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ABSTRACT OF THE THESIS 

 

Model Reduction of Unconfined Groundwater Flow Using Proper Orthogonal 

Decomposition and the Discrete Empirical Interpolation Method 

 

by 

 

Zachary Stanko 

 

Master of Science in Civil Engineering 

University of California, Los Angeles, 2016 

Professor William W. Yeh, Chair 

 

Nonlinear groundwater flow models have the propensity to be overly complex leading to 

burdensome computational demands. Reduced modelling techniques are used to develop an 

approximation of the original model that has smaller dimensionality and faster run times. The 

reduced model proposed is a combination of proper orthogonal decomposition (POD) and the 

discrete empirical interpolation method (DEIM). Solutions of the full model (snapshots) are 

collected to represent the physical dynamics of the system and Galerkin projection allows the 

formulation of a reduced model that lies in a subspace of the full model. Interpolation points are 

added through DEIM to eliminate the reduced model’s dependence on the dimension of the full 

model. POD is shown to effectively reduce the dimension of the full model and DEIM is shown 

to speed up the solution by further reducing the dimension of the nonlinear calculations. To show 
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the concept can work for unconfined groundwater flow model, with added nonlinear forcings, 

one-dimensional and two-dimensional test cases are constructed in MODFLOW-OWHM. POD 

and DEIM are added to MODFLOW as a modular package. Comparing the POD and the POD-

DEIM reduced models, the experimental results indicate similar reduction in dimension size with 

additional computation speed up for the added interpolation. The hyper-reduction method 

presented is effective for models that have fine discretization in space and/or time as well as 

nonlinearities with respect to the state variable. The dual reduction approach ensures that, once 

constructed, the reduced model can be solved in an equation system that depends only on 

reduced dimensions. 
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Table 1: Variable symbols and definitions along with appropriate units and initial default values. 

Symbol Dimension [units] Description 

𝒉𝒉 𝑛𝑛 × 1 [m] Vector of groundwater head 
𝑨𝑨ℎ  

𝑛𝑛 × 𝑛𝑛 [-] 
Matrix containing nonlinear coefficients for the 
groundwater flow equation (elements that are 

functions of head) 
𝑩𝑩 𝑛𝑛 × 𝑛𝑛  Matrix containing linear coefficients for the 

groundwater flow equation (elements that are not a 
function of head) 

𝒃𝒃 𝑛𝑛 × 1 [-] Right-hand side vector of the groundwater flow 
equation 

𝐾𝐾 scalar [m/day] Hydraulic conductivity in the 𝑥𝑥 and 𝑦𝑦 principal 
directions 

𝒒𝒒 𝑛𝑛 × 1 [m/day] Sources/sinks of water in flow per unit volume 
 𝑆𝑆𝑦𝑦  scalar [-] Specific yield coefficient 
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚  scalar [m] Maximum difference in head in two consecutive 

iterations. 
𝑖𝑖, 𝑗𝑗   Indices for the model cells in the  𝑥𝑥 and 𝑦𝑦 direction 
𝑘𝑘   Index for the iteration of the nonlinear solver 
𝑡𝑡   Index for the model time steps 
𝑛𝑛 scalar [-] Number of finite difference cells of the model domain 
𝑟𝑟 scalar [-] Number of singular values retained from POD to 

create the reduced model 
𝑠𝑠 scalar [-] Number of snapshots taken of the full model 
𝑑𝑑 scalar [-] Number of interpolation points used for the POD-

DEIM reduced model 
Δ𝑡𝑡 scalar [days] Uniform time step length 
𝚽𝚽ℎ 𝑠𝑠 × 𝑛𝑛  Snapshot set of ℎ. 
𝚽𝚽𝑏𝑏 𝑠𝑠 × 𝑛𝑛  Snapshot set of 𝑏𝑏. 
𝜎𝜎𝑖𝑖 scalar  The 𝑖𝑖th singular value 
P 𝑛𝑛 × 𝑟𝑟  Projection matrix formed from POD on Φℎ 
D 𝑛𝑛 × 𝑑𝑑  Projection matrix formed from POD on Φ𝑑𝑑 
Z 𝑛𝑛 × 𝑑𝑑  Permutation matrix to select the dominant rows of the 

system  
𝑧𝑧𝑗𝑗 scalar  The 𝑗𝑗th interpolation index 
𝒄𝒄 𝑑𝑑 × 1  Vector of reduced variables in DEIM formulation 
𝒉𝒉𝒓𝒓 𝑟𝑟 × 1  Vector of state variables in the reduced space 
𝒛𝒛𝒎𝒎 𝑑𝑑 × 1  Vector of interpolation indices for model 𝑚𝑚. 
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Introduction 

Reduced modeling has become a necessary field of research given the near-complete 

scientific understanding of many physical processes and the ensuing complexity of mathematical 

models. For groundwater modeling specifically, reduced modeling techniques are being applied 

at many stages and to models of many forms. Traditionally, the proper orthogonal decomposition 

(POD) method is used to formulate a low dimension basis for high-dimension dynamical systems 

(Vermeulen et al. 2004; Antoulas et al. 2001). The key advantage of using POD for model 

reduction is that the reduced model maintains the physics of the full model and captures the 

dominating characteristics of the full model. POD is also known as Empirical Orthogonal 

Functions (EOF) (von Storch & Hannoschöck 1985; McPhee & Yeh 2008), Coherent Structures 

(CS) (Sirovich 1987), Principal Component Analysis (PCA), or Common Factor Analysis (CFA) 

(Reyment & Joreskog 1993).  

For groundwater flow specifically, most previous applications of POD to groundwater 

models have utilized the confined flow equation, which is linear with respect to the state variable 

of interest, namely, the hydraulic head (Boyce & Yeh 2014). Alternatively, linearization 

techniques, such as quasilinearization (Siade et al. 2012), can be utilized to facilitate POD 

reduced model construction for the case of nonlinear parameter estimation. To briefly describe 

this reduced model construction: one selects a set of model simulation results at specific 

instances of simulation time, which is called a snapshot set. POD is then applied to identify the 

singular values of the matrix composed of the snapshots. Only a selected few of the singular 

values are chosen such that most of the variance of the original system is retained. A subspace 

basis is then constructed and Galerkin projection is applied to form the reduced model 
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(Vermeulen et al. 2004). Extensions to this method for nonlinear problems include modifications 

to the Galerkin projection—such as using a Petrov-Galerkin projection for stabilization (Stef et 

al. 2015) or adaptive Ritz vectors (Nigro et al. 2015)—or alternate strategies such as 

minimization of the 𝐿𝐿1 norm representing the reduced model approximation error (Abgrall & 

Amsallem 2015).  

While confined flow models have nice linear properties that allow for flexible manipulation 

and superposition, nonlinearities are unavoidable in many groundwater modeling projects. 

Requiring unconfined flow, creates nonlinear equations that are harder to solve and hence more 

difficult to reduce successfully. Nonlinear model reduction has been addressed thoroughly in 

Cardoso et al. (2009), where a Markov chain Monte Carlo simulation was performed for an 

inverse problem utilizing Bayesian inference. Boyce et at (2015) also successfully reduced an 

unconfined groundwater model using the Newton formulation of MODFLOW, MODFLOW-

NWT (Niswonger et al. 2011). These examples of successful nonlinear groundwater model 

reduction illustrate the added difficulty and present methods that are applicable in unique 

contexts. That is, the solution scheme in both studies involves Newton’s method which requires 

approximation of a Jacobian that may not be easy to obtain. Also, approximating the Jacobian 

and formulating Newton’s method effectively linearizes the system since the Jacobian can be 

evaluated at prior values of head. Lastly, there are more inherent memory requirements for a 

Newton solution than the traditional MODFLOW  (exactly twice as much), which may restrict 

large-scale applications (Niswonger et al. 2011).  

The discrete empirical interpolation method (DEIM) is an effective approach to nonlinear 

approximations. Originally developed as the empirical interpolation procedure (EIP) (Barrault et 

al. 2004), with the discrete form introduced in (Chaturantabut & Sorensen 2010), It has been 
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used in conjunction with POD for reducing FitzHugh-Nagumo equations (Chaturantabut & 

Sorensen 2010), shallow water equations (Ştefănescu & Navon 2013), and an advection-

diffusion-reaction system (Cardoso et al. 2009). These model reduction procedures are also 

called reduced basis (RB) methods and an EIP has been developed in this context by (Drohmann 

et al. 2012). Successful applications of RB methods to various forms of the Navier-Stokes 

equations (both steady and unsteady) are demonstrated to have significant computational 

advantages (Quarteroni & Rozza 2007). 

The joint application of POD and DEIM for nonlinear model reduction in the literature of 

other fields is also gaining popularity. In electrical engineering, the methods have been 

successfully applied to a magnetostatic problem coupled to an electric circuit (Henneron & 

Clenet 2014) and in mechanical engineering, the methods were used for a solid mechanics 

problem involving nonlinear elasticity (Radermacher & Reese 2015).  However, unconfined 

groundwater flow models have not yet been reduced in this manner. In this study, we propose a 

combined model reduction approach that: 1) performs POD on an unconfined groundwater flow 

model; 2) applies DEIM to the nonlinear component of the governing equation; and 3) 

implements the procedure within MODFLOW. By enabling model reduction within 

MODFLOW, a very large assortment of existing MODFLOW models—many have single run 

times on the order of hours or even days—can be reduced to increase computational efficiency. 

This would permit large-scale optimization or uncertainty analysis that can require hundreds of 

thousands of model runs. 

More robust reduced modeling techniques are needed for nonlinear dynamics in groundwater 

flow. Methods developed previously have resorted to using strategies from the linear world of 

modeling and do not address the additional time required to solve a system of nonlinear 
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equations. In large-scale simulations, having nonlinear calculations that still have a 

computational complexity of the full model greatly inhibits the value of developing the reduced 

model, which can have significant overhead. Application of DEIM to the unconfined 

groundwater flow equations presents an opportunity to develop a hyper reduced model utilizing 

controllable accuracy and computer runtimes that scale with reduced dimensions only.  

Methods 

The following methodology expands upon recent developments in POD and DEIM reduced 

modeling. The implementation of these methods within the commonly used MODFLOW 

software will be described. All variable definitions are compiled in Table 1 with the following 

convention: uppercase letters for scalar variables; bold lowercase for one-dimensional vectors; 

bold uppercase for two-dimensional matrices. The general three-dimensional governing equation 

for constant-density groundwater flow in an unconfined aquifer is given by (Keating & 

Zyvoloski): 

 ∇ ∙ (𝐾𝐾𝒉𝒉∇𝒉𝒉) ± 𝒒𝒒 = 𝑆𝑆𝑦𝑦
𝜕𝜕𝒉𝒉
𝜕𝜕𝜕𝜕

 1 

 

where ∇ ∙ is the divergence operator, ∇ is the gradient operator, 𝐾𝐾 is the isotropic hydraulic 

conductivity tensor [L/T], 𝒉𝒉 is the hydraulic head [L], 𝒒𝒒 is a volumetric flux per unit volume in 

or out of the system [T-1], 𝑡𝑡 is the time [T], and 𝑆𝑆𝑦𝑦 is the specific yield [-]. To obtain a two-

dimensional equation (assuming horizontal flow only), vertical integration can be performed in 

the z direction using Liebniz’s rule. The associated two-dimensional governing equation for an 

unconfined aquifer then becomes the Boussinesq equation.  
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𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐾𝐾𝑥𝑥𝑥𝑥ℎ
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
� +

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐾𝐾𝑦𝑦𝑦𝑦ℎ
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
� + 𝑊𝑊 = 𝑆𝑆𝑦𝑦

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

 2 

Where 𝐾𝐾𝑥𝑥𝑥𝑥 and 𝐾𝐾𝑦𝑦𝑦𝑦 are the hydraulic conductivity parameters assumed to align with the 𝑥𝑥 and 𝑦𝑦, 

and coordinates, respectively. In this case,  𝑊𝑊 is the net source/sink into the aquifer (including 

areal recharge and point source wells) [LT-1]. Here it is also assumed that the specific storage, 𝑆𝑆𝑠𝑠, 

resulting from compressed porous media, is negligible compared to the specific yield, 𝑆𝑆𝑦𝑦. 

 

In our study, we consider two-dimensional unconfined flow as defined by MODFLOW.  The 

PDE used for the MODFLOW governing equation is shown in Equation 3. MODFLOW has a 

Quasi-3D approach to vertical discretization which simply stacks 2D layers together and 

optionally simulates a confining layer between them with vertical leakage only (Harbaugh, Arlen 

2005). From the continuity equation, assuming constant density, a finite-difference 

representation of Equation 3 is solved within MODFLOW.  For strictly two-dimensional flow in 

MODFLOW, the specification of only one layer translates to a zero for all terms involving 

vertical flow parameters and the discretized PDE becomes Equation 4.  

 
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐾𝐾𝑥𝑥𝑥𝑥
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
� +

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐾𝐾𝑦𝑦𝑦𝑦
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
� +

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐾𝐾𝑧𝑧𝑧𝑧

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑
� + 𝑊𝑊 = 𝑆𝑆𝑦𝑦

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

 3 

 
𝐶𝐶−𝑗𝑗�∆ℎ−𝑗𝑗� + 𝐶𝐶+𝑗𝑗�∆ℎ+𝑗𝑗� + 𝐶𝐶−𝑖𝑖(∆ℎ−𝑖𝑖) + 𝐶𝐶+𝑖𝑖(∆ℎ+𝑖𝑖) + 𝑝𝑝𝑖𝑖𝑖𝑖ℎ𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑦𝑦∆𝑖𝑖∆𝑗𝑗

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

 
4 

 

Here, MODFLOW introduces a new parameter called conductance (𝐶𝐶), which is defined as the 

hydraulic conductivity (𝐾𝐾𝑥𝑥 𝑜𝑜𝑜𝑜 𝐾𝐾𝑦𝑦) times the cross-sectional area of flow (Δ𝑦𝑦 ∗ ℎ 𝑜𝑜𝑜𝑜 Δ𝑥𝑥 ∗ ℎ) 

divided by the length of the flow path (Δ𝑥𝑥 𝑜𝑜𝑜𝑜 Δ𝑦𝑦). For unconfined conditions, the cross-sectional 

area depends on the height of the water table (ℎ) at that location, making Equation 4 nonlinear in 
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each term involving 𝐶𝐶. The notation 𝐶𝐶±𝑖𝑖,𝑗𝑗 refers to the direction in which the conductance is 

specified; +𝑗𝑗 being from the direction of increasing 𝑗𝑗 and −𝑖𝑖 being from the direction of 

decreasing 𝑖𝑖. The conductance is also related to Transmissivity (𝑇𝑇) via the equation 𝐶𝐶 = 𝑇𝑇𝑇𝑇/𝐿𝐿, 

where 𝑇𝑇 = 𝐾𝐾 ∗ ℎ. Boundary conditions contained in 𝑊𝑊 are separated into head-dependent (𝑝𝑝) 

and head-independent (𝑞𝑞) fluxes. The block centered finite-difference scheme produces a set of 

nonlinear ordinary differential equations, represented in matrix form as Equation 5.  

 𝑨𝑨𝒉𝒉 + 𝒇𝒇 = 𝑩𝑩
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

 5 

Where 𝑨𝑨 ,𝑩𝑩 ∈ ℝ𝑛𝑛×𝑛𝑛 and 𝒉𝒉 ,𝒇𝒇 ∈ ℝ𝑛𝑛×1, 𝑛𝑛 being the number of finite difference nodes on the 

model domain. 𝑨𝑨 contains all coefficients of head that are internally calculated as functions of 

head at each time step, making the term nonlinear. 𝑩𝑩 contains constant coefficients for the 

temporal head change and constant spatial discretization values and 𝒇𝒇 contains all head-

independent sources or sinks of water and head-independent boundary conditions. The head at 

any time is then calculated using a backward-difference approach to ensure stability. After 

reordering some terms and multiplying through by −1, the following matrix equation (Equation 

6) is calculated to represent the flow system at each time step:  

or 

�
𝑩𝑩
Δ𝑡𝑡
− 𝑨𝑨� 𝒉𝒉𝑡𝑡+1 =

𝑩𝑩
Δ𝑡𝑡
𝒉𝒉𝑡𝑡 + 𝒇𝒇 

𝑨𝑨ℎ𝒉𝒉𝑡𝑡+1 = 𝒃𝒃 

6 

Defining � 𝑩𝑩
Δ𝑡𝑡
− 𝑨𝑨� as the nonlinear system matrix, 𝑨𝑨ℎ, and � 𝐵𝐵

Δ𝑡𝑡
𝒉𝒉𝑡𝑡 + 𝒇𝒇� as the right hand side 

vector of constants, 𝒃𝒃. A variety of indirect methods can be used to solve for 𝒉𝒉𝑡𝑡+1 at each time 

step. for the full model, the current study utilizes the Preconditioned Conjugate-Gradient Solver 

(PCG), documented in (Hill 1990) and Picard iteration for every time step, stopping when 

max1<𝑖𝑖<𝑛𝑛�ℎ𝑖𝑖𝑘𝑘 − ℎ𝑖𝑖𝑘𝑘+1� ≤ 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 (the maximum head difference from iteration 𝑘𝑘 to 𝑘𝑘 + 1 is 



7 
 

sufficiently small) or max1<𝑖𝑖<𝑛𝑛�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘+1 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖

𝑘𝑘+1� ≤ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 (the maximum flow 

residual is sufficiently small). These methods are already programmed into MODFLOW and the 

recently updated MODFLOW-OWHM (Hanson et al. 2014), which served as the base code for 

the POD-DEIM development and includes the Newton Formulation of MODFLOW. For the 

reduced model, the LAPACK LU decomposition routine GESV with partial pivoting and row 

interchanges (documented: https://software.intel.com/en-us/node/520973). When implementing 

solvers for reduced models, additional factors ought to be considered yet this is beyond the scope 

of this project; see (Forstall 2015) for more thorough analysis of linear and nonlinear reduced 

model solvers. 

POD 

Equation 6, which is called the full model, lies in the dimension 𝑛𝑛 × 𝑛𝑛, since there are 𝑛𝑛 

equations and 𝑛𝑛 unknowns. A brief derivation of POD begins by approximating 𝒉𝒉𝑡𝑡+1 with 

𝑷𝑷𝒉𝒉𝑟𝑟𝑡𝑡+1. 𝑃𝑃 ∈ ℝ𝑛𝑛×𝑟𝑟 is generated by applying singular value decomposition (SVD) on 𝚽𝚽ℎ ∈ ℝ𝑛𝑛×𝑠𝑠, 

a matrix composed of a set of simulated values of 𝒉𝒉, called solution snapshots, for 𝑠𝑠 selected 

time steps. 𝒉𝒉𝑟𝑟 ∈ ℝ𝑟𝑟×1 is then a reduced vector of dependent variables, where 𝑟𝑟 ≪ 𝑛𝑛 is chosen 

based in the 𝑟𝑟 largest singular values (𝜎𝜎) of  𝚽𝚽ℎ that account for nearly all (e.g., 99.99% or 

99.999%) of the matrix’s embedded information, called percent energy (𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒).  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
∑ 𝜎𝜎𝑖𝑖𝑟𝑟
𝑖𝑖=1

∑ 𝜎𝜎𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝚽𝚽ℎ)
𝑖𝑖=1

× 100 ≥ 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Galerken Projection is then used to project the full model space onto a reduced subspace by 

pre-multiplying both sided by 𝑷𝑷𝑇𝑇, resulting in Equation 7. This process is described more 

thoroughly in Vermeulen et al. (2004) and as applied to a newton formulation of MODFLOW in 



8 
 

Boyce et al. (2015) (Vermeulen et al. 2004; Boyce et al. 2015). Equation 7 is called the POD-

reduced model and still requires matrix multiplication with a dimension of 𝑛𝑛 when 𝑷𝑷𝑇𝑇𝑨𝑨ℎ𝑷𝑷 is 

computed at each time step.  

 𝑷𝑷𝑇𝑇𝑨𝑨ℎ 𝑷𝑷𝒉𝒉𝑟𝑟𝑡𝑡+1 = 𝑨𝑨ℎ�  𝒉𝒉𝑟𝑟𝑡𝑡+1 = 𝑷𝑷𝑇𝑇𝒃𝒃 7 

 

DEIM 

The discrete empirical interpolation method is implemented specifically to reduce the 

nonlinear term’s dependency on the full dimension of the original model. At each time step, it 

may be computationally burdensome and unnecessary to compute any nonlinear approximations 

in the POD formulation using the full system’s state space. To approximate nonlinearities in a 

reduced space, the projection of nonlinear term is evaluated at selected interpolation points. The 

nonlinear projection basis is obtained via POD on snapshots of the nonlinear components only.  

The initial DEIM approximation (Equation 8) is made by approximating the nonlinear on the 

left-hand side of Equation 7 with a linear interpolation. The selection algorithm for the 

interpolation indices chooses points that have the largest residual error when iteratively 

approximating the nonlinear basis vectors (columns of 𝑫𝑫) from vector of new reduced variables, 

c, times the basis. The algorithm for this selection is shown in Figure 1.  

 𝑨𝑨ℎ�  𝒉𝒉𝑟𝑟𝑡𝑡+1 ≅ 𝑫𝑫𝑫𝑫 8 

Where 𝑫𝑫 ∈ ℝ𝑛𝑛×𝑑𝑑 is generated by performing POD on snapshots of 𝒃𝒃 from Equation 6 

(taken at the same 𝑠𝑠 time steps as snapshots of 𝒉𝒉) and 𝒄𝒄 ∈ ℝ𝑑𝑑×1 is a vector of coefficients 

still to be determined. Since Equation 8 is overdetermined, only 𝑑𝑑 equations are required to 

solve for 𝒄𝒄. The retained rows of the system are the interpolation indices that are selected 
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through the process described in Stefanescu & Navon (2013) and illustrated in Figure 

1(Ştefănescu & Navon 2013). Using 𝑫𝑫𝒅𝒅 ≝ 𝒁𝒁𝑇𝑇𝑫𝑫 and 𝒁𝒁 ∈ ℝ𝑛𝑛×𝑑𝑑 as a permutation matrix that 

selects the rows of 𝑨𝑨ℎ�  and 𝑫𝑫 that correspond to 𝑑𝑑 interpolation points, Equation 8 becomes: 

 𝒁𝒁𝑇𝑇𝑨𝑨ℎ�  𝒉𝒉𝑟𝑟𝑡𝑡+1 = 𝒁𝒁𝑇𝑇𝑫𝑫𝒄𝒄 9 

Equation 9 can be inverted to solve for 𝒄𝒄 and subsequently substituted back into Equation 8 

to obtain the final approximation of the nonlinear term (Equation 10). 

 𝒄𝒄 = [𝒁𝒁𝑇𝑇𝑫𝑫]−1𝒁𝒁𝑇𝑇𝑨𝑨ℎ�  𝒉𝒉𝑟𝑟𝑡𝑡+1 10 

 𝑨𝑨ℎ�  𝒉𝒉𝑟𝑟𝑡𝑡+1 ≅ 𝑫𝑫[𝒁𝒁𝑇𝑇𝑫𝑫]−1𝒁𝒁𝑇𝑇𝑨𝑨ℎ�  𝒉𝒉𝑟𝑟𝑡𝑡+1 =  𝑨𝑨ℎ�𝒉𝒉𝑟𝑟𝑡𝑡+1 11 

The final reduced model arises when the approximation in Equation 11 replaces the 

nonlinear term of Equation 7, which in this case is the only left-hand side term. Equation 11 

is now considered the POD-DEIM reduced model, which is solved for 𝒉𝒉𝑟𝑟𝑡𝑡+1at each time step 

entirely within the reduced dimension. In other words, there are no nonlinear operations 

that must be carried out in the original 𝑛𝑛-dimension allowing the reduced model to be 

solved at each iteration depending only on dimensions 𝑟𝑟 and 𝑑𝑑.  

The DEIM procedure involves the following steps: 



10 
 

1. Construct a basis 𝐷𝐷 ∈ ℝ𝑛𝑛×𝑑𝑑 from POD on snapshots of a nonlinear term 

2. Select 𝑧𝑧1 as the index of the largest element of 𝒅𝒅1, the first column of 𝐷𝐷 

3. For the remaining 𝑗𝑗 = 2, … ,𝑑𝑑 columns 

a. Calculate 𝒄𝒄 = �𝑍𝑍𝑇𝑇�𝒅𝒅1, … ,𝒅𝒅𝑗𝑗 ��
−1�𝑍𝑍𝑇𝑇𝒅𝒅𝑗𝑗 � 

    Where 𝑍𝑍 = �𝒆𝒆𝑧𝑧1 , … , 𝒆𝒆𝑧𝑧𝑗𝑗 �  

b. Compute the residual 𝒓𝒓 = 𝒅𝒅𝑗𝑗 − 𝐷𝐷𝒄𝒄 

c. Take 𝑧𝑧𝑗𝑗 to be the index of ‖𝒓𝒓‖∞ 

 

Figure 1: Algorithm for selecting the interpolation indices 𝑧𝑧𝑗𝑗 for  𝑗𝑗 = 1, … ,𝑑𝑑. 

MODFLOW 

The implementation within MODFLOW is contained within the subroutine 

GWF2MRED1AR1 and a new reduced solver is added. The structure of the POD-DEIM 

algorithm is demonstrated in the flow chart of Figure 2. The LAPACK LU-decomposition 

routine is used as the reduced solver and the MODFLOW implementation of PCG is used as the 

full model solver. 
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Figure 2: The flow chart describes the process of collecting snapshots for both traditional POD and DEIM, 

constructing the snapshot set, obtaining the basis, and conducting the interpolation. 
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Model Application 

First, a simple one-dimensional (1D) groundwater model was developed to test the proposed 

methodology. 200 finite difference cells, with a discretization of Δ𝑥𝑥 = 10 m, compose the model 

domain. The model simulates a pumping well at node 107, with constant zero head boundaries at 

nodes 1 and 200, an initial condition of zero head everywhere, and a saturated thickness of 50 m. 

Two hydraulic conductivity zones were used (𝐾𝐾𝑥𝑥1 = 0.4 and 𝐾𝐾𝑥𝑥2 = 1.9 m/day) to introduce 

minimal heterogeneity. The value of 𝐾𝐾𝑥𝑥2 was varied to account for an uncertain parameter. The 

well begins extracting at a rate of 𝑄𝑄 = 150 m3/day on day 30, pumps for 30 days, and then shuts 

off for 30 days. The pumping rate was also varied to account for uncertain pumping. There are a 

total of 90 1-day time steps in the transient model. Figure 3 displays the one-dimensional model 

domain with two zones and the water table contour after 30 days of pumping (i.e. at day 60) for 

pumping rates of 100 and 200 m3/day. The reduced model was generated with 90 snapshots each 

of four different model runs: (𝐾𝐾𝑥𝑥2,𝑄𝑄) = (1.2,100); (1.2,200); (2.2,100), (2.2,200) for a total of 

360 snapshots. The reduced model was then tested with the simulation: (𝐾𝐾𝑥𝑥2,𝑄𝑄) = (1.9,150), to 

evaluate its effectiveness at parameter and pumping values not used to generate snapshots. 
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Figure 3: The 1-dimensional model shows the conductivity zones and the water table after 30 days of pumping, 

creating the unconfined conditions, for pumping rates of 100 and 200 m3/day. 

After the 1D case has been successfully verified, we then extend the methodology to a more 

realistic 2D case.  Six zones of hydraulic conductivity were used to span four orders of 

magnitude. For the 2D case, the head starts at -5.0 m everywhere, creating unconfined conditions 

in the single layer with a thickness of 100 m, and pumping at five production wells begins to 

drawdown the water table. Three transient, 30-day stress periods (uniform time steps of 0.5 day) 

with various pumping rates are used to create a dynamic head distribution. A final stress period 

is added to allow the aquifer to recover without any pumping. A mix of constant head, constant 

flux, and no flow boundaries are maintained. Three additional head-dependent boundary 

conditions—a river, drain, and evapotranspiration zone—were added with the RIV, DRN, and 

EVT packages, respectively. The model is shown in Figure 4 with its zonation pattern and well 

locations.  
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Figure 4: The domain of the 2D test case is shown with a model grid of 99 rows and 99 columns and six 

conductivity zones that span several orders of magnitude. There are six wells that pump at various rates and head-

dependent features (river, drain, and ET) are included. 

Error Analysis 

The error for any reduced model is henceforth defined as the difference between the original 

full-model solution and the reduced model solution. This error is calculate for both the final head 

solution in the full model dimension as well as the nonlinear result of the operation 𝑨𝑨ℎ ∗ 𝒉𝒉, 

which is the same as the vector 𝒃𝒃 for  the governing equation under consideration. Absolute error 

is presented in meters of hydraulic head. Since, the significance of the absolute error depends on 
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the precision of the model, a normalized root mean squared error (NRMSE) is also calculated for 

each case so the error is weighted by the span of head values (Equation 12). The location of the 

maximum error is also show in terms of the model cell number where it occurs. This information 

allows for quick identification of model features that may not be sufficiently captured with the 

current set of snapshots or interpolation points. While it is not necessary for the reduced 

dimensions, 𝑟𝑟 and 𝑑𝑑, to be the same for the POD-DEIM model, they are initially chosen to be 

nearly equal for simplicity. The different errors between the POD and POD-DEIM model is 

therefore more comparable. The dimension 𝑑𝑑, however, experimentally appears to be most 

effective for solver convergence when 𝑑𝑑 ≥ 𝑟𝑟 + 1.  

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
‖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟‖2
√𝑛𝑛 ∗ (ℎ𝑚𝑚𝑚𝑚𝑚𝑚 − ℎ𝑚𝑚𝑚𝑚𝑚𝑚)

=
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

(ℎ𝑚𝑚𝑚𝑚𝑚𝑚 − ℎ𝑚𝑚𝑚𝑚𝑚𝑚) 12 

 

Results 

 Two to three orders of dimension reduction is achieved with both the 1D and 2D test 

problems. In Table 2, a summary of the reduced model’s performance is compared to the full 

model using several metrics. The minimum head value, which is also the maximum drawdown, 

is recorded to show the head range magnitude (used to normalize the RMSE). The maximum 

error, maximum error location, and NRMSE are presented for both the head results and the 

values of the nonlinear operation 𝑨𝑨ℎ ∗ 𝒉𝒉. The location of the maximum error informs of the time 

step and cell location that would be the next choice for an added snapshot or interpolation index, 

respectively. For the 1D model, eight interpolation indices were chosen: 

𝒛𝒛𝟏𝟏𝟏𝟏 = [107, 104, 53, 196, 76,141,168,29]; and for the 2D model, 40 indices were selected. The 

indices indicate a diverse spread across the well’s capture zone in the domain’s interior.  Points 
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near wells, which capture drawdown information, are often selected. Points near the boundaries 

are only selected if there is difficulty in resolving head-dependent boundary conditions. 

Table 2: Model reduction results are displayed in comparison to the full, unreduced model. 

 𝒉𝒉 𝑨𝑨 ∗ 𝒉𝒉 

  
Dim hmin [m] 

max error 
[m] 

max loc 
(𝒕𝒕,𝒙𝒙, [𝒚𝒚]) NRMSE [m] max error  

max loc 
(𝒕𝒕,𝒙𝒙, [𝒚𝒚]) NRMSE  

1D Full Model 200 -26.23 - - - - - - 

1D POD 4 -26.23 5.66E-03 (61, 69) 9.70E-02 - - - 

1D POD-DEIM 5 -26.23 5.66E-03 (61, 69) 9.70E-02 3.31E-01 (61, 106) 1.64E-02 

2D Full Model 9801 -32.453 - - - - - - 

2D POD 20 -32.451 2.10E-02 (64, 67, 82) 4.844E-02 - - - 

2D POD-DEIM 40 -32.451 2.12E-02 (66, 67, 82) 4.990E-02 343.6 (65, 66, 82) 3.95E-02 
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The full model is compared to both the POD (Equation 7) and the POD-DEIM model 

(Equation 11) to investigate errors in the 1D test case. First, the absolute residual errors (|𝒉𝒉 −

𝒉𝒉𝑟𝑟|) between the simulated head of the full model and the POD-DEIM model are illustrated with 

the simulation time on the y-axis (Figure 5). The beginning of each stress period (day 30 and day 

60) can be seen to have a sharp increase in error. The maximum errors occur in the first time 

steps of a new stress period near the interface between the two hydraulic conductivity zones.  

However, the maximum error of 0.566 cm is less than 0.03% of the minimum simulated head 

value of -26.23 m and can be deemed insignificant. The errors diminish as the stress periods 

progress and the head values stabilize to a smooth gradient. If needed, more accurate reduced 

model results could be obtained by adding more snapshots (specifically at the beginning of each 

stress period), adding more interpolation points near the zone of changing conductivity, or 

slightly increasing the dimension of the reduced basis, 𝑟𝑟. 

The performance of the nonlinear reduction is analyzed by comparing the result of the 

nonlinear operation. Figure 6 shows the residual error (|𝑏𝑏 − 𝑏𝑏𝑟𝑟|) between 𝑨𝑨ℎ ∗ 𝒉𝒉 for the full and 

POD-DEIM reduced models. While minor errors still occur near the onset of a new stress period, 

the maximum errors now appear at the pumping cell and persist through the entire model 

horizon. Again, the errors are small with respect to the values being compared and more 

precision could be obtained by constructing another reduced model under the guidance of the 

maximum error locations. 
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Figure 5: The results from the 1-D test are shown as a residual between full model head and reduced model head, for 

each of the 90 time steps in the A) POD reduced model and B) POD-DEIM reduced model 
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Figure 6: The error in the nonlinear approximation is shown to be at a maximum where the well is located, cell 107, 

and at the beginning of each time step.  

For the two-dimensional case, the NRMSE is calculated for each model cell over all time steps to 

obtain an overall assessment of the reduced model’s performance. Figure 7 displays the error in 

head for the 2D model. The maximum NRMSE is less than 0.5% and occurs at the location of 

Well 3. The ripple patterns emanating from some regions are a typical oscillatory behavior of 

POD errors. Red dots mark the interpolation points identified by the DEIM algorithm. Zones 

with larger regions of darker shades may indicate that additional snapshots or interpolation 

points are needed to capture more of a response from a particular model feature.  
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Figure 7: The NRMSE in head for each model cell is calculated over all time steps and shown over the model 

domain with DEIM interpolation points shown as red dots. 

Errors are most likely to occur where the head changes significantly from one time step to 

another or one model cell to another. Large head gradients are present in the vicinity of the wells 

and in the time step following a change in pumping rate. To test the model with these situations, 

Figure 8 shows the water table plotted for two regions of the model. Even with significant 

drawdown inducing a steep head gradient toward the wells, the reduced model produces a head 

indistinguishable from the full model. In time step 66, immediately following a change in 

pumping, the temporal change in head does not produce discernable error.   
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Figure 8: The water table drawdown in two regions is shown for the Full and POD-DEIM reduced model after 66 

days, corresponding to the beginning of the third pumping period. 

Further analysis of the error at specific time steps reveal different spatial distribution 

patterns. Examples of error in head and in the nonlinear term are illustrated in Figure 9. At day 

65, the errors in head are concentrated at Well 1 and Well 3, yet remain on the order of 

millimeters. At 66 days, where a change in pumping rate occurs, the error pattern around the 

wells shifts, with maximum errors occurring in the cells adjacent to the wells. A head error of 

about 1 cm occurs in rings around the wells and fluctuates slightly between 0.5 and 1.5 cm. For 



22 
 

the nonlinear error, similar spatial patterns emerge at the corresponding time steps, even though 

interpolation points are clustered around the wells. The magnitude of the error in the nonlinear 

term has no physical interpretation but still identifies areas where the nonlinear approximation is 

relatively better than others. With enough interpolation points, the error pattern in the nonlinear 

operation closely follows that of the error in the head. 
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Figure 9: The absolute error in head, as well as the error in the nonlinear approximation, is shown for day 65 and 66, 

times when the largest errors were observed. 

The nature of the errors change dramatically over time. An oscillatory pattern is observed in 

the time series of errors shown in Figure 10. This phenomena is commonly observed in POD-

based model reduction. The maximum absolute error spikes to an amplitude that is still within an 

acceptable error tolerance but the MAE (mean average error) tends to grow initially to a peak of 

2.1 cm but oscillations are attenuated as time progresses.  
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Figure 10: Absolute error at the location found to have the largest error (row 67, column 82) and MAE for the entire 

domain are computed for each time step and shown as a time series. 

For a slightly different perspective on the reduced model error, the RMSE is calculated for 

the head solution at each time step. Figure 11 illustrates the exceedance curve for the RMSE for 

each of the reduced models. The POD-DEIM30 model (the dual-reduced model using 30 

interpolation points) is shown to reach a maximum RMSE of around 0.032 cm a small 

percentage of the time and the majority of the head RMSE (> 50%) are below 0.03 cm. For the 

POD-DEIM40 model (40 interpolation points with the same dual-reduced approach), the RMSE 

approaches that of the traditional POD approach, yet has superior speed. 
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Figure 11: A comparison of the RMSE for the residual error in head (|𝒉𝒉 − 𝒉𝒉𝑟𝑟|) for each of the reduced models, 

POD, POD-DEIM30 and POD-DEIM40, when measured against the full model. 

Timing experiments show significant speed improvements, even for small test problems. The 

speed up for the POD-DEIM40 model over the POD model is 0.6 seconds when nearly equal 

error is obtained. This result may seem insignificant on this relatively small 2D application but 

when systems approach millions of nodes, this speed improvement will be highly beneficial. 

Additionally, if slightly more error is accepted with the POD-DEIM30 model, a speed up of 1.51 

seconds is achieved. The error is controllable with the number of interpolation points above 𝑟𝑟, 

depending on the accuracy desired. 
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Table 3: Timed results compared for each of the reduced models for the 2D test case. 

Model Reduced 
dimension (𝑟𝑟) 

Interpolation 
points (𝑑𝑑) NRMSE Time in Solver 

(seconds) 
POD 20 0 0.0484 3.61 
POD-DEIM40 20 40 0.0499 3.01 
POD-DEIM30 20 30 0.1585 2.10 

 

Discussion 

Both POD and POD-DEIM models perform well and have relatively insignificant errors. The 

nonlinear reduction with DEIM is obtained with only a small loss in accuracy. With both the 1D  

and 2D numerical  experiments, the slight increase in reduced dimension and approximation 

error is minimal when adding DEIM. Thus, performing the nonlinear operation in the reduced 

space is preferred. The simplicity of the examples allows for satisfactory proof-of-concept in the 

1D and 2D unconfined groundwater flow applications. Obtaining even smaller error would be 

feasible with additional snapshots, larger reduced dimension, or with added interpolation indices.  

More than the value of the error, the structure and distribution of the error are of interest. The 

results presented analyze times and zones of maximum error, which frequently occur at the 

beginning of stress periods. However, it is not common to require simulations to be accurate in 

the first few time steps of a stress period. Since it takes a few iterations for the solution to 

smoothly adjust heads when new forcings are introduced, it is toward the end of a stress period 

where results are trusted most, even in the full model. This fact allows further confidence in the 

reduced model’s adequacy. Structurally, the oscillatory appearance of very minor errors appears 

as ripples in Figure 7 and Figure 9. Irregular waveforms are visible in the error time series shown 

in Figure 10. This effect may be produced by the nature of the basis functions generated from 
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POD and the Galerkin projection. Alternative methods may reduce this behavior if the errors are 

approaching levels that prohibit the application of the reduced model. With careful error 

assessment, a new reduced model could be constructed to allow for accuracy at a specified radial 

distance from the well. Therefore, the error introduced from the POD-DEIM reduction is 

quantifiable and controllable, giving the modeler choices according to the tradeoff between 

reduced model size, time to construct, and relative importance of some model results (time and 

location of head observations, for instance) more than others.  

Additional strategies could be implemented to construct a more robust reduced model using 

the POD-DEIM method. The DEIM indices that were selected by the algorithm were unique for 

each specified reduced dimension. Though the specific DEIM indices were not modified, using a 

priori knowledge of the system could allow specification of desired indices. Changes to the mesh 

refinement, snapshot selection, and temporal discretization could also contribute to a more 

accurate reduced model. Optimizing these variables is outside the scope of this study, though it is 

prudent to consider the amount of flexibility one would have when constructing a reduced model 

for more complex projects. If parameter uncertainty is a concern, systematic variation of the 

parameters when collecting snapshots can generate a parameter independent reduced model.  

For models with additional nonlinear processes, the same approach can be used. Fortunately 

for the case of unconfined groundwater flow, there is only one nonlinear term that is easily 

resolved with other approximation/linearization techniques. Other applications of the POD-

DEIM method have shown success when approximating many different nonlinear operations, 

each with their own basis and set of interpolation points. For more complex unconfined flow 

modeling in MODFLOW, these additional nonlinearities might come from any of the head-

dependent boundary conditions (MNW, RCH, GHB, DRN, RIV). As more of these features are 
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modeled, the simulation requires more nonlinear computations at each time step, leading to run 

times that make any form of optimization (parameter estimation, sensitivity analysis, resource 

allocation, etc.) quite computationally expensive. With only one POD projection, errors might 

grow too large when certain values of parameters or boundary conditions were not incorporated 

into the basis. Therefore, the POD-DEIM method adds an element of structural independence 

from these changes by approximating the nonlinear dynamics of each additional term with its 

own interpolation. The dependence on snapshot selection is still an issue, but different sets of 

snapshots may be used for each nonlinear term, allowing the capture of a variety of possible 

inputs while maintaining the smallest possible reduced model. To perform this level of parameter 

independence in the traditional POD, a very large set of snapshots might be necessary, which 

could lead to only a moderate dimension reduction, and sometimes even an increase in 

dimension without limits on the size of the snapshot set. 

While construction of the reduced model can be time intensive, the overhead investment is 

easily overcome by the savings once the reduced model is used to solve a variety of problems. 

Possible applications that would now be feasible include the effects of changing formulations 

within an optimization problem. Different methods of aggregating decision variables and 

objectives—necessary because the variable dimensions may be too large for a chosen algorithm 

or a multi-objective framework may limit the number of objectives or be dependent on weighting 

factors—can lead to Arrow’s Paradox(Kasprzyk et al. 2015). With a sufficiently robust reduced 

model, suites of optimizations can be performed so any algorithmic tuning mechanism can also 

be optimized. Additionally, optimization and uncertainty analysis are still underutilized in the 

development and application of groundwater models for real-world decision making. Mostly, 

these techniques are not fully implemented due to the immense computational requirements each 
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method requires for a full solution. Using a reduced model to save even a few minutes or seconds 

on each model run can add up to time savings on the order of days, weeks, or even months. 

Conclusion 

A traditional linear model reductions technique for groundwater flow has been combined 

with an interpolation scheme to further reduce nonlinear components. The result is a reduced 

model of an unconfined flow equation that can be solved entirely in the reduced dimension with 

no dependence on the original, full model complexity. This additional approximation allows for 

faster calculations of nonlinear operations at each time step while sacrificing a tractably small 

amount of accuracy. As simulation models get more complex, with finer discretization, larger 

domains, and more nonlinear processes, faster calculations become more important. The 

combined model reduction approach with POD and DEIM greatly improves a modeler’s ability 

to obtain solutions quickly. The results from the two test problems show a two to three orders of 

dimension reduction. A key advantage of the POD-DEIM model is that nonlinear operations are 

carried in the reduced space. The faster overall simulation times are critical when embedding 

within or linking the model to any form of optimization (e.g., parameter estimation, experimental 

design, resource allocation) or extensive uncertainty analysis (e.g., Monte Carlo). Additionally, 

more and more optimization algorithms are taking advantage of parallel computing power, yet 

long simulation runtimes still inhibit the attainment of optimal solutions in reasonable amounts 

of time. Therefore, reduced models such as those developed with POD-DEIM can be used within 

parallel architectures to facilitate searching very large feasible regions—regions with dimensions 

so large that they would otherwise be impossible to explore. 
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