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RESEARCH Open Access

Meta-analysis of RNA-seq expression data
across species, tissues and studies
Peter H. Sudmant1†, Maria S. Alexis1,2† and Christopher B. Burge1,2*

Abstract

Background: Differences in gene expression drive phenotypic differences between species, yet major organs and
tissues generally have conserved gene expression programs. Several comparative transcriptomic studies have
observed greater similarity in gene expression between homologous tissues from different vertebrate species than
between diverse tissues of the same species. However, a recent study by Lin and colleagues reached the opposite
conclusion. These studies differed in the species and tissues analyzed, and in technical details of library preparation,
sequencing, read mapping, normalization, gene sets, and clustering methods.

Results: To better understand gene expression evolution we reanalyzed data from four studies, including that of
Lin, encompassing 6–13 tissues each from 11 vertebrate species using standardized mapping, normalization, and
clustering methods. An analysis of independent data showed that the set of tissues chosen by Lin et al. were more
similar to each other than those analyzed by previous studies. Comparing expression in five common tissues from
the four studies, we observed that samples clustered exclusively by tissue rather than by species or study,
supporting conservation of organ physiology in mammals. Furthermore, inter-study distances between homologous
tissues were generally less than intra-study distances among different tissues, enabling informative meta-analyses.
Notably, when comparing expression divergence of tissues over time to expression variation across 51 human GTEx
tissues, we could accurately predict the clustering of expression for arbitrary pairs of tissues and species.

Conclusions: These results provide a framework for the design of future evolutionary studies of gene expression
and demonstrate the utility of comparing RNA-seq data across studies.

Background
Phenotypic differences among species are often driven by
evolutionary adaptations in gene expression, yet many de-
velopmental programs and pathways are deeply con-
served. Gene expression among homologous genes across
vertebrate species and tissues has been explored using
microarray [1] and RNA-sequencing (RNA-seq) [2–4]. All
of these studies concluded that gene expression was more
similar between homologous organs of different species
than between different organs of the same species. This
result has been interpreted as a reflection of evolutionarily
conserved transcriptional programs driving the produc-
tion of major proteins that define specific organs, such as
heart, lung, or liver. This result supports the accepted idea

that non-human vertebrate models, such as rodents,
serve as useful models of the physiology of particular
human organs, despite tens of millions of years of evo-
lutionary divergence. Recently, however, a study asses-
sing 13 human and mouse tissues challenged this
result, concluding that different organs within a species
are more similar in gene expression than homologous
organs in different species [5, 6].
Reconciling the disparate conclusions of Lin et al. [6]

with previous studies is made challenging by the many
technical aspects of assessing and comparing expression
profiles between samples of different organs and species
collected by different studies. Indeed, the study design of
this paper has been criticized, and batch effects were
proposed as a potential source of the observed clustering
patterns [7]. While RNA-seq has been heralded as being
free from many of the technical biases associated with
microarray-based expression analyses, numerous tech-
nical variables have been recognized that can impact
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downstream analyses. For instance, different library con-
struction protocols can yield different sequence cover-
age, complexity, evenness, and expression level estimates
[8]. Differences exist among sequencing platforms and
even between different versions of the same platform,
for example, Version 3 of the Illumina Hi-Seq platform
yields better representation of higher C+G sequences
than Version 2 [9]. Specific choices of experimental sub-
jects and sample isolation and handling are also relevant.
Gene expression patterns vary with the age of an indi-
vidual [10], and the post-mortem interval prior to RNA
extraction significantly impacts the integrity of the iso-
lated sample [11]. Dissections may also include varying
amounts of surrounding tissue, and different preserva-
tion methods can impact RNA quality [12]. Finally, in-
terspecies studies of gene expression have interrogated
different organs and tissues from species of varying
evolutionary divergences, spanning from one to hun-
dreds of millions of years. Patterns of interspecies gene
expression conservation are likely to differ among or-
gans and may exhibit varying dependence on evolution-
ary distance.
To attempt to better understand gene expression evo-

lution and what conclusions are universal among the
various studies, we performed a meta-analysis of four
datasets encompassing 6–13 tissues from 11 vertebrate
species [2, 3, 6], supplemented by 51 human tissues se-
quenced by the GTEx consortium [13]. We found that
clustering by species or tissue was predictable dependent
both on the subset of tissues selected and the divergence
time of the species analyzed.

Results
Interspecies clustering by tissue is the predominantly
observed pattern among various studies under various
distance metrics and normalization methods
To assess patterns of clustering among tissues and spe-
cies, we reanalyzed RNA-seq data from Merkin et al. [3]
(nine tissues, five species), Brawand et al. [2] (six tissues,
nine species), and Lin et al. [6] (referred to as Lin1, 13
tissues, two species) in addition to resequencing data
from 12 of the original Lin et al. library preparations (re-
ferred to as Lin2, 12 tissues, two species) (Table 1). Each
of these datasets was mapped using a common pipeline
and read counts were assessed over a common set of ei-
ther amniote or human-mouse orthologs. While several
methods for RNA normalization have been proposed
[14], we selected the trimmed mean of M-values (TMM)
normalization method [15], which normalizes the expres-
sion values of a set of experiments to log fold changes
against an arbitrary chosen reference sample excluding
outliers. We chose this method for several reasons, includ-
ing its relatively common use and simplicity, and its nu-
merous advantages over similar methods [14]. We then

computed the pairwise distance among samples using
raw TMM normalized gene counts or log-normalized
TMM counts as measured by three different distance
metrics. While several distance metrics have been pro-
posed exhibiting various strengths, we retained three of
the most commonly used, Pearson correlation, Euclid-
ean distance, and Jensen–Shannon Divergence (JSD).
We counted the number of samples that clustered most
closely with a homologous tissue sample from a different
species (T), and the number that clustered with a different
tissue from the same species (S), and determined the frac-
tion clustering by tissue as T/(T+S) (Fig. 1a). As was

Table 1 Summary of datasets and tissue samples analyzed in
this study

Dataset(s) Tissues Species

Merkin brain chicken

colon cow

heart mouse

kidney rat

liver macaque

lung

skeletal muscle

spleen

testes

Brawand brain chicken

cerebellum platypus

heart opossum

kidney mouse

liver macaque

testes orangutan

gorilla

chimp

human

Lin1/Lin2 adipose human

adrenal mouse

brain

heart

kidney

liver

lung

ovarya

pancreas

sigmoid colon

small bowel

spleen

testes

GTEx 51 profiled tissuesb human
a not included in Lin2, b full list of tissues in Fig. 4
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previously observed in the Brawand et al. and Merkin
et al., studies, most samples in these datasets clustered
by tissue (79–98 %), irrespective of the normalization
or distance metric applied. Curiously, the Lin1 and
Lin2 datasets, sharing 12 common samples and identi-
cal in all aspects but sequenced at different times, ex-
hibited vastly different sample clustering. Among the

various normalization and distance metrics, 26–50 % of
samples clustered by tissue in the original Lin et al.
dataset compared to 41–67 % of samples in the rese-
quenced dataset.
To resolve whether the particular choices of tissues or

species were responsible for the observed clustering
trends, we focused on the five tissues common to all four
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Fig. 1 Samples cluster largely by tissue across various studies and using a variety of distance metrics. Heat maps of the extent of interspecies
tissue clustering, defined as the proportion of samples clustering most closely with a sample of a homologous tissue in a different species. Each
heat map row represents a single set of samples assessed using various normalization methods and distance metrics (columns). a Representative
samples (one per tissue/species) from four datasets spanning 11 species and from 6–13 tissues assessed over 4,547 common amniote orthologs.
Lin1 and Lin2 represent identical library preparations sequenced at different times. b Mouse and human (*macaque was substituted for Merkin as
no humans were assessed) samples assessed among the five tissues common to all studies (brain/cerebellum, testis, heart, kidney, and liver) over
11,850 human-mouse orthologs. c Mouse samples from each study paired with matched human tissues sequenced as part of the GTEx study
assessed over 11,850 human/mouse orthologs in five common tissues
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datasets (brain, heart, liver, kidney, and testes) and on the
human and mouse species (or macaque and mouse in the
case of Merkin et al., which did not analyze human) in
11,850 human/mouse orthologs. Previous studies have
noted that these five tissues exhibit quite distinct expres-
sion and proteomic profiles [16–18]. Strikingly, when this
subset of tissues and species was assessed, clustering by
tissue exceeded 50 % for all datasets, irrespective of
normalization or distance metric, with Lin2, Merkin, and
Brawand all exhibiting >71 % of samples clustering inter-
species by tissue (Fig. 1b). Substituting matched human
tissues assessed by GTEx for the human/macaque tissues
assessed by each of these studies resulted in a similar pro-
portion of samples clustering by tissue for Lin2, Merkin,
and Brawand, but dramatically reduced the fraction of
samples clustering by tissue in Lin1 (Fig. 1c). This obser-
vation suggests that some aspect of the sequencing per-
formed in the original Lin study differed from sequencing
performed later by these authors or by the other studies.

Tissues assessed by Lin et al. are more similar than those
assessed by previous studies
While analyses of the both the original and resequenced
Lin et al. data exhibited noticeably less interspecies clus-
tering by tissue, considering the subset of the Lin data
from the five tissues common to all studies recapitulated
the previously observed pattern of interspecies clustering
of tissues. We plotted the distribution of intraspecies
JSD distances among tissues for all studies (Fig. 2a), and
found the Lin tissues to be more similar on average with

a mean of 0.43 and 0.45 bits½ for Lin1 and Lin2 respect-
ively compared to 0.49 bits½ each for Brawand and Mer-
kin. However, considering only the subset of five common
tissues this difference was substantially diminished,
though still lower in both the Lin1 and Lin2 datasets (Lin1
and Lin2 0.49 and 0.50 bits½ respectively compared to
0.52 bits½ each for Merkin and Brawand) (Fig. 2b). Here
and for further analyses we used log-JSD distance because
of its information theoretic properties.

Inter-study distances between homologous tissues are
generally less than intra-study distances among different
tissues
The common tissues sequenced in multiple human and
mouse biological samples by each of the studies provided
a unique opportunity to assess the impact of inter-study
technical variability. We first compared the interspecies
distances between matched mouse and primate tissues
common to the four datasets. We observed similar dis-
tributions of distances in all studies, ranging from 0.33
to 0.40 bits½ (Fig. 3a). Pairing the mouse tissues of each
study with matched GTEx human samples yielded an in-
creased interspecies tissue distance (Fig. 3b). However, this
increase was >25 % greater for Lin1 than for Merkin,
Brawand, or Lin2 (0.52 bits½ compared to ~0.41 bits½).
The relative ordering of interspecies distances between
matched tissues was identical, and the magnitudes similar,
among Merkin, Brawand, and Lin2, with brain tissues exhi-
biting the least distance between species and testes samples
the most.
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(6,9)
Brawand

(5,2) 
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(5,2*)

Lin1
(5,2)
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(5,2)

Merkin 
(9,5)

Lin1 
(13,2)
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Fig. 2 Typical inter-tissue distances are similar among most datasets, with Lin et al. tissues exhibiting smaller distances. The distribution of all pairwise
distances among tissues within an individual species for various datasets is shown with the square root of the Jensen–Shannon Divergence (JSD½) as
the distance metric throughout. a The distances among tissues calculated for all interspecies datasets using 4,547 orthologs common to the 11 amni-
otes assessed. Black bars indicate the mean. b The distribution of distances among the five tissues common to all studies assessed (brain/cerebellum,
testis, heart, kidney, and liver), for mouse and human/macaque species over 11,850 human/mouse orthologs
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Fig. 3 Inter-study distances between homologous tissues are small enough to enable meta-analysis, yielding clustering by tissue across species and
studies. a The distance (JSD½) between matched mouse and human/macaque tissues within studies. b The distance (JSD½) between matched mouse
and GTEx human samples. The inter-study, intraspecies distances among (c) mouse tissues and (d) among human tissues. e The fraction of samples
clustering most closely with a sample of the same tissue considering only inter-study relationships. f Heat map hierarchical super-clustering of 94
samples encompassing five shared tissues, five datasets, and 11 different species
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We next assessed the distances between identical tis-
sue/species pairs from different studies (Fig. 3c). Not-
ably, for pairs of mice sequenced by the Brawand,
Merkin, and Lin2 studies, the mean inter-study distance
between matched mouse tissues (ranging from 0.11 to
0.18 bits½) was less than the mean intra-study interspe-
cies distance for the same tissues and studies (which
ranged from 0.33 to 0.37, Fig. 3a). This result implies
that RNA-seq data of this period can reasonably be pooled
among studies for meta-analyses of gene expression, in
contrast to the situation for most previous genome-wide
expression profiling technologies. However, the mouse tis-
sues from the Lin1 study were a distinct outlier in this re-
gard, exhibiting an almost 3-fold increase in the mean
inter-study distance to identical mouse tissues from other
studies. The inter-study comparisons of human tissues
were more variable (Fig. 3d), likely owing to the many
challenges associated with analyzing RNA from human
tissues. Comparisons to Lin1 human tissues yielded some-
what higher mean distance between homologous tissues.

Common tissues exhibit interspecies clustering when
exclusively comparing samples between studies
For mouse and human or macaque, we grouped studies
and identified the closest clustering sample pairs, ex-
cluding any sample pair sequenced by the same study.
We used this analytical approach to identify trends in
the data that were robust to the technical variation that
exists between studies. We additionally combined the
Brawand, Merkin, and GTEx studies, considering inter-
study distances between the Brawand and Merkin
mouse samples and the Brawand and GTEx human
studies. Notably, interspecies clustering by tissue was
the dominant pattern observed among all inter-study
combinations, with Brawand, Merkin, Lin2, and GTEx
combinations clustering by tissue at least 90 % of the
time (Fig. 3e). Inter-study comparisons including Lin1
also exhibited clustering mostly by tissue, ranging from
70 to 80 %, with the Lin1–Lin2 pairing exhibiting the
least interspecies clustering. We then pooled and hier-
archically clustered 95 samples from the five common
tissues assessed among Brawand, Merkin, Lin1, Lin2,
and GTEx, representing 11 different species (Fig. 3f ).
This super-clustering of various tissues, species, and in-
dependent studies yielded perfectly consistent cluster-
ing by tissue.

Clustering by species or tissue is predictably dependent
on the subset of tissues selected and the divergence
times of the species analyzed
Despite the robust interspecies clustering by tissue ob-
served among the five tissues common to all studies ana-
lyzed, we observed that the complete set of tissues
assessed in both Lin1 and Lin2 were more similar to each

other than the sets of tissues chosen by either Merkin
or Brawand (Fig. 2). Technical aspects of the Lin et al.
study, such as the tissue harvesting technique or post-
mortem interval, could drive this increased similarity,
or these particular tissues may simply be inherently
more similar in their expression patterns. If the latter
were true then one might expect that these tissues
would also appear more similar to each other in inde-
pendent datasets. Furthermore, if the distances between
these particular tissues did not exceed the typical inter-
species distance between homologous tissues for a par-
ticular divergence time, then the samples should cluster
by species rather than by tissue.
We sought to test this hypothesis by first comparing the

inter-tissue distances among the 12 human Lin2 samples

(66 pairs, i.e.,
12
2

� �
) to the inter-tissue distances ob-

served in GTEx samples (Fig. 4a). These inter-tissue dis-
tances were highly correlated between the two studies (R
= 0.65), falling on the line y = x, suggesting the tissues se-
lected by Lin et al. were inherently more similar biologic-
ally, and not for technical reasons, though GTEx tissues
tended to be slightly more similar to one another on aver-
age (mean GTEx–Lin2 inter-tissue distance of −0.023).
We next attempted to model how this tissue similarity af-
fects interspecies clustering analyses by assessing the
phylogenetic relationships among all species pairs assessed
by Merkin and Brawand (n = 43 pairs) and calculating the
mean distance between matched tissues at all species-pair
divergence times (Fig. 4b). As has been previously ob-
served [2], the interspecies distance between matched tis-
sues increases as a function of evolutionary distance. The
mean distance between matched tissues from a pair of
species can thus be estimated from their divergence time.
We compared the inter-tissue distances among 153 hu-
man samples encompassing 51 tissues sequenced by
GTEx and hierarchically clustered these based on the
mean pairwise distances between tissues from different
individuals (Fig. 4c). The clustering relationships that
emerged among human tissues are consistent with pre-
vious observations [16] and “sub-tissues” clustered to-
gether as expected. For the ~12, ~80, and ~300 million
year species split-times we then projected the mean inter-
species tissue divergences onto the GTEx inter-tissue rela-
tionships, identifying clusters of tissues within which, for a
given divergence time, the inter-tissue distance was lower
than the mean interspecies distance between matched tis-
sues. The distance between these clusters exceeded the
mean interspecies distance between matched tissues for a
particular divergence time. Notably, we observed that for
Brawand and Merkin, the set of tissues chosen fell largely
into independent clusters for all three divergence times,
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while more than half the Lin tissues fell into single clusters
with inter-tissue distances less than the average 80 million
or 300 million year divergence distance. Thus, the patterns
of interspecies and intraspecies clustering observed in
each of the Merkin, Brawand, and Lin2 datasets match
perfectly to a simple model based on the typical diver-
gence rates of tissues during mammalian evolution.

Intraspecies inter-tissue distances are conserved and
isomorphic
An implicit assumption in our simple predictive model
of interspecies and intraspecies tissue clustering is that
the distances among tissues within a species remain rela-
tively constant over evolutionary time. To explore this
issue, we compared the correlation among intraspecies,

Fig. 4 Clustering by species or tissue is predictably dependent on the subset of tissues selected and the divergence times of the species analyzed. a
Inter-tissue distance (JSD½) between Lin2 and GTEx human samples overlaid with line y = x. b The distance (JSD½) between matched tissues among
species plotted as a function of evolutionary time for all tissues and species assessed in the Brawand and Merkin studies (n = 43). c Clustering heat
map of 51 human tissues sequenced by GTEx. Distances represent the mean inter-tissue distance calculated among three individuals. Colored
boxes indicate the flat clusters (groupings) formed for distance cutoffs corresponding to the mean interspecies tissue distance at specific
divergence times. Tissues within a cluster have an inter-tissue distance lower than the mean interspecies distance between matched tissues.
MYA million years ago
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inter-tissue distances between pairs of species (Fig. 5a).
The distances between tissues within species were highly
correlated with each other (mean R = 0.86), suggesting
that inter-tissue distances are indeed largely isomorphic
among mammalian species. We next specifically com-
pared the relative ordering of intraspecies tissue dis-
tances by sorting tissues within species based on their
distances from one another, using colon as a reference
(Fig. 5b). Among species, these tissue orderings were
highly similar, with one exception being the relative po-
sitioning of the testis. Testis placed as the fifth or sixth
most distant tissue from colon in chicken, cow, and ma-
caque. In mouse and rat, testis placed eight most distant
from colon. Gene expression in the testis has been previ-
ously shown to be the most rapidly divergent throughout
evolution [2], a result that we confirmed in our interspe-
cies comparisons of matched tissues (Fig. 4b). The way
in which distances between tissues and species diverge
over time is visually represented in Fig. 5c. This diagram
summarizes our findings that the divergence in species-
specific expression is generally smaller than the typical
inter-tissue distances and that the distance relationships
between tissues are largely conserved over time.

Discussion and conclusions
While vertebrate species differ in many phenotypic traits,
they share similar body plans and many of the same or-
gans and tissues. Evolutionary gene expression studies
serve to provide insights into the molecular basis of these
conserved and divergent phenotypes. Here, we performed
a meta-analysis of four different studies to assess the rela-
tive differences in gene expression among different sam-
ples, tissues, species, and studies. We affirm that in every
study, including the resequenced Lin et al. data, the
majority of samples clustered with homologous tissues
of different species rather than with different tissues of
the same species, a pattern that held when using differ-
ent normalization and distance metrics. This observation
is consistent with the idea that many developmental gene
expression programs are conserved across mammals
[1–3] and supports the utility of rodents as models of
human tissue physiology.
Furthermore, we found that the technical variation be-

tween RNA-seq studies was in general less than the bio-
logical variation between different tissues of the same
species or between matched tissues of different species
(Fig. 3a-e), implying that comparisons of samples from
different RNA-seq studies can yield insights into ques-
tions about mammalian tissue biology. This finding is
encouraging in light of the many potential technical dif-
ferences between such studies. While batch effects must
always be taken into account during study design, many
RNA-seq datasets appear robust to inter-study technical
variation, a property that generally does not hold for

microarray-based gene expression analysis. For instance,
both the relative ordering and magnitude of intraspecies
and interspecies gene expression distances were largely
reproducible among studies considered here. We expect
this property to hold in future studies, as long as the
technical variation falls below the typical expression
variation among the samples analyzed. A study assessing
a set of very similar tissue subtypes, for instance, may be
a poor candidate for meta-analysis owing to the small
variation amongst samples.
Because some groups of tissues are inherently more

similar to each other, the choice of tissues can impact
conclusions regarding clustering patterns. Evolutionary
divergence in expression has been assessed [2], but our
study is the first to compare within-species, inter-tissue
distances to expected interspecies distances between
matched tissues. The particular tissues selected by the
Merkin and Brawand studies were more divergent
from each other than those chosen by Lin and col-
leagues. As a result, while samples from homologous
tissues of different species predominantly clustered
together in Merkin and Brawand samples, just 54 %
of samples from the Lin study clustered together by
tissue rather than species (Fig. 1a). The underlying
biological basis for diversity in gene expression be-
tween tissues is likely to be complex. Gene expression
differences may result from differences in the cell
type composition of individual tissues or from general
or cell-specific changes in gene expression levels. Sin-
gle cell transcriptomics approaches will help resolve
these possibilities, while other approaches will be
needed to distinguish whether differences result from
changes in transcription or in mRNA stability.
Our clustering approach exclusively used pairwise

distances between samples, differing from some previ-
ous studies. Other studies have relied primarily on
PCA, Principal Component Analysis, which assesses
variance across the dataset as a whole, and depends
more on the overall makeup of the input samples. PCA
and similar dimension reduction techniques are valu-
able approaches. We performed multidimensional scal-
ing on data from all five datasets, yielding a pattern
which supports interspecies clustering of matched tis-
sues (Additional file 1: Figure S1). However, these ap-
proaches have some drawbacks. In PCA for instance, if
most tissues assessed are highly similar, falling below
the mean matched-tissue distance for a particular evo-
lutionary divergence time, then the vector explaining
the largest component of variance will generally separ-
ate the species, even if many individual tissues have
higher similarity to the corresponding tissue of another
species than to any tissue in the same species (Add-
itional file 2: Figure S2). We are therefore cautious
about drawing broad conclusions based on PCA of a
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Fig. 5 (See legend on next page.)
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collection of samples, particularly when considering
just one or a few components.
Finally, using the relationships among 51 tissues se-

quenced by the GTEx consortium and the expected in-
terspecies distance between matched tissues at specific
divergence times, we found that the extent of interspe-
cies and intraspecies tissue clustering was largely pre-
dictable (Fig. 4c). This approach implicitly assumes that
the relative distances between tissues within an organism
tend to be conserved. We tested this assumption by
comparing intraspecies inter-tissue distances among
pairs of species and found that the magnitude and rela-
tive ordering of these distances among tissues were con-
served among mammals (Fig. 5). Future studies of the
dynamics of inter-tissue matrices along different lineages
might identify cases where particular tissues have become
more or less specialized in their functions.
Analyses of more precise populations of cells than

whole tissues will help to expose the biological bases
underlying tissue diversity, but will be subject to many
of the same pitfalls that we have highlighted. Some cell
types will be more similar to each other than others and
it is not yet clear whether technical variability between
low-cell population studies will be sufficiently small for
meta-analyses. Nevertheless, future evolutionary gene
expression studies must seek to overcome these issues if
we are to fully disentangle the developmental programs
that govern vertebrate organismal diversity.

Methods
Read mapping
RNA-seq data from Brawand et al. [2], Merkin et al. [3],
Lin et al. [6], and GTEx [13] were downloaded and
mapped with STAR version 2.4.2a [19], to the following
genome assemblies: musmus9, rhemac2, ratnor4, bostau4,
galgal3, hg19, panTro2, ponAbe2, gorGor3, monDom5,
and ornAna1. Gene annotations from Merkin et al. [3]
were used for human, mouse, rat, macaque, chicken, and
cow. Gene annotations from Ensembl release 61 were
used for the remaining species. For the studies with bio-
logical replicates, the replicate with the longest reads was
selected (if all replicates had the same read length, the
most deeply sequenced replicate was used instead). A

complete list of accessions can be found in Additional file
3: Table S1.

Orthology definition
Gene orthologies were downloaded from Ensembl re-
lease 61. Amniote orthologs were defined as single-
copy orthologous genes conserved in all 11 amniote
species considered. Human-mouse orthologs were de-
fined as single-copy genes conserved in human, mouse,
and macaque.

Gene expression analysis
The data were mapped with STAR using the –quantMode
GeneCounts flag to obtain raw counts per gene. These
values were then normalized by TMM normalization, using
the edgeR package [15, 20]. Because TMM normalization
rescales samples relative to one another, the data were re-
normalized separately for each analysis.

Clustering and distance metrics
Heat maps in Figs. 3f and 4c were clustered by average-
linkage hierarchical clustering. The units bits½ are the
result of taking the square root of the JSD, which scales
this value so that it will satisfy the triangle inequality,
converting the divergence to a distance metric [21].

Additional files

Additional file 1: Figure S1. Multidimensional scaling analysis of
samples from five datasets. Multidimensional scaling of samples assessed
in this study plotted in two dimensions. Samples are colored by tissue,
with the shape corresponding to the species. Within each shape is a one-
letter code representing the dataset of origin. All samples were plotted
for Brawand, Lin1, Lin2, and Merkin, along with corresponding tissues
from GTex. (PDF 100 kb)

Additional file 2: Figure S2. Clustering in PCA analysis is influenced by
the composition of the dataset as a whole. a Heat map of the distances
between samples from a simulated dataset. Simulated dataset includes
seven tissues (T1–T7) from two species (Sp1, Sp2), where tissues T1–T4
are very similar to one another. b PCA analysis performed on the whole
dataset—first two components shown. Tissues are designated by color,
with four closely related tissues in different shades of blue. c PCA analysis
performed on four diverse tissues, using T5–T7 and one representative
tissue from T1–T4. d PCA analysis performed on four similar tissues, T1–T4.
(PDF 149 kb)

(See figure on previous page.)
Fig. 5 Inter-tissue distance matrices are conserved across species. a Within-species inter-tissue distances (JSD½) are plotted between pairs of
species. Heat maps along the diagonal show the magnitude of inter-tissue distances for a particular species. b The relative ordering and magnitude of
distances between tissues within species are shown. Distances between nodes along the x-axis represent the distance between the tissues at nodes i
and i + 1 respectively. Vertical lines connecting homologous tissues are for visualization purposes. c A schematic model of the relationship between
interspecies and intraspecies tissue distances as a function of evolutionary divergence. The red and black graphs represent the distances between four
tissues (T1 to T4) in two different species. The graphs were drawn such that the mean distance between tissues in a species exceeds the
interspecies distance between homologous tissues by roughly the observed ratio for a human–macaque comparison (bottom), a human–
mouse comparison (middle), or a human–chicken comparison (top), and to agree with the result above that relative tissue differences tend to
be conserved across species
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Additional file 3: Table S1. Contains a complete description of all
samples and accessions used in this study including the Lin2 dataset,
which is available through the ENCODE portal. (PDF 75 kb)
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