses with non-cytotoxic concentrations showing at least 25% effect (in absolute value), and 

accepted only the best Tox21 Hill curve classes. For inactives, we also required an initial Tox21 

classification of curve class 4 (i.e. inactive) that exhibited no cytotoxicity up to 10 µM 

concentration (Vinggaard et al. 2008). In the end, the complete refinement procedure for each 

substance for both hCAR agonism and antagonism for each of the selected concentration 

thresholds (10 µM, 20 µM, 30 µM, 40 µM, 50 µM, and NUL) fell into five main data steps: 

1. For agonism activity, only Tox21 curve classes 1.1, 2.1, 1.2 and 2.2, (i.e. all complete 

and incomplete curves with inflection, p-value < 0.05 and efficacy > 3 standard 

deviations (SD) of control) were accepted. 

2. For antagonism activity, only curve classes -1.1, -1.2, -2.1 and -2.2, (i.e. all complete and 

incomplete curves with inflection, p-value < 0.05 and efficacy > 3SD of control) were 

accepted. 
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3. The highest concentration with non-cytotoxicity was calculated as the median for all cell 

viability CRSs for the analyzed substance, using the highest concentration with at least 

80% viable cells for each CRS. 

4. For agonist “actives”, two-thirds of all hCAR activity CRS for the substance were 

required to fulfill the requirement of step 1 and have at least 25% effect at a non-

cytotoxic concentration (as defined in “3”) at or below the selected concentration 

threshold. For antagonist “actives”, two-thirds of all hCAR activity CRS for the 

substance were required to fulfill the requirement of step 2 and have at least 25% effect at 

a non-cytotoxic concentration (as defined in “3”) at or below the selected concentration 

threshold.  

5. Substances for which all hCAR activity CRS were curve class 4 with no cytotoxicity up 

to at least 10 µM were assigned “inactive”. 

A small number of substances for both agonism and antagonism had at least 50% but not two-

thirds of all hCAR activity CRS fulfilling the requirement of step 4 and were considered to be 

‘active’ by manual expert judgment. 

Because both hCAR agonism and antagonism assays were luciferase-based, we removed 

substances, which were luciferase inhibitors. Under certain circumstances, luciferase inhibitors 

may stabilize the enzyme, giving significant increases in luciferase levels in cells relative to 

untreated wells within the typical assay incubation time, which can lead to increases in 

luminescent signal by luciferase inhibitors in cell-based assays (Auld and Inglese 2018). As cell-

based luciferase counterscreens for the hCAR agonism and antagonism assays were unavailable, 

we applied an in chemico luciferase inhibition screen for all Tox21 substances (NIH 2019a).  
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Structure curation 

All data set structures underwent structure curation after the QSAR-targeted data 

processing (Figure 2-2). The curation was performed in OASIS Database Manager (DBM) 1.7.3 

(Nikolov et al. 2006), which included additional in-house developed algorithms. First, we 

identified compounds with acceptable structures: Only structures exclusively containing atoms 

from the following list were kept: H, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I. 

Records with structure errors identified by OASIS DBM were removed from the dataset. We 

then conducted a dissociation simulation by breaking ionic bonds and “neutralizing” the 

remaining structures. After this, we removed substances containing two or more organic 

components, (i.e. “mixtures”), and structures with less than two carbon atoms from the dataset. 

Furthermore, to assure that every chemical structure was only represented once in the data set, 

identical structures, (i.e. duplicates), were identified and removed according to the procedure 

described in Figure 2-2. 

Training and external validation sets preparation 

For both antagonism and agonism, we randomly split each of the six concentration 

threshold data sets into a training and a validation set (Figure 2-1). For each data set, we 

randomly selected 20% of the active structures for the validation set. The remaining 80% active 

structures were then assigned to the training set. Afterwards, we randomly selected ten times as 

many training set inactives to make a training set with a 1:10 distribution as this is the maximum 

ratio that the applied QSAR modeling software, Leadscope® Predictive Data Miner (LPDM) 

3.5.3-5 can efficiently model. Any remaining inactives were used for the validation set. This 

meant that for external validation sets, inactives greatly out-numbered the actives. After the 

models were fully developed, we applied an independent external validation.  
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Lastly, we combined the training set and the external validation set for each of a number 

of selected concentration threshold to create four final 20µM and 50µM expanded models for the 

hCAR antagonism and hCAR agonism (Figure 2-1). An aim of the expanded models was to 

possibly improve model accuracy, robustness and/or applicability domain of the single training 

set-based models. Due to the 1:10 limitation, some negatives were randomly left out of the 

expanded models. These negatives were set aside to make independent external validations for 

specificity for the expanded models.   

QSAR modeling and selection 

To build all models for both antagonism and agonism, we used the commercial software 

Leadscope® Predictive Data Miner (LPDM), a component of Leadscope® Enterprise Server 

version 3.5.3-5 (Leadscope® 2019b). Structures were first imported into LPDM. Nine 

continuous molecular descriptors (AlogP, Hydrogen Bond Acceptors and Donors, Lipinski 

Score, Molecular Weight, Parent Atom Number, Parent Molecular Weight, Polar Surface Area, 

Rotatable Bonds) were calculated for each structure. Imported structures also underwent 

LPDM’s systematic substructure analysis for indexing to facilitate faster data retrieval according 

to the 27,000 pre-defined fragment descriptors (Leadscope® 2002; Roberts et al. 2000). LPDM 

allows the user to generate additional training set-dependent fragment descriptors called 

“scaffolds,” which may or may not coincide with the original library. From the entire descriptor 

set, which includes structural features, scaffolds and molecular descriptors, LPDM automatically 

selected the top 30% descriptors using the Yates X2-test. For specific models, we applied this 

setting. LPDM models binary response variables using partial logistic regression (PLR). 

According to Valerio et al., the PLR method minimizes autocorrelation (Valerio Jr. et al. 2010), 
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PLR is used for a binary response variable and extracts factors by PLS using the 

responses as continuous data followed by logistic regression for classifications; this 

process is repeated until the criteria for optimum number of factors and features are 

reached. The binary classification model results are given as outcome probabilities from 

the logistic regression. 

Training sets skewed towards a greater number of negatives, however, can often lead to 

models with a higher specificity, (i.e. true negatives), at the expense of the sensitivity, (i.e. true 

positives) (Valerio Jr. et al. 2010). LPDM, therefore, offers the option of building composite 

models, a method bearing some resemblance to bagging (Breiman 1996) though with full 

resampling of the smaller class and without replacement of the larger class. With this option, the 

modeler can set the desired ratio between the two activity classes and include up to ten sub-

models with a 1:1 ratio, resampling the smaller class. In our experience, such models have close-

to-equal sensitivity and specificity. Previous research has applied a “cocktail” model approach 

where the sub-models of composite models are aggregated with a model on the full skewed 

training set (“single model”) (Rosenberg et al. 2017a). In earlier work, this approach has been 

shown to both increase specificity with only a small penalty on sensitivity compared to the 

composite models, as well as increase the balanced accuracy compared to either composite or 

single models (Klimenko KO et al. 2019). 

With the purpose of selecting the specific modeling approach for further hCAR model 

development, we used the following approaches for all six agonism and six antagonism 

concentration threshold training sets in the initial model development: 

1) single model, i.e. a non-composite model drawing on the full training set 
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2) composite model, i.e. 10 sub-models  

3) composite ‘cocktail’ model, i.e. single model combined with the 10 composite sub-

models 

For all models, scaffolds were generated in LPDM from the training set structures and used 

along with the continuous descriptors and features. All models underwent a two times five-fold 

CV (i.e. removing 20% and making models on the remaining 80% structures to predict the 20% 

leave-out) by the LPDM algorithm. Currently, LPDM’s variable selection algorithm, transfers 

knowledge of the selected descriptor set from the parent model when building the sub-models. 

Subsequently, LPDM’s CV may give overly optimistic results. Thus, LPDM’s CV was only used 

to assess the relative performance of the initial models for modeling approach selection. In the 

end, we selected a number of concentration-thresholds for antagonism and agonism, for which 

we used the expanded training set (i.e. combined initial training set and validation set for that 

concentration threshold) to build new, expanded models (Figure 2-1).  

Applicability domain definition 

 We defined the applicability domain (AD) of our models as a combination of the 

following three components: 1) model-independent structure requirements; 2) LPMD’s 

definition of a structural domain; 3) DTU Food’s in-house definition of class probability 

refinement on the LPDM’s output. We considered a test structure to be in AD if: 

1. The test structure exclusively contained H, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, 

and/or I, it is mono-constituent after de-salting, and it contains at least two carbon atoms. 

2. The test structure met the following LPDM criteria:   
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a) LPDM’s algorithms can calculate all molecular descriptors for the structure 

b) the structure of the compound contains at least one structural feature used in the 

model 

c) the structure of the compound has at least 30% similarity using the Jaccard 

(Jaccard 1901) (also known as Tanimoto) coefficient (Valerio Jr. et al. 2010) with 

a training set substance (based on Leadscope’s built-in fragment library).  

3. The test structure met the following criteria based on the positive prediction probability p 

between 0 and 1 calculated by LPDM as part of the prediction, with actives having a p ≥ 

0.5 and inactives having a p < 0.5 (Valerio Jr. et al. 2010): p ≥ 0.7 is required for an 

active prediction call and a p ≤ 0.3 for an inactive prediction call. Predictions closer to the 

cutoff (p = 0.5) are excluded, as they are likely to be less reliable.  

Validation of the models  

 After using LPDM to guide the selection of the modeling approach, we applied DTU 

Food’s in-house two times five-fold cross-validation procedure to measure the robustness and 

performance of the initial antagonism and agonism models (Figure 2-1). In this procedure, all 

CV sub-models were developed in isolation from the parent model as completely new models in 

Leadscope. Unlike LPDM’s cross-validation procedure, the DTU Food’s in-house CV conditions 

prevent any transfer of knowledge from the parent model to the CV sub-models. The five-fold 

approach was chosen as a robust leave-many-out cross-validation approach, and because 

removing any more actives might cause too large of a perturbation in the training set for the 

smaller active class. 
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 To execute the in-house five-fold cross-validations, we first randomly divided the 

training set into five portions, each constituting 20% of the training set structures, while 

preserving the ratio of inactives to actives (10:1). For each of these five portions, the following 

steps were taken:  

1)  the 20% portion was removed from the full training set to create a sub-model’s training 

set of 80%.  

2) a CV sub-model was built from the reduced training set by applying the same 

development approach as for the parent model, but without transferring any variable 

selection information.  

3) the 20% left-out portion was predicted by the 80% sub-model “external validation sets”. 

 The whole procedure was performed twice, resulting in 10 CV prediction sets per 

threshold concentration. For all in-AD predictions in each threshold concentration’s 10 

prediction sets, we also calculated overall sensitivity, specificity and balanced accuracy as well 

as standard deviations (SD) between prediction results in the ten sub-models (Cooper II et al. 

1979). In our study, we used Cooper et al.’s definitions: a) sensitivity is defined as the 

percentage of experimental actives predicted accurately; b) specificity is the percentage of 

experimental inactives predicted accurately; c) balanced accuracy (BA) as the average of 

specificity and sensitivity (Cooper II et al. 1979). To determine the percentage of substances with 

predictions within the AD of the DTU in-house CV models, we calculated the total coverage, i.e. 

“the proportion of the full set predicted within the AD of the model” of each threshold 

concentration’s total 10 CV models (Rosenberg et al. 2017a). 
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To further evaluate the predictive performance of the initial DTU in-house CV threshold-

concentration models for antagonism and agonism, models were subjected to an external 

validation using the 20% removed validation sets (Figure 2-1). Predictions, which were within 

AD, were then compared with the experimental results. Sensitivity, specificity, balanced 

accuracy and coverage were calculated for each model. Likewise, we applied the DTU Food’s 

in-house cross-validation procedure to the expanded antagonism and agonism models for the 

selected concentration thresholds (Figure 2-1). Since all expanded models contained all of the 

actives from the initial training and validation sets, an external validation could only be 

performed for specificity using the unused inactives from the expanded models. 

Screening large chemical inventories  

To identify possible hCAR activators and inhibitors among current industrial chemicals, 

we applied the expanded QSAR models to two, large regulatory chemical libraries: the REACH 

pre-registered and/or registered substances compiled for the Danish (Q)SAR Database (DTU 

Food 2018a; DTU Food 2019), and a U.S. EPA substance list compiled for the U.S. EPA 

CoMPARA project (Mansouri et al. 2017) (Figure 2-1). Both the REACH substances and U.S. 

EPA set already underwent a similar structure preparation as described in the “Structure 

preparation” section. For our study, 80,086 QSAR-ready REACH structures, and 54,971 QSAR-

ready U.S. EPA inventory structures were screened by the expanded QSAR models. As part of 

the predictions, we calculated the proportion of QSAR-predicted U.S. EPA and REACH-PRS 

substances within the AD, and of these, how many were predicted as active or inactive. 

Statistical correlations of CAR predictions with QSAR predictions for other endpoints  

To investigate possible associations between PXR, AhR, ER, AR, mutagenicity, 

sensitization, cancer and teratogenicity large-inventory prediction results, we correlated 
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screening results from the REACH set with Leadscope® QSAR predictions contained in the 

DTU-developed free online Danish (Q)SAR Database. Detailed information on Leadscope® 

QSAR models can be found in their QSAR Model Reporting Format (QMRF), which is freely 

downloadable from the Danish (Q)SAR Database (DTU FOOD et al. 2019). To gauge the 

strength of our correlations, specifically for predictions found in the common domain between 

CAR and the individual models, we calculated a Matthews correlations coefficient (MCC), a chi 

square (c2) test statistic, and sensitivity for CAR active antagonists and antagonists. Test 

statistics demonstrated the ability of the hCAR models at ‘catching’ actives from other models as 

well as how often hCAR models give positive predictions when the other models predict a 

negative outcome. Moreover, test statstics showed how good other models were at ‘catching’ 

actives from the hCAR models in addition to how often the other models give positive 

predictions when the hCAR models predict a negative response. For instance, when you compare 

actives and inactives from two different models, you can calculate sensitivity and specificity both 

ways, namely how good Model 1 is at ‘catching’ actives and inactives from Models 2, and how 

good Model 2 is at ‘catching’ actives and inactives from Model 1. 

Results and discussion  

In this study we developed QSAR models for hCAR antagonism and hCAR agonism for 

a number of different effect concentration thresholds and used final expanded models (for 25% 

effect at 20 µM and 50 µM) to screen 80,086 REACH substances and 54,971 U.S. EPA 

substances for hCAR antagonism and agonism. 

The training and validation sets  

We started with Tox21 experimental results for 9,667 substances for both hCAR 

antagonism and hCAR agonism from the Tox21 Data Browser and structures from PubChem. 
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After subjecting the initial data to our rigorous refinement process, each threshold concentration 

training set was reduced to approximately one tenth of the original dataset size. Detailed results 

from the QSAR-targeted data processing, structure curation, and training and validation sets can 

be viewed in Table 2-1. 

QSAR modeling and selection  

QSAR models were developed in LPDM based on all initial training sets using the three 

different modeling approaches. In all but one case (agonism 10 µM), the cocktail (“3”) models 

had the highest balanced accuracies, due to increased specificities and only slightly decreased 

sensitivities compared to the composite (“2”) models. We therefore chose to continue with the 

cocktail models. 

We next chose the concentration thresholds to advance the modeling process and expand 

the training sets with substances from the validation sets. For both the antagonism and the 

agonism models, the differences in performance of the cocktail model across all concentration 

thresholds were small (Table 2-2). In other words, we did not discern some concentration 

thresholds as being more or less “modelable” than others. We also chose the 20 µM antagonism 

and agonism models as ‘expansion models’ for predicting higher potency substances, and the 50 

µM antagonism and agonism models as ‘screening models’ of possible hCAR substances (Table 

2-2). One reason we selected the 20 µM models for higher potency prediction as opposed to the 

10 µM models, more specifically, the agonism model, was that the 10 µM agonism model had a 

rather small number of actives in the training set, making the training set more unstable. In 

addition, the 10 µM agonism model had a smaller AD compared to the 20 µM models. For the 

50 µM models, we considered this threshold as still ‘interpretable’ for minimum potency, as 
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opposed to the NUL models, which indicate zero potency. More specifically, if one predicts an 

active with the 50 µM model, this means that the model predicts that the chemical will have 

minimum 25% effect at maximum 50 micro-M concentration, i.e. a minimum potency. The 20 

µM and 50 µM expanded models for both hCAR antagonism and hCAR agonism were modelled 

using the expanded training sets presented in Table 2-1 and by the chosen cocktail approach in 

LPDM. 

Predictive performance of all the initial QSAR models  

All initial QSAR models underwent a two times five-fold DTU Food in-house cross-

validation (CV) procedure as well as external validation with both the left out 20% active and all 

remaining inactives. Results are given in (Table 2-3). For antagonism, CV sensitivities ranged 

from 54.3% and 74.7%. However, with rather high SD values (i.e. 11.0% and 16.1%, for Ant-10 

µM-QSAR and Ant-30 µM-QSAR, respectively), the CV sensitivities were not significantly 

different from each other. The high standard deviations (SD) of sensitivities for the CV results of 

both endpoints are likely due to the 20% removal of the relatively small sets of actives, which 

removes valuable information for classes not highly represented in the sets (Table 2-3). In 

contrast, CV specificities ranged between 92.4% and 97.2%. These high specificities had a 

smaller SD range of values, (i.e. 1.2% to 2.9%), which reflected the bigger inactive classes in the 

training sets. Balanced accuracies stayed between 75.7% and 84.0% (Table 2-3). 

For the agonism models, CV sensitivity was much lower for the Ag-10 µM-QSAR, (i.e. 

28.2% ) and and ranged between 61.6% and 71.7% for the remaining models (Table 2-3). SD 

values had a higher range, (i.e. 12.2% and 32.3%) relative to the antagonism values (Table 2-3). 

Higher SD values reflected the rather small size of the training set active classes. For example, 
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the Ag-10 µM-QSAR initial model had only 26 actives compared to the Ant-10 µM-QSAR 

initial model with 86 actives.  On the other hand, the CV-derived specificities for the initial 

agonism models ranged between 90.0% and 97.2%. Similar to the antagonism models, these high 

specificities were attributed to larger inactive classes in the training sets. SD values ranged 

between 2.2% for the Ag-No-Upper-Limit initial model and 6.3% for the Ag-10 µM-QSAR 

initial model. Balanced accuracies had a slightly lower range between 55.0% and 81.4%. 

Unlike the CV sensitivities, external validation sensitivities had a wider range for both 

models, though specificities remained relatively high and within a narrow range. For antagonism, 

the external validations with the 20% leave-out actives and the remaining inactives gave 

sensitivities that ranged between 55.0% and 83.3% (Table 2-3). Specificities, however, were 

higher, (i.e. 91.7% for the and 94.2%). The range for balanced accuracy was also slightly higher 

(i.e. 73.8% to 88.4%) when compared to the CV balanced accuracies. 

External validations for agonism with the 20% leave-out actives and the remaining 

inactives demonstrated a wider range of sensitivities. Sensitivities ranged between 37.5% for the 

Ag-30 µM-QSAR initial model and 100% for the Ag-10 µM-QSAR initial model (Table 2-3). 

Specificities, however, were higher than antagonism, ranging between 89.4% for the Ag-No-

Upper-Limit initial model and 95.3% for the Ag-10 µM-QSAR initial model. Balanced 

accuracies also had a wider range. BAs ranged between 65.0% and 97.6% for both the Ag-10 

µM and the Ag-30 µM-QSAR initial models, respectively. 

For both antagonism and agonism, sensitivities lacked a clear trend, and varied much 

more than specificities. Variance was most likely due to the small number of actives in AD in the 

validation sets, as reflected in the true positive (TP) and false negative (FN) numbers (Table 2-
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3). On the other hand, specificities were much more stable due to the high number of inactives in 

the validation sets. In this case, high specificities are especially desirable because the models do 

not generate a high percentage of false positives, which is important for endpoints such as hCAR 

antagonism and agonism. If substances in a given chemical universe are rarely ‘positive’, (i.e. the 

balance is very shifted towards negatives), then having a high specificity is even more important 

in order to not to overly “pollute” the true positives with false positives, thereby giving low 

positive prediction value (PPV), or low trust in positive predictions. 

A possible trend for both antagonism and agonism models, however, could be the slight 

decrease in specificity with increasing concentration thresholds. This slight trend could possibly 

indicate that including actives with lower potency in the training set leads to decreasing quality 

of the positive alerts in the models. Because of the uncertainties of the sensitivities, comparisons 

between CV results and external validation results are most relevant for specificity. As shown in 

Table 2-3, the specificities from the external validations are close to the specificities from the 

CVs, with the latter being a few percent higher in some cases (SD taken into consideration).  

Predictive performance of the 20 µM and 50 µM expanded QSAR models 

All expanded QSAR models underwent a two times five-fold DTU Food in-house CV 

procedure as well as external validation for specificity using the inactives not included in the 

expanded training sets (Table 2-3). According to the CV results, the expanded antagonism 20 

µM and 50 µM models had sensitivities of 58.4% and 72.4%, specificities of 97.1% and 82.0%, 

and BAs of 77.8% and 82.0%. For the expanded agonism 20 µM and 50 µM models, sensitivities 

were 72.2% and 78.4%, specificities were 93.5% and 91.4%, and BAs were 82.0% and 84.9%. In 

all cases the results for the expanded antagonism and agonism models were not dissimilar from 

the CV results of the corresponding initial models, taking SD into account. With the exception of 
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sensitivity for the 20 µM antagonism model, for both antagonism and agonism, the SDs for 

sensitivity and specificity were in all cases lower for the expanded models than the 

corresponding initial models, indicating more stability.  

According to the external specificity validation results, the expanded antagonism 20 µM 

and 50 µM models had specificities of 93.2% and 92.0%. For the expanded agonism 20 µM and 

50 µM models, external validation specificities were 91.5% and 90.6%. Notably, the specificity 

results for all antagonism and agonism expanded models had a difference of less than 1% from 

the external validation specificity results for the corresponding initial models. Although smaller 

than the 50 µM models, the 20 µM antagonism and agonism expanded models had slightly 

higher external validation specificities on these relatively large inactive validation sets. We 

speculated that some less discriminating positive alerts entered into the 50 µM model compared 

to the 20 µM models, especially for antagonism. Thus, when we included the “extra” actives for 

the higher thresholds, in this case, the positives in the 50uM model) these actives also included 

substances that are weaker than the ones in the 20uM model. 

Screening results  

We screened the U.S. EPA and REACH-PRS inventories using the expanded models for 

hCAR 20 µM and 50 µM antagonism and agonism models (Table 2-4). The 20 µM and 50 µM 

antagonism models had coverages between 54.3% and 63.1%. The two antagonism models 

predicted between 15.8% and 17.0% of the active substances within their respective ADs from 

the two inventories. The two agonism models predicted between 16.9% and 20.9% of the 

substances in AD from the two inventories. The prevalences of actives, or the percent of actives 

out of the total number of substances, were between 2.5% and 4%, after we conducted the 

QSAR-targeted data processing and depending on the concentration threshold. (Prevalences can 
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be derived from Table 2-1). It should be noted that the experimentally tested Tox21 library of 

substances was not selected based on suspicion of hCAR antagonism or agonism. At the same 

time, it is not known how well the library reflects the true prevalence of hCAR antagonists and 

agonists of the U.S. EPA and REACH inventories.  

According to the rather large external validations, both the applied antagonism and the 

agonism models showed high specificities (90.7% - 93.2%) indicating that they do not give very 

many false positive predictions. Nonetheless, the models may have still have false positive rates, 

(which can be derived from the external validation specificity results), between 9.3% and 6.8%. 

These false positive rates may explain some though not all of the high percents, (i.e. 15.8% - 

20.9%), of active predictions for hCAR antagonism and agonism in the two large inventories, 

thereby indicating a possible high number of hCAR antagonists and agonists in the U.S. EPA 

and REACH inventories.  

Statistical correlations of CAR predictions with QSAR predictions for other endpoints  

REACH screening results for both the expanded CAR 50µM antagonism and agonism 

models were statistically correlated with QSAR predictions within the same REACH set for 

PXR, AhR, ER, AR, mutagenicity, sensitization, cancer and teratogenicity endpoints. Predictions 

from these other QSAR models are stored in the free online Danish (Q)SAR Database (DTU 

FOOD et al. 2019), which is developed and maintained by the DTU co-authors. This analysis 

was performed to explore possible biological pathways and toxicities affected by CAR 

antagonists and agonists. When performing the correlations, only molecules in the common 

QSAR applicability domain of the relevant models were used. 
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Each of the two lists in Table 2-5 is sorted by the percent of hCAR positives overlapping 

with predictions from the respective other model (denoted by M1). As can be seen from Table 5, 

there are endpoints related to AhR, AR antagonism, PXR/CYP3A4 induction, cancer in rats and 

TPO inhibition on top of both lists for correlations with hCAR antagonism and agonism 

predictions. In other words, hCAR positive predictions are found at a much higher percentage 

among positive than among negative predictions from models for these endpoints. At the bottom 

of both lists are CYP2C9, CYP2D6 and skin irritation, where CAR positives are not found at 

very high percentages either among positives or among negatives from the other models. These 

low percentages may be regarded as a random overlap. 

Because CAR, PXR and AhR share some ligands, we also wanted to see how well the 

three endpoints correlated to each other (Li et al. 2015). As expected, both CAR antagonism and 

agonism correlated strongly with PXR. However, more surprisingly, CAR antagonism and 

agonism correlated even more strongly with AhR (Table 2-6).  

 The tabulated counts in Table 2-6 show that 23,004 substances out of 80,086 REACH 

substances in the Danish (Q)SAR Database are in the common domain of the three models. Of 

these 23,004 substances, the vast majority were predicted negative by all three models, (i.e. 

20,164 substances). hCAR had 561 positive predictions for which the other two models predicted 

negative (corresponding to 2% of the common domain); hPXR had 738 (3%) positive predictions 

for which the two other models predicted negative; and hAhR had 21 (0.1%) positive predictions 

for which the two other models predicted negative. However, all three models gave positive 

predictions for 243 substances. hCAR and hPXR shared the biggest number of common positive 

predictions, namely, the 243 substances, which were positive in all three models plus the 1,233 
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substances only positive in the hCAR and hPXR models. In addition, the AhR model rarely gave 

a positive prediction when the hCAR model gave a negative prediction in a combined 24 cases.  

Conclusions  

Our study presents two main results: 1) We developed an in-house QSAR-targeted data 

processing approach to extract Tox21 experimental results for QSAR development of different 

absolute minimum potency classes; 2) We developed, validated, and applied global, binary 

QSAR models for hCAR antagonism and agonism in vitro. All initial models were based on 10 

µM, 20 µM, 30 µM, 40 µM, 50 µM and No Upper Limits threshold concentrations for both 

agonism and antagonism. All initial models underwent CV and external validations and showed 

high specificities of around 90-95% and good BAs. For both antagonism and agonism, new 

expanded models were developed for the 20 µM and 50 µM thresholds by incorporating the 

external validation set actives and ten times as many inactives into the training sets. These 

expanded models also underwent cross-validation, and external validation but only for specificity 

as there were no additional actives for a full external validation. In all but one case, the results 

for the expanded antagonism and agonism models were slightly better compared to the 

correspoinding initial models. However, results were not dissimilar from the CV results of the 

corresponding initial models when taking SD into account. External validations of specificity 

showed similar performance between initial and the corresponding expanded models. 

Our four expanded models were used to screen two large chemical inventories from the 

U.S. and EU. Of the substances predicted within the ADs of the expanded models, the 20 µM 

agonism model predicted 8,265 (16.9%) REACH substances and 5,731 (17.4%) U.S. EPA 

substances to be positive; the 20 µM antagonism model predicted 8,058 (16.0%) REACH 

substances and 5,175 (15.8%) U.S. EPA substances to be positive. For antagonism, the 50 µM 
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expanded models predicted a slightly higher number of positives than the 20 µM expanded 

model. 

Finally, we explored if a number of biological pathways and toxicity properties correlated 

statistically, (i.e. not investigated for causality) with predicted hCAR antagonists and agonists. 

This was done by correlating QSAR predictions from the expanded hCAR 50µM antagonism 

and agonism models with QSAR predictions for endpoints related to PXR, AhR, ER, AR, 

mutagenicity, sensitization, cancer and teratogenicity endpoints for 80,086 REACH substances 

contained in the Danish (Q)SAR Database. 

Our study aims to be forward looking. Results from the developed QSAR-targeted data 

processing of Tox21 may contribute to future QSAR modeling studies. In addition, the 

developed hCAR antagonism and agonism QSAR models may be utilized in the future for 

support of screening, read-across or IATA WoE assessments. Predictions for 650,000 substances 

from the expanded antagonism and agonism 20 µM models have long-term implications for 

regulatory hazard assessments. These predictions will be published in the free online Danish 

(Q)SAR Database, and the models themselves will be made available in the free online Danish 

(Q)SAR Models website (DTU FOOD et al. 2019). 
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Tables 

Table 2-1. Number of processed structures through QSAR-targeted data processing and structure 

curation, and resulting unique structures in the training and validation sets with the distribution 

of active and inactive.  

 

 

 

 

All Active Inactive All Active Inactive

Original data set 9667 9667

10 !M
After QSAR-targeted data processing 5868 160 5708 6977 108 6869

Acceptable structures 5430 136 5294 6422 106 6316
After luciferase inhibitors removal 5298 136 5162 6356 40 6316

After duplicates removal 4259 107 4152 5098 33 5065
Validation set (20% random for actives) 3313 21 3292 4812 7 4805

Training set (inactives = 10 * actives) 946 86 860 286 26 260

20 !M
After QSAR-targeted data processing 5897 189 5708 7098 229 6869

Acceptable structures 5459 165 5294 6609 227 6382
After luciferase inhibitors removal 5327 165 5162 6492 110 6382

After duplicate removal 4277 128 4149 5147 84 5063
Validation set (20% random for actives) 3155 26 3129 4410 17 4393

Training Set (inactives = 10 * actives) 1122 102 1020 737 67 670
Expanded training set 1408 128 1280 924 84 840

Reduced validation set (only inactives) 2869 4223

30 !M
After QSAR-targeted data processing 5920 212 5708 7126 257 6869

Acceptable structures 5481 187 5294 6636 254 6382
After luciferase inhibitors removal 5349 187 5162 6507 125 6382

After duplicate removal 4292 144 4148 5159 96 5063
Validation set (20% random for actives) 3027 29 2998 4312 19 4293

Training Set (inactives = 10 * actives) 1265 115 1150 847 77 770

hCAR Antagonism hCAR Agonism
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(Table 2-1 continued) 

 

∔  For No Upper Limit (NUL) a concentration threshold cut-off was not set. 

  

All Active Inactive All Active Inactive

Original data set 9667 9667

40 !M
After QSAR-targeted data processing 5925 217 5708 7129 260 6869

Acceptable structures 5485 191 5294 6639 257 6382
After luciferase inhibitors removal 5353 191 5162 6509 127 6382

After duplicate removal 4292 145 4147 5161 98 5063
Validation set (20% random for actives) 3016 29 2987 4303 20 4283

Training Set (inactives = 10 * actives) 1276 116 1160 858 78 780

50 !M
After QSAR-targeted data processing 5956 248 5708 7267 398 6869

Acceptable structures 5515 221 5294 6774 392 6382
After luciferase inhibitors removal 5383 221 5162 6592 210 6382

After duplicate removal 4314 170 4144 5234 173 5061
Validation set (20% random for actives) 2818 34 2784 3716 35 3681

Training Set (inactives = 10 * actives) 1496 136 1360 1518 138 1380
Expanded training set 1870 170 1700 1903 173 1730

Reduced validation set (only inactives) 2444 3331

NUL� 

After QSAR-targeted data processing 5961 253 5708 7341 472 6869
Acceptable structures 5519 225 5294 6848 466 6382

After luciferase inhibitors removal 5387 225 5162 6641 259 6382
After duplicate removal 4315 172 4143 5271 212 5059

Validation set (20% random for actives) 2797 34 2763 3401 42 3359
Training Set (inactives = 10 * actives) 1518 138 1380 1870 170 1700

hCAR Antagonism hCAR Agonism
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Table 2-2. Results from the LPDM two times five-fold cross-validation of all initial models by 

three approaches: 1) single model, 2) composite model, 3) composite ‘cocktail’ model. 

  

 

 

 

 

Cocktail models (initial) Approach LPDMs two times five-fold cross validation results

Sensitivity (%) Specificity (%) Balanced 

accuracy  

(%)

Antagonism

10 µM training set 1 54.1 99.0 76.6

2 91.2 89.9 90.6

3 86.6 97.4 92.0

20 µM training set 1 49.3 98.6 74

2 87.8 88.3 88.1

3 84.5 97.8 91.2

30 µM training set 1 52.9 98.5 75.7

2 87.2 89.1 88.2

3 84.9 97.2 91.1

40 µM training set 1 47.3 98.9 73.1

2 87.8 87.3 87.6

3 85.9 97.4 91.7

50 µM training set 1 46.0 99.0 72.5

2 84.1 87.2 85.7

3 83.5 97.9 90.7

No Upper Limit training set 1 38.5 99 68.8

2 84.6 86.3 85.5

3 82.4 97.1 89.8
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(Table 2-2. continued) 

 

* TP: true positives, FP: false positives, TN: true negatives, FN: false negatives. The numbers are averages of the ten iterations as 

given by LPDM. 

  

Cocktail models (initial) Approach LPDMs two times five-fold cross validation results

Sensitivity (%) Specificity (%) Balanced 

accuracy  

(%)

Agonism

10 µM training set 1 23.5 99.4 61.5

2 94.7 88.2 91.5

3 81.3 96.8 89.1

20 µM training set 1 35.8 98.9 67.4

2 96.6 89.0 92.8

3 92.5 96.9 94.7

30 µM training set 1 21.1 99.5 60.3

2 91.4 88.8 90.1

3 87.7 98 92.9

40 µM training set 1 41.8 98.2 70.0

2 92.2 88.2 90.2

3 90.2 96.5 93.4

50 µM training set 1 40.4 98.6 69.5

2 92.0 87.6 89.8

3 90.3 97.9 94.1

No Upper Limit training set 1 24.5 98.8 61.7

2 91.0 87.2 89.1

3 89.1 97.7 93.4
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Table 2-4. The coverage (AD) and the number of active/inactive predictions of the U.S. EPA and 

REACH-PRS inventories in the expanded 20 µM and 50 µM hCAR antagonism models and the 

expanded 20 µM and 50 µM hCAR agonism models. 

 

 

† U.S. EPA QSAR-ready structures from a U.S. EPA inventory of synthetic chemical structures to which humans are potentially 

exposed. 

†† REACH QSAR-ready structures from the REACH pre-registered substances (PRS) list and/or REACH registrered substances. 

 

 

  

Datasets Total Predictions

In AD Active Inactive In AD Active Inactive
(%)  (%) (%) (%)

REACH† 80,086 63.1% 8,058 (16.0) 42,441 (84.0) 57.0% 7,680 (16.8) 37,931 (83.2)

U.S. EPA†† 54,971 59.6% 5,175 (15.8) 27,577 (84.2) 54.3% 5,062 (17.0) 24,767 (83.0)

Ant-20 !M-QSAR (expanded) Ant-50 !M-QSAR (expanded)

Datasets Total Predictions

In AD Active Inactive In AD Active Inactive
(%) (%) (%) (%) (%) (%)

REACH† 80,086 61.1% 8,265 (16.9) 40,631 (83.1) 63.7% 10,289 (20.2) 40,711 (79.8)

U.S. EPA†† 54,971 59.8% 5,731 (17.4) 27,121 (82.6) 63.0% 7,254 (20.9) 27,389 (79.1)

Ag-20 !M-QSAR (expanded) Ag-50 !M-QSAR (expanded)
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Table 2-6. Correlations between prediction for REACH substances from the hCAR Ant-50 µM 

(expanded) model and hPXR agonism and hAhR agonism (rational model) QSAR predictions 

from the free online Danish (Q)SAR Database (only predictions in the domains of the pairwise 

correlated models were counted). 

  

 

  

hCAR agonism hPXR agonism hAhR agonism (rational) Count

Negative Negative Negative 20,164

Negative Negative Positive 21

Negative Positive Negative 738

Negative Positive Positive 3

Positive Negative Negative 561

Positive Negative Positive 41

Positive Positive Negative 1,233

Positive Positive Positive 243
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Figures 

   

Figure 2-1. Overview of the process† of making training and validation sets, modeling, and 

predictions for hCAR antagonism and agonism activity.  

Tox21 data sets

QSAR-targeted data processing

Processed
data sets

10 !M 20 !M 30 !M 40 !M 50 !M NUL

Curated
data sets 10 !M 20 !M 30 !M 40 !M 50 !M NUL

Structure curation

Splitting actives into 80% for training and 20% for validation, and 
taking 10 times as many inactives for training and the rest for 
validation

Training sets 

Validation sets

10 !M 20 !M 30 !M 40 !M 50 !M NUL

10 !M 20 !M 30 !M 40 !M 50 !M NUL

Model development and validation

Initial
models 30 !M 50 !M20 !M NUL40 !M10 !M

Expanded training sets 

Validation sets for inactives

20 !M 50 !M

20 !M 50 !M

Expansion of training sets

Expanded models development and validation

20 !M 50 !MExpanded
models

Applying expanded models for screening

Predictions for 
80,086 REACH and 
54,971 U.S. EPA 
substances 20 !M 50 !M



 42 

†The rectangular boxes are for experimental data sets, the ovals are for models and the triangles are for the screening sets. The 

process was performed for both the agonism and antagonism sets. 

 

Figure 2-2. Data processing and structure curation. 
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3. Chapter 3: QSAR Use in REACH Analyses of Alternatives to Predict Human Health 

and Environmental Toxicity of Alternative Chemical Substances 

Abstract: 

In 2007, the European Union (EU) enacted the Registration, Evaluation, Authorization, 

and Restriction of Chemicals (REACH) to address growing concerns of hazardous chemicals in 

the EU market. Under REACH, companies seeking authorization to use priority substances 

identified as substances of very high concern (SVHCs) and included in the Authorization list, 

must apply and submit health and environmental effects data in analyses of alternatives (AoAs) 

to the Environmental Chemicals Agency (ECHA). To assess safer alternatives, especially in AoA 

hazard assessment cases where vital information could be missing or insufficient, quantitative 

structure activity relationship (QSAR) non-testing methods have gained increasing acceptance 

and importance. This article assesses AoA applicants’ use of QSAR sources and QSAR 

documentation while looking for meaningful trends. In this assessment, usage and frequency of 

QSAR sources were evaluated in 189 analyses of alternatives for 15 physico-chemical properties 

and 19 human health and environmental endpoints to determine the scope of purpose of QSAR 

use in AoAs. We found that only 24 out of 189 applications cited QSAR sources to rank or 

evaluate the safety of their alternative substances relative to the Annex XIV chemical. For 

human health and environmental hazard endpoints, the Danish (Q)SAR Database (n=63) and 

unidentified QSARs (n = 33) were the most frequently cited QSAR sources by applicants. For 

QSAR usage, 7.9% per maximum opportunity (MOP) of alternatives with hazard endpoint 

QSAR predictions and 12% per MOP of physico-chemical QSAR predictions were used to 

report background information on an alternative. 3.0 % per MOP of hazard endpoint QSAR 

predictions supported the safety of the alternative while 0.7% per MOP of physico-chemical 
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QSAR predictions gave mixed support for their alternative’s safety. Documentation regarding 

QSARs was absent in all 24 AoAs that used QSARs. Limited QSAR use and missing 

documentation may be the result of several factors including inconsistent regulatory guidance. 

KEY WORDS: QSAR, analyses of alternatives, REACH, non-testing methods, predictive 

toxicology 
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Introduction 

Authorization decisions under the European Union’s (EU) Registration, Evaluation, 

Authorization, and Restriction of Chemicals (REACH) aim to replace substances of very high 

concern (SVHCs) with safer alternatives where economically and technically feasible (ECHA 

2019). Under authorization, the European Chemicals Agency’s (ECHA) Committees for Risk 

Assessment (RAC) and Socio-Economic Analysis (SEAC) assess risks as well as the availability 

and feasibility of possible alternatives in the analysis of alternatives (AoA) report for Annex XIV 

substances (ECHA 2019a). Guidance on the preparation of an application for authorization 

recommends the use of non-testing methods such as quantitative structure-activity relationships 

(QSARs), particularly in cases of data gaps (ECHA 2011b). QSARs, which are computational 

models that predict biological activity from compounds through statistical means, have become 

increasingly accepted in EU chemical regulation due to their cost-effectiveness and 

independence from animal testing. Yet, there is limited insight into the extent to which QSAR 

are used in AoAs. Recent evaluations performed by ECHA on alternative methods, (e.g. QSARs 

and read-across), focused exclusively on registration dossiers, for which “poor justifications for 

using alternatives to vertebrate animal testing” (ECHA 2016c), and several “deficiencies in the 

use of alternative testing methods,” including the lack of proper documentation, supporting test 

data, and carefully developed chemical profiles were noted (ECHA 2017a)   

This paper evaluates how QSARs are used to assess the safety of alternative chemicals in 

AoAs under REACH. Specifically, this study aims to answer three primary questions: a) What 

QSARs were used by AoA applicants?; b) How did applicants document their QSAR use in 

AoAs?; c) To what extent are QSARs used in AoAs to support, eliminate or evaluate in a weight 

of evidence (WoE) context an alternative to an Annex XIV chemical? This assessment also looks 

at the physico-chemical and human health and environmental hazard profiles of the alternatives 
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in order to look for trends in QSAR usage, support, and the role of WoE with respect to QSARs. 

These findings report on the nature and scope of QSAR use in AoAs as well as the applicants’ 

use of the (Q)SAR modeling reporting format (QMRF) and the (Q)SAR prediction reporting 

format (QPRF) documentation. This paper concludes with a discussion on the likely need for 

additional regulatory guidance granted specifically for QSAR use under REACH authorization. 

Background  

Under REACH, the burden of establishing safety shifts from regulators to industry. In 

order to register a chemical, companies must compile data on their substance if manufactured or 

imported at greater than one ton per year (ECHA 2019d). All chemical properties, use and, when 

relevant, hazard and risk information requirements on the chemical are compiled in a registration 

dossier. Under Annex IV through X of the REACH regulation, a registrant may submit a 

proposal for chemical testing to fulfill its information requirements (ECHA 2019f). ECHA, the 

regulatory arm of REACH, and the Member States, assess dossier compliance and evaluate the 

proposal for testing. For each testing proposal, the company must detail its use or consideration 

of non-testing methods, including in silico modeling such as QSAR models, which give 

quantitative property and activity information in lieu of vertebrate testing. For the purpose of this 

study, we will use QSAR to indicate computational modeling, and (Q)SAR to signify both 

computational modeling and the structure-activity relationship (SAR), (i.e. grouping approach) 

(Benfenati 2012). 

In the event that a chemical is identified and placed on a candidate list as an SVHC 

during the prioritization process, the chemical becomes eligible for authorization under Annex 

XIV. Assuming that the REACH Committee, with input from ECHA on high priority inclusions, 

then decides to include a candidate list SVHC on the Annex XIV list, the substance/use becomes 
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subject to a “sunset period,” a period after which a substance/process can no longer be used 

unless authorization is obtained from the European Commission (EC) (EC 2019). However, to 

obtain authorization, an applicant must demonstrate, at a minimum, an absence of suitable 

alternatives. To assess if there are suitable replacements for an SVHC, an AoA is required 

(Article 62(4)(e). As part of the authorization process, an AoA must review all possible 

alternatives to Annex XIV substances based on the reduction of overall risks, and economic and 

technical feasibility (ECHA 2011b). This assessment includes the identification of potential 

alternatives, the screening process to select viable candidates, and an analysis of the suitability 

and availability of final selected alternatives. Applicants must also create a property and hazards 

profile for their alternative chemical(s), although, oftentimes, only limited toxicological 

information is available (NRC 2014b). Data gaps and limited information could present a 

significant obstacle to the identification of alternatives (Malloy et al. 2017).  Still, QSARs can 

play a critical role in helping to fill these data gaps. (For the full REACH process, see Appendix 

S1). 

QSAR Non-Testing Method Under REACH 

Under REACH, QSARs are used to predict potential chemical toxicity of data-poor 

chemicals. QSARs are considered a non-testing tool because of their ability to predict data 

without further experimental testing (Worth 2010b). In general, QSARs are mathematical models 

that relate structural properties in the form of molecular descriptors, e.g. logKow, to the biological 

activity of a chemical (Benfenati 2012). As a computational model, QSARs use algorithms, such 

as regression, to predict toxicity. Additionally, QSARs must be statistically validated to ensure 

model performance and prediction accuracy. Because of the uniqueness of each model, QSARs 

are accepted on a case by case basis under REACH (Benfenati et al. 2013). 
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Companies that use QSARs within a REACH process must first meet a number of 

conditions, which are defined under Annex XI as four criteria (European Parliament and the 

Council of the European Union 2006): 

a) only scientifically validated models can be used  

b) models have a defined domain of applicability;  

c) models have appropriate measures of goodness-of-fit, robustness and predictivity as a 

prerequisite for use within “classification and labelling and/or risk assessment” 

d) proper QSAR documentation must accompany the use of any QSAR 

In addition to requiring valid QSARs, ECHA requires that companies provide reliable 

QSAR predictions. In practical terms, this means that QSAR data should be integrated with other 

in vivo and in vitro evidence. This is especially important when the experimental data are 

missing or insufficient. In these cases, companies should consider multiple data sources for a 

property or endpoint in a “totality of evidence” or weight of evidence (WoE) approach (ECHA 

2016a). While ECHA has issued guidance that QSARs can be used to replace experimental data 

as long as QSAR results are considered “relevant, reliable and adequate for the purpose” and 

documented, in general, ECHA strongly advises a WoE approach that is based on experimental 

data considerations (ECHA 2008). 

Because ECHA needs to verify QSAR results for regulatory decision-making, companies 

must formally document their QSAR predictions. Annex XI of the REACH regulation stipulates 

that adequate and reliable documentation, which outlines the reliability and quality of the QSAR 

model and prediction(s), must be provided by registrants when QSAR data is used (ECHA 

2008). Currently, the main QSAR documents are the QMRF and the QPRF. QMRFs are 

typically prepared by the model developer, and provide information on the “source, type, 

development, validation, and possible applications of the model,” which are aligned with the 
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OECD principles (ECHA 2008). QPRFs, on the other hand, detail the applicant’s rationale for 

the predictions. QPRFs should include information on the environmental and human health 

endpoints, physico-chemical properties, and an assessment on whether the predicted toxicity of 

the alternative compared to the model’s experimental data set is within acceptable limits (ECHA 

2008). According to ECHA, both reporting formats must be submitted together with their 

company’s registration dossier or authorization application (ECHA, personal communication).  

Materials and Methods 

Data Collection 

To prepare for the review, we identified: a) the relevant endpoints; b) QSAR models, 

platforms, and databases; and c) AoAs. We started with a literature review of commonly 

targeted, regulatory properties and environmental and human health endpoints along with 

QSARs developed by or accepted under U.S. and E.U. regulatory regimes (Figure 3-1 Box 1). 

From this literature review, we created a list of 15 physico-chemical properties and 19 hazard 

endpoints based on three well-known QSAR guidance documents: Guidance from ECHA’s 

Practical Guide: How to Use and Report (Q)SARS (ECHA 2016b), OECD’s Guidance 

Document on the Validation of (Quantitative) Structure Relationships ([Q]SAR] Models (OECD 

2007), and Cronin’s (2010) Prediction of Harmful Human Health Effects of Chemicals from 

Structure (Figure 3-1 Box 2). Since ECHA does not endorse specific QSARs, we developed a 

standard list of QSARs (Appendix S2) to help identify QSARs tools and predictions used by 

AoA applicants (Figure 3-1 Box 3). For our baseline list, we selected an initial set of QSARs 

based on recommendations for QSARs applied under REACH (Benfenati 2012; ECHA 2016b; 

Worth et al. 2014). Our final or “default” list totaled 25 QSAR sources (Appendix S2). For the 

purpose of this study, we did not include a specific analyses of the OECD QSAR Toolbox, with 
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the exception of general descriptive statistics, as we collected this data under different QSAR 

codes. (For details on captured data for the OECD QSAR Toolbox, see Appendix 3). 

Once we established our QSAR list, we reviewed 189 publicly available AoAs, located 

online at “Adopted opinions and previous consultations on applications for authorization” 

through May 2017 (ECHA 2019h) (Figure 3-1 Box 4). To collect data, we used a three-fold 

strategy: a) data-mining the 189 AoAs for QSAR models, guided by our rolling “default” list as 

a simple query; b) performing a visual inspection for QSAR usage; and c) recording any QMRFs 

and/or QPRFs on the ECHA website for Public Consultations. During our visual inspection of 

AoAs for QSAR usage, we targeted: 

a) the citation and use of QSARs from our baseline QSAR list including any mention of 

applicability domain (AD) or the limits of the structural and information space of training 

sets or the experimental data used to make model predictions;  

b) information on QSAR usage, which included the role of QSARs in supporting alternatives, 

and QSAR results in the chemical profiles, hazard assessments, reduction of overall risks, 

and conclusions of safety for the alternative chemical; and  

c) QSAR results as part of WoE or as standalone evidence. 

All data and findings were recorded in LibreOffice software Version 5.2.2.2. 

In addition to data-mining AoAs for QSAR usage and models, we recorded all QSAR 

models/sources and predictions by endpoint. Qualitative values, (e.g. “negative for skin 

sensitization”), and quantitative values, (e.g. “LC50 = 3.83 mg/L for acute toxicity for fish”) 

(Dow Italia Srl and Rohm and Haas France S.A.S. 2016) immediately qualified as QSAR 

predictions if a data point directly cited a QSAR source or if an AoA cited QSAR prediction(s) 

generated by a QSAR model/platform. If an applicant did not identify the QSAR source, but did 

specify a value as a QSAR prediction, we recorded the prediction as “unknown QSAR.” We also 
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considered any value that reported its AD to be a QSAR prediction and used expert judgment for 

any remaining values that might be viewed as QSAR predictions. Furthermore, we organized all 

data, which we based on several assumptions when developing our approach, into two major  

units of analysis, (i.e. consultation by alternative, and alternative by QSAR). (For full details on 

units of analysis, see Appendix S4). 

Lastly, we defined the “purpose” of the applicant’s use of QSAR predictions. “Purpose” 

characterized the QSAR prediction’s role in either supporting or eliminating the alternative with 

or without a WoE context (Table 3-1). All data were recorded for later use in our content 

analysis.  

During the course of this data collection, we looked for QMRF and QPRF attachments on 

ECHA’s consultations and opinions website (ECHA2019h), and recorded any instances where 

we found documentation. We forwarded our questions on authorization documentation 

requirements to ECHA regulatory officials and used these correspondences as informal 

interviews. 

Descriptive Statistics 

We used descriptive statistics to examine QSAR use (Figure 3-1 Box 5). We totaled 

counts across two dimensions: a) AoAs with cited QSAR use; b) QSAR predictions grouped by 

QSAR source (i.e., database, platform or model used) (Figure 3-1 Box 6).  We based this tally on 

total QSAR prediction counts. Next, we tabulated the frequency of QSAR use. Data were 

assigned to either one of four categories: a) “QSARs applied,” which meant an applicant cited a 

QSAR from our list for at least one value for specific endpoint or property; b) “QSARs not 

applied” or a QSAR from our list was not used for a specific endpoint or property; c) “No data 

available,” which meant that the applicant reported “no data” in the value field, or “no 
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information available” or “not relevant”; d) “Unidentified QSAR tests,” which meant that the 

applicant provided a QSAR value but did not indicate the source. We then “normalized” these 

values to reflect QSAR opportunities rather than strict counts. “Normalization” involved tallying 

the actual count of QSARs by the unit of consultation number by alternatives, and then dividing 

this number by the total alternative population count, which we defined as the maximum times a 

QSAR could have been used for either the 15 physico-chemical properties, or, the 19 hazard 

endpoints. Afterwards, we calculated their percentages. In the end, our analysis told us the 

maximum opportunities (MOP) a QSAR could be used in a hazard endpoint or property 

category. (For more information on MOP, see Appendix S5). By adjusting counts to percentages, 

we were able to align and scale the raw data to simple percentages for comparison. Finally, we 

analyzed the purpose(s) for which a QSAR was used (Figure 3-1 Box 7). We analyzed by 

elimination, support, and/or WoE by tabulating the count for each respective use and inspected 

trends. If an endpoint or property lacked QSAR predictions, or, we could not determine if its 

value was generated by a QSAR, the value received a non-applicability designation. (Full 

information on non-applicable designations can be found in Appendix S6). 

Results  

Frequency of QSAR Use 

Applicants used QSAR data to rank potential alternatives or evaluate the safety of 

suitable alternative chemicals relative to the Annex XIV substance in approximately 13% of the 

AoAs or 24 out of 189 AoAs. Among the 24 AoAs, QSARs were used to assess 54 overlapping 

and unique alternatives. In addition, 11 of the 25 QSARs on our list were used by applicants. Out 

of the 24 AoAs, 19 of the AoAs cited QSAR predictions for eight of the 15 physico-chemical 

properties. The physico-chemical properties with the greatest amount of QSAR predictions 
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included water solubility (n = 37), surface tension (n = 24), and vapor pressure (n = 23). Physico-

chemical properties with the least number of predictions were flash point (n = 8), density (n = 7), 

and boiling point (n = 11) (Table 3-2).  

In the assessment of the toxicity of alternatives for human health and environmental 

hazard endpoints, six of the 24 AoAs cited QSAR predictions for 16 out of the 19 hazard 

endpoints. Endpoints with the most QSAR predictions included reproductive toxicity (n = 50), 

short-term toxicity to fish (n = 18), short-term toxicity to aquatic invertebrates (n = 15), and skin 

irritation/skin corrosion (n = 15). QSAR predictions were cited least for long-term toxicity to fish 

(n = 2), short-term toxicity to terrestrial invertebrates (n = 2) and hydrolysis (n = 1). We did not 

find QSAR predictions for acute toxicity, repeated dose toxicity or adsorption/desorption 

screening (n = 0) (Table 3-3). 

The types of QSAR sources that applicants cited when assessing human health and 

environmental hazard endpoints consisted of a limited number of available QSARs though 

applicants more generally referenced the OECD QSAR Toolbox 13 times. As illustrated in 

Figure 3-2, applicants used the Danish (Q)SAR Database for nine out of the total 19 endpoints. 

The other major QSARs sources included ECOSAR, OASIS, and the FDA EDKB CoMFA 

QSAR method. The most popular MultiCase models were endocrine disruption models for 

estrogen receptor binding. A MultiCase model was also used to predict short-term toxicity for 

aquatic invertebrates. In addition, TOPKAT® was used mainly for the ecotoxicological 

endpoints. However, for physico-chemical properties, only MultiCASE, ACD/PhysChem and 

EPI SuiteTM QSAR sources were used or cited (Figure 3-3). (Full details on the major QSAR 

sources can be found in Appendix S7). 
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Regarding the frequency of QSAR usage in hazard endpoints, only 11% of the hazard 

endpoints per MOP used a QSAR tool (Figure 3-4). In order of highest to lowest frequency of 

counts of QSARs per MOP, reproductive toxicity (1.2%) had the most QSAR predictions out of 

the 54 alternatives that could have potentially cited a QSAR prediction, while long-term toxicity 

to fish (0.2%), short-term toxicity to terrestrial invertebrates (0.2%), and hydrolysis (0.1%) had 

the least amount of QSAR use. No predictions were found for acute toxicity, repeated dose 

toxicity or adsorption/desorption screening endpoints. 

Purpose of QSAR Use 

Meaningful trends for both hazard endpoints and physico-chemical properties emerged in 

our assessment of QSAR use for elimination, support, and WoE. None of the QSARs were used 

to overtly eliminate alternatives with or without WoE (Figure 3-5). On the other hand, smaller 

trends emerged, which indicated a variety of QSARs uses. Specifically, 7.9% per MOP of hazard 

endpoint and 12% per MOP of physico-chemical and QSAR predictions were used to report 

background information for an alternative. For example, an LC50 QSAR prediction by ECOSAR 

for acute toxicity to aquatic species, (i.e. 0.023 mg/L) was included in a table of ecological data 

supporting Environment Canada decisions on methyl centralite for AoA consultation number 

0005-02. Although this prediction, which according to ECOSAR guidelines (U.S. EPA 2012c) 

qualifies as acutely toxic, the applicant never discussed this prediction in the context of a 

possibly toxic estimate in either the environmental fate and behavior and ecotoxicology 

discussion or the reduction of overall risks section (DEZA A.S. n.d.-a).  

In addition, “other” reasons, which included QSARs used to rank potential alternatives, 

emerged as a small trend. For “other” reasons, we observed a 2.9% per MOP frequency for 
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hazard endpoints and 0.4% per MOP frequency for physico-chemical properties. For example, in 

consultation numbers 0013-01 and 0013-02, applicants reported persistent, bioaccumulative and 

toxic (PBT) QSAR estimates for the initial assessment of the polymeric flame retardant 

alternative (INEOS Styrenics Netherlands BV et al. 2013a, b). In addition, consultation number 

0077-01, the applicant used QSAR predictions to select reference values for the potential 

alternative dichloromethane (Eli Lilly S.A. Irish Branch n.d.). Under “other” reasons, QSAR 

predictions could also be used to compare endpoints for an alternative. For AoA consultation 

number 0005-01, some QSAR predictions suggested a more benign mammalian hazard profile 

for the alternative diisobutyl hexahydrophthalate (DIBE) relative to its Annex XVI chemical 

dibutyl phthalate (DBP), while others, more specifically, predictions for reproductive toxicity, 

gave warrant for concern (DEZA A.S. n.d.-b). 

Trends changed slightly with respect to QSAR use for support of an alternative (Figure 3-

6). 3.0% per MOP of hazard endpoint QSAR predictions supported an alternative. In AoA 

consultation number 0005-01, the applicant used QSAR outputs to support a more benign 

assessment of DIBE relative to the Annex XIV chemical,  

However, there is reason to believe that DIBE may have a more benign mammalian 

hazard profile than DBP, given the lack of a REACH Registration dossier (so far) and 

some aspects of the OECD QSAR outputs” (DEZA A.S. n.d.-b).  

Notably, we identified several QSAR predictions that did not support an alternative. For 

example, in consultation 0006-01, a logKow prediction for DIBE suggested a low chronic aquatic 

toxicity category 2 classification (Sasol-Huntsman GmbH & Co. KG n.d.).  
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Additionally, “other” reasons ranked high in terms of frequency of QSAR use for hazard 

endpoints and physico-chemical properties, (i.e. 6.3% and 13% per MOP, respectively). Under 

QSAR use for supporting an alternative, “other” reasons  included QSAR predictions used for a 

“background” purpose or to assess a potential alternative. For instance, consultation numbers 

0037-01, 0038-01, 0039-01, 0040-01, 0041-01, and 0041-02, for the alternative Chromium III 

(chloride), cited QSAR predictions for water solubility, but then never drew from these 

predictions to indicate a direction of support for the alternative (AkzoNobel Pulp and 

Performance Chemicals 2015; Caffaro Brescia S.r.l. 2015; Ercros S.A. 2015; Kemira Chemicals 

Oy 2015; Solvay Portugal – Produtos Quimicos SA 2015). 

Finally, we observed a small trend for “mixed” support for hazard endpoints and physico-

chemical properties, (1.2% and 0.7% per MOP, respectively). In “mixed” support, an applicant 

could use QSAR predictions to show tentative support for an alternative as having a more benign 

profile than the Annex XIV chemical, but then also include evidence indicating a potential 

hazard(s). Consultation number 0005-02 for the alternative methyl centralite demonstrated this 

version of support for the endpoint short-term toxicity to aquatic invertebrates. In their AoA, the 

applicant referenced irritation and aquatic toxicity as areas of concern for methyl centralite in the 

Reduction of overall risks, for which a positive QSAR prediction for skin irritation and possibly 

toxic aquatic QSAR predictions were given by the Danish (Q)SAR Database) (DEZA A.S. n.d.-

a). However, for aquatic toxicity, the results were, in fact, both supportive and unsupportive of 

methyl centralite. The applicant referenced several aquatic toxicity results from the Danish 

(Q)SAR Database as a possible concern (DEZA A.S. n.d.-a), 
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QSAR modelling of the ecotoxic profile of methyl centralite indicated possible concern 

with regard to its aquatic toxicity, with predictions of LC50 or EC50 values < 1 mg/L in 

invertebrate, algal and bacterial species.  

Yet, in the Canada List QSAR predictions, all aquatic QSAR predictions, with the exception of 

an EC50 or LC50 aquatic toxicity prediction for 0.023 mg/L reported, were greater than one mg/L 

although the applicant did not reference this fact in their concluding argument (DEZA A.S. n.d.-

a). 

Documentation of QSARs 

None of the 24 AoAs using QSARs included or referred to documentation for the 

relevant QSARs. As specified by ECHA guidance, there are two ways one can provide 

documentation: a) QMRF and b) QPRF. However, neither was provided. Due to the specificity 

of QMRF documentation for model development, we could not identify any QMFRs associated 

with QSAR models in our study in either the JRC database (JRC 2019) or the Danish (Q)SAR 

database (DTU FOOD et al. 2019). 

Discussion 

In this study, we assessed the extent to which QSARs were used in REACH AoAs 

through March 2017. Our analysis demonstrated limited QSAR use in AoAs. Our study also 

revealed that supporting documentation for QSAR predictions was missing for all 24 AoAs with 

QSAR predictions. Lack of documentation is a significant potential obstacle for regulators and 

stakeholders trying to determine the quality of QSAR tools and data in AoAs. Additionally, 

existing regulatory guidance on QSAR documentation can be viewed as inconsistent, which may 

have factored into the missing QMRFs and QPRFs. Specific guidance or enforceable standards 
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for QSAR use and documentation in AoAs could help strengthen applicants’ understanding of 

ECHA QSAR guidance for future AoAs. 

Limited use of QSARs in AoAs  

In our analysis, only 24 of the 189 AoAs used QSARs. In addition, while we identified 

25 potential QSAR sources from literature, only 11 of these QSAR sources were actually used. 

The limited usage of QSARs in AoAs is similar to results reported in the 2014 ECHA report 

regarding QSAR use in registration (ECHA 2014). We believe this to be a significant trend: 

When companies do not exploit the gamut of QSAR sources, vital QSAR predictions could be 

omitted from regulatory decision making (Cronin 2010). These observations ultimately raise the 

important issue of whether QSARs are underused in AoAs. 

More consistent use of appropriate QSARs in AoAs, however, will provide a better 

picture of the degree of hazard posed by the SVHC(s) relative to the alternative(s). One reason 

that QSAR predictions help create a more robust toxicological understanding is that animal 

testing is often flawed and can be inconsistent (Akhtar 2015). In these cases, QSARs would help 

to provide more accurate results (Lillicrap et al. 2016) as well as support uncertain test results 

(Lahl and Gundert-Remy 2008). Second, in the face of diverse and uncertain information, it is 

almost always better to have as much relevant information as possible. WoE perspective 

encourages the use of everything available, including QSARs, to get the best answer (ECHA 

2010).  

At the same time, ECHA has also been known to promote the use of standalone QSAR 

predictions for regulatory purposes, if only under ideal circumstances, though this allowance 

could have the opposite effect and limit QSAR use (ECHA 2008). In their recent 2017 Endpoint 
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specific guidance Version 6.0, ECHA addressed the opportunity for standalone non-testing 

methods “where possible” in addition to their WoE recommendation (ECHA 2017d). AoA 

consultation numbers 0006-01 and 0005-02 reflect this standalone QSAR approach. The 

applicants provided non-testing data from the OECD QSAR Toolbox, more specifically, FDA 

Teratogen Information System (TERIS) QSAR predictions from the Danish (Q)SAR Database, 

for alternatives such as Akardite II to fill in the experimental data gap for the reproductive 

toxicity and endocrine disruption potential of the alternative DIBE (DEZA A.S. n.d.-a; Sasol-

Huntsman GmbH & Co. KG n.d.). Applicants’ justifications for standalone QSAR use, such as 

“no [experimental] information is available on the potential reproductive toxicity of this 

substance” underscored the importance of QSAR predictions in their AoAs (DEZA A.S. n.d.-a). 

Yet, we cannot ignore a potential alternative response of applicants: companies may 

decline to provide any data when their only source is QSAR predictions. While this is solely 

speculative, we have seen evidence of applicants rejecting QSAR data when it is the only 

available information. In AoA consultation numbers 0078-01 and 0077-01, treatment of 

standalone QSAR predictions reflect this viewpoint. Applicants dismissed a QSAR-based 

Predicted No-Effect Concentration (PNEC) value (i.e. 130 µg/L (100)) when developing a 

PNECfreshwater value for methylene chloride (DCM), because it was based solely on QSAR 

predictions (Dow Italia Srl and Rohm and Haas France S.A.S. 2016; Eli Lilly S.A. Irish Branch 

n.d.), 

All data regarding the individual submission by ECHA-CHEM are based on QSAR, only. 

Because of this, the resulting PNEC is regarded as being not reliable and consequently 

will not be discussed any further.  
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Interestingly, the PNECfreshwater value was set at more than twice the concentration of the QSAR-

based PNEC value. Of course, without knowing the predicted or actual environmental 

concentration, we cannot ascertain if the PNECfreshwater would actually amount to a higher or 

lower acceptable risk (Syberg et al. 2009).  

Because of the risk of not properly using QSARs brings to making a thorough assessment 

of AoAs, we strongly believe that ECHA should: 1) more clearly require the use of valid QSARs 

in an alternative’s assessment particularly in the absence of other information; and 2) 

consistently communicate equal support and acceptance for both standalone predictions under 

strict conditions, and for WoE QSAR evidence. Absent such direction, some applicants may 

follow the practice of ignoring QSAR data as “unreliable” without discussion.  

QMRF and QPRF documentation in AoAs 

Under REACH, QSAR documentation serves an important role in establishing the 

reliability of QSAR predictions and the robustness of QSAR models used in AoAs. Chapter R.6-

QSARs and Grouping of Chemicals explains that each document provides critical information 

about the QSAR model and prediction, which aids in the regulatory decision-making process. 

However, despite ECHA’s general guidance, QSAR documentation was missing for all 24 AoAs 

that used QSARs. According to the ECHA Regulatory Advice Team, missing documentation 

could be attributed to one of two factors: either the QMRF and QPRF were claimed as 

confidential, or they were not included with the AoAs (ECHA, personal communication). Based 

on our observations, it appears that QMRFs and QPRFs were missing for reasons other than 

issues of confidentiality. We examined 24 non-confidential AoAs that applied QSAR predictions 

in their assessments of their alternative(s); none of them had associated QMRFs or QPRFs.  
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One reason for the missing documentation in AoAs could be the imprecise language in 

regulatory guidance describing the requirements for QMRFs and QPRFs. The language appears 

to alternate between strict and loose requirements, which may have even been interpreted by 

applicants as creating voluntary options. For example, in the 2016 Practical Guide – How to use 

and report (Q)SARs 3.1, ECHA stressed that a QPRF “should be prepared by the registrant,” and 

its corresponding QMRF is “normally provided by the model developer” though it is 

“recommended” that both be attached to the registration dossier (ECHA 2016b). On the other 

hand, in Guidance on Information Requirements and Chemical Safety Assessment, Chapters R.7a 

and R.7b: Endpoint specific guidance, ECHA discusses standard documentation and justification 

of QSARs under Annex XI under terms such as “need” and “necessary” (ECHA 2017b; ECHA 

2017d). Indeed, in personal communications ECHA’s  Regulatory Advice Team used somewhat 

inconsistent language regarding whether applicants must- as opposed to should- attach a QMRF 

and QPRF to the AoA when addressing (Q)SAR documentation (ECHA, personal 

communication). However, in a separate email to ECHA’s Risk Management Implementation 

Unit, ECHA insisted that documentation was required for AoAs using QSARs (ECHA, personal 

communication). In short, companies submitting AoAs may have looked to registration-targeted 

guidelines for instructions on what to do when using a QSAR under authorization and concluded 

that documentation for authorization was optional.  

 At the same time, the current QMRF and QPRF format  may not be a “one size fits all” 

framework for every type of QSAR model or QSAR source. For example, QSAR models may be 

built as part of an expert system, (i.e. Toxtree). In these instances, an applicant may need to 

modify some of the information such as supplementing decision tree-making rules in lieu of 

algorithms. In more extreme cases, an applicant may need to give a more detailed explanation 
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pertaining to which exact rules took place and how that impacts the quality of the prediction 

(Benfenati 2012). However, as to the exact format that ECHA would accept this information 

under authorization remains to be determined. 

Ultimately, without QSAR model and prediction information, ECHA cannot determine 

modelling components or how an applicant understands the relevance of endpoints, though, the 

degree to which developers make their QSAR information available on their QSAR model(s) 

varies.  For registration, ECHA has enforced this guidance. In their 2013 evaluation, ECHA 

reported an improvement of proper QMRF and QPRF documentation for registration dossiers 

(ECHA 2013) from previous years. Although, in prior evaluations, some registration dossiers 

lacked the required documentation for structure activity relationships (Schulte et al. 2012). In our 

study, AoA applicants generally gave information on the applicability domain of their QSAR 

prediction (For more information on applicability domain data, see Appendix S8). Yet, 

applicants did not always provide an explanation as to whether their QSAR model covered their 

alternative chemical. With a QPRF, ECHA would have been able to discern whether an applicant 

used an out of domain prediction particularly if the applicant did not initially report this 

information in their AoA. Perhaps in the future, an applicant will even be required to provide all 

evidence of their due diligence even if only to show that their chemical(s) could not be covered 

by the QSAR model due to an unacceptable structural feature such as counter ions, toxic metals 

or complex molecules (Klimenko KO et al. 2019). Nonetheless, a developer’s proprietary rights 

over their QSAR model may have also factored into the missing documentation. While some 

QSARs are open access such as the JRC QSAR Model Database, Toxtree, Dart (Benfenati 2012) 

and Danish (Q)SAR Database, commercial software such as CASE Ultra (MultiCase) and 

OASIS CATALOGIC (LMC) and OASIS TIMES (LMC) does not lend the same level of QSAR 
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model transparency, although some QMRFs for commercial software QSARs (though none 

could be found for our study) can be found in the JRC QSAR Model Database (EURL ECVAM 

2019). We believe that enforcement needs to extend to authorization if there are to be similar 

improvements in AoAs. 

The importance of including QMRFs and QPRFs under REACH clearly extends beyond 

a formal compliance check list, yet, there is almost no regulatory guidance on QSAR 

documentation for authorization, with the exception of a small excerpt in Chapter 3: Planning 

for Substitution: Guidance on Analysis of Alternatives. In this excerpt, ECHA broadly states that 

in situations where important information is missing, surrogate information from tools such as 

QSARs may be used (ECHA 2011b). In short, almost all legislative language and guidelines 

describing QSAR requirements are reserved for registration. For example, REACH’s Annex VI 

of Title VII, which applies to “registration, evaluation and the duty of care,” states that 

registrants must consider all available data on their substances, including alternative sources such 

as QSARs (European Parliament and the Council of the European Union 2006).  
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Study limitations 

Several factors may have contributed to the limitations of our study. First, although our 

sample of AoAs appears to be representative of AoAs as a whole, our sample had a significant 

number of AoAs with redacted language, which could have impacted our analysis. Second, 

unless the applicant made explicit reference to their QSAR models or sources, we only accepted 

data on a conditional basis. Third, supplier confidentiality protocols prohibited a complete hazard 

analysis on their product(s). Thus, for these AoAs, it was not possible to know the complete 

spectrum of hazard analysis and potential QSAR usage.  

In addition, depending on how the applicant cited their QSAR software package and how 

we coded QSAR predictions, we may not have been able to identify the exact QSAR tool. In 

addition, because we coded QSAR predictions based on a set list of regulatory endpoints and 

QSAR sources, we may not have captured every QSAR in our sample of AoAs, particularly, if 

an endpoint or source fell outside of this list. Finally, while we were successful in generating 

descriptive statistics to illustrate rank, order, and frequency, these statistics were limited to 

descriptions of prioritization and missing data and did not capture the capacity and 

appropriateness of each QSAR in precise detail. For example, the frequency counts of certain 

QSARs may have depended on the tool’s design for a specific hazard endpoint(s), which our 

statistics did not capture, rather than its popularity. Furthermore, applicants may have chosen 

their QSAR tool based on accessibility to the tool, (i.e. availability and user cost), ease of use, 

and perhaps confidence in the model’s algorithm or platform’s navigability, though more 

research is needed to confirm predisposing factors such as confidence or motivation. (For more 

information on study limitations, see Appendix S9). 
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Conclusions and Recommendations 

The REACH regulation’s goal to protect human health and the environment by using 

alternative non-testing methods in a competitive market has been partially met through the use of 

QSARs. However, we identified potential obstacles in this path to achieving this goal. To our 

knowledge, there is no other review of how QSARs are used in REACH analyses of alternatives. 

At the time of our study, only 24 out of 189 AoAs in our sample used QSARs, and only 11 of the 

25 QSARs on our list were used by applicants. These low numbers suggest that QSARs may not 

have been fully utilized. We believe that our results point to three larger policy issues:  

• a possible breach in policy whereby companies may not be exhausting all toxicity 

data sources, including QSARs, for their chemical(s), particularly in cases of 

insufficient or missing information; 

• the necessity for clearer regulatory language and guidance on the use of QSARs 

in concert with other data, and where appropriate, on a standalone basis;  

• a critical need for more explicit language requiring proper QSAR documentation 

under authorization. 

While we conducted a preliminary examination of QSAR use within a limited number of 

AoAs, future studies are needed to understand the extent to which ECHA accepts AoAs, which 

do not fulfill ECHA QSAR requirements. In our sample, we identified 22 AoAs that used 

QSARs for final, selected alternatives and two that used QSARs to assess potential alternatives. 

Of these 24 AoAs, the European Commission authorized 16 AoAs, which did not attach required 

QSAR documentation, for continued use of an XIV chemical. However, to understand how 

ECHA factors in varying trends of QSAR usage into accepted applications, future studies that 

draw on a much larger AoA sample and include more recent AoAs are needed. In addition, 
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applicants who exist outside of industry may have better training and follow ECHA’s QSAR 

guidance more closely, which could impact the consideration of their AoAs. Even if the 

European Committee authorizes an Annex XIV chemical where QSAR predictions are used to 

assess the safety of the alternatives, it is important to garner information on patterns of QSAR 

usage, and to target applications that do not fulfill QSAR guidance.  

The REACH regulation highlights the need for applying new non-testing methods to 

bridge data gaps, promoting their acceptance, and delineating data requirements to ensure data 

quality in chemical risk assessment. As a non-testing method, QSARs play a critical role in the 

evaluation of chemicals on the Annex XIV list. Although ECHA has applied a cautious 

approach, QSARs are being used both in WoE and as standalone in AoAs. Focusing on the 

quality of QSAR data in AoAs and building on previous QSAR guidance to develop consistent 

regulatory language will likely increase the quality and volume of QSAR data. Thus, stronger 

industry regulatory requirements to provide information on alternative chemicals (Jacobs et al. 

2016) as well as greater access and availability to comprehensive QSAR warehouses of 

predictions and models with demonstrated success, may be the key to reducing data gaps in 

AoAs. However, ECHA must ensure that reliable information is evident on all levels of QSAR 

documentation, and that high quality and user-friendly QSARs are accessible to industry. Along 

with the continued evaluation of the effectiveness of regulatory tools for AoAs, particularly for 

use by smaller companies (Tickner and Jacobs 2016), evaluation of data quality and 

effectiveness of guidance will become increasingly important in regulatory agendas worldwide, 

which accepts the predictive ability of QSARs to provide toxicological information on unknown 

chemical effects. 
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Tables 

Table 3-1. Definitions and classifications of purpose for QSAR predictions used in AoAs. 

 

 

 

  

Purpose Classifications

Eliminate

a) eliminate the alternative; 
b) report background information for the alternative 
without eliminating the alternative;
c) other reason e.g. QSAR prediction not discussed in 
the final assessment of the alternative’s reduction of 
overall risk or safety                                                     
d) non-applicable e.g. no QSAR prediction

Support

a) show an alternative as less benign; 
b) support an alternative; 
c) mixed support; 
d) other reason e.g. QSAR prediction not discussed in 
the final assessment of the alternative’s reduction of 
overall risk or safety 
e) non-applicable QSAR data and/or no QSAR use

Weight of Evidence (WoE)

a) elimination used in a WoE context; 
b) elimination not used in a WoE context
c) a combination of independent QSAR usage and 
QSARs used in WoE context to eliminate alternative

Definition

QSAR prediction(s) eliminated an alternative based 
on a more toxic profile than the Annex XIV chemical

QSAR prediction(s) supported an alternative as 
having an equally benign or more benign profile than 
the Annex XIV chemical

QSAR prediction(s) were used with a combination of 
soures to describe the alternative’s a hazard profile
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(Table 3-2 continued) 
 
 
 
 
 
 
†  QSAR count unit of analysis is by type of QSAR model for the 54 alternatives (n = 67). 

a QSAR prediction was reported for that specific physico-chemical property. 

b A QSAR was not applied to that physico-chemical property, which may be for other reasons such as that specific property not 

being relevant to that QSAR source or no information is available. 

c For 'no data available,' an applicant stated ”no data” in the value field for that physico-chemical property, or  “no information 

available” or “not relevant" in the summary information for that alternative. 
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Figures 

 

Figure 3-1. Flow chart for data collection and descriptive statistics. 
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Figure 3-4. QSAR predictions for hazard endpoints by number of alternatives. 
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Figure 3-5. Percentages of AoA QSAR usage for the purpose of eliminating an alternative based 

on 19 human health and ecotoxicological hazard endpoints, and 15 physico-chemical properties. 
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Figure 3-6. Percentages of AoA QSAR usage for the purpose of supporting an alternative as 

more benign than the Annex XIV chemical based on 19 human health and ecotoxicological 

hazard endpoints, and 15 physico-chemical properties.  
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Supporting information 

Additional information on the REACH process (Appendix S1), the QSAR “default” list 

(Appendix S2), data collection methods and assumptions (Appendix S3), units of analysis 

(Appendix S4), background on MOP and units of analysis (Appendix S5), non-applicable 

category definition (Appendix S6), QSAR model/source descriptions (Appendix S7), 

applicability domain data (Appendix S8), and study limitations (Appendix S9). 
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Appendix S1 

REACH process 
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Appendix S2 

QSAR “default” list 

Table 1S. QSAR “default” list 
 
a The only QSAR-related endpoint for Sarah Nexus is in vitro mutagenicity. However, the QMRF for In vitro mutagencity stated 
that the QSAR was built under Derek Nexus. Thus, we put the In vitro mutagenicity model under Derek Nexus. 
b Leadscope® does not advertise its capability of estimating REACH endpoint "Repeated Dose Toxicity" on its official website 
but it is mentioned in 2016 ECHA QSAR report. 
c This series of QSAR models for REACH endpoint "Short-term Aquatic Toxicity to Fish" were housed in the OECD QSAR 
Toolbox. We could only find information regarding developer and its function in the toolbox. 
d The capability of OECD QSAR Toolbox was simplified because 1) it is a repeat of many listed QSAR applications, and 2) the 
OECD QSAR Toolbox does not categorize all QSAR sources under tab "QSAR," which limited our ability to confirm and pair 
all QSAR sources with REACH physico-properties and hazard endpoints. 
e Because TOPS-MODE is an approach and not a QSAR platform, we listed the developers of the two TOPS-MODE QSAR 
QMRFs in the JRC database regarding Ames Test Mutagenicity. 
 
[1] (ACD/Labs 2019) 
[2] (EC JRC EURL ECVAM 2019) 
[3] (Simulations Plus 2019) 
[4] (DTU FOOD 2019) 
[5] (DTU FOOD 2018a) 
[6] (Lhasa Limited 2019a) 
[7] (Lhasa Limited 2019b) 
[8] (U.S. EPA 2012c) 
[9] (U.S. EPA2019b) 
[10] (U.S. EPA 2019e) 
[11] (U.S. EPA 2012a) 
[12] (U.S. FDA 2018) 
[13] (Shi et al. 2001) 
[14] (Hong et al. 2003) 
[15] (KREATiS 2019) 
[16] (ChemAxon 2019) 
[17] (ChemAxon 2014) 
[18] (Viswanadhan et al. 1989) 
[19] (Hou et al. 2004) 
[20] (Maunz et al. 2013a) 
[21] (Maunz et al. 2013b) 
[22] (Leadscope® 2019a) 
[23] (Leadscope® 2019b) 
[24] (MultiCase 2019) 
[25] (Molcode 2019a) 
[26] (Molcode 2019b) 
[27] (OECD 2019) 
[28] (2019) 
[29] (U.S. EPA 2012b) 
[30] (Pudenz and Frère 2017) 
[31] (Dassault Systemes Biovia 2019) 
[32] (U.S. EPA 2019c) 
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[33] (U.S. EPA 2016) 
[34] (TerraBase Inc. 2019) 
[35] (Estrada 2008) 
[36] (IdeaConsult Ltd. 2018) 
[37] (IRCCS 2019) 
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Appendix S3 

Data Collection Methods and Assumptions  

For this study, we used two approaches: 1) a consultation number by alternative 

approach, on which we based the maximum opportunities (MOP) approach, and 2) an alternative 

by QSAR (ABQ) approach that captures the complete number of QSARs in the 189 AoAs. More 

precisely, for the ABQ approach, we collected data on QSAR sources per consultation number 

per alternative, and then grouped the sources by physico-chemical property or hazard endpoint. 

For example, for every AoA, we recorded each alternative by line item, which included the 

QSAR source. If more than one QSAR source was used to make a prediction for an individual 

alternative, we included multiple line items of QSAR sources for the alternative. Unlike other 

regulatory approaches, such as ECHA’s endpoint study records (ESR) approach for registration 

dossiers (ECHA 2014, 2017a), our unique approach tracks key information from individual 

applications as well as individual QSARs and how they are used. However, the 54 alternatives in 

our sample are not unique. In fact, we recorded the same alternative(s) for multiple consultation 

numbers.  

Though our unique approach aims to examine how applicants used QSARs to fulfill 

regulation requirements, part of the process involved making key decisions and assumptions. We 

first excluded alternative processes that did not include a chemical substitution, even if the 

process used chemicals. We assumed that QSAR predictions would not be generated in the 

absence of a chemical substitution. In cases involving inconsistent reporting of QSAR 

predictions from applicants or reporting of ‘no information,’ we assumed that QSARs were 

applied. In some cases where applicants simply reported that results were within a QSAR’s 

applicability domain, we assumed that a QSAR source was used to generate this prediction, and 
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therefore, included these QSAR predictions in our QSAR test totals.  However, if “no 

information” was listed under a hazard endpoint, (i.e. reproductive toxicity) and “no 

information” listed under a sub-category, (i.e. developmental/teratogenic toxicity), we only 

counted a QSAR prediction once. Additionally, if an applicant reported that a prediction was the 

product of multiple QSARs, but only identified one QSAR source, we counted the identified 

QSAR source. Due to the variance among AoAs, we also accepted several different phrasings for 

applicability domain including: “within QSAR domain,” “outside of QSAR domain,” “undefined 

with regard to domain applicability,” “operational limits,” and “model’s rules”. 

It is worth mentioning that some QSAR models are packaged within integrated software 

platforms incorporating a range of modeling and expert systems applications. When feasible, we 

singled out QSAR model(s) under these platforms. For example, we coded Food and Drug 

Administration (FDA) Endocrine Disruptor Knowledge Database (EDKB) Comparative 

Molecular Field Analysis (CoMFA) QSAR predictions as FDA EKDB CoMFA to specify the 

QSAR model within the platform (Tong et al. 2002). We also reclassified EPI SuiteTM software 

and expressions of QSAR predictions to fit our study. Because EPI SuiteTM software had several 

different user interfaces such as KOWINTM or WSKOWWINTM, we grouped all interfaces under 

the EPI SuiteTM software (EPA2019a). In addition, because EPI SuiteTM employed the Modified 

Grain method (MGM) to estimate vapor pressure (Barley and McFiggans 2010), we assigned all 

vapor pressure QSAR predictions that cited MGM, but did not indicate a QSAR source, to EPI 

SuiteTM. For all QSAR software output, we used expressions of QSAR estimation (Cronin et al. 

2003) and QSAR prediction interchangeably. 

In order to include only relevant QSAR information , we applied limits to our AoA 

content analysis. All QSAR data for physico-chemical or hazard endpoint data in the AoA’s 
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Appendix counted toward our data collection. If AoAs lacked alternatives, we excluded them 

from our in-depth QSAR analysis. Any AoAs that were assigned ‘withdrawn’ at the time of our 

study, were coded as “unavailable,” and were excluded from our QSAR analysis. However, in 

order to obtain a robust sample and comprehensive understanding of practices used in REACH 

applications for authorizations as of May 2017, we based our total sample size on the 189 

original applications. 

Finally, to prioritize the identification of specific models over larger platforms and to 

control for falsely inflated frequency values, we did not include descriptive statistics specifically 

labeled as OECD QSAR Toolbox in our analysis. Our first justification for doing this was 

because an applicant oftentimes cited both the OECD QSAR Toolbox and the specific QSAR 

model for the same QSAR prediction. We thus decided to only include the tallies for the specific 

QSAR model even though we kept track of both specific models and OECD QSAR Toolbox 

counts. Alternatively, an applicant may have identified the OECD QSAR Toolbox as their 

QSAR source but then failed to cite the exact model. Upon locating the descriptor “prediction” 

within the applicant’s explanation, which we used to justify that the value was actually a QSAR 

prediction, we then coded these types of values as “unidentified QSAR.” However, we also 

coded for OECD QSAR Toolbox references in the event that we needed this information though 

we excluded OECD QSAR Toolbox data that did not cite a specific QSAR to be conservative. 

As the QSAR Toolbox hosts a variety of platforms, models, and information sources, we could 

not always confirm whether the value was a QSAR prediction or not. 
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Appendix S4 

Details on the Consultation by Alternatives Unit of Analysis 

For the total count of alternatives unit of analysis, we consolidated data that we initially 

collected by consultation number per alternative per QSAR source because we could only 

include one count per alternative. A simple decision-tree analysis approach was used to reduce 

the unit of analysis to consultation number per alternative. 
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Appendix S5 

MOP  

Total QSAR prediction counts included predictions that listed their QSAR models or 

sources, no information outputs with unspecified sources, and QSAR predictions, which could 

only be identified through references to their applicability domain. 

To compare data, we “normalized” counts using the MOP approach to reduce bias for 

otherwise potentially misleading tallies, such as low counts. For instance, a low count could have 

been the result of a model’s limited endpoint range, which, in turn, may have limited its total 

counts. As an example of an MOP calculation, we multiplied the total number of alternatives that 

cited QSARs (n = 54) within each AoA, and then multiple this amount by the total number of 

hazard endpoints (n = 19) or physico-chemical properties (n = 15), 

Equation 1.	

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑖𝑒𝑠	(𝑀𝑂𝑃) = (𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠	𝑜𝑟	𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) ×	(𝑡𝑜𝑡𝑎𝑙	𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠) 

Equation 2. 

1,026 = (19) ×	(54) 

To calculate the percentage of MOP, we then divided the total amount of QSAR predictions per 

endpoint, for example, by its related MOP and then multiplied by 100, 

Equation 3. 

E
8

1,026G × 100	 = 	0.8% 

In addition, for all calculations, we used either one of two basic units of analysis: a) 

alternatives by QSAR tool/model (sample number varied per AoA) served as the unit of analysis 
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when analyzing trends in hazard endpoints or physico-chemical properties by QSAR tool/model 

use or b) total count of alternatives (n=54) when examining data trends in QSAR use and 

support, and in certain cases, for endpoints and properties, which did not pertain to QSAR 

tools/models.  
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Appendix S6 

Non-applicable Category 

In general, most data points fit under the “non-applicable” category, (i.e. QSAR 

prediction data did not exist for that endpoint or we could not confirm if a certain value was in 

fact a QSAR prediction). For example, under QSAR usage, we calculated non-applicable data 

points for 86% per MOP and 89% per MOP for both physico-chemical properties and hazard 

endpoints, respectively).  
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Appendix S7 

QSAR Model/Source Descriptions 

The Danish (Q)SAR Database (n=63), a repository of over 600,000 estimates from more 

than 200 QSAR models that generates “battery” predictions from three QSAR systems (DTU 

2018b), and unidentified QSARs, or, QSARs for which the applicant did not specify the QSAR 

model or tool, ranked second in frequency (n=36) were the most cited QSAR sources for human 

health and environmental hazard endpoints. ECOSAR (n=24), which is a library of 711 QSARs 

and which uses decision-tree analysis to predict aquatic toxicity (Mayo-Bean et al. 2012) was the 

third most cited QSAR source. In descending order, OASIS, EKDB CoMFA, TOPKAT and 

CASE Ultra (Multicase) were the next four most cited QSARs. OASIS or the Laboratory of 

Mathematical Chemistry OASIS (n=15), includes software suites and models for environmental 

fate and ecotoxicity endpoints (CATALOGIC) and human health endpoints (TIMES) (OASIS 

2019). The FDA’s National Center for Toxicological Research (NCTR) project’s three-

dimensional EKDB CoMFA QSAR method (n=12) predicts receptor binding affinity (Tong et al. 

2002). TOPKAT (n=12) or (Toxicity Prediction by Komputer Assisted Technology) relies upon 

2-D descriptor QSAR models available in the BIOVIA Discovery Studio predictive science 

application (Pudenz and Frère 2017). Finally, CASE Ultra (MultiCase) (n=11) includes statistical 

and expert rule-based systems with both alerts and statistics (MultiCase 2019).  
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Appendix S8 

Applicability Domain 
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(Table S2. Continued) 

 

 

a 'Combination of information' means that we "combined" AD information when an applicant provided multiple AD information 

for a single alternative in their AoA. For instance, in AoA 0005-02, the applicant DEZA a.s. generated multiple reproductive 

toxicity QSAR predictions with different AD interpretations for the following alternatives: Akardite II, Akardite III, DEHA, 

ATBC and IDP. Within each "combined" data point, at least one of the AD’s met our AD criteria by including the wording: 

“within QSAR domain,” “outside of QSAR domain,” “undefined with regard to domain applicability,” “operational limits,” and 

“model’s rules”. 
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Appendix S9 

Study limitations 

Example of an AoA with redacted language: AoA consultation number 0004-02 (DEZA 

A.S. 2013b). 

Examples of AoAs that did not directly cite after their reported values: AoA consultation 

numbers 0062-02 and 0066-02 .  

Examples of AoAs with confidentiality protocols that prohibited a complete hazard 

analysis on their product(s): AoA consultation numbers 0063-02 and 0066-02 (Gentrochema BV 

n.d.; MTU Aero Engines AG n.d.). 

Example of an AoA that listed EPI SuiteTM as their software package: AoA consultation 

number 0080-01 (H&R Ölwerke Schindler GmbH 2016; OECD 1997).  

Examples of QSARs not captured in our sample of AoAs: AoA consultation 

number 0005-02 (DEZA A.S. n.d.-a). 

• MITI (for the alternatives methyl centralite, ethyl centralite Akardite I, isodecyl 

pelargonate (IDP): Because applicants did not provide enough information to confirm 

whether the reported values identified as ‘Biodegradation’ (by MITI) came from a 

MITI QSAR model or from the MITI-I screening test, which measures biological 

oxygen demand (BOD) (Pavan and Worth 2006), these values could not be counted 

towards our study’s QSAR prediction counts. Moreover, because the ‘MITI’ QSAR 

model exists as part of BIOWIN5TM and BIOWIN6TM (Posthumus et al. 2005), we 

would have grouped ‘MITI’ under EPI SuiteTM regardless if we knew MITI specified 

the QSAR model.  

• GOBAS (for the alternatives methyl centralite, ethyl centralite Akardite I, isodecyl 

pelargonate (IDP): In addition, we did not capture biodegradation predictions 
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identified as ‘GOBAS’ under GOBAS QSAR model, but instead, incorporated these 

predictions under EPI SuiteTM. GOBAS BCF and BAF models are presently part of 

the EPI SuiteTM BCFBAFTM model (Garg and Smith 2014). However, we could not 

find out exactly when GOBAS became part of BCFBAFTM, thus, for consistency 

across all AoAs, we grouped GOBAS QSAR predictions under EPI SuiteTM.  

Example of a QSAR designed for a specific hazard endpoints: FDA EDKB CoMFA. The 

FDA EDKB CoMFA, which solely predicts receptor binding affinity, ranked as one of the least 

cited QSAR tools in our study. Because our descriptive statistics were based on frequency of use, 

we were unable to completely control for this design limitation, however, we attempted to reduce 

biased interpretation of results by using percentages based on MOP. 
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4. Chapter 4: Exploring QPRF, WoE and ITS aspects of QSAR use in REACH AoAs 
 
Introduction 

Under the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) 

analysis of alternative’s (AoA) process, quantitative structure-activity relationship (QSAR) 

models play an important role in information gathering and organizing frameworks. Already 

recognized as an alternative to testing under registration (ECHA 2014, 2016c, 2017a, c), QSARs 

have become increasing relevant tool in bridging data gaps and supporting weight of evidence 

(WoE) when assessing alternative substances (ECHA 2016b). Additionally, QSARs are growing 

in importance in integrated testing strategies (ITS) (Bassan and Worth 2008; Luechtefeld et al. 

2018). For example, the REACH ITS framework for specific endpoints directs registrants to 

consider non-testing results, including QSAR predictions, when deciding if further animal testing 

is needed (ECHA 2017d). Despite the rising profile of QSARs within these frameworks, a gap 

exists in the evaluation of QSAR use and QSAR documentation under authorization (pending 

publication Chinen and Malloy 2019). Thus, an assessment of the different channels (e.g. WoE 

and ITS) by which QSAR predictions play a role in evidence gathering and organizing remains 

unaddressed for AoAs. For this study, we approached this disparity in information for QSAR 

predictions by conducting a substantive review of 24 AoAs through May 2017, which contained 

higher-tier endpoints under REACH. Understanding the manner in which applicants manage 

QSAR prediction information in AoAs and assess their potential within ITS will be valuable in 

promoting regulatory use of QSARs, and building out future platforms in the face of rapidly 

evolving technology. 
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Background 

Quantitative structure activity-relationship (QSAR) models provide vital information for 

untested substances that lack or have limited experimental data due to the resource intensive 

costs associated with traditional animal testing (Benfenati et al. 2011) and act as an increasingly 

relevant tool under Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) to 

bridge data gaps and support weight of evidence (WoE) when assessing alternative substances 

(ECHA 2016a). Moreover, QSARs have been gaining importance in integrated testing strategies 

(ITS) (Bassan and Worth 2008; Luechtefeld et al. 2018). QSARs are computational models that 

mathematically relate chemical structure to biological activity (Benfenati 2012). Yet, as more 

21st century toxicological methods, such as QSARs, are integrated into information gathering and 

organizing frameworks for progressive regulations such as REACH, limited evaluations exist 

that evaluate how QSARs are used within these frameworks for the authorization process 

(pending publication Chinen and Malloy 2019). Proper supporting information and appropriate 

testing, which includes alternative methods such as QSARs, are especially critical for chemicals 

prioritized as hazards of highest concern (ECHA 2017c; ECHA 2019b). Without rigorous 

monitoring of these frameworks, particularly those which draw on QSAR predictions for 

authorization reports such as analyses of alternatives (AoAs), these highly toxic chemicals may 

circulate in the market without proper labeling (EPA 2009; EPA 2013) or safer substitution.  

AoAs, which cite QSAR predictions and lack the required QSAR documentation, are one 

such example of the risks to proper assessment of alternative substances under authorization. 

AoAs are applications that companies submit under REACH for continued use of an priority 

Annex XIV substance (ECHA 2011b). Part of the purpose of AoAs is to examine whether safer 

alternatives exist relative to the Annex XIV substance. Yet, without background information on 
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the QSAR prediction(s), traditionally found in the QSAR Prediction Report Format (QPRF) to 

justify the reliability or adequacy of the prediction for a specific chemical by a specific model 

(ECHA 2008; OECD 2007; Rorije et al. 2008; Worth et al. 2011), an applicant’s claims that a 

QSAR prediction is reliable or not cannot be verified (ECHA 2008). These risks associated with 

inconsistent monitoring of proper QSAR reporting and presentation in information frameworks 

under authorization has serious potential implications similarly found in other data organizing 

frameworks, which utilize QSARs. Two major information organizing frameworks that draw on 

combined results, but may include QSARs, and which can either be found in AoAs or have the 

potential to significantly impact AoAs are weight of evidence (WoE) and integrated testing 

strategies (ITS). Under REACH, WoE is an important approach for drawing reliable conclusions 

on a substance based on a collection of toxicity information with emphasis on avoiding 

unnnecessary animal testing. According to ECHA, WoE is a process that combines multiple lines 

of evidence while weighing the relative “strengths and weaknesses” in order to reach a 

conclusion on a substance’s property (ECHA 2016a). For example, results from predictive non-

testing methods, such as QSAR and read-across, could be combined to draw inferences on the 

hazard of a substance. (For an example of a formal WoE, see Appendix S1). WoE has also been 

used to develop ITS (ECHA 2016a). ITS is a method of collecting and combining results under a 

scientific approach (Hartung et al. 2013). Advancements in in silico models, such as QSARs, 

have enhanced the accuracy of predictions to even exceed animal tests (Luechtefeld et al. 2018). 

As a result, many tests are being combined in ITS as the next step forward in regulatory 

toxicologist assessment. Though ITS does not have an inherent regulatory purpose, ITS is used 

for regulatory decision-making, oftentimes in a WoE context (Worth 2010a). As an alternative 

method, QSARs have expanded under WoE and ITS methods, though not without potential 

challenges. Without clearer documentation and a more systematic WoE framework (Knudsen et 



 100 

al. 2015; Malloy et al. 2017; Rotella 2011), information contained within WoE and ITS, such as 

QSAR predictions, may not be perceived as trustworthy information. 

As a regulatory tool, WoE can be implemented according to a variety of approaches. 

These approaches include a range of methods from narrative to more systematic and quantitative 

types (Linkov et al. 2009; Martin et al. 2018). However, the degree of reproducibility and 

transparency differ significantly between the evaluation forms even though the different types of 

evaluations are equally considered under WoE (Linkov et al. 2009). For QSAR predictions in an 

AoAs, the high variability in WoE approaches may weaken the strength of supporting evidence, 

particularly if the supporting evidence is not well documented for QSARs. WoE is limited 

though; this framework may not always give the best outcome. In some cases, even if an 

applicant’s WoE presents an articulate, well documented argument with a non-integrated battery 

of QSAR predictions, an applicant may still select the wrong QSAR model or approach, or, a 

non-integrated combination of predictions, which could include false positives. An integrated 

QSAR screening approach, on the other hand, which combines predictions based on algorithms, 

produces more powerful results. However, for AoAs, the potential benefits of using QSARs 

especially for priority higher-tier chemicals in an integrated testing strategies (ITS) framework, 

which combines predictions based on algorithms to produce more powerful results, remains 

unknown. 

Substances with carcinogenic, mutagenic, reproductive toxicity (CMR), persistent, 

bioaccumulative and toxic/ very persistent and very bioaccumulative (PBT/vPvB) and certain 

endocrine disrupting properties, which are considered of higher concern under REACH (ECHA 

2019c), are a likely target of WoE and ITS strategies especially if these substances are deficient 

in experimental data. Under REACH, QSARs within a WoE context have been increasingly used 
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to identify potential CMR and PBT/vPvB substances (ECHA 2016c). Some information 

requirements for higher-tier endpoints under REACH even point towards the use of QSARs to 

identify targeted substances (European Parliament and the Council of the European Union 2006; 

Lahl and Gundert-Remy 2008). The REACH ITS framework for specific endpoints, which 

includes CMR, also directs registrants to consider non-testing results, (e.g. QSAR predictions) 

when deciding if further animal testing is needed (ECHA 2017d). Despite their critical role in 

information gathering and testing assessments for CMR and PBT/vPvB substances, QSARs in 

AoAs have yet to be evaluated for these purposes, which could eventually become an issue for 

regulators attempting to deter companies from using harmful chemicals in their processes such as 

the European Chemicals Agency (ECHA), the regulatory arm of REACH. 

Prompted by findings in several AoAs in a previous study, this study was used to address 

three main questions pertaining to QSAR information is reported in QPRFs, WoE and ITS: 1) To 

what degree do our sample AoAs contain information from the QPRF document? 2) How well 

do applicants meet regulatory and best practices WoE criteria when using QSARs in AoAs? 3) 

What are the differences in conclusions on toxicity between ITS battery QSAR model 

predictions and QSAR predictions generated from either individual models or multiple models, 

which do not employ ITS battery testing. We first data-mined 24 AoAs to see if applicants used 

an equivalent method to QPRFs by providing at least partial information. We prioritized this 

information because our research indicates this information could reveal the applicant’s 

reasoning for using QSAR predictions. However, because we were also curious how WoE using 

QSAR predictions in AoAs were used to assess priority CMR/ PBT vPvB endpoints, we 

developed a checklist of criteria to assess the rigor of WoE analyses, or, what we call a 

‘completeness review’ for our AoA sample (n=24). As the guidance document and the relevant 
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research were individually inadequate for our purposes, we combined four approaches to create a 

composite set of criteria. This checklist draws on ECHA WoE guidance as well as recent WoE 

literature and other best practices. We then assessed the degree to which an applicant met our 

WoE criteria in a completeness review of AoAs using QSAR predictions for higher-tier 

endpoints.  

In cases where two or more AoAs assessed the same chemical, we adopted a consistency 

check review to see if applicants reached inconsistent conclusions. If the AoAs using QSAR 

predictions on the same chemical arrived at different conclusions, we examined the substantive 

aspects of the respective WoE analyses to understand why the analyses came out differently. 

Because of the importance placed on higher-tier endpoints, we examined WoE only in the 

context of CMR and PBT/vPvB endpoints. Our research underscores what we believe a regulator 

would need to make a sound decision on an alternative’s relative safety in an AoA. Finally, to be 

forward looking, we added an integrated approach to QSAR use, when appropriate, in our paper. 

We compared the conclusions reached by applicants on the safety of the alternative relative to 

the Annex XIV chemical with results from the Danish EPA advisory list (EPA 2018b). We argue 

that the Danish EPA’s use of ITS for further evaluation is a potentially valuable tool to confirm 

the identity of potentially harmful CMR chemicals. 

We report findings regarding the breadth and context of QSAR usage in 24 REACH 

AoAs in addition to the role of QSARs in 21st toxicology strategies to increase our knowledge on 

how QSARs are used in information gathering and organizing frameworks. We conclude with a 

discussion on the need for enforcement of QSAR documentation under REACH authorization, 

guidance specifying the WoE criteria that should be met when using QSARs, and the future 
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direction of QSAR ITS modeling strategies within REACH. (For study limitations, see Appendix 

S2). 

Methods 

QPRF criteria 

We collected data on 17 criteria (Table 4-1) from AoAs to investigate whether applicants 

provided information normally required under a QPRF. Since we were looking for results that 

had the most relevance in regulatory discussions, we focused on QSAR predictions for hazard 

endpoints. For substance information, we surveyed chemical identifiers, coding for Chemical 

Abstracts Service (CAS) number, European Community (EC) number, chemical name, structural 

formula, and structure codes, (i.e. text representations of a chemical’s structure). For prediction 

information, we selected model identifiers such as the model’s hazard endpoint and dependent 

variable (ECHA 2008), model name and version, predicted value including prediction cut-off 

values, input for the model used to generate the prediction such as the specific structure codes, 

and descriptor values, which codes molecular value into numerical value (Todeschini and 

Consonni 2008). We also focused on six QPRF “priority” criteria: a) applicability domain; b) 

structural analogues; c) predicted value; d) model endpoint; e) uncertainty; f) chemical and 

biological mechanisms to conduct a more in-depth analysis. (Table 4-1). For our study, we 

define QPRF “priority” criteria as foundational criteria, which provides the most fundamental 

information a regulator needs to draw a general conclusion on a QSAR prediction. Because we 

were already aware that all QMRFs were missing from previous research, we did not code for 

QMRF references in the QPRF. Lastly, we coded for applicability domain, (i.e. the limits used in 

a model to make reliable estimations) (Hanser et al. 2016), the inclusion and identification of 

structural analogues found in a model’s training and test sets, prediction uncertainty, and if 
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appropriate, chemical and biological mechanisms, which according to Yuan et al. (2007) is the 

biological response underlying the mode of toxic action (MOA). To streamline our data, we 

excluded alternatives that did not employ a QSAR for a hazard endpoint. 

During our analysis, we made several assumptions. First, we accepted multiple 

definitions of applicability domain (see Chapter 2 Methods: Data collection). Regarding 

uncertainty of QSAR predictions, we also accepted several versions including “acceptable,” 

“limited similarity and no conclusion could be drawn,” “doubtful reliability,” “uncertain 

reliability,” “robustness of prediction,” “considered reliable,” and “no conclusion should be 

drawn.” However, we did not accept “no indication that model was operating outside of its 

operational limits,” as this interpretation did not answer the degree to which an applicant 

considered the prediction trustworthy. For QSAR source/model names, we excluded “OECD 

QSAR” as a source because we could not confirm whether the applicant ran a QSAR model or if 

the QSAR prediction was cited from within the OECD (Q)SAR Toolbox, which would then 

mean the prediction could have been generated from any number of QSAR models. Finally, we 

accepted partial endpoint definitions. 

WoE Completeness review 

Our WoE completeness review began with an evaluation of REACH’s approach to WoE 

criteria set out in the 2016 Practical guide: How to use alternatives to animal testing to fulfil 

your information requirements for REACH registration. For the purpose of our study, we define 

completeness review as a critical evaluation of the process and steps applicants took to formulate 

their WoE analysis for CMR and PBT/vPvB higher-tier endpoints when including QSAR 

predictions. Criteria included assembling information that factored in relevance, reliability 

adequacy and quantity, discrepancies in studies, proper documentation, expert judgement, and 
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“robust” summaries (Figure 4-1) (ECHA 2016a). However, in developing sub-criteria for this 

approach to our study, we came across inconsistencies and gaps in ECHA’s guidance. In 

addition, the criterion to “pool” information did not define “pooling,” nor were steps given on 

how to weigh the evidence or what to consider during data integration. Thus, we drew on 

elements from the 2018 National Resource Council’s (NRC) evaluation on the U.S. EPA IRIS 

system, and best practices from Rhomberg et al.’s 2013 review A survey of frameworks for best 

practices in weight-of-evidence analyses, Martin et al.’s 2018 review Weight of Evidence for 

Hazard Identification: A Critical Review of the Literature, Suter et al.’s 2017 A Weight of 

Evidence Framework for Environmental Assessments: Inferring Qualities, and the European 

Safety Authority’s (EFSA) Guidance on weight of evidence. Together, these frameworks and 

best practices formed a continuous framework that explicitly laid out a clear, transparent and 

structured WoE approach (EFSA Scientific Committee et al. 2017; Martin et al. 2018; NRC 

2018; Suter et al. 2017). (For WoE criteria checklist, see Appendix S3). These supplemental 

regulatory guidances and best practices addressed three main deficiencies in ECHA’s WoE 

guidance: a) creating a broad guidance to apply to other parts of REACH, particularly for study 

summaries, b) providing accepted metrics for “weighing” evidence; c) setting out specific steps 

for data integration. With this continuous framework, we developed a checklist to conduct a 

completeness review for how “well” AoAs articulated their WoE analysis. In this completeness 

review for WoE, the evaluation was limited to a procedural analysis and did not address 

substantive questions related to the quality of higher-tier WoE using QSARs. We also only 

considered WoE that used QSARs as opposed to all WoE used in an application (Benfenati 

2012; ECHA 2016b). 
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Using this technical approach, we looked at all WoE higher-tier hazard endpoints from 

our original AoA sample citing QSARs (n = 24), which we collected through May 2017 

(pending publication Chinen and Malloy 2019) . More specifically, our study focused on 

measuring the completeness across WoE using QSARs to gauge the degree to which applicants’ 

efforts met our WoE criteria. (For sub-criteria coding for higher-tier endpoints used in WoE, see 

Appendix S4). We rated completeness on an increasing scale ranging from 0 = no criteria 

discussed to 5 = all criteria discussed (Figure 4-1). When endpoint data were not relevant to our 

WoE completeness review, such as potential alternatives, which do not typically provide 

sufficient hazard endpoint detail other than the type of data, or, the given information was not 

used in WoE context, we coded this information as ‘6’ for non-applicable.  

We recorded any WoE observations for each of the five main criteria in Libre Office 

Version: 6.2.4.2. Based on our descriptive statistics, we assessed the degree to which applicants 

met the criteria for a rigorous WoE analysis. For all descriptive statistics, we used “alternative 

per AoA consultation number” as the unit of analysis. In this study, there were a total number of 

54 opportunities per alternative per consultation number to provide information for criteria.  

ITS comparative analysis 

Despite the lack of international regulatory consensus on ITS (Rovida 2010), several ITS 

frameworks, for which QSARs have been instrumental in assessing information, have already 

been developed. Comparison of the 24 AoAs with integrated CMR predictions from the 2018 

Danish EPA advisory list for self-classification of hazardous substances began with a verification 

of Chemical Abstracts Service (CAS) numbers, which are unique numbers assigned to chemicals 

used in the science field (ACS 2019) (Table 4-2). (For the 2018 Danish EPA advisory list for 

self-classification of hazardous substances, see Appendix S5). To verify information, we inputted 
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the name of the alternative substance, as listed in the AoA’s Table of Contents, into 

SciFinder®’s substance identifier search engine, which generated a profile. We then used the 

CAS number from the profile to verify if the given CAS number in the AoA correctly identified 

the alternative. If SciFinder® could not find a match based on the alternative’s name, we queried 

the alternative’s CAS number and used the  molecular formula to confirm the correct identity of 

the alternative. If the query did not provide a molecular formula, we used the EC, IUPAC or one 

of the “other” names, as given in the AoA, to search for a matching CAS number; however, this 

was the least reliable method for confirming the correct identity of the alternative. Because we 

had repeating, non-unique alternatives, we verified each alternative by consultation number. 

Once we confirmed the identity of each alternative, we compared AoA CAS numbers 

with CAS numbers in the 2018 Danish EPA advisory list using Excel (Version 16.28) (EPA 

2018b). For any matches, we recorded the ITS battery QSAR prediction Advisory classification: 

Muta. 2 (Suspected of causing genetic defects); Carc. 2 (Suspected of causing cancer); or Repro. 

2 (Suspected of damaging fertility or the unborn child) advisory classifications in an Excel 

spreadsheet. ). CMR endpoints are defined under the Danish EPA’s battery of model endpoints 

(Appendix S5).  

For AoAs with matching CAS numbers, we visually inspected their applications for any 

CMR identifiers for the alternative. We focused primarily on the following sections: Mammalian 

hazard profile, Reduction of Overall Risk, Conclusion on suitability and availability, Comparison 

of hazards, and the Annex. Any supporting, conflicting or missing information was reported 

separately. 
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Results 

QPRF criteria 

Figure 4-2 gives a broad overview of the 16 criteria. Overall, criteria were unevenly 

distributed. No information was given in any AoA for the model’s dependent variable, cut-off 

values for the prediction, model input for the prediction, structural analogues, and biological 

mechanisms. However, all QSAR predictions provided information on the structural formula, 

International Union of Pure and Applied Chemistry (IUPAC) name, and EC and CAS number 

criteria of their alternative. For chemical structure codes, (i.e. the remaining criterion), only 

Simplified Molecular Input Line Entry System (SMILES) codes were provided.  

Results for four of the priority QPRF criteria were more evently distributed (Figure 4-2). 

For the applicability domain priority criteria, predictions were discussed as in domain 259 times 

while predictions were not discussed in the context of their applicability domains 109 times. 

While applicants commented on the uncertainty of predictions 266 times, they did not comment 

on a prediction’s uncertainty 100 times. Though predicted values were cited the majority of time 

(n = 342), we identified qualitative or quantitative predicted values going unreported 26 times. 

The QSAR model endpoint was defined, at least partially, 285 times, though applicants did not 

report the model endpoint for 83 predictions. No information was given for either structural 

analogues or chemical and biological mechanisms. 

AoAs that used QSARs in WoE for higher-tier endpoints 

Of the 24 AoAs, only three used QSARs for at least one higher-tier endpoint (Table 4-3). 

These AoAs performed WoE for higher-tier endpoints on 11 unique alternatives. Because data 

were analyzed by the unit of alternative by consultation number, the same alternative may have 
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been assessed multiple times by different applicants. For instance, consultation numbers 0005-01 

and 0006-1, both assessed the same alternative, diisobutyl hexahydrophthalate (DIBE). 

One major issue that we encountered was that several PBT/vPvB QSAR predictions for 

the alternative Tributyl citrate (TBC) in consultation number 0005-02 had missing QSAR 

models/sources. When referencing information presented on the ECHA Dissemination Portal for 

Environmental fate and behavior and ecotoxicology, DEZA, a.s. reported, “ [I]t was found to 

have a calculated bioconcentration factor (BCF) of 94.7 L/kg wet-wt.” (DEZA A.S. n.d.-a). 

However, after rigorously reviewing content on TBC in AoA consultation number 0005-02, the 

value 94.7 L/kg wet-wt was the only BCF result for TBC, predicted or otherwise. Likewise, in 

consultation number 0006-01, the applicant Sasol-Huntsman GmbH & Co. KG reported a series 

of OECD Toolbox predictions for bioaccumulation for the alternative DIBE (DEZA A.S. n.d.-a). 

However, the applicant did not identify the source of these predictions, nor could we find any 

QSAR predictions in Table 4.2: Physico-chemical properties of DIBE or Table 4.5: Human 

health and environmental hazard profile for DIBE (DEZA A.S. n.d.-a).  

Completeness review 

QSARs used in WoE to assess CMR endpoints varied in quality of completeness for the 

five main criteria. Only one endpoint, reproductive toxicity, met all five WoE criteria for the 

alternative bis(2-ethylhexyl) adipate (DEHA) in consultation number 0005-02 (Table 4-4). In the 

same AoA, for the alternative Akardite II, the endpoint mutagenicity met four criteria: 1) “Pools" 

information; 2) Conflicting results; 3) Assesses reliability, relevance, adequacy, and quantity; 4) 

Assesses the overall WoE package. The endpoints that met the least amount of criteria were 

ready biodegradability, which indicates rapid breakdown of the substance in most environments 

(ECHA 2017b), and bioaccumulation or persistence (Pavan and Worth 2006) of the alternatives: 
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Akardite I, ethyl centralite and methyl centralite. WoE for dioctyl azelate (DOZ) did meet two 

criteria for bioaccumulation: 1) Assesses reliability, relevance, adequacy, and quantity; 2) 

Assesses overall WoE package. Figure 4-3 illustrates a high level view of these trends. In this 

figure CMR/PBT vPvB endpoint data are consolidated and organized by the number of criteria 

met. 

Consistency check 

Despite the similarities in AoAs, when applying a WoE consistency check, we observed 

less consistent results (Table 4-5). Only one pair of AoAs assessed the same alternative. For 

AoA consultation numbers 0005-01 and 0006-01, the alternative diisobutyl hexahydrophthalate 

(DIBE) was assessed using evidence for mutagenicity and carcinogenicity endpoints, and 

outcomes from in vitro gene mutation in bacteria (Ames test) assays. Although both  AoAs 

acknowledged a concern for reproductive toxicity, both concluded that DIBE may be safer for 

human health relative to its Annex XIV chemical dibutyl phthalate (DBP). Specifically, positive 

QSAR predictions for teratogenicity and androgen receptor binding were suggestive of 

reproductive toxicity. In addition, both AoAs gave QSAR predictions for aquatic toxicity that 

suggested a low chronic toxicity (Dow Italia Srl and Rohm and Haas France S.A.S. 2016; Sasol-

Huntsman GmbH & Co. KG n.d.). 

For the endpoints mutagenicity and in vitro gene mutation in bacteria (Ames test), both 

applicants addressed the sub-criterion ‘consistency’ under the second main criterion (Figure 4-1). 

Applicants employed WoE using QSARs to point out a lack of alerts for the two endpoints. 

Furthermore, in the robust study summary (RSS) criterion, both applicant identified the single 

positive result among the two mutagenicity tests and Ames test (DEZA A.S. n.d.-b; Sasol-

Huntsman GmbH & Co. KG n.d.). Each applicant also addressed the sub-criteria ‘adequacy’ or 
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use of the in vitro gene mutation in bacteria (Ames test) predictions when they pointed out the  

limited, peer-reviewed experimental data for DIBE (DEZA A.S. n.d.-b; Sasol-Huntsman GmbH 

& Co. KG n.d.).  

Agreement between the two AoAs, however, ended under the two main criteria: a) 

‘Conflicting results’ for mutagenicity; and b) ‘Assess reliability, relevance, adequacy, quantity’ 

for carcinogenicity. In consultation 0005-01, DEZA, a.s. included an informal ‘scoring table,’ 

which described the degree of certainty assigned to mutagenicity (DEZA A.S. n.d.-b). In 

contrast, a ‘scoring table’ was not included for for mutagenicity for consultation number 0006-

01. Finally, for carcinogenicity, while DEZA, a.s. focused on justifying the ‘adequacy’ of QSAR 

and read-across predictions in the absence of experimental test results, Sasol-Huntsman GmbH 

& Co. KG in consultation 0006-01 separately addressed the sub-criteria ‘quantity’. In addition, in 

the assessment of the overall WoE package for consultation 0005-01, DEZA, a.s. was the only 

applicant to address a concern for both reproductive toxicity and environmental toxicity. 

ITS comparative analysis 

The majority of AoA CAS numbers did not have a matching CAS number from the 

Danish EPA advisory list (Table 4-6). We, however, did find matches for four CAS numbers: 

103-23-1 (DEHA), 53306-54-0 (DPHP), 7790-7 (ATBC) and 77-94-1 (TBC). All matching 

Danish EPA advisory list CAS numbers had a Repr. 2, Muta. 2 or Carc. 2 CLP classifications 

were not assigned to any of the matching chemicals.  

Upon further inspection of the alternatives’ AoAs, consultation numbers 0002-01, 0002-

02, 0003-01, 0003-02, 0004-01, 0004-02 and 0005-02 identified reproductive toxicity for the 

alternative DEHA (Table 4-7). In each of the AoA’s Reduction of overall risk assessments, 
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applicants reported CMR concerns in addition to DEHA’s listing on ECHA’s Community 

Rolling Action Plan (CoRAP) list, which frequently contains substances of PBT and CMR 

concern (ECHA 2019i). Teratogenicity was also mentioned in each of the AoA’s Annexes. In 

addition, applicants reported a Repro. 2 notified classification for DEHA in the “Notified 

classification and labelling of DEHA according to CLP criteria” tables (ARKEMA 2013a, b; 

DEZA A.S. 2013a, b, n.d.-a; GRUPA AZOTY ZAKŁADY AZOTOWE KĘDZIERZYN S.A. 

2013a, b). Moreover, consultation number 0005-02 cited uncertain reproductive toxicity in the 

Comparison of Hazards Table 4.53 (DEZA A.S. n.d.-a).  

For the alternative bis(2-propylheptyl) phthalate (DPHP), no mention of reproductive 

toxicity was made in the Reduction of overall risk assessment for consultation numbers 0002-01, 

0002-02, 0003-01, 0003-02, 0004-01, and 0004-02. Similarly, for the alternative acetyl tributyl 

citrate (ATBC), there is no mention of reproductive toxicity as a concern in the Reduction of 

overall risk assessment or the Comparison of Hazards tables ro4 consultation numbers 0002-01, 

0002-02, 0003-01, 0003-02, 0004-01, 0004-02, and 0005-02. However, for consultation number 

0005-02, in the Mammalian hazard profile, the applicant mentions a reproductive toxicity effect 

doses above 300 mg/kg bw/d (DEZA A.S. n.d.-a; SCENIHR 2015).  

Finally, for the alternative tributyl citrate (TBC), the applicant stated a lack of 

“documented data” on TBC’s reproductive toxic effects though a negative QSAR prediction 

originating from the TERIS database is given in Table 4.68: Human health and environmental 

hazard profile for TBC (DEZA A.S. n.d.-a). 
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Discussion 

QPRF Equivalency   

We began this study by exploring transparency in REACH QSAR documentation in 

AoAs. We collected data by prediction/QSAR source/alternative for hazard endpoints, and 

tabulated information supplied for 17 main QPRF criteria (Table 4-1), which included six 

priority criteria. We considered these criteria as fundamental information that a regulator would 

need to know to determine whether a QSAR’s prediction is reliable or not. From our review, we 

found that several criteria lacked any information, including one of our priority criteria, 

structural analogues. The majority of applicants, however, provided prediction information for 

uncertainty, AD, predicted value and model endpoint, though, a range of predictions, (i.e. 5% - 

24%) lacked any information. In particular, f the ‘model endpoint’ priority criterion, applicants 

provided some detailed information. Given the range of reported  information on the model 

endpoint, some model endpoint descriptions were better detailed than others. For example, for 

consultation number 0005-02 for the alternative methyl centralite, the applicant DEZA, a.s. 

indicated both the specific assay used to develop the QSAR model in addition to the hazard 

endpoint: “genetic toxicity reported: In vivo – Mutagenicity, QSAR prediction for Rodent 

dominant lethal assay from the Danish (Q)SAR Database (DQD)” (DEZA A.S. n.d.-a). However, 

most endpoint descriptions did not contain the exact model endpoint or the experimental test. For 

the alternative ethyl centralite, also from consultation number 0005-02, information in Table 

4.17: Ecological data supporting decisions of Enviornment Canada only gave the hazard 

endpoint, (i.e. EPI Suite (BCFWIN) Bioaccumulation potential: Log BCF (predicted by 

BCFWIN)) without giving any information about the assay or species used to develop the model 

(DEZA A.S. n.d.-a). 
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Our comparison of 24 AoAs suggests that current use of single QSAR models continues 

to be limited, and that ITS QSAR models could provide a huge benefit to the REACH AoA 

community. Our study also revealed that ITS QSAR predictions can significantly contribute to a 

broader understanding of a chemical in an alternative substance’s assessment. 

Despite the large amount of missing QPRF information, questions surrounded the degree 

to which a regulator would deem the existing information adequate if not fully sufficient. While 

an alternative stream of information was embedded in AoAs albeit informally and in incomplete 

form, including at least four of the priority criteria, this does not mean to say that the other 

criteria were inferior. In fact, several of these criteria, though not essential for a regulator to 

assess an AoA, if properly reported, could help a regulator more efficiently ascertain whether the 

QSAR prediction was reliable or not. For example, although we found that predicted values were 

reported 342 times, without cut-off values, especially for qualitative results, a regulator might not 

be able to judge an alternative’s toxicity or safety without knowing the cut-off values offhand. In 

our study, missing cut-off values occurred for all QSAR predictions.  

Similarly, the problem of missing model version information turned into a significant 

issue when we attempted to verify AD information. (For analysis by consultation numbers, see 

Appendix S6). For the alternative ‘methyl centralite’ in consultation number 0005-02 and the 

hazard endpoint ‘Genetic toxicity: In vivo – Chromosomal effect’ for the mouse bone marrow 

sister chromosome exchange assay, the applicant used the Danish (Q)SAR Database (DQD) to 

report an ‘equivocal’ result that was ‘within QSAR domain’ (DEZA A.S. n.d.-a). Yet, when we 

downloaded the same prediction on March 15, 2019, an inconclusive result was generated from 

battery QSAR models, which indicated the prediction was out of domain (DTU FOOD et al. 

2019). Interestingly, the DQD reported a positive but out of domain result for each QSAR 
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prediction i.e. Leadscope, CASE Ultra, and SciQSAR. If we could verify that both results came 

from the same model version, perhaps we could identify a pattern where applicants cited QSAR 

results as in domain when they are, in fact, out of domain. On the other hand, it could simply be 

an isolated error. The DQD has been updated several times since the November 2015 launch 

(DTU Food et al. 2019). Arguably, these errors may not make a difference in the outcome of the 

relevant AoA. However, it is an indication of deficient practices that could matter in later AoAs.  

We also looked at the quality of information that applicants provided. Based on our 

review, applicants commented on a prediction’s uncertainty 266 times. However, these 

comments lacked depth, and fell short of communicating the importance owed to a discussion on 

a prediction’s uncertainty. For example, many of the comments were single responses or short 

phrases such as “uncertain,” or, “acceptable,” or “doubtful reliability.” Of course, leading 

regulators have established methodologies to fill out QPRFs, which provide well-substantiated 

reasoning. In the Netherlands National Institute for Public Health and the Environment (RIVM) 

Report 601779001/2007, several QPRF samples provided by the European Chemicals Bureau 

(ECB), Italy, were included. Specifically, these sample QPRFs demonstrate how a prediction 

could be explained in depth, which includes explaining a prediction’s uncertainty. In the QPRF 

TOPKAT model prediction example for the substance cinnamaldehyde, prediction reliability (or 

certainty in this QPRF) was actually assigned a ranking to score the degree of prediction 

uncertainty/certainty. In addition, the training set’s structural analogues and AD were used to 

justify their ‘reliability’ reasoning (Rorije et al. 2008), 

Cinnamic aldehyde is within the domain of the models and is also in the training set of 

both models. Structural analogues are weak and not thought to be particular similar since 
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the driving factor in the sensitisation behaviour of CAD is thought to be the unsaturated 

carbonyl system rather than the carbonyl group itself.  

However, ECHA has yet to adopt or assign any of these compliance measures to REACH 

AoAs. While the information in a QPRF is vital in decoding the reasoning behind an applicant’s 

conclusion on whether a prediction is acceptable under regulatory terms, the QPRF template is in 

no way perfect. Suggested changes to the QPRF format during the 2nd European Union (EU) 

Technical Committee on New and Existing Chemical Substances (TCNES) / (Q)SAR Working 

Group meeting (January 2006) included creating more defined headings such as ‘other 

information regarding prediction reliability’ to provide more useful information (Rorije et al. 

2008). In addition, Walker et al. (Voyer and Heltshe 1984; Walker et al. 2003) suggested that 

predictions be accompanied by confidence intervals, especially, since descriptors are oftentimes 

generated by other QSARs, “thus increasing the potential for error propagation.” Despite its 

vulnerabilities, the value of having a QPRF is evident, without which, cases of ambiguity and 

equivocal language such as stating four days for a chronic toxicity duration (H&R Ölwerke 

Schindler GmbH 2016) or defining the model endpoint but also writing the prediction was for an 

undefined endpoint (DEZA A.S. n.d.-a), cannot be resolved and could leave the regulator in a 

position of disregarding the QSAR prediction altogether. 

AoAs that used QSARs in WoE for higher-tier endpoints and WoE completeness review 

Findings from our completeness review of 24 AoAs, which assessed 54 non-unique 

alternatives, revealed that only a limited number of AoAs used Woe with QSARs. In addition, 

WoE completeness varied depending on the main criteria and hazard endpoint. (For WoE 

completeness by hazard endpoint, see Appendix S7). Notably, the three AoAs that used WoE 

involving QSAR predictions for reproductive toxicity, consistently met the majority of the five 
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main criteria to a higher degree than the other CMR/PBT/vPvB endpoints (Table 4-4). 

Ultimately, these results reveal the differences in completeness among the applicable sample 

AoAs. Moreover, these gaps in completeness provide insight into areas that need to be 

highlighted in future AoA WoE guidance. 

The findings on completeness for WoE using QSARs for reproductive toxicity 

demonstrate the progress made in bridging data gaps for this endpoint. In a 2011 article on 

reproductive and developmental toxicity in REACH dossiers, the authors Rovida et al. (2011) 

recommended more support for the development of non-testing methods for reproductive 

toxicity testing. The article described how data gaps for endocrine disruptions also affected 

REACH information requirements. While REACH did not set out explicit guidance requesting 

information for this health endpoint, in our completeness review, applicants provided the most 

information for WoE using QSARs under reproductive toxicity. One possible explanation for 

this occurrence could be the increased access to the freely available, online QSAR models and 

QSAR predictions in the DQD. Alternatively, with REACH’s increased focus on higher-tier 

endpoints, AoA applicants may simply have been more diligent in providing this information. 

In contrast, some applicants failed to identify the sources of QSAR predictions in their 

WoE or did not address positive QSAR predictions in their WoE. Since OECD QSAR Toolbox 

houses a variety of sources and tools, which can generate different types of predictions, we could 

not categorize these as QSAR predictions with any confidence (OECD 2019). Not knowing what 

type of prediction was used in an AoA for a higher-tier endpoint has larger implications when 

considering the impact this might have on a regulator making a decision on imprecise 

information or disregarding important information because the analysis of alternatives is 

deficient. 
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Even so, DEZA, a.s. reported a positive biodegradation probability (i.e. Biodegradation = 

0.0403) using an EPI SuiteTM BIOWIN MITI QSAR model prediction in consultation number 

0005-02, for the alternative methyl centralite. However, this prediction was not included in the 

discussion on environmental fate and pathways toxicity (DEZA A.S. n.d.-a),  

Available information, based largely on the outputs of various QSAR models, does not 

raise concern for either the persistence or bioaccumulative potential of the substance in 

the environment. 

Even though there are other regulatory and best practice cut-off points for a substance to 

be considered not-readily biodegradable, methyl centralite’s prediction of 0.0403 is far below 

any of these other biodegradable cut-off points, which should have been addressed under the 

conflicting results WoE criteria. According to Posthumus et al. (2005), a substance with a 

biodegradable score of 0.0403 is considered persistent. In addition, Posthumus et al. reported that 

for the EPI SuiteTM BIOWIN MITI models, for a substance to be considered persistent, not only 

must the probability of a substance be < 0.5, but the substance must also meet two other criteria 

(Posthumus et al. 2005),  

• the probability of the non-linear rapid BIODEG model is < 0.5 or  

• the result of the ultimate survey model is < 2.2  

Because the applicant was not transparent in how they weighted biodegradation, we 

could not conclusively say if DEZA, a.s. factored this positive prediction for persistence into 

their conclusions. Table 4.8 Ecological data supporting decisions of Environment Canada on 

methyl centralite listed several predictions and experimental results for which any of the 
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persistence and bioaccumulation data could have been part of the line of evidence for non-testing 

data before any weighting (DEZA A.S. n.d.-a).  

Consistency check 

As demonstrated in our consistency check on DIBE, different aspects of the analysis 

produced different outcomes (Table 4-5). For instance, while both applicants provided sub-

criteria information for ‘adequacy,’ one focused on information for mutagenicity while the other 

gave evidence on reproductive and environmental toxicity. Needless to say, the lack of proper 

documentation may have put the regulator at a disadvantage. At the same time, expert judgement 

is viewed as an informal process, which could explain how an assessment ends up in different 

places. According to Suter et al. (2017), WoE is viewed as an “inferential process” where expert 

judgment is used to draw conclusions based on a variety of evidence. For our study, this means 

that in close cases, such as our consistency check for AoAs consultation numbers 0005-01 and 

0006-01 for DIBE, an applicant’s WoE, even on the same alternative, could come out differently. 

Furthermore, different WoE outcomes do not mean that more restrictive, prescriptive 

requirements for WoE are needed. Expert judgments are an acceptable approach in the eyes of 

major regulators (Martin et al. 2018). In fact, if a WoE approach is too formal, assessors may 

find the approach too cumbersome (Suter et al. 2017). However, from a regulator’s point of 

view, companies are still required to explain how they assembled their WoE. A regulator could 

then make a more informed decision rather than judge an AoA based on incomplete WoE 

involving QSAR predictions for higher-tier endpoints. 

ITS comparative analysis 

Because ITS can be the precursor to evidence compiled in a WoE, we also compared 24 

AoAs with the 2018 Danish EPA’s advisory list to screen for potential CMR substances that 
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AoA applicants might have missed (Table 4-6). Findings from our comparison of 24 AoAs 

suggest that ITS QSAR battery models could provide significant benefit to the REACH AoA 

community. Our study revealed that ITS QSAR predictions can contribute to a broader 

understanding of a chemical in an alternative substance’s assessment. For instance, the only 

QSAR prediction for reproductive toxicity was negative for potential teratogenicity for the 

alternative TBC in AoA consultation number 0005-02. However, the Danish EPA ITS battery 

QSAR model prediction predicted a positive response for reproductive toxicity. Having a more 

powerful result generated by a battery models such as the Danish EPA ITS battery QSAR 

models could impact an applicant’s conclusion on the safety of TBC. Rather than drawing a 

conclusion of no concern for the hazard profile of an alternative based, in part, on a negative 

prediction for reproductive toxicity, an applicant could conclude that there is some degree of 

concern for reproductive toxicity. For example, in contrast to the absence of any QSAR 

predictions for reproductive toxicity for DEHA, DPHP, ATBC, the Danish EPA assigned a Repr. 

2 advisory classification to the three alternatives. One possible explanation for this discrepancy 

could be that DPHP does not exhibit reproductive toxicity based on available studies of 

teratogenicity and reprotoxic effects at the highest doses (ARKEMA 2013a, b; DEZA A.S. 

2013a, b; GRUPA AZOTY ZAKŁADY AZOTOWE KĘDZIERZYN S.A. 2013a, b). However, 

under Article 12(1) and Annex VI (ECHA 2011a), companies are still required to report non-

testing methods when appropriate though these regulations specifically pertain to registration. At 

the same time, in the same consultation number for TCB (0005-02), the applicant noted an 

deficiency of information for reproductive toxicity (DEZA A.S. n.d.-a), 

There is also an absence of documented data on its reproductive effects, while no 

concerns have been raised with regard to either developmental or endocrine toxicity. 
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Ultimately, these findings show that ITS QSAR models for CMR endpoints are powerful 

tools that should be considered as part of the AoA process in identifying potentially toxic 

endpoints among alternatives. For example, even though the hazard class of Repr. 2 was 

similarly reflected in the AoAs for the alternative DEHA (ARKEMA 2013a, b; DEZA A.S. 

2013a, b; GRUPA AZOTY ZAKŁADY AZOTOWE KĘDZIERZYN S.A. 2013a, b), in the end, 

the applicants did not factor reproductive toxicity into their conclusions. When noting the 

“slightly positive” response for the dominant lethal mouse assay, there is no mention of 

reproductive toxicity which, according to the Danish EPA, has the resulting effect of “early 

embryonic deaths” (EPA 2018a). We believe that an ITS framework that incorporates more 

advanced tools such as battery QSAR models not only provides better WoE information, but also 

serves to fill in data gaps. Ultimately, the advantage of using an ITS framework that incorporates 

QSAR models, in particular, the DQD, far exceeds the information gains from single use models 

in that both the applicant and regulator have even greater access to information, which allows a 

more complete evaluation of the safety of an alternative chemical.  

Interestingly, the alternative ATBC, which does not have a harmonized classification and 

labeling (CLH), was reported by 12 companies to have Muta. 1B and Carc. 1B notified 

classification and labeling, which is a self-reported C&L. In addition, applicants reported DEHA 

as listed as group 3 of carcinogens (ARKEMA 2013a, b; DEZA A.S. 2013a, b, n.d.-a; GRUPA 

AZOTY ZAKŁADY AZOTOWE KĘDZIERZYN S.A. 2013a, b), which the Danish EPA ITS 

battery QSAR models for carcinogenicity or mutagenicity did not predict a positive response. 

One can speculate that the impurities in the formulation of ATBC could explain the Carc. 1B and 

Muta. 1B classification (ARKEMA 2013b). In addition, the IARC group 3 carcinogen 

classification was established based on “limited evidence in animals” (ARKEMA 2013b). 



 122 

However, according to ECHA, conflicting evidence is not only acceptable but accounted for in 

their guidance on how to conduct a WoE assessment, and thus should have been included 

(ECHA 2016a).  

Conclusions 

Identifying trends under REACH AoAs in QPRF, WoE and ITS frameworks, which draw 

on QSAR predictions, is the first step towards understanding the degree to which QSAR 

predictions fulfill regulatory expectations as well as play a role in driving these frameworks 

forward. Our results suggest that without the enforcement of QPRF documentation, regulators 

may be at a disadvantage due to their limited access to a QSAR prediction’s information. AoAs 

under consideration for this evaluation failed to provide any information at all for several 

criteria. Furthermore, results for meeting priority criteria showed that there is a baseline of 

information that one ought to know if submitting or assessing an AoA.  

For AoAs that use WoE with QSAR predictions, findings from our consistency check 

provide important insight into the level of completeness. Gaps in consistency for meeting higher-

tier WoE requirements under REACH could have significant implications for human health and 

the environment if positive predictions are not part of the final decision-making equation. One 

such application that could help ECHA in monitoring WoE use in AoAs and to make the process 

more standard and transparent could be the development of a platform for WoE in authorization 

similar to that of registration. Martin et al. (Martin et al. 2018) supports a more prescriptive 

approach though drawbacks to this approach include extra training and less flexibility in 

conducting WoE. Grading of Recommendations Assessment, Development, and Evaluation 

(GRADE) is another prescriptive approach, which uses a rating system to determine the “quality 

of evidence in systematic reviews and guidelines and grading strength of recommendations in 
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guidelines” (Guyatt et al. 2011). In fact, the NRC has already recommended this systematic 

approach to WoE for IRIS (NRC 2014a). Finally, incorporating elements from a multi-criteria 

decision analysis-based (MCDA) approach may help standardize the assigned weighting of 

information beyond the Klimisch scores used for reliability. According to Linkov et al. (2009), 

MCDA combines “value-based assessment” with expert decision-making and scientific 

judgment by weighting the individual lines of evidence. Ultimately, these recommendations have 

the potential to combine all steps into one unified process, integrating “social, political, and 

economic considerations” into the WoE framework as a whole (Linkov et al. 2009). In the end, 

there will no longer would be a need to separately analyze the Technical and Economic 

Feasibility portions of the AoA. Moreover, building from an existing WoE platform for 

alternative testing will likely increase the amounts of properly completed WoE. However, ECHA 

must first provide the necessary guidance for authorization users in order for this to happen. 

The comparison of alternatives with the 2019 Danish EPA advisory list illustrates the 

narrow regulatory use of either single or ITS QSAR models.  Limited consideration of these 

QSAR models as appropriate tools appears to be a repeating barrier to regulatory transparency, 

however, future studies will be needed to confirm this apparent trend. In conclusion, ECHA 

should provide guidance on ITS QSAR models for authorization and other areas under REACH 

that frequently encounter data gaps. For example, to encourage regulatory acceptance, ECHA 

should draft guidance that includes ITS QSAR models such as the Danish EPA to meet 

information requirements under authorization. Similarly, the Danish EPA and ECHA could 

partner as change agents to develop an international ITS framework within the AoA community. 
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Tables 

Table 4-1. 17 QPRF criteria. 

 
* Priority criteria 

  

Category QPRF criteria

Substance information CAS number

EC number

Chemical name: IUPAC and CAS names

Structural formula

Structure codes (codes recognized by modeling software)

Prediction information Endpoint
*

Dependent variable

Model or submodel name

Model version

Predicted value (model result)
*

Predicted value (cut-off value)

Input for prediction

Descriptor values

Applicability domain Domains
*

Structural analogues
*

Uncertainty of the prediction
*

Chemical and biological mechanisms
*
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Table 4-3. Alternatives in AoAs that used QSARs∔ in WoE for higher-tier endpoints. 

 

 

  

Consultation numbers Applicants Alternatives

0005-01 DEZA, a.s. Diisobutyl hexahydrophthalate (DIBE)

Methyl centralite
Ethyl centralite
Akardite I
Akardite II
Akardite III
Bis(2-ethylhexyl) adipate (DEHA)
Acetyl tributyl citrate (ATBC)
Tributyl citrate (TBC)
Dioctyl azelate (DOZ)
Isodecyl pelargonate (IDP)

0006-01 Sasol-Huntsman GmbH & Co. KG Diisobutyl hexahydrophthalate (DIBE)

0005-02 DEZA, a.s.



 128 

 

RS
S

A
ss

es
se

s r
eli

ab
ili

ty
, r

ele
va

nc
e, 

ad
eq

ua
cy

, a
nd

 q
ua

nt
ity

"P
oo

ls"
 

in
fo

rm
ati

on
 

Co
nf

lic
tin

g 
re

su
lts

 
A

ss
es

se
s o

ve
ra

ll 
pa

ck
ag

e

M
U

TA
G

EN
IC

IT
Y

00
05

-0
2

A
ka

rd
ite

 I
1

-
-

x
-

-
00

05
-0

2
A

ka
rd

ite
 II

I
2

-
-

x
-

x
00

06
-0

1
D

iis
ob

ut
yl

 h
ex

ah
yd

ro
ph

th
ala

te 
(D

IB
E)

2
-

-
x

-
x

00
05

-0
2

D
io

cty
l a

ze
lat

e (
D

O
Z)

2
-

-
x

-
x

00
05

-0
2

Et
hy

l c
en

tra
lit

e
2

-
-

x
-

x
00

05
-0

2
Is

od
ec

yl
 p

ela
rg

on
ate

 (I
D

P)
2

-
-

x
-

x
00

05
-0

2
M

eth
yl

 ce
nt

ra
lit

e
2

-
-

x
-

x
00

05
-0

2
Tr

ib
ut

yl
 ci

tra
te 

(T
BC

)
2

-
-

x
-

x
00

05
-0

1
D

iis
ob

ut
yl

 h
ex

ah
yd

ro
ph

th
ala

te 
(D

IB
E)

3
-

-
x

x
x

00
05

-0
2

A
ka

rd
ite

 II
4

-
x

x
x

x
00

05
-0

2
A

ce
ty

l t
rib

ut
yl

 ci
tra

te 
(A

TB
C)

-
-

-
-

-
-

00
05

-0
2

Bi
s(

2-
eth

yl
he

xy
l) 

ad
ip

ate
 (D

EH
A

)
-

-
-

-
-

-

IN
 V

IT
RO

 G
EN

E 
M

U
TA

TI
O

N
 IN

 B
A

C
TE

R
IA

 (A
M

ES
 T

ES
T)

00
05

-0
2

A
ka

rd
ite

 II
I

2
-

-
x

-
x

00
05

-0
1

D
iis

ob
ut

yl
 h

ex
ah

yd
ro

ph
th

ala
te 

(D
IB

E)
2

-
-

x
-

x
00

06
-0

1
D

iis
ob

ut
yl

 h
ex

ah
yd

ro
ph

th
ala

te 
(D

IB
E)

2
-

-
x

-
x

00
05

-0
2

Et
hy

l c
en

tra
lit

e
2

-
-

x
-

x
00

05
-0

2
Is

od
ec

yl
 p

ela
rg

on
ate

 (I
D

P)
2

-
-

x
-

x
00

05
-0

2
M

eth
yl

 ce
nt

ra
lit

e
2

-
-

x
-

x
00

05
-0

2
Tr

ib
ut

yl
 ci

tra
te 

(T
BC

)
2

-
-

x
-

x
00

05
-0

2
A

ka
rd

ite
 II

3
-

-
x

x
x

00
05

-0
2

A
ce

ty
l t

rib
ut

yl
 ci

tra
te 

(A
TB

C)
-

-
-

-
-

-
00

05
-0

2
A

ka
rd

ite
 I

-
-

-
-

-
-

00
05

-0
2

Bi
s(

2-
eth

yl
he

xy
l) 

ad
ip

ate
 (D

EH
A

)
-

-
-

-
-

-
00

05
-0

2
D

io
cty

l a
ze

lat
e (

D
O

Z)
-

-
-

-
-

-

C
A

R
C

IN
O

G
EN

IC
IT

Y
00

05
-0

2
A

ka
rd

ite
 I

1
-

-
x

-
-

00
05

-0
2

A
ka

rd
ite

 II
I

2
-

-
x

-
x

00
05

-0
1

D
iis

ob
ut

yl
 h

ex
ah

yd
ro

ph
th

ala
te 

(D
IB

E)
2

-
-

-
x

x
00

06
-0

1
D

iis
ob

ut
yl

 h
ex

ah
yd

ro
ph

th
ala

te 
(D

IB
E)

2
-

-
-

x
x

00
05

-0
2

D
io

cty
l a

ze
lat

e (
D

O
Z)

2
-

-
x

-
x

00
05

-0
2

Et
hy

l c
en

tra
lit

e
2

-
-

x
-

x
00

05
-0

2
Is

od
ec

yl
 p

ela
rg

on
ate

 (I
D

P)
2

-
-

x
-

x
00

05
-0

2
M

eth
yl

 ce
nt

ra
lit

e
2

-
-

x
-

x
00

05
-0

2
A

ka
rd

ite
 II

3
-

-
-

x
x

00
05

-0
2

Tr
ib

ut
yl

 ci
tra

te 
(T

BC
)

3
-

-
-

x
x

00
05

-0
2

A
ce

ty
l t

rib
ut

yl
 ci

tra
te 

(A
TB

C)
-

-
-

-
-

-
00

05
-0

2
Bi

s(
2-

eth
yl

he
xy

l) 
ad

ip
ate

 (D
EH

A
)

-
-

-
-

-
-

C
on

su
lta

tio
n 

nu
m

be
r

A
lte

rn
at

iv
e:

N
o.

 o
f c

rit
er

ia
 m

et
C

rit
er

ia

Ta
bl

e 
4-

4.
 N

um
be

r o
f c

rit
er

ia
 m

et
 fo

r Q
SA

R 
pr

ed
ic

tio
ns

 u
se

d 
in

 W
oE

 b
y 

CM
R/

PB
T 

vP
vB

 e
nd

po
in

ts.
 



 129 

 

R
S

S
A

ss
es

se
s 

re
lia

bi
lit

y,
 r

el
ev

an
ce

, 
ad

eq
ua

cy
, a

nd
 q

ua
nt

ity
"P

oo
ls

" 
in

fo
rm

at
io

n 
C

on
fl

ic
tin

g 
re

su
lts

 
A

ss
es

se
s 

ov
er

al
l 

pa
ck

ag
e

R
EP

R
O

D
U

C
TI

V
E 

TO
X

IC
IT

Y
00

05
-0

1
D

iis
ob

ut
yl

 h
ex

ah
yd

ro
ph

th
al

at
e 

(D
IB

E
)

1
-

-
-

-
x

00
05

-0
2

M
et

hy
l c

en
tr

al
ite

1
-

-
-

-
x

00
05

-0
2

A
ce

ty
l t

ri
bu

ty
l c

itr
at

e 
(A

T
B

C
)

2
-

-
x

-
x

00
05

-0
2

A
ka

rd
ite

 I
2

-
-

x
x

-
00

05
-0

2
A

ka
rd

ite
 I

II
2

-
-

x
-

x
00

06
-0

1
D

iis
ob

ut
yl

 h
ex

ah
yd

ro
ph

th
al

at
e 

(D
IB

E
)

2
-

-
-

x
x

00
05

-0
2

E
th

yl
 c

en
tr

al
ite

2
-

-
x

-
x

00
05

-0
2

A
ka

rd
ite

 I
I

3
-

x
x

-
x

00
05

-0
2

D
io

ct
yl

 a
ze

la
te

 (
D

O
Z

)
3

-
-

x
x

x
00

05
-0

2
Is

od
ec

yl
 p

el
ar

go
na

te
 (

ID
P

)
3

-
-

x
x

x
00

05
-0

2
T

ri
bu

ty
l c

itr
at

e 
(T

B
C

)
3

-
-

x
x

x
00

05
-0

2
B

is
(2

-e
th

yl
he

xy
l)

 a
di

pa
te

 (
D

E
H

A
)

5
x

x
x

x
x

R
EA

D
Y

 B
IO

D
EG

R
A

D
A

BI
LI

TY
00

05
-0

2
A

ka
rd

ite
 I

0
-

-
-

-
-

00
05

-0
2

E
th

yl
 c

en
tr

al
ite

0
-

-
-

-
-

00
05

-0
2

M
et

hy
l c

en
tr

al
ite

0
-

-
-

-
-

00
05

-0
2

Is
od

ec
yl

 p
el

ar
go

na
te

 (
ID

P
)

1
-

-
-

-
x

00
05

-0
2

A
ce

ty
l t

ri
bu

ty
l c

itr
at

e 
(A

T
B

C
)

-
-

-
-

-
-

00
05

-0
2

A
ka

rd
ite

 I
I

-
-

-
-

-
-

00
05

-0
2

A
ka

rd
ite

 I
II

-
-

-
-

-
-

00
05

-0
2

B
is

(2
-e

th
yl

he
xy

l)
 a

di
pa

te
 (

D
E

H
A

)
-

-
00

05
-0

1
D

iis
ob

ut
yl

 h
ex

ah
yd

ro
ph

th
al

at
e 

(D
IB

E
)

-
-

-
-

-
-

00
06

-0
1

D
iis

ob
ut

yl
 h

ex
ah

yd
ro

ph
th

al
at

e 
(D

IB
E

)
-

-
-

-
-

-
00

05
-0

2
D

io
ct

yl
 a

ze
la

te
 (

D
O

Z
)

-
-

-
-

-
-

00
05

-0
2

T
ri

bu
ty

l c
itr

at
e 

(T
B

C
)

-
-

-
-

-
-

BI
O

A
C

C
U

M
U

LA
TI

O
N

00
05

-0
2

A
ka

rd
ite

 I
0

-
-

-
-

-
00

05
-0

2
E

th
yl

 c
en

tr
al

ite
0

-
-

-
-

-
00

05
-0

2
M

et
hy

l c
en

tr
al

ite
0

-
-

-
-

-
00

05
-0

2
Is

od
ec

yl
 p

el
ar

go
na

te
 (

ID
P

)
1

-
-

-
-

x
00

05
-0

2
D

io
ct

yl
 a

ze
la

te
 (

D
O

Z
)

2
-

x
-

-
x

00
05

-0
2

A
ce

ty
l t

ri
bu

ty
l c

itr
at

e 
(A

T
B

C
)

-
-

-
-

-
-

00
05

-0
2

A
ka

rd
ite

 I
I

-
-

-
-

-
-

00
05

-0
2

A
ka

rd
ite

 I
II

-
-

-
-

-
-

00
05

-0
2

B
is

(2
-e

th
yl

he
xy

l)
 a

di
pa

te
 (

D
E

H
A

)
-

-
-

-
-

-
00

05
-0

1
D

iis
ob

ut
yl

 h
ex

ah
yd

ro
ph

th
al

at
e 

(D
IB

E
)

-
-

-
-

-
-

00
06

-0
1

D
iis

ob
ut

yl
 h

ex
ah

yd
ro

ph
th

al
at

e 
(D

IB
E

)
-

-
-

-
-

-
00

05
-0

2
T

ri
bu

ty
l c

itr
at

e 
(T

B
C

)
-

-
-

-
-

-

C
on

su
lta

tio
n 

nu
m

be
r

A
lte

rn
at

iv
e:

N
o.

 o
f c

rit
er

ia
 m

et
C

rit
er

ia

(T
ab

le
 4

-4
 c

on
tin

ue
d)

 



 130 

(Table 4-4 continued) 

 

 
  

Notes: 

(a) We only covered QSAR predictions in WoE, thus, hyphenated blank spaces meant that either there were no CMR/PBT 

vPvB QSAR predictions in WoE to analyze, which we coded as non-applicable. 

(b) Numbers 1-5 corresponds to the number of criteria that was met on our checklist, where the total number of criteria was 

five. 

(c) 0 indicates a QSAR prediction without a WoE context was cited for that endpoint. 

(d) A hyphen '-' in the number of criteria column indicates that either the endpoint data not relevant to WoE e.g. evaluates 

potential alternative ,or, a QSAR prediction did not exist. 
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Figure 4-2. Descriptive statistics for 16 QPRF criteria in AoAs using QSAR predictions. 

*Six priority criteria. 
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Figure 4-3. Number of criteria met in criteria checklist by QSARs used in WoE sub-divided by 

higher-tier endpoints. 

Notes: 

(a) Robust study summary: fully documented. Includes objectives, methods, results, conclusions of all studies.    

(b) Assesses reliability, relevance, adequacy, and quantity. Considers consistency of results and severity of effects. 

(c) "Pools" information by grouping evidence into lines of evidence and providing structured evidence tables.   
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(d) Conflicting results: Rates or weighs (depending on test method, data quality, endpoint) using scoring table, and translates 

confidence ratings into level of level of evidence for health effect. 

(e) Assesses overall package. Scientifically justified/argued using expert judgment.            
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Supporting information 

Additional information on sample WoE template (Appendix S1), study limitations (Appendix 

S2), WoE criteria checklist (Appendix S3), sub-criteria coding for the five main criteria 

(Appendix S4), Danish EPA advisory self-classifications (Appendix S5), consultation numbers 

(Appendix S6), WoE by CMR and PBT/vPvB endpoints (Appendix S7).  
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Appendix S1 

Sample WoE template 
 

 

 
 
Figure 4-1S. Sample WoE using a structured evidence table (EFSA 2017) 
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Appendix S2 

Study Limitations 

Unless the description of the QSAR prediction was clearly ad-hoc and quantitative values 

were missing for predictions where there was already evidence that the QSAR source produces 

qualitative predictions, we assumed that qualitative and quantitative values reported in AoAs by 

applicants were the results generated by QSAR platforms. For example, in consultation number 

0078-01 for the alternative 1,2,4-trichorobenzene by BIOWIN 3, the applicant did not provide an 

actual QSAR prediction and only said the biodegradation time frame predicted by BIOWIN 3 is 

“months and longer” for the fluoroisomer compared to “weeks to months” for the chlorinated 

benzene (p.105), However, in select instances, we could not go back and confirm the QSAR 

sources if they were not identified by model name and version. In AoA consultation number 

0005-02, the applicant reported “unknown” for irritation: eye irritation for the alternative methyl 

centralite. Perhaps the applicant meant “inconclusive” for which we accepted “equivocal” in 

instances of DQD predictions. Model endpoint information may also have been embedded in an 

AoA, but this is information typically found in a QMRF. Without having this official document 

or access to the original QSAR platform, we could not verify if sporadic information in an AoA 

was what the developer actually described as the model endpoint. In cases where an applicated 

reported a QSAR prediction twice, for example, consultation number 0005-02 for the alternative 

ethyl centralite Irritation: Skin irritation/ corrosion (DEZA A.S. n.d.-a), we accepted it as two 

separate predictions because we did not have the QPRF to verify the prediction either way. 

In addition, all endpoints were based on our curated list of endpoints from Chapter 2. 

While endpoints outside of this list may have excluded potential QSAR predictions from our 

analysis, the consistency of this endpoint classification allowed us to subject previous research to 
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a more in-depth analysis without further classification. However, if applicants did not report a 

specific endpoint, such as in a scoring table, this endpoint did not get coded. For instance, in 

consultation 0005-02, the applicant did not consider test results to be mutagenic, and 

subsequently left off mutagenicity from Table 4.31 (DEZA A.S.) thereby removing it from our 

coding.  

Furthermore, our approach to data-mining and coding may have excluded some aspects 

of an applicant’s WoE from our analysis. When analyzing each AoA, we maintained a narrow 

research path, and did not track criteria outside of our classifications. Specifically, for 

information to be considered under the final criteria “Assess overall WoE package,” the 

applicant needed to make their scientific arguments within an AoA’s “Reduction in overall risk.” 

In consultation number 0005-02, scientific arguments were made for the alternative, Akardite I, 

however, the applicant made these arguments in the comparison of hazards sections. Therefore, 

any scientific argument written under the “Comparison of Hazards” section would not be coded 

under the “Assessment of Overall WoE” criteria but to another criteria such as criterion 3 ‘Pools 

information’. Similarly, for the same consultation number, biodegradability QSAR predictions 

for the alternative ethyl centralite are not discussed in either the RSS or Reduction of overall risk 

even though PBT/vPvB is discussed in the WoE for the alternative ethyl centralite (DEZA A.S. 

n.d.-a; Dow Italia Srl and Rohm and Haas France S.A.S. 2016). Because we are only considering 

CMR and PBT/vPvB endpoints in AoAs that use WoE with QSAR predictions, this information 

did not get coded. Furthermore, we did not always have the coding to explain when criteria were 

not met. Although some AoAs did not meet our five criteria, in other instances, the criteria 

simply did not exist in the AoA. For example, in consultation number 0005-02 for the alternative 

ethyl centralite, we coded the WoE for the reproductive toxicity endpoint as not providing any 
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conflicting results. However, we assigned this code because all of the information in the AoA for 

this endpoint was consistent, which would then have been coded separately for “consistence.”  

If an applicant specified certain endpoints in their approach to WoE, only these endpoints 

could be considered when judging if the evidence met any of our five WoE criteria. For instance, 

in consultation 0005-02, the applicant specified Table 4.86 as the basis for “additional insight” 

into the alternative isodecyl pelargonate (IDP), thus, we could not factor any other endpoint that 

was not on this list into our completeness review, when considering “adequacy” or the usefulness 

of the information. More specifically, we could not code either biodegradation or 

bioaccumulation for “adequacy” because their QSAR predictions were listed on another table 

(DEZA A.S. n.d.-a).  

Finally, because we used the 2018 Danish EPA advisory classifications list to screen for 

potential CMR substances, our results were subject to the factors that went into Danish EPA’s 

ITS QSAR model development, which has been subject to updates since 2001. For example, 

endocrine disrupting (ED) models, which were not included in the Danish EPA’s battery of 

QSAR models for reproductive toxicity, may be considered an important endpoint in 

reproductive toxicity for other model developers (Evans 2015). Even so, ED models have been 

used to identify mechanisms for reproductive toxicity (Jensen et al. 2008). Thus, while other ITS 

QSAR model developers may have taken a different approach in selecting endpoints for battery 

QSAR modelling as well as the selection of algorithms to integrate results, we based our results 

on the Danish EPA’s decision-making. In addition, our sample of AoAs was collected through 

May 2017; more current AoAs may have employed ITS QSAR modeling. 
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Appendix S3 

WoE criteria checklist 

Robust Study Summaries.  Our checklist began with an assessment of robust study 

summaries (RSS) as the first criterion, which are provided as part of WoE under registration. 

According to ECHA, an RSS is (ECHA 2012),  

[A] detailed summary of the objectives, methods, results and conclusions of a full study 

report providing sufficient information to make an independent assessment of the study 

minimizing the need to consult the full study report (Article 3 (28) of REACH).  

Under an endpoint study record (ESR), registrants must provide robust study summaries in the 

technical dossier for each key study used as part of the WoE (ECHA 2016a). ESRs, which record 

relevant endpoint information, are created for each study, such as an in vitro or in vivo study 

(ECHA 2016a). However, in order to meet ECHA’s WoE criteria, a registrant needs to provide 

sufficient evidence, which means that multiple ESRs should be included as well as proper 

documentation (ECHA 2016a). For our checklist, we included the online ESR elements of 

“objectives, methods, and conclusions” for each supporting material. We also examined whether 

applicants provided full documentation for test study results (ECHA 2016a).  

Reliability.  The checklist’s second criterion judged whether an applicant’s WoE analysis 

established the reliability of the WoE studies. Under ECHA guidance, reliability is defined by 

whether the study is “relevant,” “adequate,” and “reliable.” (ECHA 2016a). In their 2016 

practical guide, ECHA defines these scoring terms by their level of appropriateness to the hazard 

endpoint of interest, using a Klimisch score to rate the reliability of the study (ECHA 2016a). 

Reliability and relevance were also identified as fundamental WoE components in the 2017 
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European Safety Authority (EFSA) Guidance on weight of evidence (EFSA Scientific 

Committee et al. 2017). Due to the importance placed on these WoE principles by the different 

regulatory agencies, we adopted these scoring terms as sub-criteria in our checklist, but excluded 

the Klimisch score, which we considered too prescriptive. ECHA also requires that companies 

gather as much information is available on the chemical (ECHA 2016a). We therefore added 

‘quantity’ to our checklist as a sub-criterion to add rigor and transparency. In addition, because 

our completeness review covers higher-tier endpoints, such as CMRs, which have chronic and 

acute dose effects on human health and the environment, we counted consistency of results as 

well as severity and type of effects towards this checkpoint. 

Lines of evidence.   Because an organizational framework for assembling this information 

was missing in ECHA’s WoE guidance, we turned to Rhomberg et al. (2013) and Martin et al.’s 

(2018) reviews on WoE framework and best practices. According to Martin et al. (2018), lines of 

evidence (LOE) are a useful grouping tool for similar information when assessing a substance’s 

hazard. Furthermore, structured tables can help to present evidence. The National Resource 

Council (NRC) advises using structured tables so that different types of infromationc an be 

organized into “individual data streams” that connect to the areas of studies (NRC 2018). Both 

‘LOE’ and ‘structured tables’ were thus added as sub-criteria. Since WoE draws on multiple 

LOEs for integration, we added these aspects to the third criteria of our checklist. However, we 

excluded mechanistic basis (MOA) into data assembly due to the limited number of existing 

MOAs (NRC 2018).  

Conflicting results.   When lines of evidence contain conflicting results, results need to be 

considered in a weighted manner (Rhomberg et al. 2013). Thus, we added ‘conflicting results’ as 

the fourth criterion in our checklist to consider the question of relative weight or strength of 
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evidence. However, aside from stating that high quality in vivo and in vitro results and studies 

should receive greater weight than QSAR results (ECHA 2016a), ECHA provided no further 

steps for rating and weighting these results. For a more explicit weight of evidence framework, 

we turned to Suter et al.’s (2017) assessment, which recommends the use of scoring tables. 

According to Suter et al., a scoring table, which is based on general criteria, such as “reliability” 

and “strength” of information, applies weighting with symbols such as “+, -, 0” to test the 

hypothesis on the chemical (Suter et al. 2017). Included in this step are addressing differences 

and inconsistencies in information. This step thus addresses risk factors that include 

“uncertainty” as well as data integration on points such as “bias,” “rigor” and “cohesion” across 

studies (Rhomberg et al. 2013). For our checklist, we adopted a more flexible version of Suter et 

al.’s scoring table. We accepted any table that indicated and/or compared hazardous endpoints. 

For conflicting results, we accepted if an applicant explained any ambiguities and discrepancies 

(Suter et al. 2017). Because a regulator must be able to effectively infer the subject’s impact, or 

in our case, the alternative chemical (Martin et al. 2018), we included the inference of any health 

effects from weighting to our checklist. 

Final assessment.  Finally, all evidence, which has been carefully classified and weighed, 

needs to be integrated into a final assessment based on expert judgment. ECHA notes that a WoE 

expert must have knowledge in the “relevant endpoints” and “study methods,” and must be able 

to make scientific judgments (ECHA 2016a). Rhomberg et al. (2013) describes a WoE expert as 

someone who is a specialized in toxicology, epidemiology or methodology. Yet, ECHA does not 

lay out any expectations as to how this expert should be identified in a REACH AoA. While 

“prescriptive reporting templates” have been discussed as a way to systemize collective expert 

judgement, this type of large-scale regulatory change is beyond the scope of this paper (Martin et 
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al. 2018). For our study on AoAs, the “Conclusions” and “Reduction of Overall Risks” sections 

represent this final assessment, which we coded as  “Assess overall WoE package.” To 

determine whether expert judgment was used, we looked for any detailed discussion in the form 

of a conclusion that considered the reliability, relevance and adequacy of WoE information, 

which has been integrated and compared, and assigned a weight to each piece of data ((ECHA 

2016a). For this criterion, we examined the extent to which applicants drew conclusions on the 

safety of the alternative relative to the Annex XIV chemical. 
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Appendix S4 

Sub-criteria coding for higher-tier endpoints 
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Appendix S5 

Danish EPA advisory self-classifications 
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Appendix S6 

Consultation numbers 

• 0005-02 methyl centralite for Genetic toxicity: In vivo – Chromosomal effect, the 

applicant wrote “equivocal” instead of inconclusive, and also reported that the results 

were in AD. But after querying the predictions myself in the DQD, we saw that results 

for that endpoint were out of domain (DTU FOOD et al. 2019). The applicant therefore 

appeared to incorrectly report the results. 

• 0005-02 ethyl centralite for genotoxicity in vivo- For sister chromatid exchange in mouse 

bone marrow cells, it appears that the applicant reported the same QSAR prediction 

twice. Also the applicant wrote equivocal in domain, but the report says: “positive out of 

domain (battery)” (DTU FOOD et al. 2019). 

• 0005-02 Akardite II: QSAR prediction for unscheduled DNA repair response based on a 

mouse bone marrow sister chromatid exchange assay, from the Danish (Q)SAR 

Database: Danish (Q)SAR Database battery result reported inconclusive out of domain 

but applicant stated equivocal in domain. And all 3 QSARs (Leadscope, Multicase 

SciQSAR) had “Pos out of domain” (DTU FOOD et al. 2019). 

• 0005-02 Akardite III: Applicant reported equivocal instead of inconclusive and said in 

domain when the DQD report said out of domain. QSAR prediction for Chinese Hamster 

Ovary (CHO) cell assay for chromosome aberration test, from the Danish (Q)SAR 

Database (DTU FOOD et al. 2019).  

• 0005-02 DOZ: QSAR prediction for chromosomal aberration in an in vitro COMET 

assay in mouse cells, from the DQD: we queried the predictions for DOZ and could not 

find a COMET assay for mouse cells in the DQD’s in vitro Genotoxicity Endpoints 
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results. QSAR prediction for chromosome aberration in a Chinese Hamster Ovary (CHO) 

assay, from the DQD reported Negative, in domain for Chromosome Aberrations in 

Chinese Hamster Ovary (CHO) Cells (DTU FOOD et al. 2019). 

• 0005-02 TBC: QSAR prediction for chromosome aberration in Chinese hamster ovary 

(CHO) cells from the DQD: applicant reported equivocal but still in domain. Results 

from the DQD reported negative in domain (DTU FOOD et al. 2019). 
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Appendix S7 

WoE completeness by CMR and PBT/vPvB endpoints 
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5. Chapter 5:   Conclusions 

 Although QSARs have been assessed under registration, no one has evaluated QSARs 

used under authorization. More specifically, ECHA has yet to assess how AoA applicants use 

alternative methods such as QSARs, which are important for filling in data gaps, identifying 

positive alerts for higher-tier endpoints, and for strength of evidence systems such as WoE and 

ITS. This study, therefore, serves as an initial foundation to help strengthen future regulatory 

decisions within REACH authorization and more broadly for the future of alternatives 

assessment. 

 The research I conducted begins by setting up a context for QSAR use, which I then 

follow with a procedural examination of QSARs used in REACH AoAs. To advance the work 

related to the usage and purpose of QSARs in chapters three and four, I initiated a formal 

background training on how QSARs operate and are developed as regulatory models. Namely, I 

immersed myself in DTU’s QSAR lab and learned the nature and use of QSARs through the 

development of four new QSARs for nuclear receptor CAR.  Chapter three drew from this 

understanding of the proper use of QSARs and focused on profiling QSAR usage by applicants 

in REACH AoAs. Chapter four then provided a more in-depth analysis, revealing issues 

regarding transparency and WoE criteria fulfillment, in addition to the potential benefits of ITS 

battery QSAR predictions to identify potential CMR substances.  

Future research needs 

Limited use of QSARs   

This analysis demonstrated limited QSAR use in AoAs. In this study, only 25 of the 189 

AoAs  utilized QSARs. One reason for limited QSAR use could be that in emphasizing the use 

of QSARs in a WoE context under ECHA’s general approach to QSARs under REACH, 
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applicants may have shied away from information on their alternative for which QSAR 

predictions gave the only available data. In general, ECHA’s guidance seems to accept QSARs 

mostly within the context of WoE, which requires all available historical and testing information 

on the substance, with a priority on experimental data. In this study, I found evidence of 

applicants prescribing to this guidance. In AoA consultation number 0078-01, the applicants 

Dow Italia Srl and Rohm and Haas France S.A.S. excluded the PNECfreshwater value for 

methylene chloride (DCM) from ECHA CHEM under individual submission because it was 

based solely on QSAR predictions (Dow Italia Srl and Rohm and Haas France S.A.S. 2016). The 

applicant Eli Lilly S.A. - Irish Branch for AoA consultation number 0077-01, who also assessed 

DCM, provided the same reasoning (Eli Lilly S.A. Irish Branch n.d.). At the same time, ECHA 

has issued guidance that supports the use of standalone QSAR predictions, at least under ideal 

conditions (ECHA 2008). In other AoAs, such as consultation numbers 0006-01 and 0005-02, 

QSAR data were the only information available (DEZA A.S. n.d.-a; Sasol-Huntsman GmbH & 

Co. KG n.d.). In these instances, standalone QSAR use may seemingly be interpreted as an 

acceptable approach to QSAR use in REACH though missing QSAR documentation hampers the 

ability of ECHA to corroborate whether the condition was “ideal” or not. 

These conflicting regulatory points of views on whether QSARs can be used as 

standalone tools point to a larger regulatory debate: Does the greater good lie with QSARs being 

used with the most conservative approach? Or will pushing the boundaries of how QSAR 

predictions can be used ultimately prevent untested, toxic chemicals from escaping regulation? 

Who could help push this debate is industry. Results from an ORCHESTRA online questionnaire 

on QSARs allude to this point (Mays et al. 2012). If certain industries can successfully use 

certain QSAR tools for REACH then others may view this as an example of a successful 
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application of QSARs and in turn use QSARs themselves. Though not perfectly correlated, I 

observed a similar trend in the use of the Danish (Q)SAR Database. With its user-friendly 

interface, accurate predictions, and diverse database of over 600,000 substances (DTU FOOD et 

al. 2019), the Danish (Q)SAR Database was the most used out of all of the QSAR sources on the 

“default” list for most endpoints.  

As part of this debate, definitive answers pertaining to the use of QSARs under REACH 

may change as QSARs become more advanced (Luechtefeld et al. 2018), and as regulations 

continue to evolve (Benigni et al. 2007; NRC 2014b; Worth 2010a). However, for now, unless 

more companies are encouraged to use QSARs, particularly under authorization, this debate may 

languish unnecessarily, and standalone QSAR use may continue to be the rare exception. But 

with the current awareness that a lack of data on alternative chemicals can lead to misinformed 

decision-making (Jacobs et al. 2016) as well as impact the consistency in the alternatives 

analysis process (Tickner et al. 2013), it is worth considering the implications of companies 

operating on an inconsistent understanding of QSAR requirements, and leaving out standalone 

QSAR data even if it is the only data that points to a safer alternative. I, therefore, recommend 

that ECHA consider producing more specific guidance that provides a “fit-for-purpose” 

approach to QSAR use for authorization and perhaps more generally for REACH to help 

applicants understand how to use QSAR data in AoAs. This guidance should establish the 

specific circumstances in which standalone use is required, those where is standalone is 

permitted, and those where standalone is disallowed. 

QSAR documentation    

 This study revealed that for all 25 AoAs, applicants did not attach required supporting 

QMRF and QPRF documentation for QSAR predictions. Missing QMRF and QPRF 
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documentation poses a potential obstacle if regulators and stakeholders are trying to determine 

the quality of QSAR tools and data in AoAs. In addition, results from the QPRF information 

review showed that in most instances, an equivalent method of providing QPRF criteria in AoAs 

did not exist though applicants tended to provide the majority of priority criteria information as 

part of the AoA.  

 Given the missing documentation, one of my conclusions pointed towards the need for an 

explicit mandate to include QMRFs and QPRFs with AoAs if QSARs are used. Namely, because 

without setting clearer requirements under authorization, companies, which may already be 

disincentivized to find a safer alternative(s), particularly if their real motivation is the continued 

use of their incumbent chemical, may never inquire as to their obligation to include proper 

documentation, if by doing so, makes them more accountable. In fact, AoAs may already have 

been submitted that do not properly examine their QSAR models or provide suitable support in 

their WoE using QSARs. One of the most significant implications is that an Annex XIV 

chemical could get authorized based on inaccurate or incomplete information. While these points 

are hypothetical, I believe they lie on a possible trajectory of improperly documented AoAs that 

are submitted to ECHA. 

WoE using QSARs   

Only a limited number of AoAs used WoE with QSARs. Based on this study, WoE 

completeness depended on the main criteria and hazard endpoint. In addition, the completeness 

review showed that certain sub-criteria played a role in whether the main criteria were fulfilled 

or not, for example, expert judgment. For instance, as expert judgment comes into play, having a 

clearly explained WoE in an acceptable format becomes increasingly important. After all, 

regulators rely on the underlying logic of the author’s qualitative conclusions to make sound 
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decisions (Rhomberg et al. 2013). In fact, according to the U.S. EPA, WoE hinges on expert 

decision-making (ECHA 2016a; U.S. EPA 2011). ECHA notes that a WoE expert must have 

knowledge of the “relevant endpoints” and “study methods,” and be able to make scientific 

judgments (ECHA 2016a). Likewise, Rhomberg et al. (2013) describes a WoE expert as 

someone who is a specialized in “toxicology” or “epidemiology” or an equivalent field. Yet, 

REACH WoE guidance is missing any expectations as to how this expert should be identified in 

an AoA. Thus, including the names of the WoE experts along with contact information, and 

background could help shed light on their qualifications and possibly give a starting point for 

where applicants could improve their WoE completeness. At the same time, given the unique 

nature of WoE in regulatory submissions, which “inevitably requires subjective judgment,” room 

needs to be made for the possibility that WoE conclusions may come out differently in similar 

cases (Suter et al. 2017).  

ITS    

In this study, I compared all 24 AoAs from the previous sample that used QSARs to 

assess final, selected alternatives (Chapter 2) with the 2019 Danish EPA QSAR Dangerous 

Properties list to screen for potential CMR substances that AoA applicants might have missed. 

Most AoAs did not have overlapping alternatives with chemicals on the Danish EPA advisory 

classification list. However, I found overlap for four chemicals between the Danish EPA 

advisory classification list and my CMR list, for which the Danish EPA assigned a Repr. 2 

advisory classification for all four chemicals. More importantly, Danish EPA battery QSAR 

predictions did not consistently compare with the applicants’ conclusions. While applicants did 

identify reproductive toxicity for the alternative bis(2-ethylhexyl) adipate (DEHA), no 

identification for reprotxicity was made by bis(2-propylheptyl) phthalate (DPHP), acetyl tributyl 
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citrate (ATBC), or tributyl citrate (TBC) for reproductive toxicity under normal exposure. Thus, 

the use of ITS not only has the potential to provide more information, but also, as demonstrated 

by my evaluation, to provide contrasting outcomes. Advancements in in silico models, such as 

QSARs, have enhanced the accuracy of predictions to exceed, at least under ideal conditions, 

animal tests (Luechtefeld et al. 2018), which in the past have been considered the “gold 

standard” for reliable results (Hartung et al. 2013). ITS is thus viewed as the next step forward in 

regulatory toxicologist assessment, which for future AoAs and even registration dossiers, could 

mean a greater breadth of information and perhaps a more complete hazard profile for 

alternatives being assessed. Though ITS does not have an inherent regulatory purpose, ITS is 

increasingly used for regulatory decision-making, oftentimes in a WoE context (Worth 2010a), 

which has the potential for far-reaching benefits in cases where experimental information is 

limited or missing.  

Summary 

This research highlights multiple areas of QSAR use in REACH AoAs, which contribute 

to the determination of safety of alternatives. Initially, four CAR models for antagonism and 

agonism were developed in Denmark at DTU to give a background and advance the analysis on 

QSAR usage in chapters three and four. In chapter three, I identified trends in model use and 

frequency upon data-mining 189 AoAs, which I further explored in chapter four. Results from 

this second study gave more substantive answers regarding the limited use of WoE contexts for 

QSARs as well as the small number of AoAs that met the five WoE criteria. Finally, a 

comparative analysis between the Danish EPA’s advisory classification for overlapping 

chemicals in this study indicated that more information could be made available for CMR 

substances when using ITS battery QSAR models.  



 159 

Even though this research was extensive, additional studies are needed to analyze AoAs 

from May 2017 to the present. More specifically, the small sample size of AoAs may not be 

representative of the work performed by a larger sample of applicants. For this study, most of the 

AoAs in my sample were conducted by companies or consultants who had little toxicological 

knowledge. As a result, their degree of training would have made it nearly impossible for the 

companies or consultants to know how to use a QSAR or to know to take advantage of available 

predictions. So perhaps the real issue is how to convert QSARs into useful tools like ECOSAR 

or the Danish (Q)SAR Database. Furthermore, with a larger sample size, additional comparisons 

could be drawn with the Danish EPA advisory classifications. As a possible solution, generating 

regulatory guidance for AoAs that defines rules to follow upon adopting QSAR strategies might 

help applicants understand how to maximize QSAR opportunities in their AoAs. Some of the 

methodologies employed in this study such as analyzing QSAR use by QSAR source could also 

be applied to QSAR use in registration dossiers. Currently, ECHA analyzes QSAR usage in 

registration by endpoint study records (ESR). However, tracking the types of QSAR sources 

could provide further background information for limited or frequent QSAR use for certain 

endpoints.  

If monitoring the function of QSAR sources for filling in data gaps and generating high 

quality information through WoE, ITS and proper documentation help to provide more 

information in AoAs, they should be monitored with equal if not more stringency in other parts 

of REACH as well. Additionally, it is important to focus on how QSAR data contributes to 

assessing chemicals for higher-tier endpoints where vulnerable populations and wildlife are the 

most susceptible to harm. While more research is needed to assess QSAR usage under REACH 

authorization, ignoring the implications given in this study could subvert the purpose of AoAs 
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and influence the attitude of industry, which could impact towards other forms of alternatives 

assessment employed in other parts of the world. 

  



 161 

References 
 
 
[ECHA] European Chemicals Agency. 2008. Guidance on information requirements and 

chemical safety assessment. Chapter R.6: QSARs and grouping of chemicals. Available: 

https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-

chemical-safety-assessment [accessed January 22, 2019]. 

[ECHA] European Chemicals Agency. 2019. Authorisation. Available: 

https://echa.europa.eu/substances-of-very-high-concern-identification-explained 

[accessed November 20 2019]. 

ACD/Labs. 2019. ACD/Percepta Portal. Available: https://www.acdlabs.com/products/percepta/ 

[accessed November 11 2019]. 

Akhtar A. 2015. The flaws and human harms of animal experimentation. Cambridge Quarterly 

of Healthcare Ethics 24:407-419. 

AkzoNobel Pulp and Performance Chemicals. 2015. Use 1: Use of sodium dichromate as an 

additive for suppressing parasitic reactions and oxygen evolution, pH buffering and 

cathode corrosion protection in the electrolytic manufacture of sodium chlorate, with or 

without subsequent production of chlorine dioxide; Use 2: Use of sodium dichromate as 

an additive for suppressing parasitic reactions and oxygen evolution, pH buffering and 

cathode corrosion protection in the electrolytic manufacture of potassium chlorate. 

Consultation number 0041-01. European Chemicals Agency. Available: 

https://echa.europa.eu/public-consultations [accessed November 12, 2019]. 

Alexander SP, Cidlowski JA, Kelly E, Marrion N, Peters JA, Benson HE, et al. 2015. The 

concise guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British 

journal of pharmacology 172:5956, doi: https://doi.org/10.1111/bph.1335. 



 162 

American Chemical Society (ACS). 2019. CAS REGISTRY and CAS Registry Number FAQs. 

Available: https://www.cas.org/support/documentation/chemical-substances/faqs 

[accessed August 30 2019]. 

Angrish M, Chorley B. 2018. AOP: 58: NR1I3 (CAR) suppression leading to hepatic steatosis. 

Available: https://aopwiki.org/aops/58 [accessed September 12 2019]. 

ARKEMA. 2013a. Analysis of Alternatives Non-Confidential Report: Industrial use in polymer 

processing by calendering, spread coating, extrusion, injection moulding to produce PVC 

articles [except erasers, sex toys, small household items (<10cm ) that can be swallowed 

by children, clothing intended to be worn against the bare skin; also toys, cosmetics and 

food contact material (restricted under other EU regulation)]. 0002-02. European 

Chemicals Agency. Available: https://echa.europa.eu/public-consultations. 

ARKEMA. 2013b. Analysis of Alternatives Non-Confidential Report: Formulation of DEHP in 

compounds, dry-blends and plastisol formulations. Industrial use in polymer processing 

by calendering, spread coating, extrusion, injection moulding to produce PVC articles 

[except erasers, sex toys, small household items (<10cm) that can be swallowed by 

children, clothing intended to be worn against the bare skin; also toys, cosmetics and food 

contact material (restricted under other EU regulation)]. 0002-01. European Chemicals 

Agency. Available: https://echa.europa.eu/public-consultations. 

Auld DS, Inglese J. 2018. Interferences with luciferase reporter enzymes. In: Assay Guidance 

Manual [Internet], (Sittampalam GS, Grossman A, Brimacombe K, Coussens NP, Arkin 

M, Auld D, et al., eds). Bethesda (MD): Eli Lilly & Company and the National Center for 

Advancing Translational Sciences. 



 163 

Barley M, McFiggans G. 2010. The critical assessment of vapour pressure estimation methods 

for use in modelling the formation of atmospheric organic aerosol. Atmospheric 

Chemistry and Physics 10:749-767. 

Bassan A, Worth AP. 2008. The integrated use of models for the properties and effects of 

chemicals by means of a structured workflow. QSAR & Combinatorial Science 27:6-20, 

doi: https://doi.org/10.1002/qsar.200710119. 

Benfenati E, Diaza RG, Cassano A, Pardoe S, Gini G, Mays C, et al. 2011. The acceptance of in 

silico models for REACH: Requirements, barriers, and perspectives. Chemistry Central 

Journal 5:58. 

Benfenati E. 2012. Theory, guidance and applications on QSAR and REACH. First ed. Milan, 

Italy: Istituto di Ricerche Farmacologiche “Mario Negri”. 1-175. 

Benfenati E, Pardoe S, Martin T, Gonella Diaza R, Lombardo A, Manganaro A, et al. 2013. 

Using toxicological evidence from QSAR models in practice. ALTEX - Alternatives to 

animal experimentation 30:19-40, doi: https://doi.org/10.14573/altex.2013.1.019. 

Benfenati E, Lombardo A, Roncaglioni A. 2018. Chapter 9: Computational toxicology and 

REACH. In: Computational Toxicology: Risk Assessment for Chemicals, (Ekins S, ed). 

Hoboken, NJ: Computational Toxicology: Risk Assessment for Chemicals, 245-268. 

Benigni R, Netzeva TI, Benfenati E, Bossa C, Franke R, Helma C, et al. 2007. The expanding 

role of predictive toxicology: an update on the (Q)SAR models for mutagens and 

carcinogens. Journal of Environmental Science and Health Part C 25:53-97, doi: 

https://doi.org/10.1080/10590500701201828. 

Breiman L. 1996. Bagging predictors. Machine learning 24:123-140, doi: 

https://doi.org/10.1007/BF00058655. 



 164 

Caffaro Brescia S.r.l. 2015. Use of sodium dichromate as an additive for suppressing parasitic 

reactions and oxygen evolution, pH buffering and cathode corrosion protection in the 

electrolytic manufacture of sodium chlorite. Consultation number 0040-01. European 

Chemicals Agency. Available: https://echa.europa.eu/public-consultations [accessed 

November 12, 2019]. 

ChemAxon. 2014. ChemAxon Documentation: Calculator Plugins User’s Guide Physico-

chemical plugins. Available: https://docs.chemaxon.com/display/docs/Physico-

chemical+plugins [accessed December 9 2019]. 

ChemAxon. 2019. Calculators and Predictors: High-quality physico-chemical calculations and 

predictions for drug discovery. Available: https://chemaxon.com/products/calculators-

and-predictors [accessed December 9 2019]. 

Cooper II J, Saracci R, Cole P. 1979. Describing the validity of carcinogen screening tests. 

British Journal of cancer 39:87. 

Cronin MT, Jaworska JS, Walker JD, Comber MH, Watts CD, Worth AP. 2003. Use of QSARs 

in international decision-making frameworks to predict health effects of chemical 

substances. Environmental Health Perspectives 111:1391, doi: 10.1289/ehp.5760. 

Cronin MT. 2010. Prediction of harmful human health effects of chemicals from structure. In: 

Recent Advances in QSAR Studies Challenges and Advances in Computational 

Chemistry and Physics, Vol. 8, (Puzyn T, Leszczynski J, Cronin MT, eds): Springer, 

Dordrecht, 305-325. 

Dassault Systemes Biovia. 2019. QSAR, ADMET AND Predictive Toxicology with BIOVIA 

Discovery Studio Datasheet. San Diego, CA: Dassault Systems. Available: 

http://www.3dsbiovia.com/products/datasheets/qsar-admet-and-predictive-toxicology-

with-ds.pdf [accessed December 9, 2019]. 



 165 

DEZA A.S. 2013a. Analysis of Alternatives Non-Confidential Report: Use of DBP in propellants 

Formulation: Industrial use of DBP as a burning rate surface moderant, plasticiser and/or 

coolant in the formulation of nitrocellulose-based propellant grains. Use at industrial site: 

Industrial use of DBP-containing propellant grains in manufacture of ammunition for 

military and civilian uses, and pyrocartridges for aircraft ejection seat safety systems 

[includes propellants for police force ammunition and excludes propellants intended for 

manual, private reloading of ammunition cartridges by civilian users, i.e., licensed 

individual sports shooters and hunters. No direct consumer use of DBP or its mixtures is 

covered by this Use. . Consultation number 0004-01. European Chemicals Agency. 

Available: https://echa.europa.eu/applications-for-authorisation-consultation [accessed 

January 22, 2019]. 

DEZA A.S. 2013b. Analysis of Alternatives Non-Confidential Report: Formulation of DEHP in 

compounds, dry-blends and plastisol formulations. Industrial use in polymer processing 

by calendering, spread coating, extrusion, injection moulding to produce PVC articles 

[except erasers, sex toys, small household items (<10cm) that can be swallowed by 

children, clothing intended to be worn against the bare skin; also toys, cosmetics and food 

contact material (restricted under other EU regulation)]. Consultation number 0004-02. 

European Chemicals Agency. Available: https://echa.europa.eu/public-consultations 

[accessed January 22, 2019]. 

DEZA A.S. n.d.-a. Analysis of Alternatives Non-Confidential Report: Use in propellants: Sub-

scenario 1: F-2: Industrial use as a burning rate surface moderant, plasticiser and/or 

coolant in the formulation of nitrocellulose-based propellant grains. Sub-scenario 2: IW-

2: Industrial use of propellant grains in manufacture of ammunition for military and 

civilian uses, and pyrocartridges for aircraft ejection seat safety systems [excludes 



 166 

propellants intended for manual reloading of ammunition cartridges by civilian users]. 

Consultation number 0005-02. European Chemicals Agency. Available: 

https://echa.europa.eu/public-consultations [accessed November 12, 2019]. 

DEZA A.S. n.d.-b. Analysis of Alternatives Non-Confidential Report: Use as an absorption 

solvent in a closed system in the manufacture of maleic anhydride (MA). Consultation 

number 0005-01. European Chemicals Agency. Available: https://echa.europa.eu/public-

consultations [accessed January 22, 2019]. 

di Masi A, De Marinis E, Ascenzi P, Marino M. 2009. Nuclear receptors CAR and PXR: 

Molecular, functional, and biomedical aspects. Molecular aspects of medicine 30:297-

343, doi: https://doi.org/10.1016/j.mam.2009.04.002. 

Dong B, Saha PK, Huang W, Chen W, Abu-Elheiga LA, Wakil SJ, et al. 2009. Activation of 

nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proceedings of the 

National Academy of Sciences 106:18831-18836, doi: 

https://doi.org/10.1073/pnas.0909731106. 

Dow Italia Srl, Rohm and Haas France S.A.S. 2016. Analysis of Alternatives Public Version: 

Industrial use as a sulphonation swelling agent of polystyrene-divinylbenzene copolymer 

beads in the production of strong acid cation exchange resins. Consultation number 0078-

01 European Chemicals Agency. Available: https://echa.europa.eu/public-consultations 

[accessed January 22, 2019]. 

Dring AM, Anderson LE, Qamar S, Stoner MA. 2010. Rational quantitative structure–activity 

relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor 

ligands. Chemico-biological interactions 188:512-525, doi: 

https://doi.org/10.1016/j.cbi.2010.09.018. 



 167 

DTU Food (Technical University of Denmark National Food Institute). 2018a. User Manual for 

the Danish (Q)SAR Database. Available: 

http://qsarmodels.food.dtu.dk/DB_user_manual_21_12_2018.pdf [accessed November 18 

2019]. 

DTU Food (Technical University of Denmark National Food Institute). 2018b. User Manual for 

the Danish (Q)SAR Database. Lyngby, Denmark: Technical University of Denmark. 

Available: http://qsarmodels.food.dtu.dk/DB_user_manual_21_12_2018.pdf [accessed 

January 3, 2019]. 

DTU Food (Technical University of Denmark National Food Institute), Danish EPA (Danish 

Environmental Protection Agency), Nordic Council of Ministers, ECHA (European 

Chemicals Agency). 2019. Danish (Q)SAR Database. Available: http://qsar.food.dtu.dk 

[accessed November 18 2019]. 

EC (European Commission). 2019. Growth: Internal Market, Industry, Entrepeneurship and 

SMEs: How REACH Works. Available: 

https://ec.europa.eu/growth/sectors/chemicals/reach/about_en [accessed June 8 2019]. 

EC JRC EURL ECVAM (European Commission Joint Research Centre European Union 

Reference Laboratory for Alternatives to Animal Testing). 2019. JRC QSAR Model 

Database. Available: https://qsardb.jrc.ec.europa.eu/qmrf [accessed November 17 2019]. 

ECHA (European Chemicals Agency). 2008. Guidance on information requirements and 

chemical safety assessment. Chapter R.6: QSARs and grouping of chemicals. Helsinki, 

Finland. Available: 

https://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf 

[accessed September 15, 2019]. 



 168 

ECHA (European Chemicals Agency). 2010. Practical guide 2: how to report weight of 

evidence. Helsinki, Finland. 

ECHA (European Chemicals Agency). 2011a. Guidance on information requirements and 

chemical safety assessment Part B: Hazard Assessment. Helsinki, Finland. Available: 

https://echa.europa.eu/guidance-documents/guidance-on-information-requirements-and-

chemical-safety-assessment [accessed September 1, 2019]. 

ECHA (European Chemicals Agency). 2011b. Guidance on the Preparation of an Application for 

Authorization. Hesinki, Finland. Available: https://echa.europa.eu/guidance-

documents/guidance-on-reach [accessed January 22, 2019]. 

ECHA (European Chemicals Agency). 2012. How to report robust study summaries Practical 

Guide 3 Version 2.0 Helsinki, Finland. Available: 

https://echa.europa.eu/documents/10162/13643/pg_report_robust_study_summaries_en.p

df/1e8302c3-98b7-4a50-aa22-f6f02ca54352 [accessed August 3, 2019]. 

ECHA (European Chemicals Agency). 2013. Evaluation under REACH: Progress Report 2013. 

Helsinki, Finland. Available: 

https://echa.europa.eu/documents/10162/13628/evaluation_report_2013_en.pdf [accessed 

January 22, 2019]. 

ECHA (European Chemicals Agency). 2014. The Use of Alternatives to Testing on Animals for 

the REACH Regulation: Second report under Article 117(3) of the REACH Regulation. 

Helsinki, Finland. Available: 

https://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2014_en.pdf 

[accessed January 22, 2019]. 

ECHA (European Chemicals Agency). 2016a. Practical guide: How to use alternatives to animal 

testing to fulfil your information requirements for REACH registration Version 2.0. 



 169 

Helsinki, Finland. Available: 

https://echa.europa.eu/documents/10162/13655/practical_guide_how_to_use_alternatives

_en.pdf [accessed January 22, 2019]. 

ECHA (European Chemicals Agency). 2016b. Practical guide: How to use and report (Q)SARs 

Version 3.1. Helsinki, Finland. Available: 

https://echa.europa.eu/documents/10162/13655/pg_report_qsars_en.pdf [accessed 

January 22, 2019]. 

ECHA (European Chemicals Agency). 2016c. Report on the Operation of REACH and CLP 

2016. Helsinki, Finland. Available: 

https://echa.europa.eu/documents/10162/13634/operation_reach_clp_2016_en.pdf 

[accessed January 22, 2019]. 

ECHA (European Chemicals Agency). 2017a. The use of alternatives to testing on animals for 

the REACH Regulation: Third report under Article 117(3) of the REACH Regulation. 

Helsinki, Finland. Available: 

https://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2017_en.pdf 

[accessed June 18, 2019]. 

ECHA (European Chemicals Agency). 2017b. Guidance on Information Requirements and 

Chemical Safety Assessment: Chapter R.7b: Endpoint specific guidance. Helsinki, 

Finland. Available: https://echa.europa.eu/web/guest/guidance-documents/guidance-on-

information-requirements-and-chemical-safety-assessment [accessed January 22, 2019]. 

ECHA (European Chemicals Agency). 2017c. Evaluation under REACH: Progress Report 2017: 

10 years of experience. Helsinki, Findland: European Chemicals Agency. Available: 

https://echa.europa.eu/documents/10162/13628/evaluation_under_reach_progress_en.pdf

/24c24728-2543-640c-204e-c61c36401048 [accessed July 26, 2019]. 



 170 

ECHA (European Chemicals Agency). 2017d. Guidance on Information Requirements and 

Chemical Safety Assessment: Chapter R.7a: Endpoint specific guidance. Helsinki, 

Finland. Available: https://echa.europa.eu/web/guest/guidance-documents/guidance-on-

information-requirements-and-chemical-safety-assessment [accessed January 22, 2019]. 

ECHA (European Chemicals Agency). 2018. QSAR models. Available: 

https://echa.europa.eu/support/registration/how-to-avoid-unnecessary-testing-on-

animals/qsar-models [accessed December 7 2019]. 

ECHA (European Chemicals Agency). 2019a. About Us. Available: 

https://echa.europa.eu/about-us [accessed November 20 2019]. 

ECHA (European Chemicals Agency). 2019b. Understanding CLP. Available: 

https://echa.europa.eu/regulations/clp/understanding-clp [accessed August 27 2019]. 

ECHA (European Chemicals Agency). 2019c. ECHA Newsletter: What happens with potential 

chemicals of concern? Available: https://newsletter.echa.europa.eu/home/-

/newsletter/entry/what-happens-with-potential-chemicals-of-concern- [accessed 

December 8 2019]. 

ECHA (European Chemicals Agency). 2019d. Understanding REACH. Available: 

https://echa.europa.eu/regulations/reach/understanding-reach [accessed June 8 2019]. 

ECHA (European Chemicals Agency). 2019e. Authorization. Available: 

https://echa.europa.eu/substances-of-very-high-concern-identification-explained 

[accessed November 20 2019]. 

ECHA (European Chemicals Agency). 2019f. ECHA Regulations: REACH Registration 

Information Requirements. Available: 

https://echa.europa.eu/regulations/reach/registration/information-requirements [accessed 

January 22 2019]. 



 171 

ECHA (European Chemicals Agency). 2019g. Hot topics: Endocrine disruptors. Available: 

https://echa.europa.eu/hot-topics/endocrine-disruptors [accessed April 25 2019]. 

ECHA (European Chemicals Agency). 2019h. Adopted opinions and previous consultations on 

applications for authorisation. Available: 

https://echa.europa.eu/regulations/reach/authorisation/applications-for-authorisation 

[accessed November 20 2019]. 

ECHA (European Chemicals Agency). 2019i. Community Rolling Action Plan. Available: 

https://echa.europa.eu/information-on-chemicals/evaluation/community-rolling-action-

plan [accessed August 31 2019]. 

EFSA Scientific Committee, Hardy Anthony, Benford Diane, Halldorsson Thorhallur, Jeger 

Michael John, Knutsen Helle Katrine, et al. 2017. Guidance on the use of the weight of 

evidence approach in scientific assessments. EFSA Journal 15:e04971. 

Eli Lilly S.A. Irish Branch. n.d. Analysis of Alternatives Public Version: Industrial use as a 

reaction medium and a solvating agent in mediating subsequent chemical transformation 

reactions leading to the manufacture of an Active Pharmaceutical Ingredient, Raloxifene 

Hydrochloride. Consultation number 0077-01. European Chemicals Agency. Available: 

https://echa.europa.eu/public-consultations [accessed January 22, 2019]. 

EPA (Danish Environmental Protection Agency). 2009. The advisory list for self-classification 

of dangerous substances. Part Environmental Project No. 1322 2010, (Niemelä JR, 

Wedebye EB, Nikolov NG, Jensen GE, Ringsted T, Ingerslev F, et al., eds). Copenhagen, 

Denmark: Danish EPA. 

EPA (Danish Environmental Protection Agency). 2013. Use of QSAR to identify potential CMR 

substances of relevance under the REACH regulation: Environmental Project No. 1503, 



 172 

2013. (Wedebye EB, Niemelä JR, Nikolov NG, Dybdahl M, eds). Copenhagen, 

Denmark: Danish Environmental Protection Agency. 

EPA (Danish Environmental Protection Agency). 2018a. Brief documentation on the (Q)SAR 

models and the algorithms used for the advisory list for self classification. Available: 

https://eng.mst.dk/chemicals/chemicals-in-products/assessment-of-chemicals/the-

advisory-list-for-self-classification-of-hazardous-substances/ [accessed September 19 

2019]. 

EPA (Danish Environmental Protection Agency). 2018b. The advisory list for self classification 

of hazardous substances. Available: https://eng.mst.dk/chemicals/chemicals-in-

products/assessment-of-chemicals/the-advisory-list-for-self-classification-of-hazardous-

substances/ [accessed September 19 2019]. 

Ercros S.A. 2015. Use of sodium dichromate as an additive for suppressing parasitic reactions 

and oxygen evolution, pH buffering and cathode corrosion protection in the electrolytic 

manufacture of sodium chlorate with or without subsequent production of chlorine 

dioxide or sodium chlorite. Consultation number 0037-01. European Chemicals Agency. 

Available: https://echa.europa.eu/public-consultations [accessed November 12, 2019]. 

Estrada E. 2008. How the parts organize in the whole? A top-down view of molecular 

descriptors and properties for QSAR and drug design. Mini reviews in medicinal 

chemistry 8:213-221, doi: https://doi.org/10.2174/138955708783744128. 

European Parliament and the Council of the European Union. 2006. Regulation (EC) No 

1907/2006 of the European Parliament and of the Council of 18 December 2006 

concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals 

(REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC 

and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) 



 173 

No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 

91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Available: http://eur-

lex.europa.eu/eli/reg/2006/1907/oj/eng [accessed January 22, 2019]. 

Evans TJ. 2015. Reproductive toxicity and endocrine disruption of potential chemical warfare 

agents. In: Handbook of Toxicology of Chemical Warfare Agents: Elsevier, 599-613. 

Francis GA, Fayard E, Picard F, Auwerx J. 2003. Nuclear receptors and the control of 

metabolism. Annual review of physiology 65:261-311, doi: 

https://doi.org/10.1146/annurev.physiol.65.092101.142528. 

Friedman KP, Gilbert ME, Crofton KM. 2016. AOP: 8: Upregulation of Thyroid Hormone 

Catabolism via Activation of Hepatic Nuclear Receptors, and Subsequent Adverse 

Neurodevelopmental Outcomes in Mammals Available: https://aopwiki.org/aops/8 

[accessed September 12 2019]. 

Gao J, Xie W. 2012. Targeting xenobiotic receptors PXR and CAR for metabolic diseases. 

Trends in pharmacological sciences 33:552-558. 

Garg R, Smith CJ. 2014. Predicting the bioconcentration factor of highly hydrophobic organic 

chemicals. Food and chemical toxicology 69:252-259, doi: 

https://doi.org/10.1016/j.fct.2014.03.035. 

Gentrochema BV. n.d. Analysis of Alternatives: Use of Sodium dichromate for surface treatment 

of metals such as aluminium, steel, zinc, magnesium, titanium, alloys, composites, 

sealings of anodic films. Consultation number 0063-02. Available: 

https://echa.europa.eu/public-consultations [accessed January 22, 2019]. 

Gong H, Xie W. 2008. Chapter 7: Animal Models of Xenobiotic Nuclear Receptors and their 

Utility in Drug Development. In: Nuclear receptors in drug metabolism, (Xie W, ed): 

Wiley Online Library, 185-210. 



 174 

GRUPA AZOTY ZAKŁADY AZOTOWE KĘDZIERZYN S.A. 2013a. Analysis of Alternatives 

Non-Confidential Report: Formulation of DEHP in compounds, dry-blends and plastisol 

formulations. Industrial use in polymer processing by calendering, spread coating, 

extrusion, injection moulding to produce PVC articles [except erasers, sex toys, small 

household items (<10cm) that can be swallowed by children, clothing intended to be 

worn against the bare skin; also toys, cosmetics and food contact material (restricted 

under other EU regulation)]. 0003-01. European Chemicals Agency. Available: 

https://echa.europa.eu/public-consultations. 

GRUPA AZOTY ZAKŁADY AZOTOWE KĘDZIERZYN S.A. 2013b. Analysis of Alternatives 

Non-Confidential Report: Formulation of DEHP in compounds, dry-blends and plastisol 

formulations: Industrial use in polymer processing by calendering, spread coating, 

extrusion, injection moulding to produce PVC articles [except erasers, sex toys, small 

household items (<10cm) that can be swallowed by children, clothing intended to be 

worn against the bare skin; also toys, cosmetics and food contact material (restricted 

under other EU regulation)]. 0003-02. European Chemicals Agency. Available: 

https://echa.europa.eu/public-consultations. 

Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. 2011. GRADE guidelines: 1. 

Introduction—GRADE evidence profiles and summary of findings tables. Journal of 

clinical epidemiology 64:383-394, doi: https://doi.org/10.1016/j.jclinepi.2010.04.026. 

H&R Ölwerke Schindler GmbH. 2016. Analysis of Alternatives: Public Version: Industrial use 

as a solvent and anti-solvent of the feedstock and intermediate product streams in the 

combined de-waxing and de-oiling of refining of petroleum vacuum distillates for the 

production of base oils and hard paraffin waxes. Consultation number 0080-01. 

Available: https://echa.europa.eu/public-consultations [accessed January 22, 2019]. 



 175 

Hakkola J, Bernasconi C, Coecke S, Richert L, Andersson T, Pelkonen O. 2018. Cytochrome 

P450 Induction and Xeno-Sensing Receptors Pregnane X Receptor, Constitutive 

Androstane Receptor, Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated 

Receptor α at the Crossroads of Toxicokinetics and Toxicodynamics. Basic & clinical 

pharmacology & toxicology 123:42-50, doi: https://doi.org/10.1111/bcpt.13004. 

Hanser T, Barber C, Marchaland J, Werner S. 2016. Applicability domain: towards a more 

formal definition. SAR and QSAR in Environmental Research 27:865-881. 

Hartung T, Luechtefeld T, Maertens A, Kleensang A. 2013. Food for thought… integrated 

testing strategies for safety assessments. Altex 30:3, doi: 10.14573/altex.2013.1.003. 

Hong H, Fang H, Xie Q, Perkins R, Sheehan DM, Tong W. 2003. Comparative molecular field 

analysis (CoMFA) model using a large diverse set of natural, synthetic and 

environmental chemicals for binding to the androgen receptor. SAR and QSAR in 

Environmental Research 14:373-388, doi: 

https://doi.org/10.1080/10629360310001623962. 

Honkakoski P, Sueyoshi T, Negishi M. 2003. Drug-activated nuclear receptors CAR and PXR. 

Annals of medicine 35:172-182, doi: https://doi.org/10.1080/07853890310008224. 

Hou T, Xia K, Zhang W, Xu X. 2004. ADME evaluation in drug discovery. 4. Prediction of 

aqueous solubility based on atom contribution approach. Journal of chemical information 

and computer sciences 44:266-275, doi: https://doi.org/10.1021/ci034184n. 

Huang R. 2016. A quantitative high-throughput screening data analysis pipeline for activity 

profiling. In: High-Throughput Screening Assays in Toxicology Methods in Molecular 

Biology, Vol. 1473, (Zhu H., Xia M., eds). New York, NY: Human Press, 111-122. 

Huang W, Zhang J, Washington M, Liu J, Parant JM, Lozano G, et al. 2005. Xenobiotic stress 

induces hepatomegaly and liver tumors via the nuclear receptor constitutive androstane 



 176 

receptor. Molecular endocrinology 19:1646-1653, doi: https://doi.org/10.1210/me.2004-

0520. 

IdeaConsult Ltd. 2018. Toxtree- Toxic Hazard Estimation by decision tree approach. Available: 

http://toxtree.sourceforge.net [accessed December 9 2019]. 

INEOS Styrenics Netherlands BV, INEOS Styrenics Ribecourt SAS, INEOS Styrenics Wingles 

SAS, Synthos Dwory 7 spółka z ograniczoną odpowiedzialnością spółka komandytowo-

akcyjna, Synthos Kralupy a.s., StyroChem Finland Oy, et al. 2013a. Formulation of flame 

retarded expanded polystyrene (EPS) to solid unexpanded pellets using 

hexabromocyclododecane as the flame retardant additive (for onward use in building 

applications). Consultation number 0013-01. Available: https://echa.europa.eu/public-

consultations [accessed July 7, 2019]. 

INEOS Styrenics Netherlands BV, INEOS Styrenics Ribecourt SAS, INEOS Styrenics Wingles 

SAS, Synthos Dwory 7 spółka z ograniczoną odpowiedzialnością spółka komandytowo-

akcyjna, Synthos Kralupy a.s., StyroChem Finland Oy, et al. 2013b. Manufacture of 

flame retarded expanded polystyrene (EPS) articles for use in building applications. 

Consultation number 0013-02. Available: https://echa.europa.eu/public-consultations 

[accessed July 7, 2019]. 

IRCCS (Istituto di Ricerche Farmacologiche Mario Negri), Kemijski inštitut, Sciensano, 

Politecnico di Milano 1863, U.S. EPA (U.S. Environmental Protection Agency), Fera 

(Food and Environment Research Agency), et al. 2019. VEGA QSAR. Available: 

https://www.vegahub.eu/portfolio-item/vega-qsar/ [accessed December 9 2019]. 

J.G. DeKeyser, C.J. Omiecinski. 2010. Constitutive Androstane Receptor. In: Comprehensive 

toxicology Second Edition, Vol. 2, Part 2nd, (McQueen C, ed). The Boulevard, Langford 

Lane, Kidlington OX5 1GB, United Kingdom: Elsevier, 169-181. 



 177 

Jaccard P. 1901. Distribution de la flore alpine dans le bassin des Dranses et dans quelques 

régions voisines. Bull Soc Vaudoise Sci Nat 37:241-272. 

Jacobs M. 2004. In silico tools to aid risk assessment of endocrine disrupting chemicals. 

Toxicology 205:43-53, doi: https://doi.org/10.1016/j.tox.2004.06.036. 

Jacobs MM, Malloy TF, Tickner JA, Edwards S. 2016. Alternatives assessment frameworks: 

research needs for the informed substitution of hazardous chemicals. Environmental 

health perspectives 124:265–280, doi: https://doi.org/10.1289/ehp.1409581. 

Jensen GE, Niemelä JR, Wedebye EB, Nikolov NG. 2008. QSAR models for reproductive 

toxicity and endocrine disruption in regulatory use–a preliminary investigation. SAR and 

QSAR in Environmental Research 19:631-641. 

Jyrkkärinne J, Windshügel Br, Rönkkö T, Tervo AJ, Küblbeck J, Lahtela-Kakkonen M, et al. 

2008. Insights into ligand-elicited activation of human constitutive androstane receptor 

based on novel agonists and three-dimensional quantitative structure− activity 

relationship. Journal of medicinal chemistry 51:7181-7192, doi: 

https://doi.org/10.1021/jm800731b. 

Kachaylo E, Pustylnyak V, Lyakhovich V, Gulyaeva L. 2011. Constitutive androstane receptor 

(CAR) is a xenosensor and target for therapy. Biochemistry (Moscow) 76:1087, doi: 

https://doi.org/10.1134/S0006297911100026. 

Kato H, Yamaotsu N, Iwazaki N, Okamura S, Kume T, Hirono S. 2017. Precise prediction of 

activators for the human constitutive androstane receptor using structure-based three-

dimensional quantitative structure–activity relationship methods. Drug metabolism and 

pharmacokinetics 32:179-188, doi: https://doi.org/10.1016/j.dmpk.2017.02.001. 

Kemira Chemicals Oy. 2015. Use of sodium dichromate as an additive for suppressing parasitic 

reactions and oxygen evolution, pH buffering and cathode corrosion protection in the 



 178 

electrolytic manufacture of sodium chlorate with or without subsequent production of 

chlorine dioxide or sodium chlorite. Consultation number 0038-01. European Chemicals 

Agency. Available: https://echa.europa.eu/public-consultations [accessed November 12, 

2019]. 

Klimenko KO, Rosenberg SA, Dybdahl M, Wedebye EB, Nikolov NG. 2019. QSAR modelling 

of a large imbalanced aryl hydrocarbon activation dataset by rational and random 

sampling and screening of 80,086 REACH pre-registered and/or registered substances. 

PLOS ONE 14, doi: https://doi.org/10.1371/journal.pone.0213848. 

Knudsen T, Martin M, Chandler K, Kleinstreuer N, Judson R, Sipes N. 2013. Predictive models 

and computational toxicology. Totowa, NJ: Humana Press, doi: 

https://doi.org/10.1007/978-1-62703-131-8_26. 

Knudsen TB, Keller DA, Sander M, Carney EW, Doerrer NG, Eaton DL, et al. 2015. FutureTox 

II: in vitro data and in silico models for predictive toxicology. Toxicological Sciences 

143:256-267, doi: https://doi.org/10.1093/toxsci/kfu234. 

KREATiS. 2019. iSafeRat® Available: https://www.kreatis.eu/en/qsars-products-

services.php?endpoint=0 [accessed 2019 December 9]. 

Kretschmer XC, Baldwin WS. 2005. CAR and PXR: xenosensors of endocrine disrupters? 

Chemico-biological interactions 155:111-128. 

Küblbeck J, Jyrkkärinne J, Poso A, Turpeinen M, Sippl W, Honkakoski P, et al. 2008. Discovery 

of substituted sulfonamides and thiazolidin-4-one derivatives as agonists of human 

constitutive androstane receptor. Biochemical pharmacology 76:1288-1297, doi: 

https://doi.org/10.1016/j.bcp.2008.08.014. 

Küblbeck J, Jyrkkärinne J, Molnár F, Kuningas T, Patel J, Windshügel Br, et al. 2011. New in 

vitro tools to study human constitutive androstane receptor (CAR) biology: discovery and 



 179 

comparison of human CAR inverse agonists. Molecular pharmaceutics 8:2424-2433, doi: 

10.1021/mp2003658. 

Lahl U, Gundert-Remy U. 2008. The use of (Q) SAR methods in the context of REACH. 

Toxicology mechanisms and methods 18:149-158. 

Leadscope®. 2002. Leadscope: Enterprise User Manual Version 2.2. Columbus, OH: Leadscope, 

Inc. 

Leadscope®. 2019a. QSAR Models. Available: http://www.leadscope.com/model_appliers/ 

[accessed December 9 2019]. 

Leadscope®. 2019b. Leadscope. Available: http://www.leadscope.com [accessed December 9 

2019]. 

Lee K, You H, Choi J, No KT. 2017. Development of pharmacophore-based classification model 

for activators of constitutive androstane receptor. Drug metabolism and pharmacokinetics 

32:172-178, doi: https://doi.org/10.1016/j.dmpk.2016.11.005. 

Lhasa Limited. 2019a. Derek Nexus,. Available: https://www.lhasalimited.org/products/derek-

nexus.htm [accessed November 17 2019]. 

Lhasa Limited. 2019b. Sarah Nexus. Available: https://www.lhasalimited.org/products/sarah-

nexus.htm [accessed November 17 2019]. 

Li D, Mackowiak B, Brayman TG, Mitchell M, Zhang L, Huang S-M, et al. 2015. Genome-wide 

analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and 

CAR-knockout HepaRG cells. Biochemical pharmacology 98:190-202, doi: 

https://doi.org/10.1016/j.bcp.2015.08.087. 

Lillicrap A, Belanger S, Burden N, Du Pasquier D, Embry MR, Halder M, et al. 2016. 

Alternative approaches to vertebrate ecotoxicity tests in the 21st century: A review of 



 180 

developments over the last 2 decades and current status. Environmental toxicology and 

chemistry 35:2637-2646. 

Linkov I, Loney D, Cormier S, Satterstrom FK, Bridges T. 2009. Weight-of-evidence evaluation 

in environmental assessment: review of qualitative and quantitative approaches. Science 

of the Total Environment 407:5199-5205, doi: 

https://doi.org/10.1016/j.scitotenv.2009.05.004. 

LMC (Laboratory of Mathematical Chemistry): OASIS. 2019. Software: TIMES 2.27.16 and 

CATALOGIC 5.11.16. Available: http://oasis-lmc.org/products/software.aspx [accessed 

December 8 2019]. 

Lu P, Xie W. 2017. Xenobiotic receptors in the crosstalk between drug metabolism and energy 

metabolism. In: Drug Metabolism in Diseases: Elsevier, 257-278. 

Luechtefeld T, Marsh D, Rowlands C, Hartung T. 2018. Machine learning of toxicological big 

data enables read-across structure activity relationships (RASAR) outperforming animal 

test reproducibility. Toxicological Sciences 165:198-212, doi: 

https://doi.org/10.1093/toxsci/kfy152. 

Lynch C, Mackowiak B, Huang R, Li L, Heyward S, Sakamuru S, et al. 2018. Identification of 

Modulators that Activate the Constitutive Androstane Receptor from the Tox21 10K 

Compound Library. Toxicological Sciences. 

Maglich JM, Sluder A, Guan X, Shi Y, McKee DD, Carrick K, et al. 2001. Comparison of 

complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila 

genomes. Genome biology 2:research0029-0021, doi: https://doi.org/10.1186/gb-2001-2-

8-research0029. 



 181 

Maglich JM, Watson J, McMillen PJ, Goodwin B, Willson TM, Moore JT. 2004. The nuclear 

receptor CAR is a regulator of thyroid hormone metabolism during caloric restriction. 

Journal of Biological Chemistry. 

Malloy T, Zaunbrecher V, Beryt E, Judson R, Tice R, Allard P, et al. 2017. Advancing 

alternatives analysis: The role of predictive toxicology in selecting safer chemical 

products and processes. Integrated environmental assessment and management 13:915-

925, doi: https://doi.org/10.1002/ieam.1923  

Mansouri K, Kleinstreuer N, Watt E, Harris J. 2017. CoMPARA: Collaborative Modeling 

Project for Androgen Receptor Activity. Available: 

https://www.researchgate.net/publication/316606155_CoMPARA_Collaborative_Modeli

ng_Project_for_Androgen_Receptor_Activity. 

Martin P, Bladier C, Meek B, Bruyere O, Feinblatt E, Touvier M, et al. 2018. Weight of 

evidence for hazard identification: A critical review of the literature. Environmental 

health perspectives 126:076001. 

Matsuzaka Y, Uesawa Y. 2019. Optimization of a Deep-Learning Method Based on the 

Classification of Images Generated by Parameterized Deep Snap a Novel Molecular-

Image-Input Technique for Quantitative Structure–Activity Relationship (QSAR) 

Analysis. Frontiers in bioengineering and biotechnology 7:65, doi: 

https://doi.org/10.3389/fbioe.2019.00065. 

Maunz A, Gütlein M, Rautenberg M, Vorgrimmler D, Gebele D, Helma C. 2013a. Lazar: a 

modular predictive toxicology framework. Frontiers in pharmacology 4, doi: 

https://doi.org/10.3389/fphar.2013.00038. 



 182 

Maunz A, Gütlein M, Rautenberg M, Vorgrimmler D, Gebele D, Helma C. 2013b. Lazar: a 

modular predictive toxicology framework. Frontiers in pharmacology 4:38, doi: 

https://doi.org/10.3389/fphar.2013.00038. 

Mayo-Bean K, Moran K, Meylan B, Ranslow P, U.S. Environmental Protection Agency 

(USEPA), Syracuse Research Corporation, et al. 2012. Methodology Document for the 

Ecological Structure-Activity Relationship Model (Ecosar) Class Program: 

ESTIMATING TOXICITY OF INDUSTRIAL CHEMICALS TO AQUATIC 

ORGANISMS USING THE ECOSAR (ECOLOGICAL STRUCTURE ACTIVITY 

RELATIONSHIP) CLASS PROGRAM. MS-Windows Version 1.11. Available: 

https://www.epa.gov/sites/production/files/2015-09/documents/ecosartechfinal.pdf 

[accessed January 23, 2019]. 

Mays C, Benfenati E, Pardoe S. 2012. Use and perceived benefits and barriers of QSAR models 

for REACH: findings from a questionnaire to stakeholders. Chemistry Central Journal 

6:159, doi: https://doi.org/10.1186/1752-153X-6-159. 

Miller MD, Crofton KM, Rice DC, Zoeller RT. 2009. Thyroid-disrupting chemicals: interpreting 

upstream biomarkers of adverse outcomes. Environmental health perspectives 117:1033-

1041, doi: https://doi.org/10.1289/ehp.0800247. 

Molcode (Molcode distributed by CompuDrug). 2019a. MolCode Toolbox. Available: 

http://www.compudrug.com/molcode_toolbox [accessed December 8 2019]. 

Molcode (Molcode distributed by CompuDrug). 2019b. REACH QSAR. Available: 

http://reachqsar.com [accessed December 8 2019]. 

Molnár F, Küblbeck J, Jyrkkärinne J, Prantner V, Honkakoski P. 2013. An update on the 

constitutive androstane receptor (CAR). Drug metabolism and drug interactions 28:79-

93, doi: https://doi.org/10.1515/dmdi-2013-0009. 



 183 

Moore JT, Moore LB, Maglich JM, Kliewer SA. 2003. Functional and structural comparison of 

PXR and CAR. Biochimica et Biophysica Acta (BBA)-General Subjects 1619:235-238, 

doi: https://doi.org/10.1016/S0304-4165(02)00481-6. 

MTU Aero Engines AG. n.d. Analysis of Alternatives: Non-confidential report: Surface 

treatment for aerospace applications for civil and military uses, comprising treatment of 

new components for aircraft engines as well as maintenance, repair and overhaul work on 

aircraft engine components, unrelated to functional chrome plating. Consultation number 

0066-02. Available: https://echa.europa.eu/public-consultations [accessed January 23, 

2019]. 

MultiCase. 2019. CASE Ultra Models: Statistical Models & Expert Rules. Available: 

http://www.multicase.com/case-ultra-models [accessed December 8 2019]. 

Nicot T. 2018. Re: QSARs used during Analysis of Alternatives (AoA) require documentation.  

(Message to Kazue Chinen, ed). 12 November 2018. Email. 

NIH (National Institutes of Health). 2018. PubChem: Bioassay. Available: 

https://pubchem.ncbi.nlm.nih.gov/# [accessed December 8, 2018 2018]. 

NIH (National Institutes of Health). 2019a. PubChem AID 1224835: qHTS assay to identify 

small molecule inhibitors of firefly luciferase. Available: 

https://pubchem.ncbi.nlm.nih.gov/bioassay/1224835 [accessed September 20 2019]. 

NIH (National Institutes of Health). 2019b. PubChem AID 1224892: qHTS assay to identify 

small molecule agonists of the constitutive androstane receptor (CAR) signaling pathway: 

Summary. Available: https://pubchem.ncbi.nlm.nih.gov/bioassay/1224892 [accessed 

December 8 2019]. 

NIH (National Institutes of Health). 2019c. PubChem AID 1224892: qHTS assay to identify 

small molecule agonists of the constitutive androstane receptor (CAR) signaling pathway: 



 184 

Summary. Available: https://pubchem.ncbi.nlm.nih.gov/bioassay/1224892 [accessed 

September 20 2019]. 

NIH (National Institutes of Health). 2019d. PubChem AID 1224893: qHTS assay to identify 

small molecule antagonists of the constitutive androstane receptor (CAR) signaling 

pathway: Summary. Available: https://pubchem.ncbi.nlm.nih.gov/bioassay/1224893 

[accessed September 12 2019]. 

NIH (National Institutes of Health). 2019e. Tox21 Public Data. Available: 

https://tripod.nih.gov/tox21/assays/ [accessed November 26 2019]. 

NIH (National Institutes of Health). 2019f. PubChem AID 1224838: qHTS assay to identify 

small molecule antagonists of the constitutive androstane receptor (CAR) signaling 

pathway. Available: https://pubchem.ncbi.nlm.nih.gov/bioassay/1224838 [accessed 

September 12 2019]. 

Nikolov N, Grancharov V, Stoyanova G, Pavlov T, Mekenyan O. 2006. Representation of 

chemical information in OASIS centralized 3D database for existing chemicals. Journal 

of chemical information and modeling 46:2537-2551. 

NRC (National Research Council). 2007. Toxicity testing in the 21st century: a vision and a 

strategy. 0309109922. Washington, DC: National Academies Press. Available: 

https://www.nap.edu/catalog/11970/toxicity-testing-in-the-21st-century-a-vision-and-a 

[accessed January 23, 2019]. 

NRC (National Research Council). 2014a. Review of EPA's Integrated Risk Information System 

(IRIS) Process (2014). Washington, D.C.: The National Academies of Science. 

Available: https://www.nap.edu/catalog/18764/review-of-epas-integrated-risk-

information-system-iris-process [accessed July 28, 2019]. 



 185 

NRC (National Research Council). 2014b. A framework to guide selection of chemical 

alternatives. Washington, D.C. Available: https://www.nap.edu/catalog/18872/a-

framework-to-guide-selection-of-chemical-alternatives [accessed November 20, 2019]. 

NRC (National Research Council). 2018. Progress Toward Transforming the Integrated Risk 

Information System (IRIS) Program: A 2018 Evaluation (2018). Washington, D.C.: The 

National Academies of Science. Available: http://dels.nas.edu/Report/Progress-Toward-

Transforming-Integrated-Risk/25086 [accessed July 31, 2019]. 

NTP (National Toxicology Program). 2019. Tox21: Toxicology in the 21st Century (Tox21). 

Available: https://ntp.niehs.nih.gov/results/tox21/index.html [accessed November 26 

2019]. 

OECD (The Organisation for Economic Co-operation and Development). 1997. SIDS Initial 

Assessment Profile for SIAM 6 (Paris, France, 9-11 June 1997). Methyl Ethyl Ketone 

(MEK). Available: http://webnet.oecd.org/Hpv/UI/SIDS_Details.aspx?id=31C513F8-

2B0D-4DE8-9A14-8463CD709ADD [accessed January 23, 2019 2019]. 

OECD (The Organisation for Economic Co-operation and Development). 2007. Guidance 

Document on the Validation of (Quantitative)Structure-Activity Relationships [(Q)SAR] 

Models, OECD Series on Testing and Assessment, No. 69. ENV/JM/MONO(2007)2. 

Paris (FR): OECD. Available: https://read.oecd-ilibrary.org/environment/guidance-

document-on-the-validation-of-quantitative-structure-activity-relationship-q-sar-

models_9789264085442-en#page1 [accessed November 20, 2019]. 

OECD (The Organisation for Economic Co-operation and Development). 2014. Guidance on 

Grouping of Chemicals, Second Edition. Available: 

http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono%

282014%294&doclanguage=en [accessed January 23, 2019 2019]. 



 186 

OECD (The Organisation for Economic Co-operation and Development). 2018. OECD 

Quantitative Structure-Activity Relationships Project [(Q)SARs] Available: 

http://www.oecd.org/chemicalsafety/risk-assessment/oecdquantitativestructure-

activityrelationshipsprojectqsars.htm [accessed December 3, 2018 2018]. 

OECD (The Organisation for Economic Co-operation and Development). 2019. The OECD 

QSAR Toolbox. Available: https://www.oecd.org/chemicalsafety/risk-assessment/oecd-

qsar-toolbox.htm [accessed November 20 2019]. 

Pavan M, Worth AP. 2006. Review of QSAR models for ready biodegradation. 

Peffer RC, Bailey KA, Lake L-K, Kristin , Lake BG. 2018. AOP: 107: Constitutive androstane 

receptor activation leading to hepatocellular adenomas and carcinomas in the mouse and 

the rat. Available: https://aopwiki.org/aops/107 [accessed September 12 2019]. 

Poso A, Honkakoski P. 2006. Ligand recognition by drug-activated nuclear receptors PXR and 

CAR: structural, site-directed mutagenesis and molecular modeling studies. Mini reviews 

in medicinal chemistry 6:937-943, doi: https://doi.org/10.2174/138955706777935008. 

Posthumus R, Traas T, Peijnenburg W, Hulzebos E. 2005. External validation of EPIWIN 

biodegradation models. SAR and QSAR in Environmental Research 16:135-148, doi: 

10.1080/10629360412331319899. 

Pudenz S, Frère AR. 2017. Quantitative structure activity-relationships for toxicity screening of 

pesticide impurities for regulatory submission–practical experiences and challenges. 

Toxicological & Environmental Chemistry 99:1071-1077, doi: 

https://doi.org/10.1080/02772248.2016.1265649. 

Qatanani M, Moore D. 2005. CAR, the continuously advancing receptor, in drug metabolism and 

disease. Current drug metabolism 6:329-339. 



 187 

Qatanani M, Zhang J, Moore DD. 2005. Role of the constitutive androstane receptor in 

xenobiotic-induced thyroid hormone metabolism. Endocrinology 146:995-1002. 

Rhomberg LR, Goodman JE, Bailey LA, Prueitt RL, Beck NB, Bevan C, et al. 2013. A survey of 

frameworks for best practices in weight-of-evidence analyses. Critical reviews in 

toxicology 43:753-784, doi: https://doi.org/10.3109/10408444.2013.832727. 

Roberts G, Myatt GJ, Johnson WP, Cross KP, Blower PE. 2000. LeadScope: software for 

exploring large sets of screening data. Journal of chemical information and computer 

sciences 40:1302-1314, doi: https://doi.org/10.1021/ci0000631. 

Rorije E, Hulzebos E, Hakkert B. 2008. The EU (Q) SAR Experience Project: reporting formats. 

Templates for documenting (Q) SAR results under REACH. RIVM report 601779001. 

Rosenberg SA, Watt ED, Judson RS, Simmons S, Friedman KP, Dybdahl M, et al. 2017a. QSAR 

models for thyroperoxidase inhibition and screening of US and EU chemical inventories. 

Computational Toxicology 4:11-21, doi: https://doi.org/10.1016/j.comtox.2017.07.006. 

Rosenberg SA, Xia M, Huang R, Nikolov NG, Wedebye EB, Dybdahl M. 2017b. QSAR 

development and profiling of 72,524 REACH substances for PXR activation and 

CYP3A4 induction. Computational Toxicology 1:39-48, doi: 

https://doi.org/10.1016/j.comtox.2017.01.001. 

Rotella D. 2011. New Horizons in Predictive Toxicology: Current Status and ApplicationRoyal 

Society of Chemistry. 

Rovida C. 2010. Food for thought… why no new in vitro tests will be done for REACH by 

registrants. Altex 27:175-183. 

Rovida C, Longo F, Rabbit RR. 2011. How are reproductive toxicity and developmental toxicity 

addressed in REACH dossiers? Altex 28:273-294. 



 188 

Sasol-Huntsman GmbH & Co. KG. n.d. Use as an absorption solvent in a closed system in the 

manufacture of maleic anhydride (MA). Consultation number 0006-01. European 

Chemicals Agency. Available: https://echa.europa.eu/public-consultations [accessed 

January 23, 2019]. 

SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks ). 2015. The 

safety of medical devices containing DEHP- plasticized PVC or other plasticizers on 

neonates and other groups possibly at risk (2015 update). Luxembourg, Belgium: 

European Commission. Available: https://publications.europa.eu/en/publication-detail/-

/publication/9c14b179-d3ae-11e5-a4b5-01aa75ed71a1/language-en [accessed August 31, 

2019]. 

Schulte C, Tietjen L, Bambauer A, Fleischer A. 2012. Five years REACH–lessons learned and 

first experiences. I. an authorities' view. Environmental Sciences Europe 24:31, doi: 

10.1186/2190-4715-24-31. 

Shi LM, Fang H, Tong W, Wu J, Perkins R, Blair RM, et al. 2001. QSAR models using a large 

diverse set of estrogens. Journal of Chemical Information and Computer Sciences 

41:186-195, doi: https://doi.org/10.1021/ci000066d. 

Simulations Plus. 2019. ADMET PredictorTM: ADMET property prediction and QSAR model-

building application. Available: http://www.simulations-

plus.com/software/admetpredictor/ [accessed December 8 2019]. 

Solvay Portugal – Produtos Quimicos SA. 2015. Use of sodium dichromate as an additive for 

suppressing parasitic reactions and oxygen evolution, pH buffering and cathode corrosion 

protection in the electrolytic manufacture of sodium chlorate with or without subsequent 

production of chlorine dioxide or sodium chlorite. Consultation number 0039-01. 



 189 

European Chemicals Agency. Available: https://echa.europa.eu/public-consultations 

[accessed November 12, 2019]. 

Sonoda J, Pei L, Evans RM. 2008. Nuclear receptors: decoding metabolic disease. FEBS letters 

582:2-9, doi: https://doi.org/10.1016/j.febslet.2007.11.016. 

Suter G, Cormier S, Barron M. 2017. A weight of evidence framework for environmental 

assessments: Inferring qualities. Integrated environmental assessment and management 

13:1038-1044. 

Syberg K, Jensen TS, Cedergreen N, Rank J. 2009. On the use of mixture toxicity assessment in 

REACH and the water framework directive: a review. Human and Ecological Risk 

Assessment 15:1257-1272. 

Tabb MM, Blumberg B. 2006. New modes of action for endocrine-disrupting chemicals. 

Molecular endocrinology 20:475-482, doi: https://doi.org/10.1210/me.2004-0513. 

TerraBase Inc. 2019. TerraBase Inc.'s TerraQSAR™  Computation Programs. Available: 

http://www.terrabase-inc.com [accessed December 9 2019]. 

Tickner J, Geiser K, Rudisill C, Schifano J. 2013. Alternatives assessment in regulatory policy: 

history and future directions. In: Chemical alternatives assessment, (Hester RE, Harrison 

RM, eds). London: Royal Society of Chemistry, 256-288. 

Tickner J, Jacobs MM. 2016. Improving the Identification, Evaluation, Adoption and 

Development of Safer Alternatives: Needs and Opportunities to Enhance Substitution 

Efforts within the Context of REACH. Lowell, Massachusetts: University of 

Massachusetts Lowell, Lowell Center for Sustainable Production. Available: 

https://echa.europa.eu/documents/10162/13630/substitution_capacity_lcsp_en.pdf 

[accessed January 23, 2019]. 

Todeschini R, Consonni V. 2008. Handbook of molecular descriptorsJohn Wiley & Sons. 



 190 

Tong W, Perkins R, Fang H, Hong H, Xie Q, Branham S, et al. 2002. Development of 

quantitative structure-activity relationships (QSARs) and their use for priority setting in 

the testing strategy of endocrine disruptors. Regul Res Perspect 1:1-16. 

Tunnela O. 2017. Re: Enquiry to ECHA for REACH Regulatory obligations on QMRFs and 

QPRFs in Analyses of Alternatives (AoA).  (Message to Kazue Chinen, ed). 7 December, 

2017. Email. 

Tunnela O. 2018. Re: Enquiry to ECHA on REACH Regulatory obligations in Authorisation.  

(Message to Kazue Chinen, ed). 17 January 2018. Email. 

U.S. EPA (U.S. Environmental Protection Agency). 2011. Endocrine Disruptor Screening 

Program: Weight of Evidence: Evaluating results of EDSP Tier 1 screening to identify 

the need for Tier 2 testing. Washington, D.C. Available: 

https://www.regulations.gov/document?D=EPA-HQ-OPPT-2010-0877-0021 [accessed 

September 18, 2019]. 

U.S. EPA (U.S. Environmental Protection Agency). 2012a. Sustainable Futures / P2 Framework 

Manual 2012 4. Filling Data Gaps: Introduction to Predictive Models. EPA-748-B12-

001. Washington, D.C. Available: https://www.epa.gov/sites/production/files/2015-

05/documents/04.pdf [accessed December 8, 2019]. 

U.S. EPA (U.S. Environmental Protection Agency). 2012b. Sustainable Futures / P2 Framework 

Manual 2012 7. Estimating Persistence, Bioaccumulation, and Toxicity Using the PBT 

Profiler. EPA-748-B12-001. Washington D.C. Available: 

https://www.epa.gov/sites/production/files/2015-05/documents/07.pdf. 

U.S. EPA (U.S. Environmental Protection Agency). 2012c. Sustainable Futures / P2 Framework 

Manual 2012 6. Estimating Aquatic Toxicity Using ECOSAR. EPA-748-B12-001. 



 191 

Washington, D.C. Available: https://www.epa.gov/sites/production/files/2015-

05/documents/06.pdf [accessed December 8, 2019]. 

U.S. EPA (U.S. Environmental Protection Agency). 2016. User’s Guide for T.E.S.T. (version 

4.2) (Toxicity Estimation Software Tool) A Program to Estimate Toxicity from 

Molecular Structure. EPA/600/R-16/058. Washington, DC. Available: 

https://www.epa.gov/sites/production/files/2016-05/documents/600r16058.pdf. 

U.S. EPA (U.S. Environmental Protection Agency). 2019a. EPI Suite™-Estimation Program 

Interface. Available: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-

program-interface [accessed June 9 2019]. 

U.S. EPA (U.S. Environmental Protection Agency). 2019b. Ecological Structure Activity 

Relationships (ECOSAR) Predictive Model. Available: https://www.epa.gov/tsca-

screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model 

[accessed December 9 2019]. 

U.S. EPA (U.S. Environmental Protection Agency). 2019c. Toxicity Estimation Software Tool 

(TEST). Available: https://www.epa.gov/chemical-research/toxicity-estimation-software-

tool-test# [accessed December 9 2019]. 

U.S. EPA (U.S. Environmental Protection Agency). 2019d. CoMPARA: Collaborative Modeling 

Project for Androgen Receptor Activity (SOT). Available: 

https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCCT&dirEntryId=339684 

[accessed September 12 2019]. 

U.S. EPA (U.S. Environmental Protection Agency). 2019e. EPI Suite™-Estimation Program 

Interface. Available: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-

program-interface [accessed November 18 2019]. 



 192 

U.S. FDA (U.S. Food & Drug Administration). 2018. Science & Research: EDKB Resources. 

Available: 

https://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowled

gebase/ucm084342.htm [accessed December 9 2019]. 

Valerio Jr. LG, Yang C, Arvidson KB, Kruhlak NL. 2010. A structural feature-based 

computational approach for toxicology predictions. Expert opinion on drug metabolism 

& toxicology 6:505-518, doi: https://doi.org/10.1517/17425250903499286. 

Vinggaard AM, Niemelä J, Wedebye EB, Jensen GE. 2008. Screening of 397 Chemicals and 

Development of a Quantitative Structure− Activity Relationship Model for Androgen 

Receptor Antagonism. Chemical research in toxicology 21:813-823, doi: 

https://doi.org/10.1021/tx7002382. 

Viswanadhan VN, Ghose AK, Revankar GR, Robins RK. 1989. Atomic physicochemical 

parameters for three dimensional structure directed quantitative structure-activity 

relationships. 4. Additional parameters for hydrophobic and dispersive interactions and 

their application for an automated superposition of certain naturally occurring nucleoside 

antibiotics. Journal of chemical information and computer sciences 29:163-172, doi: 

https://doi.org/10.1021/ci00063a006. 

Voyer R, Heltshe J. 1984. Factor interactions and aquatic toxicity testing. Water Research 

18:441-447. 

Wahlang B, Falkner KC, Clair HB, Al-Eryani L, Prough RA, States JC, et al. 2014. Human 

receptor activation by aroclor 1260, a polychlorinated biphenyl mixture. Toxicological 

Sciences 140:283-297. 



 193 

Walker JD, Carlsen L, Jaworska J. 2003. Improving opportunities for regulatory acceptance of 

QSARs: the importance of model domain, uncertainty, validity and predictability. QSAR 

& Combinatorial Science 22:346-350. 

Wang P, Xiao X, Chou K-C. 2011. NR-2L: a two-level predictor for identifying nuclear receptor 

subfamilies based on sequence-derived features. PloS one 6:e23505, doi: 

https://doi.org/10.1371/journal.pone.0023505. 

Worth A, Lapenna S, Lo Piparo E, Mostrag-Szlichtyng A, Serafimova R. 2011. A Framework 

for assessing in silico Toxicity Predictions: Case Studies with selected Pesticides. JRC 

report EUR 24705. 

Worth A, Barroso J, Bremer S, Burton J, Casati S, Coecke S, et al. 2014. Alternative methods for 

regulatory toxicology–a state-of-the-art review. Report EUR 26797 EN. Available: 

https://www.researchgate.net/profile/Joao_Barroso3/publication/288256624_Alternative_

methods_for_regulatory_toxicology_A_state-of-The-

art_review/links/568a50cf08ae1e63f1fbbae7.pdf [accessed January 23, 2019]. 

Worth AP. 2010a. Chapter 13: The Role of QSAR Methodology in the Regulatory Assessment 

of Chemical. In: Recent advances in QSAR studies Challenges and Advances in 

Computational Chemistry and Physics, Vol. 8, (Puzyn T, Leszczynski J, Cronin MT, 

eds): Springer, Dordrecht, 367-382. 

Worth AP. 2010b. The Role of QSAR Methodology in the Regulatory Assessment of Chemicals. 

In: Recent advances in QSAR studies Challenges and Advances in Computational 

Chemistry and Physics, Vol. 8, (Puzyn T, Leszczynski J, Cronin MT, eds): Springer, 

Dordrecht, 367-382. 

Wyde ME, Kirwan SE, Zhang F, Laughter A, Hoffman HB, Bartolucci-Page E, et al. 2005. Di-n-

butyl phthalate activates constitutive androstane receptor and pregnane X receptor and 



 194 

enhances the expression of steroid-metabolizing enzymes in the liver of rat fetuses. 

Toxicological Sciences 86:281-290. 

Xu C, Li CY-T, Kong A-NT. 2005. Induction of phase I, II and III drug metabolism/transport by 

xenobiotics. Archives of pharmacal research 28:249, doi: 

https://doi.org/10.1007/BF02977789. 

Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maronpot RR. 2004. The orphan nuclear 

receptor constitutive active/androstane receptor is essential for liver tumor promotion by 

phenobarbital in mice. Cancer research 64:7197-7200, doi: https://doi.org/10.1158/0008-

5472.CAN-04-1459. 

Yan J, Xie W. 2016. A brief history of the discovery of PXR and CAR as xenobiotic receptors. 

Acta Pharmaceutica Sinica B 6:450-452, doi: https://doi.org/10.1016/j.apsb.2016.06.011. 

Yuan H, Wang Y-Y, Cheng Y-Y. 2007. Mode of action-based local QSAR modeling for the 

prediction of acute toxicity in the fathead minnow. Journal of Molecular Graphics and 

Modelling 26:327-335. 

Zhang J-H, Chung TD, Oldenburg KR. 1999. A simple statistical parameter for use in evaluation 

and validation of high throughput screening assays. Journal of biomolecular screening 

4:67-73, doi: https://doi.org/10.1177/108705719900400206. 

 




