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Elihu Lubkin
Lawrence Rediation Laboratory
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19 April 1961
ABSTRACT

The significance of inertial frames and the 4-space-dependent
Lorentz transformations among them in the mathematics of general relativ-
ity is expounded here in textbook style. The laws governing the components
of affine connections on a frame are bresented, and the Christoffel sym=
bols ere deduced from & viewpoint congenial to the notation of frame
components. The parallel displecement of spinors is discussed, and is
compared with the analogous notion for vectors.

It is 6wing to the recent interest in generalized gauge-
invariance notions, in the sense of, e. g., Yang and Mills, thai these
notes, reproduced from notes circulated privaiely by the author last
year, are now distributed. Indeed, such notions of gauge invariance,
which stem historically from Binstein's general theory, are most evidently
related to that theory in the notation which emphasizes the rdle of

inertial frames.,
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Frames and Lorentz Inverisnce in General Relativity

Elihu- Lubkin-

Lawrence Radiation Laboratory, Berkeley, California
I. Introduction

One is usﬁally introduced to genefal relativity by the remark
that the G-pagémeter family of inertial frames at & point should be
determined dynamically. One soon introduces curvilinear codrdinatee
in 4-space, and replaces the concept of 6-parameter family of inertial
frames by & symmetric metric tensor, Euir -By means of any of &
6-parameter feamily of linesr colrdinate transformations, one can bring

%uy(x) to the form

o
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the Lbréntz metric}'at any given point x, in which case thé vectors

fﬁf) (x) which constitute an inertial frame at x may be chosen to be_ﬁ/i..
The symbol sz>(x) designates thé/xth component of the covariant vector
f(«)(x), so that the parenthesized index (X) is a labei which plays no
role in coBrdinate_transformatiohs. Thus, the ineftial fremes can be
recovered ffom.thevmetrio tensor,

It is only when half—odd-integralrspin éppeafad in physics
that the frames ﬁeré discussed at length,”:dnAGr‘the neme of vierbeine
("fourlegs"), or énholonoﬁic réference systems.2 bNevértheleas, the
whoie of general relati?ity mey profitéﬁly be diécussed from the stand-
point of locel inertial fremes. The main advantage of the fremes in

discussionsvnot involving halr-oddnihtegral spin ié the sharp separation



of the physical requirement of Lorentz covariance from fhe purely
conventional concomitant of the use of curvilinear colrdinates: to wit,
gere ral covariance.

The.development of the theory-of parallel displacement
without half-odd-integral spin, 1nvolvihg a derivation of the
Christoffel symbols from ideas referent directly to the frames, occupies
Section: II. The results may be found here and there in the references;’
(1);; here they are presert ed in a less abbreviated form, and apart
ffom the problems of unified field theory.

Section III presents the theory of parallel displacement of
a 2—spino}. Since the close historical relation betweeh spinors &nd
inertial fremes may appear puzzling, it may be appropriate tb remérk
on this here.

Local fields are required to trensform as representations of
the proper homogeneous lorent:z gréup:-ihe'group of tranéitions between
inertial frames at a point. It happens that the tensors:ééfined with
respect to a totally different group: the group of gene;al.linear
transformationa induced on the space of vectors at a point by the group
of transitidns‘between different curvilinear codrdinaote systems, may be
pressed into service &8s quantities under integrel-spin Lorentz trensfor-
mations, Different tensors correspond to essentially the same Lorenfz-
trensformetion quantity (the seme, if Minkowski notation is used), but
this awkwardness is resolved through the use of Euy and its inverse,

g“V, which Sy lowering and raising indices interconvert differemt tensors
belonging to essentially the seme Lorentzegroup quentity. But ﬂzére are

no general linear group tensors to correspond to the half-odd-integral



spin representations. In feact, aﬁy continuous function defined,qn the
general linear group must be single-valued because that group 1svsimpiy
connected; all representations are therefore single-velued, and therefore
restrict to singlefvalued representations of the lorentz group. When

these are reduced, none of the double-valued half-odd-int/egral spin
representations may appear. Spinors, then, essentially require a

quedratic form, a.set of orthogonal frames, or other notion of orthogonality,
for their very definition; fhey belong more directly to the Lorentz

group then the integral-spin representation, which may be obtained

first from a different group, with the notion of orthogonality brought

in afterwards only to relate covariant end contraveriant quantitiée.aA



I1. Skew Frames,.lnertial Framea, and Parallel Displacement of Tensors
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1. Skew Frames

The usual tensor calculus is adopted. A skew frame at each
point of a manifold is specified in a curvilinear codrdinate system by
the functions

£ (), (2)
restricted only by the usual regularlty conditions, and that the f( A
be & complete system of linearly independent vectors at x. The skew

frame is then given in all coBrdinete systems by ihe'condition that thé

f«*) be covariant veotobs:

= () - Y B,
T (=gt (. |
The field of reciprocal skew frames ft&)(x) is defined as the

matrix inverse of (2). Thus,

fgz)(x) ftL)(x) = 8;, o | (3a)
() 120 = b (3b)
Fquation (3a) implies thet the fﬁ;)(x), for fixed (), trensform as
tle components of & contravgriant vector field,
The frames allow us to reduce aﬁvarbitrary tensor to an
equTivalent collectibn of scalars: |
| ) > Tmm"‘m fm( ) ‘(a\"‘) SLIOR s LI

Zw = ) @ P 1y @) 10 Fhw.
These parentlesized components have the geometrical meaning of components
on a frame, or in the case of vectors, of the dot products with the frame

vectors.4



2+ Frame Transformations

The introduction of new skew fremes f to replace old skew
frames f defines a linear transformation at each point x:
- (o) (o) (®) '
- - ) M

The requirement thet Fﬂ:) be reciprocal to ?jf)

is equivalent to the

requirement that the two L's of (58), (55) be reciproéal metrices in
the sense:

@) (p) &

L W(P\"‘) me"‘) " Sy

= ¥

L7 gy () Liwy  (x) = b

" Note thaet no change of curvilinear co8rdinates is involved

in a frame transformation., The same frame trensformation in different

cofrdinates x' is'given by L'(u)(ﬁ)(x‘) = L(d)

f =>f*~>f" and f > f =»1° then agree; T =T,

(5a)

(sb)

(6a)

(6b)

(g>(x), in the aenge that

If a tensor has all or some ordinary indices converted to paren-

thesized indices, then it will frame-transform via factors of L, as in

(5a) or (5b), owing to the factors f contained in its expression (4) in

terms of'unparentheaized components,



The trivial derivative (7) corresponde to (12) with ¢ = b,
which ie not freme-invariant; see (10).
How do the ordinary comﬁonents of a covariant vector parallelly‘
displace?! ' |
v (%0 8) 8 £ (x e 8) v,“u)(x, : - (3
e ) ='vﬂ(x) v ) vy (0 8+ -fﬁ-.-(x) rm(x) TORE

or

v"};(x, 8) = wu(x) + r:“m(x) v, (x) 8%, C (149)
with | '
F",m: v (o() Bfm/ax .. (14v)

The trivial non-frame-invariant derivative (7) corresponds,
as we have already noted, to ¢ = 0; the ordinary affine connection
corréspon&ing’jo this trivial derivative is the second term of (l4b);
;hich may also be seen directly by writing out (7) in terms of the v .
The first term 0/435 = f(ﬁ) ,w) fgx ﬁ)(o(,a,) of (14b), in general,
transforms as an ordinary tensor under codrdinate transformations,
Thus, in general, the curvilinear-colrdinate affine connection character
resides in the second term of (14b), whereas the peculiar frame-transfor-
mation character (10) of'c which correspondsto frame-invariant.differgn-"
tistions is cancelled in (14b) by the frame dependence of the second term.
By transposing thaf terﬁ, the ﬁeculiar coBrdinate—traﬁsformation | |
character appears cancelled on the left-hand side, and the peculiar
freame-transformation character, instead, comes into evidence.

From (13) it follows that

(x+ }) - vﬂ(x d) = f )(x + 3)(v(o()(x+ 8)'.- v (x, 8)),

“(O()

or



v 3)1 = ‘r(o() (x+8) v S(P) Y 8(@) )

M » ) (%, ) 1y :’x) V(OI ) ;
VM’V d = f/‘:‘) \r(m’ﬁ f &) 8

so that we have simply

2 00 L (R)
V,M.)V f/& V V(M) ﬁ) ’

v =t 1) v
My p) = T00) N(R) Va, v
- in words, the requirement that the two covariant derivatives be the
parenthesized and the ordinary components of the same quantity coincides
withithe natural correspondence (13) of parallel displacements, or,
equivalently, with the relation (14b),
In a similar way, one can discuss perallel displacement of

a contravariant vector, starting with thé formule
v (x, 8 = v(o()(x) - A (Fm (x) v (x) 8(D), ()

’which leade to the seme conditions on the Ql“&(p)o that were derived
'fqr the ¢: namely, that they be inveriant to cobrdinate trensformations
andithét they transform according to the law (10) undér'dhange of
‘skéw frames. |

If one now applies the usual rule for displacing a product
t6 the scalar v (x) w*Yx) =y )(x) w( )(x), one finds “.oi |
(v(u)ww)) (x, §) = "(«)(x, %) w\)(x d) 2 v( 3(x) w( )(x)
) * v‘p)(x) w®)(x) (cm) )(x) - c‘p(a )'(x)) .8(7).
If the parallelly displaced scalar is to be computable from the original
scelar, without reference to the individual components of v end w, then

élearly c(g)('u.x)'(x) - Ic} )(W'X)(x S uw)(x), under which circumstance

the covariant derivative of & scalar s would be given by 8,0 "

B(O(\sl-u(u),

where, as in (11},

= 7 3
BUX) = f«x)(x) ) | (17)

with u“x) the perenthesized components of & covariant vector field,

(15)

)
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which corresponds to H. Weyl’s pre-spinor gauge invariance.

If one, however, wishes to get along with ohly one connection,
and not. two+-c and éf-or more, one can put the cdnnections for
diftereﬁtiation of coveriant and contraverient vectors equal; o = ?,
and have a scalar be unchanged by parallel displacement; u(M‘ = 0,

Thus, the scalar product of coveriant and contraveriant vectofa is

defined independently of any notion of orthogonalify or metric, and

(‘“(ﬁ'f)(x.) leads .

to invariance of this scalar product'undér‘ﬁarallel displacement.

the most economical use of an arbitrery connection ¢

In the seme spirit, one cen use ¢ and the usual product
rule to displace and differentiate arbitrary tensors whi?h are products
of vectors, and thenliransfer the derived laws to arbitrary tensors,

The coefficients ¢ are eaeilj annulled at a point, by
choosing the skew fremes in the neighborhood of the point appropriately.
In fact. set up new skew frames in the neighborhood'of x by parallelly
displacing the frame at x to the new points =~ either along curves
linear in the xﬂﬁ or, 8., g., along continuously self-parallel curves,
or "gecdesics.® 1If a vectof be parallelly displaced with the freme,
the inner products of the vector with the freame veciors of dpposite
variance reméin'invariant. But these inner products afa precisely the
1pareﬁthesized componenté_of the parallelly &iSplaced vector, whence
from (8)\ we see that, on these particular frames, O(F)(uq)(x) = 0,
if x is_the initial point of the construction.

We see this more formelly as follows. Displace the frame

vector-f(S) parallelly, where now (0) is an inacfive label,
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®) (), . ),
N(O‘\(x’ ?) = foy(X) * ¢ ‘)(x) )

(o) ) ‘(p |
“‘(9 (x, §) = 8% + ct’)u,n(x) 59, (188)

since féx)(x) )(x) f(& (x) = 3 . If the result, f,, is to be our

)

freme at x + .3, to first order in 3, then it also must reduce to Su' 80
that c(s)(o(y)(x) = 0, On the other hend, if we keep the & priori frames.
so that ¢ does not necessarily vanish at x, and fy is not. regarded as |
the freme at x + §, we may replace Sutin (18a) by fﬁi%(x + %), and write
(188) in the form '
(e 8 - o
in which form (}8) represents the ¢ as yielding the change of frame

8) L)) 8(’1)

(x, 3) = =c "y () (18b)
referred to its own notion of parallel displacement, where (X) on the
left-hand side indicates the computation of components on the & priori
frame at x + 5, a situation which may be clarified by introducing some

ordinary indicesy

SRR f“(;)(x, ) ='-c(;) (x) 8 (o)
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4. Lorentz Transformations and Inertial Frames

(%)
The Lorentz metric, '7 = 0 of eq. (1) is
1Y) ,
now introduced to form inner products of vectors of the same
variance, and to raise and lower parenthesizxed indices, Thus,
one can pass ffom ordinary covariant components 3“' of & vector
to contravariant components by first going to parenthesized in-
dices, then raising with 77(“9), and finally pessing back to
nerv indd M )
ordinary indices: v, v v =
vy w7 M) T Ty W ) T

0 ) i, :
Y)SB v(oq, v(ﬁ -9 W f(;)_ vfﬁ’. or

Vi e gV (Px)
v (x) f({g)(x) Vﬁu fto()(x) v,u(x). | (19a)
Inversely,
N (F) Y,
v, = £ )q(«ﬁ) ) P, e
which follows from
(P?) 37 (20)

O(MP) 9

and from (3).
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In general, the vVvdedudedvfrom vy 2ccording to (192). will
depend on the fa;)(x), as well as on the gu(x), end will varvaith'an‘
arbitrary change of skew frames. -Those frame tx;anafomatio'na L(us(p)(x)
which leave the complete raising operator ‘

gV/L(x) = f(vp')(x) r)(ﬁ(’() f'(%()(x) : (21)
invarient are known as Lorentz tranmsformations. A‘s usuel, reetrictions
of continuity and differentisbility will aleo be imposed.®

| Note that
V(x) = g*(x),
and that
@) 2 00 g ff’>( )
is the matrix rgc:.procal to g"'v(x) Thus, the formalism of framee
and pare‘nthesized indices extends the usual formalism, |

By writing out the condition.

Vex(a\

- =V M @
fca)(x) f(P)(x) = f(d\)(x“) P flﬁ)(x)'

with
Ty () = Ly P 0 ‘(ﬁ)(")'
the condition thet L(Ol)(g)(x) be & Lorentz transformation is eaa:lly
seen to be equivalent to v o
™) (p) . . ,‘ .
RN '7(0(;3,) L™ (gytx) r)(%)‘ o (2
This may be written: -

(u) (8 (8€)y . g€
><x> (Dixgy * Py @ e = 5y,

which may be expressed with the aid of (6) as,
= ) C (22
| Loy’ () = Mgy 1 By 1 e
a form which possesses the following happy verbdael interpretation: '
The use of 1)'3 to raise and lower parenthesized indices may.be extended

to Lorentz treneformations, without conflicting with the notation (6) tor
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the reciprocal matrix. It will be convenient to adopt the new symbols
) = gy My W) o ANCRELNS 7%, u
conformity with such free extension of the use of q Se

Except for the extra variadbles x“} which have not yet enterqd
essentially into the discussion, the Lorentz transformations here are
precisely those of special relativity.

A notion of orthogonglity, in the sense of.the metric 7, is
specified by declaring an erbitrary system of ffames,'{gf)(x), to be

an inertial system of frames, for clearly, omce one has chosen a complete

independent set 6f vectors at each point to be generalized unit vectors
in the sense of a metric 7, and to be mutually orthogoﬁal, one heas
defined the inner product of arbitrary vectors of similar variance.
The expression of this notion of orthogonality in the language of
unparenthesized indices involves the use of (21) as a metric temsor.
The inertial fremes are all the frameavequivalent‘to fhe
original arbitrarily chosen inertial system of fremes, in the sense
that they yield the same notion of orthogonalityy i. e., the.same
g”v(x) they are thus the freames which mey be obtained from an arbit=

wf

rary inertial system of frames by Lorent:z transformetions.
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5. Antisymmetric Comnections

‘(

vWe have already seen that thé inner product of a covariant
and a contravariant vector is invariant to parallel displacement, if
we use the same connection for displacement of the two vectors.
However, with the aid of r), we may write inner produgts of vectors of
the same variance, which inner products are invariant to Lorentz frame.
transformations. By requiring that such inner products remain inveriant
to vparalle]."-.displacement‘s, or, equivalently; that q(“ﬂ or ,)6)(\6) displacé
- trivially, we obtain a restriction on the coefficienté ¢, which.involves ”
the OGMFQ, and which may be written as an antis&mmetry propefty,vif

advantege is taken of the notétion of raising indices. Thus,
- oR) L &B) .
0 i =1 =
v. . ol&) O TN o B (¢ I
0 = (p) Te) e (oc)S) () (8)
(€ + (¢ o=

c(eoﬂ(g) * c(ue)(g) = 0, _ - (28)

Connections satisfying (23) will henceforth be termed

) =0 &=

antisymmetric for the sake. of brevity; no restriction of aymmetryb

relating to the third index is to be inferred from this designation.
In the case of an antisymmetric comnection, the comstruction
of skew frameé,whiéh?rin:"general led to the vanishing of the c(p)w,a,) (x)
&f the point Xy wiil lead to inertial frames, provided only that the o
original frame at x be chosen :i.r'nexr't.’ﬂl.t:tlo Consequently, the frame
fransforﬁnation leading from an initial system of inérti‘al frames to the ‘ |
fremes of the construction is a Lorents traheformation.
The eq. (23)-antisymmetric dndiwsymmetric parts, ¢, and cg, bf en
arbitrary connection, are respectively a conmection and a tensor under Lorentz

transformations == the’-g-L- terms from (10) cancel in Tg by virtue of (22),
x . '

Thus, in the form cg = 0, (23) is seen to be a Lorentz-invariant property.
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6. Christoffel Symbols

Since an antisymmetric connection preservea_ﬁll inner
ﬁroducts in parallel displacement, o:,equivdlently, is pegmutable with
_the reising and lowering of parenthesized indices, and eince such @&
| connection .can be reduced to zero at an arbitrary point byra.spitable
Lorentz transformation from its originai expression on an:inertial
system of frames, it may be suépected that the antisymmetry property
(28)valone uniquely determines the analogue in frame language of the
usual Christoffel symbolg, which indeed ﬁre'determined uniquely from
the ngXx) in the language of unparénthesized indices Sy the permuta-
bility of parallel displacement and all inner products, and by the
possibility of rendering rtuw(x) = 0 at an arbitrary point x by'a‘
codrdinate transformation, which possibility is equiQalent to the

symmetry property, ' .

v v o,
M up () = Mg, (). \ (24)
But this is not so: That ¢ satisfy (23) does not determine ¢ uniquely,
and hence the associated I given by (14b) is not determined uniquely.

This is obvious diréctly: add to Cyums & nonzero arbitrary ordinary tensor
éywm antisymmetric in its (irst pair of indices; then ¢' = ¢ + g has
correctly coBrdinate~transformation invériant parenthesized components, |
it satisfies the frame-trénsformatiOn law (10), and the antisymmetry
property (23); further, such antisymmetric g\m exist: e, g., let
cwgw(x) = Eoup.),p{(x) , yhere € is the‘ completely alternating symbol,
and ﬁ is an arbitrary nonzero:scalanrfunction,weaﬂg;;:a nonzero constant.6

What part of the usual ingredients whiech allow the computation

7

of [ is missing? The equation
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Euvm = Y _ (25)
is equivelent, by (15), to g(uﬁaq) = 0; since g(b(ﬁ) EY V)(«By to
Chng;y) = 0, which is none other then the condition of permutability
of ) and ¢ expressed by (23). We therefore have (25), and it 1s (24)
that is missing. Conversely, (25) implies Oﬂyﬁf7)'= 0, which impliee
the antisymmetry property (23), so that the lack of uniqueness d
antisymmetric ¢ is in one-to-one correspondence with theylaék of
uniqueness of the I' consistent with (25), but not necéesarily with
(24), in the language of unparentheaized'indicéa.

Of course, we could assume (24), derive thevchristotfel
symbols [ directly from (25) in the usual way, and then find ¢ from
{14b); uniqueness is obviousie so that the usuai computations are
needed only for existence and explicit form, although uniq@enessf
appears again as & byproduct.

Since the usuali1 is linear homogeneous in the first deriv&-
tives of the components of g, we have by (2}) and (14b) that the
corresponding ¢ 1s linear homogeneous in the first derivatives of the
frame components.

From the standpoint of frames, however, assumptions about
behavior under curvilineer co8rdinate transformations aeeﬁ highly ar-
bitrary; (24), which is effecti#ely the assumption that it'be possible
to cobrdinate-transform F to zero at a point, seems an awkward hypothesis,
especially since it is independent of the apparenfly similar but
effectively empty additional condition that it be . possible to render
¢ = 0 at a point by a Lorentz frame transformation.

We will instead start from another condit ion, which also, of

necessity, relates ¢, the frames, and the codrdinates, to derive the
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Christoffel symbois. Nemely, we apsume in adéition to the proper
trensformation laws and (23) that ¢ be linear homogensous. in the Bf/Bx,’
end have an expression in terms of the f and 3f/dx which preserves its
form under Lorentz frame transformations, and thersesupon directly
compute a unique c¢. This may seem like the natural formalization of
our original introductivon_ of .the c(m(ow) (x) as compensatorq for ‘the
rotation of the reference frame, in the definition of parallel dis-
placement; it may seem_natural'thét the rotation of the frame be
proportional to the explicit first derivatives 3f/dx.. Indeed, the
definition of parallel displacement aleo acéepta.the importance of
the co8rdinates in compﬁting explicit derivatives in its nalve term,
end is therefore & kind of precedent for such & condition.

Theorem. A uni@ue curviline&r»codrdinafe-transformation inverient

¢ is determined by the Lorentz-transformetion property (10), the
antisymmetry prdperty (23), end the requirement that it be linear
homogeneoua‘in the Bf/Bx; Its expression (38) is determined in the

proof. ' :
3l w0 Al
1 (ﬁo' M B

, wWhich with the remark that OW‘)'. ,}(uﬁ)

Proof. By differentiating (3), we obtain

(=) L v
_and RieY fz& = () B ()

N R Y

are constants alloﬁs us to freely transform derivatives, and thereby

to reduce the géneral linear homogeneous expression bearing precisely

three free lower'parenthésized indices to

L. M m
“Gg7) = °1 h (@) Ty * —‘(‘ma fm (ﬁ)
| Bf{ MA v ¥ (s ) ;

. ?’ft:p& )
° W B * % S f(p) )
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That the three perenthesized indices eppear below is equivalent to (1Q)

for constan£ L. The entisymmetry property (23) further specializes

(26) to
“wpy) T %1 (Mw'“ f(p) 1"‘(’m Br(a ftol) 1 1))
* @fl’ﬁ gy fleo - P'g“a& fon f(pﬂ (29
+ o (E;—QV-&- oy 1(B * af'“” I(F) fw) |

The coefficient of c_ is already invariant under curvilinear

5
cofrdinate transformations, for it is the contraction of the coveriant.

M f Lo : " '
tensor 8, ,= s | 2 Dy with the contravariant tensor t#“’= f fv .

If we put ¢, = 5+ (cl - 03) and leave aside the e,

first two lines; now bearihg the common éoefficient Cqs form scalars in

- c3'part, the

a similar way: combine!the first/part of the:first line with the second
part of the second line, and the second part of the first line with the

first part of the second.

'Thus, (27) is inveriant to curvilinear codrdinate transforme-

tions if and only if the remainder,

afmn;» ¢V
(e) = ¢)( f(P] ('0') ...._E_.. f(&) tiy)) - (28).
is. Tt is not unless c1 Cy; 8eE Appendix 1.

Therefore, putting ¢y = ¢35, We have ‘

‘,_ fx) ,Bf«x)v p oV

“apn) = % S0 ) Tgy f(w)

g, Ef_mw

vy (555 5 ) o) | (29)

M _ My u Ly
v e T A ) T ey

We now impose Lorentz invariance., The original expreasioh was

taken to have precisely three lower parenthesized indices to assure
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‘Lorentz invariance under constant Lorentzvtransformations; hence, when
(29) is trensformed, the terms not involving the OL/dox will already ;
belance. It is therefore necessary only that the terms involving BL/bx
sum to the proper derivative term in the exnression for ?(O!ﬁ'b’)' namely,

that obtained from (10) by lowering (B) and interchanging o andp

Lwe) ng fe) = Lwey Bx,u ('a') (30)

A typical term from (29), trensforms as followss

($)

—a v , A M BL«x ©, ¢
_.._L__. f(ﬂ) f('}') term without S; f(&\/;, f(e) f{g ) gg) (7) )
of which the % term r(egl;mes to () | :

BLg ) (&) —=v ‘ \
Disey £ ([5) foy = Lps) f(?f) ’ (31)

The equa"tion of the sum of all six BL/bx terms from (29) to

expr ession (30) reads

dL 5y (®) =M A, o) (&) =M
(5 m besY Ty~ S bars) Tip)
.B;'(@)(S) BL( () -A
r S s) Ty - = L) Ty
+ o5 (SE—145) g Tméxu L(gs) o))
3L M(8) (
= 32)
(%) T (’a’) \
(%). BL(m)(b)‘ (8) 3Lgs)
Since L L = , we have &) 1, = -L 2-88)
nce Liy) (ﬁg‘) Y)(o(p) we have oz <P8) (o) SA

5 .
= 'L((KS) --(@-—-, the first and fourth terms are equal, end, except foxj
the coefficient, coincide with the right-hand eide. The fifth term is
gimilarly related to the second, the sixth to the third, so that (32)

reduces to

Y (®) -
(o * o)~ == Mm b (¥s) f(p) » B) 55 Lias) Twy) (33)
' 3 ®) (%) ) -
. W C RIS
By putting f(,a,) 8?' L(u)(g) = o‘i' eq. (33) is simplified

= (1 + 2c1)
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without restricting'the d3L/dx: By putting.

(g _ P, e 5 s | Con
(x+ 3) = § + o Y (34a)
into (2%a), it is easy to verify that the antisymmetry conditions

(s , dL(BX)

(341)
BX Bx (ﬁ> .
are necessary and sufficient for L( x) (x + 9) to be a Lorentz |
trensformation, to first order in 9. Equation (33) thereupon
simplifies to
ALY 31@(’3) gy '
(c *c)( ) = (1 + 2 ) (3s)
™ P .Bx% - |
put D2012) - = - _3“.(.@-, all other RITI 0. With =1, p= 2,
¥x3 ox3 x% '
N = 3, (35) thereupon reduces to
0=1+ 201;'. (3%)
{B= 1, ¥ = 2, X = 3 yields
cl + 05‘== 0’ ] (37)
so that ¢, = -4, cg = %, and |
- N _Bf«xm
Zowpy) = o TS ey )
Bf(ﬂ)u' Bf('g)ﬂ V : '
(Bx - .ax ) f(,y) (0(3 : (38&)
)y _ By o v
TR W P oy
or
- &0 3f<o<>7~ _Meag
@ Ofwe T . o
f - 7 . (381))
* (Bx'r ‘ Bx :
£ (Bfaxm | g,
e T

which is the unique connection determined by our conditions.

The part of ¢ antisymmetric in the final indices is & curl:
o e I Bf“* - (39)
oT TS 3x0 . 3T o ,
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VRN

From (l4b), the corresponding I' 1is seen to be

I () Of (x).
rPO"f = P (O()’O 3 = cPO‘T+ ff _i;((%l-?;

Dy Ny of
2Tpar = fp ¢ &) ____L(%{"'»r f,(r) __.)f-(;‘

S af(ot)g . 10 Y
wt P xT

_ @0 M@ 00 Mg
o Bxf T ¥’

B B 3
ince £ ®) (e - ) ) EpT
Since f ’ _.K_)I £ Bx)ﬁ e «p) '¥ f(ﬁ 5

we have indeed the conventlonal Christoffel-symbols,

: 1408 dgpu 3g¢¢
FPW 3l x{r)r ’ 3,; SP | (36e)

The requirement that the ¢ be given in terms of the f by =

Lorentz~invariant expression is the mathematical concretization of the
notion of & completely equivalent 6-paremeter family of inertigl f;ames
at 2 point, of special relativity. It renders the {ﬁ?)(x),"less power-
ful® than a physical field. vHowevar, the ﬂﬁy)(x) may be used more
strongly; e.. g., 8 special system of frames mﬁy be used to define a
connection | according to (7). In such a case, the fﬁ?)(x) introduce
e non-Lorentz-invariant festure in the space, and in this way resemble
a phyéical field, which has a special expressionfon certain inertial
frames at a point that is ﬁof agsumed on & general inertial frame at
the point. It is not, then, surbriéing that frames and connections

other than that of the Christoffel symbols appear together in some

papers on unified field theory,
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7. Curvature and Torsion

In this section we return to the arbitrary connections of
Section 3; the antisymmetry property (23), in particular, is dropped;
inasmuch as curvature and torsion are general attributes which involve
no reference to the Lorentz metric.
Equation (15) is easily generslized to an ardbitrary tensor;
€ Boy t = M f{ fur t « Therefore, the tensors of
®,Y) @ B (¥) »w ~

curvature, R, end torsion, T, defined by

V(u)ﬁj'x) V(D()g’ b) V(S) R (up «x) + v(O(;S),T ‘ﬁ?) » (40a)
and those defined by
CHAMT T Y Co » N g5 (40b)

coincide, or correspond, in the sense that they are respectively thg
parenthesized and ﬁnparenthesized components of common tensors =- &t
least, if the separations inte a term proportional to v and one propor-
tional to its mbsolute derivative are not made differently in the two
lenguages.=~ for the righi-hand sume correspond, and if the splittings
into v and derivative terms correspond, then the R and T must c;rggg;“
pond, since their coefficients, v and its derivative, respectively
correspond, By'carrying out differqntiations and subtractioris, the
forms (40a, b) may be verified, with the foilowing explicit forms for

R and T:7
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© _© v (Br(” Bfﬁ’ \
p7) o) fipy fty) Fem T 30
g 3"(6_)(“_&)_*. g M ?.E_(&.)_(!ﬁ

R

('J) w0 P A
v & &Y e (§) L
(68 © (%) (57) = (Rp) ) (41a)
- «m “ I,e.) gl - qs) (v)’ﬁ)’
m (oe/a\ " (@ °(é)(o<'x)
* °‘e’(g;;> ) " s Py

©
© L@ e RIS L%
TN T ) °. e * Wt ¢ " g

(41b)
= L6 _ (e (6) ‘
Clapy - * 1 Y B G Y
o N A
Ruvg™ = 3 wy _ax“w F VP w - Ffmrv“"; (410)
Tum"ruw+rﬁw , ' | (414)

From (14b), it is clear that the T do_oorrespond directly,
whence the splittings of (40a) and (40b) do correspond, so that the
correspondence of the R follows as above, The R corre"spondence may
also be verified directly by tedious caloulation from the explicit
forms (41a, c)_vig (l4b). |

' Since T is minus twice the antiaymmetric part of F,’property';
(24) finds a geometrical ‘meaning as | o
| | T@(p,n =0, (42)
in (40a). The objection mmde to the use of (24) as a condition for the
determination of the Christoffel aymbolaA in conjunction with (23), in
that eithef in its simple but formal statement, or in thp t"orm that;r‘ be

,reducible to zero by a curvilinear colrdinate tranaformat_ioh,_ its meanixﬁg



in the language of freme components was‘unclear, is partially removed.
In this connection, it may be interesting to also note that only the
curvature tensor- R emerges from the discuesibn of the éhdnge in a vec-
%or produced by parallel diéplacément around an infinitesimal loop,
even when T # 0 == which may indeed seem reasonaﬁle directly from (40),
inasmuch &s loopwdisplaéement of asgingle vector will not éaaily'be )
pressed into definition of vector field sufficient for the coigriaﬁt
derivative to be defined. That T vanish therefore corresponds to the
condition that the process & antisymmetric double differentiation of
a vector field be no richer them that of loop displacement of a single
vector, .

The simplifications of (41la, b) attained at one point x by
choosing the frame f%) (x) = 8; and the frames at neighboring poiﬁta
by parallei displacement, so that cqnaww)(x) = 0, are obvious,
Similar simplification:of’(41lc) by special coUrdinafe transformations‘
will not be discussed; at least for T = 0, they afe thoroughlj treated

under the title of norhal coirdinates in text‘booke;8 the familiar

unparenthesized-component formulae eppeer here only for the purpose

of comparison to the frame-component formulae.
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III. Spin %

1. Spinor Algebra

| The clear isolation of a Lorentz group at each point x
afforded by the language of inertial frames leads to & discussion of
spin & which, except for the extra perameters x*, does not différ from
{the usual discussion in purely special relativity.9

. )
Lorentz transformations at a point by complex (2 by 2) matrices.

There are four repreéentationslfﬂo - S of the group of
Giveﬁ any one representation L -€>_S, we obtain another,'the.contra-
grédient.representation, as uéual, by use of the adjoint matrices,
L ~> (s™1YV; that the representations are complex allows us to
generate two more representations by{taking complex conjugates of
these: L ~» §%, and L ~» ((s"1)™)¥= (s7t,

A conventional notaﬁion for the action of S on the spinors is

| P = @ Y. | (43)

If the notation for the‘ihverse metrix be written in analogy to the

notation of (6), namely},

sab(x) Sgb(’o = 82, o '  (4sa)
sab(x) sac(x) = Sg, : | (44v)

one obtains the usual simple notation for thé contragredient

"representation,

kv b
x) =38
X, (x) . (%) XB(X)’
and Y2 may be termed & contravariant spinor, Xo @ covariant spine.
The indices belonging to complex=-conjugate represehtations are conven-
tionally denoted by dots, and one speaks of dotted contravariant and

of dotted covariant spinors, Thus, (Sab(x)fu = Ség(x), and the complex
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conjugate of . (43) reads
Pla) = s b(x) P
If the Yp(x) are q-numbers, then W (x) designates the hermitean conjugate,
for a fixed value of. the index aob
CIearly, one may pase from'ordinary to'dotted componente of
8 spinor by complex conjugation. One may also raiee and lower 1ndices

by the matrix eab = eaﬁ = 5 = € ab = [_1 A} if the Pauli matriees

O e [ s 10 ]
erelueed.a The Paull matrices are defined, more genera}lj;”es twice '
the coefficient of 1 in the infinitesimal parts of the respective
rotation operatorsin the representation S, fof,u,; 1, 2, 3; &(9)*:'@ 1
is‘alconvention?nhieh ties a given repreeentation.to.one of‘fhe two
inequivaient Ldrentz vector}repreeentatione vie eqe'(46), end the |
choice of plus s1gn in 6( 1) (2) ol & 1013) specifies Sxas either of
ntwo of the four inequivalent epinor representations, generel Pauli
matricee ‘subject only to these conveniions are related to the apecialn‘
Pauli matrices (45) by a similarity transformation.‘ L

‘ £y ' o
- The famous dien between spinor and Vectordrepresentations‘ie 1*'

$(x) oM s =1 (oW (ase)
The constant matrices GQ“Jare written dab)because then (46a) readsj | _
& x) o s R A PLE a‘;”, R 7))

or | S
LWM)(;) 5%, (x) s° (x) oM 2 ¢8) S O (46¢)

which is precisely the assertion that if the aCPJ defined in terms of
the constent inflnitesimal parts of the S representation, are erroneous-
ly" transformed according to all their indices, then nevertheless no,real

error ie committed, with this aesignment of index positione.' Thus, an
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otherwise complicated expression, e. g., 0‘- ‘{’ (x) v/”)(x) has
its Lorentzktransformation rendered obvious == in this case, we have
an dotted covariant spinon Further flexibility is atteined by noting

that

o™ eob de o) | gad - (47')

Y €
where the left-hand equality is a directly computable identity with
(qu=f(60» #} by virtue of which the numbers (d)may also be taken

to transform on all indices aocording to the alternate notatlon on the

’right.
| The Lorentz-transformation charaoter for spinorsvis thus
given ih precisely the same way as for vectors: by the action of a
representation of the Lorentz group, vearying with x, aoting on a fieldav
expressed in curvilinear-ooBrdinate-transformation invariant components.
In consequence of (46b), .
'X,é(x) d’é(#) lvb(x) z v(f”)(x), | | v..(48) .
invariant'to curvilinear colrdinate transformations beczuse all
. quantities on the left-hand side are thus invariant, uodergoes
Lorentz transformation in the manner of the upper parenthesized or
- frame componantslof & vector field.
The ordinary contravariaut components of v are
Y =% o) Yo,
2 (x) = f‘/ﬂ(") a;b ;o
but whether one deslgnates vectors by parenthesized, frame indices or
by ordinary‘indicea, the gpinor components *b refer to inertial fremes,
and do not transform uhder change of curvilinear colrdinates; the

difference between the two vector notations is absorbed by the Pauli

matrices. This curvilinear-codrdinate invariance of the spinors cannot



29

be "remedied,” because there are no spin representations of the full
linear group, as has been noted in the introduction. Thus, when

spinors ére included in a discussion, the language of inertial frémes
appears unified, in that a2ll Lorentz-group quantities remain invariant
under curvillnear co8rdinate transformations, whereas the ﬁeual notation,
which draws exclusive attention to the unparenthesized components of
tensors, appears disjointed. The ap(x) can be used as a foundation

for the geometry in place of the fﬁ;); in fact, as of(x) = f{t»(x) G(VD,

v
and & Tr Mot = %u’ or, more explicitly,

¥ ool 4 (j:,) o = 8, (49)

we have f( 9 =%TT ) oH or, more explicitly, o
(X] hd a(x) -~ (50)

~= 50 the way to do it is to prefix the discussion of frames by this

definition of the freme vectors, which is, however, extremely formél.

and may be misleading if thé development covers up the presence of: the-

eQuivaleni'framesr(EO).3
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2. The Parallel Displacement and Covariant Derivative of a Spinor

The spinor obtéinqd from Wﬂ(x) by infinit?simal perallel
displacement is defined in terms of coefficients of connection, in
precise analogy to the case of vectors:

Y2 (x, ) = Y2(x) = K% 0 (x) $0(x) 80, - (s1)
The requirement that Wﬁ(x, 3) behave like a contravariant spinor at
x +_5, toifirst order in §, with respect to both curvilinear coardinate’
transformations and Lorentz frame transformations, gives us the trans-
formation properties of k. Thus, all quantities in (51), aave perhaps
k, are invariant to curvilinear cofrdinate transformations, whence,
however, k must be invariant, too. For tﬁe behavior of k under Lorent;
transformations, {51) is written for different frames, the known forms
of éll the quantities except EabiQS(x) are inserted, and then the
result is solved for k:
S (x + B) (¥(x) = Ky gy () WO () 5
38 (1) WO - B (1) 80 (x) ¥O() 19 o 5@,

The" coeffxcient of V¢ in the first-order part is
8%

W :
ax; 8 *_Sad k o (00) 8( ) = kab(O() Sbc L( )(p) 8(9)
The coefficient, now, of S(P) with, of course, s z;) 3(p) is
Bs . - b (x)
T "(p) Fa Ko@) = o T ()
and solving by applying 8e° Ly) (@) yields

= (p) .G 33 | By
Korn = %a 8o Ly Koy - %' 52 f(,e) v Pi 2
as usual, the connection has a "nalve™ term, end a term depending on
the nonuniformity of the tranaformationo

The covariant derivative is) es usual, deffned as the coefficients

in the absolute differential, obtained by subtracting the parallel
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displacement from the actual first-order extrapolated spinor field:
™y . o | a
a = - h .
W ’(u)(x) 3 Y (x + b) “(x, ?);

V2 o) (x) = 3 Y2 (x) + K%y (x) WP (x). (53)
The three other kinds of spinors cean he trensformed to
contravariant spinofé by é and'complex conjugation, then parailelly
displaced, then traﬁsformed back, so that the k above already defines
parallel displacéments for 2ll spinors, In particular,
Ye(x, 8) = ¥a(x) - g 0 (0 YBx) 60, (54)
obtained by teking the complex conjugate of (51), where, of cdurse,

s ) = (8 0 (),
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~ 3. Relation to the Pa'rallg}.,w.E&.ﬁp}.&cﬂe@m\.g,f....w,.a_,_,.}!;s?}sr

The quantity va)(x) of eq. (48) is a vector, with determinate -
parallel displacement ¢ when a k is given to parallelly displade
spinors. Thus, | |
(M) A L 8 ¢ 3{x) ) (@b - b d g(®)
v, 8y 2 (0 -k oy AE BT o) (@R - iy P 50

Y b M) 8 d ¢ (X
T - (o) ¥y v g Kogg) Y80

e

o

whereas, also,
v?r)(x, 8) = viM (x) - CQU)( o) (%) v (x) 3@
= - : 0(
ey (x) c(P) (699 Xé Géﬁ) pd 8¢ ):

g0 that, on equating the two forms, one obtains

( - M b MW b |
AATIL SRR R RORE A e (59)
This may obviocusly be solved for the ¢, most directly, by traces.
- Thus, by applying % éz)#=‘§-oié), on; obtains |
) o aeh G b, g ged By

What are the proﬁefties of such & ¢, derived from a k!

Sinée the proposed paralleily displeced vector vu(x, d) alreedy is
uknown to transform to first order in dasa Qector at x + b, the ¢
must pecessérily have the correct transformetion properties of freme-
oriented coefficiénts of CQnﬁection. By writing eq. (55) in the
ebbreviated notation (58) below, one sees iﬁmediately thaf oc“)(F°0~o‘ﬁ)
is'germitean, whence from the hermiticity and linear independence of
the d‘ﬁ), it follows thaf the c(PJ(pa) ere real,

The ¢ derived from a k are therefore ordinary coefficients

of connection, and we address ourselves to the deterﬁinatién of any

special properties of such a connection ¢ that mey follow from its
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compatibility wifh, or derivability from, a connection fbr spinors, k.
We will do this in the process of'determining what is the class of k'é
consistent with a gi&en c; for o's incompatible with a k, the class of
k's will be found to be empty. _

For the purpose of this compufation, wé will go to & fixed
inertial system of framas%ﬂand we will drop the obviously Lorentz~
co§ariant notation of positional and dotted indices. In this system
of frahes, kbc“x)(x)'is, for each X and x, a (2 vy 2) matrix, and may
therefore be éxpressed as & linear combination'o( the Pauli matrices

agm o Thus,
be

b ) . () '
K00 ) = Ky (R = K gy () aﬁij : (57)
where K (yy (x) is a \"(‘.2~by~-2)\ matrix, for fixed &X and x, and the k(O‘ﬁ) (x).
ere complex numbers. Equetion (55) then reads '
() B) = (M v x T oolp)
c » o(p) = ¥ Ko * ¥ P, (58)
or ,
| *
co*)(ﬁu) of) = oW (B ka&b) + k@%ﬁ) o(p) og“). (59)

It remains to compute the dependence of the k«qa)aon the

c(F)(pOQ, and to verify that the resulting k possess the necessary
~properties of & spinor connection. A fast start is obtained by
specializing (59) to M= 03

c(o) U(P) = (k + k ¥ ) aqg)

(R0 @p)  (p)
or

(0) ) = . )

* g T R @
The relation 010) = [é g], which has been applied, is invarient to a

similarity transformation, so that the special representation (45) has
not bYeen invoked, '

We continue by specializing (59) to P= i, where 1 i < 3:
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is a fixed index:

L(4) (0) , (1) (1) , ()

(ooz) o (ioxy © (1+1,%) ¢

(1#1) , c(l)( 2,0) oi*2)

R T R IR ML )’k(‘x» +2)

- X (w2) Ko (e .
"" O'(l) k(mo‘)¥ + 0.(0) k(Oti) - 10‘(1 2)k(°<, l"‘l) * ’io'(i 1) k(u, 1+2) [}

(61)
where indices distinct from O are given in an obvious modulo-3 notation.

The: relations applied here were 6(0) [1 dl and c(l) G(i*l) = id(i+2)
= -io(i’l) U( ), which are*nvariant to similarity trensformations, and
are therefore 2180 independent of the speciel form (45). Equating

the coefficients of the various P to zero gives

(1 . % - L o
a ) = Fea) ¥ Fe) (62a)
) (iO() = keo) * k(mo)# x o (62v)
ot )(1+1,o<) = ke, se2) T iRy, aez) o (62¢)
N ap " - ¥. - (624)

ik ~ik .
(32, X) (O, i+1) (0, i*1)
From (60) end (62a), we find, by lowering the upper index

in each qése, SRR
. - -0 . (63
(0i) (10x) )

Since this hae been proved in an arbitrary inertial systemio

of.frames,

it must 33 & Lorentz-invariant relation, In Appendix 2, this requirement

is shown to be equivalent to the form
g = “wpn * Doy Yy (e

where ¢t is a connection satisfying the antisymmetry property (23), and

VCY) is an arbitrgry vector, This vector .is real,-as.we-have already-

noted that.the coefficients ¢ will all be real, or, directly, from (62b);

(1)
Equation (62¢) mey be written.

c.(i) = v((x) = ‘2 Re k((XO)' no sum on d. | (65)

©(1, s1,X) =2 ke a0y < (66a)
which together with the antisymmetry property on the first two indices
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when these sre distinct determines c )? and hencs

(i*1, i, R
C(1, i+2, <) in a manner redundent with (62d).

Therefore, the class of c¢'s compatible with some k is,
tentatively, determined tovbe those c's of form (64); the necessity
of that form has already been proven. For a ¢ of that form, the k is

partially fixed in that the real parts of all its coefficlents are

given by (60),

2 Re k = ¢ : - {60
®,8) " °(0, B, (60)
the imaginary parts of sll the coefficients save k(“ 0) by
' »
2 Imk (66b)

(&, 1)~ °(i-1, i*l,x)"

k(O( 1) is thus completely determined by the entisymmetric part Q of c.
? .

If we restrict ourselves to vector connections that preservé arbitrery

inner products, i. e,, to antisymmetric conngctions, then v(oq =0

(&, 0)
In Appendix 3, it is verified that the k obtained from en

= 2 Re kﬂx 0)* In any cese, Im k 1s not determined by the c.
14

antisymmgtric connection g‘by setting k«x’.o) = (0, namely,

A, 1) T Heo, i,00 " ié(i-l, ir1, &) (67)
dOeé, in fact, define a spinor comnection through (57), which may be
termed the distinguished spinor connecction determined by an antisymmetric
vector connection. In Appendix 4, it is shown that the coefficients
k(x, o) °f any spinor connection transform like a (comp;ex) vgctor,

which may be written

3

Ko, 0) T 7 Ve T A (66)
in terms of real vectors v and a, which finally establishes thet the
necessery and sufficient condition for a connection ¢ to be compatible

with some spinor connection is that it be of form (64), and in fact that

the class of k's compatiblo with such a ¢ is given by (67), (68), and



36

(57), in terms of the parfs ¢ end v determined by ¢, and an arbitrary real
vector, a«x).

| Thet the condition that c be compatible with a k imposes &
restriction which tends strongly in the direction of (23), néﬁely, the
restriction (64), should not be too surprising, inasmuch as (23)
corresponds to preservation of the Lorentz inner product, whereasvthe
completely generel spinor connection k is'also linked with the iorenti
group, inasmuch a&s it fefers implicitly to the meaningfulnéés of spiﬂdrs,
and involves the spin representation of Lorentz transformations in its
fram9 transformation law, and these are torehtngroup;;andznot=affine,'

concepts.



4, Dirac Equations

The use of covariant difrerentiation and Pauli matrices to
write a Dirac-Weyl-Pauli-Majorane-Lee-Yang-Case equeation is obvious:
% ¥, e fx) = 0,

or '
(m) + o
¢ .(u) '
for nonvanishing masg.

By disaectlng the 4-component-spinor Dirac equation:into
its 2-component pieces in the usual way , it also can be directly
written:

I
i =
¥ 0 + kg = o,
aab Xb ) 4 infe = o,

The term a, . (x) = (M o)(x) of last Section, will be
]

o)

seen to act in the usual manner of & vector potential if the covariant

derivative is written out.lw‘ This term a (x) has éppgared; without

&)

being specifically sought, because we have asked for the most general

k consistent with a ¢. Obviously, neither a«x) nor v(ao = 2 Re k«x 0)
’ ?

distinct from zero appear if one imposes the "natural” condition that

k be linear homogeneous iri the 3f/dx: one then obtains the distinguished

37

k determined through (67) from the Christoffel-symbol ¢'s and k(u 0) = 0,
R . [ .
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Appendix 1

NonxInvariance of & Quantity in the Qk_l_g_j‘._stoff el Symbol Derivation

This is a direct verification that (28) is not invariant to
curvilinear codrdinate transformations unless cl = 03‘.
LIS, H
BT(W!! v (55m Tty ) 9% P ¥
Y (/6) (y oxY ¥xf (@) Bx (7)

Bf(o(),u, v fy +p fP rG’ Bzxm B?('M b?v’
w” B ) I R () 3wt 3xf 0

so that the second term on the right-hand side is the increment con-

. df : .
sequent on transformation of (oﬂ,u. A That (28) be invariant

() Gy
with 2 4 cq requires that thls mcrement, antisymmetrized on &, /8,

vanish;

(f

P f
(k f(fz) f(ﬁ»)m f(«)) f('}’)b‘f”afi‘ dxP ¥x

Cancel f th n _B____ to obtai
oy ey n

X L
P Py i 5T ]
(f ) f(@») LN ‘o)) 3xF ax/*a o

L _¢f -
By suitable choice of co8rdinates x, we may put f£> = Sﬁ’ f(m,).m. »17(0;{5;),

without prejudice to the generality of the transformation x = ;, thereby

obtaining
n T2 s W
am) 3 <BaxV O(ﬁ)lﬁ) PYCEYaY
By putting O{= 0 and ﬁ= 1 we obtain
62 0 =? . Ble
’
Bxlb"v Exo yad
but by putting X = 1 and 8 = 2, we obtain
32 1 ? '62 2

31233? Bxlb"v. :
In particular, for invarisance of (28) with 2 % C3, these must both be

generally valid laws for a transformation of two variables, but a&s such
they are incompatible =- a sample nonlinear transformation will show

that neither is valid == go that the condition of invariance is not fulfilled
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Appendix 2

Form of ¢ Gompetible With Some k

To show that

“,1,0 " *(1,0,0 " % (63)

for all i 7( 0, is satisfied for an arbitrary inertial system of frames

if and only if g%v’m ie of form (64).

®(0,1,% * °(1,0,00 = %

which for a constant Lorentz transformation becomes

() (v) (m) (V) (® (@ a0
Loy V' by By AT I CORR () Pleey ™ egpum = 0
by cencelling L((x) ‘(m‘, we obtain

i -
1.(OR) 1 ( U). (°()ms) + °(v}m)) = 0,

By putting L(O() (P) = 35( ¥ E->\(°() (ﬁ) and computing to first order in €,

one obtains

) )09,y (1)

(I). )(c()LWB) + °(v;m)) =0,

or
(i) | ~n
>\ . (c(Oym‘) + c(VODs)) (c(/ﬂm) + c(l}&fﬂ)’)) =0,
which simplifies, by virtue of (63), to
(10) - A03) =
2\ ° (oom) A (c(jiw) * c(ijm)) %
where j is summed, but only from 1 to 3, and the )(P'V) need satisfy only

- >\(0}»\)
(69)

the relations : .
NaBIS Vol (70)
for an infinitesimal Lorentz transformation; this is essentially the
same condition as (34b), derived in the same way.

Put )‘(io)' =]= - )\(Oi) for a fixed i # 0, and ,\(“ﬁ) = 0 for
all other ca.sés, in conformity with (70), into (69), to obfain

2 + 2 = . 71) -
© (00w) © (11m) 0, no sum on i (.1)
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On the other hend, put )(ko) =1= - )\(Ok), 0# k # i, all other >\(°(p)
= 0, to obtain .
© eiw) T Sk " 0, k¥ i; : - (72)
this has been just proved for k ¥ 0, but the original condition (63)
velidates (72) for k = 0.
In words, (72), supported by (63), effirms that the part of
. c(‘xﬂ'f) off-dviagonal in the sense 0(7(p is ahtiaymmetric, whereas from

(71), the corresponding diagonal elements may be obteined thus:
(73)

col)m = 79‘}") c-(OOBS)' no sum on/J..
Let - = o 3 ' :
e | v(m) c(oow) be & vector which coincides with c(oom) on

the originhl frames, By the remark at the end of Section I1.5,
?(}W) v(m) Lorentz-transforms in the same way es c(’wm) - ’é(}‘vm, where
? is the antisymmetric part of ¢, so that the relation

A P
° i) = gvm * Dy Ty

which by (73) holds on the original frames, actually obteins generally,

(64)

Thus, ¢ is reduced to the sum of an arbitrary antisymmetric
copnection and the outer product ofr) ‘and an arbltrery vector, which
form does in fact satisfy (63) in a)ll inertial systems of frames, o
that the form (64) is equivelent to the condition (63) in all inertial

systems of | frames,
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Appendix 3

Existence of & k Compatible with an Antisymmetric c

The problem is to verify that (67), where‘c.is a connection

satisfying the antisymmetry property (23), k = 0, and (57).

(%, o)
define & spinor connection k.

That the expression “k" given by the formulae is invariant
und er curvillnear codrdinate transformations is immedlate, as the ¢ and
o ere so, by definition. .

The explicit vgrification that the Lorentz frame-transformation
property'(52) is satisfied, will be circumvanted by logical argument.

It has already been argued that an arbitrary properly transforming k
generates a properly transformlng ¢ the brief remark that the vﬁg)(x, ?) .
defined by spinors and k transforms as a proper papallelly displaced
vector constituted a sufficient grgumeht, inasmuch as this‘conaition on
v“«x)(x, 5) served to ggtermine the transformetion law for & proper ¢ ==
formal completeness requires the additional and obvious remark that
spinors exist to represent an arbitrary vector field‘aéVQQX)(x) =
P o™ 4P, |

ab : :

Now, define k in one frame by (67) and k«X;O) = Q, in terms
of the componente in that freme of a properly transfonning“c aatisfying
(23);vand extend the definition 6f k by the proper k-transformation law
(52) to all‘Lorenfzurglated,fr&mes, This extended k generates a ﬁrOperly
transformiﬁg é, as hes been noted in the lastlp&ragraph, which must egree
with'the original ¢, inasmuch as agreement obtains in thﬁ original frame,

and the law for ¢ transformation is unique; that antisymmetric ¢ related

to k by (67) and k(« 0~ 0 properly‘relate k and ¢ in the original'fraﬁes
N 14
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is the import of the work in the text. A

Conversely, by the work in the text, the expression of this
.extended k in terms of ¢ follows the lew (67), supplemented by
Re k(u,o) = 0, for antisymmetric c. All is therefore proved, except
for the statement that Im.k(

%,0)
given that it is true in the original inertial system.

= 0 in all inertial systems of freames,

If the argument is now repeated for ¢ of form (64), then we
h ' = '

| gain the information that 2 Re k«”ﬂ” V) with v«x) & yecto&, is'

Lorentz~-invariant. This suggests that Im k = a with & a

Bt ege B ) T R ()

vector, is also Lorentz-inveriemt , which if true, would complete the

proof.

A direct verification that k trensforms like the:lower

(x,0)
parenthesized components of 'a vector is given, instead, in Appendix 4,
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Appendix 4

That k Is a Vector

(%,0)

It is verified here that. the k Lorentz~transform like

(&,0)
the lower parenthesized components of a vector.

By substituting the definition (57) of the k into the

®,p)
transformation law (52) of & apinor connection k> o(y)* OPe" ‘obteins

<>_a. ¢y (B @) _ g o 3% u (m
K %o T Ta % My K %o e 3 @)

which yields a

T = B @) ¢ ‘eé a‘v_ éé c LI
Fas = E D S % S % S T 76 S 5 Fg) (74)

as the Lorentz-transformation ‘law for the k«ws), on applylng the trace

operation, % 6(8) It is emsier to read (74) in ordinary matrix

‘ ) H (o<) ,
notation for spin indices: aac 6%&) - a N «) 8,59 Whence
S d Sb and (s~ )da Bpq = lpa give S = (s l)da

>In-this notation, (74) becomes

T"mn =41 P [kv(‘e:x) (000 o o®) 519 Lo 15___1 RO

®-
~ 75
since c‘o) = 1, we have, for & = , (72)
13 = - -1
ct,0) = gy Ol oo ¥ e -1y ¥ ML J-
since 3 T o®) = 80, we have the desired result,
. (ﬁ) - |
X,0) (p 0’ o e
provided that
| -1
P e Y | (77)

IM
Since L «» ¢ is a representation of the Lorentz group,5

L «» det 3 18 & one~dimensional representation, of which the only one

is the identical representat ion; det s'= 1. Therefore, if
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, .
511 %12
s = ,
821 “zzJ
{hen -
8 -8
1| "2z 1z
“%21 S11‘-]
ard 1 N 1 1
-1 - - - -
'[\,-33(5 )=s E_(f__?.l_l.qrs B—-.____l.(s ‘)2 + 3 ?—_—__(s )12-rs~'3.(_.8...__)2.2,
x 11 3gMA 12 M 21 3k 22 i
_ . %y 95y ¥, sy |

IR IR LW WORR E W

2 ,
T S (517 85 = 813 83)

3

= S;{T)' (det S)

‘== O’.

so that (77), and hence the transformation law.(76), is verified.
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1. Neither the 4-dimensionality of the basic manifoldrbr the
detailed‘distribution of 1's and ~1;s in the‘o metric is essentiai to
fhe arguments; as long as 92?= 1, they will apply, although'the
appeﬂﬁtions "inertial frame" and "Lorentz transformation“‘tovbe
introduced later would in mofe geﬁeral cases Se unconventional termin-
ology. The éection on spin % is to be excepted, but‘only because it
was not thought worthwhile to work out the épiﬁor élgebra in the

greatest generality.

2, Te Levi-Civita, Sitzungsberichte preuss. Akad. Wiss,, Phys.=-
'z‘n'ath.'mass_e, 346 (1932); H, Weyl,. Z. Phys. 56, 330 (1929);

J. A Schouténvand D. van Dantzig, Ann, Meth. §1, 271 (1933);

F. J. Belinfénte, Physicé 7, 305 (1940); more recent referencés ﬁreJ

D.'Brill and.J. A. Wheeler, Revs. Modern Phys. 29, 465 (1957),

Bade and Jehle, Revs. Modern Phys. 25, 714 (1953); the latter contains

an mé’nsive' bibliography.Also T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

The:term'"anholonomic reference system"” derives from the fact

thet if sixteen fﬁnctions fﬁﬁ)(x) specify four vectbré f}P), {ig), fif),
fﬁf) at 2ll points x at once, subject to only continuity and differen=
tiability conditions, then there will not in gemeral be four functions
¢jd)(x) such that fﬁf)(x) = aﬁ%;l(x); i. e., the vectors considered as

X

differential forms are not in general exact; neither\will-{fi)(x) =

’ () , C
)éa)(x).éﬁar-(x), in general, with integrating factors >$“)(x) and no
Ox ‘
sum on X, so that the fremes are not even integrable, or "holonomic®.

The matter is of interest, because the differentials of the four curvilin-
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ear coGrdinates_ére exact, and would be the first sort of frames to
appear in a discussion emphasizing the coBrdinates. The restriction
of exactness, or even that of integrability, is, however, an intolerable
restriction, because the inertial freames, ﬁhich are the frames of
interest in the common expression of local physlcs, are usually an-
holonomic. One should not think of the anholonomic frames as peculiar

_ == rather, it is the chrdinates that are distorted or ”cﬁrviiinear"
due to curvature, so that a cdndition of simpiicity based too directly

on them, like exactness, is likely to-be_worthless.

- 3. For similar rémarks, see gootnote 7 of H. Weyl's Z, Phys.vég
article, page 320 of F, J. Belinfente's article in Physica:7, and the

~ end of Section III,5 here. ‘That one can feel stronglﬁ about this matfer;
even without being faced_with the spin'repreeentatione; is illustratedi

by the remark on page 136 of H. Weyl's ’'Glassical Groups’,. Zq,Ed.;

(Princeton University'Press,.1946L

4, ' fﬁo (x) f(}g) (x) = fgxg (x) according to the notation of (4),
so that (3a) may be written : fE:;(X) ='5;. For the sake of clarity,

we will not exploit this identity to eliminate either of the symbols

new op nSa.

5. The.group involved at one point x will, as & concomitant of
the notion of continuity of the variation of frames, which will remain
implicit, be the groﬁp without any of the reflecfionIOperations. 13.
special arguments and special cases, invarianée properties maj extend
to one or more reflections.

Note that by the use of our normal terminology, expression (21)

would be written 9”“(:); just ms in the case discussed in footnote 4,



two letters, here g and q,'cohld be replaced by one. As in that case,
however, both letters will be retained, to accentuate the difference

between the constant and universal components of the parenthesized met-
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ric components, and the coBrdinate-dependent ordinafy'tensor components,

Further, ))(ﬂ) o0 = t (B ang - rp e ®W o M oo that, in

principle, all the four letters in this and the previous footnote+~

g, f, 7, and 9s~are redundant.

6. If we are given a ¢ which satisfies (23) and (24), it is

unidue, by a similar argumeﬁt’ The dlfference c between two auch c's
is antisymmetric in its first pair of indices, and, because the f 3f /dx

~ discrepancies between the ¢ and their [ of eq. (14v) drop out in the
subtraction, c is symmetric, like the P in ‘its last pair of indices;

- whereas any 3-index symbol with these simultanqoua'antisymmetry and’
synmetry pfOperties is easily shown to vanish.

7. The order of indices 1s chosen to have (40).read smoothly,

end is not guaranteea:to conform with other notétiogs.n Rﬁuvm i-happens

to agree with the notation in Einstein's "Meaning of Relativity" '

Princeton University Press ~-=- if the difference in sign of the metric

tensor is éliminated;by~comparing>preciaely this form, rather than the -

one with all indices below; the R here also differs only in s;gn‘from

thet of reference 8.

8. E. g., 0. Veblen, “Invariante of Qggdratic Diffgiehtial Forms,

No. 24 of Cambridge Tracts in Mathematics and Mathematical Physicsﬂ

(Cemdridge University Press, IQSZL
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9. See, €. ga, E. M, Corson, ‘Introduction to Tensors, Spinors,
and Relativistic Wave-Equations' .(Blackie & Soﬁ, 1953. For the use |
of arbitrary Pauli matrices, see K. M. Case, Phys. Rev. 107, 307-(1957)."
The use of special Pauli matrices in the sequel is tied only to use of '
the special matrix [;g 3] for the raising and lowering operator €,
.which is- discussed more generally in Case's paper &s & (2/by 2) charge->
. copjugation mﬁtrix. I hav%not deemed itlimportad; to adopt aﬁch
generﬁl notation, becadae the important point about the Paﬁli matrices
is that thej are constants underjboth curvilinear-co8rdinate and
Lorentzwttansﬂdrmations{ fhat other Pauli matrices, or even an abstract
- algebra of Pauli objects, may function in place of particular Pauli |

matrices is here an incidental point.

10, Since spinors are specifically Lqrentz-group quantities,
the system of frames which may come into consideration at once &re
neceésarily related by Lorentz trensformetions. By terming any one
of these systems of frames 1gegiial, in the menner of Section 11.4,
our terminology designateé all the systema as inertial. Thus, the

" Lorentz-trensformetion iaw (52) for k does not define k for arbitrary
linear transformations, inasmuch as S has been defined only fof Loréntz
transformations, and, as has been noted in the Introduction, the
def inition of S as & repfesentation canﬁét be extended to the clags of

sll nensingulér linear transformetions,

1% The single 2-component equation with mess does not remain
invariant when W is transformed by a phase factor, and & is augmented

by the phase gradient, for the mass term transforms with the complex
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conjugate phase factor, but the coupled pair of Z-component equations
does remein invariant under a similar scheme of transformetions, if

Yand ) are taken to transform with opposite phaeses.
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*

This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-

.ratus, method, or process disclosed in this report
‘may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract -
with the Commission, or his employment with such contractor.





