
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Computing Images with Diverse Illumination Effects

Permalink
https://escholarship.org/uc/item/8z4957kb

Author
Zhu, Shilin

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8z4957kb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Computing Images with Diverse Illumination Effects

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Shilin Zhu

Committee in charge:

Professor Hao Su, Chair
Professor Xinyu Zhang, Co-Chair
Professor Henrik Wann Jensen
Professor David Kriegman
Professor Ravi Ramamoorthi
Professor Zhuowen Tu

2021

Copyright

Shilin Zhu, 2021

All rights reserved.

The Dissertation of Shilin Zhu is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2021

iii

DEDICATION

This Ph.D. dissertation is a gift to my beloved family, especially to my parents. They are bright
stars lighting up the darkest night, shining my way.

This is also for all the people who came before me in the history of computer science. I am
standing on their shoulders, listening to their wisdom, and following their guidance.

To readers who are the future of this field, I hope you find this dissertation inspirational, and
never cease to push the human race forward.

iv

EPIGRAPH

“It is not easier to make a good picture than it is to find a diamond or a pearl.”

Vincent van Gogh (1853-1890)

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiii

Acknowledgements . xiv

Vita . xvi

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Motivation . 2

1.1.1 Significance of Images . 2
1.1.2 A Brief History of Making Pictures . 2

1.2 Relations Between 2D Images and 3D World . 5
1.2.1 Fundamentals of Standard Imaging Process . 5
1.2.2 Camera and Lighting Basics . 7
1.2.3 Task Space of Image Computation . 10

1.3 Challenges and Opportunities in Image Formation . 11
1.3.1 Monte-Carlo Light Transport for Image Photorealism 11
1.3.2 Programmable Photography for Image Manipulation 12

1.4 Overview of Techniques and Contributions . 13
1.4.1 Generating Concentrated Caustics with Glass . 13
1.4.2 Sampling and Reconstructing Global Illumination 14
1.4.3 Customizing Appearances with Modulated Lighting 14
1.4.4 Additional Work Done through my Doctoral Career 15

1.5 Structure of Chapters . 16

Chapter 2 Creating Vital Lighting Effects on Images . 18
2.1 Challenges of Making Caustics . 18
2.2 Overview . 18
2.3 Introduction and Methodology . 20
2.4 Advantages over Traditional Techniques . 23
2.5 Related Work . 23
2.6 Fundamentals of Particle-Based Photon Mapping . 25

vi

2.6.1 Radiance Reconstruction Formulation . 25
2.6.2 Density Estimation Kernels . 26

2.7 Learning to Estimate Photon Density . 26
2.7.1 Processing Photon Point Cloud . 27
2.7.2 Kernel-Predicting Reconstruction Architecture . 28
2.7.3 Dataset and Training Details . 29

2.8 Implementation and Evaluation . 31
2.8.1 Verification Study . 31
2.8.2 Evaluation Scenes and Photon Generation . 32
2.8.3 Combining Denoising and Deep Photon Mapping 33
2.8.4 Investigation on Photon Parameters . 35
2.8.5 Quantitative and Qualitative Results. 36
2.8.6 Timing and Overhead . 40
2.8.7 Effect of Variable Attributes . 40
2.8.8 Temporal Consistency . 41
2.8.9 Progressive Density Estimation . 41

2.9 Summary of Contribution . 42

Chapter 3 Computing Universal Illuminations on Images . 43
3.1 Generalized Global Illumination . 43
3.2 Related Work . 44
3.3 The First Attempt: Photon-Driven Path Guiding . 47

3.3.1 Problem Definition and Contribution . 48
3.3.2 Introduction to Importance Sampling . 50
3.3.3 Workflow Overview . 52
3.3.4 Computing Sampling Maps . 53
3.3.5 Neural Reconstruction of Sampling Distributions 55
3.3.6 Adaptive Path Guiding Framework . 58
3.3.7 Data Synthesis for Sampling Reconstruction . 65

3.4 The Superior Model: Hierarchical Guiding from Hybrid Samples 65
3.4.1 Overview of Advancement . 66
3.4.2 Motivation and Methodology . 66
3.4.3 Importance Sampling Revisit . 69
3.4.4 Path Guiding Pipeline with Tree Structure . 72
3.4.5 Hierarchical Distribution Representation from Hybrid Samples 73
3.4.6 Neural Refinement of Quadtrees . 78
3.4.7 Iterative Learning and Rendering . 86
3.4.8 Dataset Preparation for Training Quadtrees . 88

3.5 Light Path Guiding Extension . 90
3.6 Neural Path Guiding Implementation . 90
3.7 Experimentation and Evaluation . 91

3.7.1 Light Transport Configuration . 91
3.7.2 Qualitative and Quantitative Comparisons . 94
3.7.3 Effect of Hybrid Samples . 95

vii

3.7.4 Convergence Rate . 96
3.7.5 Hierarchical Representation Merit . 97
3.7.6 Target Sampling Distribution . 98
3.7.7 Limitations and Failure Cases . 99

3.8 Conclusion and Future Work . 101

Chapter 4 Controlling Scene Appearances on Images . 103
4.1 Photographing Unconventional Illumination Effects . 103
4.2 System Overview . 103
4.3 Motivation and Subject of Study . 104
4.4 Related Work . 107
4.5 Image Manipulation Model and Appearance Goal . 109
4.6 Primer on Restructuring Image Segments . 110
4.7 Digital Imaging with Coded Illuminations . 111

4.7.1 Maximizing Image Appearance Interference . 111
4.7.2 Circumventing Wild Captures . 116

4.8 Scene Recovery using Computational Shutters . 121
4.8.1 Dynamic Scene Video Restoration . 121
4.8.2 Static Scene Image Recovery . 123

4.9 Light Encoding for Appearance Watermarking . 124
4.9.1 Illumination Effect Embedding . 124
4.9.2 Pattern Detection and Recognition . 126

4.10 Implementation and Hardware Design . 127
4.11 Prototype Testing and Evaluation . 130

4.11.1 Efficacy of Stripe Pattern on Images . 130
4.11.2 Restoring Appearances with Certified Cameras . 134
4.11.3 Placing and Uncovering Hidden Barcodes . 134
4.11.4 Robustness Against Camera Maneuvers . 136

4.12 Conclusion and Social Impact . 140

Chapter 5 Finale . 143
5.1 Conclusion and Open Problems . 143
5.2 The Future of Images: To 4D and Beyond . 145

Bibliography . 147

viii

LIST OF FIGURES

Figure 1.1. Example applications of image formation by computations. 4

Figure 1.2. Basic components of forming an image. 6

Figure 1.3. Illustration of camera models in digital imaging. 7

Figure 1.4. Principle of illumination and appearance. 9

Figure 1.5. Illustration of the task space. 10

Figure 1.6. Overview of computing images with different illumination effects. 13

Figure 2.1. Challenges of generating path-traced caustics. 19

Figure 2.2. We present a novel learning-based photon mapping (PM) method that can
be used to synthesize photorealistic images with detailed caustics. 22

Figure 2.3. Overview of our deep photon density estimation network. 28

Figure 2.4. Examples of our procedurally generated training scenes for deep photon
mapping. 30

Figure 2.5. We compare the optimization speed of our kernel-prediction network and a
baseline direct-estimation network. 32

Figure 2.6. Path tracing (PT) with and without light-specular paths (LS). 35

Figure 2.7. We compare against pure path tracing with and without denoising. 36

Figure 2.8. Results of our method with different numbers of input photons. 37

Figure 2.9. We compare against PM and SPPM. 38

Figure 3.1. Illustrations of global illumination and importance sampling. 44

Figure 3.2. We present a novel photon-driven neural path guiding approach that can
effectively reduce the variance in path tracing. 48

Figure 3.3. Illustration of the entire system workflow for our photon-driven neural path
guiding. 52

Figure 3.4. Example reconstructed sampling maps. 58

Figure 3.5. The proposed hierarchical grid spatial caching structure based on the local
photon statistics. 61

ix

Figure 3.6. Example scenes used for training our proposed photon-driven reconstruc-
tion network. 64

Figure 3.7. We present a hierarchical neural path guiding framework which uses both
path and photon samples to reconstruct high-quality sampling distributions. 67

Figure 3.8. High-level illustration of the proposed hierarchical and hybrid neural path
guiding framework. 73

Figure 3.9. We compare our method with previous path guiding methods on two scenes
that have different extreme light transport settings. 74

Figure 3.10. Our proposed hierarchical encoder-decoder architecture for reconstructing
an accurate quadtree representation of sampling distributions. 81

Figure 3.11. Illustration of the loss computation on predicted quadtree. 84

Figure 3.12. Illustration of iterative learning and rendering. 86

Figure 3.13. Multiple sets of training scenes, including diverse procedural random
scenes and designed scenes. 89

Figure 3.14. Equal-time comparisons on complex indoor scenes. 92

Figure 3.15. Equal-time comparisons on additional scenes. 93

Figure 3.16. Equal-time comparisons with some best performing baseline methods on
two complex-visibility scenes. 94

Figure 3.17. Convergence curves of two testing scenes. 96

Figure 3.18. We show the corresponding sampling distributions of all methods for a
scene point. 97

Figure 3.19. Effect of target sampling distribution. 99

Figure 4.1. Summary of novel effects on images using our computational photography
framework. 104

Figure 4.2. Bright, dark and transitional stripe patterns. 111

Figure 4.3. PSNR and SSIM with respect to exposure time, LED intensity, duty cycle,
and modulation frequency. 115

Figure 4.4. Decomposition of frequency randomization waveform and modulation
generating side lobes. 118

x

Figure 4.5. Worst-case PSNR with different frequency increment under different pa-
rameter settings. 119

Figure 4.6. Enabling authorized users to capture dynamic scenes while corrupting
unauthorized users. 122

Figure 4.7. The impact of multi-frame recovery on authorized user and attacker. 123

Figure 4.8. Barcode design for monochrome and RGB LED. 125

Figure 4.9. LiShield prototype and multiple scenes we used. 128

Figure 4.10. Simplified circuit diagram and photo for the smart LED module. 129

Figure 4.11. Impact of flickering frequency on quality. 130

Figure 4.12. Image quality levels on a benchmark image. 131

Figure 4.13. Impact of duty cycle on quality with automatic exposure. Impact of duty
cycle on overexposure area with fixed exposure. 131

Figure 4.14. Impact of color on quality. CIEDE2000 for measuring color distortion. . . . 132

Figure 4.15. Impact on automatic white balance. Impact on dynamic scene. 132

Figure 4.16. Impact of device heterogeneity. 133

Figure 4.17. Frames observed by authorized users and attackers for static scene and
dynamic scene. 133

Figure 4.18. Video quality with and without authorization. 134

Figure 4.19. False alarm ratio across detector settings. 135

Figure 4.20. Detection rate across detector settings. 136

Figure 4.21. Detection rate of monochrome and RGB barcode design. Barcode detection
rate across distance under a single LED. 136

Figure 4.22. Quality and overexposed proportion with fixed-exposure camera. 137

Figure 4.23. Quality with and without frequency randomization. 138

Figure 4.24. Image quality with number of frames of multi-frame attack. 138

Figure 4.25. Effects of denoising and de-banding image processing algorithms. 138

xi

Figure 4.26. Image quality under ambient lights. 139

Figure 4.27. Barcode detection rate with ambient light intensity. Image quality with
different distances under a single LED. 139

Figure 5.1. Summary of the image formation process. 144

xii

LIST OF TABLES

Table 2.1. Quantitative RMSE evaluation on six novel scenes with different numbers
of valid photons. 34

Table 2.2. We show the corresponding running time in seconds for each photon map-
ping component. 39

Table 2.3. We show the temporal stability between pairs of adjacent frames over a
sequence of rendered frames. 41

Table 3.1. Comparison of different path guiding algorithms. 45

Table 3.2. List of notations used. 75

Table 4.1. Flicker-free configurations for monochrome barcode. 136

Table 4.2. Flicker-free configurations for RGB barcode. 137

Table 4.3. Flicker-free configurations for frequency randomization. 137

xiii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my research supervisors, including Dr.

Hao Su, Dr. Xinyu Zhang, and Dr. Ravi Ramamoorthi. As internationally respected scholars,

they set a great example of seeking the truth of science. Their unstoppable passion for pushing

the boundaries of human knowledge gives me the faith to leap over every single obstacle in my

scientific career.

I also want to thank Dr. Henrik Wann Jensen and Dr. Mark Meyer, who have contributed

significantly to my research projects through years of solid collaborations. They show me that

we can conduct extraordinary work by gathering wisdom from a team of talented people.

I am deeply honored to have worked with researchers, engineers, and artists from Apple,

Disney Research, Walt Disney Imagineering, Weta Digital VFX, and Pixar Animation Studios.

They teach me how the industry brings academic research outcomes into real life and creates

products to benefit millions of people. These experiences eventually direct me to start a new

story at Pixar after my Ph.D. journey ends.

The Visual Computing Center at the University of California San Diego provides me

with a friendly, collaborative, and professional environment for scientific research, and I am

thankful to all the members of this center for creating such a wonderful experience. The memory

at UCSD is a lifelong treasure of mine. I also want to thank Google Research for offering me a

Ph.D. Fellowship and supporting my research for years.

As always, my family is the harbor of my soul, and I cannot express enough how much

time I owe them since I started this five-year-long journey thousands of miles from home.

Chapter 2, in full, is a reprint of the material as it appears in Eurographics Symposium

on Rendering 2020 and Computer Graphics Forum 2020 [212]. Shilin Zhu, Zexiang Xu, Henrik

Wann Jensen, Hao Su, and Ravi Ramamoorthi, Wiley-Blackwell, 2020. The dissertation author

was the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of two materials as they appear in ACM Transactions

on Graphics 2021 [214, 215]. Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov,

xiv

Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi, Association for Computing

Machinery, 2021. The dissertation author was the primary investigator and author of these two

papers.

Chapter 4, in full, is a reprint of the material as it appears in International Conference on

Mobile Computing and Networking 2017 and Communications of the ACM 2020 [210, 213].

Shilin Zhu, Chi Zhang, and Xinyu Zhang, Association for Computing Machinery, 2020. The

dissertation author was the co-primary investigator and author of this paper. Chi Zhang was the

other co-primary author who contributed equally to this work.

Chapter 1 contains citations to other co-authored materials where I participated and

contributed, and I am more than grateful for all the efforts made by my remarkable colleagues.

xv

VITA

2012-2016 Bachelor of Science, University of Science and Technology of China

2016–2017 Research Assistant, University of Wisconsin, Madison

2017–2021 Google Ph.D. Fellowship Researcher, University of California San Diego

2018 Research and Development Intern, Apple Inc.

2019 Master of Science, University of California San Diego

2019 Research and Development Intern, Disney Research and Walt Disney Imagineering

2021 Rendering Intern, Weta Digital VFX

2021 Research Intern, Pixar Animation Studios

2021 Doctor of Philosophy, University of California San Diego

2022- Research Scientist, Pixar Animation Studios

PUBLICATIONS

[1]“Deep Kernel Density Estimation for Photon Mapping.” In Computer Graphics Forum, vol.
39, no. 4, pp. 35-45, Wiley-Blackwell, 2020.
[2]“Photon-Driven Neural Reconstruction for Path Guiding” ACM Transactions on Graphics
(TOG) 41, no. 1 (2021): 1-15.
[3]“Hierarchical Neural Reconstruction for Path Guiding Using Hybrid Path and Photon Samples”
ACM Transactions on Graphics (TOG) 40, no. 4 (2021): 1-16.
[4]“Survey: Machine Learning in Production Rendering.” arXiv preprint arXiv:2005.12518
(2020).
[5]“Robust Multimodal Vehicle Detection in Foggy Weather Using Complementary Lidar and
Radar Signals.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 444-453. 2021.
[6]“Deep Stereo using Adaptive Thin Volume Representation with Uncertainty Awareness.” In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2524-2534. 2020.
[7]“PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object
Understanding.” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 909-918. 2019.
[8]“Automating Visual Privacy Protection using a Smart LED.” In Proceedings of the 23rd
Annual International Conference on Mobile Computing and Networking, pp. 329-342. 2017.
[9]“Automating Visual Privacy Protection using a Smart LED.” Communications of the ACM,
63, no. 2 (2020): 81-89.

xvi

[10]“Enabling High-Precision Visible Light Localization in Today’s Buildings.” In Proceedings
of the 15th Annual International Conference on Mobile Systems, Applications, and Services, pp.
96-108. 2017.
[11]“Invisible QR Code Hijacking Using Smart LED.” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies vol. 3, no. 3 (2019): 1-23.
[12]“Gait Recognition for Co-Existing Multiple People using Millimeter Wave Sensing.” In
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 1, pp. 849-856.
2020.
[13]“Binary Ensemble Neural Network: More Bits per Network or More Networks per Bit?.”
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4923-4932. 2019.
[14]“Towards Fast and Energy-Efficient Binarized Neural Network Inference on FPGA.” In
Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, pp. 306-306. 2019.
[15]“SimBNN: A Similarity-Aware Binarized Neural Network Acceleration Framework.” In
2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 319-319. IEEE, 2019.

FIELDS OF STUDY

Major Field: Computer Science (Specialization in vision and graphics)

Studies in 3D Computer Vision and Machine Intelligence
Professor Hao Su

Studies in Mobile and Ubiquitous Computing
Professor Xinyu Zhang

Studies in Computer Graphics
Professors Ravi Ramamoorthi and Henrik Wann Jensen

xvii

ABSTRACT OF THE DISSERTATION

Computing Images with Diverse Illumination Effects

by

Shilin Zhu

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Hao Su, Chair
Professor Xinyu Zhang, Co-Chair

Producing and capturing images with anticipated looks under various illuminations is the

ultimate goal of computer graphics and computational photography. Two long-standing problems

are blocking the pathway: how to generate pixels to form realistic appearances (image synthesis

or rendering) and how to steer pixels to manipulate captured appearances (computational imaging

and illumination). In this dissertation, both topics will be covered and discussed as part of the

image formation task.

Physically-based rendering creates photo-realistic images by calculating pixel colors

from light transport simulation, which has been used by the gaming and film-making industry for

xviii

years to produce astounding visual effects on screens. However, synthesizing the entire family of

illumination effects on the image is computationally expensive. It can readily cost days of time to

yield a single frame in the existing production pipeline, especially when lights are challenging to

compute by the standard ray tracing algorithm. To remedy the issue, we have proposed multiple

methods to accelerate the sampling and reconstruction of different types of illumination, leading

to more efficient Computer-Generated Imagery (CGI).

Computational illumination and digital imaging expand the function set of image synthe-

sis in graphics by supporting more flexible appearance alterations during image construction.

One of the unexplored functionalities is to adjust pixels structurally through unique patterns

carried by coded illuminations. We have developed a dedicated lighting and camera system to

collaboratively direct the captured image appearances, enabling unconventional lighting effects

such as the selective restructuring of illuminated image segments in a controllable and automatic

mode.

From the simulated light transport to real-world computational photography, we have

advanced the visual computing technology by producing images with desirable looks and diverse

illumination effects. Our conducted research also open up new challenges and opportunities for

future studies on images.

xix

Chapter 1

Introduction

Images are the center of almost every visual computing technology, such as computer

vision, computer graphics, and computational photography. Unlike humans to perceive images

as highly abstracted semantics and global structures, machines treat them simply as a discrete

set of digital brightness values (i.e., pixels). Therefore, it has been one of the major missions

of computer science to create sensible images that meet people’s expectations under various

illumination settings by computational algorithms, which is the central problem to study in

this dissertation. In general, there are two categories to explore; One of which is to synthesize

realistic appearances that coincide with the physics of light transport (Chapter 2 and Chapter 3),

and the other is to control the appearance by manipulating the standard image formation process

(Chapter 4).

It is a well-known fact that images are significantly affected by the lighting distributions

in the scene to be photographed. In the following chapters, we investigate multiple types of

illumination effects, such as concentrated caustics (Chapter 2), global lighting (Chapter 3), and

coded light source (Chapter 4). Computing these diverse illuminating phenomena in the image

requires a unique perspective and design for every one of them.

This chapter introduces an overview of imaging and lighting, followed by the basic

concepts of graphical rendering and computational photography systems. Then, we take a brief

tour of the published articles covered by the rest of the chapters and technical challenges in

1

building computer algorithms for a variety of image formation tasks.

1.1 Motivation

1.1.1 Significance of Images

Image is an essential ingredient for understanding our 3D world. A massive amount of

pictures are created by people every day to record their precious moments on mobile devices,

by entertainment studios like Disney for presenting immersive visual effects on the computer

or theatre screens, and by robots to adapt themselves when performing challenging tasks such

as the Mars Rovers by Jet Propulsion Laboratory (JPL). We, as livings, also capture sequences

of images with our naked eyes to assist various interactions with the environment. Without

advanced imaging functionalities, modern civilizations may not even be able to survive.

It is the mission of computer science to study the principle of imaging and understand

how appearance is formed when photographing a scene with diverse lighting. In the past decades,

researchers and engineers in this field have developed a large number of computational algorithms

to create images of expectation in both virtual and real setups. Such rapid development leads

to a wide range of influential visual applications such as virtual characters and environments,

movie effects like explosions and space travel, powerful cameras to trace individual photons, and

giant telescopes for picturing galaxies.

1.1.2 A Brief History of Making Pictures

The study of classic optical imaging can be traced back to ancient times where pinhole

cameras and 3D to 2D projections were presented as early as in Chinese philosopher Mozi

writings (circa 400 BCE), The Optics (Latin: De aspectibus or Perspectivae) by Arab physicist

Ibn al-Haytham (965-1040), among many other manuscripts. These ancient image formation

and geometric optics theories have been known to inspire many great scientists and artists

such as René Descartes, Johannes Kepler, and Leonardo Da Vinci. Although complicated

2

modern imaging techniques have replaced these original computing models, their findings are

the foundations and ancestors of everything we have today.

Before digital imaging was invented, the image was formed on photographic film pio-

neered by George Eastman since 1885, who founded Kodak, which was later applied to motion

pictures by the movie industry. After the invention of metal oxide semiconductor (MOS) tech-

nology by engineers at Bell Labs in 1959, the digital semiconductor image sensor became

foreseeable, leading to charge coupled device (CCD) in 1969 and CMOS sensor in 1993 subse-

quently. There were precursor developments in electronic displays such as the Ivan Sutherland’s

Sketchpad on MIT TX-2 computer with cathode-ray tubes (CRT) in 1962 and cinematography

that can be dated back to the 1900s when Lumiere brothers invented the early visual effects

before the birth of computer-centered imaging.

The term computer graphics was coined in the 1960s, and the world’s first ray casting

light transport algorithm was presented by Arthur Appel in 1968 to target photorealism in image

synthesis. In the 1970s, thanks to the emergence of MOS integrated circuit chips, computer

graphics became more practical with faster hardware, and people started to produce raster-based

images (e.g., SuperPaint) from 1972. At that time, The legendary visual effects studio - Lucasfilm

was founded. Subsequently, Ivan Sutherland and David C. Evans at the University of Utah started

to instruct computer graphics, and the emblematic Utah teapot image was created. One of the

students, Edwin Catmull, the co-founder of Pixar, invented several milestone CGI techniques,

including texture mapping on 3D models in 1974, and he later contributed significantly to Pixar’s

RenderMan. In the early 1980s, central processing unit (CPU) microprocessors and the early

graphics processing unit (GPU) chips started to revolutionize computer graphics. Afterward, the

general rendering equation for computing global illumination on images was derived by James

Kajiya in 1986, which has become the central piece of forming an image solely by computers.

After two years, Pixar developed the first shader programs in 1988, followed by producing

the first fully computer-generated 3D motion pictures - Toy Story in 1995. From the 1990s to

2010s, the photorealism of images continued to improve by inventing new image reconstruction

3

Black Hole Imaging

Computing

Black Hole

Earth

Film Visual Effects

Computing

Green

Background

Capture
Actor Telescope ImageImage

Figure 1.1. Example applications of image formation by computations. Left: Computer gener-
ates background effects such as mountains and rivers for film actors by photo-realistic rendering
technology. Right: Multiple telescopes collaboratively form an image of black hole by computa-
tional photography techniques.

algorithms such as bidirectional ray casting and particle-based rendering, and CGI started to

thrive in the industry. The physically-based rendering (PBR) became widely popularized by Matt

Pharr, Greg Humphreys, and Pat Hanrahan in 2014. Today, images produced by computers with

robust and efficient light transport simulations are ubiquitous in our daily lives.

Compared to the long history of classic cameras and computer graphics, computational

photography with programmable illumination and camera is still a rising young field. Unlike

traditional ways of making pictures solely from optical processes and photographic film, a

significant amount of digital computing is involved in this new type of photography. Therefore,

this is achievable only after the 1970s when the solid-state image detector was invented, such

as the development of high dynamic range (HDR) imaging by Charles Wyckoff in the early

1980s. It took about 25 years for the digital sensor to be reliable and cost-effective, and combined

with the sustained rise of computing powers of CPU and GPU since the 1980s, computational

photography started to become practical and less bulky from the early 2000s. Through this short

development period, there has been a considerable amount of achievements made by scientists,

including Steve Mann, Marc Levoy, Shree K. Nayar, and Ramesh Raskar. Their work gave a

much broader meaning to this field by extending and enhancing the capabilities of digital imaging

and producing pictures that were considered impossible by traditional photography. Until today,

4

some representative examples are light field camera, telescope for capturing black holes, trillion

FPS camera, HDR and panoramic imaging, effects such as mosaicing and watermarking, coded

aperture and shutter, optical tomography, holographic imaging, specialized retina, dual imaging,

lighting domes, 4D illumination, active encoded lights, and multi-flash imaging. Starting from

the 2010s, machine learning took off, and it has been benefited a lot by having a rich-featured

input from this new means of capturing such as encoded polarization images. The invention of

producing images by computation over optical projection is a remarkable moment in the history

of photography.

Humans have spent a long time investigating the ways of making pictures ever since the

sun lights the earth. From ancient pinhole observations to classic optics and from photographic

film to digital sensors, technology has revolutionized the way of perceiving the 3D world. Today,

we are able to produce realistic images from computers by graphical rendering and enhance the

imaging capabilities by highly performant digital computations, as shown in Figure 1.1. Many

visual fantasies from science fictions are gradually becoming facts such as virtual and augmented

reality. These are all thanks to the great efforts made by people who came before us.

1.2 Relations Between 2D Images and 3D World

Having reviewed the significance and history of imaging, we introduce the high-level

concepts of the image formation process in this section. There are many components involved in

performing a 2D screenshot of the 3D space, including camera, lighting, scene geometry, and

material. Understanding how the image appearance relates to these components is critical for

building light transport and photography algorithms to produce pixels with the desirable look.

1.2.1 Fundamentals of Standard Imaging Process

Photographing a 3D scene requires a few steps and is affected by multiple components,

as shown in Figure 1.2. To begin with, imaging is a process of gathering energy transmitted to

the image receptor on the camera. Light sources send out photons in visible spectrum controlled

5

Camera

Lights

Geometry

Material

Sensor

Driver

Image

Figure 1.2. Basic components of forming an image. In this example scene, a camera with an
image sensor captures the incoming energy transmitted towards it for each pixel to form an
image. A driver can control the light source to change its illuminating patterns. The 3D scene
geometry causes the light rays to bounce in between different objects that have different material
properties, such as the diffuse wall, the glass egg, and the metal pole in this case.

by the driver circuit, illuminating the 3D scene of interest. Next, we have a 3D geometric

representation (e.g., polygonal meshes) of the scene to be photographed, where materials and

textures are defined on the object surfaces determining their unique responses to the incident

illumination. By combining these small pieces together, we can compute the global radiance

distribution within the scene and generate color appearances on the final image.

As people may observe, in the standard imaging process, the electronics are placed at

two terminal devices (i.e., camera and light source), while the energy transport between them

is guided by the physics of optics. Computer graphics mainly focuses on simulating the light

transmission by physically-based rendering, and computational photography adds new features

to illumination patterns and camera sensors. Despite the difference, the target of both fields is

the same - computing the final picture.

While the global light field in a scene is distributed continuously in 3D space, we can

only acquire a discrete representation of the continuous illumination signals for digital imaging

6

Aperture
Lens

System

Shutter

Image

Sensor

Image

Plane

Origin

Field of View

Pixel

Full Digital Imaging Simplified Pinhole Imaging

Light
Light

Pixel

Post-Process

Circuits

Figure 1.3. Illustration of camera models in digital imaging. Left: The cross section of a real
camera. The incident light travels through a few optical and digital devices before hitting the
photon receptors on the sensor. Right: The simplified pinhole model is used for computing
images when some camera parts are reasonably neglected.

with finite-resolution rasterized sensors. Despite such limitation compared to photographic film,

discretization offers the opportunity to leverage computational algorithms to form an image,

which can sometimes be extremely difficult for analog devices. Therefore, in this dissertation,

we only consider digital photography where computers participate heavily in the loop.

1.2.2 Camera and Lighting Basics

With the fundamental concepts in mind, we can review the technical details involved

in the process of imaging, including the structure of camera, the principle of illumination,

and the emergence of appearance. The formal mathematical definitions will be covered in

Chapter 2, Chapter 3, and Chapter 4 correspondingly. Since we mainly consider the realm of

digital photography, the continuous illumination distribution will be converted into discrete and

numerically computable forms when we design specific algorithms.

Camera Model and Digital Image. Inspired by the laws of optics, modern cameras

are designed to contain both optical components and digital circuits for maximizing imaging

efficiency. As shown in Figure 1.3 (left), the compound lens and aperture mechanics control

the direction and amount of light that can pass into the camera, followed by the digital shutter

to manage the exposure time of individual pixels installed on the backend image sensor. The

7

semiconductor sensor consists of a 2D array of pixels with a color filtering layer to produce red,

green, and blue (RGB) channels of an image. Finally, the data is streamed to post-processing

circuits for rectification. Therefore, the appearance of the final image is determined by various

camera parts, where every single piece can be driven by a separate computational algorithm.

In this dissertation, we put our primary focus on the electronic shutter and image sensor

while assuming the lens and aperture are properly configured already. Typically, there are two

kinds of shutter technology. The global shutter enables the entire sensor to receive the outside

illumination simultaneously, while the rolling shutter schedules the exposure from top to bottom

rows asynchronously. Pixels on the sensor must be assigned sufficient integration time to receive

a reasonable amount of photons for computing brightness values. Such control flexibility offers

the opportunity to establish novel image appearances with programmable shutters. Chapter

4 presents an example of leveraging a computational algorithm to switch pixels on and off

adaptively.

Following a different philosophy, the camera model can be greatly simplified in particular

cases while only keeping the parts of interest intact. Obviously, some phenomena cannot be

captured and will be lost by the approximation; however, the problem is insignificant when those

effects are out of consideration for specific tasks. For instance, the pinhole model in Figure

1.3 (right) is widely used by image synthesis in computer graphics. In this reduced model, a

(virtual) image plane is placed in front of the origin representing the center of the camera, and

their geometric connection determines the field of view (FoV). Scenes outside of the horizontal

and vertical angle of view are invisible to the camera.

The above simplification makes the image formation easier to work with mathematically

in rendering such as the ray tracing algorithm, as shown in Figure 1.4 (left). Camera rays are

spawned from the origin and travel through the image plane to enter the 3D scene. When a ray

hits a surface region illuminated by the light sources, we compute the amount of energy that can

be transmitted back to the pixels on the image. Thus, adopting the simplified representation of

the camera makes the image formation process more elegant to compute.

8

Image

Illuminated

Shadowed

Origin

∫Ω
L ⋅ f ⋅ cos θdω

Light Transport

Material

Response

(BSDF)

Illumination

Pattern

Photon

Receptors

(Pixels)

Local

Surface

Reflected Incident

Hit

Figure 1.4. Principle of illumination and appearance. Left: Multiple light paths are constructed
between camera and light source, generating different effects such as direct lighting and shad-
ows. Middle: The bouncing of light on the surface is guided by the incoming radiance L, the
material response f , and geometric relations between rays and local surface. Right: The surface
appearance is controlled by the illumination and material distributions which are both editable.

Lighting and Appearance. An image is no more than a 2D lattice slice of the 3D world

from the camera perspective. However, if we stand on the geometric surfaces or the light sources,

imaging is a process of transporting photons through the space until reaching a pixel on the view,

as illustrated in Figure 1.4. One prominent challenge of computing the overall pixel color is to

discover all the probable transmission paths. In Figure 1.4 (left), we demonstrate the examples

of the standard direct lighting and shadowing with a single bounce. Some special illumination

effects are difficult to create, for example caustics (Chapter 2) and indirect lighting (Chapter 3),

since their paths are troublesome to find.

To explain the principle of surface appearance, we study a unitary local interaction with

the incident light as presented in Figure 1.4 (middle). Basically, the reflected radiance depends

on the incoming radiance from all directions over the entire upper hemisphere centered at the hit

point. Furthermore, the surface material modulates the reflected light, which is manifested by a

spherical bidirectional scattering distribution function (BSDF). For instance, diffuse surfaces like

walls scatter energy uniformly to all directions, while specular surfaces like mirrors only scatter

exclusively to particular directions. Combining with additional geometric relations, the outgoing

radiance is computed iteratively for every interaction (i.e., bounce) until reaching the image

9

Figure 1.5. Illustration of the task space in this dissertation. Based on illumination and camera
types, we build different computer programs to achieve diverse effects on images.

plane. Simulating light transport through paths and interactions to form a colored appearance is

the central piece of image synthesis.

We strive to create images with diverse lighting effects so that we are able to govern the

look. Some of these effects are only achievable by altering the illumination profile, such as the

example shown in Figure 1.4 (right). Generally speaking, the illumination is programmable with

computational algorithms to produce varying patterns with respect to space and time. Physically-

based rendering normally applies the common light sources with constant brightness to imitate

real-world conditions. In contrast, computational photography frequently utilizes active encoded

lights and textured patterns to create dynamic variations. In Chapter 4, we present a paradigm of

manipulating image appearances using computational illumination techniques.

To summarize, other than the viewpoint defined by the camera settings, the illumination

and light transport majorly determine the final color of each pixel, yielding accurate appearances

of scenes to be photographed. The complete imaging system grants us the maximum flexibility

to form pictures.

1.2.3 Task Space of Image Computation

Computing images involves a family of algorithms to be applied for a variety of visual

applications. There are many diverse pathways to categorize the tasks into separate spaces, and

we consider two particular types of clustering in this dissertation (as shown in Figure 1.5):

10

• Based on Visual Effects. People constantly generate images with certain appearance ex-

pectations. Our conducted research work can be divided into distinctive cases - computing

sharp caustics (Chapter 2), global illumination (Chapter 3), and dynamic lighting (Chapter

4). These effects are fairly inefficient to create using traditional methods, and each of them

requires a customized approach to address its exclusive challenges.

• Based on Applied Operations. From the application perspective, the goal of imaging can

be rather unique for different tasks. Synthesizing lifelike images (Chapter 2 and Chapter 3)

is the fundamental intention when producing immersive games and films, which operates

on light transport paths. On the contrary, if we shift the focus to two end components -

camera and light source, we can innovate unconventional image appearances (Chapter 4)

by computational photography algorithms.

To develop solutions for the above tasks, we follow the traditions of system implemen-

tation and evaluation. Rendering is performed in a synthetic world created by the computer

program, and computational imaging is tested on authentic prototypes in the real world.

1.3 Challenges and Opportunities in Image Formation

The aforementioned image computation tasks are practically non-trivial from the algo-

rithm design and implementation perspectives. Thus, we briefly recap the obstacles encountered

and progresses accomplished by researchers in the past few years.

1.3.1 Monte-Carlo Light Transport for Image Photorealism

Realistic image synthesis is known as a long-established problem to conquer by the

computer graphics community. Ever since the mathematical formulation - the rendering equation

was found, people have made tons of attempts to comprehend and simulate the physics of light.

Historically, physically-based rendering did not receive much attention due to the lack of

capability to carry out complex geometry processing, coherent memory footprint, and low-cost

11

shading. At that moment, people adopted a micropolygon-based workflow and approximate

various illumination effects using point clouds. Despite the advantage of possessing less run

time and higher flexibility, such a method requires convoluted data handling, and diverse lighting

effects cannot be computed in a unified routine. Consequently, the old-fashioned way was

abandoned and subsequently replaced by Monte-Carlo (MC) path tracing, an elegant numeric

solution that launches rays and simulates real-world light scattering events.

Unfortunately, the brute-force ray tracing suffers from a slow convergence problem due

to the nature of Monte Carlo, producing images with significant noise and defective effects.

As opposed to spawning a huge number of rays, people have unfolded a variety of variance

reduction techniques to expedite the convergence, such as importance sampling, multi-directional

path tracing, particle-based rendering, path guiding, and denoising. However, even with these

state-of-the-art light transport algorithms, the space for improvement is still quite substantial

because of the unceasing growth of geometric and lighting complexity.

1.3.2 Programmable Photography for Image Manipulation

The idea of unlocking the full potential of digital photography has promoted the emer-

gence of special-purpose cameras and computerized light sources that are both programmable.

One of the prominent directions is to introduce new features that go beyond classic film-based

optical imaging. For instance, the appearances of image parts can be switched on and off using

coded exposures and illuminations.

Such special effects were certainly tricky or even impossible to achieve with a standard

camera photo-sensor and incandescent light bulb. The post-capture image processing cannot

revive the lost effects in general cases. Therefore, the design of infrastructure is normally

the biggest challenge in computational photography. Fortunately, electrical engineering and

semiconductor fields have invented many kinds of digital hardware, such as structured lights,

fluttered shutters, and demodulating sensors. The expansion of photographing capabilities

unlatches a new definition of generalized visual effects and countless image applications.

12

Figure 1.6. Overview of performance on computing images with different illumination effects
including caustics from glass objects, global lighting from single and multiple scattering, and
modulated pattern from coded illuminations. Our novel algorithms can create these phenomenons
with higher efficiency and variability than classic solutions.

1.4 Overview of Techniques and Contributions

In this section, we show a glimpse of the primary research outcome which will be covered

in the rest of chapters, from the algorithm and performance perspectives.

1.4.1 Generating Concentrated Caustics with Glass

The first effect under our consideration is an unusual but vital lighting phenomenon

that is regularly known as caustics. It is caused by the light concentration on small regions

from transparent or translucent materials, as demonstrated in Figure 1.6 (left). This is readily

observable in particular cases, such as swimming pools and glass-like containers, contributing

significantly to image photorealism.

However, generating a sharp caustics pattern is not as trivial as it may look, and it has

troubled researchers for many years. The specularity nature makes the standard ray tracing

algorithm struggle to discover plausible scattering paths between camera and lights. In Chapter

2, we present an alternative image synthesis algorithm that relies on simulating photon particles

emitted from the light source. More specifically, we invented a learning-based radiance recon-

struction framework tuned for caustics, leading to a sharper and clearer effect on the resulting

image compared to classic path tracer as shown in Figure 1.6 (left). Our design can reduce the

pain when it comes to rendering scenes like underwater.

13

1.4.2 Sampling and Reconstructing Global Illumination

Another class of effects originates from high-order scattering events. In notably chal-

lenging cases, light sources can be concealed from immediate visibility and illuminate the scene

indirectly. In other words, paths of both single and multiple bounces must be constructed side by

side to incorporate such global illumination effect.

Unfortunately, the standard path tracing experiences a high failure rate of uncovering

locations of lights by randomly sampling the reflected direction at every hit. In accordance

with the theory of Monte-Carlo sampling, the chances of building feasible long paths can be

tremendously increased using a superior sampling strategy to guide directions of subsequent path

segments. In Chapter 3, we strive to maximize the correlation between the sampling distribution

and incident illumination by leveraging the concept of online learning. As a result, the pixel

variance is greatly reduced on the image, particularly when a series of reflection and refraction

events take place in Figure 1.6 (middle). Applying our light transport framework is especially

rewarding for tangled scene setups where indirect lighting dominates the image appearance.

1.4.3 Customizing Appearances with Modulated Lighting

Unlocking novel effects from the art of digital photography is the last subject that will be

covered in this dissertation. The target appearance is typically driven by the application objective;

thus, we build dedicated cameras and illumination modules to evaluate the performance on the

captured image. Figure 1.6 (right) presents a special banding effect example that is beyond the

capability of ordinary image synthesis.

Under the above circumstance, it is preferable to consider the usage of such unconven-

tional effects prior to the algorithm design. In Chapter 4, we study on a specialized occasion

where sensitive contents should be visually protected from wild captures and restricted exclu-

sively to certain cameras. More concretely, we design a digital waveform to create blinking

illumination patterns on a customized LED module, and a programmed rolling shutter on autho-

14

rized cameras to undo the lighting modulation. As demonstrated in 1.6 (right), our computational

photography prototype is capable of disturbing the image appearances of prohibited captures by

injecting striped effects. Additionally, our enhanced digital encoding supports advanced effects

such as image watermarking and visual certification.

1.4.4 Additional Work Done through my Doctoral Career

Apart from the aforementioned research on computing diverse illumination effects, many

other image-related projects have also been conducted with my colleagues for the past five years.

From Images to 3D Understanding. Thanks to the development of 3D sensors, the

visual data is no longer restricted to images. Modern 3D representations such as depth views,

meshes, volumes, and point clouds have started to replace images in certain applications. For

this purpose, we have made multiple discoveries on triangle meshes and point cloud scans,

which includes a large-scale dataset with comprehensive 3D structures for object-level shape

understanding [106], a learning-based 3D reconstruction pipeline from multi-view images

[17], and a robust algorithm to process 3D LIDAR point cloud for autonomous vehicles [128].

The transition from 2D images to 3D shapes enhances the capability of regular screen-based

photography so that we can reach beyond the binocularity of human vision.

Towards Efficient Image Classification. Perception is another prime task to acquire a

high-level semantic understanding of appearances. For instance, assorting images into meaningful

categories is a fundamental skill of machines and robotics for perceiving and reasoning. Such

classification is non-trivial because of diverse textures and appearances, triggering the prosperity

of deep learning and the ImageNet dataset on this subject. To elevate the efficiency of the

machine learning approach, we invented a cost-effective binarized neural network for fast image

classification using statistical learning [211] and subsequently optimized it on FPGA circuits

[40, 39]. Our lightweight design facilitates the visual perception of images captured by low-end

mobile devices such as smartphone cameras.

Image-Centric Ubiquitous Computing. The world is surrounded by all kinds of sen-

15

sors, not only cameras but also photodiodes, radios, and acoustics. These auxiliary sensations

are repeatedly connected with images to ease our lives. By introducing proper computational

algorithms, we can leverage such ubiquitous sensing signals with images to promote human-

computer interactions. By this time, we have activated a few successful innovations comprising

an image-based visible light positioning system [209], a structured illumination to produce

invisible 2D QR codes [208], and a walking pattern monitor by radars trained from images [104].

Our utilization of images has been proven to be effective in distinctive sensing applications.

Besides the work completed at the university, my explorations over images have fostered

a few industry applications throughout internships. During my employment at Apple, we built

a high-quality reconstruction pipeline of image dithering for Apple Displays. At Disney, we

constructed a 3D pose estimation system using images to enhance guest experiences in theme

parks, and a real-time neural rendering algorithm for interactive image synthesis. Weta Digital

offered me an opportunity to design a groundbreaking light transport sampling method to manage

millions of illuminations, which was pushed into the studio’s visual effect pipeline. At Pixar, we

pioneered a denoising framework for volume renderings like clouds, smokes, and fires. It fulfills

the expected image look from artists and is in the process of being integrated into animation

productions. Overall, it is a delightful experience to develop visual computing technology at

those world-leading institutions.

Although the above research projects are not the primary focus of this dissertation, they

serve as great inspirations by inspecting images from fresh perspectives and interpreting images

with new meanings.

1.5 Structure of Chapters

In this dissertation, we separate the discussion of image computations into three parts

according to the illuminated effects. In Chapter 2, we first introduce how the special caustics

effect is constructed. Next, we progress with computing the generalized global illumination

16

in Chapter 3. Moving forward, we extend the domain of virtual image synthesis to real-world

photography in Chapter 4 by demonstrating a customized banding effect on pictures. Finally, we

conclude the materials and prospect the future in Chapter 5.

17

Chapter 2

Creating Vital Lighting Effects on Images

2.1 Challenges of Making Caustics

The caustics effect is a special case of global illumination and one of the most chal-

lenging phenomenons to create during image synthesis. The underlying principle is the light

concentration from the existence of transparent objects such as glass and water. Standard path

tracing, however, is particularly inefficient in this situation due to inferior Monte-Carlo samples

being used, as illustrated in Figure 2.1.

Tracing particles reversely from light sources is a preferable choice for the case above,

resulting in sharper caustics compared to the path tracing approach. Unfortunately, this line of

work requires launching a massive amount of photon particles, which cuts back the advantage.

Apparently, the space for improvement is still quite substantial for making beautiful caustics

images. In this chapter, a faster approach is presented to reconstruct those crucial caustics using

a lot fewer particles, which has been published in [212].

2.2 Overview

Recently, deep learning-based denoising approaches have led to dramatic improvements

in low sample-count Monte Carlo rendering. These approaches are aimed at path tracing, which

is not ideal for simulating challenging light transport effects like caustics, where photon mapping

is the method of choice. However, photon mapping requires vast numbers of traced photons

18

Path Tracing

Photon Mapping

Combined Reference

Figure 2.1. Challenges of generating path-traced caustics. On the contrary, photon mapping
performs fairly well by reconstructing such effects from light specular (LS) particles traveling
through the transparent surfaces. By combining the output of both methods, we can produce
images with expected reference looks.

to achieve high-quality reconstructions. In this work, we develop the first deep learning-based

method for particle-based rendering, and specifically focus on photon density estimation, the

core of all particle-based methods. We train a novel deep neural network to predict a kernel

function to aggregate photon contributions at shading points. Our network encodes individual

photons into per-photon features, aggregates them in the neighborhood of a shading point to

construct a photon local context vector, and infers a kernel function from the per-photon and

photon local context features. This network is easy to incorporate in many previous photon

mapping methods (by simply swapping the kernel density estimator). It can produce high-quality

reconstructions of complex global illumination effects like caustics with an order of magnitude

fewer photons compared to previous photon mapping methods. Our approach essentially reduces

the required number of photons, significantly advancing the computational efficiency in photon

mapping.

19

2.3 Introduction and Methodology

Computing global illumination is crucial for photorealistic image synthesis. Ray tracing-

based methods have been widely used to simulate complex light transport effects with global

illumination in films, animations, video games, and other industrial fields. The most successful

approaches are based on either Monte Carlo (MC) integration, like path tracing [81, 169], or

particle density estimation, like photon mapping [77]. Photon mapping techniques can efficiently

simulate caustics and other challenging light transport effects, which are very hard and even

impossible for pure Monte Carlo-based methods to simulate.

In general, both MC-based and particle-based methods require numerous samples to

render noise-free images, and are thus computationally expensive. Recently, significant progress

has been made in denoising MC images rendered with low sample counts using deep learning

techniques [15, 5]. However, there is relatively little work in particle-based methods for low-

sample reconstruction and current photon mapping techniques still require a massive number of

traced photons to achieve accurate, artifact-free radiance estimation.

We present the first deep learning-based approach for particle-based rendering that

enables efficient, high-quality global illumination with a small number of photons. Our approach

is particularly good at reconstructing diffuse-specular interactions like caustics, for which

previous photon mapping methods require large photon sample counts (and path-tracing at

reasonable sample counts can miss altogether). We focus on photon density estimation—a key

component of all particle-based methods—and introduce a novel deep neural network that can

estimate accurate photon density at any surface point in a scene given only sparsely distributed

photons.

Previously, the most successful density estimation methods for photon mapping were

kernel-based methods that use traditional kernel functions (like a uniform or cone kernel) to

compute output radiance at a surface point as a weighted sum of nearby photons. While previous

methods have improved the kernels by controlling the kernel bandwidths or shapes [85, 142, 84],

20

traditional kernel functions still require a large enough count of photons located in a small

enough bandwidth around every surface shading point, for which a vast number of photons need

to be traced, to compute accurate photon density. In contrast, we propose learning to predict a

kernel function at each shading point to aggregate nearby photon contributions effectively. Our

predicted kernels leverage data priors and are able to compute accurate photon density estimation

for complex global illumination from photon counts that are an order of magnitude fewer than

traditional methods.

Our network considers local photons around a queried surface point within a predefined

bandwidth as input. Unlike traditional methods that often treat photons individually or leverage

standard statistics to aggregate photons, we leverage learned local photon statistics—encoded as

a deep photon context vector inferred by the network—around a surface point for per photon

kernel weight estimates. Specifically, the network first processes individual photons to extract

per-photon features and aggregates them across photons using pooling operations to obtain a

deep photon context feature that represents the local photon statistics. The network processes the

individual per-photon features concatenated with the local context to compute per-photon kernel

weights, which are used to perform density estimation by a weighted sum. We demonstrate that

this approach of learning kernel prediction is more efficient than a baseline that directly estimates

photon density from the aggregated deep context vector.

To train our network, we create diverse photon distributions by tracing photons in 500

procedurally generated scenes with complex shapes and materials. We sample surface points

on diffuse surfaces, which form a 512×512 image (one pixel per point) in each scene, and

we compute the ground truth photon density of each point using progressive photon mapping

[61] with billions of photons. Note that our network focuses on the local photon distribution

properties of surface points. Hence, every surface point in a scene is a training datum, allowing

us to train a generalizable network without many images.

21

(a) Pure PT (1000 spp)

~Total time: 20s 20.5s 6.2s 28s 6.5s28s

(b) PT (1000 spp)
 +Denoising

(c) PM (15K photons) +
 PT (300 spp) +Denoising

(g) Ground Truth(d) SPPM (1.5M photons) +
 PT (300 spp) + Denoising

(e) APPM (1.5M photons) +
 PT (300 spp) + Denoising

(f) Ours (15K photons) +
 PT (300 spp) + Denoising
 (Ours)

PSNR=25.27
SSIM=0.3801

PSNR=40.31
SSIM=0.9767

PSNR=40.62
SSIM=0.9773

PSNR=43.16
SSIM=0.9880

PSNR=48.11
SSIM=0.9946

PSNR=49.26
SSIM=0.9956

(~Equal Time) (~100x photons) (~Equal Quality)

(a) Pure PT (1000 spp)

~Total time: 20s 20.5s 6.2s 28s 6.5s28s

(b) PT (1000 spp)
 +Denoising

(c) PM (15K photons) +
 PT (300 spp) +Denoising

(g) Ground Truth(d) SPPM (1.5M photons) +
 PT (300 spp) + Denoising

(e) APPM (1.5M photons) +
 PT (300 spp) + Denoising

(f) Ours (15K photons) +
 PT (300 spp) + Denoising
 (Ours)

PSNR=25.27
SSIM=0.3801

PSNR=40.31
SSIM=0.9767

PSNR=40.62
SSIM=0.9773

PSNR=43.16
SSIM=0.9880

PSNR=48.11
SSIM=0.9946

PSNR=49.26
SSIM=0.9956

(~Equal Time) (~100x photons) (~Equal Quality)

Figure 2.2. We present a novel learning-based photon mapping (PM) method that can be used to
synthesize photorealistic images (f) with detailed caustics (shown and compared in the insets)
from very sparse photons for scenes with complex diffuse-specular interactions. In particular,
we use our method with only 15k photons (∼0.06 photons per pixel) to compute accurate global
illumination for light-specular paths. We use path tracing (PT) with a moderate number (300) of
samples per pixel (spp) to compute the other paths and apply the Optix learning-based denoiser
(based on [15]) to remove the Monte Carlo (MC) noise. In contrast, pure PT leads to noisy results
lacking focused caustics (a) even with 1000 spp that is significantly more than our photon and
path samples. While this noise can be mitigated using a learning-based denoiser, this introduces
artifacts and cannot recover the caustics (b). Combining PT and standard PM [77] with 15k
photons, and then denoising (c), avoids these artifacts but still does not reconstruct caustics
accurately from such low photon counts. While providing 1.5M photons (this is 100 times the
number of photons our method uses) and applying the advanced stochastic progressive PM
(SPPM) [62] enables a more accurate result (d), it is still slightly worse than ours. In contrast, our
result (f) accurately reproduces the caustic effects in the global illumination, as compared to the
ground truth (g), with significantly fewer samples. Ours is comparable with (if not better than)
the result from adaptive progressive PM (APPM) [85] with 100 times the number of photons (e).

22

2.4 Advantages over Traditional Techniques

In Figure 2.2, we demonstrate that, using only 15k photons, our method can synthesize

high-quality images. Conversely, path tracing and photon mapping variations fail to do so;

even when combined with advanced progressive and adaptive techniques, SPPM and APPM

require significantly more samples (1.5M photons) to achieve comparable results. This makes

our approach an important step towards making photon mapping computationally efficient.

Moreover, our experiments leverage an effective practical hybrid approach: using our method for

reconstructing light-specular (LS) paths – the light transport paths that interact with specular

surfaces before arriving at light sources—and low sample-count path tracing with learning-based

denoising for all other light transport paths. This leverages the advantages of both MC denoising

and our efficient photon density estimation technique.

2.5 Related Work

Monte Carlo path integration. Kajiya [81] introduced the rendering equation and

Monte Carlo (MC) path tracing. Since then, various methods for MC path integration have

been developed, including light tracing [30], bidirectional path tracing (BDPT) [93, 171], and

Metropolis light transport (MLT) [169, 123, 21]. These methods can simulate complex light

transport with accurate global illumination in an unbiased way. However, pure MC based

methods typically require a huge number of samples (traced paths), especially for very low

probability paths like the classical caustic or specular-diffuse-specular (SDS) paths. We base our

method on the photon mapping technique, which is efficient for caustics and SDS, and we aim to

achieve sparse reconstruction.

Monte Carlo denoising. While there is little progress in sparse reconstruction with low

sample counts in photon mapping, many approaches have been proposed to achieve MC rendering

with low sample counts. A recent survey of sparse sampling and reconstruction is presented by

Zwicker et al. [216]. MC denoising methods can be categorized into a-priori methods that rely

23

on prior theoretical knowledge [29, 31, 197, 191], and a-posteriori methods that filter out the

noise in rendered images with few assumptions about the image signal [121, 137, 83].

Recently, deep learning techniques have been introduced to achieve MC denoising [15, 5],

and many methods utilize kernel prediction [5, 172, 193]. Kalantari et al. [83] propose to predict

the parameters of fixed filtering functions using fully-connected neural networks. Bako et al. [5]

leverage deep convolution neural networks to predict kernels to linearly combine the original

noisy radiances of neighboring pixels. Gharbi et al. [47] make use of individual screen-space

path samples and predict a kernel for each sample that splats the radiance contributions to

its neighboring pixels. Deep learning techniques have also been extended to gradient-domain

rendering [87]. In contrast, we apply deep learning in photon density estimation and leverage

local photon statistics for density estimation from sparse photons. Our network considers

individual scene-space photon samples around each shading point and predicts a kernel to gather

per-photon contributions. Our approach is the first that introduces deep learning in photon

mapping and demonstrates learning-based kernel prediction in this context.

Photon density estimation. The rendering equation [81, 73] can be approximated by

particle density estimation [145, 77, 177]. Most particle-based methods are based on the original

photon mapping framework [77]; it first traces rays from light sources to distribute photons in a

scene, and then gathers neighboring photons at individual shading point to approximate radiance

estimates. Photon mapping achieves low variance in the rendered images and leads to blurred,

less noticeable artifacts at the cost of introducing bias in the estimates. Photon mapping is able

to consistently converge to the correct solution by increasing the number of photons towards

infinity and reducing the bandwidth towards zero.

Previous work has investigated progressive methods to overcome the memory bottleneck

and enable arbitrarily large photon numbers [61, 59, 62, 89], bidirectional methods to improve

rendering glossy objects [173], adaptive methods to optimize photon tracing [60], and the

combination of unbiased MC methods and photon mapping [45, 63, 46]. Many relevant works

have been presented to improve the kernel density estimation by utilizing standard statistics for

24

adaptive kernel bandwidth [78, 85, 84] or anisotropic kernel shapes [142]. Other works leverage

ray differentials [141], blue noise distribution [152, 153, 154], traditional linear regression

[70] and Gaussian mixtures fitting [75] to improve the reconstruction. In contrast, we focus

on accurately computing photon density with sparse photons, which has not been explored in

previous work. Essentially, we replace the traditional kernel density estimation with a novel

deep learning-based module, and keep the rest unchanged in the standard photon mapping

framework. This potentially enables the combination of our technique and previous photon

mapping techniques that focus on other components in the framework.

2.6 Fundamentals of Particle-Based Photon Mapping

2.6.1 Radiance Reconstruction Formulation

Photon mapping techniques compute reflected radiance via density estimation. Kernel

density estimation [178] is the most widely used density estimation method in statistics, and has

been widely applied in photon mapping. Early works use the uniform kernel that treats nearby

photons equally [77, 61]; subsequent works extend photon density estimation to support arbitrary

smooth kernels [62, 89]. In general, the reflected radiance at a shading location xxx is computed

by:

L(xxx,ωωω)≈ 1
N

N

∑
i=1

kr(xxx,xxxi)τi, (2.1)

where N is the total number of photon paths that are emitted in a scene, ωωω is the reflected

direction, xxxi is the location of a photon, τi is the photon contribution and kr represents the kernel

function with bandwidth r. In general, the photon contribution τi is the product of the BRDF and

the photon energy. In this work, we only compute photon density on diffuse surfaces, as is done

in many classical photon mapping methods. In this case, the BRDF at a shading point is ρ/π ,

where ρ is the albedo. Correspondingly, τi = φρ/π , where φ represents the accumulated path

contribution divided by the sampling probability, which can also be interpreted as the energy flux

25

carried by the photon. Therefore, ωωω can be removed and ρ can be taken out of the summation in

Equation 2.1. We therefore consider the photon energy φ as the photon contribution in this work.

2.6.2 Density Estimation Kernels

The kernel kr assigns linear weights to photons, which are used to linearly combine the

contributions of photons in a local window with radius r. Traditionally, kr is a uniform function

(1/(πr2)) or a function of the distance from the shading point to a photon (‖xxx− xxxi‖). Instead,

we propose to leverage data priors to predict kernels to aggregate photon contributions.

2.7 Learning to Estimate Photon Density

In this section, we present our learning-based approach for photon density estimation.

Our approach is lightweight and focuses on density estimation only; we keep the main framework

of standard photon mapping and upgrade the traditional, distance-based and photon-independent

kernel functions (kr in Equation 2.1) to novel, learned and local-context-aware kernel functions

represented by a deep neural network (see Figure 2.3).

In particular, given a shading point, our network considers its K nearest neighbor photons,

which adaptively selects the bandwidth r. Multiple properties of individual photons are used as

input for the network, including photon positions {xxxi}K
i=1, photon directions {dddi}K

i=1 and photon

contributions {φi}K
i=1. We also supply the number of nearest photons K to the network to let it

better understand the local photon distribution. Our network (denoted as Φ) regresses per-photon

kernel weights to compute radiance estimates via a weighted sum similar to Equation 2.1:

L(xxx)≈ ρ

Nπr2

K

∑
i=1

Φr,i(xxx,{xxxi},{dddi},{φi})φi, (2.2)

where Φr,i represents the predicted kernel weight for photon i. Note that, our network uses

information about all photons in a local neighborhood for per-photon kernel prediction; it obtains

deep photon statistics and associates per-photon information with statistical context to compute

26

kernels for photon aggregation.

2.7.1 Processing Photon Point Cloud

Photon distributions are highly diverse across shading points and scenes, making it

challenging to design a network that generalizes to different inputs. Besides, deep neural

networks are known to benefit from normalized input data to correlate values from different

domains. Therefore, we pre-process the input photon properties to allow for better generalizability

and performance.

Since light intensities can have a very high dynamic range (HDR), the photon contri-

butions τi can vary widely in range, which is highly challenging for a network to process. We

introduce a mapping function to pre-process the photon contributions,

ta(u) =
log(u+a)− log(a)

log(u+a)− log(a)+1
, (2.3)

where a = 0.01 is an additional parameter. Essentially, ta(u) maps HDR values u from [0,∞] to

[0,1]. We further linearly map these values to [−1,1] and provide them as network input. We

observe that such a mapping process facilitates the network learning.

For photon positions xxxi and directions dddi, we first transform them into the local coordinate

frame of the shading point; the coordinate frame is constructed using the position and normal

of the shading point and two orthogonal directions that are randomly selected in the tangent

plane. This transforms the network inputs into a consistent coordinate system and improves

generalizability.

The bandwidth r of our learned kernel is determined by the distance of the Kth nearest

photon. This leads to an extensive range of bandwidth values given various photon distributions,

which is highly challenging for a deep neural network to process. Motivated by the bandwidth

normalization used in traditional kernels [178, 145], we divide the photon positions in the local

coordinates by the bandwidth r, and scale the final density estimates by 1/r2, which is shown

27

Photon tracing &
KNN searching

32

9

9

16

16

32

32

32

32

M

A

32

32

32

64

64

32

32 32

32

1

1F F F

FFF

F F F

F 8

 8 F

FFF

Ʃ

*

*

Input preprocessing Network processing

Feature extrac�on Kernel predic�on

Es�ma�ng Radiance

Deep
context

M: Shading point : Bandwidth from KNN : Photons
: Photon properties

: Preprocessed input vector

: Fully connected layer

: Max-pooling : Feature vector with C channels

: Avg-pooling : Summation across photonsF A
 C

Ʃ

фK

фK

xK
dK

ф1

ф1

x1
d1

Figure 2.3. Overview of our deep photon density estimation network. Given a set of photons
within the bandwidth of a shading point, we pre-process these photons’ properties and input
them to feature extractor MLPs that compute per-photon features. These are aggregated using
max- and average-pooling to construct a deep context feature. The original per-photon features
and the deep context are concatenated and processed by a kernel prediction MLP that predicts
a kernel weight. Finally, these kernel weights are used to sum the photon contributions and
produce the reflected radiance.

in Equation 2.2. This normalizes all input photon positions into a unit sphere and post-scales

the computed photon density by the actual window area. As a result, our network is invariant to

the actual bandwidths, and effectively generalizes to different photon distributions and supports

different numbers of total emitted photons that will introduce different bandwidths for the same

K.

Note that, different terms of our network input are all normalized into the range of [−1,1],

which enables our network to correlate and leverage different photon properties from various

domains in an efficient way. Our input pre-processing also makes our network translation-,

rotation-, and scale-invariant to diverse photon distributions, leading to good generalization

across different scenes and different numbers of emitted photons.

2.7.2 Kernel-Predicting Reconstruction Architecture

The inputs to our network are essentially a set of multi-feature 3D points in a unit sphere.

There is no meaningful inherent point ordering in the set, and the number of points (K) is not

fixed. We thus leverage PointNet [127] style neural networks with multi-layer perceptrons, which

accept an arbitrary number of inputs and are invariant to permutations of inputs. As shown in

28

Figure 2.3, our network consists of two sub-networks, a feature extractor and a kernel predictor;

they are both fully connected neural networks and process each photon individually.

The feature extractor first processes each individual photon; it considers the pre-processed

photon properties (9 channels including positions, directions and contributions) as input, and

extracts meaningful features using multi-layer perceptrons. Specifically, we use three fully

connected layers in the feature extractor, and each layer is followed by a ReLu activation layer.

The feature extractor leverages linear and non-linear operations to transform the original input

into a learned 32-channel feature vector. These per-photon features are then aggregated across

photons by max-pooling and average-pooling operations which output the deep photon context

vector. This vector represents the local photon statistics in a learned non-linearly transformed

space. The kernel predictor then leverages the across-photon context and the per-photon features

to predict a single scalar that represents the kernel weight for each photon. These per-photon

kernel weights are the final output of our network and will be used to linearly combine the

original photon contributions as expressed in Equation 2.2. The kernel predictor is also a three-

layer fully connected neural network with ReLU as activation layers, which is similar to the

feature extractor but with different channels at each layer.

Note that, unlike previous work that treats each photon independently, we propose to

correlate per-photon information with local context information across photons. Our feature

extractor transforms photon properties into learned feature vectors, which allows for collecting

photon statistics in the learned neural feature space to obtain the photon context for the following

kernel prediction. Our whole network is very lightweight and involves only six fully connected

layers; this ensures a highly efficient inference process. We show that such a lightweight network

is able to reconstruct accurate photon density from sparse photons effectively.

2.7.3 Dataset and Training Details

Data generation. Monte Carlo denoising usually requires a large number of images to

train and is hard to generalize across different types of scenes. Our method focuses on local

29

Figure 2.4. Examples of our procedurally generated training scenes.

photon distributions; in other words, to learn proper data priors, we desire the diversity of photon

distributions in terms of individual shading points and not necessarily of the entire scenes. This

allows for good generalizability of our network with a relatively small number of training scenes,

which can even be very different from our final testing scenes. Inspired by [195, 196], we

procedurally create shapes from primitives with random sizes and random bump maps; a set

(randomly from 1 to 16) of such shapes is then placed in a box and distributed roughly as a

grid. We also place multiple area lights with random locations and rotations in the scene, and

randomly assign specular materials and diffuse materials to the scene objects.

A few examples of these scenes are shown in Figure 2.4; complex light transport effects

with diverse photon distributions are simulated. To sample shading points in each scene, we

shoot rays from a camera through an image plane with 512× 512 pixels and select the first

diffuse intersections as target shading points. We trace photons from light sources and keep

the ones that contribute to indirect lighting. Progressive photon mapping [61] is then applied

to compute ground truth photon densities for each point with a total number of about 1 billion

photon paths. For each scene, we store 10 million photon paths and a 512×512 multi-channel

image containing ground truth radiances and other necessary information (positions, normals,

and BRDFs) of shading points. We create 500 scenes for training our neural networks and test

our network on scenes that are significantly different from our training data (see Figure 2.2 and

30

Figure 2.9).

Loss function. We supervise our network with the ground truth radiance estimates. The

final radiances are in high dynamic range, which can easily make the training dominated by

high-intensity values; we therefore tone-map the radiance estimates using the µ-law as in [82].

The mapping function pµ(v) is given by:

pµ(v) =
log(1+µv)
log(1+µ)

, (2.4)

and we set µ = 5000 following [82]. We tone-map both our estimated radiance and the ground

truth radiance, and we apply L2 loss on the mapped values.

Training parameters. We randomly select K from 100 to 800 and use from 0.3 million

to 4 million photons to train our network, which makes it generalize well to various bandwidths

and photon counts. We use Adam to train our network for 6000 epochs with an initial learning

rate of 10−4 and a batch size of 2000 random shading points.

2.8 Implementation and Evaluation

We now present a comprehensive evaluation of our method. A variety of scenes with

complex caustics effects are selected for experimentation.

2.8.1 Verification Study

We first justify the choices of our network design. In particular, we compare our net-

work with a baseline network that estimates the final radiance without predicting kernels; this

comparison network has a similar architecture but directly outputs the final irradiance from the

across-photon deep context vector. Figure 2.5 shows the training processes of these networks;

our network converges significantly faster than the baseline method. This demonstrates the

effectiveness of combining kernel density estimation and deep learning and is consistent with

previous results on denoising for path tracing [5, 172, 47].

31

 200 400 600 800 10000

Overfitting Results (3 iters): 1500 epochs

PPM
Network with Radiance

(continue overfitting but slower
so here hasn’t converged yet

with 1500 epochs)

GT

Overfitting Results (3 iters): 1500 epochs

PPM
Network with Radiance

(continue overfitting but slower
so here hasn’t converged yet

with 1500 epochs)

GT

Kernel Prediction (Ours)

O
ur

s
Di

re
ct

G
T

Figure 2.5. Kernel prediction. We compare the optimization speed of our kernel-prediction
network and a baseline direct-estimation network. Our network converges faster to the lower
loss value. On the bottom, we show the rendered images from the two networks trained with
1000 epochs. Our results are closer to the ground truth with more details in the caustics.

2.8.2 Evaluation Scenes and Photon Generation

We evaluate our method on six challenging scenes (EGG, WINE, RINGS, POOL1, POOL2,

DRAGON) that involve complex caustics and other diffuse-specular interactions with LS paths.

In theory, path tracing can never reconstruct LS paths if we use a point light source; we therefore

use area lights in the scenes to allow for reasonable comparisons with PT. For each scene, we

shoot photons for 0.1 seconds, which generates about 0.8M photon paths with a maximum of

five photons per path; we only keep those photons that involve light-specular paths in the scenes.

We denote the number of valid photons we consider as M, which is a number that is different

32

from the total emitted photon paths N in Equation 2.1. Because of various compositions of

scenes, there are 15k (EGG), 85k (WINE), 77k (RINGS), 50k (POOL1), 100k (POOL1) and 125k

(POOL1) valid photons that are used in the six scenes respectively. We also evaluate with the

number of photons that are traced in one second—corresponding to ten times the number of

photons traced in 0.1 seconds—to justify the generalization of our network to different numbers

of emitted photons, and compare with the other methods with photons that are traced in ten

seconds to justify the quality of our sparse reconstruction.

2.8.3 Combining Denoising and Deep Photon Mapping

We evaluate our deep photon density estimation by combining our method with MC

denoising. Specifically, we apply our learning-based density estimation only to compute the

challenging light transport effects which involve LS paths that are extremely hard to trace in PT

and likely to introduce caustics. In addition, we use path tracing with relatively low sample counts

to compute the remaining light transport paths, and use modern learning-based denoising—the

Optix built-in denoiser based on [15]—to remove the MC noise.

By removing LS paths in PT, we also make PT and MC denoising much easier. As shown

in Figure 2.6, PT without LS paths can be effectively denoised using modern learning-based

denoising techniques with 100 spp, whereas full PT with LS paths introduces extensive noise

with the same 100 spp, causing denoising to fail completely. In fact, the standard PT plus

denoising pipeline is not able to recover the complex light transport effects with even 1000 spp

(see Figs. 2.2, 2.7). In contrast, we demonstrate a practical way of combining our efficient deep

photon mapping with MC denoising for photorealistic image synthesis, in which we leverage

the benefits of low-sample reconstruction in both scene-space particle density estimation and

screen-space MC integration.

33

Table 2.1. Quantitative RMSE evaluation. We test our networks trained with different K (K = 50
and 500, denoted with Ours-K) on six novel scenes with different numbers of valid photons (M).
We also test a variant of our network architecture with enlarged four times capacity (Ours-Large)
using the same K. We compare RMSE against standard photon mapping (PM) [77] under the
same conditions, and also progressive PM (PPM) [61] and adaptive PPM (APPM) [85]. We
highlight the best and the second-best results in red and blue for each row; note that, all of them
are our results. We also highlight the best result of the comparison methods in yellow, which is
often worse than any of our network settings.

Scene (M) Ours-
50

Ours-
L-50

PM-
50

Ours-
500

Ours-
L-

500

PM-
500

PPM APPM

EGG

(15k) 0.013 0.006 0.085 0.013 0.006 0.165 0.085 0.080
(150k) 0.012 0.006 0.036 0.008 0.004 0.079 0.065 0.043
(1.5M) 0.013 0.007 0.031 0.006 0.003 0.027 0.030 0.030

WINE

(85k) 0.052 0.028 0.116 0.044 0.021 0.222 0.134 0.111
(850k) 0.035 0.027 0.053 0.023 0.014 0.102 0.064 0.047
(8.5M) 0.032 0.030 0.045 0.014 0.011 0.037 0.031 0.026

RINGS

(77k) 0.042 0.023 0.069 0.023 0.008 0.153 0.137 0.143
(770k) 0.041 0.024 0.046 0.011 0.006 0.042 0.050 0.049
(7.7M) 0.045 0.020 0.066 0.012 0.009 0.023 0.017 0.014

POOL1
(50k) 0.244 0.174 0.281 0.214 0.146 0.323 0.327 0.277
(500k) 0.214 0.173 0.221 0.135 0.115 0.244 0.249 0.193
(5.0M) 0.237 0.186 0.259 0.107 0.105 0.124 0.206 0.125

POOL2
(102k) 0.178 0.125 0.226 0.167 0.095 0.260 0.262 0.224
(1.0M) 0.132 0.121 0.147 0.115 0.080 0.221 0.211 0.155

(10.2M) 0.134 0.128 0.159 0.066 0.061 0.102 0.163 0.088

DRAGON

(125k) 0.066 0.054 0.073 0.052 0.043 0.089 0.126 0.102
(1.2M) 0.056 0.054 0.061 0.034 0.033 0.044 0.083 0.054

(12.5M) 0.059 0.059 0.078 0.028 0.027 0.031 0.059 0.035

34

W
AT

ER
 PO

O
L1

RE
D

 W
IN

E
b) PT 100 spp
+ Denoising

a) PT 100 spp c) PT 100 spp w/o LS paths

d) PT 100 spp w/o LS paths
+ Denoising

Figure 2.6. Path tracing (PT) with and without light-specular paths (LS). We show PT and
denoising results using 100 spp with and without light-specular paths. The noise can be seen
more clearly when zooming into the electronic PDF.

2.8.4 Investigation on Photon Parameters

We observe that it is tough for a single network to generalize across different numbers of

input photons (K). We thus use a fixed K when training per network, and specifically we train

two networks with K = 50 and K = 500 for the evaluation. We also compare with a variant of

our network that has four times the channels at each layer in our network architecture to evaluate

if larger network capacity leads to higher performance. This large network generally leads to

better performance (see Table 2.1), but it requires about three times longer inference time (see

Table 2.2); please see the following parts in the section for more discussion about quality and

performance. In the experiments, we use DPM (deep photon mapping) to denote the network

with regular capacity and DPM-L (or Ours-L) to denote the one with a larger capacity.

In all experiments, we compare with the classical photon mapping (PM) with the identical

k-NN photons as inputs. We also compare various methods that are designed to reduce the

bandwidth with large photon counts progressively. In particular, for density estimation at fixed

35

a)Ours, DPM + PT b) Ours, DPM + PT d) Ground truthc) PT f) PT w/o Denoising

PSNR=36.68
SSIM=0.9792

PSNR=27.90
SSIM=0.8158

PSNR=16.63
SSIM=0.4576

PSNR=29.47
SSIM=0.9087

PSNR=22.68
SSIM=0.6345

PSNR=8.663
SSIM=0.0746

RI
N

G
S

(M
=7

70
K)

W
AT

ER
 PO

O
L1

 (
M

=5
00

K)

Figure 2.7. We show our final results in full images (a). Our final results are computed by
combining our deep photon mapping results and path tracing with denoising. We compare
against pure path tracing using 1000 spp with (c) and without (d) denoising on insets. Obviously,
path tracing alone even with 1000 spp cannot handle the LS paths.

surface points, we compare with progressive photon mapping (PPM) [61]. Given a certain

number of input photons, the quality of PPM is influenced by the initial radius and the number

of photons per iteration. To make a fair comparison, we compare 30 different variants (10 radii

and 3 photon counts per iteration) of the two parameters and choose the best settings (with

lowest RMSEs) for each scene. We also compare with adaptive progressive photon mapping [85]

similarly using the best radius and number of photons per iteration from 30 different variants of

parameters. For visual comparisons, we compare with stochastic PPM (SPPM) [59], when there

are transparent surfaces in a scene that require sampling multiple surface points per pixel.

2.8.5 Quantitative and Qualitative Results.

We now evaluate our method quantitatively and qualitatively with different numbers of

photons counts (M) and different variations of training parameters (input photon number K and

capacity). Table 2.1 shows quantitative RMSE evaluation of photon density estimation on the

six testing scenes; the numbers are averaged across about 260k surface shading points sampled

36

a) Ground truth

RINGS

b) Ours, DPM-500 c) Ours, DPM-L-500 g) Ours, DPM-50 h) Ours, DPM-L-50d) PM-500 i) PM-50e) SPPM f) APPM

PSNR=31.58
SSIM=0.9579

PSNR=32.14
SSIM=0.9656

PSNR=24.72
SSIM=0.8287

PSNR=30.31
SSIM=0.9423

PSNR=31.79
SSIM=0.9606

PSNR=29.90
SSIM=0.9377

PSNR=31.95
SSIM=0.9606

PSNR=29.84
SSIM=0.9293

PSNR=31.87
SSIM=0.9633

PSNR=18.80
SSIM=0.4551

PSNR=27.35
SSIM=0.8762

PSNR=26.82
SSIM=0.8672

PSNR=30.20
SSIM=0.9361

PSNR=30.40
SSIM=0.9430

PSNR=30.03
SSIM=0.9354

PSNR=29.03
SSIM=0.9165

PSNR=30.89
SSIM=0.9476

PSNR=24.11
SSIM=0.8194

M
=7

7k
M

=7
70

k

M=7.7M

RED WINE

PSNR=37.32
SSIM=0.9480

PSNR=40.63
SSIM=0.9770

PSNR=24.87
SSIM=0.7643

PSNR=26.40
SSIM=0.8661

PSNR=29.80
SSIM=0.9371

PSNR=30.11
SSIM=0.8888

PSNR=35.86
SSIM=0.9498

PSNR=32.22
SSIM=0.8843

PSNR=36.37
SSIM=0.9606

PSNR=17.86
SSIM=0.5512

PSNR=23.69
SSIM=0.7530

PSNR=24.82
SSIM=0.7455

PSNR=36.43
SSIM=0.9426

PSNR=38.04
SSIM=0.9621

PSNR=33.68
SSIM=0.9128

PSNR=32.90
SSIM=0.8951

PSNR=36.34
SSIM=0.9566

PSNR=24.78
SSIM=0.7574

M
=8

5k
M

=8
50

k

j) SPPM, k) APPM, M=7.7M

j) SPPM, M=8.5M k) APPM, M=8.5M

Figure 2.8. We show results of our method with different numbers of input photons (K). We
compare against PM, SPPM, and APPM with the same number of total photons (M) on insets
marked in the left-top ground truth image. We also show the results of APPM and PPM with ten
times the largest number of photons our method uses. The PSNRs and SSIMs of the insets are
shown correspondingly.

by tracing rays from a camera and selecting the first diffuse hit points in the scenes. Note

that, across all these different scenes with different photon counts, our method with K = 500

performs consistently better than all the comparison PM methods, including standard PM [77],

PPM [61] and APPM [85], with the same number of total photons. Most of our results are

better than PM and PPM with ten times the photon count as ours. APPM leverages traditional

statistical information of local photons to improve the density estimation of PPM, which can

achieve fairly good results; however, it requires the number of photons to be large enough

to obtain good statistics. In contrast, our method leverages learned statistics in the network,

which achieves significantly better results than APPM with the same number of photons; ours is

actually comparable to the APPM that uses ten times the total number of photons. Note that,

the APPM and PPM results are selected from tens of APPM and PPM variants with different

hyper-parameters for their best performance; yet, our method still outperforms the best of these

37

a) DPM-500 b) DPM-500 h) Ground truth

PSNR=34.78
SSIM=0.9005

PSNR=30.84
SSIM=0.8501

c) DPM-L-500

PSNR=34.90
SSIM=0.9039

PSNR=32.19
SSIM=0.9545

d) PM-500

PSNR=31.60
SSIM=0.8667

PSNR=24.67
SSIM=0.3804

e) PM-50

PSNR=31.80
SSIM=0.8026

PSNR=26.87
SSIM=0.7778

f) SPPM

PSNR=28.09
SSIM=0.8325

PSNR=26.27
SSIM=0.5848

g) SPPM, M x 10

PSNR=31.80
SSIM=0.8945

PSNR=30.65
SSIM=0.8469

W
A

RT
ER

 PO
O

L2
 (M

=1
.0

M
)

PSNR=49.26
SSIM=0.9956

PSNR=52.85
SSIM=0.9980

PSNR=34.19
SSIM=0.9377

PSNR=42.74
SSIM=0.9886

PSNR=34.56
SSIM=0.9475

PSNR=36.23
SSIM=0.9647

G
LA

SS
 EG

G
 (M

=1
.5

M
)

D
RA

G
O

N
 (

M
=1

.2
M

)

Figure 2.9. We show our results on full images (a). We compare against PM with the same
input photons (d) and SPPM with the same (f) and ten times (g) the total photon counts on insets.
PSNRs and SSIMs are also calculated for all insets and listed below.

variants.

To visually illustrate the numbers in Table 2.1, we demonstrate all the rendering results

of RINGS and WINE with the first two rows (first two M) in Figure 2.8; we also show the visual

results of APPM and PPM with larger M in Figure 2.8(j)(k). Additionally, we show the results

of three testing scenes in Figure 2.9, where we compare our DPM-500 with PM and SPPM.

In Figure 2.2, we show the result of our DPM-50 and compare it with PT, PM, SPPM, and

APPM. In general, our method with K = 500 outperforms the comparison methods with the

same number of photons qualitatively and quantitatively. Moreover, our results are comparable

to (if not better than) the comparison methods that use ten times the number of photons in the

scene. While the larger network with K = 500 (Ours-L-500) performs better than the regular

network, the larger one also requires a longer inference time (see Table 2.2). Therefore, our

regular network with K = 500 is generally the best choice for most cases, which stably achieves

high-quality results. However, when the timing is not a critical issue, the large network will be a

better choice for higher accuracy.

In most cases, the Ours-500 (K = 500) results are better than the Ours-50 (K = 50)

38

Table 2.2. Timing. We show the corresponding running time in seconds for each photon mapping
component. Our experiments are run with photons that are traced within 0.1s, 1.0s, and 10.0s in
each scene. We list the corresponding gathering time to find the neighboring photons for about
512×512 surface shading points. The numbers of total photons are also shown, corresponding
to the M in Table 2.1. We list the network inference time for 512×512 surface shading points
for our regular network (DPM) and a large network (DPM-L) with K = 50 and 500. Note that,
the network inference time is determined by its capacity and K, and is independent of the number
of total photons in the scene.

Tracing Gathering #Photons DPM-50 DPM-L-50 DPM-500 DPM-L-500
0.1s 0.12s ∼ 0.5s 15k ∼ 125k 0.3s 1.0s 3.0s 10.0s
1.0s 1.2s ∼ 5.0s 150k ∼ 1.2M 0.3s 1.0s 3.0s 10.0s

10.0s 12s ∼ 50s 1.5M ∼ 12M 0.3s 1.0s 3.0s 10.0s

ones, indicating that our network is usually in favor of more nearest neighbor photons (K) as

input. Essentially, a larger K allows for better local deep statistics in the deep context feature,

which enables better kernel predictions. Note that this is not the case for standard PM using

the same nearest neighbor strategy for bandwidth selection. Photon mapping either introduces

noticeable non-smooth artifacts with a small bandwidth (Figure 2.8(i)) or outputs over-smooth

results without details with a large bandwidth (Figure 2.8(d)). APPM tends to resolve this issue

by wisely reducing the bandwidth according to the photon statistics. In contrast, our method

achieves significantly better results than APPM when there are only sparsely distributed photons.

Our method can leverage a relatively large bandwidth without introducing any obvious over-

smoothing issues. This is thanks to our learning-based context-aware kernel prediction approach.

In particular, our approach allows for every single photon to leverage across-photon information

in the learned deep context feature to tell if it is an outlier or an important contributing element

to the shading point’s reflected radiance; a corresponding kernel weight is assigned to each

photon based on the decision made by data priors in the network. Therefore, our method can

effectively utilize the sparse photons in a large area to generate photorealistic images that are of

high smoothness and have many details.

39

2.8.6 Timing and Overhead

We use Optix to trace photons and do path tracing for all the results. All experiments are

run on one NVIDIA 1080 Ti GPU. Path tracing runs at about 50 spp per second in all six scenes

with an image resolution of 512×512. It takes about 0.1, 1.0, and 10 seconds to emit photons.

We show the corresponding photon gathering time and network inference time for 512×512

surface shading points in Table 2.2. In particular, we build Kd-Trees to do the neighboring

search at each shading point, and all methods take a similar time to gather neighboring photons.

Note that the running time of our network is linear with the number of input photons K; it is

also determined by the number of shading points that are required to be computed, and the

listed timing corresponds to 512×512 shading points. The total running time for our method is

the summation of the photon tracing, gathering, and network inference time; the total running

time for the other methods is the summation of tracing and gathering. Note that, across all the

experiments (Table 2.1, Figure 2.8, Figure 2.9), our results of DPM-500 with photons traced

in 1 second are comparable to the best results of comparison methods with photons traced in

10 seconds; however, to achieve the comparable results, our DPM-500 takes about 5.2s ∼ 9s

total time, whereas the comparison methods require 22s ∼ 60.0s total time to compute the same

number of shading points. Our method takes a significantly shorter time to achieve comparable

quality.

2.8.7 Effect of Variable Attributes

While our network is mainly trained with relatively sparse photons (small M), our network

with K=500 overall generalizes well across different numbers of total photons (M) and, in most

cases, achieves better performance when M increases. However, for K=50, there is too little

information for the network to leverage and higher performance is often not ensured with a larger

M. Nonetheless, our network with K=50 still works well and performs better than the comparison

methods when there are tens of thousands of photons. We also observe that a larger network

40

Table 2.3. Temporal stability. We show the mean DSSIM between pairs of adjacent frames over
a sequence of 30 rendered frames. Results have been averaged over all the different scenes and
amount of photons.

Mean DSSIM
Ours-50 Ours-Large-50 PM-50 Ours-500 Ours-Large-500 PM-500
0.0346 0.0342 0.0337 0.0281 0.0277 0.0260

(Ours-L) with a larger capacity leads to clearly better results than our regular network. Of course,

a larger network requires a higher computational cost or longer inference time, as shown in

Table 2.2. Nevertheless, the larger network with K = 50 can already often achieve reasonably

good results, which takes a shorter running time than K = 500. We leave the exploration of more

variants of the network capacity and K as future work.

2.8.8 Temporal Consistency

Since our method deals with shading points in 3D space and is independent of view

directions, we have observed good across-frame consistency when changing the view in a scene

with a fixed set of photons. We follow [172] and use the mean DSSIM between consecutive

frames to evaluate the temporal consistency when moving the camera. Results in Table 2.3

show comparable temporal stability between our results and standard PM outputs. We leave the

extensions of our network to recurrent architectures and general temporal consistency with other

dynamic components in a scene as future work.

2.8.9 Progressive Density Estimation

Our current framework requires a fixed number of input photons for each trained network.

Progressive photon mapping accepts different numbers of photons per iteration with reduced

bandwidth. Nonetheless, we have demonstrated that our network architecture supports accurate

photon density estimation with various fixed photon numbers. In other words, a progressive

method can potentially be achieved by training a sequence of networks with different numbers

of inputs. A universal network for any given number of input photons may require introducing

41

recurrent networks in the framework, which is an interesting direction of future work.

2.9 Summary of Contribution

In this chapter, we have presented the first deep learning-based method for density

estimation in particle-based rendering. We introduce a deep neural network that learns a

kernel function to aggregate photons at each shading point and renders accurate caustics with

significantly fewer photons than previous approaches, with minimal overhead. Learning-based

MC denoising has significantly improved path tracing results, and our work extends these benefits

to the popular photon mapping method.

Our method could be improved in the future with more advanced machine learning

approaches, perhaps based on generative adversarial networks (GANs), just as has been done

with path tracing [193]. More broadly, we believe this work points towards denoisers specialized

to many other approaches for realistic image synthesis such as Metropolis Light Transport and

Vertex Connection and Merging.

Chapter Review. In this chapter, we have examined technical challenges in creating

caustics effect on images. We then introduced a new radiance reconstruction framework grounded

on particle-based rendering to reduce the computational cost.

Acknowledgements. This chapter, in full, is a reprint of the material as it appears in

Eurographics Symposium on Rendering 2020 and Computer Graphics Forum 2020 [212]. Shilin

Zhu, Zexiang Xu, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi, Wiley-Blackwell, 2020.

The dissertation author was the primary investigator and author of this paper.

42

Chapter 3

Computing Universal Illuminations on
Images

3.1 Generalized Global Illumination

The particular caustics effect in Chapter 2 is one type of global illumination where lights

are redirected to concentrated areas. Generally speaking, depending on the total number of

scattering events, we can categorize the lighting into direct and indirect components, as shown in

Figure 3.1. They both contribute significantly to the realistic appearance and must be synthesized

accurately to enable universal effects on images.

Typically, the direct illumination is simpler to compute thanks to shorter paths. On the

other hand, the multi-bounce nature of the indirect part makes the light transport exceedingly

difficult to discover all inter-reflected paths. According to the theory of Monte Carlo, applying a

superior sampling strategy (e.g., importance sampling as demonstrated in Figure 3.1) increases

the chance of constructing valid transmission paths. The design of sampling distributions for

the global lighting effect is the primary focus of this chapter containing two published articles

[214, 215].

43

Single

Scattering Multiple

Scattering

Naive

Sampling

Guided

Importance Sampling

Direct Illumination Global Illumination

Figure 3.1. Illustrations of global illumination and importance sampling. The generalized image
synthesis task involves simulating effects from any type of scattering event. In most cases, the
indirect component is more challenging to compute due to the inefficient sampling tactics. As a
result, it is crucial to build guiding distributions for driving rays toward light sources.

3.2 Related Work

We have conducted two research related to path sampling. Our initial attempt [214] (Sec-

tion 3.3) is regarded as one of the prior arts from the perspective of the most recent advancement

[215] (Section 3.4).

Path Guiding. Monte-Carlo path tracing [81] has been the fundamental solution for

solving the light transport in a complex scene. However, during path tracing, the incident light

distribution is unknown at each 3D point. Thus, most path tracing variants sample the space

only based on the geometry and reflectance properties. Instead, path guiding algorithms [176]

estimate sampling distributions based on the local incoming light field during path tracing, so that

they can use the information to perform better importance sampling and accelerate the rendering

process.

Several path guiding algorithms (Table 3.1) have been proposed to efficiently estimate

the local light field information in order to sample the space better. Vorba et al. [175] fitted a

Gaussian-Mixture model (GMM) to represent the incoming radiance at each spatial cache point

44

Table 3.1. Comparison of different path guiding algorithms. Our proposed framework can
achieve both fast and robust rendering by leveraging neural networks and hybrid samples with a
small memory consumption thanks to the hierarchical representation of sampling distributions.

Hybrid Hierarchical Neural
[175] 7(Photon) 7(GMM) 7

[111] 7(Path) 3(Quadtree) 7

[110] 7(Path) 3(Quadtree) 7

[6] 7(Path, 1st bounce) 7(Image) 3

[132] 7(Path) 3(Quadtree) 7

[214] 7(Photon) 7(Image) 3

Ours 3(Path + Photon) 3(Quadtree) 3

during ray tracing. With very few parameters, a GMM can efficiently model the light distribution,

and is then applied to other rendering algorithms [65, 138]. However, GMMs fail to accurately

represent high-frequency light distributions, which are common in scenes with complex lighting.

Müller et al. [111, 112] proposed to use hierarchical quadtree structures to record the incoming

light field in the space, which is more efficient and practical than a GMM [175] or simple regular

grid [76]. This hierarchical representation was also extended to primary space [58], product

sampling [27], and variance-aware importance sampling [132]. However, until now, such a

hierarchical representation can only be reconstructed via traditional online learning without

any neural network components, and requires a relatively large number of samples. Our neural

approach can directly reconstruct an accurate hierarchical quadtree representation from sparse

input samples using an offline-trained novel deep neural network.

Recently, deep learning techniques have been used to facilitate the learning of local

light distributions and importance sampling of light paths (e.g., in primary sample space [207]).

Müller et al. [112] used an online-learned neural network to perform the importance sampling.

The network can estimate the distribution accurately, but can be potentially expensive in practice

due to the repeated network inference and online optimization. Bako et al. [6] trained an

offline-learned network to guide the first bounce, where regular images are used to represent the

incoming light distribution. While images are convenient for neural networks, they consume

45

more memory when detailed light distributions are needed. Huo et al. [71] used a reinforcement

learning technique to guide the samples, but their method is also limited to the first bounce.

Zhu et al. [214] used photons as the primary source to estimate the local light distributions, and

use them to guide all bounces. Again, standard images are used to represent the distributions,

which are less memory efficient and limited to low resolutions compared to the quadtree. In

this work, we learn the light distribution on hierarchical structures, which are both detailed and

memory-efficient. Our approach takes advantage of using both path and photon samples, leading

to better generality on different scenes. We believe these are important steps to make neural path

guiding practical.

Hierarchical Learning. Hierarchical structures can represent sparse data in an efficient

way [111, 110]. However, learning on hierarchical structures has been a particular challenge.

Recently, plenty of studies have emerged to focus on the learning and understanding of hierar-

chical structures, especially in the 3D geometry processing community. Wang et al. [181, 182]

proposed O-CNN to analyze 3D shapes represented by octrees; Graham [53] developed sparse

convolution for 3D understanding, which is similar to sparse matrix representation. On the other

hand, there are also works on generating hierarchical structures [157, 19, 135]. These algorithms

were then extended to perform 3D shape completion [183], 3D segmentation [54, 55], and sketch

understanding [91]. Besides convolutional operators, multi-layer perceptrons [96, 97] and graph

networks [105] are also used for hierarchical learning. In this work, we extend these hierarchical

3D learning techniques to the problem of 2D sampling distribution reconstruction. We introduce

a novel lightweight network that can effectively regress an accurate quadtree distribution for

high-quality path-guiding.

Hybrid Samples. Both paths and photons are efficient tools to explore the scene and

compute the radiance in the 3D space. While path tracing [81] algorithms are particularly good

at exploring complex geometry setups, photon mapping algorithms [145, 77, 61, 89, 212] can

be very effective when indirect lighting dominates the scene. Aiming at a rendering algorithm

that can work on both cases, researchers proposed bidirectional approaches [93, 170, 46, 90],

46

which combine the benefits of both path tracing and photon mapping. Similarly, in our case,

we use both path samples and photons as the sources to learn the local light distributions in the

scene. Compared to the previous path guiding works that use only path samples [111, 6, 132]

or photons [175, 214], our algorithm can render more efficiently and is more robust across a

wide range of difficult scenes with complex light transports. In fact, Vorba et al. [175] also use

both path and photon samples. However, they train with two separate cache records, where path

tracing is guided by local photons and path samples do not directly affect camera path guiding.

Our neural system instead takes the hybrid of two types of samples as direct inputs; they directly

contribute to the same forward sampling distribution.

As shown in Table 3.1, our path guiding algorithm uniquely utilizes the hybrid samples.

Additionally, previous works either perform learning on image-based sampling distributions, or

use hierarchical structures to represent the distributions (because of the difficulty of applying

neural networks to irregular quadtree structures), but not both. In contrast, our path guiding

algorithm successfully applies an offline-learned neural network on hierarchical structures.

3.3 The First Attempt: Photon-Driven Path Guiding

Although Monte Carlo path tracing is a simple and effective algorithm to synthesize

photo-realistic images, it is often very slow to converge to noise-free results when involving

complex global illumination. One of the most successful variance-reduction techniques is

path guiding, which can learn better distributions for importance sampling to reduce pixel

noise. However, previous methods require a large number of path samples to achieve reliable

path guiding. We present a novel neural path guiding approach that can reconstruct high-

quality sampling distributions for path guiding from a sparse set of samples, using an offline

trained neural network. We leverage photons traced from light sources as the primary input for

sampling density reconstruction, which is effective for challenging scenes with strong global

illumination. To fully make use of our deep neural network, we partition the scene space into an

47

Elegant Hotel Room Müller et al.Bako et al. Rath et al. ReferencePath tracer

0.4383

OursVorba et al.

0.3128 0.3344 0.1871 0.1838 0.0468

0.4046 0.2685 0.2700 0.0742 0.0681 0.0255
Elegant Hotel Room Müller et al.Bako et al. Rath et al. ReferencePath tracer

0.4383

OursVorba et al.

0.3128 0.3344 0.1871 0.1838 0.0468

0.4046 0.2685 0.2700 0.0742 0.0681 0.0255
Ruppert et al.

0.0709

Elegant Hotel Room Müller et al.Bako et al. Rath et al. ReferencePath tracer

0.4383

OursVorba et al.

0.3128 0.3344 0.1871 0.1838 0.0468

0.4046 0.2685 0.2700 0.0742 0.0681 0.0255
Elegant Hotel Room Müller et al.Bako et al. Rath et al. ReferencePath tracer

0.4383

OursVorba et al.

0.3128 0.3344 0.1871 0.1838 0.0468

0.4046 0.2685 0.2700 0.0742 0.0681 0.0255

Elegant Hotel Room Müller et al.Bako et al. Rath et al. ReferencePath tracer

0.4383

OursVorba et al.

0.3128 0.3344 0.1871 0.1838 0.0468

0.4046 0.2685 0.2700 0.0742 0.0681 0.02550.6041 0.4256 0.4559 0.1475 0.1319 0.0638 0.0404

Figure 3.2. We present a novel photon-driven neural path guiding approach that can effectively
reduce the variance in path tracing. This complex scene is lit by several decorative lights which
are very difficult to discover in path tracing. We compare the equal-time (∼20 minutes) rendering
results with standard path tracing and state-of-the-art path-guiding methods (including [111],
[6], [132], and [138]), showing the crops (illuminated mostly by the lamp lights) of the rendered
results with corresponding relative MSEs (rMSEs). [6] use an offline trained neural network for
path guiding; however, it only supports guiding the first bounce, which is not very effective since
this scene is dominated by indirect lighting. While traditional methods allow for multi-bounce
path guiding, they are mostly online learning methods and they need longer time to learn the
complex sampling functions for this challenging scene. Our method utilizes a trained deep neural
network and enables effective path guiding at any path bounces.

adaptive hierarchical grid, in which we apply our network to reconstruct high-quality sampling

distributions for any local region in the scene. This allows for effective path guiding for arbitrary

path bounce at any location in path tracing. We demonstrate that our photon-driven neural path

guiding approach can generalize to diverse testing scenes, often achieving better rendering results

than previous path guiding approaches and opening up interesting future directions.

3.3.1 Problem Definition and Contribution

Monte Carlo path tracing has been widely used in photo-realistic image synthesis. How-

ever, while simple and flexible, path tracing can take a significant amount of time to generate

noise-free images for complex scenes (e.g., Figure 3.2). One critical challenge for Monte Carlo

based methods is to effectively construct light transport paths connecting the light and the camera.

Many path-guiding methods [111, 76] have been presented to construct advanced distri-

butions (usually approximating incident light fields or some variants of those) for importance

sampling at local shading points, guiding the local path sampling for high-energy path construc-

tion. The recent successful methods are based on unidirectional guiding [111, 132, 138]; they

48

rely on early path samples to discover high-energy sampling directions. Although the strategy is

generally effective, this unidirectional path discovery process can still be slow for a challenging

scene dominated by indirect illumination. While using light paths is known to be efficient in

exploring the path space, previous photon-driven or bidirectional path-guiding methods [76, 175]

are not yet efficient, requiring sampling a large number of light paths.

We present a novel path guiding approach that can achieve effective path sampling using

a sparse set of light paths as input, thus successfully advancing the overall rendering speed.

Inspired by the original path guiding work [76], we leverage photons to compute local sampling

distributions for importance sampling in path tracing, where a sampling distribution at any 3D

local region can be obtained by binning local photons according to their directions (i.e., a 2D

histogram map). However, such distributions are only reliable with locally dense photons, are

usually low-quality, and appear noisy with sparse photons (Figs. 3.3 and 3.4).

We propose to use a compact neural network to reconstruct high-quality sampling

distributions for path guiding from low-quality noisy histograms that are acquired by binning

sparse photons. In essence, we break down the complex path guiding problem, mainly focusing

on reconstructing local sampling distributions represented as 2D maps (i.e., images), and thus

pose this problem as one of the image-to-image translations that can now be addressed by

deep learning techniques. Our neural reconstruction network is effectively trained offline in a

scene-independent way. It can recover the shapes of complex sampling distributions on new

scenes, enabling guided path tracing with complex global illumination effects.

Our framework is designed to reconstruct high-quality sampling maps at local spatial

regions. To make these sampling maps well distributed and locally representative in the scene

space, we adaptively partition the entire scene space into a hierarchical grid, according to the

complexity of local incident light variations. The neurally reconstructed sampling maps are

cached in leaf voxels of the grid, enabling path guiding at different locations in a scene. Therefore,

we can support guiding path tracing at multiple bounces. Although our approach also has specific

limitations (e.g., reconstructing only low-resolution sampling maps because of the memory

49

limit, experiencing uneven photon visibility), we demonstrate that our novel learning-based path

guiding often achieves better rendering quality on various challenging scenes than previous

state-of-the-art path-guiding methods when GPU resources are available (Figure 3.2). The

proposed reconstruction framework serves as a starting point for many extension possibilities. In

summary, our main contributions are:

• We present a learning-based approach that leverages photons to reconstruct high-quality

sampling distributions locally;

• By combining with an adaptive spatial caching structure, we support building and reusing

better sampling distributions at arbitrary bounces to reduce variance of path tracing results.

3.3.2 Introduction to Importance Sampling

Physically-based rendering can be expressed by the Rendering Equation [81] that de-

scribes the radiance leaving an intersection point xxx in direction ωo:

L(xxx,ωo) = Le(xxx,ωo)+
∫

Ω

Li(xxx,ωi) fr(xxx,ωi,ωo)cosθidωi, (3.1)

where Le(xxx,ωo) denotes the emitted radiance, Li(xxx,ωi) is the incident radiance from direction

ωi, fr is the bidirectional scattering distribution function (BSDF), and Ω corresponds to the full

sphere. The key component in the equation is the integral that computes the reflected radiance

Lr(xxx,ωo) =
∫

Ω
Li(xxx,ωi) fr(xxx,ωi,ωo)cosθidωi over all directions in the sphere.

The integral can be numerically evaluated using Monte Carlo estimation [169]:

Lr(xxx,ωo) =
1
N

N

∑
i=1

Li(xxx,ωi) fr(xxx,ωi,ωo)cosθi

p(ωi)
(3.2)

where N Monte Carlo path samples in various directions ωi are drawn from the probability

density function (PDF) p(ωi). Considering global illumination with multiple bounces, Li(xxx,ωi)

is computed by recursively evaluating integrals using Equation 3.1. In path tracing, rays are

50

sampled from each intersection point to compute the radiance that contributes to the pixel color

at multiple bounces.

The variance of the Monte Carlo estimate Lr(xxx,ωo) can be reduced by sampling ωi from

a density function p(ωi) that resembles the numerator Li(xxx,ωi) fr(xxx,ωi,ωo)cosθi. Ideally, if

p(ωi) and the numerator only differ by a constant scale, the variance is reduced to zero. However,

this numerator is unknown and is as difficult as the integral to compute, due to complex visibility

and indirect lighting in Li; therefore, standard path tracing often proceeds with BSDF importance

sampling for indirect lighting plus a direct light sampling technique (e.g., next-event estimation).

Path guiding aims to reconstruct a density function that matches the shape of the numera-

tor as closely as possible. In particular, since the standard BSDF importance sampling satisfies

[169]:

pBSDF(ωi) ∝ fr(xxx,ωi,ωo) (3.3)

recent path-guiding methods often set the target probability density to be proportional to the

incident light [175, 111, 138] (the following cosine term is sometimes included in BSDF sampling

in Equation 3.3 instead of guiding):

pguide(ωi) ∝ Li(xxx,ωi)cosθi. (3.4)

The final sampling strategy is achieved by combining the guiding and BSDF sampling using either

the product sampling (i.e., pguide(ωi) · pBSDF(ωi) [65]) or the one-sample Multiple Importance

Sampling (MIS): [171]

p(ωi) = α pBSDF(ωi)+(1−α)pguide(ωi), (3.5)

where α is the mixture coefficient that determines the probability of choosing BSDF sampling or

guided sampling.

Many recent works rely on early path samples in path tracing to approximate the incident

51

Photon

CNN
Encode

CNN
Decode

Local
Importance

Sampler

(Z,)Φ

Scene Input Map with Features

 ∑
Reconstructed Map

Skip Connections

Local

Photon

Gathering

Intermediate

Features

(Z,)Φ

Figure 3.3. Illustration of the entire system workflow. We partition the scene into multiple
local regions using a spatial structure, where each voxel gathers neighboring photons locally.
The gathered photon statistics are accumulated in the directional space represented by a noisy
histogram map with additional features, and photons are deleted after such splatting is completed
during particle tracing. Next, we use a pre-trained compact CNN to encode the input map to
neural features, followed by a decoder to reconstruct a target sampling map. The output map is
reused by a local importance sampler to decide the next sampled direction at any bounce in path
tracing.

light field (Equation 3.4), which is insufficient for challenging scenes with strong indirect

lighting (Figure 3.2). We instead leverage photons traced from the lights to compute the sampling

density functions, which effectively explores the challenging light transport. Our novel approach

advances the traditional path guiding with powerful deep learning techniques and an adaptive

spatial structure, enabling effective path guiding from sparse photons.

3.3.3 Workflow Overview

Our path guiding approach uses a compact pre-trained neural network to regress high-

quality sampling maps that can be used to guide path sampling. Meanwhile, we utilize an

adaptive hierarchical grid for spatially storing the reconstructed distributions, enabling effective

path guiding at multiple bounces. The whole system is illustrated in Figure 3.3.

In the following sections, we first introduce our sampling map parameterization, target

sampling density, and how to use photons to compute the histograms in Section 3.3.4. We then

introduce our deep neural network that can regress better sampling maps given noisy low-quality

histograms in Section 3.3.5. We present our full path guiding framework in Section 3.3.6, which

describes our iterative sample gathering and rendering process, adaptive spatial structure, and

how paths, photons, and the neural network are incorporated into the system.

52

3.3.4 Computing Sampling Maps

Previous methods [76, 175] usually compute hemispherical distributions at sampled

surface points to approximate incident light fields. However, such hemispherical functions

approximate light fields at locally flat 2D surface regions, and are hard to interpolate on surfaces

with complex normal variations. Inspired by the recent unidirectional path-guiding methods

[111, 132, 6], we utilize a full spherical sampling distribution that models the incident light

distribution in a local 3D region. In particular, we build a hierarchical grid (Section 3.3.6) in the

scene space, and compute a spherical sampling distribution stored in a discrete data structure for

each local 3D voxel of the adaptive grid. In this section, we discuss the representation of our

sampling function and its computation from photons during particle tracing from light sources.

Spherical Function Representation. We use a regular directional grid that represents

the sampling density function as a 2D sampling map (similar to [6]). We leverage the cylindrical

mapping to parameterize the spherical domain for better area preservation (similar to [111, 132]).

In particular, a vector r = (x,y,z) on a unit sphere is mapped to a 2D location (u,v) = (z,φ) on the

sampling map, where φ = arctan(y/x). This sampling map is similar to a standard environment

map or radiance map in traditional lighting representation, but ours is monochromatic and uses

cylindrical parameterization.

Target Sampling Density. As discussed in Section 3.3.2 (Equation 3.4), the goal of

path guiding is to compute the sampling density at any position, making it proportional to the

incident light Li(xxx,ωi) or Li(xxx,ωi)cosθi. For our discrete case where we consider a 3D voxel

region and a certain footprint (representing a solid angle bin) of a sampling map, it is in fact

the expected incident light that is of our interest. In particular, given a voxel j and a solid angle

footprint ∆Ωk of pixel k in the sampling map, the expected Li(xxx,ωi)cosθi coming from the solid

angle over the local surface area ∆A j (that is of the scene geometry covered by the voxel) is

53

expressed by:

E[Li(xxx,ωi)cosθi] =

∫
∆A j

∫
∆Ωk

Li(xxx,ωi)cosθidωidxxx

∆Ωk∆A j
(3.6)

=
Φ j,k

∆Ωk∆A j
, (3.7)

where Φ j,k represents the total incident power in the spatial and directional range. Therefore, it

is the total power (radiant flux)

Φ j,k =
∫

∆A j

∫
∆Ωk

Li(xxx,ωi)cosθidωidxxx, (3.8)

that governs our sampling map distribution. Essentially, Φ j,k models the integrated incident

radiance. Note that the irradiance (E(xxx,∆Ωk) =
∫

∆Ωk
Li(xxx,ωi)cosθidωi) is a standard radiometry

term and widely used in previous works [76, 132]; when divided by the surface area, Φ j,k also

describes the expected irradiance (Φ j,k/∆A j) in the voxel. Therefore, we seek to obtain sampling

densities that are proportional to the expected incident light:

pguide(ωi) ∝ Φ j,k/∆Ωk, (3.9)

where we ignore the ∆A j in Equation 3.7 since it is constant for all solid angles in the same voxel.

This sampling density corresponds to a sampling map, each pixel value of which is proportional

to Φ j,k. We thus reconstruct a sampling map by normalizing a power map that records the power

Φ j,k in each pixel.

Computing Incident Illumination. In this work, we leverage particle tracing to

effectively evaluate the Φ j,k (Equation 3.8). We trace light paths from the light sources to

distribute photons in the scene, where each photon carries a portion of flux; Φ j,k can then be

54

estimated by simply binning the photons similar to [76]:

Φ j,k = ∑
ωp∈∆Ωk,xxxp∈∆A j

∆Φp, (3.10)

where p denotes a photon arriving at the surface point xxxp from direction ωp, and ∆Φp is the

power carried by it. Equation 3.10 essentially accumulates all the photon power inside a voxel

and directional bin.

Note that Müller et al. [111] leverages path tracing to accumulate the radiance samples

inside a local voxel; this can be seen as an integral of the radiance over an area and a solid angle,

similar to our power expression Equation 3.8. Our particle-based approach provides an unbiased

estimate for the power integral Φ j,k when the photon count goes to infinity.

Since the evaluation is governed by accumulating splatted values to a histogram map,

we can progressively trace as many photons as needed without storing the entire photon point

cloud (required by traditional photon mapping, leading to memory bottleneck from more traced

particles). Once a photon is accumulated to a directional bin of the map inside a voxel, it is then

deleted, except for the initialization phase (Section 3.3.6). Note that an accurate power map

requires tracing a large number of photons, but in practice, we can only allow for tracing a small

number of photons at rendering time, which by themselves cannot directly lead to high-quality

sampling.

3.3.5 Neural Reconstruction of Sampling Distributions

If directly computing sampling distributions by binning photons, neither dense photons

(slow) nor sparse photons (low-quality) are suitable for efficient path guiding. To overcome this,

our central idea is to obtain accurate sampling maps offline as ground truth using dense photons,

and leverage supervised learning to regress such maps from low-quality histograms that can be

computed efficiently from sparse photons. Specifically, we propose to train a deep Convolutional

Neural Network (CNN) that learns to reconstruct a high-quality sampling distribution from

55

sparse photons.

Our sampling maps are reconstructed and updated repeatedly through multiple iterations

in our path guiding framework (Section 3.3.6). We consider a normalized noisy sampling

map St as input, acquired by accumulating a sparse set of photons from iteration 1 to t using

Equation 3.10, where t denotes the iteration number. We also supply the noisy sampling map St−1

from the previous iteration to ease the learning of where to in-paint. In addition, we record the

number of photons per solid angle bin in St and St−1, resulting in maps Pt and Pt−1, and include

the normalized buffers in the input. Inspired by the image inpainting techniques [101, 201, 199],

we also concatenate a binary mask Bt indicating whether a solid angle bin contains photon data

or not, and use light-weight masked convolutions to process the input maps. As a result, our

full input is an image map with 5 separately-normalized (by the GPU) channels and our neural

network F can be expressed by:

Sd = F(St ,St−1,Pt ,Pt−1,Bt). (3.11)

The output is a one-channel sampling map Sd (which is then converted to CDF for importance

sampling), supervised by the ground-truth map S̃d computed from dense enough photons.

Neural Architecture and Loss Computation. Our network is essentially designed to

solve an image-to-image reconstruction task. Many existing 2D neural networks for image-to-

image denoising, translation, and inpainting ([15, 5, 172, 101]) can thus be potentially applied to

address the problem. However, our neural network is applied on a large number of voxels, while

our end goal is to speed up the overall rendering process. Therefore, we balance the inference

speed and reconstruction quality in the network design.

We propose to use a compact U-Net [136] style architecture with residual links and

skip connections to achieve the sampling map reconstruction as illustrated in Figure 3.3. It

contains multiple downsampling and upsampling convolutional layers to extract high-level neural

features from the input map St and output a better version Sd . The input noisy sampling maps

56

are computed from sparse photons, which contain many empty bins. Therefore, we use the light-

weight masked convolutions inspired by the recent image inpainting works [101, 199], which

ensures that valid (non-empty) and invalid (empty) bins are treated differently and only valid

bins can contribute to convolutions. Note that the designed architecture is relatively compact

compared to the previous deep networks ([15, 5, 172]) used in denoising. Although the extra

computational overhead introduced by the neural network is inevitable, the compactness allows

sampling map reconstruction to finish in a reasonable time on powerful GPUs. Due to limited

system memory, we reconstruct low-resolution maps (64×128 or 32×64), which are already

adequate for path guiding in typical scenes. We believe our architecture can be further improved

by advanced compression techniques [18, 25] and novel neural components, and we leave this as

future work.

We utilize the standard L1 loss to supervise the output sampling map:

LS = |Ŝd−Sd| (3.12)

where Ŝd is the ground-truth sampling map computed by accumulating dense photons. Inspired

by the deep supervision [192, 94], we also provide the ground-truth signal on each decoding

level to ease the loss back-propagation. To prevent over-blurring, we leverage an asymmetric

function inspired by Vogels et al. [172]; this leads to our full loss

Lrec = LS · (1+(λ −1) ·H) (3.13)

where H= 0 if the output and the input values are both larger or smaller than the ground-truth

value and H = 1 if they are not on the same side. Specifically, when there are two equally-

good output values, the function prefers the one that is closer to the input. This allows the

reconstruction to retain some noise but also prevent details from being blurred out.

In Figure 3.4, we present some examples of the reconstructed sampling maps along

57

Reference

Spaceship

Ours Ours-Converge

Veach Ajar

BilateralGaussian Pull-PushPyramidNoisy Map (input)

Figure 3.4. Example reconstructed sampling maps (gamma transformed for better visualization
purpose). With more iterations of path and photon tracing, the reconstructed sampling map can
converge to the reference (after 8 iterations in this example). We also compare to other traditional
image interpolation techniques (3 hierarchical levels for pyramid and pull-push filters). Although
they can also improve the quality of the noisy histogram maps through blurring in general, our
neural-based reconstruction is designed specifically for this task, thus producing maps closer to
the targets.

with the comparison with other traditional image inpainting techniques. We can clearly see

the advantage of a group of learned filters represented by a data-driven neural network trained

specifically under the context of path guiding, over the traditional hard-coded filters designed for

general image processing (not specifically for path guiding) based on human knowledge.

Applicability. The proposed neural network focuses on reconstructing high-quality

distributions for local path sampling. This is a central sub-problem in many path guiding

frameworks. Note that the problem of sampling map regression is independent of other modules

in path guiding. We thus train our neural network independently without relying on any specific

guiding frameworks. Therefore, our learning-based sampling map reconstruction module can

potentially be extended to other existing path guiding frameworks by applying a proper variant

of our neural architecture (e.g., mixture models [175, 138] and hierarchical maps [111, 132]),

and improves the traditional sampling distribution reconstruction modules.

3.3.6 Adaptive Path Guiding Framework

In this section, we introduce our path guiding framework that leverages the presented

deep network to reconstruct high-quality sampling maps in an adaptive and hierarchical spatial

structure. The whole framework is illustrated in Algorithm 1.

58

ALGORITHM 1: Our neural path guiding framework. Through multiple iterations of path and light
tracing, we construct a hierarchical grid (in green), reconstruct and update the sampling map in each
valid voxel (in blue), and guide the path tracing using the reconstructed distributions (in red). We also
apply a final guided path tracing pass (in purple).

Initialize 1 SPP path samples and 1 SPP photons ;
Initialize a spatial grid ;
for each iteration t < T do

Initiate 2t SPP path samples;
for each path do

for each bounce b do
Locate voxel j (xxxb ∈ ∆A j) ;
if not isValid(j) (no sampling map) then

Sample(pBSDF)→ ωb ;
else

Sample(pMIS)→ ωb (Equation 3.15);
end
markValid(j) ;

end
Compute path throughput and L(xxxb,ωb) ;
for each bounce at xxxb ∈ ∆A j do

if isValid(j) then
Lb = L(xxxb,ωb)cosθb fr(xxx,ωb,ωo) ;

if ωb← pguide then L j,Guide += Lb else L j,BSDF += Lb ;
if ωb← pguide then Q j,Guide += 1 else Q j,BSDF += 1 ;
if Q j,Guide ≥ QThr & Q j,BSDF ≥ QThr then Update α j (Equation 3.14);

end
end
Update the output image ;

end
Trace 2tNp light paths for photons;
for each photon p do

Locate voxel j, solid angle k (xxxp ∈ ∆A j, ωp ∈ ∆Ωk) ;
if isValid(j) then

Update power map: Φ j,k += ∆Φp (for Equation 3.10);
M j += 1 ;

if M j > Mthr then
Subdivide voxel j into two sub-voxels (Section 3.3.6);

end
end

end
for each valid voxel j do

Reconstruct sampling maps (pGuide) with neural net F ;

end
end
Trace N f paths for final output (Section 3.3.6);

59

We first fire some initial path and light rays, initialize a grid, and then utilize an iterative

process to adaptively build a hierarchical grid with per-voxel sampling maps for path guiding

and rendering.

In each iteration, we trace camera paths; these paths can be guided when tracing, and they

are used to detect valid (i.e., containing path vertices) voxels and compute the mixture weight of

one-sample MIS. We also trace photons per iteration; in each valid voxel, we accumulate photon

power that is required by our neural module and collect photon statistics for subdividing the

hierarchical grid. We then reconstruct the sampling map in each valid voxel using our pre-trained

deep neural network at the end of each iteration; these sampling maps are used to guide the path

tracing in the next iteration. After the iterative process, we apply a final-pass guided path tracing

and compute the final beauty image.

We adaptively partition the scene space to a hierarchical grid. Meanwhile, the photons

are collected for computing the noisy sampling maps in each valid voxel; the path samples are

used for rendering and computing the weight α for one-sample MIS. After T iterations, we run

a final path tracing pass with N f spp. The final rendering result is computed by combining all

iterations (except for the initialization phase) and the final pass, weighted by the inverse of their

estimated variances [110]. Note that we double the number of path and photon rays (2tNc and

2tNp spp for iteration t, where Nc and Np are initial values) after each iteration [111], so that both

the quality of the input noisy histograms and per-pass rendering can be progressively improved.

Adaptive Hierarchical Grid Caching. Recent work often utilize a binary KD-Tree

[111, 132] to adaptively partition the space, starting from a single root node that covers the

entire scene. This coarse-to-fine spatial structure is effective and also necessary for these online

learning approaches, since they need to acquire many samples in a large spatial region at an early

stage. In contrast, our deep learning-based approach can reconstruct a high-quality sampling

map from a sparse set of photons; consequently, starting from a single root node is unnecessary

and inefficient for our approach. Therefore, we propose to use a hierarchical grid for spatial

partitioning, which combines uniform and adaptive spatial partitioning (Figure 3.5).

60

9DOLG�YR[HO
���VDPSOLQJ�PDS�

9DOLG�VXE�YR[HOV
���VDPSOLQJ�PDSV�

3KRWRQ

,QYDOLG�YR[HO
���VDPSOLQJ�PDS�

¨ᵔ᫚

3DWK�
ERXQFH

Figure 3.5. The proposed hierarchical grid spatial caching structure. Path samples detect valid
voxels to store sampling maps. A voxel is subdivided into a binary tree based on the local photon
statistics. We split through the median to prevent skew or distorted distributions reconstructed
in the initialization phase, and switch to the middle plane splitting in the iterative update phase
when the photon point cloud is no longer stored. We alternate the splitting dimension with
respect to the tree depth.

Detecting Valid Voxels. While we can compute a sampling map for every voxel for

path guiding, this is usually costly and unnecessary, since many voxels may not be reached by

any camera path from the viewpoint. Therefore, we leverage camera paths to detect which voxels

are involved in rendering this viewpoint. Specifically, when tracing 2tNc spp path samples in

each iteration, we mark a voxel as valid if there is at least one bounce point of the paths located

in the voxel (Figure 3.5). Once a voxel is marked as valid, we then start accumulating photons in

the voxel for sampling map reconstruction and further subdivision of the voxel. This avoids the

waste of caching redundant distributions and local KD-trees.

Initialization Phase. We start the process by firing 1 spp path and photon rays. Path

samples and photon samples are stored as point clouds in this particular phase to initialize our

spatial grid; basically, we first build a regular grid given the spatial extent discovered by path

samples, and then subdivide the grid given the initial per-voxel photons. Specifically, we use the

collected path samples (after multiple bounces) to determine the bounding box of our spatial grid,

which covers the visible part of the scene. We construct a regular grid by uniformly dividing

the bounding box at a relatively coarse level (Figure 3.5). Next, for each voxel in this uniform

61

grid, we iteratively sub-partition the voxel into a local binary tree through the median photon,

which allows both sub-voxels to have a decent number of samples for reconstruction to start

with, based on the number of photons that arrive at the voxel; this is also repetitively done in the

following iterative update phase in a similar way but with a different splitting plane. Note that

this initialization phase produces an initial hierarchical spatial grid – a coarse regular grid with

local shallow KD-Trees. The initial grid is still coarse but relatively denser than a single shallow

KD-Tree used in early stages in previous work [111]. This enables reconstructing more locally

representative sampling maps, leading to better path guiding at early iterations in our framework,

and better utilizes the benefits of our pre-trained deep neural network. The local KD-Trees are

relatively shallow at this phase because photons are sparse, which are further subdivided in the

iterative phase.

Iterative Update Phase. The spatial structure after the initialization phase can still

be too coarse for a later time in rendering. Therefore, we iteratively subdivide it into a finer

hierarchical grid. Our hierarchical grid is built to adapt to the complexity of incident light fields.

We leverage the statistics of accumulated photons in each valid voxel for possible subdivisions.

In particular, we consider M j – the total number of photons hitting the valid voxel j. A voxel is

split into two sub-voxels if M j > Mthr, where Mthr is a predefined threshold. We recursively apply

our subdivision criterion to sub-voxels. Unlike the initialization phase, we always use middle

planes (instead of median) for splitting in this phase (same as [111]), since we do not store any

photon point cloud anymore for the sake of memory, and this strategy is generally sufficient based

on our observation. Once a voxel is subdivided, its two sub-voxels are reset as invalid waiting to

be re-evaluated, inheriting the original noisy map with halved power values and accumulating

photons from the subsequent iterations once marked valid again. This photon-based subdivision

process allows these complex voxels to utilize more local and accurate sampling maps, thus

leading to more efficient renderings.

Sampling Map Reconstruction. Apart from determining the subdivision in the hier-

archical grid, the main goal of tracing the per-iteration photons is to reconstruct the per-voxel

62

sampling maps for path guiding. For any valid voxel (detected by camera paths), we accumulate

photon power to compute the noisy power map of the voxel, as expressed by Equation 3.10.

The power map accumulates all hitting photons ∆Φp in the voxel through the current and pre-

vious iterations, which gets normalized to a noisy sampling map St as the input to the neural

reconstruction module (Section 3.3.5) in iteration t. Once sampling maps are reconstructed and

updated in one iteration, they are used to guide the path sampling in the next iteration.

Path Guiding and One-Sample MIS. In any iteration, if a path hits a voxel that does

not have a sampling map, we use standard BSDF sampling at the bounce point; the voxel is then

marked as valid and starts accumulating photons immediately in the same iteration, enabling

guiding in the subsequent iterations. On the other hand, once a path ray hits a valid voxel that has

a reconstructed sampling map, path guiding can be achieved by importance sampling on the map

(where CDF is built by GPUs). Since our sampling map only considers the incident radiance,

we apply a one-sample MIS similar to previous works to combine guided sampling and BSDF

sampling, as discussed in Equation 3.5. The combined sampling strategy however requires

a parameter α that determines how often either sample strategy is selected. Usually, α = 0.5

is a simple choice and performs reasonably well. An α that is learned via online optimization

[110] is also presented for better performance. Here we propose a simpler alternative method to

achieve a similar goal, which can also serve as a better initialization for those approaches that try

to search for an optimal α .

We present a heuristic α computation technique based on collected path statistics; though

simple, it results in effective per-voxel α j in practice. In particular, we initialize α j = 0.5 in

each valid voxel. Once a full path is constructed in rendering (either connect to or miss the

light), we collect the reflected radiance contribution for every bounce point b on the path as

Lb = L(xxxb,ωb)cosθb fr(xxx,ωb,ωo). Meanwhile, for each voxel j, we accumulate all bounce

contributions Lb (where xxxb ∈ ∆A j) in L j,BSDF and L j,Guide, according to from which distribution

ωb is sampled. We also record the number of bounces sampled by two strategies as Q j,BSDF and

Q j,Guide. Once Q j,BSDF ≥ QThr and Q j,Guide ≥ QThr sub-paths have been collected in the voxel,

63

we use the ratio of the averaged L j,BSDF and L j,Guide to update the mixing weight α j:

α j =
L j,BSDF

L j,BSDF +L j,Guide
, (3.14)

where L j,BSDF = L j,BSDF/Q j,BSDF and L j,Guide = L j,Guide/Q j,Guide. Correspondingly, our one-

sample MIS is expressed by:

pMIS(ωi) =
L j,BSDF

L j,BSDF +L j,Guide
pBSDF(ωi)+

L j,Guide

L j,BSDF +L j,Guide
pguide(ωi). (3.15)

We set α j = 1 if BSDF is a delta function and clamp α j between 0.2 and 0.8 otherwise to handle

statistical instability. This heuristic mixing weight considers the data that reflects the actual

performance of BSDF sampling and guiding sampling, leading to effective mixed sampling in

path guiding.

Figure 3.6. Example scenes used for training our proposed neural network.

Progressive Rendering. Our learning-based approach can reconstruct high-quality

64

sampling maps from sparse photons in early iterations. We therefore leverage all path samples

after the initialization phase for rendering the final image. While we can keep iteratively tracing

more rays and refining the sampling maps, our reconstructions are often of sufficient quality

after T = 4∼10 iterations. Continuing tracing more photons afterward merely leads to marginal

sampling improvement, and the extra overhead from running the neural network cannot pay off.

Therefore, we choose to stop iterating after T = 4∼10 depending on light transport complexity,

fix the per-voxel sampling maps, and run a final path tracing pass (with N f spp) guided by the

latest maps.

3.3.7 Data Synthesis for Sampling Reconstruction

We create a large-scale dataset to train our sampling map reconstruction network. The

dataset consists of both designed scenes and auto-generated scenes, as shown in Figure 3.6.

We collect available scenes designed by researchers and artists from previous work and several

websites [9, 74, 108, 164, 109, 107]. This leads to 28 designed scenes, including multiple realistic

indoor and outdoor scenes; we use 20 from them in our training set and the rest for testing

our algorithm. To enhance the generalizability of our neural network, we further enlarge our

training set by procedurally generating 500 scenes using randomized shape primitives, materials,

and area lights, similar to [212, 195]. We also leverage a complex lighting dataset [44] and

randomly select an environment map for each generated scene as its additional illumination. This

auto-generation process increases the diversity and complexity of our training scenes, leading to

better generalization on testing scenes.

3.4 The Superior Model: Hierarchical Guiding from Hy-
brid Samples

Our first attempt (Section 3.3) along the direction of clever path sampling results into an

initial publication [214]. Subsequently, we re-invented our method to throw light on resolving

some of the previously encountered limitations.

65

3.4.1 Overview of Advancement

Path guiding is a promising technique to reduce the variance of path tracing. Although

existing online path guiding algorithms can eventually learn good sampling distributions given a

large amount of time and samples, the speed of learning becomes a major bottleneck. In this

section, we accelerate the learning of sampling distributions by training a lightweight neural

network offline to reconstruct from sparse samples. Uniquely, we design our neural network to

directly operate convolutions on a sparse quadtree, which regresses a high-quality hierarchical

sampling distribution. Our approach can reconstruct reasonably accurate sampling distributions

faster, allowing for efficient path guiding and rendering. In contrast to the recent offline neural

path guiding techniques that reconstruct low-resolution 2D images for sampling, our novel

hierarchical framework enables more fine-grained directional sampling with less memory usage,

effectively advancing the practicality and efficiency of neural path guiding. In addition, we

take advantage of hybrid bidirectional samples including both path samples and photons, as we

have found this more robust to different light transport scenarios compared to using only one

type of sample as in previous work. Experiments on diverse testing scenes demonstrate that

our approach often improves rendering results with better visual quality and lower errors. Our

framework can also provide the proper balance of speed, memory cost, and robustness.

3.4.2 Motivation and Methodology

The simple and flexible Monte-Carlo path tracing algorithm has become the gold standard

for physically-based rendering. However, a major drawback is the slow convergence problem,

leading to unpleasant Monte Carlo noise in the rendered image. In recent years, researchers have

successfully tried many denoising and filtering techniques to reduce the noise level [15, 5, 172].

However, the denoised image is no longer unbiased and sometimes has remaining low-frequency

artifacts.

Path guiding is a promising direction to reduce path tracing variance while remaining

66

Racing Car

(3min)

Müller et al.

[2017]

Rath et al.

[2020]

Path

Tracer

Zhu et al.

[2020] OursBako et al.

[2019]
Müller

[2019] Reference

0.7562 0.1059 0.0863 0.0508 0.0450 0.0153 0.0052

0.9682 0.2574 0.0742 0.0434 0.0229 0.0201 0.0068
Full-img (rMSE) 0.7461 0.4976 0.1551 0.1093 0.1082 0.0234 0.0139

Memory 0.37 GB0.35 GB 1.26 GB 6.82 GB0.49 GB0.45 GB 0.61 GB

Ruppert et al.

[2020]

0.0282

0.0238
0.0440

0.43 GB

Figure 3.7. We present a hierarchical neural path guiding framework which uses both path
and photon samples to reconstruct high-quality sampling distributions. This RACING CAR

scene includes both complex direct and indirect illumination that are difficult for traditional
path tracing to render. Traditional guiding methods [111, 110, 132] can reconstruct hierarchical
sampling distributions (quadtrees) via online learning for multi-bounce path guiding. However,
the online learning process is relatively slow, which results in noisy sampling maps for a long
time, restricting the guiding efficiency. Bako et al. [6] leverages offline deep learning, but it can
only guide the first bounce, which naturally cannot outperform traditional online methods for such
a scene with strong global illumination. Ruppert et al. [138] introduces parallax compensation
and uses mixture models (VMMs) to represent sampling distributions. However, the use of
analytical mixtures limits the capability to represent complex radiance fields from sparse path
samples, which requires careful strategies for merging and splitting of mixture components. The
recent photon-driven work [214] can support multiple bounces using an offline-trained network,
producing better renderings than many previous methods. However, this method uses standard
regular 2D images (unlike quadtrees) to represent lighting distributions, requiring the largest
memory consumption, limiting its scalability to large-scale scenes. Our approach enables neural
reconstruction of the traditional hierarchical representation via an offline-trained novel network;
we can effectively reconstruct accurate quadtree-based sampling distributions, consuming less
system memory than [214]. Our approach also combines both path and photon samples, which
is more robust against different light-transport scenarios. As a result, we can achieve better
quantitative (reflected by lower rMSE–relative Mean Squared Error) and qualitative results, with
moderate memory cost comparable to traditional online methods that do not use deep neural
networks.

67

unbiased. The key idea is to learn a better sampling distribution (approximating the incident

light field or some variant of it) at arbitrary scene locations and guide camera rays towards the

light source. Previous methods [111, 132, 138] often require a slow online learning process

to obtain accurate sampling distributions for path guiding. While some recent works [6, 214]

use offline-trained neural networks, their methods require large system memory and can only

reconstruct sampling distributions at a low resolution, restricting the accuracy and efficiency of

path guiding.

In this work, we present a novel neural path guiding approach that can effectively re-

construct accurate hierarchical high-resolution sampling distributions, leading to efficient path

guiding and rendering. Our approach uses an offline-trained neural network to accelerate online

learning in traditional path guiding. Unlike previous offline neural methods that represent a

distribution using a uniform grid (as a 2D image), we consider the classical quadtree-based

representation, allowing for efficient high-resolution distribution modeling. As shown in Fig-

ure 3.7, our approach successfully advances the efficiency of neural path guiding, leading to

better rendering quality with moderate memory costs.

We present a novel deep neural network for efficient hierarchical distribution reconstruc-

tion. Our technique is inspired by the octree networks [181] in 3D geometry processing. We

propose to operate deep 2D convolutions directly on a sparse quadtree that represents a 2D

angular sampling distribution, enabling an efficient hierarchical reconstruction. Our network can

adaptively adjust the tree structure in reconstruction, which learns the proper angular resolution

for each sampling solid angle bin. This results in high-quality distributions that accurately

express the incident light fields. In contrast to the standard convolutional neural networks

(CNNs) that can only regress low-resolution sampling maps [214], our network hierarchically

regresses a compact quadtree that represents the same distribution at a much higher resolution

using less memory. The adaptivity and compactness of our hierarchical reconstruction improve

the scalability to large-scale complex scenes where a large number of sampling distributions

need to be stored on numerous mesh surfaces.

68

Previous path guiding work uses either path samples [111, 110, 132, 138] or photons

[76, 175, 176] to reconstruct an incident radiance field which is then converted to a sampling

distribution at any scene location. Our hierarchical neural reconstruction can potentially support

either input sample independently. However, path samples and photons can perform differently

depending on the actual light transport cases (see extreme examples in Figure 3.9). When the

scene contains caustics produced by transparent objects or tiny light sources, photons are more

efficient since it is difficult for path samples to quickly find a valid direction towards the light.

On the other hand, path samples are a better choice when some light sources do not illuminate

the visible regions of the scene, since many photons can be invisible and useless in this case. In

this work, we use both of them and let the neural network figure out how to effectively combine

the hybrid samples into a single output sampling distribution. Therefore, our approach is more

robust to general scenes with unknown light transport scenarios.

In summary, our main contributions are:

• We propose a novel learning-based framework that can reconstruct a hierarchical sampling

distribution from sparse samples with a moderate memory cost;

• We consider hybrid input samples including both path samples and photons for path

guiding, leading to higher robustness and generality on diverse light transport cases.

3.4.3 Importance Sampling Revisit

Rendering equation. To render a scene using light transport simulation, our goal is to

solve the rendering equation [81]:

L(xxx,ωo) = Le(xxx,ωo)+
∫

Ω

Li(xxx,ωi) fr(xxx,ωi,ωo)cosθidωi, (3.16)

where the outgoing radiance L(xxx,ωo) in direction ωo at each surface point xxx equals the sum of

the surface emission Le(xxx,ωo) and the reflection from the incoming radiance Li(xxx,ωi) of every

direction ωi that has angle θi to the surface normal over the hemisphere Ω. The Bidirectional

69

Scattering Distribution Function (BSDF) fr(xxx,ωi,ωo) describes how much radiance can be

scattered to ωo from ωi.

The integration Lr(xxx,ωo) =
∫

Ω
Li(xxx,ωi) fr(xxx,ωi,ωo)cosθidωi in Equation 3.16 is com-

puted by Monte Carlo (MC) estimation [169] in the path tracing algorithm:

Lr(xxx,ωo) =
1
N

N

∑
i=1

Li(xxx,ωi) fr(xxx,ωi,ωo)cosθi

p(ωi)
(3.17)

where N is number of samples and p(ωi) is the probability density function (PDF) of sampling

direction ωi (i.e., importance sampling). When N is sufficiently large, the variance of Lr(xxx,ωo)

reduces, and path tracing gradually converges to the noise-free result.

In many challenging light transport scenarios, the convergence is very slow, which

is the major drawback of Monte Carlo path tracing. Fortunately, we can greatly speed up

the variance reduction by sampling from a better PDF p(ωi) that resembles the integrand

Li(xxx,ωi) fr(xxx,ωi,ωo)cosθi. However, the incident radiance field Li(xxx,ωi) is unknown in the

beginning, so standard path tracing only leverages the BSDF for importance sampling:

pBSDF(ωi) ∝ fr(xxx,ωi,ωo) (3.18)

Guiding using path samples. In contrast, path guiding is a method to evaluate the

incident light Li(xxx,ωi) and set the PDF to be proportional to some terms related to it. Many

previous papers [111, 110] use early (or extra) Monte Carlo path samples to compute a sampling

distribution as:

pguide(ωi) ∝ Li(xxx,ωi)cosθi, (3.19)

which expresses the incident light field (the cosine term is sometimes associated to the BSDF

sampling in Equation 3.18). In practice, this guided sampling is often combined with BSDF

70

sampling, using one-sample Multiple Importance Sampling (MIS) [171]:

p(ωi) = α pBSDF(ωi)+(1−α)pguide(ωi) (3.20)

where the coefficient α determines the chance of selecting BSDF over guiding for importance

sampling.

However, since Li(xxx,ωi) is also from the noisy Monte Carlo samples [111], the estimates

are also noisy and can have high variance, making the sampling inefficient. Recently, Rath

et al. [132] introduce a variance-aware guiding technique, leveraging a new target sampling

function that considers the variance:

pguide-var(ωi) ∝

√
E[L2

i (xxx,ωi)]cos2 θi (3.21)

where E[·] represents the expectation. Additionally, they also take the surface material into

account, resulting in the BSDF marginalized product sampling [132] used for path guiding:

pguide-var-prod(ωi) ∝

√
Eωo[f 2

r (xxx,ωi,ωo)E[L2
i (xxx,ωi)]cos2 θi] (3.22)

Our framework generally supports various sampling functions. We take advantage of the

advanced variance-aware technique (Equation 3.22) to generate our results by default, leading to

better quality than our results with the traditional distribution (Equation 3.19).

Guiding using photons. In some special light transport cases such as caustics from

transparent objects or tiny light sources that are hard to find through Monte Carlo sampling, most

path samples are terminated before reaching any light, leading to more noisy Li(xxx,ωi) estimation.

Compared to path samples, photons are often a better choice in these scenarios, which have been

used for path guiding by previous work [76, 175, 214]. Each photon p carries a small portion

of the emitter power (radiant flux) ∆Φp and its direction ωp indicates where the light comes

from. The power Φ(xxx,∆Ω) that flows through a solid angle footprint ∆Ω in local surface area A

71

is computed via integrating the incident radiance Li(xxx,ωi) where ωi ∈ ∆Ω:

Φ(xxx,∆Ω) =
∫

A

∫
∆Ω

Li(xxx,ωi)cosθidωidxxx. (3.23)

The target distribution can be expressed as [214]:

pguide-photon(ωi) ∝ Φ(xxx,∆Ω)/∆Ω = ∑
ωp∈∆Ω,xxx∈A

∆Φp/∆Ω (3.24)

This sampling distribution similarly approximates Equation 3.19, but it is evaluated by the

summation of the surrounding photon power, instead of the Monte Carlo estimation of path

samples.

In practice, it is hard to know whether a path sample or photon is better for an unknown

scene; two extreme examples are shown in Figure 3.9. Therefore, in this work, we choose to

use both of them (i.e., hybrid samples), although our framework also directly applies to a single

type of sample. Combining path samples and photons is challenging since they distribute very

differently, and there is no obvious and cheap way to combine them through re-weighting (VCM

[46]. One concurrent work [63] design specific techniques to address a similar issue in radiance

estimation, which however cannot be easily extended to distribution estimation). Therefore,

we use a neural network that learns to combine their values and reconstructs a single sampling

distribution (Section 3.4.6) that is then used for path guiding.

3.4.4 Path Guiding Pipeline with Tree Structure

The entire framework is illustrated in Figure 3.8. We trace both photon and path samples

(i.e., hybrid samples), and deposit them into a local quadtree representation of the sampling

distribution stored in a local spatial caching node as shown in Figure 3.8(a) and (b). This step is

similar to the online quadtree construction in [111]; it leads to noisy distributions unless a large

number of samples are deposited. We instead propose to use a deep neural network (pre-trained)

72

Sample

Features

 ⃗f Input Quadtree Qh

Accumulate

 ∑

Sample

S

Next bounce

Pos

Dist
Norm
Dirc

Val

Spatial Caching Node

Encoder
(Hierarchical

CNN)

Decoder
(Hierarchical

CNN)

Top-Level Feature

M0

Skip LinksNormalized

Path Features

 ⃗F path

Normalized

Photon Features

 ⃗F photon
Reconstructed Quadtree Qr

(Z,)Φ

Renderer
(Path guiding)

(Z,)Φ

(a) (b) (c)

Scene
Count

Figure 3.8. High-level illustration of the proposed neural path guiding framework. The scene
is partitioned into many spatial caching nodes (voxels). Each voxel collects all the samples
that arrive at it (a) and uses the sample information to adatpively construct a quadtree Qh (b),
parameterized in the cylindrical coordinates ωi to (z,φ). Each sample contains its value along
with some auxiliary features including the relative position ~p, direction ωi, distance ~d, normal~n,
and sample count c = 1, which leads to a feature vector ~f that will be accumulated into a leaf
l of the quadtree Qh (Section 3.4.6). The accumulation is applied separately to path samples
and photons, resulting in two independent feature vectors~Fpath and~Fphoton (Equation 3.26). We
propose a novel neural network that can directly operate convolutions on quadtree distributions
(Section 3.4.6), which has an architecture with hierarchical encoder and decoder. We train our
network offline that learns to hierarchically regress accurate sampling distributions from noisy
inputs. The pre-trained network can reconstruct a high-quality quadtree Qr (c) from the input Qh;
the reconstructed Qr is stored in the spatial voxel and later used for path guiding (Section 3.4.7).

to hierarchically reconstruct accurate quadtree distributions from the noisy ones in Figure 3.8(c).

In the following sections, we first describe the steps of building an initial quadtree at arbitrary

scene locations and depositing hybrid samples into it (Section 3.4.5). Next, Section 3.4.6

presents the key component of our framework: a novel neural network to reconstruct high-quality

hierarchical sampling distributions using both the initial noisy path and photon distributions

as input. Finally, we discuss the details of adaptively caching the reconstructed distributions

at different locations in the scene and rendering of the final image (Section 3.4.7). Thereafter,

Section 3.6 provides the implementation details of neural training, sample tracing, and rendering.

Experiments on diverse testing scenes in Section 3.7 justify the effectiveness of our proposed

framework.

3.4.5 Hierarchical Distribution Representation from Hybrid Samples

As we discussed in Section 3.4.3, we need to collect path samples and/or photons to learn

a directional sampling distribution that resembles the incident radiance field at arbitrary scene

73

Müller et al. [2017] Rath et al. [2020] Zhu et al. [2020] OursMüller [2019] Reference
rMSE
Mem

rMSE
Mem

0.076 GB

0.076 GB

0.200 GB

0.327 GB

0.319 GB

0.317 GB

3.212 GB

2.300 GB

0.655 GB

0.438 GB

0.8666 0.4149 0.3562 0.0834 0.0263

0.3351 0.0908 0.0549 0.2423 0.0162

1 Spot Light∘

Tiny Hole

Directional
Light

Figure 3.9. Extreme conditions. We compare our method with previous path guiding methods,
running with equal time, on two Cornell Box scenes that have two different extreme light
transport settings. We turn on the next event estimation for all methods in this experiment.
Previous methods utilize either path samples [111, 110, 132] or photons [214] as input for path
guiding, which cannot work well on both cases at the same time. In the first row, the scene is
illuminated by a very small 1◦ spotlight (facing upwards) located very close to the roof. This
setting is extremely hard for path-based methods [111, 110, 132] since the light is hard to connect
to; yet, the photon-based method [214] still works well. On the other hand, the second row shows
a scene illuminated by a directional light coming from the top, while the roof only has a very tiny
hole that can receive this light. While path-based methods can still be effective for this setting,
the photon-based method [214] cannot work well (even empowered by deep learning) since most
photons will be blocked by the roof and not useful at all. Our novel neural approach leverages
both path and photon samples as input, and can successfully work on both challenging cases.
We also show the corresponding sampling distributions reconstructed by all methods. Note that
these methods may have different ground-truth target sampling distributions (see Section 3.4.3).
We only show our ground truth (the target of [132]) as the reference. While the target sampling
functions are different, we can still observe that our neurally reconstructed quadtrees are of higher
quality than the noisy quadtrees reconstructed traditionally by [111, 110, 132]; ours also contain
sharper details than the regular image representation of [214]. Our quadtrees are reasonably
accurate compared to the reference.

74

Table 3.2. List of notations used in Section 3.4.5, Section 3.4.6, and Section 3.4.7.

Notation Meaning

Hierarchical
input

structure
(Section 3.4.5)

S Sample
l Quadtree leaf

ωi Sample direction
(Z,Φ) Directional sampling space

VS Sample value
A Accumulated sample value
Qh input quadtree from online accumulation

Neural
network

framework
(Section 3.4.6)

Qr Reconstructed quadtree from the neural network
Qgt Target (groundtruth) quadtree
~f Per-sample feature vector
~F Per-leaf feature vector

Fconv Convolution result
M Per-level feature map
V Predicted relative value to the parent node

pleaf Predicted probability of node being a leaf
m, n Encoding and decoding tree level
q, qc Decoded tree node and one of its children
LQr Loss function
P Pooling
S Convolution
U Upsampling
T Node type classifier
R Value regressor

Sampling
and

rendering
(Section 3.4.7)

rinit Initial grid resolution
G Adaptive hierarchical hash grid
Bspt KD-tree in each voxel
kspt Spatial subdivision threshold
t, T Current and total iteration(s)
α One-sample MIS coefficient

75

locations. Compared to the previous neural path guiding work [6, 214], we hierarchically build

a quadtree instead of a uniform 2D grid (image) to represent the distribution. Hybrid samples

are traced and stored in the tree, which are later provided to our hierarchical neural network for

sampling distribution reconstruction (Section 3.4.6).

Our quadtree-based distributions are stored in small spatial caching nodes distributed

within the scene, as shown in Figure 3.8(a). Later in Section 3.4.7, we discuss the details of

adaptively partitioning the scene space into local regions of different sizes for efficient spatial

caching. We keep two quadtrees in each spatial node: one records the online traced hybrid

samples, representing a noisy distribution and used as network input; the other is the output of

the network, representing an accurate sampling distribution for path guiding. The initial noisy

quadtree collects local samples that arrive at the node, containing rich information of the local

incident radiance field.

Quadtree Representation. We use the 2D cylindrical coordinates to parameterize the

angular space; each unit vector (x,y,z) is mapped to (z,φ), where φ = arctan(y/x). A quadtree

Qh is built to hierarchically cover the space of (z ∈ Z,φ ∈Φ) at each spatial node, recording the

hybrid samples traced at rendering time (Figure 3.8(b)).

Accumulating Hybrid Samples. Once a sample S (either path or photon), carrying

a sample quantity VS, arrives at a particular spatial node, we convert its incident direction

ωi = (x,y,z) to the cylindrical space mentioned above, and deposit it to a corresponding leaf

node l of the quadtree Qh. In particular, we leverage a stochastic box filter [110], which deposits

the sample value VS into a single neighboring tree leaf l around its original direction ωi; this is

equivalent to splatting the sample with a box filter into the quadtree.

Since path samples and photons have different radiometric units (Section 3.4.3), we keep

76

two separate accumulators Al
path and Al

photon:

Al
path = ∑V l

Spath

Al
photon = ∑V l

Sphoton

(3.25)

where V l
Spath

and V l
Sphoton

are splatted sample quantities in leaf l.

Quadtree Subdivision. Initially, the tree Qh has a single node. To effectively construct

Qh as a hierarchical structure, we iteratively trace samples (Section 3.4.7) and subdivide the

tree accordingly. Specifically, Qh is adaptively refined after the samples in the current iteration

are deposited based on a criterion [111]: if a node value Al
path or Al

photon is greater than k%

(we empirically find that 0.5% ∼ 1% is a reasonable threshold) of its total value (∑l Al
path or

∑l Al
photon) in Qh, the node is split into four equal-sized child nodes where each of them is

assigned 1/4 of the parent value, otherwise it remains as a leaf node. This criterion is applied

recursively to each node in the tree. After Qh is updated, it is used to collect future samples in

the next iteration, so that Qh can be repeatedly refined to better versions. This strategy allows

Qh to have higher directional resolution when the radiance of an incident direction is large. Note

that if only path samples are considered (as in previous work [111]), then only Al
path is used to

build and refine Qh.

This iteratively-refined quadtree Qh can in fact model an accurate sampling distribution

when the number of accumulated samples is large enough. However, this requires a large number

of iterations and a long time for accumulation, which cannot promptly provide reliable sampling

distributions. Especially at the beginning of rendering, the accumulated sampling quadtrees are

highly noisy and inadequate for path guiding. In Section 3.4.6, we design a novel neural network

to handle the hybrid input samples stored in each leaf l.

77

3.4.6 Neural Refinement of Quadtrees

In this section, we introduce our novel hierarchical neural network that can effectively

convert the deposited hybrid samples (Section 3.4.5) to a high-quality sampling distribution

for path guiding. We first discuss the motivation of applying neural networks in the context of

sampling distributions. Next, we present our network input, the convolutional module applied on

a quadtree, and the detailed neural architecture. Finally, we introduce our loss function to train

the neural network.

Motivation of Neural Reconstruction Framework. As discussed in Section 3.4.5,

directly reconstructing an accurate quadtree distribution Qh via online accumulation usually

requires a long time to trace a large number of samples, leading to low quality of sampling at

early rendering times (as appears in previous work [76, 111]). We therefore seek to directly

reconstruct an accurate quadtree distribution from the initial noisy quadtree; this can be seen as

a traditional image reconstruction task (like denoising, inpainting, or restoration) in the (Z,Φ)

space, except that now the task is applied on hierarchical trees instead of regular 2D images.

Therefore, the standard CNN on a 2D grid image (e.g., [6, 214]) is no longer applicable, and we

aim to design a new neural architecture that extends CNNs to hierarchical inputs and outputs.

Meanwhile, prior works have been addressing a similar task in 3D geometry processing. They

apply CNNs on octrees [181, 182] and hierarchical MLPs on grammar trees [96, 97] to achieve

highly efficient 3D learning. We extend these 3D learning techniques to the reconstruction

of sampling distributions, and we propose to apply neural convolutional operations on the 2D

sampling quadtrees. Note that our neural framework can not only denoise the values of the

input Qh, but also create an entirely separate hierarchical structure Qr that can be different from

Qh, better representing the target distribution. Our hierarchical neural reconstruction leverages

the sparsity of the sampling distribution, processing and modeling directly on quadtrees; this

allows for high-resolution modeling using low memory, which is not achievable when using

regular images with CNNs. In addition, we also design our network to be compact enough

78

for high computational and memory efficiency; this is ideal for path guiding, since it needs to

simultaneously reconstruct sampling distributions at many different scene locations without

introducing too much overhead to the rendering algorithm.

Input Hybrid Samples. As described in Section 3.4.5, when a new path sample or

photon arrives, we convert its ωi into (z,φ) and search Qh to find its corresponding leaf node.

Two separate value accumulators (Apath and Aphoton in Equation 3.25) are used for adaptively

refining Qh. However, using only one-channel sample values is insufficient for reconstructing a

better quadtree. In this work, we collect additional auxiliary per-sample information and form

a hybrid multi-channel feature vector, as illustrated in Figure 3.8(a). Specifically, each sample

contains value V and additional features which include the local sample position ~p, the sample

direction ωi, the distance d to the next bounce, the surface normal directions~n of the current and

next bounce, and the sample count c = 1. For path samples, we also append the BSDF value fr to

the vector. Finally, as shown in Figure 3.8(b), sample features ~fpath and ~fphoton are accumulated

on each leaf l at tree level m, and then concatenated into a single feature vector~Fm,l:

~fpath = (V,ωi,~p,d,~n,c, fr) ~fphoton = (V,ωi,~p,d,~n,c)

~Facc = (∑~fpath,∑~fphoton)

~Fm,l = (
~Facc

path

max
Qh

~Facc
path

,
~Facc

photon

max
Qh

~Facc
photon

)

(3.26)

where (,) means vector concatenation, and summations are computed for each leaf. max
Qh

~Facc

is the feature-wise maximum value within the entire quadtree Qh after the summation, which

is used for separately normalizing the input of path samples and photons. This normalization

effectively removes the radiometric unit difference between path samples and photons. The

sample direction ωi is also implicitly included in the (z,φ) coordinates of S.

Convolution on Quadtree. We propose to directly apply convolutions on the quadtree

to process and regress the hierarchical feature data. In general, given a leaf l on level m in Qh,

79

a convolutional layer outputs a new feature Fm,l
conv via a linear operation that is applied on its

neighbors (empty neighbor nodes are regarded as zeros) on the same tree level m:

Fm,l
conv[g] = ∑

c
∑

i
∑

j
Wi, j,c[g] ·~Fm,l

i, j,c

Mm[g][l] = Fm,l
conv[g]

(3.27)

where i and j are 2D indices of the neighbors inside the convolutional kernel W , c represents

the channel index of input features, and g is the index of kernels (also the channel index of the

output feature). Here Mm is a sparse 2D feature map containing the output features of all valid

leaves. Note that this convolution on a quadtree (Equation 3.27) is not much different from

the standard convolutional layer on a 2D image. However, each ~Fm,l
i, j,c represents a feature in

a quadtree leaf node instead of a standard pixel; unlike an image, leaf nodes on a single tree

level m can distribute very sparsely, where only a few leaves contain actual features that require

convolutions.

Moreover, accessing a neighbor within the convolutional kernel requires searching in

the quadtree Qh to get its stored features ~Fm,l (Equation 3.26). This is non-trivial and can

be much slower than the standard CNN on a regular image where any element in an array is

immediately accessible. Fortunately, this neighboring search problem has been addressed by the

3D shape processing community using a faster hash table implementation [55, 181, 182] with an

optimization on reducing hash table lookup times. In this work, we apply the same technique

to speed up our CNN on quadtrees, enabling efficient quadtree convolutional operations. The

same neighboring search is also naturally applied to pooling layers in our network. Note that,

because of the sparsity of a quadtree, the network layers are applied only to the sparse nodes in

each tree level m, which actually reduces the amount of computation compared to the standard

dense CNNs.

Hierarchical Architecture. Our proposed neural architecture (Figure 3.10) contains a

hierarchical encoder and decoder, with the skip links in between (Figure 3.8(c)). Each hierarchical

80

Conv + Pool

Conv + Pool

Pool

Input

Quadtree Qh

Encoder

Conv

Conv

Menc1

Menc3

Coarse

Fine

Conv + Upsample

Conv + Upsample

Conv

Conv + Upsample

Node Type

Classifier

Conv + Softmax

0.1 0.2

0.3 0.4

Menc4 Mdec4

Skip

Link

Interm.

Nodes

Reconstructed

Quadtree Qr

Decoder

………… …… ………
…

…
…

Multi-Scale Input Encoded Feature Maps Decoded Feature Maps Multi-Scale Reconstruction

F4

F3

F1 Vrec1

Mdec3

Mdec1

Decompose Unroll

And

Merge

Menc0

Vrec3

Vrec4

 Relative Value = 1∑

Node Type

Classifier

Conv + Softmax

Interm.

Nodes

Node Type

Classifier

Conv + Softmax

Figure 3.10. Our proposed hierarchical encoder-decoder architecture for reconstructing an
accurate quadtree representation of sampling distributions. Here, we show an example containing
only 4 levels. In practice, the input and output tree can have different levels ranging from 1 to
20. First, on each level m of the noisy input quadtree Qh, we apply a series of convolutional and
pooling layers to encode the sample features Fm to a neural feature map Mm

enc. By repeatedly
applying these operations hierarchically from the bottom level to the root node, we eventually
encode and compress the whole Qh into a single feature vector M0

enc. The decoder can be seen
as the reverse of the encoder, which includes a series of convolutional and upsampling layers
to extract new features Mn

dec and reconstruct a new quadtree Qr that has new tree structure and
values. On each decoding level n, we use convolutions followed by a SoftMax operation to
regress a relative value Vn,q

rec for each node q with respect to its parent node value (therefore the
summation of every four child nodes satisfy ∑qV

n,q
rec = 1). Meanwhile, an MLP classifier Tn

predicts the type of each decoded node on that level, and sends all the intermediate nodes into
the (n+1)-th level for further processing. Finally, the predicted values Vn,q

rec are converted and
merged into the output quadtree Qr. Note that encoding and decoding operations are applied
only to the sparse nodes on each level, which is more computationally efficient compared to the
standard CNNs that operate on dense image grids.

processing layer represents a corresponding tree level in the input Qh or the output Qr.

Neural Hierarchical Quadtree Encoder. We take Qh as the input and process the

leaves from the bottom (finest) level to the top level. On each level m, we apply a series Sm

of convolutions (Equation 3.27) and nonlinear ReLU activation functions on the accumulated

feature vectors~Fm,l . The output feature map Mm (Equation 3.27) is downsampled to the (m−1)-

th quadtree level after the 2× 2 average pooling Pm, and is then fused with the feature map

81

Mm−1 at the (m−1)-th level. This iterative encoding can be expressed as:

Mm−1
enc = (Pm(Mm),Mm−1) (3.28)

where Mm
enc is the fused feature at level m. In summary, we start with the bottom tree level mmax

in Qh and combine the features from every coarser level until reaching the 0-th level (tree root).

Neural Hierarchical Quadtree Decoder. Our goal is to reconstruct a tree Qr, which

can better represent the target sampling distribution from hybrid sample inputs. To do so, we

design our decoder not only to regress the output distribution values at each tree level but also to

determine if every node needs to be a leaf node or requires further subdivision. This allows the

decoder to simultaneously build a new tree structure and reconstruct (denoise) leaf values.

The entire decoder can be seen as an inverse process of the encoder. After the multi-scale

features Mm
enc are hierarchically extracted from Qh via the encoder (Equation 3.28), we apply a

series Sn of convolutions and ReLU activations to compute the feature Mn
dec at each decoding

level n (n = m = 0 is the tree root). A 2× 2 upsampling layer Un on level n is also applied,

subdividing a node into four equal-sized children, which reverses the operation of average

pooling Pm in the encoder when m = n.

In order to obtain the final outputs, we apply final layers Sn to regress the distribution

values and Tn to classify node types. In particular, Tn on level n predicts the type of each decoded

node q, outputting the probability pn,q
leaf of the node being a leaf node. During inference, when

pn,q
leaf > 0.5 then the node is decoded as a leaf node, otherwise (pn,q

leaf < 0.5) the current node is

split into four children nodes in the next tree level. Rn is applied to regress a relative distribution

value Vn,q
rec for each node q to its parent node at each level n; we apply the SoftMax in Rn to

output the final relative values, ensuring ∑qV
n,q
rec = 1 for the four child nodes. This whole iterative

82

decoding process is written as:

Mn+1
dec = Sn(Un(Mn

dec),M
n+1
enc);

Vn,q
rec =Rn(Mn,q

dec)

pn,q
leaf = Tn(Mn,q

dec)

(3.29)

Here, Sn takes both the upsampled feature Un(Mn
dec) at the (n+1)-th level (upsampling increases

n by one) and the skip-link feature Mn+1
enc from the same level of the encoder. This skip-link is

inspired by the traditional U-Net [136] architecture, and it makes the neural network more robust

to spatial size variations through pooling and upsampling. Without skip links, we have to decode

an entire Qr from only the last layer feature M0, which is much more difficult and can end up

having a shallow tree.

In summary, the decoding process starts from the coarsest 0-th level and gradually builds

Qr until reaching nmax = 20. If all the nodes are leaves when reaching a level, the decoding

process terminates early. In practice, the input and output tree can have different numbers

of levels. Note that our neural network only predicts the relative value Vn,q
rec (= 1 if q is the

root node) for every node q on every level n with respect to its parent node value, and actual

absolute values in the trees are reconstructed by unrolling the relative values using a series of

multiplications. This hierarchical encoder and decoder architecture efficiently extends U-Net

style CNNs to quadtrees that are naturally more sparse than image grids.

Loss Function. We train the network to output accurate quadtree distributions as close

to the ground-truth quadtrees as possible. The ground-truth trees are generated in the same way

as our input trees Qh (Section 3.4.5), by tracing and accumulating a large number of samples

until converged (more details in Section 3.6). As a result, for each spatial location, we have its

ground-truth quadtree Qgt with node type label γ
n,q
leaf and distribution value Vn,q

gt for each node.

Here, γ
n,q
leaf represents the node type in the ground-truth tree, which is deterministic and binary.

Therefore, we can supervise our network output pn,q
leaf and Vn,q

rec with the ground-truth

83

Level n (0, 1, 2, …)

Node q Node Type

Classifier

0.1 0.2

0.3 0.4

Level n+1

Level n+1

pn,q
leaf

1 − pn,q
leaf

1/4 1/4

1/4 1/4

Interm.

Node

0.1 0.2 0.3 0.4

Leaf

1/4 1/4 1/4 1/4

Reconstructed

Quadtree Qr

Figure 3.11. Illustration of the loss computation. After the tree Qr is hierarchically reconstructed
by the network, we compute a loss value for every node q at every level n from the top to the
bottom. We compute the expected distribution value (Equation 3.31) depending on how probable
p is a leaf (i.e., pleaf) predicted by the node classifier Tn. Note that, when p is a leaf, the
corresponding distribution values for the next level are just 1

4 .

γ
n,q
leaf and Vn,q

gt respectively. However, since the ground-truth tree Qgt is generated using a lot of

samples, its structure can be deep and fine-grained corresponding to a high-resolution distribution;

enforcing the network to reconstruct such a deep quadtree structure from sparse input samples is

highly challenging and even unrealistic, especially at the beginning of rendering. Therefore, we

let the network put more emphasis on regressing accurate distribution values; we seek to allow a

different tree structure as long as its final distribution is close to the ground truth. To this end,

we focus on the expected distribution value for each node without directly supervising the tree

structure.

Given a parent node q and its four potential child nodes qc, we compute the expectation

of the distribution value Vn+1,qc
rec for each qc utilizing the node type probability pn,q

leaf of the parent

node:

E[Vn+1,qc
rec] = pn,q

leaf ·
1
4
+(1− pn,q

leaf) ·V
n+1,qc
rec . (3.30)

Note that, our regressed distribution value Vn+1,qc
rec is a relative value, i.e. a ratio of its actual

84

value to its parent node value. If the parent node q is a leaf node, the distribution is assumed

uniform inside the node. Thus, the corresponding relative value for the same region of each qc is

just exactly 1
4 , multiplying pn,q

leaf, which is the relative distribution value if q is a leaf and qc does

not exist. We propose to supervise the expected value E[Vn+1,qc
rec] with the ground-truth value

Vn+1,qc
gt for all children nodes qc of q. This loss is given by:

Ln,q
value = ∑

qc

‖E[Vn+1,qc
rec]−Vn+1,qc

gt ‖ (3.31)

Similar to the above discussion for Equation 3.30, if the ground-truth node q is a leaf (γn,q
leaf = 1)

and qc does not exist, we just use Vn+1,qc
gt = 1

4 . This loss (Equation 3.31 with Equation 3.30)

jointly supervises the predicted node type probabilities and the distribution values. However, we

find in our experiments that using this loss only can be unstable in the early training time. We

therefore provide direct supervision for the tree structure at the beginning of the training, using a

binary cross entropy loss Ln,q
class that supervises pn,q

leaf with γ
n,q
leaf. We apply deep supervisions to

every generated tree node output on all the levels and sum their losses up. Our full loss function

is expressed by

LQr =
nQr

∑
n=0

∑
q∈qn

(βLn,q
class +Ln,q

value) (3.32)

where LQr denotes the loss of the whole reconstructed tree Qr summed over every node q on

every decoding level n. Here, qn is the set of nodes on the n-th level, nQr is the actual maximum

decoding level, and β is a weight factor. During training, we start with β = 1 in Equation 3.32

to stabilize the early optimization by supervising both the structure (with Lclass) and values (with

Lvalue), and then gradually reduce β to zero. Therefore, eventually, we supervise the sampling

map implicitly using Lvalue without forcing the network to output the same target quadtree

structure Qgt (an over-strong regularization and often impossible to achieve). Our neural network

can generalize well to new scenes since it mainly operates on the local sample input without any

strong global scene-level dependency.

85

3KRWRQ�
DFFXPXODWLRQ

3KRWRQ�WUDFLQJ

3DWK�WUDFLQJ

/HDUQLQJ�
VWDUW

)LQDO�SDVV
UHQGHULQJ

%¸}®i¸�Å}�
�}i®����

3DWK�VDPSOH�
DFFXPXODWLRQ

6DPSOLQJ�
UHFRQVWUXFWLRQ

+LHUDUFKLFDO�
TXDGWUHH�&11

,QLWLDOL]H
VSDWLDO�FDFKLQJ

%XLOG�KHXULVWLF�
TXDGWUHH

5HVHW
TXDGWUHH�
YDOXHV

$GDSWLYH�
VSDWLDO�

VXEGLYLVLRQ

(DUO\�SDVV
UHQGHULQJ

Figure 3.12. Illustration of iterative learning and rendering. We show the pipeline of our path
guiding and rendering process (Section 3.4.7). It starts by building a coarse grid G, which is
later iteratively refined online. We trace a set of path samples to detect valid spatial voxels in G
for storing sampling distributions, as well as accumulating their input features into per-voxel
quadtrees Qh (Equation 3.25); these path samples also contribute radiance to the rendering
result. We then trace photons from the light and deposit them to the corresponding quadtrees
Qh in their arriving spatial voxels. These accumulated quadtrees Qh are adaptively subdivided
(Section 3.4.5) based on the sample information they accumulate in this iteration. We then send
Qh to our neural network and reconstruct accurate quadtrees Qr, which will be used as sampling
distributions to guide the path tracing in the next iteration. Afterward, we refine the voxels of the
spatial grid G as needed. Before moving to the next-iteration path tracing, we reset the values in
Qh to zero, while retaining their tree structure to continue to accumulate samples and possibly
obtain further refined quadtrees in the next iteration.

3.4.7 Iterative Learning and Rendering

We use an iterative algorithm to trace and deposit samples, accumulate the initial

quadtrees Qh, reconstruct the accurate quadtrees Qr as sampling distributions, and use the

learned distributions for rendering the final image. Here, we share a similar design with many

state-of-the-art path guiding works [111, 110, 132, 214], as presented in Figure 3.12.

Spatial Caching of Sampling Distributions. We use a hierarchical hash grid G [214]

in the scene to receive the hybrid samples, store the input Qh and output Qr in individual voxels.

86

In the first iteration, the traced path samples are collected to determine the bounding box of our

spatial grid, which covers the visible part of the scene. Next, we start from a discrete 3D volume

that uniformly partitions the visible scene space where each voxel is a cube with a side length

RB/rinit where RB is the diagonal length of the initially estimated bounding box; each voxel

receives hybrid samples and builds sampling quadtrees, which can be further sub-partitioned to a

KD-tree as needed. This leads to a hierarchical spatial grid with per-voxel sampling distributions.

Here, each voxel is iteratively subdivided to a KD-tree based on a simple but effective criterion:

if the total number of samples Nspt within a spatial voxel is larger than a pre-defined threshold

kspt (i.e., Nspt > kspt), then we split the voxel into two sub-voxels through the middle plane along

an alternating dimension. This subdivision is applied recursively to sub-voxels until all voxels

do not satisfy the subdivision criteria, similar to the strategy proposed by Muller et al. [111].

Therefore, when a new sample arrives, we first search within the hierarchical spatial grid G to find

the voxel that covers the sample, then deposit the sample to its stored quadtree Qh (Section 3.4.5).

In practice, we also jitter the sample across neighboring spatial voxels (similar to depositing a

sample into the angular quadtree in Section 3.4.5), which creates a spatial stochastic box filtering

as is done in [110].

Importance Sampling from Quadtree. When guiding paths, the importance sampling

of ωi is done by traversing the Qr from the top to the bottom similar to [111, 132]. From the root

node of the quadtree, we iteratively sample one from the four child nodes based on their relative

value Vn,q
rec , until reaching a leaf node. We then uniformly sample the leaf node. Suppose the leaf

has a solid angle bin ∆z ·∆φ in the (Z,Φ) space, then the final sampling PDF corresponds to

pleaf = 1/(∆z ·∆φ).

Iterative Sample Tracing and Rendering. Similar to most of the previous work

[111, 132, 214], we iteratively trace samples (though our samples are uniquely hybrid) to refine

our quadtrees over time. Specifically, in the t-th iteration (t = 0,1,2, ...,T), we trace 2t sample-

per-pixel (SPP) camera and light rays; each bounce point of the ray yields a path sample or a

photon, which is deposited into the quadtree in a corresponding spatial voxel as discussed above.

87

Each spatial voxel stores an input online accumulated quadtree Qh and a neurally reconstructed

quadtree Qr for path guiding. After each iteration, we reconstruct a new Qr from the current Qh;

the values of the input quadtree Qh are then cleared to zero, and Qh continues to accumulate new

samples in the next iteration while inheriting the same tree structure.

After T iterations, we discontinue learning distributions and initiate a final pass where we

use the most recent reconstructed quadtrees Qr from the (T)-th iteration for guiding the rest of

the path samples. Since our approach allows the learning to stop earlier because of high-quality

reconstructed distributions, we can save more samples for the final-pass rendering. The final

rendered image combines the radiance of all samples from t ≥ 2 iterations weighted by the

inverse of their estimated per-pixel variances [110].

Combining Sampling Strategies. The learned guiding sampling is combined with

BSDF sampling via the one-sample MIS (Equation 3.20). In the iterative process (t < T), we use

α = 0.5 for the one-sample MIS. For the final rendering pass, we follow [214] to compute the

blending coefficient α adaptively: α = Eωo,ωi[L
BSDF
ωo,ωi

]/(Eωo,ωi[L
BSDF
ωo,ωi

]+Eωo,ωi[L
guide
ωo,ωi]). Here,

Eωo,ωi[·] is the expected radiance sent back to the viewing direction using one of the two

sampling strategies, which is statistically estimated from the previously traced path samples in

past iterations.

3.4.8 Dataset Preparation for Training Quadtrees

We create a large-scale dataset to train our neural network. We collect 50 complex indoor

and outdoor scenes either used by researchers in previous papers [175, 111, 132, 6, 214] or

designed by artists from online resources [9, 74, 108, 164, 109, 107]. Following [212, 214],

we also add additional procedurally generated training scenes, created by combining multiple

randomized geometry primitives under area lights and environment maps. We hold out 12 (from

the 50) complex scenes as testing scenes to evaluate our method. The remaining scenes are used

for training.

We use the same method (described in Section 3.4.5) to create the input (noisy) and

88

Figure 3.13. Multiple sets of training scenes, including diverse procedural random scenes from
the previous work [214] and complex indoor and outdoor scenes designed by researchers and
modeling artists.

output (ground-truth) quadtrees from the training dataset. In particular, we iteratively emit 2t SPP

camera and light rays in iteration t ∈ [0,T] to create path and photon samples and accumulate

them in the spatial grid G in the scene, similar to the rendering process in Section 3.4.7. We

obtain the input quadtrees Qh by accumulating hybrid samples in the spatial voxels at every

tin ∈ [0,12] iteration. For every input Qh at iteration tin, we freeze the spatial cache G for the

following iterations t > tin, continue collecting more samples and repeatedly refine Qh to create

the Qgt when reaching t = tgt = 20. When accumulating hybrid samples, we use the BSDF

marginalized variance-aware sampling function (Equation 3.22) for the path samples, unless

otherwise stated in ablation studies (Section 3.7). As for photons, we simply use their power

(Equation 3.23) as the input values.

We also apply additional data augmentation designs to increase the generalization ability

of the neural networks. Since the hierarchical hash grid G has KD-trees Bspt containing spatial

voxels of different sizes (Section 3.4.7), we augment the training data by selecting 10 different

89

initial resolutions rinit equally spaced between rmin
init = 10 and rmax

init = 200, which can cover diverse

voxel sizes. We also further augment the input by randomly rotating the global frames.

3.5 Light Path Guiding Extension

In this work, we leverage photons to generate our sampling distributions. However, it

is well-known that tracing photons can sometimes be inefficient, especially when only a small

region of an enormous scene is visible to the camera; many traced photons may never reach any

valid voxels, leading to expensive photon tracing and undesirably overly-dense spatial structure.

Guiding the tracing of photons can address this issue to some extent. We adopt a simple extension

of photon guiding by applying the light path guiding technique similar to [175], which improves

the rendering quality of scenes that are difficult for the standard photon tracing.

3.6 Neural Path Guiding Implementation

In this section, we discuss some details in neural network training and rendering setup.

Neural Network Training. Our network architecture is designed to be compact for

fast inference in rendering. The maximum number of feature channels in our neural network

is set to be 128. While this leads to efficient sampling reconstruction, it is still challenging for

such a single network to handle diverse inputs with various numbers of input samples or very

different sparsity levels. Therefore, we train five separate versions of the same network as is

done in [214], where each one only needs to handle the input Qh that contains a certain range

of sample numbers (i.e., [0,100), [100,500), [500,1000), [1000,5000), [5000,∞)). During both

training and testing, we split the set of Qh into these smaller groups, and these networks are

executed on GPUs in parallel to reconstruct the set of Qr. We train these networks using the

ADAM optimizer [88] with a learning rate of 1.0×10−4 until convergence.

Rendering. When rendering, we stop learning distributions after 5 ∼ 10 iterations

depending on the actual light transport complexity of each scene, and guide the remaining path

90

samples in the final-pass rendering. Experiments are rendered on a workstation with an Intel

Core i9-7960X CPU and two Nvidia Titan RTX GPUs required to run our neural networks.

For some simple testing scenes, one GPU is sufficient. Sample tracing and rendering are

performed on the Mitsuba engine [74]. The neural network is integrated into the rendering

engine using the TensorFlow C++ API with acceleration libraries and other standard C++/CUDA

libraries for efficient data streaming. To utilize the potential parallelization between the CPU

and GPUs, the CPU keeps ray tracing and rendering the current-pass result using the previously

reconstructed sampling distributions until the GPU finishes computing a new set of Qr and

updating those distributions. This effectively keeps the CPU and GPU running busy and staying

at high utilization. Our quadtree-based neural networks are efficient to evaluate. The GPU

processing time is about 6%∼ 15% (varying across scenes) of the CPU processing time in our

experiments. In the future, implementing our proposed neural path guiding framework into a

GPU-based rendering engine leveraging hardware ray-tracing (e.g., [122]) can possibly result in

higher efficiency in practice.

3.7 Experimentation and Evaluation

We present extensive evaluation in this section. Since our latest attempt (Section 3.4)

works better compared to our initial design (Section 3.3), in this section, we denote the first

published work [214] as one of baselines and the superior model [215] as the primarily proposed

approach.

3.7.1 Light Transport Configuration

We evaluate our method on 12 complex testing scenes, each containing complex global

illumination and diverse geometric variations. When rendering each scene, we limit the maximum

number of bounces to 20; Next Event Estimation (NEE) is turned off (except for Figure 3.9) to

clearly show the effectiveness of path guiding for ours and all comparison methods. We compare

our methods with several traditional online path guiding methods [111, 110, 132, 138] which do

91

Veach Ajar

(14min)

Müller et al. Rath et al.Path Tracer Zhu et al. OursBako et al. Müller [2019] Reference

Full-img (rMSE)
 Memory

0.8868 0.7439 0.0309 0.0257 0.0146 0.0076 0.0014

1.0459 1.0177 0.0536 0.0455 0.0162 0.0076 0.0022
0.5269 0.3635 0.0147 0.0113 0.0049 0.0025 0.0006

0.25 GB 2.01 GB 0.40 GB 1.47 GB 1.28 GB 5.37 GB 1.51 GB

0.5623 0.4198 0.1152 0.0988 0.0658 0.0417 0.0295

0.6939 0.4631 0.1135 0.0943 0.0766 0.0490 0.0352
Full-img (rMSE)

 Memory
0.5745 0.3804 0.1085 0.0896 0.0689 0.0402 0.0300
0.63 GB 2.46 GB 0.80 GB 1.55 GB 1.15 GB 15.27 GB 1.93 GB

Hotel Room

(12min)

0.1970 0.1137 0.0766 0.0594 0.0204 0.0101 0.0058

0.0938 0.0700 0.0522 0.0445 0.0150 0.0119 0.0055
Full-img (rMSE)

 Memory
Bathroom

(4min)

0.0709 0.0507 0.0340 0.0265 0.0098 0.0056 0.0032
0.35 GB 0.85 GB 0.39 GB 0.53 GB 0.54 GB 5.23 GB 0.57 GB

0.0221 0.0110 0.0044

0.0205 0.0153 0.0117
Full-img (rMSE)

 Memory
0.0732 0.0056 0.0034

0.60 GB 9.26 GB 0.86 GB
Kitchen

(3min)

0.1012 0.1050 0.0467 0.0328

0.2812 0.2745 0.0317 0.0331
0.0612 0.0144 0.0115 0.0073

1.12 GB 0.62 GB 0.78 GB 0.81 GB

Ruppert et al.

0.0038
0.0124

0.0107

0.69 GB

0.0459

0.0426

0.0484

0.74 GB

0.0030

0.0053

0.0049

0.48 GB

0.0215

0.0210
0.0083
0.77 GB

Figure 3.14. Equal-time comparisons. We compare our method with previous path guiding
methods [111, 110, 6, 132, 214, 138] on complex indoor scenes. For each scene, we show visual
comparisons on two crops with corresponding rMSE numbers. We also show the rMSE of the
full image and the memory usage for all the methods. Our approach often achieves better visual
quality and lower rMSE (on both crops and full images). Our method achieves this with memory
cost that is comparable to traditional methods [110, 132] and much less than the previous neural
technique [214].

92

Caustics Egg

(4min)

Müller et al. Rath et al.Path Tracer Zhu et al. OursBako et al. Müller [2019] Reference

Full-img (rMSE)
 Memory

0.6473 0.0856 0.0199 0.0075 0.0061 0.0033 0.0008

0.5526 0.2993 0.0647 0.0418 0.0287 0.0094 0.0062
0.3384 0.1480 0.0276 0.0155 0.0125 0.0048 0.0027

0.05 GB 0.55 GB 0.10 GB 0.60 GB 0.40 GB 2.61 GB 0.64 GB

0.2987 0.2705 0.2610 0.2202 0.1734 0.1081 0.0336

0.5267 0.5192 0.3045 0.1340 0.1909 0.0319 0.0140
Full-img (rMSE)

 Memory
0.2734 0.1242 0.0952 0.0608 0.0665 0.0224 0.0080

0.22 GB 0.66 GB 0.23 GB 0.26 GB 0.24 GB 4.25 GB 0.38 GB

Spaceship

(2min)

0.0418 0.0070 0.0051 0.0052 0.0009 0.0014 0.0003

0.06680.0699 0.0101 0.0096 0.0029 0.0016 0.0006
Full-img (rMSE)

 Memory
0.1099 0.0464 0.0037 0.0034 0.0015 0.0010 0.0006

0.76 GB 1.67 GB 0.78 GB 1.18 GB 1.16 GB 3.81 GB 1.21 GB
Pool

(4min)

0.0031

0.0327
0.0072

0.27 GB

Ruppert et al.

0.0828

0.0868
0.0287

0.31 GB

0.0014

0.0038
0.0012

0.78 GB

Figure 3.15. Equal-time comparisons. Similar to Figure 3.14, we show more equal-time
comparisons between our method and previous path guiding methods [111, 110, 6, 132, 214, 138].
Our method can also achieve better qualitative and quantitative results using moderate memory
costs.

not leverage deep learning techniques (CPU-only) but either use hierarchical quadtrees (similar

to ours) or mixture models as their sampling distribution representation. We also compare with

neural guiding methods, including one [6] that can only guide the first bounce, and a recent

photon-driven approach [214] that can guide multiple bounces; these previous neural methods

represent sampling distributions as regular images. For quantitative results, we use the standard

relative Mean Squared Error (rMSE) widely used in previous work [132, 214]. All the numbers

are computed on tone-mapped LDR images. In addition, we also show the memory cost of each

method.

93

Rath et al. Zhu et al. OursMüller [2019] Reference

0.1837 0.1607 0.0884 0.0450

0.0489 0.0333 0.0317 0.0170
Sauna

(8min)

Full-img (rMSE)
 Memory

0.0476 0.0371 0.0195 0.0141
0.95 GB 0.86 GB 6.89 GB 0.91 GB

0.6416 0.6892 0.2648 0.1029

0.5584 0.5760 0.3318 0.1254

Full-img (rMSE)
 Memory

0.4869 0.5043 0.1633 0.0849
0.23 GB 0.22 GB 7.03 GB 0.48 GB

Light Maze

(3min)

Ruppert et al.

0.0873

0.0333

0.0324
0.49 GB

Rath et al. Zhu et al. OursMüller [2019] ReferenceRuppert et al.

0.1652

0.2777

0.1107
0.15 GB

Rath et al. Zhu et al. OursMüller [2019] Reference

0.1837 0.1607 0.0884 0.0450

0.0489 0.0333 0.0317 0.0170
Sauna

(8min)

Full-img (rMSE)
 Memory

0.0476 0.0371 0.0195 0.0141
0.95 GB 0.86 GB 6.89 GB 0.91 GB

0.6416 0.6892 0.2648 0.1029

0.5584 0.5760 0.3318 0.1254

Full-img (rMSE)
 Memory

0.4869 0.5043 0.1633 0.0849
0.23 GB 0.22 GB 7.03 GB 0.48 GB

Light Maze

(3min)

Ruppert et al.

0.0873

0.0333

0.0324
0.49 GB

Rath et al. Zhu et al. OursMüller [2019] ReferenceRuppert et al.

0.1652

0.2777

0.1107
0.15 GB

Figure 3.16. Equal-time comparisons with some best performing baseline methods [110, 132,
138] on two complex-visibility scenes. The incident radiance fields of these scenes contain
high-frequency details and repeated patterns. We can still achieve better results in such light
transport scenarios.

3.7.2 Qualitative and Quantitative Comparisons

Figure 3.14, 3.15 and 3.16 show equal-time comparisons between our method and

previous path guiding methods on various complex (indoor, outdoor, and object) scenes. Note

that our approach often achieves better qualitative and quantitative results. Our results of zoomed-

in rendering crops are smoother, showing less noticeable noise than other results, and are visually

closer to the reference. In contrast, the previous first-bounce guiding method [6] cannot handle

these challenging cases very well, although it also leverages deep learning techniques; it can

only improve the primary bounce sampling thus performs worse than the other guiding methods

including the traditional online ones on our testing scenes with strong indirect illumination.

The three traditional methods [111, 110, 132] use pure path samples as input and reconstruct

hierarchical quadtree distributions online for multi-bounce path guiding. They achieve effective

path guiding and improve over the standard path tracing; in particular, Rath et al. [132] shows

94

clear advantages over the other two because of its more efficient variance-aware sampling

distribution. Other than the quadtree, Ruppert et al. [138] leverages mixture models (VMMs)

to fit path samples by an online adaptive optimization framework, which outperforms many

other techniques due to the careful positioning of mixture components and a novel parallax

compensation module. However, these methods still leverage a slow online learning process,

requiring a large number of path samples and many iterations to achieve accurate distributions

for path guiding. The recent photon-driven neural method [214] uses a pre-trained network to

relieve this slow online learning, leading to better results. However, this technique [214] (same

to [6]) can only reconstruct sampling distributions as regular 2D images (unlike quadtrees) that

have a fixed low resolution, hence restricting the accuracy and efficiency of sampling. Instead,

our approach directly regresses hierarchical quadtrees from hybrid samples for sampling and can

represent more fine-grained distributions under different light transport conditions. As a result,

our approach further outperforms [214].

We achieve better rendering quality without a large memory overhead; the sparseness

of our representation and the effectiveness of our neural reconstruction lead to high memory

efficiency. The recent neural technique [214] requires much larger memory due to the use of

grid representation (image). For most scenes, our memory consumption is comparable to the

traditional methods [110, 132] without deep learning.

3.7.3 Effect of Hybrid Samples

To further demonstrate the effectiveness of using hybrid samples, comparisons on two

extreme light transport settings are shown in Figure 3.9 earlier in this chapter. These two Cornell

Box scenes are specifically designed to make only one type of input samples (either paths or

photons) useful. Previous methods that use either path samples or photon samples cannot work

effectively on both challenging cases. In contrast, our approach uses a hybrid of both path

samples and photons with a novel hierarchical neural reconstruction, leading to more robust

rendering in both cases. Our neural network learns to correlate the information and convert it

95

KitchenRacing Car

Figure 3.17. Convergence curves of two testing scenes (from 256 SPP to 16,384 SPP). We
compare our approach with previous methods using different numbers of samples. The sampling
budget represents the total number of rays (including both camera and light) per pixel through
the entire guiding and rendering process. Both the X (number of samples) and Y (rMSE) axes
are on a logarithmic scale. Our hierarchical neural path guiding performs consistently better
with the increasing samples on these two scenes. Because some rays are used for guiding and
the quality of the guiding distribution influences the convergence, these curves are not straight
lines, as expected for standard path tracing in a log-log plot. Also note that, the recent previous
neural method [214] may not be more effective than the traditional methods when using a vast
number of samples.

into a single high-quality hierarchical sampling distribution. As demonstrated in other results

of complex scenes (Figure 3.7, 3.14 and 3.15), our proposed framework with hybrid input can

robustly work well across various challenging light transport cases.

3.7.4 Convergence Rate

We also evaluate how our method performs with an increasing number of samples. In

particular, we run our method on two testing scenes (RACING CAR and KITCHEN, shown in

Figure 3.7 and 3.14) with different total numbers of traced rays (including both camera and

light rays) per pixel and compare the rMSEs with other methods using the same budgets of

96

0.1312
Müller et al. [2017] Müller [2019] Rath et al. [2020]Reference Zhu et al. [2020] Ours-img Ours

0.1129 0.0928 0.0674 0.0516 0.0421rMSEMetals (4min)

Figure 3.18. Hierarchical reconstruction. We compare with previous methods and show the
corresponding sampling distributions of all methods for a scene point (marked by the red point in
the reference). Similar to Figure 3.9, the ground-truth sample distribution is with respect to our
method and [132] (and also the ”Ours-img” variant). We also compare with a non-hierarchical
variant (labeled with Ours-img) that takes hybrid samples as input but regresses image grid
distributions using the same network architecture as [214]. Our full model leverages hierarchical
reconstruction to regress accurate sampling distributions and achieve better results compared to
its non-hierarchical counterpart.

sampling rays. The results are shown in Figure 3.17. We can see that our novel neural path

guiding approach consistently achieves lower errors with more samples; ours also has smaller

errors compared to previous methods. Note that, while the recent neural method [214] can

often achieve better results than the other traditional methods with a moderate sampling budget,

its gain gets reduced with very large sampling budgets due to the fixed resolution sampling

map that intrinsically cannot express the high-frequency lighting perfectly. On the other hand,

traditional quadtree-based methods [111, 110, 132] can be more fine-grained with a large number

of samples, leading to better results eventually. This example illustrates the benefits of having

a hierarchical representation. Our approach successfully applies hierarchical quadtree-based

sampling in neural path guiding, leading to efficient rendering.

3.7.5 Hierarchical Representation Merit

We show some examples of the reconstructed sampling distributions in Figure 3.9 and

3.18. Our regressed quadtree distributions are accurate and fine-grained, and are close to the

reference. In contrast, [132] is reconstructing the same target distribution as ours, but it leverages

97

traditional online accumulation, which often obtains more noisy quadtrees. Essentially, our

neural network is trained to denoise such noisy online-accumulated quadtrees into the smooth

and accurate quadtrees. On the other hand, the neural techniques [214] that use uniform grids

(images) as the sampling representation can also reconstruct smooth sampling distributions.

However, because of the limited image resolution, their sampling is less sharp and detailed

compared to our reconstructed quadtrees.

We further investigate the benefits of using the hierarchical network, by training and com-

paring it with a network that regresses 2D images from hybrid samples without any hierarchical

structure. In particular, we use the recent network architecture of [214] and train it using the

same hybrid samples as input and the same variance-aware target distribution for path guiding.

The corresponding results compared with the results of our full model and other methods are

shown in Figure 3.18, with corresponding sampling distributions. This non-hierarchical network

with the image representation performs worse than our full model. Meanwhile, our reconstructed

hierarchical distribution contains more details and is faster to compute than the uniform image

representation, which leads to more efficient path guiding and better rendering quality.

3.7.6 Target Sampling Distribution

Our framework has good flexibility; it can support various target sampling distributions.

By default, we use the recent variance-aware function [132] (Equation 3.22) for the better

performance. In Figure 3.19, we show results from a variant of our model trained with the

traditional target sampling function without variance-awareness (Equation 3.22 as is used in

[111, 110]). Note that our approach still works well even without the variance-aware technique,

and can still outperform many previous methods. Our full model can achieve better results,

taking advantage of the advanced target sampling function.

98

Müller [2019] Rath et al. OursOurs-noVar

Reference

0.2324 0.1044 0.2095 0.0715

0.0397 0.0214 0.0165 0.0093
rMSE 0.1047 0.0525 0.0890 0.0322

La
nt

er
ns

 (3
m

in
)

Figure 3.19. Target sampling distribution. Our approach, by default, uses the variance-aware
sampling function (Equation 3.22) as the target to train the network. We can also use a simpler
target sampling distribution (Equation 3.19) without variance-awareness. We compare this with
our default model and also traditional methods using the two different sampling functions. Our
full model performs better, which justifies the variance-aware technique and the necessity of
using an advanced target distribution for training.

3.7.7 Limitations and Failure Cases

The Image-Based Pure Photon Approach. The proposed approach is mainly designed

for offline rendering, as previous path guiding work; it accelerates the convergence of path tracing

but still requires a moderate number of path samples. Combining our approach with modern

denoising techniques can further reduce the number of samples. Similar to previous work

[111, 132] that also use spatial voxels to store local sampling distributions, a structured artifact

can appear in the rendered image when photons are not dense enough. Such artifact disappears

with more photons; combining our method with parallax-aware techniques [138] through warping

or transformation could potentially address it more effectively in the future, but may also expose

99

new challenges in the computational cost of histograms over mixture lobes.

We use standard 2D images as sampling distributions for deep CNN-based reconstruction.

However, this consumes more memory than the quadtrees in [111, 132] and parametric models in

[175, 138], and we can only adopt low-resolution histogram maps due to limited system memory.

The other more compact representations can in fact fit more detailed sampling distributions due

to their adaptive nature, although this also requires many more samples. We observe that previous

methods start to overtake ours with a very large sampling budget (more than 103 ∼ 104 rays

per pixel). However, our approach is still effective with a moderate sampling budget, which is

often how path guiding is expected to be applied, especially when it can be effectively combined

with denoising techniques in practice. Extension to more compact directional representations is

possible, as shown in a recent concurrent work [215].

Tree-Based Hierarchical and Hybrid Approach. Our approach leverages path and

photon samples and treats them equally, tracing the same number of rays for each type of sample

in guiding and rendering. However, the two types of samples often do not contribute equally to

the final distribution (as in Figure 3.9) and one of them can be less useful, which is a waste of the

sampling budget. Addressing this may require future research to support distributing the samples

non-equally, adaptive to the actual light transport cases. Besides, we believe guiding the photon

emission and tracing properly (e.g., [175]) can be very useful to our framework, which reduces

the well-known photon visibility issue and further increases the robustness of our approach.

Our framework utilizes discrete voxels to partition the scene and cache the sampling

distributions. Similar to previous methods that use similar caching techniques [111, 214], this

spatial structure can have discontinuous sampling distributions across neighboring voxels, leading

to some aliasing artifacts that are usually gone after a number of iterations. While our neural

framework accelerates the convergence of sampling reconstruction, which alleviates this issue to

some extent, some minor artifacts can still appear in early iterations. Exploring an idea similar to

the parallax compensation [138] is left for future work.

Currently, we implement our approach in a hybrid CPU and GPU fashion where trac-

100

ing/shading and sampling reconstruction are executed separately. The extra data copying over-

head is still non-negligible even if we carefully manage the data flow and parallelization. In

practice, it can be beneficial to put more modules on GPUs directly and make use of the

specialized processor cores.

3.8 Conclusion and Future Work

In this chapter, we first present a new deep learning-based photon-driven path guiding

approach. Our approach leverages photons to reconstruct sampling distributions, which is

sometimes more effective than pure unidirectional (path-driven) methods for challenging scenes

that are dominated by indirect lighting; we propose to use a deep neural network to regress

high-quality sampling maps from low-quality photon histograms, enabling effective path guiding

as a result. To better utilize the benefits of such a neural framework, we introduce an adaptive

hierarchical grid to cache the reconstructed sampling maps spatially in the scene, allowing for

path guiding at any bounce.

Next, we present a novel path guiding framework that is learning-based, hierarchical,

and hybrid. We present a unique neural network that extends traditional CNNs to hierarchical

representations, and produces accurate sampling distributions faster than traditional online

accumulation methods. Our approach further uses a hybrid of path samples and photons as

input, allowing for increased robustness and generality across different complex light transport

scenarios. We demonstrate extensive experiments on diverse testing scenes. Our proposed neural

path guiding framework can achieve state-of-the-art rendering quality with a reasonably small

memory cost compared to other existing approaches.

Our approach also inspires interesting future research. In this work, we focus on making

the local directional distribution reconstruction neural and hierarchical. Future work can explore

if the spatial caching grid can also be hierarchically reconstructed via a neural network, potentially

making local distribution reconstruction aware of the global context. Another interesting direction

101

is to combine our offline neural framework with the online neural techniques [112, 113] that

regress a global and continuous sampling function. Meanwhile, combining with the adjoint

Russian roulette and splitting technique [174] and extending our framework to product sampling

can be the immediate next steps. Our approach leverages quadtree-based neural modeling for

local light field approximation; this technique can also inspire other related research areas in

computer graphics, such as lighting estimation and light transport acquisition.

Chapter Review. In this chapter, we shifted our focus to the multi-bounce global

illumination effect on images. By investigating various Monte-Carlo sampling strategies, we

have increased the convergence rate of the classic path tracing method.

Acknowledgements. This chapter, in full, is a reprint of two materials as they appear

in ACM Transactions on Graphics 2021 [214, 215]. Shilin Zhu, Zexiang Xu, Tiancheng Sun,

Alexandr Kuznetsov, Mark Meyer, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi,

Association for Computing Machinery, 2021. The dissertation author was the primary investigator

and author of these two papers.

102

Chapter 4

Controlling Scene Appearances on Images

4.1 Photographing Unconventional Illumination Effects

In previous chapters, we have covered both special and generalized illumination effects.

But we are not settled for creating only realistic appearances on images. Instead, people have

strived to produce more interesting phenomenons since the emergence of digital photography.

Such novel effects are typically targeted to functionalities that are closely related to specific

visual applications.

The representative examples, which will be presented in this chapter, are illustrated in

Figure 4.1 and published in [210, 213]. The principle of our system is to manipulate appearances

for image authentication and prevention of illegal captures. With this in mind, we innovated a few

unconventional features, which include the initiation and restoration of banding effects as well as

watermark embedding. The final image look is commanded by computerized light sources that

are programmable. Following the tradition of computational photography, our design is operated

during image formation without requiring access to any post-capture processing.

4.2 System Overview

The ubiquity of mobile camera devices has been triggering an outcry of privacy concerns,

whereas privacy protection still relies on the cooperation of the photographer or camera hardware,

which can hardly be guaranteed in practice. In this work, we introduce LiShield, which auto-

103

2

Image Interference Image Restoration

Image Watermarking Controllable Effects

Figure 4.1. Summary of novel effects on images using our computational photography frame-
work. These are extremely difficult to achieve by conventional imaging during the image
construction. The objective is to compute those phenomenons well before image processing and
editing, which is desirable especially when dealing with ubiquitous and wild captures.

matically protects a physical scene against photographing, by illuminating it with smart LEDs

flickering in specialized waveforms. We use a model-driven approach to optimize the waveform,

so as to ensure protection against the (uncontrollable) cameras and potential image-processing-

based attacks. We have also designed mechanisms to unblock authorized cameras and enable

graceful degradation under strong ambient light interference. Our prototype implementation and

experiments show that LiShield can effectively destroy unauthorized capturing while maintaining

robustness against potential attacks.

4.3 Motivation and Subject of Study

Cameras are now pervasive on consumer mobile devices, such as smartphones, tablets,

drones, smart glasses, first-person recorders [115], etc. The ubiquity of these cameras, paired with

pervasive wireless access, is creating a new wave of visual sensing applications, e.g., autonomous

photographer [116], quantified-self (life-logging) [38, 188], photo-sharing social networks,

physical-analytics in retail stores [131], and augmented reality applications that navigate users

104

across unknown environment [117, 189]. Zooming in the photo-sharing application alone,

statistics report that 350 million photos/videos are uploaded to Facebook every day, the majority

of which are from mobile users [151]. Many of these applications automatically upload batches of

images/videos online, with a simple one-time permission from the user. While these technologies

bring significant convenience to individuals, they also trigger an outcry of privacy concerns.

Privacy is ultimately a subjective matter and often varies with context. Yet many of the

privacy-sensitive scenes occur in the indoor environment, and are bound to specific locations.

For example, recent user studies [26] showed that people’s acceptability of being recorded

by augmented reality glasses has a strong correlation with the location. User studies of life-

logging cameras [67] also indicate that 70.2% of the cases when the user disables capturing is

associated with specific locations. In numerous real-world scenarios, cameras are forbidden, e.g.,

concerts, theaters, museums, trade shows, hospitals [57], dressing rooms and exam rooms [119],

manufacturing plants [8], etc. However, visual privacy protection in such passive physical spaces

still heavily relies on rudimentary approaches like warning signs and human monitors, and there

is no way to enforce the requirements automatically. In personal visual sensing applications

like life-logging, even if a user were to disable the camera in private space (e.g., bedroom and

washroom), malware could perform remote reconnaissance and targeted visual theft by hijacking

the victim’s camera [159, 194].

In this work, we propose LiShield, a system that deters photographing of sensitive indoor

physical space, and automatically enforces location-bound visual privacy protection. LiShield

protects the physical scenes against undesired recording without requiring user intervention, and

without disrupting the human visual perception. Our key idea is to illuminate the environment

using smart LEDs, which are intensity-modulated following specialized waveforms. We design

the waveform in such a way that its modulation pattern is imperceptible by human eyes, but can

interfere with the image sensors on mobile camera devices.

More specifically, our basic waveform follows an ON-OFF modulation, which causes

the reflection intensity of the scene to “flicker” at high frequency. Digital cameras commonly

105

adopt rolling-shutter image sensors, which sample the scene row by row during capturing.

Consequently, LiShield will impose a striping effect on the captured image, as long as its

flickering frequency exceeds the camera frame rate. To protect against a wide range of camera

settings, we build a numerical model to explore the relation between the image quality degradation

and the (uncontrollable) camera configurations (e.g., exposure time). Accordingly, we derive

common guidelines to maximize the effectiveness through waveform parameter configurations

(e.g., frequency, peak intensity, duty cycle). To further enhance the protection, we take two

measures: (i.) scramble the color patterns, taking advantage of the array of multi-channel RGB

chips commonly available on commercial smart LEDs; (ii.) randomize the waveform frequency

to counteract exposure time manipulation that may circumvent the striping effect, while ensuring

no low-frequency components are generated that affect human perception.

In addition, LiShield can tailor the waveform for two particular use cases: (i.) allowing

an authorized camera, which shares secret configuration information with the LED to recover

the image or video frames it captures. (ii.) when strong ambient light interferes with the smart

LED, LiShield cannot ensure full protection, but it can still emit structured light which embeds

invisible “barcode” into the physical environment. The embedded information can convey a “no

distribution” message, allowing online servers (e.g., from Facebook and Instagram) to block and

prevent the image from being distributed.

We have implemented LiShield based on a customized smart LED, which allows re-

configuration of intensity modulation waveforms on each color channel. Our experiments on

real-world scenes demonstrate that LiShield can corrupt the camera capturing to an illegible level,

in terms of the image brightness, structure, and color. The impact is resilient against possible

post-processing attacks, such as multi-frame combining and denoising. On the other hand, it

enables authorized cameras to recover the image perfectly, as if no modulation is present. Even

under strong sunlight/flashlight interferences, LiShield can still sneak barcode into the physical

scenes which can be decoded with around 95% accuracy.

Preventing all privacy leaks, particularly those by determined attackers with professional

106

global-shutter cameras, is likely impossible. Instead, LiShield aims for preventing ad-hoc

capturing from benign camera-phone holders, by simply installing customized smart LEDs to

fully cover the target environment. Our main contributions can be summarized as follows:

(i.) Proposing a new concept of automating privacy protection against cameras by

modulating an LED’s waveforms, and deriving general guidelines for optimizing the waveforms

against possible camera settings and image recovery.

(ii.) Designing mechanisms to authorize desired capturing, and to embed protection

information into the scene under strong ambient light interference.

(iii.) Verifying the system through a full-fledged testbed implementation and experiments

in real environments.

4.4 Related Work

Anti-Piracy and Capturing-Resistant Technologies. Camera recording of copyright

screen-displayed videos (e.g., in a movie theater) accounts for 90% of pirated online content

[205]. Since screen refresh rate is much higher than video frame rate, Kaleido [205] scrambles

multiple frames within the frame periods to deter recording, while preserving viewing experience

by taking advantage of human eyes’ flicker fusion effects. Many patented technologies addressed

the same issue [34, 126, 140, 187, 35, 146, 200, 86, 147, 14, 13, 150, 148, 50, 158]. In contrast,

the problem of automatic protection of private and passive physical space received little attention.

Certain countries [48, 33] dictate that smartphone cameras must make shutter sound to disclose

the photo-capturing actions, yet this does not enforce the compliance, cannot block the photo

distribution, and cannot automatically protect against video recording.

Certain optical signaling systems can remotely ban photography in concerts, theaters, and

other capturing-sensitive sites. Courteous Glass [80] and a recent Apple patent [163] augment

wearable devices with near-infrared LEDs, which are invisible to humans but can be captured

by a camera, to convey the hidden privacy appeal of the wearers. These LEDs cannot enforce

107

protection (e.g., through image corruption as in LiShield), and convey information only when

they fall in the camera’s field of view. BlindSpot [166] adopts a computer vision approach to

locate retro-reflective camera lenses, and pulses a strong light beam towards the camera to cause

overexposure. Despite its sophistication, the approach fails when multiple cameras coexist with

arbitrary orientations.

Invisible Screen-Camera Communications. Recent research also explored novel ways

of screen-to-camera visible light communication by hiding information behind the display.

VRCodes [190] carries information through high-frequency changes of the selected color, which

can be decoded by rolling-shutter cameras. Hilight [98] conveys information by modulating

the pixel translucency change in subtle ways. ARTcode [198] embeds data into images by

modifying the pixels’ colors, which is imperceptible due to human eyes’ limited pixel resolution.

This line of research is also related to classical watermarking, which hides copyright and

authentication information in images/videos through spatial/frequency domain re-encoding

[1, 124]. These mechanisms are applicable when the users have full control over the image/video

source, but cannot prevent malicious capturing/distribution of physical scenes. On the other hand,

conventional luminaries bear natural flickering effects that have been leveraged for localization

purposes [209, 204, 203], but the frequencies are too high to cause visible corruption on the

camera images.

Privacy Protection for Images/Videos. Conventional visual privacy-protection systems

have been relying on post-capture processing. Early efforts employed techniques like region-of-

interest masking, blurring, mosaicking, etc. [118], or re-encoding using encrypted scrambling

seeds [28]. There also exists a vast body of work for hiding copyright marks and other information

in digital images/videos [114, 179, 68, 69, 180, 95, 190, 43, 130, 202]. LiShield’s barcode

protection is inspired by these schemes, but it aims to protect physical scenes prior to capturing.

One common challenge in visual privacy protection is to identify the privacy preference.

Location-bound privacy expression can be achieved in everyday life using special signs. Pri-

vacy.Tag [10] allows people to express their privacy preference by wearing QR codes. I-Pic [2]

108

allows people to broadcast their privacy preferences using Bluetooth. COIN [206] matches a

user’s face to a prescribed privacy preference, and can automatically detect and mask people

who do not want to be captured. P3 [130] protects photo-sharing privacy by encoding an image

into a private, encrypted part and a public, standards-compatible part. PrivacyEye [133] allows a

user to manually mark regions on an image that permit access from mobile apps. PlaceAvoider

[160] allows first-person camera users to capture and blacklist sensitive spaces a priori, and use

image matching to block subsequent pictures containing such spaces. These systems only work

when the user has complete control over the camera.

4.5 Image Manipulation Model and Appearance Goal

LiShield’s end goal is to prevent camera recording in protected indoor physical areas

without affecting normal human perception. The scene can be static or dynamic. In either

case, we assume one or multiple LiShield-enabled smart LEDs can cover the whole area, while

providing illumination similar to normal office lighting without human-perceptible flickering.

Whereas conventional lighting and sunlight may co-exist with LiShield’s smart LEDs (as to

be verified in our experiments), covering the entire target scene with LiShield will ensure the

strongest protection.

Now consider an unauthorized user (attacker) who wants to take pictures or videos within

the protected space, with cameras and flashes embedded in smartphones, but no professional

equipment such as global shutter cameras, filters or tripods. The attacker has full control over the

camera parameters (e.g., exposure time, capturing time, white-balancing), and can run any post-

processing on the captured images. Nonetheless, with LiShield’s protection, the image frames

are corrupted, so that a major fraction of each frame is either blank or overexposed while colors

are distorted (Section 4.7), which deters image viewing/sharing. In addition, LiShield should

maintain its protection while allowing authorized users to capture the same scene simultaneously

without distortion (Section 4.8). In case strong ambient interference may degrade LiShield’s

109

protection, LiShield embeds barcodes in images/videos captured by the attacker to convey privacy

policies and ensures they are detectable even after common post-processing (Section 4.9).

4.6 Primer on Restructuring Image Segments

Cameras and human eyes perceive scenes in fundamentally different ways. Human eyes

process continuous vision by accumulating light signals, while cameras slice and sample the

scene at discrete intervals. Consequently, human eyes are not sensitive to high frequency flickers

beyond around 80 Hz either in brightness or chromaticity [4, 79, 167, 205], while cameras can

easily pick up flicker above a few kHz [92, 203]. Equally importantly, human eyes perceive

brightness in a non-linear fashion [155], which gives them a broad dynamic range, while cameras

easily suffer from overexposure and underexposure when signals with disparate intensities mix

in the same scene [134].

Unlike professional or industrial cameras which may have global shutters that mimic

human eyes to some degree, nearly all consumer digital cameras, pinhole cameras, and smart-

phones use the rolling shutter sampling mechanism [100, 129], which is the main contributor

to their high-frequency sensitivity. When capturing an image frame, a rolling shutter camera

exposes each row sequentially.

LiShield harnesses the disparity between cameras and eyes to disrupt the camera imaging

without affecting human vision. It modulates a smart LED to generate high-frequency flickering

patterns. The reflection intensity (or brightness) of the target scene also flickers following the

same pattern as the LED’s illumination, albeit at reduced intensity due to reflection loss. LiShield

uses the On-Off Keying (OOK) as the basic modulation waveform (Figure 4.2), which does not

require complicated analog front-ends and is widely supported by smart LEDs [42, 41]. Due

to rolling-shutter sampling, the rows of pixels that are fully exposed in the ON period will be

bright, and rows in the OFF period become dark, thus causing striped patterns on the captured

image (Figure 4.2(a)(b)). Partially exposed rows experience moderate brightness. Meanwhile,

110

ton
toff

Image
LED Waveform

Smoothed
Out

Exposure

RowsC
ol

um
ns

Row 1

te

Dark

Bright

Dark

Bright

Dark

Dark

LED is ON

(c)

(d)

(e)

(f)
(a) (b)

Stripe Waveform

Transitional
Stripe

Image
Brightness

ts
Row 2

Row u
Row v

Row w R
ow

Index

Figure 4.2. (a)-(b) Bright, dark and transitional stripes and their width changing with exposure
time; (c)-(f) Stripe pattern of image changes under different exposure times.

human eyes can only perceive the smooth averaged intensity, as long as the OOK frequency goes

beyond 80 Hz [4, 79, 167, 205].

In addition, commercial LED fixtures often comprise multiple LED bulbs/chips and

sometimes separate RGB channels to allow color adjustments [125]. LiShield can turn different

numbers of LED bulb/chip on to generate different intensities, and control the RGB channels of

the LEDs to vary the color. Therefore, LiShield’s flickering waveform is staircase-shaped on-off

patterns, running independently in 3 color channels. In what follows, we will show how such

flickering corrupts the spatial patterns captured by a camera.

4.7 Digital Imaging with Coded Illuminations

4.7.1 Maximizing Image Appearance Interference

LiShield aims to minimize the image capturing quality by optimizing the LED waveform,

characterized by modulation frequency, intensity, and duty cycle. To explore the optimization

space and to provide guidelines for designing the basic waveform, we derive a model to predict

the image quality as a function of the LiShield’s waveform and attacker’s camera parameters. For

111

simplicity, we start with monochrome LED (equivalent to one with a single color channel) that

illuminates the space homogeneously. We denote P as the reference image taken under a non-

flickering LED, and Q as the one taken under LiShield’s LED with the same average brightness.

We assume each image has m rows and n columns, and the light energy received by each pixel is

denoted by P(i, j) and Q(i, j), respectively. Our model focuses on two widely adopted image

quality metrics: PSNR, which quantifies the disruption on individual pixel intensity levels; and

SSIM [185], which measures the structural distortion to the image (i.e., deformation effects such

as stretching, banding, and twisting). In general, the minimum PSNR and SSIM corresponding

to acceptable viewing quality are in the range of 25∼30 and 0.8∼0.9, respectively [7, 16, 49, 3].

Decomposing the Image. To compute the image quality, we need to model the intensity

and width of each stripe caused by LiShield. As illustrated in Figure 4.2, we use ton, toff, Ip to

denote the on/off duration and peak intensity of the flickering light source, and te, ts are the

exposure time (controllable by software) and sampling interval (fixed in hardware) of the rolling

shutter camera. For convenience, denote the period of the light source as tl = ton + toff, and duty

cycle as Dc = ton/tl . For pixel j in row i which starts exposure at time ti, its light accumulation

would be:

Q(i, j) = αi, j

ti+te∫
ti

πl(τ)dτ (4.1)

where αi, j is the aggregated path-loss for pixel (i, j), including attenuation and reflection on the

photographed object, and πl(τ) represents the illumination waveform of the LED:

πl(τ) =


Ip, 0 < τ mod tl 6 ton

0, ton < τ mod tl 6 tl

(4.2)

When the camera’s exposure time is equal to or shorter than the LED’s OFF period

(te 6 toff), the image will contain rows that are completely dark (Figure 4.2(c)). On the other

hand, when te > tl , one row-exposure period of the camera will overlap multiple ON periods

112

of the LED, accumulating higher intensity (Figure 4.2(f)). The special case happens when

te = tl where the integration of LED waveform and exposure has a fixed value, which eventually

smooths out dark stripes (Figure 4.2(e)). Without loss of generality, assume the exposure starts

right at the beginning of the ON period. Let N = bte/tlc which is the number of whole flicker

cycles covered by exposure time, and trem = (te mod tl) which is the remaining duration after

multiple whole cycles, the light accumulation of the brightest rows QB is:

QB(i, j) =


αi, jIp(Nton + trem), 0 < trem 6 ton

αi, jIp(N +1)ton, ton < trem 6 tl

(4.3)

Since the brightest rows appear when the exposure captures most ON periods possible (e.g., row

2 to row u in Figure 4.2 (a)), and rolling shutter effect converts temporal variation into pixels

with sampling interval ts, the width of QB is:

WB = |trem− ton|/ts (4.4)

Likewise, when the exposure captures least ON periods possible (e.g., from row v to row w in

Figure 4.2 (a)), we get the darkest rows with light accumulation QD:

QD(i, j) =


αi, jIpNton, 0 < trem 6 toff

αi, jIp(Nton + trem− toff), toff < trem 6 tl

(4.5)

and the width of QD is:

WD = |trem− toff|/ts (4.6)

We refer to a collection of consecutive brightest rows as “bright stripe” and consecutive

dark rows as “dark stripe”, as shown in Figure 4.2(b). In addition, there exist intermediate rows

containing linear intensity transition between dark and bright, referred to as “transitional stripe”.

113

Meanwhile, if the LED were not flickering and provided the same average brightness,

the pixel intensity would be:

P(i, j) = αi, jIp ·Dc · te (4.7)

Since Dc · te remains constant within each frame, the image captured under LiShield is equivalent

to the original image multiplied by a piecewise function (Equations 4.3, 4.5).

Other standard camera parameters (i.e., ISO, white balance, and resolution) do not affect

the structure of the stripe pattern, since they are unrelated to rolling shutters and only affect the

average pixel intensity. By default, we assume the attacker sets the ISO to its minimum (usually

100) to suppress noise maximally.

Optimizing the LED Waveform. Since the stripe pattern follows a piecewise function,

a closed-form expression of PSNR and SSIM becomes infeasible. We thus use numerical

simulation to evaluate the impact of LiShield, based on the above model. We generate the

piecewise function with QB(i, j), WB, QD(i, j), WD and multiply it on a reference image to obtain

the disrupted image Q just like the process inside real cameras. We use the well-known Lena

image as a reference, and stitch the original 512×512 version into a 3264×2448 (8-mega-pixel)

image, assuming ts = 1/75000 s, which matches the capability of a Nexus 5 camera. The quality

metrics are calculated between the reference image P and LiShield-corrupted image Q, which

are set to the same average intensity by scaling pixel values in Q. Note that if P and Q are both

overexposed into the same white image, PSNR = ∞ and SSIM = 1 can no longer reflect image

quality. Thus, we make P’s pixel intensity range infinite, which allows quantifying quality loss

caused by overexposure.

By default, we use OOK waveform with frequency f = 100 Hz, peak intensity Ip = 10

kLx and duty cycle Dc = 0.5. We vary one parameter while keeping others to the defaults. Note

that the typical light intensity is ∼ 700 Lx in office environments (considering energy efficiency),

∼ 5,000 Lx for overcast sky and ∼ 100,000 Lx for sunny days [56]. Our numerical results

(Figure 4.3 show a few general trends, which lead to the following design choices for LiShield.

114

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03

Exposure (s)

D
u

ty
 C

y
c
le

(a)

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

0.5

 5

 10

 15

 20

 0 0.01 0.02 0.03

Exposure (s)

P
e

a
k
 I

n
te

n
s
it
y
 (

k
L

u
x
)

(c)

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

 100

 200

 300

 400

 500

 0 0.01 0.02 0.03

Exposure (s)

M
o

d
u

la
ti
o

n
 (

H
z
)

(e)
 0

 10

 20

 30

 40

 50

P
S

N
R

 (
d

B
)OverexposureOverexposure

OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03
Exposure (s)

D
u

ty
 C

y
c
le

(b)

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

0.5

 5

 10

 15

 20

 0 0.01 0.02 0.03
Exposure (s)

P
e

a
k
 I

n
te

n
s
it
y
 (

k
L

u
x
)

(d)

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

 100

 200

 300

 400

 500

 0 0.01 0.02 0.03
Exposure (s)

M
o

d
u

la
ti
o

n
 (

H
z
)

(f)
 0

 0.2

 0.4

 0.6

 0.8

 1

S
S

IM

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

OverexposureOverexposure
OverexposureOverexposure

O
v

e
re

x
p

o
s

u
re

O
v

e
re

x
p

o
s

u
re

Figure 4.3. PSNR and SSIM with respect to exposure time, LED intensity, duty cycle, and
modulation frequency.

(i) A single frequency cannot ensure robust protection. Figure 4.3(e) and (f) show that

for a given waveform frequency f , there exist several exposure time settings that lead to high-

quality images. This is because when te ≈ Ntl , the stripes become smoothed out (Figure 4.2(e)).

Although the waveform parameters are unknown to the attacker, a determined attacker may launch

a brute-force search for the te that satisfies this condition, thus circumventing the protection. To

counteract such attackers, LiShield includes a countermeasure called frequency randomization,

which we discuss in Section 4.7.2.

(ii) LiShield must prevent attackers from using long exposures. The image quality

increases with exposure time te, until overexposure happens (Figure 4.3(a) and (b)), because

longer exposure leads to more waveform cycles being included as a constant base in the brightness

of the stripes (larger N in Equation 4.3, 4.5), making the contrast of stripes QB/QD lower and

weakening the quality degradation. Since overexposure limits the maximum exposure time,

LiShield should leverage overexposure to limit the attacker’s exposure time.

(iii) LiShield should keep a high peak intensity to expand the overexposure zone. We

observe that when te falls below a threshold (≈1/100 s in Figure 4.3(c) and (d)), the image

is always corrupted due to the dominance of dark stripes (Figure 4.2 (c)). On the other hand,

115

when te goes beyond a threshold, the image always suffers from overexposure. A larger Ip

leads to a smaller overexposure threshold for te, which limits the attacker’s ability to tune te to

improve image quality. When Ip ≥ 10 kLx (Figure 4.3(c)), there almost exists only a single te

setting (te ≈ 1/100 s) that can avoid overexposure and dark stripes simultaneously. But even this

setting fails under LiShield’s frequency randomization mechanism (Section 4.7.2). With power

efficiency and eye health in mind (Section 4.12), LiShield sets Ip to 20 kLx by default.

(iv) Duty cycle should be kept at a moderate level. Without overexposure, a lower Dc

yields lower PSNR and SSIM (Figure 4.3(a) and (b)), as it widens the dark stripes (Equation 4.6).

On the other hand, a larger Dc means more light accumulation, resulting in overexposure across

a wider range of te settings. Since higher Ip has the same impact given a fixed Dc, we design the

LED waveform to have maximum peak intensity with moderate duty cycle, empirically set to

Dc = 0.5.

The above conclusions hold for all scenes since the trend of quality does not vary

with scenes (Section 4.11). Optimal parameters may vary slightly across different scenes (e.g.

different reflectivity), and can be easily obtained by taking one photo of the scene and running

the aforementioned simulation.

Adding Color to the Model. Occasionally sensitive information is in the color channel

of images, which requires LiShield to distort color for protection. LiShield extends to multi-

channel setup by independently generating waveforms for each of the RGB channels, turning

white stripes in the previous model into colored ones. To compensate for the intensity loss

compared with the white stripes, we need to make the new peak intensity I′p = 3Ip, assuming R,

G, and B appear with equal probability.

4.7.2 Circumventing Wild Captures

Based on the foregoing analysis, we identify the following potential holes that attackers

can exploit to overcome the striping effect. (i) Manual exposure attack. If an attacker can

configure the te to satisfy te ≈ Ntl , it can guarantee every row receives almost the same illumi-

116

nation, thus eliminating the stripes during a capture (Figure 4.2(e)). In practice, tl is unknown

to the attacker, but it can try to capture images with different te, until seeing a version without

obvious stripes1. (ii) Multi-frame attack. When the scene is static, an attacker may also combine

multiple frames (taking a video and playback) to mitigate the stripes with statistical clues, e.g.

by averaging or combining rows with maximum intensities from multiple frames. Note that

the attacker must keep the camera highly stable, otherwise even pixel-level shift will cause

severe deformation when combining multiple frames. (iii) Post-processing attack. Common

post-processing techniques (e.g., denoising and de-banding) might be used to repair the corrupted

images.

In what follows, we introduce countermeasures to the first two attacks. In Section 4.11.4,

we will verify that LiShield’s distortion does not fit empirical noise or banding models, so the

common post-processing schemes become ineffective.

Frequency Scrambling. To thwart the manual exposure attack, we design a frequency

scrambling2 mechanism, which packs multiple waveforms with randomly selected frequencies

within each image frame duration. Since the camera exposure time te is always fixed within each

frame, no single te can circumvent all the frequency components.

However, we cannot arbitrarily choose and switch the flickering frequencies for three

reasons. (i) Multiple frequency values that share a common divisor can satisfy te = Ntl under

the same te (recall N can be an arbitrary integer). We need to ensure the common divisor is

small enough (i.e., least common multiplier of tl large enough), so that overexposure occurs

even for the smallest N. (ii) Frequencies should be kept low to maximize image corruption, as

evident in Figure 4.3(e) and (f), since the camera’s analog gain decreases at high frequencies

[203]. (iii) Switching between different frequencies may create an additional level of modulation,

which will spread the spectrum and generate unexpected low frequency components that become

1Digital camera’s exposure time cannot be set arbitrarily due to hardware limitation. On Nexus 5, the granularity
is around 13µs, e.g., the actual exposure time is 1/1950 when the attacker needs 1/2000. Note that exposure time
must be fixed within each frame.

2Scrambling and randomization are exchangeable in this chapter.

117

...

...

...

...

...

...

... ...

f
1

f
2

f
3

+

+

=

f
1

f
2

f
3

+

=

... ...

...

...

...

M/f
B
 (aka. 1/f

p
)

1/f
B

f
p
f
B

1/f
1 f

1

f
1
-2f

p

*
=

f
p

Time Frequency

Figure 4.4. Decomposition of frequency randomization waveform and modulation generating
side lobes.

perceivable by eyes.

To explore the design space under these constraints, suppose we switch among M

frequencies f1, f2, . . . , fM (in ascending order) at a switching rate fB. The whole pattern thus

repeats itself at rate fp = fB/M. To pack at least M different frequencies in an image frame, we

need fB > (M−1) fr, or preferably, fB > M fr, where fr is the frame rate, typically around 30

Hz (fps). Note that the switching rate cannot be higher than the lowest scrambling frequency,

i.e. fB ≤ f1, otherwise the waveforms of f1 will be truncated. To maximize image corruption,

we choose the smallest value for f1 (i.e., f1 = fB), and empirically set fn = fB +(n−1)∆ f ,n ∈

2,3, . . . ,M, where ∆ f is frequency increment, set to ∆ f 6= fB to lower the common divisor

frequency.

The frequency scrambling can be considered as an M-FSK modulation: essentially, we

multiply the waveform corresponding to each frequency with a rectangular wave of frequency fp

and duty cycle 1/M, which convolves harmonics of the pattern repetition frequency fp to the

spectrum, creating side lobes around each scrambling frequency, spacing fp apart, as shown in

Figure 4.4. These side lobes might appear at low-frequency region and become perceptible by

human eyes.

To tackle this challenge, note that for waveforms with frequencies f2, f3, . . ., their side

lobes are dampened more at lower frequencies compared with f1, so we only need to focus on

118

0

10

20

30

40

50

0 50 100 150 200 250 300

M
ax

im
um

 P
SN

R
 (d

B)

Δf (Hz)

f1=200 Hz
f1=300 Hz

f1=400 Hz
f1=500 Hz

0

10

20

30

40

50

0 50 100 150 200 250 300

M
ax

im
um

 P
SN

R
 (d

B)

Δf (Hz)

temax=1/100 s
temax=1/200 s

Figure 4.5. Worst-case PSNR with different frequency increment ∆ f under different parameter
settings.

f1. The side lobes of f1 are located at f1 + k fp, where k is an integer. For the side lobe with

the lowest frequency, k = b f1/ fpc. Since we selected f1 = fB = M fp, the lowest non-DC side

lobe is at fp = fB/M. Therefore, to ensure no side lobe exists below the perceivable threshold

fth ≈ 80 Hz, we need a small M and large fB, and hence higher flickering frequency components

fn. Yet increasing the flickering frequencies may weaken LiShield’s protection. Fortunately,

since LiShield does not require large M (which leads to high fM) to circumvent the manual

exposure attack, the degradation should be tolerable.

To find the optimal ∆ f and showcase the effectiveness of the frequency scrambling, we

choose the case M = 2 and f1 = fB under 20 kLx peak intensity (to be consistent with our testbed

setup in Section 4.10). We then repeat the numerical simulation (Section 4.7.1) to evaluate the

attacker’s maximum image quality. Figure 4.5(a) shows that the quality has two peaks at ∆ f = 0

and 100 Hz, as well as a valley at ∆ f = 50 Hz. Note that the positions of these peaks/valleys are

independent of f1 and M, because quality always reaches the maximum at the longest te before

overexposure happens (denoted as temax in Figure 4.5(b)). Thus, we set ∆ f = (1/2)/temax = 50

Hz to maximize image disruption. The optimal ∆ f for other peak intensity settings can be

obtained following a similar procedure. Figure 4.5 also shows that, once set to the optimal

∆ f , frequency randomization can significantly improve LiShield’s robustness against manual

exposure attacks. Section 4.11 will show more evidence through testbed experiments.

119

Illumination Intensity Randomization. If attackers repetitively capture a static scene

for a sufficiently long duration, they may eventually find at least one clean version for each row

across all frames, thus recovering the image. LiShield does not guarantee complete protection

against such brute-force attacks. However, it can increase the number of frames needed for

image recovery, so that the attack becomes infeasible unless the camera can stay perfectly

still over a long period of time, during which the attackers may have already been discovered

by the owners of the physical space. LiShield achieves the goal by employing illumination

intensity randomization, where it randomly switches the magnitude of each ON period across

multiple predefined levels, which extends the attacker’s search space. We note that the intensity

randomization adds another level of modulation, but similar analysis in Section 4.7.2 still applies

and can ensure imperceptible operation.

To understand the effectiveness of this scheme, we build a statistical model to estimate

the number of frames needed to perfectly recover the image, as if LiShield did not function at all.

Suppose the LED waveform has K intensity levels, and the camera has m rows. For simplicity,

we assume the intensity levels of each row become uncorrelated after the randomization. Then

the probability that one row gets any illumination is p = ton/(ton + toff) = Dc. Observe that

on average same intensities would reappear approximately every K frames, the possibility of

combining L frames to fully recover an image of the static scene is thus:

Prec =


[
1− (1−Dc)

L/K
]m

(monochrome)[
1− (1−Dc)

L/K
]3m

(RGB)
(4.8)

Therefore, achieving a given level of Prec becomes increasingly difficult as Dc and K

increases, and for higher camera resolution (larger m). For example, to have Prec = 90% for

Dc = 0.5 and m = 2448 for 8-mega-pixel cameras, the attacker needs L = 300 frames under

K = 10, and ∼ 3000 frames under K = 100. For lower duty cycles, recovery becomes even more

challenging (e.g., ∼ 7000 frames are needed for Dc = 0.2, K = 100). As we will show later

120

(Section 4.11), in practice, the attackers cannot keep cameras completely still and all frames

aligned at the pixel level, even with a tripod and across a short duration. So Equation 4.8 gives

the best performance for such attacks. Note that if the target scene is mobile, then the multi-frame

attack becomes impossible, as long as the scene has certain variation across K frames. The

effectiveness of intensity randomization will be further justified in our testbed experiments

(Section 4.11).

4.8 Scene Recovery using Computational Shutters

To allow authorized users to capture the scene while maintaining protection against unau-

thorized attackers, we need to impose additional constraints on the LED waveform. LiShield’s

solution leverages a secure side channel (e.g. visible light communication [24] or Wi-Fi) between

authorized users and the smart LED, which conveys secret information such as frame timing and

waveform parameters3.

A naive solution is to stop flickering when authorized users are recording. However,

since attackers may be co-located with the authorized users, this enables them to capture one

or more frames that have part of the clean scene, which compromises privacy and security. To

counteract such cases, we design unique waveforms for the LED to minimize the flicker-free

duration.

4.8.1 Dynamic Scene Video Restoration

To authorize a camera to capture a dynamic scene, each individual frame within the

video must be recoverable. To achieve this, the authorized camera needs to convey its exposure

time setting tu
e to the smart LED via the secure side channel, and synchronize its clock (for

controlling capturing time) with the smart LED’s clock (for controlling the waveform), so the

smart LED can send recoverable waveforms precisely during the capture of the authorized

3Such information can be protected by existing encryption algorithms and systems, which are already mature
and thus beyond the scope of this project.

121

Figure 4.6. Enabling authorized users to capture dynamic scenes while corrupting unauthorized
users.

camera. State-of-the-art time synchronization mechanisms through visible light [99] or wireless

side-channels [149, 37, 143] can already achieve µs of accuracy, sufficient to synchronize the

LiShield smart LED with the camera at a resolution that is finer than the rolling shutter period

(typically tens of µs).

Recall that the camera can evade the striping effects if te = Ntl (phase does not matter,

see Section 4.7.2). So to authorize the user with exposure tu
e , LiShield simply needs to set its

flickering frequency fa = 1/tl = N/tu
e (N = 1,2, . . .) and maintain its peak intensity within each

frame. In addition, the tu
e and corresponding flickering frequency fa can be varied on a frame

by frame basis, making it impossible for an attacker to resolve the correct exposure time by

trial-and-error (Section 4.7.2).

Meanwhile, when the authorized camera is not recording at its maximum possible rate

(e.g., a 30 fps camera recording at 25 fps), there will be an interval (i.e., inter-frame gap) where

122

Figure 4.7. The impact of multi-frame recovery on authorized user and attacker, respectively.

the camera pauses capturing. LiShield packs random flickering frequencies other than fa into

the inter-frame gap, so as to achieve the same scrambling effect as described in Section 4.7.2,

without compromising the authorized capturing. Figure 4.6 depicts one example, where fintra

and finter denote intra-frame and inter-frame frequencies, respectively.

4.8.2 Static Scene Image Recovery

When the target scene is static, the authorized user may capture a few complementary

frames at a specific time to recover the scene as depicted in Figure 4.7, where frequency and

intensity randomization (Section 4.7.2) are employed in each frame to ensure robustness. While

it does require recording a very short video, the process is extremely short (200ms at most) and

barely noticeable to the authorized user. Meanwhile, an out-of-sync attacker will still receive

corrupted images that cannot reconstruct the original scene even after combined.

Suppose a static scene is to be recovered using L f frames, referred to as critical frames.

To prevent attackers from launching the multi-frame attack, the timing of the critical frames is

negotiated only between the smart LED and the authorized user through the secure side channel.

These L f frames together must contain the information of the entire scene, i.e. they must be

complementary, as shown in Figure 4.7. Meanwhile, all other frames will follow the normal

flickering pattern as discussed in Section 4.7. Since the attackers cannot identify nor predict the

123

timing of the critical frames , the best they can do is to launch the brute-force multi-frame attack,

which has been discussed in Section 4.7.2.

4.9 Light Encoding for Appearance Watermarking

High-intensity ambient light sources (e.g. sunlight, legacy lighting, flashlights) can create

strong interference to LiShield’s illumination waveform, degrading the contrast by adding a

constant intensity to both the bright and dark stripes, which may weaken LiShield’s protection.

In such scenarios, LiShield degrades itself to a barcode mode, where it embeds barcode in the

physical scene to convey privacy policies. The barcode forms low-contrast stripes, which may not

thoroughly corrupt the images of the scene, but can still be detected by online photo-distributing

hubs (e.g., social website servers) who automatically enforce the policies, without the cooperation

of the uploader or evidence visible by naked eye. LiShield forms the watermark with just a

single light fixture, instead of active displays (e.g., projectors) that are required by conventional

systems. The key challenge here is: how should LiShield encode the information, so that it

can be robustly conveyed to the policy enforcers, despite the (uncontrollable) attacker camera

settings? We now describe how LiShield’s barcode design meets the challenge.

4.9.1 Illumination Effect Embedding

LiShield’s barcode packs multiple frequencies in every image (or in every frame of a

video) following Section 4.7.2, but aims to map the ratios between frequencies into digital

information. Suppose LiShield embeds two waveforms with frequencies F0 and F1, it chooses

the two frequency components such that F1/F0 equals to a value Rp well known to the policy

enforcers. In other words, the presence of Rp conveys “no distribution/sharing allowed”. This

encoding mechanism is robust against camera settings 4.

Since physical scenes usually comprise a mix of spatial frequencies, and spectral power

4Although width of stripes is affected by sampling interval ts and exposure time te (Figure 4.2(a) and (b)), ratio
of stripe widths resulted from two frequencies (which equals to Rp) remains constant.

124

Red
Channel

Green
Channel

Blue
Channel

(a) Monochrome Barcode (b) RGB Barcode

Block

Rows

C
ol
um

ns

f1 f2 f3 f1 f2

Block

f3

f4 f5 f6

f7 f8 f9

Figure 4.8. Barcode design for monochrome and RGB LED.

rolls off in higher spatial frequencies thanks to camera lenses limited bandwidth [51] while

temporal frequencies are unaffected, LiShield’s barcode uses frequencies that are much higher

than the natural frequencies (> 400Hz) in the scene to avoid interference. It is worth noting that

since the rolling-shutter sampling rate of all cameras falls in a range (30 kHz to slightly over

100 kHz [203]), LiShield limits its highest flickering frequency to 15 kHz, which respects the

Nyquist sampling theorem so that the barcode can eventually be recovered without any aliasing

effect.

To further improve robustness, LiShield leverages redundancy. It embeds multiple

pairs of frequency components to make multiple values of Rp. In this way, LiShield can pack

different Rp either at different rows of the image or in different color channels, further mitigating

interference caused by intrinsic spatial patterns within the scene. Figure 4.8 illustrates an example

of monochrome (C2
3 = 3 Rp values) and RGB LEDs (C2

3×3 = 36 Rp values). Note that the same

mechanism can be used to increase the amount of information in the barcode, but this is beyond

the scope of the present work.

125

ALGORITHM 2: Barcode Detection
Input: image I (m×n), nbr , nbc , Tb, Sb, Mb, mb = 0, F =∅, Dp =∅, B =∅, fs = 30 kHz
Output: whether I is protected
crop I to nbr ×nbc-size blocks, store in set B;
for b ∈ B do

sr← nbr ×1←mean(nbr ×nbc);
FD← detrend(FFT (sr, fs));
pick Mp maximum peaks Fp ∈ FD,
400 Hz6 Fp 615 kHz;
F ← F ∪Fp;

end
Dp← Dp∪ (fi/ f j), ∀ fi, f j ∈ F ;
for dp ∈ Dp do

if dp ∈ [Rp−Tb,Rp +Tb], ∀Rp ∈ Sb then
mb← mb +1;

end
end
if mb ≥Mb then

I is protected;
end

4.9.2 Pattern Detection and Recognition

Since the barcode contains M frequencies, i.e. fn = fB +(n−1)∆ f ,n ∈ 2,3, . . . ,M (Sec-

tion 4.7.2), there are MR =C2
M possible frequency ratio values across the image for monochrome

barcode (MR = C2
M×3 for RGB barcode). ∆ f must be set large enough to avoid confusion

(∆ f = 200 Hz in experiments). The barcode decoder, running on the policy enforcer, recognizes

the image as protected if there are at least Mb values that roughly match the known ratio Rp, i.e.,

when the value falls within Tb of Rp. We empirically set Mb = dγMR +Mattewhere Matt is number

of Rp removed by manual exposure attack (Section 4.7.2). γ and Tb are determined by bounding

the false positive rate following an empirical procedure (to be discussed in Section 4.11.3).

To detect the frequency ratios, LiShield first partitions the image into nbr ×nbc blocks,

across both rows and columns, either within the monochrome channel or among all 3 RGB

channels. Dividing image by columns provides LiShield multiple copies of the same frequency

block, in case some of them are interfered by spatial patterns in the scene. For example, in

Figure 4.8, nbr = 6 and nbc = 4. For each block, LiShield averages the intensity of each row to get

126

a one-dimension time series sr of length L f = m/nbr , given total m rows on the image. LiShield

then runs FFT over each series to extract the Mp strongest frequencies. Note that LiShield’s

detector allows more than one frequencies to appear in one block. Finally, LiShield combines

all unique frequencies extracted from each block and computes all frequency ratios (within and

across color channels in the case of RGB barcode). Algorithm 2 describes the procedure of

barcode detection.

LiShield’s redundancy in barcode ensures that the barcode cannot be completely de-

stroyed, unless nearly all frequencies are distorted by processing the image, which will in turn

cause strong deformation on the scene. We will verify the robustness of this scheme through

testbed experiments (Section 4.11.4).

4.10 Implementation and Hardware Design

Testbed Setup. Figure 4.9 shows our smart LED prototype, and the target scenes

containing 5 capture-sensitive objects (document and painting are 2-D objects and others are

all 3-D objects). We mount the LED inside a diffusive plastic cover similar to conventional

ceiling light covers. We use a programmable motor [20] to hold the camera and control its

distance/orientation, in order to create static or dynamic scene setup in a repeatable manner.

Smart LED Modules. Commercial-of-the-shelf (COTS) household LED bulbs rely on

integrated drivers to regulate LED’s current [168, 103]. A dimming input is usually available on

these drivers for controlling the current dynamically. We build our smart bulb based on the same

topology as these COTS LED bulbs. For safety, we use 19V DC laptop power supplies instead of

wall AC power, and NCL30160 [120] LED drivers which allow dimming at nearly 100 kHz with

arbitrary OOK waveform. The intelligent bulb has built-in independent RGB/white channels for

controlling color/intensity. Each channel can be controlled by a separate waveform, with 4 LED

chips in series, at a driving current of 800 mA. In total, the 3 channels consume approximately

25 W peak power, close to ordinary office LED troffer fixtures. However, since LiShield’s OOK

127

Figure 4.9. Experimental setup and multiple scenes we used.

waveform has a duty cycle much lower than 1 (Section 4.7), the actual perceptible brightness is

significantly lower. As a result, multiple LED modules can be used to improve light intensity.

Figure 4.10 depicts the circuit for each color channel and shows a photo of the whole module.

The dimming input signals of each channel are controlled by an STM32 [156] micro-

controller unit (MCU), which generates the OOK waveform as specified by LiShield. For flexible

reconfiguration, we generate digitized waveforms in MATLAB on a laptop or Android app on a

smartphone instead, which are then passed to the MCU via USB.

Android Program for Normal, Authorized and Attacking Cameras. Unless other-

wise noted, we use Nexus 5 [32] with stock ROM as our benchmark device. We assume that

normal users use the stock camera app with default settings (including auto-exposure), while a

malicious attacker can manually tune the camera parameters (e.g., using the Open Camera app

128

+

-

x4
OOK Input

(from MCU)

NCL30160Current
Sense

Resistor

EN

CS LX

Figure 4.10. Simplified circuit diagram and photo for the smart LED module.

[64]). By default, the camera ISO is set to the lowest value (100) since it is the most beneficial

for attackers, as it allows longer exposure to smooth out the stripes without causing overexposure.

To implement the authorization mechanism (Section 4.8), we develop a specialized app for

the authorized smartphone, which uses Android’s Camera2 API [52] to precisely control the

exposure time, as well as communicate with the smart LED’s MCU via USB. Since current

Android camera APIs do not support precise frame timing, the app requests the smart LED to

synchronize with the camera by altering its waveform.

Image Processing Attack. We have implemented the attacking algorithms in Sec-

tion 4.7.2, which are specifically designed to combine/process the captured image, aiming to

eliminate LiShield’s stripe distortion. In addition, we implement classical image processing tech-

niques, including denoising and debanding, which may be attempted by attackers. For denoising,

we use the Haar-wavelet thresholding [22], non-local-means (NLmeans) [12] and BM3D [23],

which are among the most popular algorithms [144]. For Haar-wavelet and NLmeans, we use the

G’MIC [72] plugin of the GIMP [162] image processing program. For BM3D, we use a CUDA

implementation [66] since it is significantly faster and practical than CPU-base implementations.

As for debanding, we use the Banding Denoise [36] and Unstrip [11] in the G’MIC [72] plugin.

Metrics. Small displacement and vibration of the camera are inevitable in physical

environment, which is known to affect the SSIM of captured images significantly [184]. Thus, we

quantify the image quality degradation with the enhanced CW-SSIM [139], which is insensitive

under such translations but similar to SSIM otherwise. Since PSNR shows similar trends with

129

0
2
4
6
8

10
12
14

Doc Paint Glass Key Face

PS
N

R
 (d

B)
100 Hz
200 Hz

300 Hz
400 Hz

500 Hz

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Doc Paint Glass Key Face

C
W

SS
IM

100 Hz
200 Hz

300 Hz
400 Hz

500 Hz

Figure 4.11. Impact of flickering frequency on quality.

SSIM, we omit it in the experiments except for a few cases. Besides, we employ the CIEDE2000

[102] to compute the degradation of the image color quality when the RGB LED is used.

4.11 Prototype Testing and Evaluation

4.11.1 Efficacy of Stripe Pattern on Images

Impact of Flickering Frequency. We first verify LiShield’s basic protection scheme

(Section 4.7) with 5 static scenes, monochrome LEDs, and OOK waveform without frequency

randomization, while the attacker’s camera uses automatic exposure. Without LiShield, the

measured image quality stays high, with PSNR> 30 dB and CW-SSIM> 0.9 (slightly lower than

simulation results due to digital noises in real cameras). Despite the use of a basic configuration,

LiShield degrades the image quality by 3 to 10 dB for PSNR and 0.25 to 0.45 for CW-SSIM

(Figure 4.11). We notice that the quality worsens slightly as flickering frequency decreases from

500 Hz to 100 Hz, as the image sensor has higher analog gain at lower flickering frequencies

[203]. In addition, different scenes suffer from different levels of disruption, depending on the

scene’s structure and reflection rate. As a visual quality benchmark, Figure 4.12 plots the same

scene with different qualities under flickering.

Impact of Waveform Duty Cycle. We use 100 Hz flickering frequency on the document

scene as a representative setup 5 to study the impact of duty cycle of the emitted waveform. Here

we enable automatic exposure to study the stripes’ impact alone. Figure 4.13 shows that lowering

5Unless otherwise noted, the rest of experiments use the same setup.

130

Figure 4.12. Image quality levels on a benchmark image.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
W

SS
IM

Duty Cycle

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ve

re
xp

os
ur

e
Pr

op

Duty Cycle

Figure 4.13. Left: Impact of duty cycle on quality with automatic exposure. Right: Impact of
duty cycle on overexposure area with fixed exposure.

the duty cycle from 0.9 to 0.1 degrades the image quality dramatically, with CW-SSIM from

nearly 0.6 to just over 0.1. However, a higher duty cycle leads to more light influx and larger

overexposure area (Figure 4.13) when fixed exposure is used by the attacker (here te = 1/200

s). To leverage both types of quality degradations (i.e., flickering stripes and overexposure), the

LED should adopt a relatively moderate duty cycle but high peak intensity, which echoes our

model in Section 4.7.1.

Impact of RGB Color Distortion. We further verify the color-distortion impact when

the RGB flickering is turned on. The results (Figure 4.14) demonstrate slightly weaker quality

degradation when its peak intensity is the same as monochrome LED (and thus average intensity

131

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Doc Paint Glass Key Face

C
W

SS
IM

Mono LED, 1/3 Power
Mono LED, Full Power
RGB LED, 1/3 Power

0
5

10
15
20
25
30
35
40
45
50

Doc Paint Glass Key Face

C
IE

D
E2

00
0

100 Hz
200 Hz

300 Hz
400 Hz

500 Hz

Figure 4.14. Left: Impact of color on quality. Right: CIEDE2000 for measuring color distortion.

50
60
70
80
90

100
110
120

1 2 3 4 5Av
er

ag
e

Pi
xe

l I
nt

en
si

ty

Frame Number

Red
Red Ref

Green
Green Ref

Blue
Blue Ref

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Mono Color
C

W
SS

IM

AE
1/1000 s

1/500 s
1/200 s

1/100 s
1/50 s

Figure 4.15. Left: Impact on automatic white balance. Right: Impact on dynamic scene.

is only 1/3). But the quality degradation is stronger if the RGB LED has the same average

intensity as monochrome LED. Besides, the color distortion makes an additional independent

impact. The corresponding CIEDE2000 metric (Figure 4.14) escalates up to 45, way beyond the

human-tolerable threshold 6 [102]. This implies the scene is no longer considered viewable by

average viewers.

Two bonus effects from our RGB LED are observed: (i) The structural distortion from

the stripes disrupts the camera’s auto-focus function, often making the captured scene extremely

blurred. This is because under LiShield, the contrast of bands no longer depends on focusing

accuracy, which breaks the assumption of the auto-focus mechanism. (ii) The color bands also

mislead the automatic white balance function across all 5 different scenes, since the camera can

no longer identify a clean region in the image to calibrate itself and thus hesitates, as shown in

Figure 4.15.

Impact on Dynamic Scenes. To create a dynamic scene, we use the motor to rotate the

smartphone, creating relative motion at three different speeds (45, 100, and 145 degrees/second).

132

0
0.2
0.4
0.6
0.8

1

N
exus 5

N
exus 5X

N
exus 4

Xperia M
5

LG
 G

4

G
alaxy N

exus

G
alaxy S5

iPhone 7 Plus

M
oto X

iPad M
ini 2

C
W

SS
IM

Figure 4.16. Impact of device heterogeneity. Error bars show std. across OOK waveforms with
different frequencies (100 Hz to 500 Hz).

Unprotected Authorized Attacker
(a)

AttackerAuthorizedUnprotected
(b)

Figure 4.17. Frames observed by authorized users and attackers for (a) static scene and (b)
dynamic scene.

Figure 4.15 shows the average quality among all 3 speeds, which indicates that dynamic scene

experiences worse quality under LiShield due to motion blur. Moreover, if the exposure time

is larger than 1/100 s, then overexposure and motion blur together further reduce the quality

(PSNR < 6, CW-SSIM < 0.1). Thus, dynamic objects further decrease the adjustment range of

exposure time and make manual exposure attacks more ineffective.

Impact of Device Heterogeneity. We cross-validate the impact of LiShield on 10

common smartphone cameras. Figure 4.16 shows the image quality varies slightly, due to

different sampling rates across devices resulting in stripes of different widths. However, the

quality remains at an intolerably low level across devices. Thus LiShield’s protection mechanism

works across typical smartphone camera models.

133

 0

 10

 20

 30

 40

 0 30 60 90 120 150 180

P
S

N
R

 (
d
B

)

Frame Number

Auth. Att.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150 180

C
W

-S
S

IM

Frame Number

Auth. Att.

Figure 4.18. Video quality with and without authorization.

4.11.2 Restoring Appearances with Certified Cameras

We developed an app (Section 4.10) that allows a user to capture critical frames on

static scene protected by our RGB LED, and then recover the scene following Section 4.8. The

resulting image quality (PSNR = 25dB, CW-SSIM = 0.9, CIEDE2000 = 5) is comparable to the

ideal setting when we disable LiShield’s LED modulation (Figure 4.17 shows example frames

extracted from a recorded video). In contrast, the attacker suffers intolerable image corruption

(PSNR = 13dB, CW-SSIM = 0.56, CIEDE2000 = 34) by combining same number of randomly

selected frames (Section 4.7.2).

For the dynamic scene, we set fintra =1 kHz and finter =300 Hz (Section 4.8.1). From Fig-

ure 4.18, we can see the authorized user has much higher quality (PSNR=25dB, CW-SSIM=0.98

in average) compared with attacker (PSNR = 10dB, CW-SSIM = 0.6 in average). This can be

seen by resulting image frames in Figure 4.17 where attacker suffers from both intra-frame and

inter-frame stripes. Thus LiShield’s authorization scheme is effective in unblocking specific

users while maintaining protection against attackers.

4.11.3 Placing and Uncovering Hidden Barcodes

We first determine general optimal parameters for LiShield’s barcode detector (γ,Tb,nbr

and nbc in Section 4.9), based on the following metrics. (i) False alarm rate. We run the

detector on 200 images (random real-world scenes) in the SIPI database [186], and measure

134

10
5

00

0.05

0.15

0.1

0.05

0
0.1

10
5

00

0.05

0.15

0.1

0.05

0
0.1Fa

lse
 A

lar
m

 R
at

e

Fa
lse

 A
lar

m
 R

at
e

Tb nbMpTb

Figure 4.19. False alarm ratio across detector settings.

the probability that a barcode is detected from clean image. (ii) Detection rate. We embed

monochrome barcodes with different f1 from 400 Hz to 10 kHz with 200 Hz switching frequency.

For each f1, we embed 3 frequencies (i.e., MR = 3 in Section 4.9) with ∆ f = 200 Hz interval

and capture 300 images with these barcodes over a benchmark scene (without loss of generality)

to obtain detection rate. For simplicity we set nb = nbr = nbc . Figure 4.19 plots the fraction

of falsely detected frequency ratios (i.e., Rp in Section 4.9) over total number of ratios, while

Figure 4.20 shows successful detection rate under the same set of parameters. Considering the

trade-off between false alarm and detection, we choose Tb = 0.05, Mp = 2 and nb = 4 to bound

the false alarm rate below 5%, and set Mb = d2×5%×MR +Matte = 3 to guarantee no false

alarm for barcodes with 3 frequencies (Matt = 2 since manual exposure attack can remove two

Rp), while ensuring around 90% detection rate for monochrome barcode.

Using the above configuration and frequencies in Tables 4.1 and 4.2, Figure 4.21 shows

that detection rate for RGB barcodes is close to 100% with or without manual exposure attack,

while being slightly below 90% for monochrome barcodes if attacked. We conclude that

LiShield’s barcode detector provides reliable detection, while RGB barcodes are more detectable

and robust than monochrome ones, thanks to extra redundancy provided by color channels.

An attacker may post-process the image in an attempt to remove the watermark. However,

thanks to the redundancy of the barcode, the attacker will have to deform most parts of the image,

135

10
5

00

0.05

1

0.8

0.6

0.4

0.2

0
0.1

10
5

00

0.05

1

0.8

0.6

0.4

0.2

0
0.1

De
te

ct
io

n
Ra

te

De
te

ct
io

n
Ra

te

MpTb Tb nb

Figure 4.20. Detection rate across detector settings.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Mono Mono+Att RGB RGB+Att

D
et

ec
tio

n
R

at
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 m 2 m 3 m

D
et

ec
tio

n
R

at
e

Distance

Figure 4.21. Left: Detection rate of monochrome and RGB barcode design. Right: Barcode
detection rate across distance under a single LED.

Table 4.1. Flicker-free configurations for monochrome barcode.

Seq f1 (Hz) f2 (Hz) f3 (Hz) tatt (s)
1 400 600 800 1/400, 1/600, 1/800
2 1000 1200 1400 1/1000, 1/1200, 1/1400
3 1600 1800 2000 1/1600, 1/1800, 1/2000

which greatly reduces the image quality and makes the attack nonviable.

4.11.4 Robustness Against Camera Maneuvers

Manual Exposure Attack. One possible attack against LiShield is to manually set the

exposure time te to smooth out the flickering patterns (Section 4.7.2). Figure 4.22 shows that

although the image quality first increases with te, it drops sharply as overexposure occurs. There-

fore, LiShield traps the attacker in either extreme by optimizing the waveform (Section 4.7.1),

and thwarts any attempts through exposure time configuration.

We further test the effectiveness of randomization as configured in Table 4.3 with auto-

136

Table 4.2. Flicker-free configurations for RGB barcode.

Color f1 (Hz) f2 (Hz) f3 (Hz) tatt (s)
Red 400 600 800 1/2000 ∼ 1/400

Green 1000 1200 1400 1/2000 ∼ 1/400
Blue 1600 1800 2000 1/2000 ∼ 1/400

Table 4.3. Flicker-free configurations for frequency randomization. fc, tatt represent center
frequency and attacker’s exposure time.

M fB = f1 (Hz) ∆ f (Hz) fc (Hz) tatt (s)
2 200 50 225 1/225
3 300 50 350 1/350
4 400 50 475 1/475
5 500 50 600 1/600
6 600 50 725 1/725

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

100Hz 200Hz 300Hz 400Hz 500Hz

C
W

SS
IM

Flickering Frequency

1/1000 s
1/500 s

1/200 s
1/100 s

1/50 s

0

0.2

0.4

0.6

0.8

1

100Hz 200Hz 300Hz 400Hz 500HzO
ve

re
xp

os
ur

e
Pr

op
or

tio
n

Flickering Frequency

1/1000 s
1/500 s

1/200 s
1/100 s

1/50 s

Figure 4.22. Quality and overexposed proportion with fixed-exposure camera.

matic exposure (except for attacker). Figure 4.23 shows that the image quality with scrambling

is comparable with a single frequency of f1 and fc, thus frequency randomization does not

cause much difference in image quality. Note that the image quality varies only slightly with

the number of frequencies, implying it is insensitive to LiShield’s frequency randomization

pattern. We assume the exposure time is tatt = 1/ fc, which is optimistic for the attacker. Results

show that image quality does not vary significantly (compared with attacks to stripes without

randomization), showing LiShield’s robustness against such attacks.

Multi-Frame Attack. Figure 4.24 plots the recovered scene’s quality under the multi-

frame attack. Here we set te to be 1/500 s to avoid overexposure and then record a video in 30 fps.

When a tripod is used, PSNR goes to 30 dB but CW-SSIM remains low at 0.5 using 1000 frames,

which means the impact of stripes on the structure of scenes is still strong although intensity does

137

0
5

10
15
20
25
30
35
40

M=2 M=3 M=4 M=5 M=6

PS
N

R
 (d

B)

Randomization Pattern

Rand
Center Freq

Min Freq
Non-Rand Att

Rand Att

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

M=2 M=3 M=4 M=5 M=6

C
W

SS
IM

Randomization Pattern

Rand
Center Freq

Min Freq
Non-Rand Att

Rand Att

Figure 4.23. Quality with and without frequency randomization.

0
5

10
15
20
25
30
35
40

10 102 103

PS
N

R
 (d

B)

Number of Frames

Tripod
Hand Holding

0
0.2
0.4
0.6
0.8

1

10 102 103
C

W
SS

IM
Number of Frames

Tripod
Hand Holding

Figure 4.24. Image quality with number of frames of multi-frame attack.

0
1
2
3
4
5
6
7
8
9

10

Doc Face

PS
N

R
 (d

B)

w/o Denoise
De-Band

Nlmeans
Unstrip

Wavelet
BM3D

0

0.2

0.4

0.6

0.8

1

Doc Face

C
W

SS
IM

w/o Denoise
De-Band

Nlmeans
Unstrip

Wavelet
BM3D

0
2
4
6
8

10
12
14
16
18
20

Mono LED RGB Color LED

PS
N

R
 (d

B)

w/o Denoise
De-Band

Nlmeans
Unstrip

Wavelet
BM3D

(a) (b) (c) (d) (e)
0

0.2

0.4

0.6

0.8

1

Mono LED RGB Color LED

C
W

SS
IM

w/o Denoise
De-Band

Nlmeans
Unstrip

Wavelet
BM3D

0
5

10
15
20
25
30
35
40

w/o De-Band Nlm Unstrip Wavelet BM3D

C
IE

D
E2

00
0

0
1
2
3
4
5
6
7
8
9

10

Doc Face

PS
N

R
 (d

B)

w/o Denoise
De-Band

Nlmeans
Unstrip

Wavelet
BM3D

0

0.2

0.4

0.6

0.8

1

Doc Face

C
W

SS
IM

w/o Denoise
De-Band

Nlmeans
Unstrip

Wavelet
BM3D

0
2
4
6
8

10
12
14
16
18
20

Mono LED RGB Color LED

PS
N

R
 (d

B)

w/o Denoise
De-Band

Nlmeans
Unstrip

Wavelet
BM3D

(a) (b) (c) (d) (e)
0

0.2

0.4

0.6

0.8

1

Mono LED RGB Color LED

C
W

SS
IM

w/o Denoise
De-Band

Nlmeans
Unstrip

Wavelet
BM3D

0
5

10
15
20
25
30
35
40

w/o De-Band Nlm Unstrip Wavelet BM3D

C
IE

D
E2

00
0

Figure 4.25. Effects of denoising and de-banding image processing algorithms.

not differ substantially, making quality still unacceptable for professionals who spend such a

significant cost. We also ask 5 volunteers to hold the smartphone as stable as they can on a table,

and Figure 4.24 shows the quality is even lower because it is impossible to completely avoid

dithering with hands even with anti-shake technology, making recovered scenes unviewable.

Extending the recording duration increases the number of frames recorded by the attacker, but it

also increases disturbance and probability of being identified by the protected user, making it

risky and impractical for the attacker to pursue higher quality.

138

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Direct Sun Diff Sun Office Flash Dark

C
W

SS
IM

1/3 Power
2/3 Power

Full Power

0
10
20
30
40
50
60
70
80
90

100

Direct Sun Diff Sun Office Flash Dark

C
IE

D
E2

00
0

1/3 Power
2/3 Power

Full Power

Figure 4.26. Image quality under ambient lights.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Direct Sun Diff Sun Office Flash Dark

D
et

ec
tio

n
R

at
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 m 2 m 3 m

C
W

SS
IM

Distance

Mono LED, Full Power
RGB LED, Full Power

Figure 4.27. Left: Barcode detection rate with ambient light intensity. Right: Image quality with
different distances under a single LED.

Image Recovery Processing Attack. Figure 4.25 shows the image quality after post-

processing with denoising or de-banding (Section 4.10). The denoising methods fail to improve

the quality significantly as the disruption pattern of LiShield does not fit any known noise model

(e.g. the commonly used Gaussian model). BM3D can improve the CW-SSIM slightly because

it decreases contrast slightly, but the PSNR remains low. The deformation removal methods (i.e.,

de-banding and unstriping) do not help either, since the interpolation process cannot bring back

the correct pixel values. The CIEDE2000 color metric also shows a low quality (well above

6). Thus, it is practically impossible to remove LiShield’s impact by image processing, despite

some unnoticeable increase of the image quality. More advanced computer vision techniques

may provide better recovery, but even they will not recover the exactly original scene since

information is already lost at capture time.

Impact of Ambient Light. We evaluate LiShield’s performance under different types

of ambient lights and LED power to verify LiShield’s robustness. As shown in Figure 4.26,

the stripes are almost entirely removed under direct sunlight due to its extremely high intensity,

139

making the quality comparable with the unprotected case (PSNR>30dB, CW-SSIM>0.9).

However, CIEDE2000 remains relatively high as LED’s light affects the scene’s color tone

significantly, which explains unexpected image quality degradation under diffused sunlight and

office light in Figure 4.26. The flashlight can increase the quality slightly thanks to its close

distance to the scene, but the improvement is marginal and far from unprotected. In addition,

Figure 4.27 shows a slight decrease in the detection rate of barcodes under direct sunlight, but

the decrease is marginal in every case. Thus, we conclude that LiShield is robust against ambient

light, and still guarantees protection with barcode under direct sunlight.

Impact of Distance. We vary the distance between the camera and a single LED from

1 m to 3 m. The scene resolution lowers at a longer distance. Figure 4.21 shows the barcode

detection rate remains high (> 90%) at 2 m range (where the bright area is only 1/4 on the image

compared with the 1 m case). However, only a 70% rate can be achieved at the 3 m range since

the bright area is too small on the image (1/9). However, multiple LEDs may be distributed to

increase the coverage. To make a fair comparison on quality, we tailor the same scene from the

image to avoid interference from surrounding objects. Figure 4.27 shows that even under 3m,

CW-SSIM is still way below 0.9 and the quality only increases slightly with distance. Thus,

LiShield’s working range can cover most of the common applications with only a single smart

LED. With multiple smart LEDs, LiShield’s coverage can be scaled up just like normal lighting

(Section 4.12).

4.12 Conclusion and Social Impact

Considerations for High Peak Intensity. Considering the hardware capability and

energy costs, we estimate the optimal LED peak intensity to be 20 kLux, and average intensity is

10 kLux with 0.5 duty cycle, which is an order of magnitude lower than outdoor intensity in a

sunny day [165], and generally considered safe even for long activities [161]. Our smart LED is

brighter than typical indoor lighting, which is usually less than 1 kLux. But we found the intensity

140

is always acceptable by perception in our experiments, likely because the brightness perceived by

human eyes and actual light intensity follow a logarithmic relationship. Since privacy protection

has a higher priority than power savings, we expect a slight increase of illumination brightness is

acceptable in the target use cases.

Multiple LEDs and Cameras. When a large indoor environment needs LiShield’s

protection, the smart LEDs can be deployed pervasively to cover the whole area, just like regular

lighting. The availability of multiple LEDs can also increase the diversity of the protection since

each of them can be controlled independently. We leave the optimization of such a multi-LED

setup for future work.

With the presence of multiple unauthorized cameras, LiShield needs to ensure no ad-

ditional information can be recovered by combining images across them, which may impose

extra constraints on waveform design. Meanwhile, when multiple authorized cameras (sec:auth)

are present, LiShield can serve them in a round-robin manner. Better strategies may require

synchronization between cameras and we leave them for future work.

Attacker with Special Equipment. Global shutter cameras, ND filters (optical attenu-

ators), and similar professional devices may compromise LiShield’s protection. While this is

inevitable, we note that such devices are usually bulky and costly, making them obtrusive and

less accessible by everyday photographers. Thus, LiShield may still protect the privacy of its

users by demotivating such attacks. An advanced version of LiShield that fully prevents such

attacks will be left for our future work.

Recording a high-speed video (e.g., 120 FPS) by advanced cameras will not significantly

weaken LiShield’s protection, as stripes across frames will be similar. High FPS also requires

shorter exposure, which actually amplifies LiShield’s effect. Along with the backup barcode

protection, which is not affected by the camera’s frame rate, the threat posed by a high-speed

camera is limited.

Privacy protection in passive indoor environments has been an important but unsolved

problem. In this chapter, we propose LiShield, which uses smart-LEDs and specialized intensity

141

waveforms to disrupt unauthorized cameras, while allowing authorized users to record high-

quality images and videos. We implemented and evaluated LiShield under various representative

indoor scenarios, which demonstrates LiShield’s effectiveness and robustness. We consider

LiShield as the first exploration of automatic visual privacy enforcement and expect it can inspire

more research along the same direction.

Chapter Review. In this chapter, we extended the concept of image effects to real

photography. By building customized cameras and illumination sources, we can create and

manipulate the structure of image appearances simultaneously to support real-world visual

applications.

Acknowledgements. This chapter, in full, is a reprint of the material as it appears in

International Conference on Mobile Computing and Networking 2017 and Communications of

the ACM 2020 [210, 213]. Shilin Zhu, Chi Zhang, and Xinyu Zhang, Association for Computing

Machinery, 2020. The dissertation author was the co-primary investigator and author of this

paper. Chi Zhang was the other co-primary author who contributed equally to this work.

Disclaimer. The work presented in this chapter was equally contributed by both the

author of this dissertation and his collaborator Chi Zhang at the University of Wisconsin, Madison.

The author of this dissertation was primarily responsible for the algorithm part, and Chi Zhang

was primarily responsible for the hardware and prototype part. The permission to include the

joint work in this dissertation has been granted.

142

Chapter 5

Finale

After discussing a variety of image effects that are attainable with computer programs,

we summarize the discoveries and scientific contributions in this last chapter. Although the future

is normally unpredictable, my professional speculations are included in the end.

5.1 Conclusion and Open Problems

In this dissertation, we have systematically presented our research work on computing

images under disparate illuminations. Our contributions can be encapsulated as follows:

• We raised the quality of radiance reconstruction in particle-based image synthesis by an

efficient density estimation scheme;

• We introduced a learning-based path sampling strategy to compute global illumination on

images at a higher rate of convergence;

• We extended the domain of imaging by innovating a coded photography framework to

produce unconventional image appearances.

Our proposed methods are capable of reaching unprecedented performance levels in many

cases. Nevertheless, limitations are inevitable, and there are unfortunately still numerous open

questions.

143

1

Computations
(Our Focus)

Image

Figure 5.1. Summary of the image formation process. The scientific mission of our work is
to innovate new computations to “paint” diverse illuminated effects on pictures that reflect our
appearance expectation.

In the realm of realistic rendering, even the most state-of-the-art light transport solution

has fear for the rapid growth of scene complexities. Taking the visual effect industry as a

representative example, modeling and lighting artists have started to instance millions of objects

and lights that regularly swallow hundreds of Gigabytes to a few Terabytes. Effective sampling

and reconstruction save us some time, but the algorithmic essence is untouched. For a moment

in the future, we may have to rethink the drawbacks of Monte-Carlo simulation and perhaps give

birth to a brand-new method.

For the field of computational photography, the development of creative imaging tech-

niques is majorly impeded by hardware limitations. Most working prototypes heavily rely on the

use of professional cameras (e.g., DSLR) and bulky light sources (e.g., laser). Some particular

designs even require extremely high-speed electronic circuits. Additionally, certain imaging

steps are still dominated by sluggish mechanics such as the lens. Therefore, we must pay more

attention to the practicality of our systems in future explorations.

We have witnessed the flourish of machine learning and its wide adoption on images in

vision, graphics, and photography. Despite the successes we have accomplished, the computa-

144

tionally expensive nature of neural networks is obstructing the applicability to many problems,

especially those with no access to GPUs. For future research involving deep learning, we ought

to put extra focus on cost reduction possibly by introducing more domain-specific knowledge.

The continuous bloom of image-related technology makes me confident that the afore-

mentioned open questions will be answered in the foreseeable future because we researchers

always have the courage to step into the unknown.

5.2 The Future of Images: To 4D and Beyond

Images are significant to study because such 2D concept is closest to the pathway of

human perception. Still, people are attempting to unlock more dimensions. For instance, 3D

holography is an imaginative technique that permits the view from any direction by reconstruct-

ing the wavefront of light. Another example is light field cameras which equip extra optical

components to capture the entire 4D light distribution by the plenoptic function. In terms of the

time dimension, there are stacks of work on video analysis and extrapolation where computers

can understand sequences of images and predict events that might occur. These research efforts

are pulling our current impression of images to higher dimensions.

The concept of image is also being extended to other domains of science. For example,

in astronomy, people have recently applied computational photography principles on telescopes

to capture the first black hole image in human history. In medical science, we have started to

see new volume rendering technologies that can help doctors examine various diseases such as

tumors. Lastly, in planetary science, people are developing layered scanning methods to uncover

the evolution of Earth. The development of imaging in computer science is responsible for the

success in these fields.

It is my professional opinion that machines can never reach the same level of aesthetics

as humans, regardless of how hard we seek in the future. Painting is a creative process by people

like Vincent van Gogh to create pictures of outstanding artistry. Computers have no way to

145

understand that, and they should not. It is important to realize that the primary goal of our

research efforts on images is to bring the technology to serve, not to replace.

Without a doubt, it is a gift from nature that we have biological cameras to capture our

world whenever the sun rises. We are witnesses of a golden age when the history of imaging is

being rewritten. Through countless small steps of work like ours, a giant leap of visual computing

is going to come.

146

Bibliography

[1] Digital Image Steganography: Survey and Analysis of Current Methods. Signal Process-
ing, 90(3), 2010.

[2] Paarijaat Aditya, Rijurekha Sen, Peter Druschel, Seong Joon Oh, Rodrigo Benenson,
Mario Fritz, Bernt Schiele, Bobby Bhattacharjee, and Tong Tong Wu. I-Pic: A Platform
for Privacy-Compliant Image Capture. In Proceedings of ACM Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys), 2016.

[3] Saeed Al-Mansoori and Alavi Kunhu. Robust watermarking technique based on dct to
protect the ownership of dubaisat-1 images against attacks. International Journal of
Computer Science and Network Security (IJCSNS), 12(6):1, 2012.

[4] Stephen J. Anderson and David C. Burr. Spatial and temporal selectivity of the human
motion detection system. Vision Research, 25(8):1147 – 1154, 1985.

[5] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony Derose, and Fabrice Rousselle. Kernel-predicting convolutional
networks for denoising monte carlo renderings. ACM Transactions on Graphics (TOG),
36(4):97, 2017.

[6] Steve Bako, Mark Meyer, Tony DeRose, and Pradeep Sen. Offline deep importance
sampling for monte carlo path tracing. In Computer Graphics Forum, volume 38, pages
527–542. Wiley Online Library, 2019.

[7] Mauro Barni. Document and Image compression. CRC press, 2006.

[8] BBC. The Camera Phone Backlash, 2004. URL http://news.bbc.co.uk/2/hi/uk news/
magazine/3793501.stm.

[9] Benedikt Bitterli. Rendering resources, 2016. https://benedikt-bitterli.me/resources/.

[10] Cheng Bo, Guobin Shen, Jie Liu, Xiang-Yang Li, YongGuang Zhang, and Feng Zhao.
Privacy.Tag: Privacy Concern Expressed and Respected. In ACM Conference on Embedded
Network Sensor Systems (SenSys), 2014.

147

http://news.bbc.co.uk/2/hi/uk_news/magazine/3793501.stm
http://news.bbc.co.uk/2/hi/uk_news/magazine/3793501.stm

[11] Jérôme Boulanger. jboulanger.gmic. URL https://github.com/jboulanger/jboulanger-gmic.

[12] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image denoising.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 2, pages 60–65. IEEE, 2005.

[13] Herschel Clement Burstyn. Cinema anti-piracy measures, 2009. US Patent 7,634,089.

[14] Herschel Clement Burstyn, George Herbert Needham Riddle, Leon Shapiro, and
David Lloyd Staebler. Method and apparatus for film anti-piracy, 2008. US Patent
7,324,646.

[15] Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi, Aaron
Lefohn, Derek Nowrouzezahrai, and Timo Aila. Interactive reconstruction of monte carlo
image sequences using a recurrent denoising autoencoder. ACM Transactions on Graphics
(TOG), 36(4):98, 2017.

[16] Tung-Shou Chen, Chin-Chen Chang, and Min-Shiang Hwang. A virtual image cryp-
tosystem based upon vector quantization. IEEE transactions on Image Processing, 7(10):
1485–1488, 1998.

[17] Shuo Cheng, Zexiang Xu, Shilin Zhu, Zhuwen Li, Li Erran Li, Ravi Ramamoorthi, and
Hao Su. Deep stereo using adaptive thin volume representation with uncertainty awareness.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2524–2534, 2020.

[18] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for
deep neural networks: The principles, progress, and challenges. IEEE Signal Processing
Magazine, 35(1):126–136, 2018.

[19] Kashyap Chitta, Jose M Alvarez, and Martial Hebert. Quadtree generating networks: Effi-
cient hierarchical scene parsing with sparse convolutions. In The IEEE Winter Conference
on Applications of Computer Vision, 2020.

[20] Cinetics. Axis360 Pro. http://cinetics.com/axis360-pro/.

[21] David Cline, Justin Talbot, and Parris Egbert. Energy redistribution path tracing. In ACM
Transactions on Graphics (TOG), volume 24, pages 1186–1195. ACM, 2005.

[22] Ronald R Coifman and David L Donoho. Translation-invariant de-noising. Springer,
1995.

[23] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image
denoising with block-matching and 3d filtering. In Electronic Imaging. International

148

https://github.com/jboulanger/jboulanger-gmic
http://cinetics.com/axis360-pro/

Society for Optics and Photonics, 2006.

[24] Christos Danakis, Mostafa Afgani, Gordon Povey, Ian Underwood, and Harald Haas.
Using a cmos camera sensor for visible light communication. In Proc. of IEEE Globecom
Workshops, 2012.

[25] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and
hardware acceleration for neural networks: A comprehensive survey. Proceedings of the
IEEE, 108(4):485–532, 2020.

[26] Tamara Denning, Zakariya Dehlawi, and Tadayoshi Kohno. In Situ with Bystanders of
Augmented Reality Glasses: Perspectives on Recording and Privacy-mediating Technolo-
gies. In SIGCHI Conference on Human Factors in Computing Systems (CHI), 2014.

[27] Stavros Diolatzis, Adrien Gruson, Wenzel Jakob, Derek Nowrouzezahrai, and George
Drettakis. Practical product path guiding using linearly transformed cosines. In Computer
Graphics Forum, volume 39, pages 23–33. Wiley Online Library, 2020.

[28] F. Dufaux and T. Ebrahimi. Scrambling for Privacy Protection in Video Surveillance
Systems. IEEE Transactions on Circuits and Systems for Video Technology, 18(8), 2008.

[29] Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion. A
frequency analysis of light transport. ACM Transactions on Graphics (TOG), 24(3):
1115–1126, 2005.

[30] Philip Dutré, Eric P Lafortune, and Yves D Willems. Monte carlo light tracing with direct
computation of pixel intensities. 1993.

[31] Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoor-
thi. Frequency analysis and sheared reconstruction for rendering motion blur. In ACM
Transactions on Graphics (TOG), volume 28, page 93. ACM, 2009.

[32] LG Electronics. URL http://www.lg.com/ca en/cell-phones/lg-D820-White-nexus5.

[33] Engadget. Japan’s noisy iPhone problem, 2016. URL https://www.engadget.com/2016/
09/30/japans-noisy-iphone-problem/.

[34] Michael Epstein and Douglas A Stanton. Method and device for preventing piracy of
video material from theater screens, 2003. US Patent 6,529,600.

[35] James A Fancher, David H Sitrick, and Gregory P Sitrick. Movie film security system
utilizing infrared patterns, 2003. US Patent 6,559,883.

[36] Iain Fergusson. External filters by iain fergusson. URL https://github.com/dtschump/

149

http://www.lg.com/ca_en/cell-phones/lg-D820-White-nexus5
https://www.engadget.com/2016/09/30/japans-noisy-iphone-problem/
https://www.engadget.com/2016/09/30/japans-noisy-iphone-problem/
https://github.com/dtschump/gmic-community/blob/master/include/iain_fergusson.gmic
https://github.com/dtschump/gmic-community/blob/master/include/iain_fergusson.gmic

gmic-community/blob/master/include/iain fergusson.gmic.

[37] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Efficient network
flooding and time synchronization with glossy. In Proc. of ACM/IEEE IPSN, pages 73–84,
2011.

[38] Forbes. Adventures in Self-Surveillance, aka The Quantified Self, aka Extreme Navel-
Gazing, Apr. 2011.

[39] Cheng Fu, Shilin Zhu, Huili Chen, Farinaz Koushanfar, Hao Su, and Jishen Zhao. Simbnn:
A similarity-aware binarized neural network acceleration framework. In 2019 IEEE 27th
Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 319–319. IEEE, 2019.

[40] Cheng Fu, Shilin Zhu, Hao Su, Ching-En Lee, and Jishen Zhao. Towards fast and
energy-efficient binarized neural network inference on fpga. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 306–
306, 2019.

[41] Nobuhiro Fujimoto and Hikari Mochizuki. 477 Mbit/s visible light transmission based on
OOK-NRZ modulation using a single commercially available visible LED and a practical
LED driver with a pre-emphasis circuit. In National Fiber Optic Engineers Conference,
pages JTh2A–73. Optical Society of America, 2013.

[42] Nobuhiro Fujimoto and Shohei Yamamoto. The fastest visible light transmissions of 662
Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on
simple OOK-NRZ modulation of a commercially available RGB-type white LED using
pre-emphasis and post-equalizing techniques. In Optical Communication (ECOC), 2014
European Conference on, pages 1–3. IEEE, 2014.

[43] Zhongpai Gao, Guangtao Zhai, and Chunjia Hu. The invisible qr code. In Proceedings of
the 23rd ACM international conference on Multimedia, pages 1047–1050. ACM, 2015.

[44] Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano Gam-
baretto, Christian Gagné, and Jean-François Lalonde. Learning to predict indoor illumina-
tion from a single image. arXiv preprint arXiv:1704.00090, 2017.

[45] Iliyan Georgiev, Jaroslav Křivánek, and Philipp Slusallek. Bidirectional light transport
with vertex merging. In SIGGRAPH Asia 2011 Sketches, page 27. ACM, 2011.

[46] Iliyan Georgiev, Jaroslav Krivánek, Tomas Davidovic, and Philipp Slusallek. Light
transport simulation with vertex connection and merging. ACM Trans. Graph., 31(6):
192–1, 2012.

150

https://github.com/dtschump/gmic-community/blob/master/include/iain_fergusson.gmic
https://github.com/dtschump/gmic-community/blob/master/include/iain_fergusson.gmic

[47] Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. Sample-
based monte carlo denoising using a kernel-splatting network. ACM Transactions on
Graphics (TOG), 38(4):1–12, 2019.

[48] Golf News Net. Why is it illegal in South Korea to silence mobile phone cam-
era sounds?, 2015. URL https://thegolfnewsnet.com/golfnewsnetteam/2015/10/07/
illegal-south-korea-silence-mobile-phone-camera-sounds-13503/.

[49] Rafael L Gomes, Luiz F Bittencourt, Edmundo RM Madeira, Eduardo Cerqueira, and
Mario Gerla. Qoe-aware dynamic virtual network resource adaptation for eaas envi-
ronment. In Communications (ICC), 2015 IEEE International Conference on, pages
6836–6841. IEEE, 2015.

[50] Dean K Goodhill and Ty Safreno. Method and apparatus for inhibiting the piracy of
motion pictures, 2011. US Patent 8,018,569.

[51] Joseph W Goodman. Introduction to Fourier optics. Roberts and Company Publishers,
2005.

[52] Google. android.hardware.camera2. URL https://developer.android.com/reference/
android/hardware/camera2/package-summary.html.

[53] Ben Graham. Sparse 3d convolutional neural networks. arXiv preprint arXiv:1505.02890,
2015.

[54] Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional
networks. arXiv preprint arXiv:1706.01307, 2017.

[55] Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 3d semantic seg-
mentation with submanifold sparse convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 9224–9232, 2018.

[56] Phil Green and Lindsay MacDonald. Colour engineering: achieving device independent
colour, volume 30. John Wiley & Sons, 2011.

[57] Stacey L. Gulick. Preventing Unauthorized Audio and Video Recording at Your Practice,
2004. URL http://medicaleconomics.modernmedicine.com/medical-economics/content/
tags/hipaa/preventing-unauthorized-audio-and-video-recording-your-practice?page=
full.

[58] Jerry Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. Primary sample space
path guiding. In Eurographics Symposium on Rendering, volume 2018, pages 73–82. The
Eurographics Association, 2018.

151

https://thegolfnewsnet.com/golfnewsnetteam/2015/10/07/illegal-south-korea-silence-mobile-phone-camera-sounds-13503/
https://thegolfnewsnet.com/golfnewsnetteam/2015/10/07/illegal-south-korea-silence-mobile-phone-camera-sounds-13503/
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
https://developer.android.com/reference/android/hardware/camera2/package-summary.html
http://medicaleconomics.modernmedicine.com/medical-economics/content/tags/hipaa/preventing-unauthorized-audio-and-video-recording-your-practice?page=full
http://medicaleconomics.modernmedicine.com/medical-economics/content/tags/hipaa/preventing-unauthorized-audio-and-video-recording-your-practice?page=full
http://medicaleconomics.modernmedicine.com/medical-economics/content/tags/hipaa/preventing-unauthorized-audio-and-video-recording-your-practice?page=full

[59] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive photon mapping. In
ACM Transactions on Graphics (TOG), volume 28, page 141. ACM, 2009.

[60] Toshiya Hachisuka and Henrik Wann Jensen. Robust adaptive photon tracing using photon
path visibility. ACM Transactions on Graphics (TOG), 30(5):114, 2011.

[61] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive photon mapping.
In ACM Transactions on Graphics (TOG), volume 27, page 130. ACM, 2008.

[62] Toshiya Hachisuka, Wojciech Jarosz, and Henrik Wann Jensen. A progressive error
estimation framework for photon density estimation. In ACM Transactions on Graphics
(TOG), volume 29, page 144. ACM, 2010.

[63] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A path space extension
for robust light transport simulation. ACM Transactions on Graphics (TOG), 31(6):191,
2012.

[64] Mark Harman. Open Camera. URL http://opencamera.sourceforge.net/.

[65] Sebastian Herholz, Oskar Elek, Jiřı́ Vorba, Hendrik Lensch, and Jaroslav Křivánek.
Product importance sampling for light transport path guiding. In Computer Graphics
Forum, volume 35, pages 67–77. Wiley Online Library, 2016.

[66] David Honzátko. CUDA implementation of BM3D. URL https://github.com/DawyD/
bm3d-gpu.

[67] Roberto Hoyle, Robert Templeman, Steven Armes, Denise Anthony, David Crandall,
and Apu Kapadia. Privacy Behaviors of Lifeloggers Using Wearable Cameras. In ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 2014.

[68] Chin-Wei Hsu, Kevin Liang, Hung-Yu Chen, Liang-Yu Wei, Chien-Hung Yeh, Yang
Liu, and Chi-Wai Chow. Visible light encryption system using camera image sensor.
In OptoElectronics and Communications Conference (OECC) held jointly with 2016
International Conference on Photonics in Switching (PS), 2016 21st, pages 1–3. IEEE,
2016.

[69] Chunjia Hu, Guangtao Zhai, and Zhongpai Gao. Visible light communication via temporal
psycho-visual modulation. In Proceedings of the 23rd ACM international conference on
Multimedia, pages 785–788. ACM, 2015.

[70] Xuezhen Huang, Xin Sun, Zhong Ren, Xin Tong, Baining Guo, and Kun Zhou. Irradiance
regression for efficient final gathering in global illumination. Frontiers of Computer
Science, 9(3):456–465, 2015.

152

http://opencamera.sourceforge.net/
https://github.com/DawyD/bm3d-gpu
https://github.com/DawyD/bm3d-gpu

[71] Yuchi Huo, Rui Wang, Ruzahng Zheng, Hualin Xu, Hujun Bao, and Sung-Eui Yoon.
Adaptive incident radiance field sampling and reconstruction using deep reinforcement
learning. ACM Transactions on Graphics (TOG), 39(1):1–17, 2020.

[72] Image Team of the GREYC laboratory. G’MIC - GREYC’s Magic for Image Computing.
URL http://gmic.eu/.

[73] David S Immel, Michael F Cohen, and Donald P Greenberg. A radiosity method for
non-diffuse environments. Acm Siggraph Computer Graphics, 20(4):133–142, 1986.

[74] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-renderer.org.

[75] Wenzel Jakob, Christian Regg, and Wojciech Jarosz. Progressive expectation-
maximization for hierarchical volumetric photon mapping. In Computer Graphics Forum,
volume 30, pages 1287–1297. Wiley Online Library, 2011.

[76] Henrik Wann Jensen. Importance driven path tracing using the photon map. In Euro-
graphics Workshop on Rendering Techniques, pages 326–335. Springer, 1995.

[77] Henrik Wann Jensen. Global illumination using photon maps. In Rendering Techniques’
96, pages 21–30. Springer, 1996.

[78] Henrik Wann Jensen and Niels Jørgen Christensen. Photon maps in bidirectional monte
carlo ray tracing of complex objects. Computers & Graphics, 19(2):215–224, 1995. ISSN
0097-8493.

[79] Yi Jiang, Ke Zhou, and Sheng He. Human visual cortex responds to invisible chromatic
flicker. Nature Neuroscience, 10(5):657–662, 2007.

[80] Jaeyeon Jung and Matthai Philipose. Courteous Glass. In ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp), 2014.

[81] James T Kajiya. The rendering equation. In ACM SIGGRAPH computer graphics,
volume 20, pages 143–150. ACM, 1986.

[82] Nima Khademi Kalantari and Ravi Ramamoorthi. Deep high dynamic range imaging of
dynamic scenes. ACM Trans. Graph., 36(4):144–1, 2017.

[83] Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. A machine learning approach
for filtering monte carlo noise. ACM Trans. Graph., 34(4):122–1, 2015.

[84] Chun-Meng Kang, Lu Wang, Yan-Ning Xu, Xiang-Xu Meng, and Yuan-Jie Song. Adaptive
photon mapping based on gradient. Journal of Computer Science and Technology, 31(1):
217–224, 2016.

153

http://gmic.eu/

[85] Anton S Kaplanyan and Carsten Dachsbacher. Adaptive progressive photon mapping.
ACM Transactions on Graphics (TOG), 32(2):16, 2013.

[86] Masayuki Karakawa. Laser video projection system and method with anti-piracy feature,
2006. US Patent 7,103,074.

[87] Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. Deep convolutional reconstruction
for gradient-domain rendering. ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.

[88] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[89] Claude Knaus and Matthias Zwicker. Progressive photon mapping: A probabilistic
approach. ACM Transactions on Graphics (TOG), 30(3):25, 2011.

[90] Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek
Nowrouzezahrai, and Wojciech Jarosz. Unifying points, beams, and paths in volumetric
light transport simulation. ACM Transactions on Graphics (TOG), 33(4):1–13, 2014.

[91] Pradeep Kumar Jayaraman, Jianhan Mei, Jianfei Cai, and Jianmin Zheng. Quadtree
convolutional neural networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 546–561, 2018.

[92] Ye-Sheng Kuo, Pat Pannuto, Ko-Jen Hsiao, and Prabal Dutta. Luxapose: Indoor Position-
ing with Mobile Phones and Visible Light. In Proc. of ACM MobiCom, 2014.

[93] Eric P Lafortune and Yves Willems. Bi-directional path tracing. In Compugraphics’ 93,
pages 145–153, 1993.

[94] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial intelligence and statistics, pages 562–570, 2015.

[95] Hui-Yu Lee, Hao-Min Lin, Yu-Lin Wei, Hsin-I Wu, Hsin-Mu Tsai, and Kate Ching-Ju Lin.
Rollinglight: Enabling line-of-sight light-to-camera communications. In Proceedings of
the 13th Annual International Conference on Mobile Systems, Applications, and Services,
pages 167–180. ACM, 2015.

[96] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and Leonidas Guibas.
Grass: Generative recursive autoencoders for shape structures. ACM Transactions on
Graphics (TOG), 36(4):1–14, 2017.

[97] Manyi Li, Akshay Gadi Patil, Kai Xu, Siddhartha Chaudhuri, Owais Khan, Ariel Shamir,
Changhe Tu, Baoquan Chen, Daniel Cohen-Or, and Hao Zhang. Grains: Generative
recursive autoencoders for indoor scenes. ACM Transactions on Graphics (TOG), 38(2):

154

1–16, 2019.

[98] Tianxing Li, Chuankai An, Xinran Xiao, Andrew T. Campbell, and Xia Zhou. Real-Time
Screen-Camera Communication Behind Any Scene. In Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2015.

[99] Zhenjiang Li, Cheng Li, Wenwei Chen, Jingyao Dai, Mo Li, Xiang-Yang Li, and Yunhao
Liu. Clock Calibration Using Fluorescent Lighting. In Proceedings of International
Conference on Mobile Computing and Networking (MobiCom), 2012.

[100] C. K. Liang, L. W. Chang, and H. H. Chen. Analysis and Compensation of Rolling Shutter
Effect. IEEE Transactions on Image Processing, 17(8), 2008.

[101] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan
Catanzaro. Image inpainting for irregular holes using partial convolutions. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 85–100, 2018.

[102] M Ronnier Luo, Guihua Cui, and B Rigg. The development of the CIE 2000 colour-
difference formula: CIEDE2000. Color Research & Application, 26(5):340–350, 2001.

[103] Maxim Integrated Products, Inc. Why Drive White LEDs with Constant Current? Aug.
2004.

[104] Zhen Meng, Song Fu, Jie Yan, Hongyuan Liang, Anfu Zhou, Shilin Zhu, Huadong Ma,
Jianhua Liu, and Ning Yang. Gait recognition for co-existing multiple people using
millimeter wave sensing. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 849–856, 2020.

[105] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J Mitra, and Leonidas J
Guibas. Structurenet: hierarchical graph networks for 3d shape generation. ACM Transac-
tions on Graphics (TOG), 38(6):242, 2019.

[106] Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and
Hao Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d
object understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 909–918, 2019.

[107] Blend Swap models, 2020. URL https://www.blendswap.com.

[108] Evermotion 3D models, 2020. URL https://evermotion.org.

[109] Turbo Squid 3D models, 2020. URL https://www.turbosquid.com.

[110] Thomas Müller. “practical path guiding” in production. In ACM SIGGRAPH Courses:

155

https://www.blendswap.com
https://evermotion.org
https://www.turbosquid.com

Path Guiding in Production, Chapter 10, pages 18:35–18:48, New York, NY, USA, 2019.
ACM. doi: 10.1145/3305366.3328091.

[111] Thomas Müller, Markus Gross, and Jan Novák. Practical path guiding for efficient light-
transport simulation. In Computer Graphics Forum, volume 36, pages 91–100. Wiley
Online Library, 2017.

[112] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
Neural importance sampling. ACM Transactions on Graphics (TOG), 38(5):1–19, 2019.

[113] Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. Neural control
variates. ACM Transactions on Graphics (TOG), 39(6):1–19, 2020.

[114] Moni Naor and Adi Shamir. Visual Cryptography. In Proceedings of the Workshop on the
Theory and Application of Cryptographic Techniques (EUROCRYPT), 1995.

[115] Narrative. Narrative Clip 2 Wearable HD Video Camera, 2016. URL http://getnarrative.
com/.

[116] T. Naseer, J. Sturm, and D. Cremers. FollowMe: Person Following and Gesture Recogni-
tion With a Quadrocopter. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2013.

[117] Alaeddin Nassani, Huidong Bai, Gun Lee, and Mark Billinghurst. Tag It!: AR Anno-
tation Using Wearable Sensors. In SIGGRAPH Asia Mobile Graphics and Interactive
Applications, 2015.

[118] Elaine M. Newton, Latanya Sweeney, and Bradley Malin. Preserving Privacy by De-
Identifying Face Images. IEEE Transactions on Knowledge and Data Engineering, 17(2),
2005.

[119] S. John Obringer and Kent Coffey. Cell Phones in American High Schools: A National
Survey. Journal of Technology Studies, 33(1), 2007.

[120] ON Semiconductor. NCL30160: LED Driver, Constant Current Buck Regulator, 1.0 A.
URL http://www.onsemi.com/PowerSolutions/product.do?id=NCL30160.

[121] Ryan S Overbeck, Craig Donner, and Ravi Ramamoorthi. Adaptive wavelet rendering.
ACM Trans. Graph., 28(5):140, 2009.

[122] Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock, David
Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison, et al. Optix:
a general purpose ray tracing engine. Acm transactions on graphics (tog), 29(4):1–13,
2010.

156

http://getnarrative.com/
http://getnarrative.com/
http://www.onsemi.com/PowerSolutions/product.do?id=NCL30160

[123] Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis light transport for partici-
pating media. In Rendering Techniques 2000, pages 11–22. Springer, 2000.

[124] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information Hiding–a Survey.
Proceedings of the IEEE, 87(7), 1999.

[125] Philips Lighting B.V. Philips Hue. URL http://meethue.com.

[126] John D Price. Methods and apparatus for detection of motion picture piracy for piracy
prevention, 2009. US Patent App. 12/322,915.

[127] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 652–660, 2017.

[128] Kun Qian, Shilin Zhu, Xinyu Zhang, and Li Erran Li. Robust multimodal vehicle detection
in foggy weather using complementary lidar and radar signals. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 444–453,
2021.

[129] QImaging. Rolling Shutter vs. Global Shutter, 2014. URL https://www.qimaging.com/
ccdorscmos/pdfs/RollingvsGlobalShutter.pdf.

[130] Moo-Ryong Ra, Ramesh Govindan, and Antonio Ortega. P3: Toward Privacy-preserving
Photo Sharing. In USENIX Conference on Networked Systems Design and Implementation
(NSDI), 2013.

[131] Swati Rallapalli, Aishwarya Ganesan, Krishna Chintalapudi, Venkat N. Padmanabhan,
and Lili Qiu. Enabling Physical Analytics in Retail Stores Using Smart Glasses. In Annual
International Conference on Mobile Computing and Networking (MobiCom), 2014.

[132] Alexander Rath, Pascal Grittmann, Sebastian Herholz, Petr Vévoda, Philipp Slusallek,
and Jaroslav Křivánek. Variance-aware path guiding. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2020), 39(4):151:1–151:12, July 2020. doi: 10.1145/3386569.
3392441.

[133] Nisarg Raval, Animesh Srivastava, Ali Razeen, Kiron Lebeck, Ashwin Machanavajjhala,
and Lanodn P. Cox. What You Mark is What Apps See. In Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys), 2016.

[134] Erik Reinhard, Wolfgang Heidrich, Paul Debevec, Sumanta Pattanaik, Greg Ward, and
Karol Myszkowski. High dynamic range imaging: acquisition, display, and image-based
lighting. Morgan Kaufmann, 2010.

157

http://meethue.com
https://www.qimaging.com/ccdorscmos/pdfs/RollingvsGlobalShutter.pdf
https://www.qimaging.com/ccdorscmos/pdfs/RollingvsGlobalShutter.pdf

[135] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d
representations at high resolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3577–3586, 2017.

[136] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

[137] Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. Robust denoising using feature
and color information. In Computer Graphics Forum, volume 32, pages 121–130. Wiley
Online Library, 2013.

[138] Lukas Ruppert, Sebastian Herholz, and Hendrik P. A. Lensch. Robust fitting of parallax-
aware mixtures for path guiding. ACM Transactions on Graphics (TOG), 2020.

[139] Mehul P Sampat, Zhou Wang, Shalini Gupta, Alan Conrad Bovik, and Mia K Markey.
Complex wavelet structural similarity: A new image similarity index. IEEE transactions
on image processing, 18(11):2385–2401, 2009.

[140] Yosef Sanhedrai, Ariel Schwarz, Liad Ben Yishai, and Zeev Zalevsky. System and method
for preventing photography, 2007. US Patent App. 12/308,525.

[141] Lars Schjøth, Jeppe Revall Frisvad, Kenny Erleben, and Jon Sporring. Photon differentials.
In Proceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia, pages 179–186, 2007.

[142] Lars Schjøth, Jon Sporring, and O Fogh Olsen. Diffusion based photon mapping. In
Computer Graphics Forum, volume 27, pages 2114–2127. Wiley Online Library, 2008.

[143] Oren Shani. Precise Time Synchronization Over WLAN. URL http://www.ti.com/lit/an/
swaa162a/swaa162a.pdf.

[144] Ling Shao, Ruomei Yan, Xuelong Li, and Yan Liu. From heuristic optimization to dictio-
nary learning: A review and comprehensive comparison of image denoising algorithms.
IEEE Transactions on Cybernetics, 44(7):1001–1013, 2014.

[145] Peter Shirley, Bretton Wade, Philip M Hubbard, David Zareski, Bruce Walter, and Don-
ald P Greenberg. Global illumination via density-estimation. In Rendering Techniques’
95, pages 219–230. Springer, 1995.

[146] David H Sitrick and James A Fancher. Anti-piracy protection system and methodology,
2004. US Patent 6,771,349.

[147] David H Sitrick and James A Fancher. Targeted anti-piracy system and methodology,

158

http://www.ti.com/lit/an/swaa162a/swaa162a.pdf
http://www.ti.com/lit/an/swaa162a/swaa162a.pdf

2007. US Patent 7,170,577.

[148] David H Sitrick and James A Fancher. System and methodology for validating compliance
of anti-piracy security and reporting thereupon, 2011. US Patent 8,006,311.

[149] Fikret Sivrikaya and Bülent Yener. Time synchronization in sensor networks: a survey.
IEEE network, 18(4):45–50, 2004.

[150] Vincent So. Anti-piracy image display methods and systems, 2009. US Patent 7,634,134.

[151] Social Pilot. 125 Amazing Social Media Statistics You Should Know, 2016. URL
https://socialpilot.co/blog/125-amazing-social-media-statistics-know-2016/.

[152] Ben Spencer and Mark W Jones. Into the blue: Better caustics through photon relaxation.
In Computer Graphics Forum, volume 28, pages 319–328. Wiley Online Library, 2009.

[153] Ben Spencer and Mark W Jones. Photon parameterisation for robust relaxation constraints.
In Computer Graphics Forum, volume 32, pages 83–92. Wiley Online Library, 2013.

[154] Ben Spencer and Mark W Jones. Progressive photon relaxation. ACM Transactions on
Graphics (TOG), 32(1):1–11, 2013.

[155] S.S. Stevens. Psychophysics: introduction to its perceptual, neural, and social prospects.
Transaction Publishers, 1975.

[156] STMicroelectronics. STM32F103C8. URL http://www.st.com/en/microcontrollers/
stm32f103c8.html.

[157] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating networks:
Efficient convolutional architectures for high-resolution 3d outputs. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2088–2096, 2017.

[158] Emil Tchoukaleysky. Digital cinema anti-piracy method and apparatus for liquid crystal
projection systems, 2013. US Patent 8,559,791.

[159] R. Templeman, Z. Rahman, D. Crandall, and A. Kapadia. PlaceRaider: Virtual Theft
in Physical Spaces With Smartphones. In Network and Distributed System Security
Symposium (NDSS), 2013.

[160] Robert Templeman, Mohammed Korayem, David J. Crandall, and Apu Kapadia. PlaceAv-
oider: Steering First-Person Cameras away from Sensitive Spaces. In Network and
Distributed System Security Symposium (NDSS), 2014.

[161] Michael Terman and Jiuan Su Terman. Light therapy for seasonal and nonseasonal

159

https://socialpilot.co/blog/125-amazing-social-media-statistics-know-2016/
http://www.st.com/en/microcontrollers/stm32f103c8.html
http://www.st.com/en/microcontrollers/stm32f103c8.html

depression: efficacy, protocol, safety, and side effects. CNS spectrums, 10(08):647–663,
2005.

[162] The GIMP Team. GIMP - GNU Image Manipulation Program. URL https://www.gimp.
org/.

[163] Victor Tiscareno, Kevin Jonhson, and Cindy Lawrence. Systems and Methods for Receiv-
ing Infrared Data with a Camera Designed to Detect Images, 2011.

[164] CG Trader. 2020. URL http://www.cgtrader.com.

[165] PR Tregenza. The daylight factor and actual illuminance ratios. Lighting Research &
Technology, 12(2):64–68, 1980.

[166] Khai N. Truong, Shwetak N. Patel, Jay W. Summet, and Gregory D. Abowd. Preventing
Camera Recording by Designing a Capture-Resistant Environment. 2005.

[167] Christopher W. Tyler. Analysis of visual modulation sensitivity. II. Peripheral retina and
the role of photoreceptor dimensions. Journal of the Optical Society of America A, 2(3):
393–398, 1985.

[168] H. van der Broeck, G. Sauerlander, and M. Wendt. Power driver topologies and control
schemes for leds. In Annual IEEE Applied Power Electronics Conference and Exposition,
2007.

[169] Eric Veach. Robust Monte Carlo methods for light transport simulation, volume 1610.
Stanford University PhD thesis, 1997.

[170] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In Photore-
alistic Rendering Techniques, pages 145–167. Springer, 1995.

[171] Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques for monte
carlo rendering. In Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, pages 419–428. ACM, 1995.

[172] Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David
Adler, Mark Meyer, and Jan Novák. Denoising with kernel prediction and asymmetric
loss functions. ACM Transactions on Graphics (TOG), 37(4):124, 2018.

[173] Jirı Vorba. Bidirectional photon mapping. In Proc. of the Central European Seminar on
Computer Graphics (CESCG’11), 2011.

[174] Jiřı́ Vorba and Jaroslav Křivánek. Adjoint-driven russian roulette and splitting in light
transport simulation. ACM Transactions on Graphics (TOG), 35(4):1–11, 2016.

160

https://www.gimp.org/
https://www.gimp.org/
http://www.cgtrader.com

[175] Jiřı́ Vorba, Ondřej Karlı́k, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. On-line
learning of parametric mixture models for light transport simulation. ACM Transactions
on Graphics (TOG), 33(4):1–11, 2014.

[176] Jiřı́ Vorba, Johannes Hanika, Sebastian Herholz, Thomas Müller, Jaroslav Křivánek, and
Alexander Keller. Path guiding in production. In ACM SIGGRAPH Courses, pages
18:1–18:77, New York, NY, USA, 2019. ACM. doi: 10.1145/3305366.3328091.

[177] Bruce Walter, Philip M. Hubbard, Peter Shirley, and Donald P. Greenberg. Global
illumination using local linear density estimation. ACM Transactions on Graphics (TOG),
16(3):217–259, 1997.

[178] Matt P Wand and M Chris Jones. Kernel smoothing. Chapman and Hall/CRC, 1994.

[179] Anran Wang, Chunyi Peng, Ouyang Zhang, Guobin Shen, and Bing Zeng. Inframe:
Multiflexing full-frame visible communication channel for humans and devices. In
Proceedings of the 13th ACM Workshop on Hot Topics in Networks, page 23. ACM, 2014.

[180] Anran Wang, Zhuoran Li, Chunyi Peng, Guobin Shen, Gan Fang, and Bing Zeng. In-
frame++: Achieve simultaneous screen-human viewing and hidden screen-camera com-
munication. In Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, pages 181–195. ACM, 2015.

[181] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-CNN:
Octree-based convolutional neural networks for 3D shape analysis. ACM Transactions on
Graphics (SIGGRAPH), 36(4), 2017.

[182] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. Adaptive O-CNN: A patch-
based deep representation of 3D shapes. ACM Transactions on Graphics (SIGGRAPH
Asia), 37(6), 2018.

[183] Peng-Shuai Wang, Yang Liu, and Xin Tong. Deep octree-based CNNs with output-guided
skip connections for 3D shape and scene completion. 2020.

[184] Zhou Wang and Eero P Simoncelli. Translation insensitive image similarity in com-
plex wavelet domain. In Acoustics, Speech, and Signal Processing, 2005. Proceed-
ings.(ICASSP’05). IEEE International Conference on, volume 2, pages ii–573. IEEE,
2005.

[185] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13
(4):600–612, 2004.

[186] Allan G Weber. The USC-SIPI image database version 5. USC-SIPI Report, 315:1–24,

161

1997.

[187] Donald Henry Willis. Method, apparatus and system for anti-piracy protection in digital
cinema, 2008. US Patent App. 12/736,774.

[188] H. James Wilson. You, By the Numbers. Harvard Business Review, Sep. 2012.

[189] W. Winterhalter, F. Fleckenstein, B. Steder, L. Spinello, and W. Burgard. Accurate Indoor
Localization for RGB-D Smartphones and Tablets Given 2D Floor Plans. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2015.

[190] Grace Woo, Andy Lippman, and Ramesh Raskar. VRCodes: Unobtrusive and Active
Visual Codes for Interaction by Exploiting Rolling Shutter. In IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR), 2012.

[191] Lifan Wu, Ling-Qi Yan, Alexandr Kuznetsov, and Ravi Ramamoorthi. Multiple axis-
aligned filters for rendering of combined distribution effects. In Computer Graphics
Forum, volume 36, pages 155–166. Wiley Online Library, 2017.

[192] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In Proceedings of the
IEEE international conference on computer vision, pages 1395–1403, 2015.

[193] Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, and Rui Tang. Adversarial
Monte Carlo denoising with conditioned auxiliary feature modulation. ACM Transactions
on Graphics (TOG), 38(6):224, 2019.

[194] Nan Xu, Fan Zhang, Yisha Luo, Weijia Jia, Dong Xuan, and Jin Teng. Stealthy Video
Capturer: a New Video-Based Spyware in 3G smartphones. In Proceedings of the ACM
conference on Wireless Network Security (WiSec), 2009.

[195] Zexiang Xu, Kalyan Sunkavalli, Sunil Hadap, and Ravi Ramamoorthi. Deep image-based
relighting from optimal sparse samples. ACM Transactions on Graphics (TOG), 37(4):
126, 2018.

[196] Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao Su, and Ravi Ramamoorthi.
Deep view synthesis from sparse photometric images. ACM Transactions on Graphics
(TOG), 38(4):1–13, 2019.

[197] Ling-Qi Yan, Soham Uday Mehta, Ravi Ramamoorthi, and Fredo Durand. Fast 4d sheared
filtering for interactive rendering of distribution effects. ACM Transactions on Graphics
(TOG), 35(1):7, 2015.

[198] Zhe Yang, Yuting Bao, Chuhao Luo, Xingya Zhao, Siyu Zhu, Chunyi Peng, Yunxin Liu,
and Xinbing Wang. ARTcode: Preserve Art and Code in Any Image. In ACM International

162

Joint Conference on Pervasive and Ubiquitous Computing (UbiComp), 2016.

[199] Zili Yi, Qiang Tang, Shekoofeh Azizi, Daesik Jang, and Zhan Xu. Contextual residual
aggregation for ultra high-resolution image inpainting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7508–7517, 2020.

[200] Hong Heather Yu and Prabir Bhattacharya. Methods and apparatus for digital content
protection, 2006. US Patent 7,006,630.

[201] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-
form image inpainting with gated convolution. In Proceedings of the IEEE International
Conference on Computer Vision, pages 4471–4480, 2019.

[202] Guangtao Zhai and Xiaolin Wu. Defeating camcorder piracy by temporal psychovisual
modulation. Journal of Display Technology, 10(9):754–757, 2014.

[203] Chi Zhang and Xinyu Zhang. LiTell: Robust Indoor Localization Using Unmodified Light
Fixtures. In Proc. of ACM MobiCom, 2016.

[204] Chi Zhang and Xinyu Zhang. Pulsar: Towards Ubiquitous Visible Light Localization. In
Proc. of ACM MobiCom, 2017.

[205] Lan Zhang, Cheng Bo, Jiahui Hou, Xiang-Yang Li, Yu Wang, Kebin Liu, and Yunhao Liu.
Kaleido: You Can Watch It But Cannot Record It. In ACM International Conference on
Mobile Computing and Networking (MobiCom), 2015.

[206] Lan Zhang, Kebin Liu, Xiang-Yang Li, Cihang Liu, Xuan Ding, and Yunhao Liu. Privacy-
friendly Photo Capturing and Sharing System. In ACM International Joint Conference on
Pervasive and Ubiquitous Computing (UbiComp), 2016.

[207] Quan Zheng and Matthias Zwicker. Learning to importance sample in primary sample
space. In Computer Graphics Forum, volume 38, pages 169–179. Wiley Online Library,
2019.

[208] Anfu Zhou, Guangyuan Su, Shilin Zhu, and HuaDong Ma. Invisible qr code hijacking
using smart led. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(3):1–23, 2019.

[209] Shilin Zhu and Xinyu Zhang. Enabling High-Precision Visible Light Localization in
Today’s Buildings. In Proc. of ACM MobiSys, 2017.

[210] Shilin Zhu, Chi Zhang, and Xinyu Zhang. Automating visual privacy protection using
a smart led. In Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, pages 329–342, 2017.

163

[211] Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per
network or more networks per bit? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4923–4932, 2019.

[212] Shilin Zhu, Zexiang Xu, Henrik Wann Jensen, Hao Su, and Ravi Ramamoorthi. Deep
kernel density estimation for photon mapping. In Computer Graphics Forum, volume 39.
Wiley-Blackwell, 2020.

[213] Shilin Zhu, Chi Zhang, and Xinyu Zhang. Automating visual privacy protection using a
smart led. Communications of the ACM, 63(2):81–89, 2020.

[214] Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann
Jensen, Hao Su, and Ravi Ramamoorthi. Photon-driven neural reconstruction for path
guiding. ACM Transactions on Graphics (TOG), 41(1):1–15, 2021.

[215] Shilin Zhu, Zexiang Xu, Tiancheng Sun, Alexandr Kuznetsov, Mark Meyer, Henrik Wann
Jensen, Hao Su, and Ravi Ramamoorthi. Hierarchical neural reconstruction for path
guiding using hybrid path and photon samples. ACM Transactions on Graphics (TOG),
40(4):1–16, 2021.

[216] Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi,
Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. Recent advances in adaptive
sampling and reconstruction for monte carlo rendering. In Computer Graphics Forum,
volume 34, pages 667–681. Wiley Online Library, 2015.

164

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Motivation
	Significance of Images
	A Brief History of Making Pictures

	Relations Between 2D Images and 3D World
	Fundamentals of Standard Imaging Process
	Camera and Lighting Basics
	Task Space of Image Computation

	Challenges and Opportunities in Image Formation
	Monte-Carlo Light Transport for Image Photorealism
	Programmable Photography for Image Manipulation

	Overview of Techniques and Contributions
	Generating Concentrated Caustics with Glass
	Sampling and Reconstructing Global Illumination
	Customizing Appearances with Modulated Lighting
	Additional Work Done through my Doctoral Career

	Structure of Chapters

	Creating Vital Lighting Effects on Images
	Challenges of Making Caustics
	Overview
	Introduction and Methodology
	Advantages over Traditional Techniques
	Related Work
	Fundamentals of Particle-Based Photon Mapping
	Radiance Reconstruction Formulation
	Density Estimation Kernels

	Learning to Estimate Photon Density
	Processing Photon Point Cloud
	Kernel-Predicting Reconstruction Architecture
	Dataset and Training Details

	Implementation and Evaluation
	Verification Study
	Evaluation Scenes and Photon Generation
	Combining Denoising and Deep Photon Mapping
	Investigation on Photon Parameters
	Quantitative and Qualitative Results.
	Timing and Overhead
	Effect of Variable Attributes
	Temporal Consistency
	Progressive Density Estimation

	Summary of Contribution

	Computing Universal Illuminations on Images
	Generalized Global Illumination
	Related Work
	The First Attempt: Photon-Driven Path Guiding
	Problem Definition and Contribution
	Introduction to Importance Sampling
	Workflow Overview
	Computing Sampling Maps
	Neural Reconstruction of Sampling Distributions
	Adaptive Path Guiding Framework
	Data Synthesis for Sampling Reconstruction

	The Superior Model: Hierarchical Guiding from Hybrid Samples
	Overview of Advancement
	Motivation and Methodology
	Importance Sampling Revisit
	Path Guiding Pipeline with Tree Structure
	Hierarchical Distribution Representation from Hybrid Samples
	Neural Refinement of Quadtrees
	Iterative Learning and Rendering
	Dataset Preparation for Training Quadtrees

	Light Path Guiding Extension
	Neural Path Guiding Implementation
	Experimentation and Evaluation
	Light Transport Configuration
	Qualitative and Quantitative Comparisons
	Effect of Hybrid Samples
	Convergence Rate
	Hierarchical Representation Merit
	Target Sampling Distribution
	Limitations and Failure Cases

	Conclusion and Future Work

	Controlling Scene Appearances on Images
	Photographing Unconventional Illumination Effects
	System Overview
	Motivation and Subject of Study
	Related Work
	Image Manipulation Model and Appearance Goal
	Primer on Restructuring Image Segments
	Digital Imaging with Coded Illuminations
	Maximizing Image Appearance Interference
	Circumventing Wild Captures

	Scene Recovery using Computational Shutters
	Dynamic Scene Video Restoration
	Static Scene Image Recovery

	Light Encoding for Appearance Watermarking
	Illumination Effect Embedding
	Pattern Detection and Recognition

	Implementation and Hardware Design
	Prototype Testing and Evaluation
	Efficacy of Stripe Pattern on Images
	Restoring Appearances with Certified Cameras
	Placing and Uncovering Hidden Barcodes
	Robustness Against Camera Maneuvers

	Conclusion and Social Impact

	Finale
	Conclusion and Open Problems
	The Future of Images: To 4D and Beyond

	Bibliography

