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Abstract

When teaching, people often intentionally intervene on a
learner while it is acting. For instance, a dog owner might
move the dog so it eats out of the right bowl, or a coach might
intervene while a tennis player is practicing to teach a skill.
How do people teach by intervention? And how do these
strategies interact with learning mechanisms? Here, we ex-
amine one global and two local strategies: working backwards
from the end-goal of a task (backwards chaining), placing a
learner in a previous state when an incorrect action was taken
(undoing), or placing a learner in the state they would be in if
they had taken the correct action (correcting). Depending on
how the learner interprets an intervention, different teaching
strategies result in better learning. We also examine how peo-
ple teach by intervention in an interactive experiment and find
a bias for using local strategies like undoing.
Keywords: teaching, intervention, reinforcement learning

Introduction
When attempting to teach another agent, people have many
tools at their disposal. They may choose to explain (Callanan
& Oakes, 1992), give a demonstration (Brugger, Lariviere,
Mumme, & Bushnell, 2007; Buchsbaum, Gopnik, Griffiths,
& Shafto, 2011; Király, Csibra, & Gergely, 2013), or offer
rewards and punishments for taking certain actions (Knox &
Stone, 2015; Ho, Littman, Cushman, & Austerweil, 2015).
Another way in which people teach a learner is by interven-
ing on the learner or the learner’s environment. For example,
if a puppy urinates on the carpet when a person is trying to
teach the puppy to urinate on a pad, a person might move
the puppy to the pad or move the pad to the puppy. When
teaching another person a skill like tennis, a teacher might in-
tervene on the trainee mid-movement and either adjust their
arm to match the target movement or stop them to start over.
The space of possible ways in which a teacher could change
a learner’s situation for pedagogical purposes is large. This
raises several questions: First, what is the effectiveness of
different intervention strategies? Second, how could learners
interpret interventions and how does the interpretation affect
a teaching strategy’s efficacy? And, finally, what teaching
strategies do people tend to use?

In this work, we examine three teaching by intervention
strategies from a reinforcement learning perspective (Sutton

& Barto, 1998). The first, backward chaining, is motivated
by algorithms such as value iteration (Bellman, 1957) that
solve multi-stage decision-problems by propagating informa-
tion about rewards to previous states that lead to those re-
wards. Intuitively, this is akin to teaching a task by “work-
ing backwards”, first ensuring that the learner knows how to
reach a goal from the penultimate state, and then reach the
penultimate state from the antepenultimate state, and so on.
We consider this a global intervention strategy since it in-
volves changing the learner’s state in a manner that reflects
the structure of the entire task, rather than a small part of it.
The second strategy, undoing, is motivated by the intuition
that interventions prevent learners from executing an unde-
sirable action by having them restart from the state they per-
formed the undesirable action. The third strategy, correcting,
intervenes on a learner when she executes an undesirable ac-
tion (like undoing), but places her in the state she would have
gone to if she had taken the desired action. Unlike backwards
chaining, undoing and correcting involve local changes to an
agent’s state.

How could a learner interpret an intervention? In a typi-
cal reinforcement learning setting, an agent takes an action
in a state, and then the environment rewards or punishes her
and moves her to a new state (Figure 1). We formalize four
ways that an intervention can be interpreted. First, the inter-
vention may simply reset the learner in a new location from
which the next action will be taken. Second, the next state
that the learner is moved to could be interpreted as part of a
transition in the environment. Third, the intervention could
be treated as an interruption in a learner’s stream of behavior
such that the undesirable action just taken never happened.
Fourth, the intervention could be treated as a disruption, in
which the intervention is experienced negatively. Each of
these accounts may interact with a teacher’s training strategy
in different ways, meaning that the best teaching strategy may
be dependent on the learner’s intervention interpretation.

The outline of the paper is as follows. First, we review
the reinforcement learning framework. Second, we formalize
four different ways that a reinforcement learning algorithm
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Standard 
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Reset Interrupt

DisruptTransition
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Figure 1: (a) Standard state, action, reward, next state sequence of a Markov Decision Process at a given time step. (b) Four
different interpretations of a teacher intervening to place the learner in state vt in response to a learner’s action at from state st .
When interventions are interpreted as reset, transition, or disrupt, rt is respectively determined by the environmental next state,
s′t , the teacher’s next state, st+1, or the teacher’s intervention, vt . When the the intervention is treated as interrupt, no reward
experienced and no learning occurs for that time step.

could interpret an intervention and three teaching strategies.
Third, we conduct simulations to examine how efficacious
different teaching strategies are depending on how a learner
interprets their interventions. Fourth, we conduct an exper-
iment to investigate how people teach by intervention. We
find that undoing, a local intervention strategy, is often ef-
fective and that people tend to teach most often by undoing,
occasionally correcting, and rarely backward chaining.

Computational Modeling
In this section we present the standard reinforcement learning
(RL) formalism, discuss the four intervention interpretations,
and define the three teaching strategies.

Reinforcement Learning RL describes how an agent inter-
acts with an environment and learns reward-maximizing be-
haviors (Sutton & Barto, 1998). Formally, an RL algorithm
learns to take actions in a Markov Decision Process (MDP),
defined by the tuple < S,A,T,R,γ >: a set of states in the
world S; a set of actions for each state A(s); a transition func-
tion that maps state-action pairs to a probability distribution
over next states, P(s′ | s,a); a reward function that maps states
to scalar rewards, R : S→ R; and a discount factor γ ∈ (0,1].

At each time step t, an RL agent takes an action at from
a state st , which results in moving to next state st+1 and a
reward rt+1 = R(st+1) (Figure 1). Actions are determined
by the agent’s policy π that maps states to distributions over
actions. For a policy π, the value at each state, V π(s), is:

V π(s) = Eπ

[
∞

∑
k=0

γ
krt+k+1 | st = s

]
. (1)

The optimal policy, π∗, is one that maximizes the value func-
tion in every state, V ∗(s) =maxπ V π(s),∀s∈ S. An agent uses
state, action, next state, reward tuples to learn an optimal pol-
icy.

Q-Learning One algorithm for learning an optimal policy
is Q-learning, which is an off-policy temporal difference con-
trol algorithm. Under mild assumptions, Q-learning con-
verges to the true action-value function (Watkins & Dayan,
1992). Moreover, humans and animals both engage in the
type of error-driven reward learning found in Q-learning,
making it a useful model with which to test different human
teaching strategies (Niv, 2009). We use one form of this algo-
rithm, one-step Q-learning, which is defined by the following
update rule given a tuple (s,a,s′,r):

Q(s,a)← Q(s,a)+α[r+ γmax
a′

Q(s′,a′)−Q(s,a)]. (2)

where α is the learning rate. We convert the estimated action-
value function to a policy using the softmax decision-rule
π(a | s) = exp{Q(s,a)/λQ}/∑a′ exp{Q(s,a′)/λQ}, where λQ
is a temperature parameter controlling the probability that an
agent takes the action estimated to yield the largest reward de-
pending on the relative rewards she could get by taking other
actions.

Teaching by Intervention
Interpreting Interventions The standard RL formulation
does not define how interventions should be interpreted.
Thus, we posit four different possible interpretations here,
depicted in Figure 1. The four interpretations are motivated
by formalizing the following two intuitions in different ways.
First, a teacher could be treated as a part of the environment
such that her intervention directly changes the next state of
the learner (possibly stopping the feedback she would have
received had she gone to the next state had the intervention
not happened). Second, a teacher is distinct from the stan-
dard MDP environment, and intervenes as a direct response
to a learner having taken an action and ended up in a next
state.
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Formally, at a time step t, the learner in state st takes an
action at and ends up in new state s′t . If the teacher does not
intervene, st+1 = s′t . Otherwise, a teacher intervenes to place
the learner in state vt ∈ S. For all intervention types, st+1 = vt .
However, if the teacher’s intervention is interpreted as a re-
set, then the learner performs a Q-learning update using the
tuple (st ,at ,s′t ,R(s

′
t)), meaning that she still receives the re-

ward she would have gotten had she reached s′t as the next
state. If it is interpreted as a transition, then the learner up-
dates with (st ,at ,vt ,R(vt)), meaning that she gets the reward
had she taken the action that would move her from st to vt .
If it is an interruption, then the learner does not update the
state-action value function the state-action pair that was in-
tervened on, and she takes her next action in st+1 = vt . If it
is interpreted as a disruption, then the learner updates with
(st ,at ,vt ,−1).

Teaching Strategies We discuss three teaching strategies:
backward chaining, undoing, and correcting. A teacher
using backward chaining has an n-length trajectory J =<
(s1,a1), ...,(sn,an) > that she uses to teach the learner. We
denote the states in the trajectory as SJ = {si : i = 1,2,3...,n}.
The teacher also has a utility function over different inter-
ventions, where initially U0(si) = i for i = 1,2,3, ...,n and
U0(s) = −∞ for s ∈ S \ SJ . On each time step, the teacher’s
utility function is updated as:

Ut+1(st) =

{
Ut(st)−1 if (st ,at) ∈ J
Ut(st) otherwise.

(3)

Teachers only intervene when the agent performs an action
inconsistent with the trajectory (i.e. (st ,at) /∈ J) and place the
agent in a next state according to a softmax decision rule over
their utilities: P(v) ∝ exp{Ut(v)/λ}, where λ is a tempera-
ture parameter. The backward chaining teacher is initially
more likely to move the agent closer to the end of a target
trajectory, but as the agent shows they can perform the target
action in a state the utility of moving the agent to that state de-
creases. Meanwhile, the relative utility of placing the agent
in a slightly earlier stage in the trajectory increases.

A teacher using an undoing strategy has a target policy π∗ :
S→ A that it is attempting to teach. On each time step, if an
agent’s action at 6= π∗(st), then vt = st . That is, when an agent
takes an incorrect action, that action is undone by the teacher
and the agent is placed back in the state she took the incorrect
action. A teacher using a correcting strategy also has a target
policy π∗ that it is attempting to teach. However, if an agent’s
action at 6= π∗(st), then vt = argmaxs T (s | st ,π

∗(st)). That
is, the teacher will move the agent to the state it would have
been in had the agent taken the target action.

Simulations

To understand the interaction of teaching strategy and learner
interpretation, we simulated the performance of a RL agent
for each combination in a gridworld task.

Teacher’s Reward Function

+10

-1

-1-1

-1-1

-1-1

-1

-10

Start

* *

Learner’s Reward Function

+10+10

Start

* *

Experiment Interface

Figure 2: Task used for simulations and experiment. Aster-
isks (*) indicate absorbing states, both providing reward to
the learner, whereas the teacher received reward if the learner
entered the right door, but was punished if the learner entered
the left door. The teacher received a mild punishment when-
ever the learner entered a garden tile.

Task
The task we used is shown in Figure 2. It consists of a 7 ×
4 gridworld where the learning agent always starts a round in
the center tile of the first row. At any given location, a sub-
set of the four cardinal directions is available to the learning
agent (e.g. at the bottom edge, “down” is not available as
an action). On each episode, the learning agent starts in the
bottom-middle tile and the upper-right and upper-left corners
of the gridworld are absorbing states.

In our task, the teacher and learner have different rewards
for the learner’s actions in the MDP. In particular, the two ab-
sorbing states (goals) both have a +10 reward for the learner,
but for the teacher, only one has +10 while the other has−10.
Additionally, there are several non-absorbing tiles that give
the teacher −1 if the learner enters them. These features of
the task are visualized in Figure 2.

All simulations used a Q-learning agent with a tabular rep-
resentation of states (Q0(s,a) = 0∀s,a, α = .9, and γ = .95).
Each simulated teacher interacted with the learner for 12
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Figure 3: Simulated backward chaining, undoing, and correcting results or different intervention interpretations and interven-
tion probabilities (top three rows). Results of learners trained using participant responses on task (bottom). Total teacher payoff
is the net reward of the learner’s behavior based on the teacher’s reward function during the evaluation phase of each episode.

episodes. Each episode was divided into two phases: a teach-
ing phase and an evaluation phase. During the teaching phase,
the simulated teacher interacted with the Q-learner, which se-
lected actions using a softmax rule (λQ = .1) and engaged in
learning. During the evaluation phase, the learner performed
the task without teacher interaction or learning and used a
greedy policy. Additionally, the performance was measured
with respect to the teacher’s payoffs based on her reward
function. Each episode phase ended after 25 time steps.

Teaching Strategies and Interpretations
We tested all combinations of teaching strategy and interven-
tion interpretation ({backwards chaining, undoing, correct-
ing} ×{resetting, transitioning, interrupting, disrupting}). In
natural situations, it is not likely that teachers intervene ev-
ery time a learner takes an incorrect action. Thus, we tested
the performance of the models given different probabilities
of intervening given that the learner performed an incorrect
action: 0.25,0.50,0.75,1.0. This allowed us to evaluate the
robustness of different teaching method and intervention in-
terpretation combinations when feedback is imperfect. Each
combination of teaching strategy, intervention type, and inter-
vention probability were simulated 1000 times and teaching
performance was based on the evaluation phase.

Results and Discussion
Simulation results are plotted in Figure 3. When interaction
probability is high, undoing is most effective. This is be-

cause interventions act as impassable obstacles to the learn-
ing agent, which, combined with a discount rate, makes tak-
ing incorrect actions less beneficial than alternative actions
that change the state and lead to reward. However, an excep-
tion is when the learner interprets interventions as disrupting,
where the average performance of the undoing teaching strat-
egy decreases quickly as intervention probability drops. This
is because the teacher is less likely to serve as an obstacle,
which makes it less likely that the agent will learn that in-
correct actions are less efficacious. Across all interpretations,
undoing outperforms correcting because undoing implicitly
teaches the learner that the garden tiles are negative, whereas,
correcting does not. Undoing also leads to more learning ex-
perience because correcting allows the agent to progress on
the task without actually taking target actions.

When the probability of intervention is high (1.0− 0.75),
the backward chaining strategy performs as well as or worse
than the undoing strategy. Unlike undoing, a global strategy
like backward chaining’s efficacy is robust to less frequent
interventions. This is because these interventions ensure that
the learning agent has mastered a subset of states and ac-
quired an accurate value representation as opposed to acting
as a constraint on transitions in the environment.

The different intervention types also interacted with the
teaching strategies in important ways. First, undoing shows
identical patterns regardless of whether the intervention type
is resetting, transitioning, or interrupting. When it is dis-
rupting, learners reach maximum performance even more
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0.0

0.25

0.50

0.75

1.00

Correcting Undoing Other

Proportion

of

Interventions

Intervention

Probability

0.15

0.92

0.04

Intervention Pseudo-Counts
(a) (c)

Teacher

Intervention

Start

Teacher
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End

Learner

Actions
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Figure 4: Experimental results. (a) Boxplot of proportion of correcting, undoing, and other interventions performed by indi-
vidual participants. For many participants, the majority of their interventions were to undo the learner’s action. (b) Graphical
visualization of teacher-learner interaction during an episode (ε = 0.8) illustrating local interventions. Yellow numbers indicate
order of interventions. (c) Graphical visualization of participant interventions for actions taken from the same state. For each
episode, each participant has one pseudo-count that is divided among all of their interventions in that episode. The number in
each tile represents the sum of these pseudo-counts over participants. The intervention probability is the proportion of times
that action was subsequently intervened upon.

quickly. Second, for the backward chaining strategy, all
strategies but transitioning led to learners acquiring policies
that approached the target behavior. This is likely because
the transitioning interpretation results in learners using the
teacher’s interventions as a way to “teleport” to a desirable
location on the grid and not properly learn the task.

Experiment

How do people teach using interventions? Do they use a
global strategy like backwards chaining or a local one like
undoing or correcting? Our simulations suggest that undo-
ing is the best teaching strategy if teachers intervene when
the learner makes a mistake with high probability. However,
backwards chaining works better when the teacher intervenes
infrequently. Alternatively, it seems intuitive to intervene
such that the learner is shown the correct state she should have
gone to, and human teachers might use this strategy despite
its sub-optimality with Q-learners. To explore these possibil-
ities, we had human teachers interact with agents that were
pre-programmed to improve over time. This gave us the op-
portunity to view how people would teach by intervention in-
dependent of the learning mechanism.

Experimental Design

Participants and materials Thirty-five MTurk participants
took a dog training study that used the interface shown in Fig-
ure 2. On each trial, the dog would start at a tile and then walk
to an adjacent tile. If the participant did not click on the dog
at any point during its movement or within 1s of the dog en-
tering the next tile, the next trial would start. If the participant
clicked on the dog, then the dog “paused” and they could drag
it to any tile on the gridworld and drop it. The dog then “un-
paused” and the subsequent trial would then start at that tile.
When the dog reached either “dog bowl,” an animated dog
treat would appear to indicate that the dog had experienced a
reward. Entering either dog bowl tile ended an episode.
Procedure Before the main task, participants completed
training trials that taught them how to intervene on the dog’s
behavior by picking it up. For the main experiment, they were
told that they were trying to train a dog to perform a task on its
own. The task was for the dog to only go to its own dog bowl,
located in the upper-right tile, while avoiding their neighbor’s
dog bowl, located in the upper-left tile, and also avoiding the
two lawns. Thus, the participants’ goal in the task maps onto
the teacher reward function shown in Figure 2. They had 12
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“days” (i.e. episodes) in which they could train the dog, and
they were told that each day ended once the dog became tired
after 25 steps or became satiated by eating a dog treat. Each
trial, the dog was programmed to execute the target policy
with a probability of 1− ε and a random action otherwise. ε

started at 1.0 for the first episode and then decreased by 0.1
each subsequent episode until ε = 0.0. This gave the impres-
sion that the dog was improving over time regardless of the
intervention strategy used.

After the task was completed, participants were asked to
answer several questions regarding their strategy, how well
the dog responded, task difficulty, expected training efficacy,
expected efficacy with a real dog, dog ownership, dog training
experience, and several demographic questions.

Results
Intervening People make relatively sparse, local interven-
tions that match the undoing model. Participants intervened
on learners’ behavior more when the learner performed a non-
target action than when they performed a target action (non-
target: M = 0.66, S.D. = 0.22; target: M = 0.06, S.D. = 0.10;
paired t-test: t(34) = 13.77, p < .001). Additionally, the pro-
portion of non-target actions that were intervened upon was
between 0.5 and 0.75, the regime where backward chaining
and undoing perform comparably. Interventions were also
fairly local and close to the final state that resulted in the
learner’s action (Average Manhattan Distance between next
state and intervention: M = 1.64, S.D. = 0.49). This indicates
that backwards chaining was not often used as a strategy since
that strategy requires making more global interventions. Fi-
nally, as Figure 4a reveals, many participants performed un-
doing interventions in which an agent that took a non-target
action was placed back into its original position (Correcting:
M = 0.15, S.D. = 0.14; Undoing: M = 0.59, S.D. = 0.24;
Other: M = 0.27, S.D. = 0.19; χ2(2) = 335.89, p < .001).

Teaching Q-learners To compare human and model strate-
gies, we used participants’ responses to train Q-learners in the
same task. We approximated how participants would have
taught real learners by sampling from their responses to a
learner’s action in the task whenever a simulated learner took
the same action. If a particular participant never observed an
agent’s take a simulated action, the default response was to
not intervene. These results are plotted in Figure 3 for com-
parison with the simulation results.

Discussion
Our simulations revealed important interactions among teach-
ing strategy, intervention interpretation, and intervention
probability. In particular, undoing, which involves local
changes to an agent’s state, is an especially effective strat-
egy only when interventions are frequent, while backward
chaining, which involves state-changes reflecting the global
structure of the task, is moderately effective regardless of in-
tervention frequency. Incidentally, when people teach by in-
tervention, they typically engage in undoing, but they do it

less often than they should to train Q-learners (66%). Gener-
ally, people make moderately frequent local interventions.

As this is a preliminary investigation into teaching by inter-
vention, this work has limitations. We use Q-learning as the
learner, but other RL algorithms may respond better to human
interventions. And given previous work showing that people
often teach with communicative intent (Shafto, Goodman, &
Griffiths, 2014; Ho et al., 2015), it may be that the standard
RL framework is inadequate for capturing peoples’ relatively
sparse, local interventions. Future work will also need to test
a wider range of MDP tasks. Nonetheless, these simulations
and models are a first step towards understanding the every-
day phenomenon of teaching by intervention in humans.
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