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Infantile spasms syndrome is an epileptic encephalopathy in which prompt diagnosis and 

treatment initiation are critical to therapeutic response. Diagnosis of the disease heavily depends 

on the identification of characteristic electroencephalographic (EEG) patterns, including 

hypsarrhythmia. However, visual assessment of the presence and characteristics of 

hypsarrhythmia is challenging because multiple variants of the pattern exist, leading to poor inter-

rater reliability. We investigated whether a quantitative measurement of the control of neural 

synchrony in the EEGs of infantile spasms patients could be used to reliably distinguish the 

presence of hypsarrhythmia and indicate successful treatment outcomes. We used autocorrelation 

and Detrended Fluctuation Analysis (DFA) to measure the strength of long-range temporal 

correlations in 21 infantile spasms patients before and after treatment and 21 control subjects. The 

strength of long-range temporal correlations was significantly lower in patients with 

hypsarrhythmia than control patients, indicating decreased control of neural synchrony. There 

was no difference between patients without hypsarrhythmia and control patients. Further, the 

presence of hypsarrhythmia could be classified based on the DFA exponent and intercept with 

92% accuracy using a support vector machine. Successful treatment was marked by a larger 

increase in the DFA exponent compared to those in which spasms persisted. These results suggest 

that the strength of long-range temporal correlations is a marker of pathological cortical activity 

that correlates with treatment response. Combined with current clinical measures, this 

quantitative tool has the potential to aid objective identification of hypsarrhythmia and 

assessment of treatment efficacy to inform clinical decision-making.  
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1. Introduction 

Infantile spasms (IS) is a potentially devastating form of epilepsy characterized by epileptic spasms and 

often accompanied by a chaotic electroencephalographic (EEG) pattern known as hypsarrhythmia 

(Pavone et al. 2013). In contrast with the low amplitude, mixed frequency activity of normal awake EEG 

(Fig. 1a), classic hypsarrhythmia is defined by multi-focal, independent epileptiform discharges on a 

disorganized background activity with asynchronous large amplitude slow waves (Fig. 1b) (Stamps et al. 

1959). There are also several variants of hypsarrhythmia that include episodes of voltage attenuation, 

burst-suppression patterns, increased interhemispheric synchronization, and hyperactive epileptiform foci 

(Hrachovy et al. 1984). Quantifying the presence and severity of hypsarrhythmia is nontrivial, as these 

variants exhibit drastically different power and spectral characteristics (Lux and Osborne 2004; Hussain 

et al. 2015). For example, Hussain et al. showed that the inter-rater reliability for hypsarrhythmia 

identification is unacceptably low, with kappa less than 0.5 (2015). This can impede accurate diagnosis 

and evaluation of short-term treatment response for patients with IS. Therefore, quantitative 

measurements of hypsarrhythmia are needed to improve the accuracy, objectivity, and reliability of these 

assessments (Hussain et al. 2015). Improving these methods may also reduce the time between diagnosis 

and successful treatment, a factor that has been shown to be related to improved developmental outcome 

(Riikonen 2010).  

As opposed to hypsarrhythmia, which is qualitatively described as a “chaotic” pattern, it is known that 

EEG activity in a healthy human brain possesses scale-free structure over multiple time scales 

(Linkenkaer-Hansen et al. 2001). Neural data has been shown to exhibit amplitude modulations on a 

power-law scale, in which the power in the amplitude envelope 𝑦 is related to its frequency 𝑓 by: 𝑦 =
1

𝑓𝛼
, 

with a scaling constant 𝛼 termed the Hurst parameter (Linkenkaer-Hansen et al. 2001). The power-law 

scaled nature of amplitude fluctuations in EEG data gives rise to long-range temporal correlations in the 

time series (Stadnitski 2012).  

Fig. 1 Example EEG traces. a Awake EEG from control patient containing no epileptic activity. b Awake EEG from 

an infantile spasms patient with hypsarrhythmia 
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The autocorrelation is one of the simplest methods to assess long-range temporal structure in time series 

data. It has been used to characterize periodic phenomena in childhood absence seizures (Babloyantz and 

Destexhe 1986) and to perform automatic detection of neonatal seizures (Liu et al. 1992). However, the 

autocorrelation function often provides a noisier estimate of the decay of temporal correlations than more 

complex methods (Smit et al. 2011). The noise level in these calculations can be reduced by using 

techniques that are based on random walk theory rather than analyzing the time series directly 

(Kantelhardt et al. 2001). Specifically, detrended fluctuation analysis (DFA) has been shown to be robust 

to certain nonstationarities in positively correlated signals, such as discontinuities due to artifact removal, 

and it is appropriate for use on shortened data segments (Chen et al. 2001; Hardstone et al. 2012). Both of 

these factors directly affect the stability of the autocorrelation. Thus, we used both the autocorrelation and 

DFA to characterize the long-range temporal dependence in EEG data associated with infantile spasms 

before and after treatment. We hypothesized that the presence of infantile spasms and hypsarrhythmia 

would disrupt long-range temporal correlations in the EEG and that a response to treatment would be 

associated with the return of temporal correlations to normal levels.  

 

2. Methods 

2.1 EEG Data Recording 

Scalp EEG data was recorded from infantile spasms and control patients using Nihon-Kohden acquisition 

hardware and software in the Epilepsy Monitoring Unit at the Children’s Hospital of Orange County 

(CHOC). Nineteen scalp EEG electrodes recorded neural activity, placed according to the 10-20 

international electrode placement system. Data were sampled at 200 Hz with electrode impedances below 

5 kOhms. A clinical pediatric epileptologist at CHOC (DS) retrospectively collected the datasets from the 

electronic medical record and stored them in an encrypted database. Approval to perform this study was 

obtained from the CHOC Institutional Review Board.  

We gathered EEG and clinical data for 21 infantile spasms patients. Two separate recordings were 

collected during wakefulness (median recording duration: 22.1, IQR 19.4-24.1 minutes). The first 

recording was performed at the time of the infantile spasms diagnosis prior to treatment (median age: 6.3, 

IQR 5.2-8.1 months), and the second was done after treatment initiation to assess response (median time 

to second recording: 29, IQR 19-42.25 days). The data was clipped without reviewer knowledge of 

treatment status or outcome. Awake EEG was chosen for analysis because EEG characteristics vary 

significantly across different sleep stages. The pre-treatment EEGs of all 21 patients exhibited findings 

consistent with hypsarrhythmia. In three patients, this pattern occurred intermittently, whereas in the other 

18 it was consistently present.   

We also collected data for 21 control subjects of a similar age distribution (median age: 7, IQR 5.75-11.25 

months). In this group, neurologists had ordered routine EEGs for suspected neurological abnormalities 

due to trauma or atypical behavior, but later classified the EEG as normal. These recordings contained 

both sleep and awake data, and the sections of wakefulness were selected for analysis (median recording 

duration: 12.2, IQR 10.1-16.3 minutes). Additional exclusion criteria for control patients in this study 

included a history of epilepsy, abnormal developmental history, abnormal video-EEG telemetry 

monitoring, and known neurological conditions.  
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2.2 Data pre-processing 

The EEG data were re-referenced to a linked-ear montage and divided into narrow frequency bands using 

FIR filters for the delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz) ranges. 

Epileptologists at CHOC marked and removed artifacts due to eye blinks, muscle activity, movement, 

poor electrode contact, and periods of photic stimulation prior to analysis.  

 

Table 1. Infantile Spasms Patient Clinical Information 

Clinical information for 21 infantile spasms patients.  

Acronyms are defined as follows: HIE = hypoxic-ischemic encephalopathy, WM = white matter, GBS = 

Group B streptococcus, ACTH = adrenocorticotropic hormone, and VGB = vigabatrin. 

Patient 

Number 

Age at 

Treatment 

Initiation 

(months) 

Spasms Etiology Medication Time between 

Onset of 

Spasms and 

Treatment 

(days) 

Treatment Response 

Hypsarrhythmia 

Resolved 

Spasms 

Resolved 

1 12.0 Cortical Malformation  VGB 35 No No 

4 5.5 Neonatal HIE ACTH 7 Yes Yes 

5 8.7 Unknown, Prematurity, 

Diffuse Cerebral 

Atrophy 

ACTH 4 Yes Yes 

6 6.8 Tuberous Sclerosis VGB 4 Yes Yes 

8 4.5 Dysmorphic, likely 

genetic 

ACTH 14 Yes No 

9 6.0 Neurofibromatosis 

Type I 

ACTH 3 Yes No 

10 4.5 Unknown ACTH 10 Yes No 

11 7.9 Paroxysmal 

Bifunctional Protein 

Deficiency 

ACTH 7 Yes Yes 

13 3.7 GBS Ventriculitis and 

hydrocephalus 

VGB 7 No No 

16 6.6 CDKL5 Mutation ACTH, 

VGB 

23 Yes No 

18 18.3 Unknown ACTH 270 Yes Yes 

19 4.9 Neonatal HIE ACTH 8 Yes Yes 

20 6.3 Unknown ACTH 30 Yes Yes 

22 7.7 Unknown ACTH 30 Yes Yes 

25 7.7 Tuberous Sclerosis VGB 7 Yes No 

28 6.0 Chromosome 8 

Abnormality & Stroke 

ACTH 4 Yes Yes 

29 5.8 Lissencephaly & 

Pachygyria 

ACTH 5 Yes Yes 

30 5.3 Lissencephaly ACTH 90 No No 

31 19.4 Bacterial 

Meningoencephalitis 

ACTH 90 Yes No 

32 9.0 Prematurity and Left-

sided IVH 

ACTH 4 Yes Yes 

34 4.9 Unknown ACTH 28 No No 
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2.3 The autocorrelation function  

We calculated the autocorrelation of the amplitude envelope of infantile spasms patients with and without 

hypsarrhythmia in the Cz electrode. Electrode Cz was chosen because it is minimally affected by muscle 

and eye movement artifacts. The amplitude envelope was extracted from the bandpass-filtered data by 

applying the Hilbert transform and calculating the magnitude of the analytic signal. We then calculated 

the autocorrelation using a biased cross-correlation of the envelope at all possible time lags, normalized to 

correlation values between 0 and 1. To assess the significance of temporal correlations in the data, we 

compared the result of the autocorrelation to surrogate data that was created by shuffling the Fourier 

phases of the original envelope. We calculated the time lag at which each patient autocorrelation function 

failed to exceed the 95th percentile of the surrogate data. This represented the time lag at which the 

correlations in the time series were not significantly different from chance levels.  

2.4 Detrended Fluctuation Analysis 

Detrended Fluctuation Analysis (DFA) was 

implemented using the following algorithm, 

adapted from Hardstone et al. (2012):  

First, the amplitude envelope was extracted 

from each channel by similar methods used in 

the autocorrelation calculation. We then 

subtracted the mean of the amplitude 

envelope and computed the cumulative sum 

of the signal to create the signal profile. This 

signal profile was divided into equally-sized 

windows with 50% overlap. Within each 

window, we performed a linear fit of the 

signal profile, subtracted the fit from the time 

series, and calculated the standard deviation 

of the detrended signal. After computing the 

standard deviations of the detrended signal for 

all windows of that size, we recorded the 

median standard deviation for that window 

size. This process was repeated for 

logarithmically-spaced window sizes from 3 

seconds to 25 seconds in length.  

When the median standard deviations are plotted on a logarithmic scale against the log-spaced window 

sizes, the result is linear with slope 𝛼 (Fig. 2). This slope is a direct estimation of the Hurst parameter and 

indicates the strength of the temporal correlations present in the time series (Hardstone et al. 2012). The 

slope of the resultant DFA plot varies between 0 and 1.0. Exponents less than 0.5 designate anti-

correlated signals, while positively correlated signals have an exponent greater than 0.5, indicating strong 

long-range temporal correlations. Uncorrelated signals, such as white noise, result in a DFA exponent of 

0.5.  

We averaged 𝛼 from all individual channels to obtain a single value approximating the strength of long-

range temporal correlations in the EEG, as individual channels within a subject exhibited consistent 

slopes (Fig. 2). The intercept of the DFA plot was calculated from the linear fit of the channel average by 

Fig. 2 Example DFA plot. The DFA exponent, α, is the slope 

of the linear fit of the average of all channels. Each channel’s 

median fluctuation value (standard deviation of the detrended 

signal) is plotted as a circle for each window size. Window size 

is measured in data points. The intercept is calculated as the 

theoretical fluctuation value when the logarithm of the window 

size equals zero, represented by the filled dot on the y-axis   

Fig. 2 Example DFA plot. The DFA exponent, α, is the slope 

of the linear fit of the average of all channels. Each channel’s 

median fluctuation value (standard deviation of the detrended 

signal) is plotted as a circle for each window size. Window size 

is measured in data points. The intercept is calculated as the 

theoretical fluctuation value when the logarithm of the window 

size equals zero, represented by the filled dot on the y-axis  
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extrapolating on the logarithmic plot to find the fluctuation value when window size was one sample, the 

value at which the logarithm of the window size equals zero. (Fig. 2, filled black dot).  

Note that DFA has been shown to robustly measure temporal dependence in positively-correlated signals, 

even when the data contains discontinuities due to artifact removal (Chen et al. 2001). Although DFA has 

been criticized by several groups in this regard (Bardet and Kammoun 2008; Bryce and Sprague 2012), 

their concerns are often aimed at the generalizability of the technique to all signal nonstationarities. We 

use the method under the careful assumption that neural signals are positively correlated and we use 

sufficiently long window sizes to mitigate the uncertainty of the measure in small data segments. Other 

forms of the algorithm increase the largest window size to 1/10 of the signal length (Hardstone et al. 

2012), but the use of large windows can cause a piecewise linear result with one or more “cross-over” 

points, requiring special analysis techniques  (Chen et al. 2001; Ferree and Hwa 2003). Therefore, we set 

the smallest window size to 3 seconds and the largest window size to 25 seconds to maintain consistent 

linearity at all window sizes (mean SSE: 0.0017 +/- 0.0042).  

2.5 Support Vector Machine Classification 

To quantify our ability to distinguish between 

patients with and without hypsarrhythmia, we 

trained one-dimensional and two-dimensional 

support vector machines (SVM). The one-

dimensional SVM imposes a simple 

threshold, while the two-dimensional SVM 

optimizes a linear classifier to separate the 

two groups. To train the SVM, we randomly 

selected half of the subjects with 

hypsarrhythmia (n=25) and half of the 

subjects without hypsarrhythmia (both 

spasms and control patients, n=38) and used 

the MATLAB function “svmtrain”. We then 

tested the classifier with the remainder of the 

data using the MATLAB function 

“svmclassify”. The number of correct 

classifications, the sensitivity, and specificity 

were recorded over 1000 iterations of 

randomly-selected training and testing datasets. 

2.6 Amplitude histogram calculation 

We quantified the amplitude variation for each EEG, as hypsarrhythmia is defined as a high-amplitude 

pattern. We calculated amplitude histograms of the broadband (0.5-55 Hz) bandpass-filtered data for all 

patients, as follows: For each 1-second window of data, we recorded the amplitude as the difference 

between the maximum and minimum voltage in the Cz electrode. We then binned the resulting 

amplitudes into a histogram consisting of 50 bins with occurrences represented as a fraction of the total 

number of windows in the dataset. 

2.7 Effect of amplitude and standard deviation on DFA parameters 

To gain insight into how basic characteristics of the EEG data, including amplitude and standard 

deviation, affect the DFA measurement, we performed simulations using pink noise. Pink noise was 

Fig. 3 Example amplitude envelope traces used in simulated EEG 

filtered in the alpha band. The red line is the original extracted 

amplitude envelope from a simulated EEG signal. The green and 

blue lines depict the original envelope scaled with increased 

amplitude and variance, respectively 
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generated at 200 Hz for 20 minutes to match the characteristics of our EEG dataset. After bandpass 

filtering, the amplitude envelope was extracted by performing the Hilbert transform and calculating the 

magnitude of the analytic signal.  

We then measured the DFA exponent and intercept of the simulated signal, using scaling factors to 

independently vary the amplitude and variance of the envelope. The 1000 scaling factors were linearly-

spaced values from 1 to 100. To vary the overall amplitude, we calculated the mean value of the 

amplitude envelope, multiplied the mean by the scaling factor, and added this constant to the original 

envelope (Fig. 3, green line). To scale the variance, we first subtracted the mean from the original 

amplitude envelope, multiplied the zero-mean signal by the scaling factor, and added the original mean 

value back into the signal (Fig. 3, blue line). For each scaling factor, DFA was performed on all three 

envelopes: the original envelope, the envelope with increased amplitude, and the envelope with increased 

variance. 

 

3. Results 

3.1 Hypsarrhythmia is associated with weaker long-range temporal correlations 

In the beta frequency band, the EEGs of patients without hypsarrhythmia exhibited stronger 

autocorrelation values over all time lags when compared to data with hypsarrhythmia (Fig. 4a). Both 

patient groups showed significant correlations over longer time lags than surrogate data (Fig. 4a), but the 

autocorrelation of data without hypsarrhythmia remained significantly higher than surrogate data over 

longer time lags (Wilcoxon rank-sum: p<0.01, z = -2.58, Fig. 4b). Results in other frequency bands were 

not significant (data not shown). The differences in the beta band motivated further investigation into how 

hypsarrhythmia disrupts temporal structure in EEG. Note, however, that we were unable to directly 

Fig. 4 EEG data with hypsarrhythmia is associated with decreased temporal correlations in the beta frequency band when 

calculated with autocorrelation. a The median normalized autocorrelation function of the amplitude envelope in patients with 

hypsarrhythmia (red, n=25), patients without hypsarrhythmia (blue, n=17), and surrogate data (green, n=42). The respective 

shaded areas represent data between the 25th and 75th quantile of individual autocorrelation functions. The black line 

indicates the 95th quantile of the surrogate data used as the threshold of significance for patient data. b Boxplots of the 

distribution of lag times at which individual patient autocorrelation functions were no longer significant, for patient data with 

(red) and without (blue) hypsarrhythmia. Patients with intermittent hypsarrhythmia are included in the hypsarrhythmia 

boxplot 
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compare to the autocorrelation functions for the control group, as the control subject EEG data was often 

shorter and contained both sleep and wakeful states. The autocorrelation measurement is negatively 

impacted by the discontinuities created by concatenating the awake segments, and it was not possible to 

extract uninterrupted segments of awake data of sufficient length to directly compare the autocorrelation 

functions of the three groups.  

Thus, further quantification and a comparison with control data warranted the use of detrended fluctuation 

analysis to more robustly characterize the strength of long-range temporal correlations in the data. First, 

we compared DFA exponents of patients with hypsarrhythmia to those without, regardless of whether the 

data was collected before or after treatment. Recall that some patients did not respond to treatment and 

still had hypsarrhythmia in the post-treatment EEG (4 out of 21 patients, see Table 1). Patients with 

hypsarrhythmia exhibited lower DFA exponents than control subjects in all frequency bands (Fig. 5, 

Wilcoxon rank-sum test: p<0.0125 corrected for multiple comparisons, average z = -3.74). Patients 

without hypsarrhythmia had significantly greater DFA exponents than patients with hypsarrhythmia in the 

theta (p<0.0125, z = -3.31), alpha (p<0.0125, z = -2.92), and beta (p<0.0001, z = -3.92) bands. There was 

no significant difference between patients without hypsarrhythmia and control patients in any frequency 

band (Fig. 5).  

3.2 DFA parameters enable classification of patients with and without hypsarrhythmia 

DFA analysis results in a straight line that is characterized by both its slope (exponent) and y-intercept 

(Fig. 2). The DFA exponent measures how the amplitude envelope is modulated over time, whereas the 

DFA intercept is a function of the standard deviation of the amplitude envelope (see Fig. 9d). When these 

two quantities were plotted against one another, we saw a separation between subjects with 

hypsarrhythmia (Fig. 6, red and pink circles) and those without hypsarrhythmia (Fig. 6, blue and black 

circles), regardless of treatment status (pre- or post-treatment). We note a strong negative correlation 

between the DFA intercept and DFA exponent in our data, despite the fact that they are derived from 

independent properties of the signal (Fig. 6). 

Fig. 5 Hypsarrhythmia is associated with lower values of the DFA exponent (* = p<0.0125, ** = p<0.0001). Results are 

shown for a delta band (z = -2.54), b theta band (z = -3.64), c alpha band (z = -3.77), and d beta band (z = -5.03). Z-values 

report significance between hypsarrhythmia and controls. The red box designates hypsarrhythmia (n=25), blue indicates no 

hypsarrhythmia (n=17), and black represents control patients (n=21). Patients with intermittent hypsarrhythmia are included 

in the hypsarrhythmia boxplot 
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Table 2. Support Vector Machine Classification of Hypsarrhythmia 

Frequency 

Band 

Classification Accuracy Sensitivity Specificity 

Exponent 

only 

Exponent 

and Intercept 

Exponent 

only 

Exponent and 

Intercept 

Exponent 

only 

Exponent 

and Intercept 

Delta 69.1% 91.6% 62.95% 91.86% 73.77% 91.06% 

Theta 77.6% 86.8% 67.52% 77.30% 85.27% 93.37% 

Alpha 78.0% 88.9% 64.11% 74.27% 87.64% 98.99% 

Beta 80.9% 82.9% 79.62% 75.90% 80.62% 88.24% 

 

We used a support vector machine to quantify our ability to classify patients with and without 

hypsarrhythmia. The SVM was trained first using only the DFA exponent as input (the one-dimensional 

case based on a simple threshold for the exponent), and then with both the exponent and intercept as 

inputs (the linear, two-dimensional case). When the data were classified using only the DFA exponent, 

Fig. 6 A plot of DFA exponent versus DFA intercept results in separation of patients with hypsarrhythmia from those 

without, enabling classification. Red open circles designate hypsarrhythmia pre-treatment and magenta closed circles indicate 

intermittent hypsarrhythmia pre-treatment. The red and blue stars indicate hypsarrhythmia and no hypsarrhythmia post-

treatment, respectively. Black open circles represent control subjects. Results are shown for the a delta, b theta, c alpha, and 

d beta frequency bands 
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the highest classification accuracy was 80.9%, based on the beta frequency band, with 80% sensitivity 

and 81% specificity (Table 2). When the intercept was added as a parameter, the mean classification 

accuracy, sensitivity, and specificity increased an average of 11% in all categories. Using both parameters 

as input, we achieved a maximum classification accuracy of 92% in the delta band with 92% sensitivity 

and 91% specificity (Table 2). 

3.3 The change in the DFA exponent reflects treatment response 

Successful treatment of infantile spasms is defined by both a resolution of hypsarrhythmia and a cessation 

of clinical spasms. In our dataset, 10 of the 21 patients were classified as “non-responders” because they 

still exhibited clinical spasms after the administered treatment. Four of those 10 patients had persistent 

hypsarrhythmia following treatment. 

 

Based on the results in Section 3.1, we expected a group-wise increase in strength of long-range temporal 

correlations due to the resolution of hypsarrhythmia in 17 subjects (see also Fig. 5). An analysis of pair-

Fig. 7 Greater increases in DFA exponent in the beta band are associated with treatment success. Data is shown for patients 

with hypsarrhythmia (red open circles), patients with intermittent hypsarrhythmia (magenta closed circles), patients without 

hypsarrhythmia (blue open circles), and control subjects (black open circles). The black lines indicate that the patient was a 

responder who had a resolution of hypsarrhythmia and spasms after treatment. The magenta lines represent patients that were 

non-responders with persistent spasms after treatment. The small black arrows indicate outlier patient 18 (see Discussion). 

Results are shown for the a delta, b theta, c alpha, and d beta frequency bands 
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wise measurements in the theta and beta bands of pre- and post-treatment datasets showed that a 

significant number of responders exhibited an increase in strength of long-range temporal correlations 

after treatment (Wilcoxon left-tailed sign-rank test: p<0.01), whereas non-responders did not (Fig. 7b and 

7d).  

 

In the beta band, responders had a greater increase in strength of long-range temporal correlations after 

treatment than non-responders (Fig. 7d). The median post-treatment DFA exponent in the beta band of 

responders was not significantly different from the median value for the control patients (Wilcoxon rank-

sum: p=0.4509, z = -0.75). However, the non-responder post-treatment median exponent was significantly 

lower than the control patient median exponent (Wilcoxon rank-sum: p<0.001, z = -3.44) (Fig. 7d). 

Accounting for the DFA intercept induces further separation between responders and non-responders 

(Supplementary Fig. 1). These results suggest that the change in the DFA exponent may reflect the 

clinical response to treatment, rather than just the presence or absence of hypsarrhythmia. 

Fig. 8 Histograms of EEG amplitude. The count in each bin is represented as a fraction of the total number of occurrences. 

Histograms for a pre-treatment, b post-treatment and c control patients. Red lines designate patients with hypsarrhythmia, 

magenta for patients with intermittent hypsarrhythmia, blue for patients without hypsarrhythmia, and black indicates control 

patients. d Boxplot of the mode amplitude values for all pre-treatment (red), post-treatment (blue), and control patients 

(black). Pre-treatment boxplot includes patients with intermittent hypsarrhythmia, and post-treatment boxplot includes 

patients that had persistent hypsarrhythmia and spasms after treatment 
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3.4 Interpretation of DFA exponent and intercept relative to basic EEG characteristics 

Because the long-range temporal correlation measurement integrates information over many time scales, 

it is informative to interpret the DFA parameters relative to basic characteristics of the EEG that can be 

visually assessed by the human eye and are used for clinical diagnosis. For example, hypsarrhythmic EEG 

is clinically defined as a high amplitude signal, so pre-treatment EEGs with hypsarrhythmia have a much 

higher amplitude than post-treatment EEGs without hypsarrhythmia. Indeed, our calculation of amplitude 

histograms in patient EEGs revealed a decrease in amplitude after treatment, consistent with a resolution 

of hypsarrhythmia in most cases (17 out of 21 patients) (Fig. 8). To investigate how this change in 

amplitude affected the analysis of temporal correlations, we performed DFA on simulated data with 

varying amplitude characteristics. We modulated both the overall amplitude value as well as the variance 

of the amplitude envelope (Fig. 3). Our simulations confirmed that the DFA exponent is robust to 

variations in the amplitude of the signal (Fig. 9a and 9c). The DFA intercept is also independent from the 

EEG amplitude (Fig. 9b), but it exhibits a logarithmic relationship to the scaled amplitude variance (Fig. 

9d, see also Fig. 3, blue line).  

 

Fig. 9 DFA results based on 1/f distributed noise filtered into the alpha band (8-12 Hz). a DFA exponent does not vary with 

increasing amplitude. b DFA intercept does not vary with increasing amplitude. c DFA exponent does not vary with 

increasing envelope variance. d DFA intercept varies logarithmically with increasing envelope variance 
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4. Discussion 

In this study, we demonstrated a relationship between infantile spasms and hypsarrhythmia and the 

strength of long-range temporal correlations in the developing brain. Consistent with the idea that long-

range temporal correlations reflect the brain’s normal functional control of synchrony, we found that the 

strength of correlations in the EEGs of infantile spasms patients were weaker than those seen in healthy 

brains. Using the DFA parameters, the presence of hypsarrhythmia could be classified with up to 92% 

accuracy. We further found that successful treatment caused the strength of long-range temporal 

correlations to return to the level of control patients, with responders exhibiting a significantly greater 

increase in exponent values than non-responders. These results suggest that the strength of long-range 

temporal correlations may not only be an indicator of hypsarrhythmia, but also reflect treatment response. 

Researchers and clinicians have tried to quantify various characteristics of hypsarrhythmia in an attempt 

to ameliorate the subjectivity of the assessment (Sue et al. 1997). Some groups have attempted to 

quantitatively describe the underlying functional and neuronal network that facilitates hypsarrhythmia 

through EEG-fMRI (Siniatchkin et al. 2007), source analysis methods (Japaridze et al. 2013), and 

detection of fast oscillations (Kobayashi et al. 2015). Though the hypsarrhythmia signal is often 

empirically described as “chaotic,” with the term describing the signal’s disorganized appearance (Pavone 

et al. 2013), the mathematical definition of chaos and signal nonlinearity has been explored in several 

forms of epilepsy (Babloyantz and Destexhe 1986; Van Putten and Stam 2001; Kannathal et al. 2014). In 

hypsarrhythmia, an inter-ictal phenomenon, the deviation from stochastic behavior was greater than in 

control data, but not as nonlinear as seen during seizure periods (Van Putten and Stam 2001). Our results 

correspondingly indicate that temporal structure reliably exists in hypsarrhythmia, although it is disrupted 

as an effect of the disease.  

DFA has been used to show that the scaling properties of the EEG change when a patient experiences a 

stroke, enabling accurate detection of stroke by EEG in the absence of MRI (Hwa and Ferree 2004). In a 

study of epilepsy, long-range temporal correlations measured by DFA in depth electrodes and subdural 

EEG were shown to be stronger when in close proximity to the epileptogenic zone (Parish et al. 2004; 

Monto et al. 2007). Similar to our results, the effects of proximity to the seizure onset zone and treatment 

were the most prevalent in the beta frequency band (Monto et al. 2007). However the pathogenic zone in 

that study showed elevated levels of long-range temporal correlations (Monto et al. 2007), whereas our 

results showed weaker correlations in the untreated, pathologic state. Under the interpretation of DFA as 

measuring the functional self-control of the underlying network of the brain, we associated weaker 

temporal correlations with an inability to self-regulate the amplitude modulations necessary for healthy 

processing over long time scales. 

The classification accuracy of infantile spasms patients in this study indicates that the strength of long-

range temporal correlations measured with DFA is highly differentiable in patients with and without 

hypsarrhythmia. We used a support vector machine to classify patients in this study to simulate how this 

measure might perform if used in a clinical environment. Because the training and testing procedures used 

in the SVM are independent of one another, the classification accuracy indicates how well new data 

would be categorized in the clinic based on data from a cohort of patients from a prior study. While our 

dataset is quite small, the high accuracy, sensitivity, and specificity are promising, and they support future 

investigation on the use of DFA in hypsarrhythmia identification for both diagnosis and treatment 

evaluation.  

An assessment of long-range temporal correlations, by definition, analyzes longer temporal scales than 

typical time-frequency analyses. Because human reviewers are only able to visualize several seconds of 
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EEG data at a time, a measure of control of the neural network over long time frames is a novel way to 

probe the severity of infantile spasms and hypsarrhythmia. Additionally, our quantitative measurement of 

long-range temporal correlations in these patients is unique in that we are assessing the ability of the 

neural network to regulate its own activity. The results of our simulations with pink noise indicate that 

DFA captures more complex characteristics of the EEG with greater clinical relevance than amplitude 

alone: the changes in DFA parameters after treatment are not influenced by large decreases in amplitude, 

but rather are secondary to alteration of the neuronal activity that underlies spasms and hypsarrhythmia.  

Although there were slight increases in DFA exponents in the other frequency bands following successful 

treatment, the increases were most significant in the beta band. We hypothesize this may be the case for 

several reasons. First, studies show that high amplitude beta activity is a predominant EEG feature in 

healthy infants (Ebersole and Pedley 2003). Secondly, paroxysmal fast activity (PFA) and focal or 

lateralized beta activity are commonly seen in infantile spasms and other epileptic syndromes 

(Hooshmand et al. 1980; Wu et al. 2008). In addition, some of the medications prescribed for patients 

with IS, such as barbiturates and benzodiazepines, are often associated with an increase in beta activity 

(Ebersole and Pedley 2003). Although beta activity is more prevalent in the spasms cases, the lower pre-

treatment DFA exponents indicate that the activity is less correlated over long time scales. Thus, the 

stronger correlations seen after successful treatment may indicate that the brain has reestablished normal 

beta amplitude fluctuations associated with this stage of development. 

There are several important limitations to the current study. Data collection was retrospective, which led 

to a variable amount of time between pre-treatment and post-treatment EEGs and an inability to precisely 

control the dataset lengths. The relatively small number of patients included in this study is an effect of 

the rarity of the disease and precluded comparative analysis of antiepileptic medication and etiology of 

spasms. Although the diverse etiology of patients is a limitation of the current study, the surprising 

consistency of the strength of temporal correlations across both focal and generalized etiologies promotes 

the use of DFA as a potential widespread diagnostic tool in this disease. Additionally, though others have 

reported differences in the strength of long-range temporal correlations as a function of age (Smit et al. 

2011), we found no significant correlation between age and DFA exponent in the control patients in our 

study (Supplementary Fig. 2). We believe this is due to the narrow age distribution of the control patients 

(median age: 7 months, IQR 5.75-11.25 months). Lastly, we tested only one epileptic syndrome, so it 

remains unknown whether the change in the strength of long-range temporal correlations is specific to 

infantile spasms or is a general marker for differentiating neuropathologies from normal cortical function. 

In our dataset, there were several outliers that may have impacted our results, and these correspond to 

some of the confounding factors known to affect successful treatment. For example, patient 18 responded 

to treatment, but had a much higher pre-treatment DFA exponent than post-treatment, a pattern that was 

different than all other responders in the dataset (see small black arrows in Fig. 7). This patient, as well as 

three others, had a large time delay between spasms onset and the initiation of treatment (Table 1), a 

factor known to be associated with worse developmental outcomes (Riikonen 2010).   

These limitations and gaps in knowledge necessitate further investigation into the effects of other clinical 

factors that confound the assessment of long-range temporal correlations in patients with infantile spasms. 

A prospective study with a much larger dataset will be required to assess how temporal structure is 

affected by factors such as therapy type and spasms etiology. As this study focused on analyzing the 

strength of temporal correlations in pre- and post-treatment EEG with respect to the presence of 

hypsarrhythmia and correlation with initial treatment response, larger prospective studies may elucidate 

changes in the EEG temporal structure associated with specific epileptic encephalopathies as well as their 

relationship to long-term outcome.  
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Appendix A: Supplementary Figures 

 

 

Supplementary Fig. 1 Treatment response vectors with both DFA exponent and DFA intercept as parameters. For each 

patient, the vector originates at the pre-treatment DFA exponent and intercept and ends at the post-treatment values. The 

magenta vectors represent non-responders and black vectors represent responders. Results are shown for the a delta band, b 

theta band, c alpha band, and d beta band 
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Supplementary Fig. 2 DFA exponent does not correlate with control subject age. Pearson correlations between the DFA 

exponent and subject age were not significant in the a delta band (p = 0.4911), b theta band (p=0.0644), c alpha band 

(p=0.2830), and d beta band (p=0.5971) 

 




