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Abstract  

 Although there is much excitement surrounding the use of mobile and wearable 

technology for the purposes of delivering interventions as people go through their day-to-day 

lives, data analysis methods for constructing and optimizing digital interventions lag behind. 

Here, we elucidate data analysis methods for primary and secondary analyses of micro-

randomized trials (MRTs), an experimental design to optimize digital just-in-time adaptive 

interventions. We provide a definition of causal “excursion” effects suitable for use in digital 

intervention development. We introduce the weighted and centered least-squares (WCLS) 

estimator which provides consistent causal excursion effect estimators for digital interventions 

from MRT data. We describe how the WCLS estimator along with associated test statistics can 

be obtained using standard statistical software such as SAS (SAS Institute Inc., 2019) or R (R 

Core Team, 2019). Throughout we use HeartSteps, an MRT designed to increase physical 

activity among sedentary individuals, to illustrate potential primary and secondary analyses.  

  

Keywords: Micro-randomized trial (MRT); digital interventions; just-in-time adaptive 

intervention (JITAI); intensive longitudinal data; causal inference 
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 The Micro-Randomized Trial for Developing Digital Interventions:  

Data Analysis Methods 

Mobile technologies—including tablets, smartphones, and wearable sensors—have 

become ubiquitous in daily life. Because of their ability to engage users “in the moment,” they 

provide unprecedented opportunity to deliver interventions at the times and in the contexts when 

individuals are most likely to benefit. Just-in-time adaptive interventions (JITAIs; Nahum-Shani 

et al., 2018) are intervention designs that take advantage of these opportunities in order to 

intensively adapt and deliver interventions to each individual in the flow of their life. JITAI 

design involves the construction of decision rules that pinpoint the best intervention option for 

the individual’s current context. However, research methods useful in optimizing JITAI decision 

rules lag behind technology’s current capabilities to reach individuals, with the result that 

scientific knowledge is lacking about what intervention content should be delivered when, how 

often, and in which context, without overburdening the individual. The micro-randomized trial 

(MRT) is an experimental trial for obtaining this knowledge. In an MRT, intervention 

component options are randomized to each participant many times during the trial (see the 

companion article, Walton et al. (under review), for more details and examples of MRTs). As 

discussed in Walton et al. (under review), the MRT was developed for use in constructing and 

optimizing JITAI decision rules in digital interventions (Klasnja et al., 2015; Nahum-Shani et al., 

2018).  

A natural primary analysis of data from an MRT would focus on whether there is a 

marginal causal effect of an intervention component. Possible secondary analyses might include 

moderation analyses aimed at informing JITAI development. As will be shown below, the 

meaning of marginal and moderation causal effects requires careful thought. The purpose of this 
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article is to describe these causal effects and discuss ways to analyze the data from an MRT in 

order to optimize a JITAI. 

We begin by providing a brief review of the MRT, along with an overview of the 

HeartSteps MRT (Klasnja et al., 2018) for use in clarifying ideas. We then offer precise 

definitions of marginal and moderation effects via the concept of causal “excursion” effects, 

using the potential outcomes framework (Robins, 1986; Rubin, 1978). Next we review and 

explain the weighted and centered least-squares (WCLS) estimator (Boruvka et al., 2018), which 

provides estimators and test statistics for conducting primary and secondary analyses using data 

from MRTs. Data from the HeartSteps MRT is used to illustrate these analyses. 

Brief Review of MRTs 

MRTs are conducted with the goal of providing intensive longitudinal data that can be 

used to develop one or more JITAI components. Each component is associated with different 

intervention options that might be provided at any of multiple decision points during an 

individual’s day-to-day life. For example, one of the components examined in the HeartSteps 

MRT was the activity suggestions component, for which the intervention options were a 

contextually tailored activity suggestion1 or no suggestion. The activity suggestions component 

was randomly assigned at 5 decision points per day.  

In an MRT, each participant is repeatedly randomized to different options of an 

intervention component, with known probability at each decision point. This repeated, intensive 

randomization means that over the course of an MRT, a participant may be randomized hundreds 

or even thousands of times. As discussed in the companion article (Walton et al., under review), 

                                                             
1 The contextually tailored activity suggestion at each time is delivered in one of two forms (with equal probability): 
either a suggestion with a walking activity that took 2-5 minutes to complete or an anti-sedentary suggestion that 
instructs brief movements such as to stand up and roll one’s arms; see Walton et al. (under review). For expositional 
simplicity we group all activity suggestions together for most parts of this article. 
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intervention components are often designed to have greatest impact on a near-term proximal 

outcome. The proximal outcome is observed after each randomization. Prior to each decision 

point, observations of context such as sensor data (e.g., heart rate, step count, weather, current 

location), as well as self-report data (perceptions of loneliness, perceptions of social isolation, 

enjoyment of physical activity), may be observed. As discussed in the companion article (Walton 

et al., under review), observations of context may be used to inform the content of a message in 

an intervention option and to define availability conditions (defined in the next paragraph). As 

will be shown below, some observations might be collected to serve as controls in data analyses 

or to inform moderation analyses. 

As an individual goes through everyday life, there may be times when only the 

intervention option of “no treatment” is appropriate. This is formalized in the notion of 

availability. For example, often the delivery of the intervention involves an audible and visual 

cue. If sensors on the phone and/or wearables indicate that the individual might be operating a 

moving vehicle at a decision point, then to avoid potentially dangerous distractions the individual 

might be deemed unavailable for an intervention. Individuals also may be deemed unavailable if 

an intervention was delivered within the prior x minutes (to reduce burden). At times of 

unavailability, the only appropriate intervention is the “no treatment” option. Availability is one 

of the time-varying variables observed prior to each decision point. 

HeartSteps  

The HeartSteps study involves a 42-day MRT designed to inform the optimization of the 

HeartSteps digital intervention to increase physical activity (Klasnja et al., 2018; Walton et al., 

under review). HeartSteps combines a wristband activity tracker that monitors participants’ steps 

throughout the day in concert with a mobile phone application. Two intervention components 
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were investigated in the HeartSteps MRT: a planning support component and the contextually 

tailored activity suggestions component described above. The planning support component 

consisted of support for planning in the evening for activity on the next day. The intervention 

options were planning and no planning2. For simplicity, much of the exposition below focuses 

on the activity suggestions component. 

Activity suggestions were randomized at 5 decision points each day: morning commute, 

lunch time, mid-afternoon, evening commute, and after dinner. The exact time of day of the five 

decision points was specified by each participant at the beginning of the study and could differ 

between participants. At each decision point, if the participant was available, the probability of 

delivering a contextually tailored activity suggestion (as opposed to no suggestion) was .6. The 

proximal outcome for the activity suggestion component was the step count of the participant in 

the 30-minute window following a decision point.  

In the case of the activity suggestions component, as mentioned above, a participant was 

deemed unavailable at a decision point either if their smart device indicated that the participant 

might be driving, or if the participant had turned off intervention delivery (participants could turn 

off delivery over the subsequent 1, 2, 4 or 8 hours). Furthermore, because the content involved 

suggestions for new activities, a participant was deemed unavailable if they were currently 

walking or running or they had just finished an activity bout in the previous 90 seconds prior to 

the decision point.  

A natural primary research question motivating the HeartSteps MRT is whether there is a 

causal effect of delivering an activity suggestion versus not delivering any suggestion on the 

                                                             
2 An individual is sent a planning prompt with probability .5 every day. If a planning prompt is sent, it is delivered in 
one of two forms (with equal probability): structured planning (where the individual is prompted to select a plan 
from a list of their own past activity plans) or unstructured planning (where the individual is prompted to type their 
plan into a text box). For expositional simplicity we group both forms of planning together in this paper. 
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proximal outcome—i.e., the subsequent 30-minute step count. This question can be addressed by 

estimating a causal effect that is conceptually similar to the main effect of a factor (Collins et al., 

2009) because, as is explained below, it is marginal over the other intervention components. 

Additional important research questions in the development of the HeartSteps activity suggestion 

component concern the potential effects of habituation (Rankin et al., 2009) and/or treatment 

burden (Clawson et al., 2015; Eysenbach, 2005; Ho & Intille, 2005; Klasnja et al., 2008; Shaw et 

al., 2013; Yardley et al., 2016). If individuals habituate to the activity suggestions or find the 

intervention burdensome, the causal effect would be expected to deteriorate over time. Thus, a 

natural secondary or exploratory analysis is to assess whether day in study moderates the effect 

of delivering an activity suggestion. Two additional examples of secondary research questions 

are whether the effect of delivering an activity suggestion depends on the individual’s current 

location and whether the effect of the activity suggestion depends on whether the individual was 

prompted to plan an activity for that day. All of these research questions as we have stated them 

are imprecise about what is meant by a causal effect. In the following section we offer a more 

precise definition of a causal effect as estimated in an MRT.  

The Causal Excursion Effect 

In this section, we define causal effects using the potential outcomes framework (Robins, 

1986, 1987; Rubin, 1978). For expositional clarity, throughout the paper we consider the setting 

in which there are only two intervention options, denoted by treatment 1 and treatment 0. For the 

activity suggestions component in the HeartSteps MRT, this would be delivering activity 

suggestion (treatment 1) and not delivering activity suggestion (treatment 0). First, we briefly 

review the definition of a causal effect using a hypothetical setting with a single time point 

treatment. Then we define the causal excursion effect of a time-varying intervention component 
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on a time-varying outcome. Throughout, upper case letters denote random variables and lower 

case letters denote particular values of the random variables.  

In the classical potential outcomes framework, where there is only a single time point for 

possible treatment (see review by Rubin (2005)), the ideal but usually unattainable goal is to 

determine the individual-level causal effect, or the difference between the outcome under 

treatment 1 [denoted by 𝑌(1)] and the outcome under treatment 0 [denoted by 𝑌(0)] at the same 

time for each individual. Consider the first decision point in the HeartSteps MRT. At this 

decision point individuals are randomly assigned to receive an activity suggestion or no 

suggestion. The step count in the 30-minute window following this decision point is the 

outcome. For each individual, the treatment effect at this decision point is the difference between 

(a) the 30-minute step count had treatment been assigned to the individual (𝑌(1)) and (b) the 30-

minute step count had the treatment not been assigned to the individual (𝑌(0)). 𝑌(1) and 𝑌(0) 

are called potential outcomes, because in reality only one of the potential outcomes can be 

observed on each individual, as both treatment and no treatment cannot be assigned to an 

individual at the same time—this is the “fundamental problem of causal inference” (Holland, 

1986).  

Let 𝐴 denote the treatment assignment (𝐴 = 1 if treatment 1; 𝐴 = 0 if treatment 0). Only 

𝑌 = 𝐴𝑌(1) + (1 − 𝐴)𝑌(0) is observed.3 A widely adopted solution to this problem is to estimate 

a marginal causal effect, or to estimate an effect closer to the individual-level causal effect, the 

causal effect conditional on a pre-treatment variable 𝑆; that is, the difference between the 

                                                             
3 This equality holds under the consistency assumption often made in causal inference literature, which essentially 
requires that there are no two “versions” of the same treatment. In the example of activity suggestions, in order to 
properly define “delivering an activity suggestion” as treatment 1 and “not delivering an activity suggestion” as 
treatment 0, one would consider various framings and various contents of the suggestions as a “compound 
treatment.” However, if one wishes to distinguish between the effect of different versions of the suggestions in the 
analysis, then instead it would be necessary to define the treatment to have multiple levels. 
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expected outcome had everyone with 𝑆 = 𝑠 received the treatment (𝐸[𝑌(1)|𝑆 = 𝑠]) and the 

expected outcome had everyone with 𝑆 = 𝑠 not received the treatment (𝐸[𝑌(0)|𝑆 = 𝑠]). In the 

example for the first decision point in the HeartSteps MRT, 𝑆 might be the individual’s current 

location (home, work or other), current weather, gender, and baseline activity level. An 

interesting scientific question would be whether the value of 𝑆 modifies the treatment effect. 

Inference for the difference, 𝐸[𝑌(1)|𝑆 = 𝑠] − 𝐸[𝑌(0)|𝑆 = 𝑠], answers this question. 

If 𝐴 is randomized, then the above difference in terms of potential outcomes can be 

written in terms of expectations with respect to the distribution of the observations (𝑆, 𝐴, 𝑌). In 

particular, if treatment is randomly assigned, the causal effect, 𝐸[𝑌(1)|𝑆 = 𝑠] − 𝐸[𝑌(0)|𝑆 = 𝑠], 

is equal to 𝐸[𝑌|𝐴 = 1, 𝑆 = 𝑠] − 𝐸[𝑌|𝐴 = 0, 𝑆 = 𝑠] (see Rubin (2005)).  

To define the causal excursion effect of a time-varying intervention component on a 

time-varying outcome, notation is needed to accommodate time. Consider the HeartSteps MRT, 

in which one goal is to estimate the effect of the activity suggestion on the subsequent 30-minute 

step count. Recall that the HeartSteps MRT is a 42-day study and there were 5 decision points 

per day for the activity suggestion component; thus, there are 𝑇 = 210 decision points overall. 

Let 𝑋4 represent the data available from decision point 𝑡 − 1 up to and including decision point 

𝑡.4 𝑋4 contains the availability indicator, 𝐼4, with 𝐼4 = 1 meaning that the individual is available 

at decision point t and 𝐼4 = 0 otherwise. In the HeartSteps example, 𝑋4 also includes current 

weather, location, time of day, 30-minute step count prior to decision point 𝑡, and whether 

planning support was provided on the prior evening. Let 𝐴4 represent the treatment indicator at 

decision point 𝑡, where 𝐴4 = 1 means treatment is delivered and 𝐴4 = 0 means treatment is not 

                                                             
4 For simplicity, we omit the subscript i for the ith individual in 𝑋74  and in all other variables unless necessary. 
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delivered. We use an overbar �̅�4 to denote all prior and present treatments �̅�4 = (𝐴9, … , 𝐴4).5 Let 

𝑌4<9 represent the proximal outcome—here, the number of steps in the 30 minutes after decision 

point 𝑡. Denote by 𝐻4 the individual’s history of data observed up to decision point 𝑡: 𝐻4 =

(𝑋9, 𝐴9, 𝑌>, … , 𝑋4?9, 𝐴4?9, 𝑌4, 𝑋4). 𝐻4 includes potential moderators and control variables, some of 

which may be composites made up of other variables in Ht. We denote potential moderators by 

𝑆4. Recall that potential moderators of the effect of the activity suggestions in HeartSteps, 𝑆4, 

include number of days in treatment, the individual’s current location (home, work or other), 

current weather, whether planning was prompted the prior evening, number of activity 

suggestions delivered on the prior day, gender, and baseline activity level. As in the single time 

point setting, the inclusion of potential moderators, 𝑆4, means that the desired causal excursion 

effect is conditional on these variables. Further discussion regarding this point is included 

towards the end of this section after the formal definition of the causal excursion effect.  

To define the causal excursion effect, we use an extension of the potential outcomes 

framework to the setting of intensive longitudinal data (Robins, 1986, 1987). Recall that lower 

case letters such as 𝑎4 represent particular values of a random variable, here a possible value of 

the treatment 𝐴4. Recall we use the overbar to represent present and past values, that is, 𝑎A4 =

{𝑎9, 𝑎>,… , 𝑎4}. The potential outcomes for 𝑌4<9, 𝑋4, 𝐻4, 𝑆4 are 

𝑌4<9(𝑎A4), 𝑋4(𝑎A4?9),𝐻4(𝑎A4?9), 𝑆4(𝑎A4?9), respectively. For example, 𝑌4<9(𝑎A4) is the 30-minute 

step count outcome after decision point 𝑡 that would have been observed if the individual had 

been assigned treatment sequence �̅�4 = 𝑎A4. (For binary treatments, there could be 24 different 

potential outcomes, 𝑌4<9(𝑎A4).) This notation encodes the reality that an individual’s 30-minute 

                                                             
5 Note that the overbar in �̅�4 is not an abbreviation for the average; rather, it stands for the entire vector of treatment 
assignment (𝐴9,… , 𝐴4) and similarly for 𝑎A4 . This notation is common in causal inference literature (e.g., Robins, 
1986, 1987). 
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step count outcome after decision point 𝑡 may be impacted by all prior treatments, as well as the 

current treatment. Note that unlike the potential proximal outcome 𝑌4<9(𝑎A4), potential outcomes 

for 𝑋4, 𝑆4, as well as availability, 𝐼4, are indexed only by treatments, 𝑎A4?9, prior to decision point 

𝑡—namely, 𝑋4(𝑎A4?9), 𝑆4(𝑎A4?9), and 𝐼4(𝑎A4?9). This is because 𝑋4, 𝑆4, and 𝐼4 occur prior to 

treatment at 𝑡. 

The causal excursion effect of activity suggestions at decision point 𝑡 on subsequent 30-

minute step count for available individuals with 𝑆4 = 𝑠 is defined as (Boruvka et al., 2018; Liao 

et al., 2016)  

 𝛽(𝑡, 𝑠) = 𝐸[𝑌4<9(�̅�4?9, 1) − 𝑌4<9(�̅�4?9, 0)	|	𝐼4(�̅�4?9) = 1, 𝑆4(�̅�4?9) = 𝑠]. (1) 

This formula contains the following information. 

1. The effect,	𝛽(𝑡, 𝑠), is causal because it is the expected value of the contrast in step counts in 

the 30 minutes following a decision point 𝑡 if the treatment were delivered at 𝑡 [potential 

outcome 𝑌4<9(�̅�4?9, 1)] versus if treatment were not delivered at 𝑡 [potential outcome 

𝑌4<9(�̅�4?9, 0)]; that is, 𝑌4<9(�̅�4?9, 1) − 𝑌4<9(�̅�4?9, 0). 

2. The effect, 𝛽(𝑡, 𝑠), is conditional. This effect is only among individuals who are available 

(𝐼4(�̅�4?9) = 1) and for whom the potential moderators take on the value of (𝑆4(�̅�4?9) = 𝑠). 

3. The effect, 𝛽(𝑡, 𝑠), is marginal. In HeartSteps, the effect of the activity suggestions 

component at decision point 𝑡 is marginal over potential moderators not contained in 𝑠, the 

effects of interventions from prior decision points, and the planning support component. In 

fact, 𝛽(𝑡, 𝑠) is replaced by 𝛽(𝑡) if, for example, estimation of the marginal effect of 

delivering an activity suggestion compared to no activity suggestion is desired; in this case 

𝑆4(�̅�4?9) is omitted from (1). 
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4. The effect, 𝛽(𝑡, 𝑠), is an excursion from the “treatment schedule” prior to 𝑡. In an MRT the 

treatment schedule prior to 𝑡 is a set of probabilistic decision rules for treatment assignment 

at all decision points from the beginning of the intervention up to the previous decision point; 

that is, for assignment of 𝐴9, … , 𝐴4?9. In the case of an MRT, the treatment schedule will 

always involve some randomization, but may include non-random assignment as well. For 

example, in the HeartSteps MRT the treatment schedule included, at five decision points per 

day, the following: if available deliver an activity suggestion with probability .6 and no 

suggestion with probability .4; if not available do not deliver an activity suggestion. Suppose 

the HeartSteps intervention included a component that was not examined in the MRT—for 

example, a brief motivational video sent to all participants every Monday morning at 8 am. 

Although there is no experimentation on this component, it would be included in the 

treatment schedule.  

The causal excursion effect concerns what would happen if an individual followed the 

current treatment schedule up to time 𝑡 − 1 and then deviated from the schedule to assign 

treatment 1 at decision point 𝑡, versus deviated from the schedule to assign treatment 0 at 

decision point 𝑡. In other words, the definition of 𝛽(𝑡, 𝑠) implicitly depends on the schedule 

for assigning 𝐴9, … , 𝐴4?9. Technically this excursion can be seen from (1), in that the 

expectation, 𝐸, is marginal over all prior treatments not contained in 𝑆4. For example, if 𝑆4 

contains only current weather, then the excursion effect is marginal over all the variables 

other than current weather, including the schedule for assigning all of the prior treatments, 

𝐴9, … , 𝐴4?9, as well as all prior treatments for other components such as the planning 

component. 
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To understand the excursion effect better, consider two very different treatment 

schedules. In the first schedule, the treatment is provided on average once every other day; in 

the second schedule, the treatment is provided on average 4 times per day. Excursions from 

these two rather different schedules could result in very different effects, 𝛽(𝑡, 𝑠). Indeed, in 

the latter schedule individuals may experience a great deal of burden and disengage with the 

result that 𝛽(𝑡, 𝑠) would be close to 0, whereas in the former schedule individuals may still 

be very engaged, resulting in a larger 𝛽(𝑡, 𝑠). In other words, the definition of the causal 

excursion effect, 𝛽(𝑡, 𝑠), is dependent on the schedule for treatment assignment; this is 

different from the types of effects typically discussed in the causal inference literature (e.g., 

Robins (1994); Robins, Hernán, & Brumback (2000)). 

A primary hypothesis test might focus on inference about the marginal excursion effect, 

that is, (1) with 𝑆4(�̅�4?9) equal to an empty set. A secondary analysis might consider treatment 

effect moderation by including in 𝑆4(�̅�4?9) potential moderators, such as location, or number of 

days in the intervention. Note that 𝑆4(�̅�4?9) does not need to include all true moderators for (1) 

to be a scientifically meaningful causal effect; instead, it is appropriate to choose any (or no) 

𝑆4(�̅�4?9), provided that (1) is interpreted as the causal excursion effect marginal over all 

variables in 𝐻4(�̅�4?9) that are not included in 𝑆4(�̅�4?9). 

Under the assumptions that (i) the treatment is sequentially randomized (which is 

guaranteed by MRT design) and (ii) the treatment delivered to one individual does not affect 

another individual’s outcome6, the causal excursion effect 𝛽(𝑡, 𝑠) in (1) can be written in terms 

of expectations over the distribution of the data as 

                                                             
6 This assumption is called “non-interference” in causal inference. If there are social network components in the 
digital intervention, this assumption may be violated and an extension of the potential outcomes framework to 
incorporate interference is needed (Hong & Raudenbush, 2006; Hudgens & Halloran, 2008). 
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𝛽(𝑡, 𝑠)
= 𝐸[𝐸( 𝑌4<9 ∣∣ 𝐴4 = 1,𝐻4, 𝐼4 = 1 ) − 𝐸(𝑌4<9 ∣∣ 𝐴4 = 0,𝐻4, 𝐼4 = 1 )|𝐼4 = 1, 𝑆4 = 𝑠]. 

(2) 

Thus the excursion effect 𝛽(𝑡, 𝑠) can be estimated using the observed MRT data. 

A Primary Research Question for HeartSteps 

As discussed above, a natural primary research question that can be addressed in the 

HeartSteps MRT is whether there is a marginal causal excursion effect of delivering an activity 

suggestion on the subsequent 30-minute step count of the user, compared to not delivering any 

message. To operationalize this marginal causal excursion effect, let 𝑆4 be an empty set in (2) so 

that 

 
𝛽(𝑡)
= 𝐸[𝐸( 𝑌4<9 ∣∣ 𝐴4 = 1,𝐻4, 𝐼4 = 1 ) − 𝐸(𝑌4<9 ∣∣ 𝐴4 = 0,𝐻4, 𝐼4 = 1 )|𝐼4 = 1]. 

(3) 

The outer expectation on the right-hand side in (3) represents an average across all possible 

values of 𝐻4 across individuals. For example, 𝛽(𝑡) is averaged over weather on that day and on 

previous days, over previous treatment assignment of the activity suggestions (i.e., 𝐴G for 𝑠 < 𝑡), 

and also over previous assignment of the planning support prompts. The marginal excursion 

effect is the average of 𝛽(𝑡) over 𝑡 with weights equal to 𝐸[𝐼4] to obtain 

 𝛽I =
∑ 𝐸[𝐼4]𝛽(𝑡)K
4L9

∑ 𝐸[𝐼4]K
4L9

. (4) 

Here 𝐸[𝐼4] denotes the probability of an individual being available at decision point 𝑡. Thus 𝛽I is 

a weighted average of the marginal effects, 𝛽(𝑡), in which the weights are the availability 

probabilities. In the section “Analysis Using Data from HeartSteps MRT,” we will conduct 

inference about a variety of excursion effects including this marginal excursion effect, 𝛽I 

(Klasnja et al., 2018). 

A Selection of Secondary Research Questions for HeartSteps 



MRT FOR DEVELOPING DIGITAL INTERVENTIONS: DATA ANALYSIS  17 
 

Consider secondary research questions that concern moderation of the causal excursion 

effect by a non-empty 𝑆4. For example, one question might be whether the causal excursion 

effect deteriorates with day under treatment. In this case 𝑆4 would include day4, the number of 

days in treatment prior to the decision point 𝑡. Suppose the causal excursion effect can be 

represented by the linear model: 

𝛽(𝑡, day4) = 𝐸[𝐸( 𝑌4<9 ∣∣ 𝐴4 = 1,𝐻4 ) − 𝐸( 𝑌4<9 ∣∣ 𝐴4 = 0,𝐻4 )|𝐼4 = 1, 𝑑𝑎𝑦4] = 𝛽I + 𝛽9day4. 

Note that day4 = 0 for all decision points 𝑡 on the first day of treatment; thus 𝛽I represents the 

causal excursion effect on the first day; 𝛽9 represents the change in the causal excursion effect 

with each additional day. 

Other secondary research questions concern whether there is effect moderation by other 

time-varying observations, such as the current location of the user, or by another intervention 

component being examined in the MRT. Consider the planning support component in the 

HeartSteps MRT. Let 𝑆4 denote the indicator of whether a planning support prompt was 

delivered on the evening prior to decision point 𝑡 (𝑆4 = 1 if delivered, 𝑆4 = 0 if not). A model 

that includes effect moderation by a planning support prompt on the previous evening can be 

expressed as 

𝛽(𝑡, 𝐴4?9) = 𝐸[𝐸( 𝑌4<9 ∣∣ 𝐴4 = 1,𝐻4 ) − 𝐸(𝑌4<9 ∣∣ 𝐴4 = 0,𝐻4 )|𝐼4 = 1, 𝑆4] = 𝛽I + 𝛽9𝑆4. 

Here 𝛽I represents the causal excursion effect when the individual did not receive planning 

support on the prior evening, and 𝛽I + 𝛽9 represents the causal excursion effect when the 

individual received planning support on the prior evening. See the section “Analysis Using Data 

from HeartSteps MRT” for results of the secondary analyses concerning these questions. 

Methods for Estimating Causal Excursion Effects from MRT Data 
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We present a WCLS estimator, developed by Boruvka et al. (2018), that provides a 

consistent estimator for the causal excursion effect, 𝛽(𝑡, 𝑠). Here for clarity we provide an 

overview of the estimation method that can be used when the randomization probabilities are 

constant, as is the case in HeartSteps. Recall that in HeartSteps a primary analysis might be an 

assessment of the marginal causal excursion effect of the activity suggestions on the subsequent 

30-minute step count. We use the superscript 𝑇 to denote the transpose of a vector or a matrix. 

Suppose the causal excursion effect is linear: 𝛽(𝑡, 𝑠) = 𝑠K𝛽 with 𝛽(𝑡, 𝑠) defined in (2), 

and the goal is to make inference about 𝛽. Note that the model for 𝛽(𝑡, 𝑠) characterizes only the 

treatment effect (as a contrast between the two treatments with the proximal outcomes as 

dependent variables). The WCLS requires a working model for the conditional mean of 𝑌4<9 

given no treatment at decision point 𝑡 and history 𝐻4 [i.e., 𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1, 𝐻4)]. One 

working model might be 𝑍4K𝛼, where 𝑍4 is a vector of summaries of the observations made prior 

to decision point 𝑡 (i.e., summaries constructed from 𝐻4). These summaries are often called 

control variables. For example, in HeartSteps a natural control variable is the step count in the 30 

minutes prior to the decision point. This prior 30-minute step count variable is likely strongly 

correlated with the proximal outcome, the 30-minute step count following the decision point. As 

will be seen shortly, consistency of the WCLS estimator for 𝛽 does not require 𝑍4K𝛼 to be a 

correct model for 𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1, 𝐻4). The role of 𝑍4K𝛼 is to reduce noise in the analysis: 

Inclusion of prognostic control variables (those variables in 𝐻4 that are correlated with 𝑌4<9) in 

𝑍4 will usually reduce the variance of the estimator of 𝛽. A simulation study that illustrates this 

point is presented in Appendix C. In summary, the inclusion of the step count in the 30 minutes 

prior to the decision point serves to reduce variance and increase the power to detect a nonzero 

excursion effect, 𝛽. 
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The WCLS estimator for 𝛽 is calculated as follows. Suppose (𝛼T, 𝛽U) is the (𝛼, 𝛽) value 

that solves the following estimating equation (Diggle et al., 2002)  

 VV𝐼74W𝑌7,4<9 − 𝑍74K𝛼 − (𝐴74 − 𝑝)𝑆74K𝛽Y Z
𝑍74

(𝐴74 − 𝑝)𝑆74
[

K

4L9

\

7L9

= 0, (5) 

where 0 < 𝑝 < 1 is the randomization probability and 𝑖 is the index for the 𝑖-th participant. Note 

that the indicator 𝐴74 is centered by subtracting p. Recall that in HeartSteps, at each decision 

point there is .6 probability to deliver an activity suggestion (if the participant is available), so 

𝑝 = .6. The 𝛽U  that solves (5) is the WCLS estimator for 𝛽.  

Remarks. 

1. WCLS does not assume a model for the proximal outcome such as 𝑌4<9~𝑍4K𝛼 +

(𝐴𝑖𝑡 − 𝑝)𝑆4K𝛽. The primary assumption (Boruvka et al., 2018) that ensures that 𝛽U  is 

consistent is 

 𝐸[𝐸( 𝑌4<9 ∣∣ 𝐴4 = 1, 𝐻4 ) − 𝐸(𝑌4<9 ∣∣ 𝐴4 = 0, 𝐻4 )|𝐼4 = 1, 𝑆4] = 𝑆4K𝛽; (6) 

that is, 𝛽(𝑡, 𝑠) = 𝑠K𝛽 is a correct model for the causal excursion effect conditional on 

𝐼4 = 1, 𝑆4 = 𝑠. 

2. The centering of the treatment indicator, (𝐴𝑖𝑡 − 𝑝), in (5) creates orthogonality between 

the columns of the design matrix for the causal excursion effect (i.e., (𝐴𝑖𝑡 − 𝑝)𝑆4) and the 

columns of the design matrix involved in the working model, 𝑍4K𝛼, for 

𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4) (i.e., 𝑍4). This centering provides robustness in the estimation 

of 𝛽; in particular, robustness against a mis-specified working model for 

𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4). In other words, the data analyst can use a possibly incorrect 

working model 𝑍4K𝛼, and 𝛽U  will still be a consistent estimator of 𝛽. In digital 

interventions this robustness property is of practical importance because vast amounts of 
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data (i.e., high-dimensional 𝐻4) on the participant have usually been collected prior to 

decision point 𝑡. As a result, it is virtually impossible to correctly model 

𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4). For example, in HeartSteps there are 210 decision points 

(210 = 42 days × 5 times/day) for each participant; 𝐻4 can include the outcome, 

treatment, and covariates from all the past 𝑡 − 1 decision points, which means hundreds 

of variables at a later decision point 𝑡. In addition, 𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4) may 

depend on variables in 𝐻4 in a nonlinear way, which adds to the difficulty of correctly 

modeling 𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1, 𝐻4) and thus makes the robustness property desirable. 

3. While the choice of 𝑍4 doesn’t affect the consistency of 𝛽U , a better working model for 

𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4) has the potential to decrease the variance of 𝛽U . Because 𝐻4 is 

usually high-dimensional, choosing 𝑍4 can be done by hand-picking a subset of 𝐻4 (e.g., 

those covariates and outcomes at recent decision points). As discussed above, in 

HeartSteps a natural control variable is the step count in the 30 minutes prior to the 

decision point, as this variable is likely highly correlated with the proximal outcome of 

step count in the 30 minutes after the decision point. In Appendix C we illustrate through 

a simulation study how inclusion of control variables that are correlated with the 

proximal outcome in 𝑍4 can reduce the variance of 𝛽U . 

4. Although software based on the estimating equation (5) also outputs an estimator 𝛼T and 

its standard error, we recommend not interpreting them, unless it is safe to assume that 

𝑍4K𝛼 is a correct model for 𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4).  

For simplicity in presentation of the estimator, so far we have considered the setting where the 

randomization probability, 𝑝, is constant. There are also practical settings where the 

randomization probability may change over time; for example, in the stratified micro-
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randomized trial, different micro-randomization probabilities are used depending on a time-

varying variable such as prediction of risk. For example, a higher randomization probability may 

be used when the individual is categorized as high-risk, and a lower randomization probability 

may be used when the individual is categorized as low-risk. The rationale for such risk 

stratification is to ensure that there are adequate numbers of treatments delivered both at risk 

times and at non-risk times. See Dempsey, Liao, Kumar, & Murphy (2019) for details. The 

WCLS estimator presented above can be generalized to this setting (Boruvka et al., 2018); see 

Appendix B for a general WCLS estimator that allows randomization probability to depend on 

the individual’s history, 𝐻4.  

Estimating the WCLS 𝜷c Using Standard Statistical Software 

When the randomization probabilities are constant, standard statistical software that 

implements GEE (Liang & Zeger, 1986), such as SAS (SAS Institute Inc., 2019), Stata 

(StataCorp, 2019), and SPSS (IBM Corp., 2019), can be “tricked” into providing the WCLS 

estimator 𝛽U  and its standard error. Consider SAS PROC GENMOD (SAS Institute Inc., 2019) 

and suppose the assumed causal excursion effect model is (6) and the working model for 

𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4) is 𝑍4K𝛼. Then the WCLS estimator 𝛽U  and its standard error can be 

obtained by the following steps: (i) incorporate 𝐼4 as the “prior weights,” (ii) choose a working 

independence correlation structure, and (iii) fit GEE with dependent variable 𝑌4<9 and 

independent variables 𝑍4 and (𝐴𝑡 − 𝑝)𝑆4. Then the estimated coefficient for (𝐴𝑡 − 𝑝)𝑆4 is the 

WCLS estimate 𝛽U . Note that in choosing the control variables, 𝑍4 needs to contain at least 𝑆4. 

This approach does not actually fit a GEE model for the conditional mean of 𝑌4<9. 

Instead, this estimation method merely uses the GEE software as a means to output the WCLS 

estimator. Technically, this can be done because the estimating equation of a GEE with the 
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above specification is algebraically equivalent to (5), the estimating equation of WCLS. To 

obtain appropriate standard errors for the estimator 𝛽U  through the above GEE fit, one needs to 

use the robust standard error [SAS calls this the “empirical standard error” (SAS Institute Inc., 

2019)]. The robust standard error accounts for the correlations among the proximal outcomes, 

𝑌>, 𝑌d,… , 𝑌K<9. When the sample size is small (e.g., 𝑛 < 50), we recommend use of further small 

sample corrections for both the standard error and the degrees of freedom in the critical value for 

constructing confidence intervals (Boruvka et al., 2018). R code (R Core Team, 2019) for the 

implementation with the small sample correction is available at 

https://github.com/StatisticalReinforcementLearningLab/HeartstepsV1Code/blob/master/xgeepa

ck.R. 

Analysis Using Data from HeartSteps MRT 

 Recall that HeartSteps is a 6-week MRT for optimizing JITAI components of a digital 

intervention to promote physical activity with 37 sedentary participants (Klasnja et al., 2018). In 

the illustrative analysis below, we focus on the activity suggestion component, which was 

randomized at 5 decision points each day. At each decision point, if the participant was available, 

an activity suggestion was delivered with randomization probability .6. We first address the 

primary research question by estimating the marginal excursion effect of an activity suggestion 

versus no suggestion using data from the HeartSteps MRT. The primary analysis for HeartSteps 

is published in Klasnja et al., (2018); for completeness we include this analysis as well as results 

of additional secondary analyses. As discussed before, secondary research questions might 

include how the excursion effect changes over time, whether this effect is moderated by current 

location, and whether this effect is moderated by delivery of a planning support prompt on the 
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evening prior to the decision point. All analyses are conducted using the R programming 

language (R Core Team, 2019). We use the following variables in the analysis: 

• 𝑌4<9: log-transformed 30-minute step count following decision point 𝑡. This is the 

proximal outcome of interest. 

• 𝐴4: indicator of whether an activity suggestion is delivered at decision point 𝑡. The 

randomization probability is .6 at available decision points. 

• 𝑋4,9: log-transformed 30-minute step count preceding decision point 𝑡. Because this 

variable is expected to be correlated with 𝑌4<9, we will include 𝑋4,9 as a control variable 

in the analysis to reduce noise. 

• 𝑋4,>: day in the study, coded as 0, 1, 2, …, 41. 

• 𝑋4,d: participant’s location at decision point t; coded as 1 if at home or at work, and 0 if at 

any other location. 

• 𝑋4,g: indicator of a planning support prompt delivered on evening prior to decision point 

𝑡; coded as 1 if delivered and 0 if not. 

• 𝐼4: availability status at decision point 𝑡. Recall that randomization can occur only if the 

participant is available. 

 Step count data are highly skewed; the log-transformation is used to make its distribution 

more symmetric (and we added .5 to the step count before taking log to avoid log(0)). Although 

the consistency of the WCLS estimator does not require 𝑌4<9 to be symmetrically distributed, 

symmetry improves the accuracy of the approximation to the distribution of the test statistic in 

small samples. 
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Question 1: On average, is there an effect of delivering an activity suggestion on subsequent 

30-minute step count, compared to no suggestion?  

As discussed above a natural primary research question concerns the excursion effect 

marginal over all decision points and all covariates. We address this question using the WCLS 

estimator with 𝑆4 equal to the empty set, 𝛽(𝑡, 𝑠) = 𝛽I, working model 𝛼I + 𝛼9𝑋4,9, and weight 

𝐼4. Table 1 lists the results. The causal effect of delivering an activity suggestion versus no 

suggestion on the log-transformed subsequent 30-min step count, averaged over all decision 

points and all covariates, is 𝛽UI = 0.131 (p = 0.060, 95% CI = -0.006 to 0.268). This corresponds 

roughly to a 14% (= 𝑒I.9d9 − 1) increase in the average 30-minute step count (on its original 

scale), comparing decision points when an activity suggestion was sent with decision points 

when an activity suggestion was not sent.  

Question 2: Does the effect of activity suggestions change with each additional day in the 

study? 

 This question is motivated by the hypothesis that the longer a person participates in the 

study, the more they may habituate to the suggestions or become overburdened, leading them to 

become less responsive. We address this question via the WCLS estimator with 𝑆4 = 𝑋4,> (day in 

study), 𝛽(𝑡, 𝑠) = 𝛽I + 𝛽9𝑋4,>, working model 𝛼I + 𝛼9𝑋4,9 + 𝛼>𝑋4,>, and weight 𝐼4. 𝑋4,> is 

included in 𝑆4 to assess the effect moderation by 𝑋4,>, day in the study. Because 𝑋4,> is coded to 

start from 0, 𝛽I represents the causal excursion effect on the first day. Table 2 lists the results. 

There is a significant interaction between the activity suggestion and day in the study: the causal 

effect of the activity suggestion changes by 𝛽U9 = −0.018 with each additional day in the study 

(p = 0.005, 95% CI = -0.031 to -0.006). Combining this with 𝛽UI = 0.507, the analysis indicates 

that sending an activity suggestion results in about 66% (= 𝑒I.lIm − 1) increase in the 30-minute 
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step count on the first day of the study, about 16% (= 𝑒I.lIm?I.I9n×>I − 1) increase on the 21st 

day of the study, and about 21% (= 1 − 𝑒I.lIm?I.I9n×g9) decrease on the 42nd day of the study. 

A sensitivity analysis to the linearity assumption (that the causal excursion effect changes 

linearly by day in the study) is provided in Appendix D. 

Question 3: Does the effect of delivering each type of activity suggestion versus no 

suggestion depend on the individual’s current location (home/work, or other)? 

The activity suggestion involves suggestions for new physical activities; therefore, it is of 

interest to examine whether its effect depends on the individual’s location, which might be a 

proxy for interruptibility. If an activity suggestion is sent, then ½ of the time the suggestion is a 

walking suggestion (instructing a walking activity that took 2-5 minutes to complete) and the 

remaining ½ of the time the activity suggestion is an anti-sedentary suggestion (instructing brief 

movements, such as stretching one’s arms). The investigators conjectured that effect moderation 

by location may differ between walking suggestions and anti-sedentary suggestions. Therefore, 

here we assess whether the effect of delivering each type of activity suggestion versus no 

suggestion is modified by the individual’s current location (home/work or other). We address 

this question by using the WCLS estimator with 𝑆4 = 𝑋4,d (indicator of being at home or work), 

working model 𝛼I + 𝛼9𝑋4,9 + 𝛼>𝑋4,d, and weight 𝐼4.	𝑋4,d is included in 𝑆4 to assess the effect 

moderation by 𝑋4,d, location of the individual. Because here we have two treatment indicators 

(indicator of whether a walking suggestion is delivered, and indicator of whether an anti-

sedentary suggestion is delivered), the causal excursion effect for the walking suggestion is 

modeled as 𝛽I + 𝛽9𝑋4,d, and the causal excursion effect for the anti-sedentary suggestion is 

modeled as 𝛽> + 𝛽d𝑋4,d. Table 3 lists the result. The causal excursion effect moderation by 

location (home/work or other) is statistically significant for walking suggestions (𝛽U9 = 0.377, p 
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= 0.049, 95% CI = 0.001 to 0.753). The effect moderation is not statistically significant for anti-

sedentary suggestions (𝛽Ud = −0.142, p = 0.472, 95% CI = -0.540 to 0.256).  

Question 4: Does the effect of activity suggestions depend on whether planning support was 

delivered on the previous evening? 

Whether planning support was delivered on the previous evening may impact the 

effectiveness of the activity suggestion. To assess this moderation effect, we use the WCLS 

estimator with 𝑆4 = 𝑋4,g, 𝛽(𝑡, 𝑠) = 𝛽I + 𝛽9𝑋4,g, working model 𝛼I + 𝛼9𝑋4,9 + 𝛼>𝑋4,g, and 

weight 𝐼4. 𝑋4,g is included in 𝑆4 to assess the effect moderation by 𝑋4,g, whether the individual 

received planning support on the previous evening. Table 4 lists the results. There is no evidence 

of effect moderation by the planning support prompt on the previous day (𝛽U9 = 0.046, p = 0.734, 

95% CI = -0.228 to 0.320). 

Discussion 

In this article we define the causal excursion effect of a digital intervention component in an 

MRT using the potential outcomes framework. We illustrate how primary and secondary 

analyses concerning causal excursion effects can be formulated for an MRT, using the 

HeartSteps MRT as an example. We introduce WCLS as a data analysis method for MRTs, 

which results in consistent estimators for the causal excursion effect, and describe how to obtain 

the WCLS estimator through standard statistical software. We illustrate WCLS by using it to 

analyze the marginal and moderated causal excursion effects using data from the HeartSteps 

MRT. 

Using Moderation Effect Analysis to Inform JITAI Development 

Conducting moderation analyses, as well as exit interviews with participants, can be 

useful both in formulating decision rules and in generating hypotheses to be tested in subsequent 

FIGURE 2 
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optimization trials. For example, exit interviews might reveal that participants found that the 

activity suggestions begin to appear similar as the trial progressed. This combined with the 

evidence of moderation by day in study might motivate the development of different types of 

activity suggestions that could be introduced after, say, intervention week 3. The moderating 

effect of location is an early indication that the decision rules might specify no delivery of 

activity suggestions when an individual is at the “other” location. In the case of HeartSteps, 

findings from analyses such as those above, along with other moderation analyses and exit 

interviews, were used to inform a second MRT currently underway in which a personalization 

algorithm is being used to reduce the probability of receiving an activity suggestion when there 

is evidence of a decreasing effect. The conjecture is that intervention effects will stop decaying if 

the probability of delivering an activity suggestion to an individual is decreased whenever this 

individual is showing evidence of a decreasing effect. This algorithm is also using location as a 

moderator.  

Internal and External Validity in MRTs 

Internal validity concerns the ability of the MRT to provide evidence for attributing the 

estimated effects to the manipulation of the intervention component and not some systematic 

error (Jüni et al., 2001). It is well known that in a two-arm randomized controlled trial, internal 

validity is harmed if the randomization, by chance, did not achieve balance in baseline covariates 

between the two arms. One way to check for deviations that indicate a lack of internal validity is 

to check whether the distribution of the baseline variables is dissimilar across the two arms. For 

the MRT, because the randomization occurs sequentially over time, to check internal validity one 

can check for balance in any covariates occurring prior to each decision point. In the HeartSteps 

example, one can check whether, for available participants at decision point 𝑡, the fraction of 
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participants who are at home (𝑆4 = 1) is roughly the same among those randomized to an 

activity suggestion (𝐴4 = 1), compared to those randomized to no activity suggestion (𝐴4 = 0). 

Other time-varying variables observed prior to decision point 𝑡 besides location might be 

considered as well. Because the causal excursion effect is defined only for individuals who are 

currently available—that is, one aims to estimate causal effects only among those who are 

available at decision point 𝑡—these checks concern only available individuals7.  

External validity concerns the extent to which the estimated causal excursion effect in the 

MRT provides a basis for generalization to a target population (Jüni et al., 2001). As is well 

known, in randomized controlled trials external validity is enhanced by striving to enroll 

participants who are representative of the target population. The same considerations hold in an 

MRT. One way to assess the extent of external validity (to a defined target population) is to 

check whether the distribution of the baseline variables is similar or dissimilar to that in the 

target population. If some baseline variables are likely prognostic for the outcome or predictive 

for the causal excursion effect, then a distributional imbalance in these variables between the 

target population and the MRT sample raises concerns that the causal excursion effect estimated 

from the MRT might not generalize to the target population. If such imbalances are not evident, 

then greater confidence in the generalizability of the estimated causal excursion effect is 

justified. In addition to the proximal outcome, 𝑌4<9, an MRT can involve other outcomes, such as 

availability, 𝐼4, and the potential moderators, 𝑆4. Therefore, any baseline variable that might be 

related to any of the outcomes should be considered in checking for the aforementioned 

imbalance. 

                                                             
7 Note that this only applies to MRTs with constant randomization probability (such as the HeartSteps MRT). For 
MRTs where the randomization probability may change depending on the individual’s history information, the 
aforementioned covariate imbalance may no longer be indicative of lack of internal validity. 
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The “excursion” aspect of the causal excursion effect is also important when considering 

generalizability of the findings. The excursion aspect explicitly acknowledges that, prior to 

decision point 𝑡, the individual was provided a particular treatment schedule as used in the MRT 

(rather than some other fixed treatment assignment); the interpretation of the causal excursion 

effect is the causal effect of excursions from the existing treatment schedule. In the case of the 

HeartSteps MRT, the existing treatment schedule is “deliver activity suggestion with probability 

0.6, if user is available at the decision point” and the excursion effect is a contrast between 

sending activity message now and not sending activity message now, assuming the user had 

experienced the existing treatment schedule up to now. The excursion aspect makes it overt that 

the comparison of two excursions at time 𝑡 might depend on how treatments were assigned prior 

to that time, which, in turn, depends on the treatment schedule of the particular MRT. Therefore, 

the causal excursion effect estimated from an MRT with a particular treatment schedule may 

differ from the causal excursion effect estimated from an MRT with a different treatment 

schedule. Recall that the main goal of an MRT is to inform intervention development by 

identifying ways to improve the existing treatment schedule (see the subsection “Using 

moderation effect analysis to inform intervention development”), and focusing on the causal 

excursion effect allows the investigator to do exactly that.  

Connection to the Multiphase Optimization Strategy (MOST) 

As discussed in the companion paper (Walton, et al., under review), the MRT fits 

naturally within the multiphase optimization strategy (MOST; e.g. Collins, 2018; Collins & 

Kugler, 2018). MOST is an engineering-inspired approach for optimization of behavioral, 

biobehavioral, and biomedical interventions. In the optimization phase of MOST, the 

investigator conducts one or more randomized experiments, called optimization trials, aimed at 
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gathering scientific information about the causal effects of individual intervention components, 

which are needed to construct a new optimized intervention or to optimize an existing 

intervention. Typically, this includes inference for causal effects of individual intervention 

components, as well as moderation analyses. The MRT is one design that can be used for an 

optimization trial, along with factorial and fractional factorial designs (Collins et al., 2009), the 

sequential, multiple assignment, randomized trial (SMART; Collins, Nahum-Shani, & Almirall, 

2014), and other experimental designs. This paper defines inferential methods for the causal 

effects in an MRT in the optimization phase of MOST. 

Inference concerning causal excursion effects fits naturally within the overall conceptual 

framework of MOST. In this framework optimization is an ongoing process of intervention 

improvement, in which each optimization trial provides information useful in generating 

hypotheses about how to improve the intervention further and, therefore, informs the design of 

the next optimization trial. For example, the following question can be characterized by the 

causal excursion effect: If the treatment schedule for the activity suggestions based on 

knowledge of the current location were altered, would this improve subsequent 30-minute step 

count? In digital interventions this inferential goal makes sense even in implementation as the 

team must continually monitor and update the digital application software. Similarly, continually 

monitoring performance and assessing how to best improve the current schedule for assigning 

treatments is natural. The causal excursion effect is useful for this purpose. 

Sample Size Considerations 

Liao et al. (2016) provides theory for determining the sample size for the setting in which 

the moderator 𝑆4 is exogenous (for example, time since the individual started the intervention). A 

web applet can be found at https://methodologycenter.shinyapps.io/mrt_ss/. The applet takes as 
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input duration of the study, number of decision points per day, expected availability pattern, 

randomization probability (which can be time-varying), target proximal treatment effect to be 

detected, and the desired power, and it outputs the required sample size (or vice versa; input 

sample size and output power). Alternately, R code is freely available at https://cran.r-

project.org/web/packages/MRTSampleSize/index.html. 

Additional Types of Causal Effects 

 This paper focuses on the immediate causal excursion effect (“immediate” in the sense 

that there is no other treatment between the decision point 𝑡 and the proximal outcome 𝑌4<9) of a 

time-varying digital intervention. One may also be interested in inference about a delayed causal 

excursion effect. For example, when assessing the effect of the planning support component, it 

may be of interest to assess the effect of a planning support prompt on the total step count over 

the next x days, as it would be desirable for the delivery of a planning prompt to have a longer-

term effect, such as forming a habit. The generalization of WCLS to assess such delayed effects 

is given in Boruvka et al. (2018). Here we note only that the interpretation of such delayed causal 

excursion effects averages over, in addition to the history information observed up to that 

decision point, future treatments and future covariates. Suppose researchers are interested in the 

effect of a planning support prompt on the total step count over the next x days. This effect 

would be marginal with respect to the schedule for delivering planning support during the 

subsequent x days. 

Other more familiar causal effects might be estimated, but additional assumptions are 

necessary. For example, suppose it can be safely assumed that the treatments prior to the current 

decision point will not impact subsequent outcomes (i.e., these prior treatments do not have 

delayed positive or negative effects). Then the potential outcomes such as 
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p𝑌4<9(𝑎A4), 𝐼4(𝑎A4?9), 𝑆4(𝑎A4?9)q are actually p𝑌4<9(𝑎4), 𝐼4(𝑎4?9), 𝑆4(𝑎4?9)q, making it reasonable 

to focus on inference for the effect, 𝐸[𝑌4<9(1) − 𝑌4<9(0)|	𝐼4(𝐴4?9) = 1, 𝑆4(𝐴4?9) = 𝑠]. In terms 

of the primary analysis of data from an MRT, we opt to make inference about causal excursion 

effects due to both its interpretation in the above continual learning paradigm and the minimal 

causal inference assumptions it requires. Of course, in secondary and hypothesis-generating 

analyses, a variety of statistical assumptions would be made to draw inferences about other 

causal effects. 

Other Types of Analyses 

Generalized estimating equations (GEE; Liang & Zeger, 1986) and multi-level models 

(MLM; Laird & Ware, 1982; Raudenbush & Bryk, 2002) have been used with great success to 

analyze data from intensive longitudinal studies; at first glance they appear to be a natural choice 

for conducting primary and secondary data analysis for MRTs. However, these methods can 

result in biased causal effect estimates for MRTs when there are endogenous time-varying 

covariates—covariates that can depend on previous outcomes or previous treatments. For 

example, in HeartSteps, the prior 30-minute step count is likely impacted by prior treatment and 

is thus endogenous. We illustrate this bias in Appendix A. 

Limitations and Future Directions 

Limitations of the WCLS method presented in this paper include the following. (i) The 

method presented here is applicable only to the case where the proximal outcome is continuous. 

Qian, Yoo, Klasnja, Almirall, & Murphy (2019) provide an alternative method for analyzing 

MRT data with a binary outcome that yields causal effect estimates on the relative risk scale. (ii) 

The method presented here provides estimates of marginal effects; thus it does not provide 

person-specific predictions of treatment effect except as explained by observed covariates. 
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Future directions include the development of (i) related methods for other types of proximal 

outcomes (e.g., zero-inflated, categorical, ordinal, and longitudinal proximal outcomes), and (ii) 

multi-level models to model person-specific causal excursion effects that are appropriate for 

MRTs. 
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Appendix A 

GEE and MLM Can Be Biased When Estimating Causal Excursion Effects in MRTs 

MRTs produce intensive longitudinal data (Schafer, 2006), as individuals are randomized 

among intervention options repeatedly during the MRT, and outcomes and covariates are 

assessed in tandem with randomization. Repeated measurement of the same individuals over 

time means that the repeated observations are likely dependent. Generalized estimating 

equations (GEE; Liang & Zeger, 1986) and multi-level models (MLM; Laird & Ware, 1982; 

Raudenbush & Bryk, 2002), the latter also known as mixed models or random effects models, 

have been used widely in analyzing longitudinal data. However, as we illustrate below, 

inappropriate application of them to MRT data may result in biased estimates of the causal 

excursion effects when endogenous time-varying covariates are included in the model. A time-

varying covariate is endogenous if it can depend on previous outcomes or previous treatments, 

which commonly occurs in MRTs. For example, in analyzing the effect of activity suggestion in 

the subsequent 30-minute step count in HeartSteps, one may want to control for the 30-minute 

step count prior to each decision point to reduce noise. Because the 30-minute step count prior to 

a decision point can be correlated with past step counts (i.e., past outcomes), it is endogenous. 

When a time-varying covariate is not endogenous, it is called exogenous. Examples of exogenous 

time-varying covariates include time, weather, and anything that cannot be impacted by previous 

treatments or previous outcomes. 

Inappropriate Use of GEE and MLM Can Result in Biased Causal Excursion Effect 

Estimates in the Presence of Endogenous Time-Varying Covariates 

 Pepe & Anderson (1994) demonstrated that, in the presence of endogenous time-varying 

covariates, parameter estimates from GEE may be biased unless certain conditions, described 

below, are met. Such bias is also shown in subsequent research through simulation studies and 
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analytic calculations (Diggle et al., 2002; Pan et al., 2000; Schildcrout & Heagerty, 2005; 

Tchetgen et al., 2012; Vansteelandt, 2007). For completeness we provide a brief explanation of 

the bias here. Consider a simplified version of the HeartSteps MRT, where there are two decision 

points for each individual and individuals are always available. Suppose the observed data for 

individual i is (𝑋79, 𝐴79, 𝑌7>, 𝑋7>, 𝐴7>, 𝑌7d), where 𝑋74 denotes the 30-minute step count prior to 

decision point 𝑡 (an endogenous time-varying covariate), 𝐴74 is the indicator of whether an 

activity suggestion is delivered at decision point 𝑡 (so 𝐴74 has .6 probability to be 1), and 𝑌7,4<9 is 

the 30-minute step count following decision point t. The researcher chooses 𝑆74 = 𝑋74 in equation 

(2): they want to assess whether the effect of the activity suggestion is moderated by the prior 

30-minute step count. The researcher may then choose to impose the following linear model on 

the mean of the proximal outcome given the treatment and the covariate at decision point 𝑡: 

 𝐸p𝑌7,4<9r𝐴74, 𝑋74q = 𝛼I + 𝛼9𝑋74 + 𝐴74(𝛽I + 𝛽9𝑋74), (7) 

and use GEE to estimate the coefficients 𝛼I, 𝛼9, 𝛽I, 𝛽9.8 Often a non-independent working 

correlation structure is used in GEE, aiming for efficiency gain (i.e., smaller standard error of the 

estimated coefficients compared to GEE with working independence correlation structure). 

It is well known that GEE produces consistent estimates regardless of the choice of the 

working correlation structure, as long as equation (7) holds; however, this is only true when all 

covariates are exogenous. In this above example with two decision points, Pepe & Anderson 

                                                             
8 In this particular example in which the randomization probability is constant, the 𝛽I, 𝛽9 in the proximal treatment 
effect term in (7) equals the 𝛽I′ , 𝛽9′  in 𝐸[𝐸( 𝑌4<9 ∣∣ 𝐴4 = 1,𝐻4 ) − 𝐸(𝑌4<9 ∣∣ 𝐴4 = 0, 𝐻4 )|𝑆4] = 𝛽I′ + 𝛽9′𝑆4 . Therefore, 
if one can obtain consistent estimates for 𝛽I, 𝛽9 , one obtains consistent estimate for the proximal treatment effect 
defined in (2). In general, however, when the randomization probability can depend on 𝐻4, the 𝛽I, 𝛽9  in (7) no 
longer equals the 𝛽 in (2) due to the marginalization over 𝑆4 . This is another reason, in addition to the reason that 
will be presented in the next paragraph of the paper, why inappropriate use of GEE results in biased proximal 
treatment effect estimates. 
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(1994) demonstrated that to guarantee the consistency of the GEE estimates, one of the following 

conditions needs to hold: 

(i) 𝐸p𝑌7,4<9r𝐴74, 𝑋74q = 𝐸p𝑌7,4<9r𝐴79, 𝑋79, 𝐴7>, 𝑋7>q for 𝑡 = 1,2; or 

(ii) a working independence correlation structure is used. 

Condition (i) is usually violated when 𝑋74 is endogenous: In this particular example, 𝑋7> can be 

correlated with 𝑌7>, so that 𝐸(𝑌7>|𝐴79, 𝑋79) ≠ 𝐸(𝑌7>|𝐴79, 𝑋79, 𝐴7>, 𝑋7>). This means that unless the 

independent working correlation structure is used, GEE can produce biased estimates even if 

equation (7) holds. 

 The same bias can occur when MLM is used instead of GEE. In general, for each MLM 

there is a corresponding GEE with a non-independent correlation structure that produces the 

same estimated coefficients. For example, an MLM resembling equation (7) is 𝑌7,4<9 = 𝛼I +

𝛼9𝑋74 + 𝐴74(𝛽I + 𝛽9𝑋74) + 𝑢7 + 𝜖74, where 𝑢7 ∼ Normal(0,𝜎}>) is a random intercept and 𝜖74 ∼

Normal(0, 𝜎~>) is the error term. This corresponds to a GEE with compound symmetric (also 

called exchangeable) working correlation structure. Given this equivalency, MLM can produce 

biased estimates if the covariate 𝑋74 is endogenous. 

A Few Scenarios Where GEE or MLM Provides Consistent Causal Excursion Effect 

Estimates From MRT Data 

GEE builds upon a marginal mean model (i.e., the relationship between the mean of the 

proximal outcome, the covariates, and the treatment assignments, such as (7)). If no endogenous 

time-varying covariates are included in the model, the individuals are always available, and the 

randomization probability is constant, GEE with any working correlation structure gives 

consistent estimates as long as the marginal mean model is correct. If there are endogenous time-

varying covariates in the model, the individuals are always available, and the randomization 
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probability is constant, GEE with independent working correlation structure still gives consistent 

estimates as long as the marginal mean model is correct, but GEE with other working correlation 

structure does not. 

 Because an MLM always corresponds to a GEE with some non-independent working 

correlation structure, MLM provides consistent causal excursion effect estimates if no 

endogenous time-varying covariates are included in the model, the individuals are always 

available, and the randomization probability is constant. However, although the estimated 

coefficients from an MLM will generally be biased for the causal excursion effect when there are 

endogenous time-varying covariates, those estimated coefficients can have a different, 

individual-specific interpretation under a rather strong assumption. As shown in Qian, Klasnja, 

& Murphy (2019), if the endogenous time-varying covariates can be safely assumed to only 

depend on the random effect through the observed previous outcomes and previous covariates, 

then the fitted results from standard linear mixed models can be interpreted as a causal effect that 

is conditional on the random effect (i.e., individual-specific rather than population-average) and 

conditional on the entire history 𝐻4 (rather than conditional only on 𝑆4). An example where this 

strong assumption holds is when the endogenous time-varying covariates are previous proximal 

outcomes (e.g., the endogenous time-varying covariate at decision point 𝑡 is the proximal 

outcome at decision point 𝑡 − 1). 

A Mathematical Demonstration of the Bias From Inappropriate Application of GEE When 

There are Endogenous Time-Varying Covariates 

For clarity we consider the case where each participant is in the MRT for two decision 

points. The data for the i-th participant is (𝑋79, 𝐴79, 𝑌7>, 𝑋7>, 𝐴7>, 𝑌7d), where 𝑋74 is the covariate, 

𝐴74 is the treatment assignment, and 𝑌74<9 is the continuous outcome. The covariate 𝑋74 is 
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endogenous time-varying, in the sense that it can depend on previous treatment and previous 

outcome. 

 The model on the marginal mean of 𝑌4<9 is 𝐸(𝑌4<9|𝐴4, 𝑋4) = 𝛼I + 𝛼9𝑋4 +

𝐴4(𝛽I + 𝛽9𝑋4). The corresponding GEE solves the following estimating equation: 

 V�

1 1
𝑋79 𝑋7>
𝐴79 𝐴7>

𝐴79𝑋79 𝐴7>𝑋7>

� 𝑉?9 Z𝑌7> − 𝛼I − 𝛼9𝑋79 − 𝐴79
(𝛽I + 𝛽9𝑋79)

𝑌7d − 𝛼I − 𝛼9𝑋7> − 𝐴7>(𝛽I + 𝛽9𝑋7>)
[

n

i=1

= 0. (8) 

Here, 𝑛 denotes the number of participants, and 𝑉 is a 2 × 2 working covariance matrix. 

Examples of 𝑉 include the following: 

• Working independence: 𝑉 = �𝜎
> 0
0 𝜎>

� 

• Compound symmetry: 𝑉 = Z 𝜎
> 𝜌𝜎>

𝜌𝜎> 𝜎>
[ 

• Autoregressive (in the special case of two decision points, autoregressive is the same as 

compound symmetry): 𝑉 = Z 𝜎
> 𝜌𝜎>

𝜌𝜎> 𝜎>
[. 

In this setting, the result in Pepe & Anderson (1994) implies that GEE is guaranteed to 
produce consistent 𝛼I, 𝛼9, 𝛽I, 𝛽9 if either 

(i) 𝐸(𝑌4<9|𝐴4, 𝑋4) = 𝐸(𝑌4<9|𝐴9, 𝑋9, 𝐴>, 𝑋>) for 𝑡 = 1,2, or 

(ii) a working independence correlation structure is used, 

and they provided simulation results to show that GEE can produce biased estimates when 

neither condition holds. In the following, we rephrase the intuitive argument given in Pepe and 

Anderson (1994) in this particular setting to show why GEE can be biased if neither condition 

holds. 

We write 𝑉?9 = �
𝑤99 𝑤9>
𝑤>9 𝑤>>� and write the residual 𝑟74 = 𝑌74<9 − 𝛼I − 𝛼9𝑋74 −

𝐴74(𝛽I + 𝛽9𝑋74). A summand (for fixed 𝑖) in equation (8) becomes 
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�

1 1
𝑋79 𝑋7>
𝐴79 𝐴7>

𝐴79𝑋79 𝐴7>𝑋7>

� �
𝑤99 𝑤9>
𝑤>9 𝑤>>� �

𝑟79
𝑟7>�

=

⎣
⎢
⎢
⎡

(𝑤99 + 𝑤>9)𝑟79 + (𝑤9> + 𝑤>>)𝑟7>
(𝑤99𝑋79 + 𝑤>9𝑋7>)𝑟79 + (𝑤9>𝑋79 + 𝑤>>𝑋7>)𝑟7>
(𝑤99𝐴79 + 𝑤>9𝐴7>)𝑟79 + (𝑤9>𝐴79 + 𝑤>>𝐴7>)𝑟7>

(𝑤99𝐴79𝑋79 + 𝑤>9𝐴7>𝑋7>)𝑟79 + (𝑤9>𝐴79𝑋79 + 𝑤>>𝐴7>𝑋7>)𝑟7>⎦
⎥
⎥
⎤
. 

(9) 

Because 𝐸(𝑌4<9|𝐴4, 𝑋4) = 𝛼I + 𝛼9𝑋4 + 𝐴4(𝛽I + 𝛽9𝑋4), we have 

𝐸[𝑟74] = 𝐸[𝑋74𝑟74] = 𝐸[𝐴74𝑟74] = 𝐸[𝐴74𝑋74𝑟74] = 0.	

Therefore, all the terms with 𝑤99𝑟79 and 𝑤>>𝑟7> (such as 𝑤99𝑟79𝑋79; i.e., terms that are multiplied 

with the diagonal elements of 𝑉?9) in (9) have expectation zero, and what is left are the terms 

with 𝑤>9𝑟79 and 𝑤9>𝑟7> (i.e., terms that are multiplied with the off-diagonal elements of 𝑉?9). In 

other words, the expectation of (9) equals 

 �

0
𝑤>9𝑋7>𝑟79 + 𝑤9>𝑋79𝑟7>
𝑤>9𝐴7>𝑟79 + 𝑤9>𝐴79𝑟7>

𝑤99𝐴7>𝑋7>𝑟79 + 𝑤9>𝐴79𝑋79𝑟7>

�. (10) 

Mathematical theory for GEE tells us that GEE outputs consistent 𝛼I, 𝛼9, 𝛽I, 𝛽9 when (9) has 

expectation zero; i.e., when (10) equals zero. 

 If condition (i) holds, we have 𝐸[𝑋7>𝑟79] = 𝐸[𝐴7>𝑟79] = 𝐸[𝐴7>𝑋7>𝑟79] = 0, and similarly 

𝐸[𝑋79𝑟7>] = 𝐸[𝐴79𝑟7>] = 𝐸[𝐴79𝑋79𝑟7>] = 0. Therefore, (10) equals 0 with any choice of 𝑉?9, and 

GEE estimators are consistent. 

 If condition (ii) holds, we have 𝑤>9 = 𝑤9> = 0. Hence (10) equals 0 and GEE estimators 

are consistent. 

 When neither condition holds, it’s likely that (10) does not equal zero. For example, 

suppose 𝑋7> = 𝑌7>. Then the term 𝑋7>𝑟79 equals 

 𝑌7>{𝑌7> − 𝛼I + 𝛼9𝑋79 + 𝐴79(𝛽I + 𝛽9𝑋79)}, (11) 
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which is the residual multiplied with the outcome itself. Because the residual and the outcome at 

the same time point are correlated, (11) likely does not equal zero. Therefore, (10) likely does 

not equal zero. This means GEE can be biased when neither conditions hold, i.e., when 

endogenous time-varying covariates are included and non-independent working correlation 

structure is used. 

 

Appendix B 

A General Form of the WCLS Estimator for the Causal Excursion Effect That Allows the 

Randomization Probability to Vary Over Time 

We assume a linear model for the causal excursion effect: 𝛽(𝑡, 𝑠) = 𝑠K𝛽. Suppose 𝑍4K𝛼 is a 

working model for the conditional mean of 𝑌4<9 given no treatment at decision point t and 

history 𝐻4, 𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4). Note that the consistency of the estimator for 𝛽 does not 

require 𝑍4K𝛼 to be a correct model for 𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4). We use 𝑝4(𝐻4) to denote the 

randomization probability at decision point 𝑡, which may possibly depend on 𝐻4.  

The WCLS estimator for 𝛽 is calculated as follows. Suppose (𝛼T, 𝛽U) is the (𝛼, 𝛽) value 

that solves the following estimating equation: 

 VV𝐼74𝑊74W𝑌7,4<9 − 𝑍74K𝛼 − {𝐴74 − 𝑝�4(𝑆74)}𝑆74K𝛽Y Z
𝑍74

{𝐴74 − 𝑝�4(𝑆74)}𝑆74
[

K

4L9

\

7L9

= 0; (12) 

then 𝛽U  is the WCLS estimator for 𝛽. 𝑝�4(𝑆74) is an arbitrary probability as long as it depends on 

𝐻74  through at most 𝑆74 and it is bounded away from 0 and 1; 𝑖 is the index for the ith individual, 

and 𝑊74  is defined as 

 𝑊74 = �
𝑝�4(𝑆74)
𝑝4(𝐻74)

�
���

�
1 − 𝑝�4(𝑆74)
1 − 𝑝4(𝐻74)

�
9?���

. (13) 
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 𝑊74 , the ratio of two probabilities, serves as a change of probability: It makes it as if the 

treatment 𝐴74 is randomized with probability 𝑝�4(𝑆74). It is used to marginalize the causal 

excursion effect over variables in 𝐻74  but not in 𝑆74. As long as 𝑝�4(𝑆4) depends on 𝐻74  through at 

most 𝑆74 and it is bounded away from 0 and 1, the particular choice of 𝑝�4(𝑆4) doesn’t affect the 

consistency of 𝛽U . For instance, one can set it to be 0.5 (or any constant between 0 and 1) for all 

individuals and all decision points, or set it to be the predicted value from a logistic regression fit 

of 𝐴4~𝑆4. If the true randomization probability 𝑝4(𝐻4) depends at most on 𝑆4, then one can also 

set 𝑝�4(𝑆4) to be equal to the true randomization probability, in which case (12) is mathematically 

equivalent to (5). 𝑝�4(𝑆4) can impact the standard error of 𝛽U . In addition, when the causal 

excursion effect model 𝛽(𝑡, 𝑠) = 𝑠K𝛽 is misspecified, 𝑝�4(𝑆4) impacts the limit of 𝛽U . See the 

Appendix of Boruvka et al. (2018) for more technical details on how the limit of 𝛽U  is impacted 

by 𝑝�4(𝑆4) in this case. 

 Now we present a way to obtain the general WCLS estimator for time-varying 

randomization probability through standard statistical software that implements GEE. Suppose 

the assumed causal excursion effect model is (6) and the working model for 

𝐸(𝑌4<9|𝐴4 = 0, 𝐼4 = 1,𝐻4) is 𝑍4K𝛼; then the WCLS estimator 𝛽U  and its standard error can be 

obtained by (i) incorporating 𝐼4𝑊4  as the “prior weights”, (ii) chooseing a working independence 

correlation structure, and (iii) fitting GEE with dependent variable 𝑌4<9 and independent 

variables 𝑍4 and p𝐴4 − 𝑝�4(𝑆4)q𝑆4. Then the estimated coefficient for p𝐴4 − 𝑝�4(𝑆4)q𝑆4 is the 

WCLS estimate 𝛽U . 

Standard Error Formula for WCLS.  

Below we provide the formula for the standard error of the WCLS estimator 𝛽U . For	(𝛼T, 𝛽U) 

that solves estimating equation (12), variance can be estimated by 
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 Var� �Z𝛼T𝛽U[� =
9
\
𝑀\
?9𝛴\(𝑀\

?9)K,  

where 

 𝑀\ = −ℙ\ ∑ 𝑊4
K
4L9 Z 𝑍4𝑍4K {𝐴4 − 𝑝�4(𝑆4)}𝑍4𝑆4K

{𝐴4 − 𝑝�4(𝑆4)}𝑆4𝑍4K {𝐴4 − 𝑝�4(𝑆4)}>𝑆4𝑆4K
[  

and 

Σ\ = ℙ\V�𝑌4<9 − 𝑍4K𝛼 − p𝐴4 − 𝑝�4(𝑆4)q𝑆4K𝛽�
>
𝑊4

K

4L9

Z 𝑍4𝑍4K {𝐴4 − 𝑝�4(𝑆4)}𝑍4𝑆4K

{𝐴4 − 𝑝�4(𝑆4)}𝑆4𝑍4K {𝐴4 − 𝑝�4(𝑆4)}>𝑆4𝑆4K
[. 

Here, ℙ\ denotes sample average over n individuals. The standard error formula can be modified 

for the setting in which the randomization probability is constant over time (i.e., the setting in the 

main paper) by letting 𝑝�4(𝑆4) = 𝑝 and 𝑊4 = 1. 

 

Appendix C 

We conduct a simulation study to illustrate the claim that including variables that are 

correlated with 𝑌4<9 in 𝑍4 may reduce the variance of the WCLS estimator. The generative model 

mimics features of the HeartSteps data and is set up as follows. For simplicity we assume users 

are always available. At decision point 𝑡, the covariate 𝑋4 is drawn from the empirical 

distribution of the log-transformed 30-minute step count preceding a decision point in the 

HeartSteps data. For simplicity 𝑋4 is generated independently of previous outcomes and 

treatments. The treatment 𝐴4 is generated from a Bernoulli distribution with .6 success 

probability; this mimics the .6 randomization probability of activity suggestions in HeartSteps. 

The proximal outcome 𝑌4<9 is generated from a Gaussian distribution with mean 

1.6085 + 0.4037× 𝑋4 + 0.0655 × 𝑌4 + 0.1229 × (𝐴4 − 0.6) 
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and standard deviation 2.716. The coefficients in the above display are the estimated coefficients 

from a WCLS fit on the HeartSteps data with the same control variables (1, 𝑋4, 𝑌4) and constant 

treatment effect model. The standard deviation is the empirical standard deviation of the residual 

in 𝑌4<9 from the above WCLS fit. As in the HeartSteps data set, for each simulated trial we 

generate 37 individuals, each with 210 decision points. 

 For each data set generated from the above generative model, we consider four WCLS 

fits for the true treatment effect 0.1229 and compare their performance. All four WCLS assume 

the constant treatment effect model, and they differ in the choice of the working model. The first 

WCLS fit (WCLS-1) includes control variables (1, 𝑋4, 𝑌4); the second WCLS fit (WCLS-2) 

includes control variables (1, 𝑋4); the third WCLS fit (WCLS-3) includes control variables 

(1, 𝑌4); and the fourth WCLS fit (WCLS-4) includes only the intercept. The bias, standard 

deviation (SD), and coverage probability (CP) of 95% confidence interval are listed in 

Supplementary Table 1. All four WCLS estimators are consistent with nominal confidence 

interval coverage because their assumed constant treatment effect model holds under this 

generative model. (This again illustrates that the consistency of the WCLS estimator does not 

require the control part of the model to be correct.) On the other hand, the choice of working 

model affects the efficiency of the estimator. In particular, WCLS-1 and WCLS-2 have smaller 

standard errors than WCLS-3 and WCLS-4 because the former two include 𝑋4, a covariate that is 

highly correlated with the proximal outcome 𝑌4<9. 

 

Appendix D 

 To assess sensitivity of the result to potential non-linearity in Question 2 of Section 

“Analysis Using Data from HeartSteps MRT,” we fit a local 2-degree polynomial regression 
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with smoothing span 2/3 and tricubic weighting to estimate the causal excursion effect over time 

(the default setting for many local regression software, such as the lowess function in R (R Core 

Team, 2019)). The estimated effect from local regression is presented in Supplementary Figure 1 

(black curve). Comparing this estimated effect with the estimated effect based on the linear 

model (blue curve in Figure 1, with blue shaded area being the pointwise 95% confidence 

interval), we see that the two estimates are relatively close to each other, indicating that the linear 

model fits well. 
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Table 1. 

Estimated main effect of activity suggestions on proximal outcome 

Variable  Estimate 95% LCL 95% UCL SE Hotelling t p 
Intercept 𝛼I 1.783 1.537 2.029 0.121 217.3 <0.001 
Past 30-min step count 𝛼9 0.414 0.351 0.476 0.031 181.2 <0.001 
Activity suggestion 𝛽I 0.131 -0.006 0.268 0.067 3.79 0.060 

 

Note. LCL (UCL) represents lower (upper) confidence limit. SE represents standard error. LCL, 

UCL, SE, and p are corrected for small sample size using method in (Liao et al., 2016; Mancl & 

DeRouen, 2001). The degrees of freedom for the Hotelling t test is (1, 34). 
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Table 2.  

Estimated effect of activity suggestion on proximal outcome as a linear function of time in study 

Variable  Estimate 
95% 
LCL 

95% 
UCL SE Hotelling t p 

Intercept 𝛼I 2.003 1.765 2.240 0.117 294.7 <0.001 
Past 30-minute step count 𝛼9 0.412 0.351 0.473 0.030 189.6 <0.001 
Time (in days) 𝛼> -0.011 -0.020 -0.001 0.005 5.09 0.031 
Activity suggestion 𝛽I 0.507 0.201 0.814 0.151 11.37 0.002 
Activity suggestion x Time 
(in days)  𝛽9 -0.018 -0.031 -0.006 0.006 9.19 0.005 

 

Note. LCL (UCL) represents lower (upper) confidence limit. SE represents standard error. LCL, 

UCL, SE, and p are corrected for small sample size using method in (Liao et al., 2016; Mancl & 

DeRouen, 2001). The degrees of freedom for the Hotelling t test is (1, 32). 
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Table 3.  

Estimated effect of walking suggestion / anti-sedentary suggestion on proximal outcome, 

moderated by location (home/work or other) during decision point 

Variable  Estimate 95% LCL 95% UCL SE Hotelling t p 
Intercept 𝛼I 1.715 1.461 1.968 0.124 191.3 <0.001 
Past 30-minute step count 𝛼9 0.414 0.351 0.477 0.031 182.0 <0.001 
At home/work 𝛼> 0.143 -0.083 0.368 0.110 1.67 0.205 
Walking Suggestion 𝛽I 0.050 -0.167 0.267 0.106 0.22 0.640 
Walking Suggestion x At 
home/work 𝛽9 0.377 0.001 0.753 0.184 4.18 0.049 

Anti-sedentary Suggestion 𝛽> 0.092 -0.166 0.351 0.127 0.53 0.472 
Anti-sedentary Suggestion 
x At home/work 𝛽d -0.142 -0.540 0.256 0.195 0.53 0.472 

 
Note. LCL (UCL) represents lower (upper) confidence limit. SE represents standard error. LCL, 

UCL, SE, and p are corrected for small sample size using method in (Liao et al., 2016; Mancl & 

DeRouen, 2001). The degrees-of-freedom for the Hotelling t test is (1, 30). 
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Table 4.  

Estimated effect of activity suggestion on proximal outcome, moderated by whether activity 

planning support was received on previous night 

Variable  Estimate 95% LCL 95% UCL SE Hotelling t p 
Intercept 𝛼I 1.764 1.511 2.017 0.124 201.3 <0.001 
Past 30-minute step count 𝛼9 0.414 0.351 0.476 0.031 180.5 <0.001 
Planning on previous day 𝛼> 0.050 -0.106 0.205 0.076 0.43 0.518 
Activity suggestion 𝛽I 0.113 -0.035 0.261 0.073 2.43 0.129 
Activity suggestion x 
Planning on previous day 𝛽9 0.046 -0.228 0.320 0.134 0.12 0.734 

 
Note. LCL (UCL) represents lower (upper) confidence limit. SE represents standard error. LCL, 

UCL, SE, and p are corrected for small sample size using method in (Liao et al., 2016; Mancl & 

DeRouen, 2001). The degrees-of-freedom for the Hotelling t test is (1, 32). 
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Supplementary Figure 1.  

Estimated effect of activity suggestion on proximal outcome as a linear function of days in study, 

and corresponding 95% pointwise confidence intervals 

 

Note. Figure for the sensitivity analysis in Appendix D regarding “Question 2: Does the effect of 

the activity suggestions change with each additional day in the study?” in section “Analysis 

Using Data from HeartSteps MRT.” The black curve is the estimated effect using local 2-degree 

polynomial regression with smoothing span 2/3 and tricubic weighting. The blue line represents 

the estimated causal excursion effect across the 42 study days, assuming a linear time trend, and 

the shaded blue area is the pointwise 95% confidence interval. 
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Supplementary Table 1. 

Simulation results for Appendix C: Efficiency gain from including prognostic variable in the 

working model 

 bias standard deviation 95% coverage 
probability 

WCLS-1 -0.001 0.067 96.7% 
WCLS-2 -0.001 0.067 96.9% 
WCLS-3 -0.001 0.074 95.8% 
WCLS-4 -0.001 0.074 95.7% 

 
Note. All four WCLS assumes the constant treatment effect model, and they differ in the choice 

of the working model. WCLS-1 includes control variables (1, 𝑋4, 𝑌4); WCLS-2 includes control 

variables (1, 𝑋4); WCLS-3 includes control variables (1, 𝑌4); WCLS-4 includes only the 

intercept. 

 




