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Introduction

Peak demand in the electricity system creates a cost 
management problem: a significant share of genera-
tion resources are in use for only a limited number of 
hours. Electricity generation costs during these hours, 
which typically occur in afternoons and evenings in 
California but can vary across the country, can be 
more than an order of magnitude higher than those 
in average hours (Velocity Suite, 2020). Demand-
side resources like energy efficiency can reduce peak 
demand and decrease these high electricity system 
costs (Stern, 2013). Accurate estimates of when elec-
tric efficiency savings occur, therefore, are important 
for energy efficiency measure valuation, the selection 
of demand-side resources, and for resource planning.

The timing of electric efficiency is important 
when estimating its economic value (Mims Frick & 
Schwartz, 2019). In cost-effectiveness screens that 
inform the design of utility ratepayer-funded energy 
efficiency programs, energy savings estimates com-
bined with avoided costs measure the economic 
impact of energy efficiency investments (Woolf et al., 
2020). Avoided costs delineate the dollar amount 
that each marginal unit of energy efficiency saves 
the electricity system under various assumptions 
about energy markets, policy, and utility operations. 
They typically include a number of component costs, 
including energy generation; generation, transmis-
sion, and distribution investments; ancillary services; 
and cap and trade costs. These cost components vary 
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significantly both seasonally and diurnally, but esti-
mates of electric efficiency savings are generally lim-
ited in how they address timing. They often measure 
annual savings and only cover the first year of opera-
tion (Schiller et al., 2017). Coincidence factors, which 
may accompany these annual electricity savings val-
ues, translate them into estimates of demand savings 
in a defined peak period (Schiller et al., 2017). Peak 
periods vary across the country but generally occur in 
summer afternoon hours (Mims Frick et al., 2019a). 
This method does not address the variation in savings 
outside these peak periods nor does it differentiate 
between “ordinary” peak periods and the handful of 
hours that create very high generation costs. If a valu-
ation of efficiency uses only annual energy savings, it 
misses any hourly variation in avoided costs.

The timing of electric efficiency savings is also 
essential for understanding how the measures inter-
act with other distributed energy resources, including 
demand response. When efficiency measures reduce 
load, they can alter both the need for and avail-
ability of demand response resources. The timing of 
these competing reductions further affects the value 
of demand response, in particular when renewable 
energy penetration affects the diurnal profile of elec-
tricity system costs (Satchwell et  al., 2020). Energy 
efficiency’s passive load reductions can impact multi-
ple demand flexibility modes, including load shifting 
as well as load shedding (Schiller et al., 2020).

Resource planners benefit from insight into the 
timing of electric savings as they manage an evolving 
grid. In California, solar photovoltaics (PV) supply an 
increasing share of load — for example, reaching 13% 
of total electricity demand in 2019 (California ISO, 
2020). Diurnal variation in PV electricity generation 
has led to mid-day curtailments and steep generation 
ramps in the afternoon, which create challenges for 
resource adequacy (California ISO, 2020) and may 
shift the timing of peak net load later into the day. At 
the same time, California is pursuing an expansion 
of electric vehicles (California Code of Regulations 
13.1962.2) and energy storage (California Public 
Utilities Commission (CPUC) 2013b), both of which 
will affect the electricity system’s peak demand and 
net load. Many other jurisdictions are facing similar 
grid evolution challenges or will face them in the near 
future. Grid planners at ISO-New England (ISO-NE) 
have already responded to these challenges by includ-
ing efficiency as a capacity resource in long-term 

load forecasts (Black & Rojo, 2019). However, these 
forecasts only make use of on-peak capacity, thereby 
excluding the capacity provided by efficiency in off-
peak hours (Demand Resources Working Group 
2019). This disconnect has motivated the develop-
ment of methods that provide a full accounting of the 
capacity that efficiency measures provide (Demand 
Resources Working Group 2019). A lack of utility 
and efficiency measure performance data currently 
limits the implementation of these methods. Hourly 
load and savings shapes generated by building energy 
simulation models married with detailed building 
stock data could provide accurate estimates of the 
non-peak electric efficiency savings (Mims Frick 
et al., 2019b).1 However, calibration of these simula-
tions to empirical savings shapes — such as those we 
estimate here — will be key to their precision, usa-
bility, and reliability in utility resource planning and 
valuation studies.

This paper builds on existing research on the timing 
of electric efficiency savings. Mims Frick et al. (2019b) 
identified the importance of end-use load profiles for 
understanding the time-sensitive value of efficiency and 
the dependence of that value on location and utility oper-
ations. It also documented how the limited availability of 
these shapes has hindered analysis of the time-sensitive 
value of efficiency. Mims Frick and Schwartz (2019) dif-
ferentiated between two categories of end-use load pro-
files, load shapes and savings shapes, and comments on 
their use. The paper demonstrated how efficiency meas-
ures can introduce technological changes that lead to sav-
ings shapes that differ substantially from load shapes. For 
example, a reduction in lamp wattage scales a load shape 
down, which changes the peak demand but not its timing 
or the overall shape of load. The introduction of a meas-
ure with controls, on the other hand, can change when a 
measure uses energy, resulting in a shape that peaks both 
at different values and times.

Our analysis recognizes the importance of interval 
metering data and builds upon similar efforts to use them 
in efficiency measure valuation. Interval metering data 
reveal load patterns and are more accurate than engineer-
ing algorithms and building simulations (Stern, 2013). 
Boomhower and Davis (2020), for example, used interval 

1 ResStock (see Wilson et. al 2017) and ComStock, tools 
developed and maintained by the National Renewable Energy 
Laboratory, will be able to generate modeled hourly load for 
specific regions of the country in this fashion by late 2021.
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metering data to develop empirical savings shapes for a 
Southern California Edison air conditioning program. 
They found that electricity savings from upgraded air con-
ditioning systems were concentrated in summer months 
between 4 and 8PM, when avoided capacity and energy 
costs are high. They compared the value of the program 
using both annual and hourly energy savings and found 
that the hourly approach yields a “premium” on the 
annual value estimation. Similarly, analyses of Pacific 
Gas and Electric’s Advanced Home Upgrade Program 
(AHUP) demonstrated that energy savings are concen-
trated in evenings and coincided with high avoided costs 
in summer evenings to create significant value (California 
Efficiency Demand Management Council, 2019).

In this study, we provide additional evidence of the 
time-sensitive value of energy efficiency measures. We 
leverage a dataset of energy efficiency projects installed 
through residential Property Assessed Clean Energy 
(R-PACE) programs in California between 2009 and 
2017.2 Using weather-normalized metered energy con-
sumption methods, detailed project information, and 
interval metering data from households that implemented 
R-PACE projects, we produce empirical electricity sav-
ings shapes for several efficiency measure categories and 
demonstrate how evening savings drive their value.

While we present metrics similar to those in Boom-
hower and Davis (2020), we cover more than twice as 
many projects over three California investor-owned utility 
service territories and provide results for multiple space-
conditioning measures. We also compare the value of 
efficiency using two avoided cost models. The first model 
assumes gas turbines as the marginal generation unit, 
which reflects current grid conditions in California, and 
the second uses battery storage as the marginal generation 
unit, which represents future grid conditions. With this 
approach, we are able to determine in which hours and sea-
sons space-conditioning measures reduce electricity usage 
and provide the most value in California. We compare 
these savings profiles to annual estimates of energy savings 

to illustrate the importance of time-sensitive valuations of 
energy efficiency. The use of two avoided cost models fur-
ther addresses how the value of efficiency may change in 
an evolving electricity grid, in and outside California. We 
also compare our results to those in Boomhower and Davis 
(2020) and discuss the implications of the study on energy 
efficiency cost-effectiveness screening, building modeling, 
and resource planning.

Data and methodology

To estimate hourly electric savings for the projects in our 
study, we follow a common approach in the energy effi-
ciency industry that compares pre- and post-project house-
hold usage to estimate savings (Fels, 1986). The method 
first fits models of pre- and post-project electricity usage 
regressed on actual weather over those periods. We then 
feed both models “typical” weather year data and estimate 
savings by taking the difference in usage predicted by the 
pre- and post-project models. Since weather varies annu-
ally, estimates of energy savings based on a single year of 
observed temperature do not necessarily reflect expected 
performance in future years. For example, if the observed 
year is atypically cool, savings estimates for measures that 
likely save more in warm weather (like air conditioning 
retrofits) would be biased downwards and under-predict 
savings in warmer years. Typical weather data, such as 
the TMY3 maintained by the Renewable Energy Labo-
ratory,3 mitigate this issue by constructing a year of data 
that reflects median historical weather. A savings estimate 
based on a typical weather year is, therefore, “normalized” 
to weather.4

We use the time-of-week and temperature (TOWT) 
model, which builds on Fels (1986) in its use of hourly 

2 R-PACE is a mechanism for financing residential energy-
related upgrades through property taxes that is most commonly 
used in California and Florida. Several previous papers have 
studied the impacts of R-PACE programs. A series of analyses 
(Ameli et al., 2017; Deason and Murphy 2018; Kirkpatrick and 
Bennear 2014) have studied the impact of R-PACE programs 
on solar PV installation, generally finding that the presence 
of R-PACE programs has been associated with, and may have 
driven, increased deployment. Goodman and Zhu (2016) study 
home value impacts of R-PACE programs, while Rose and Wei 
(2019) review their macroeconomic impacts.

3 https:// nsrdb. nrel. gov/ about/ tmy. html
4 Typical weather data, importantly, do not account for 
expected increases in temperature due to climate change. 
Indeed, the TMY3 only represents weather between 1991 and 
2005. Given that California air temperatures have risen since 
2005 and recent modeling indicates continued increases (He 
et al., 2018; Hydroclimate Report Water Year 2015 2016), the 
TMY3 may systematically underestimate savings from cool-
ing measures. Still, TMY3 datasets have an advantage over a 
single year’s worth of more recent data in that it is possible to 
evaluate their bias relative to climate models (Murphy 2017) 
and modify them to incorporate expected temperature changes 
(Belcher et al., 2005).

          Energy Efficiency (2021) 14: 82 Page 3 of 13 82

https://nsrdb.nrel.gov/about/tmy.html


 

1 3

data to estimate occupancy and to construct monthly 
piecewise-linear models of electricity usage and tempera-
ture (Mathieu et al., 2011; Price, 2010; Price et al., 2011). 
We include a year of electricity and weather data in both 
the pre- and post-project models. To define weather for 
each household, we selected the nearest weather sta-
tion within 200 km that provided both observational and 
TMY3 data during the baseline and reporting periods. 
Our implementation of TOWT is consistent with Cal-
TRACK,5 a set of standardized methods for metered 
energy analysis in California, used in particular for pay-
for-performance programs.6

PACE households and electricity usage data

We identified households for this study from a data-
set maintained by the California Advanced Energy 
and Alternative Transportation Financing Authority 
(CAEATFA), a state agency that provides a loan loss 
reserve for R-PACE programs. R-PACE programs 
have financed energy efficiency measures and solar 
photovoltaic panels in more than 200,000 houses 
between 2009 and 2019. We worked with 120,000 
of these households, all of which participated 
between 2009 and 2017. We connected the major-
ity of them with interval electricity metering data 
obtained from the three California investor-owned 
electric utilities: Southern California Edison (SCE), 
Pacific Gas & Electric (PG&E), and San Diego Gas 
& Electric (SDG&E). We applied several data suf-
ficiency screens on the metering data informed by 
CalTRACK methods and Uniform Methods Project 
recommendations (Agnew & Goldberg, 2017). The 
primary screen, which required that no more than 
10% of metering reads be missing in any month in 
the baseline or reporting period, led us to discard 
a significant share of meters for some utilities and 

resulted in a sample for this analysis of about 18,000 
households with electric meters that implemented 
energy efficiency projects.7

Five R-PACE program providers8 provided us with 
data on measures installed in their projects in dispa-
rate levels of details. For this analysis, we set aside 
projects that included solar PV (24% of projects) as 
well as those that include only water consumption-
related measures (5%) to focus on those that relate 
chiefly to energy consumption.9 We standardized the 
measure data into three common efficiency measure 
categories, HVAC; windows, doors, and skylights; 
and other envelope measures, which includes reflec-
tive roofs and insulation. Either standalone or in 
combination, these measures accounted for 95% of 
efficiency projects. A small share of projects (5%) 
contained efficiency measures such as water heating 
that did not fall in these categories. Our analysis does 
not present the impact of these miscellaneous meas-
ures in isolation but does include them in the “com-
bined measures” category detailed below.

The measure data generally did not specify 
whether HVAC measures heated or cooled homes, 
used electricity or gas as the primary energy source, 
or were new installations10 or replacements (retro-
fits). Our HVAC category, therefore, covers a range 
of measures, from heat pumps and duct sealing to fur-
naces and air conditioners. To address the uncertainty 
within this general HVAC category, we separated 
replacements from new installations by evaluating 

7 For additional details on our data and our data screening 
process, see Deason et al. (forthcoming), which estimate non-
time-dependent electricity and gas impacts of R-PACE pro-
jects.
8 These programs cover more than 99% of all R-PACE pro-
jects through mid-2017 that are tracked by CAEATFA.
9 We do include projects that contain energy efficiency meas-
ures as well as water savings measures.
10 R-PACE programs support efficient HVAC measures 
regardless of whether they replace existing equipment. We use 
the term “installations” to refer to HVAC measures that we 
believe represent new air conditioning equipment where none 
was previously present and “replacements” to refer to HVAC 
measures that we believe replace existing air conditioning 
equipment with more efficient equipment. In this paper, we 
emphasize the subset of projects that do not include installa-
tions, as installations would not generally be considered energy 
efficiency projects.

5 See https:// www. caltr ack. org/
6 Following CalTRACK methods, we estimate two sets of 
piecewise-linear relationships for each temperature interval, 
one for an “occupied” building state and one for an “unoccu-
pied” state. These states are defined by examining the residu-
als of a preliminary fixed balance point regression of usage on 
temperature during the model baseline period in the presence 
of indicator variables for 168-h-of-week intervals. The model 
considers hours of the week that have more than 65% positive 
residuals in the baseline period as “occupied” and the remain-
ing hours as “unoccupied.” Again following CalTRACK meth-
ods, we estimate a separate TOWT model on each calendar 
month in a project’s baseline and reporting period.
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project performance in hours when cooling demand 
tends to be higher. If we observed a project increased 
energy usage by more than 15% in summer months 
(July to September) between noon and midnight, we 
categorized it as a new cooling installation. If we 
observed a reduction in energy usage greater than 
10%, we categorized it as a cooling replacement. We 
include the remaining HVAC projects — those that 
were not categorized as installations or replacements 
by this method — as part of a combined non-installa-
tion category that also includes the windows, doors, 
skylight, and other envelope measures.

Avoided costs

To estimate the time-dependent value of the elec-
tricity usage impacts of our projects in different grid 
conditions, we used two versions of the California 
Public Utilities Commission (CPUC)’s avoided cost 
model (Energy and Environmental Economics 2020; 
Horii et  al., 2019).11 These avoided costs represent 
the marginal costs the electric system would incur if 
electricity usage reductions did not occur. The model 
estimates hour-of-year (8760) nominal avoided costs 
for 30 years for the electricity cost components listed 
in Table 1 by utility service territory.12

The CPUC made a significant update to its avoided 
cost model in 2020 (Energy and Environmental Eco-
nomics 2020). The primary modeling difference 
between the 2019 and 2020 avoided cost models is 
the use of a 4-hour battery storage as the cost of new 
capacity in the 2020 model, as opposed to a gas com-
bustion turbine in the 2019 model (Horii et al., 2019). 
The 2020 avoided cost model, therefore, reflects an 
electricity system with high levels of renewables 
and storage that can absorb mid-day solar produc-
tion and avoid evening ramps. Neither model includes 
non-energy impacts that can be part of energy effi-
ciency cost-effectiveness tests (Woolf et  al., 2020) 
nor impacts on reliability (Horii et al., 2019). We also 
exclude the methane avoided costs introduced in the 
2020 model for the sake of symmetry in comparing 
the results generated by the two models.

For both models, we deflate the nominal avoided 
costs and calculate their net present value in 2019 
dollars with inflation and discount rates from 2019 
avoided cost model.13 We then calculate hourly dollar 
savings by multiplying our estimated hourly electric-
ity savings by the hourly avoided costs. The sum of 
these hourly savings is the time-sensitive project dol-
lar savings.

In parallel, we calculate a “naïve” estimate of 
project dollar savings by multiplying annual aver-
age avoided costs by the project’s annual energy sav-
ings. This estimate ignores the time dependence of 

Table 1  Components of CPUC avoided cost calculator

Avoided cost component Definition

Energy Wholesale market energy prices
Capacity Levelized cost of new generation capacity
Transmission and distribution Cost for expanding transmission and distribution systems
Ancillary services Procurement of up- and down-regulation, spinning reserves, and non-spinning 

reserves
Greenhouse gases Compliance cost (cap and trade) and remaining economic cost for meeting emissions 

targets (GHG adder)

11 See CPUC’s website to access the avoided cost model and 
associated documentation: https:// www. cpuc. ca. gov/ Gener al. 
aspx? id= 5267
12 Some avoided costs also vary by climate zone within a util-
ity. The 2019 model generates each avoided cost component by 
climate zone and utility, but the 2020 model only breaks distri-
bution costs out by climate zone.

13 The inflation and discount rates in the 2019 avoided costs 
model are 2.33% and 5%, respectively. In the 2020 model, the 
inflation varies between 2 and 2.5%, and the real discount rate 
ranges from 5.2 to 5.5% depending on the utility.
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electricity usage changes, instead assuming they are 
equally distributed over the year. We then calculate 
the ratio of time-sensitive project dollar savings to 
the naïve estimate of project dollar savings. We con-
ceptualize this ratio as an “impact multiplier” that 
describes how much more valuable (or costly) pro-
jects are to the electricity system due to their timing:

Results

Hourly demand shapes provide visibility into diurnal 
and seasonal patterns in building load and energy effi-
ciency measure savings. They also show how savings, 
avoided costs, and load align with each other. In hours 
when savings coincide with large avoided costs, effi-
ciency measures create significant value. We present 
these demand shapes by measure for two seasons, 
summer (June through September) and non-summer 
(October through May).14 As discussed earlier, our 
sample includes some projects with inferred new 
cooling installations. We first consider the savings 
shapes and multipliers for non-installations, which 
includes inferred cooling replacements, windows and 
doors, and other envelope projects, before addressing 
the inferred new cooling installations.15

Efficiency (non-installations) projects

Figure  1 shows three demand shapes for all effi-
ciency measures in our dataset, excluding inferred 
new cooling installations. The top panels show base-
line (pre-project) and post-project usage. The line 
in the bottom panel shows the savings, which is the 
difference between the baseline and post-project 
usage. In general, we find that peak savings from 

Multiplier =
ProjectDollarImpactshourlyestimate

ProjectDollarImpactsannualestimate

these non-installation measures are well-correlated 
with peak load and peak avoided costs, which occur 
at 6PM in non-summer and 5PM in summer for the 
2019 avoided cost model and at 6PM for both seasons 
in the 2020 avoided cost model.

We find that summer peak savings for efficiency 
measures tend to be larger than non-summer peak 
savings. This observation is not surprising given that 
most California homes use natural gas, not electric-
ity, as the primary heating fuel, so we would expect 
most HVAC impacts on electricity usage to be cool-
ing-related (Palmgren et al., 2010). Peak demand sav-
ings from projects that are not new installations are 
two and a half times as large in summer as they are 
in non-summer (see Fig. 1). Summer savings are near 
zero in the mornings, rise rapidly in early afternoon, 
and remain near their maximum from 4 to 8PM, 
before declining throughout the night. This profile is 
consistent with expected residential space cooling-
related reductions. In non-summer, we see small sav-
ings in the morning and early afternoon, peaking at 
1PM before declining until 5PM. We see a larger peak 
in the evening hours, again consistent with space-con-
ditioning-related savings. As electricity prices tend to 
be highest in the summer, the summer peak savings 
have an outsized impact on measure valuation relative 
to savings in other hours of the year.

The variation in the diurnal and seasonal timing of 
peak savings is even more significant at the measure 
level. Inferred cooling replacement savings are largest 
in the afternoon and evening in both seasons, though 
savings are several times higher in the summer (see 
Fig. 2). Inferred cooling replacement savings are also 
well-aligned with the peak summer avoided costs in 
both the 2019 and 2020 peak avoided cost models, 
which occur at 5PM and 6PM, respectively.

In households that implemented windows and door 
measures, we observe small morning load increases 
(negative savings) in both seasons, accompanied by 
more significant load reductions in the afternoon and 
evening, especially in the summer. The savings from 
these measures are also generally well-aligned with 
peak avoided costs.

Peak savings from other envelope measures 
occur in the late evening in both summer (9PM) and 
non-summer (10PM). In the summer, as indicated 
by the negative savings, other envelope upgrades 
increase mid-day usage, likely by allowing less heat 
to escape the household in the mornings, causing 

14 PG&E and SCE both used this definition of summer in their 
electricity tariffs as of July 2020, and SDG&E defines summer 
as June through October (Pacific Gas and Electric, 2020; San 
Diego Gas and Electric, 2020; Southern California Edison, 
2018).
15 Eighty percent of non-installations projects contain meas-
ures from a single measure category (HVAC, windows and 
doors, other envelope). The remainder includes multiple meas-
ures or less common measure such as water heating.
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space-conditioning usage to begin earlier. In non-
summer, the late evening peak may correspond to 
better electric heating efficiency. While their peak 
savings do not coincide with the peak avoided costs 

hours in either season, other envelope measures still 
provide significant value because both savings and 
avoided costs remain high throughout the evening.

Fig. 1  Hourly non-installation measure baseline and post-project usage and savings shapes by season

Fig. 2  Seasonal demand savings by efficiency measure category
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Table  2 presents the impact multipliers for each 
efficiency measure category using both the 2019 and 
2020 avoided cost models. The multipliers are the 
ratio of project dollar impacts estimated with hourly 
energy savings to project dollar impacts estimated 
with annual energy savings. Multipliers do not rank 
measures by their absolute impacts; they measure 
the share of extra impact revealed through a time-
sensitive valuation. Inferred cooling replacements, 
for example, have the highest demand savings (see 
Fig. 2) but do not have the largest multiplier.

In general, we find that impact multipliers for load 
decreasing measures are greater than one, which means that 
estimates of electric savings that ignore their timing would 
undercount the value that they provide to the electricity sys-
tem. The time-sensitive valuation reveals that, when con-
sidered together, these measures provide substantially more 
value than a naïve valuation would estimate: 53% more 
using the 2019 model and 37% more using the 2020 model.

The impact multipliers differ across measures and 
avoided cost models. As we discussed earlier in this sec-
tion, efficiency measures have distinct savings shapes that 
combine with avoided costs in different ways. To help 
explain the differences in impact multipliers, we present 

avoided cost multipliers for each season and hour across 
our entire project sample using both the 2019 and 2020 
avoided cost models in Fig. 3. We calculate these as the 
ratio of the average avoided cost in an hour of the day to 
the average avoided costs across the whole year.

The primary difference occurs in early summer eve-
nings (5PM to 6PM), when the 2019 avoided costs, in 
particular capacity costs, are much higher than those 
in the 2020 model.16 This disparity stems from the use 
of gas turbines as the marginal resource in the 2019 
model, in contrast to battery storage in the 2020 model. 
Measures that have peak savings between 4 and 6PM 
(e.g., inferred cooling replacements), therefore, provide 
less value using the 2020 avoided cost model relative 
to the 2019 model. After 7PM, this pattern changes as 
the 2020 model’s avoided costs taper more slowly than 
the 2019 model’s and extend higher valued savings out 
to 9PM. For envelope measures, this increase in late 
evening value results in a higher multiplier with the 
2020 avoided cost model.

Table 2  Impact multipliers 
for efficiency measures

2019 model 2020 model

Measure category Impact 
multi‑
plier

Effect on valuation Impact 
multi‑
plier

Effect on valuation

Inferred cooling replacement 1.43 Increase 1.26 Increase
Windows and doors 1.62 Increase 1.35 Increase
Other envelope 1.41 Increase 1.63 Increase
All measures exclusive of 

inferred new cooling instal-
lations

1.53 Increase 1.37 Increase

Fig. 3  Average hourly 
avoided cost multipliers by 
season for 2019 and 2020 
avoided cost model versions

16 The avoided capacity costs at 6PM in summers are about 31 
times higher than the average annual capacity avoided costs in 
the 2019 model but only 15 times higher in the 2020 model.
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The 2019 and 2020 avoided cost models also diverge 
in morning and mid-day non-summer hours, when solar 
PV generation is high and residential loads are low. 
The 2020 avoided cost model multipliers in this period 
are about five times higher than the 2019 avoided cost 
model multipliers. Measures with non-summer mid-day 
savings, such as windows and doors, therefore deliver 
more value with the 2020 avoided cost model in those 
hours. Battery storage as the marginal resource also 
explains this difference because batteries can charge 
with low-cost solar during the middle of the day, effec-
tively redirecting solar generation to times when it is 
more valuable and thereby raising the avoided cost of 
generation during those hours. Despite this increase in 
the value of mid-day savings, the multiplier for windows 
and doors decreases with the 2020 avoided cost model 
due to the reduction in early evening value.

As we discussed earlier, our sample contained some 
inferred new cooling installations, which increase load 
in all hours. As with energy savings, the timing and 
magnitude of avoided costs that coincide with a load 
increase also matter for a measure’s valuation. We 
address cooling installations in the next section.

Results that include inferred new cooling installations

In Fig.  4, we show the savings profiles for cooling 
installations. We find that load begins to increase in 

the late morning and reaches a maximum at 4PM — 
slightly earlier than the maximum load reduction 
from inferred cooling replacements. The summer load 
increase, which is approximately equal in magnitude to 
the inferred cooling replacement savings, is about five 
times higher than the non-summer increase. These load 
increases come at times when grid costs are higher 
than average, particularly in summer (see Fig.  3). 
Since the inferred new cooling installations increase 
load (negative savings), the category’s impact multi-
plier (Table 3) is a ratio of cost increases, not savings. 
A multiplier above one, therefore, indicates that costs 
are greater than the naïve estimate of energy savings 
would suggest. With both avoided cost models, we find 
that time-sensitive valuation reveals additional costs, 
yielding multipliers of 1.50 and 1.20 (Table 3).

Finally, we consider the savings profiles of all 
measures combined, including cooling installations, 
in Fig.  5. This savings profile displays a diurnal 
profile similar to that of all measures net of instal-
lations, as shown in Fig.  2. The inclusion of the 
installations, however, creates a net load increase in 
the morning and early- and mid-afternoon in sum-
mer and reduces maximum summer energy savings 
by about one third — from about 0.15 to 0.10 kW. 
Overall, we find that net impacts from all R-PACE 
projects are still coincident with peak demand, 
despite the load increases from the installations. 

Fig. 4  Seasonal demand 
savings for inferred new 
cooling installations

Table 3  Impact multipliers for inferred new cooling installations

2019 model 2020 model

Measure category Impact multiplier Effect on valuation Impact multiplier Effect on valuation

Inferred new cooling 
installation

1.50 Decrease (costs increase) 1.20 Decrease (costs increase)

     Energy Efficiency (2021) 14: 82 Page 9 of 13 82



 

1 3

Impact multipliers of 1.55 and 1.69 (Table 4) under-
score this alignment.

Discussion

Our results are generally consistent with similar stud-
ies (Boomhower & Davis, 2020; California Efficiency 
Demand Management Council, 2019) and uphold 
their conclusions that electric efficiency measures 
can provide savings that coincide well with electricity 
system needs.

California’s Advanced Home Upgrade Program 
(AHUP), implemented by each of the large California 
investor-owned utilities, supports whole home retro-
fits that address a building’s shell and its space-con-
ditioning devices (DNVGL, 2019). A typical R-PACE 
project tends to be less comprehensive in terms of the 
number of measures installed than an AHUP project, 
but the mix of measures is generally aligned. The 
AHUP program, therefore, is a useful comparison to 
our combined non-installation measure results. PG&E 
has found that AHUP’s energy savings were concen-
trated in summer evenings, which overlapped with 
peak avoided costs, in particular capacity and transmis-
sion and distribution (California Efficiency Demand 
Management Council, 2019). AHUP’s summer 

savings peak later than the R-PACE non-installations 
do.

Our impact multiplier of 1.43 generated with the 
2019 avoided cost model for the inferred cooling 
replacements is consistent with the “premium” of 
50% for the air conditioning program in Boomhower 
and Davis (2020). The 2020 avoided cost model, 
however, differs from the 2019 model and the histori-
cal wholesale market data used by Boomhower and 
Davis (2020) in its use of battery storage for the cost 
of new capacity. The 2020 inferred cooling replace-
ment multiplier, therefore, is not an appropriate com-
parison. The divergence in the multipliers between 
the two avoided cost models, however, illustrates the 
sensitivity of the value of energy efficiency to capac-
ity prices, which the findings in Boomhower and 
Davis (2020) also support.

While impact multipliers illustrate the sensitivity 
of energy efficiency measure value to the timing of 
savings, they do not speak to overall impact or cost-
effectiveness. A multiplier of one does not mean that 
a measure provides little value, only that it provides 
equivalent value in all hours. The impact multipliers 
demonstrate how significant the timing of efficiency 
can be to its economic impact and underscore the 
importance of accurately accounting for timing in 
cost-effectiveness tests. For program implementers 
who have not actively considered the timing of the 
savings provided by different measures, multipliers 
above one may indicate potentials areas for increased 
investment, while multipliers below one might sug-
gest the opposite.

Empirical hourly savings shapes such as those we 
derive here can provide accurate estimates of value 
(Mims Frick et  al., 2019b). Where these shapes are 
not available, coincidence factors and peak period 

Fig. 5  Seasonal demand 
savings for all measures, 
including installations

Table 4  Impact multipliers for all measures

2019 model 2020 model

Measure 
category

Impact 
multiplier

Effect on 
valuation

Impact 
multiplier

Effect on 
valuation

Combined 
measures

1.55 Increase 1.69 Increase
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avoided costs can mitigate the issues of naïve annual 
estimates of energy savings. We find that for all effi-
ciency measures combined, energy savings between 
4 and 8PM in the summer generate 47% and 32% of 
total annual value from the studied measures when 
using the 2019 and 2020 avoided cost models, respec-
tively. This concentration of value in a few hours 
underscores the importance of accurate coincidence 
factors when hourly savings shapes are not available. 
This approach may not account for the time-sensitive 
value of efficiency outside peak periods, but it does 
address the most valuable hours in a year. Policy 
makers should prioritize estimates of hourly savings, 
or (as a second-best alternative) peak demand reduc-
tion and coincidence factors, as part of on-going eval-
uation, measurement, and verification of customer-
funded efficiency programs implemented by utilities. 
While non-peak savings are less valuable than peak 
savings, we do find that they vary throughout the 
day and year, which supports recent efforts by ISO-
NE market participants to estimate savings provided 
by energy efficiency measures in all hours (Demand 
Resources Working Group 2019).

The hourly savings shapes presented here dem-
onstrate that residential energy efficiency space-
conditioning measures can help support an evolving 
electricity grid. The space-conditioning measures 
we studied provide electricity savings that remain 
high from the late afternoon to the evening. Even if 
peak avoided costs in summer evenings decline with 
the switch from gas turbines to battery storage as the 
marginal resource, our 2020 avoided cost results dem-
onstrate that these measures still provide significant 
value and help mitigate peak system costs. Efficiency 
measures that reduce usage in the late evening perform 
well in this context and may be increasingly valuable 
if solar production pushes peak net load later into the 
evening. Policy makers and efficiency program imple-
menters should consider how to adapt program design 
and measure mix to meet these evolving grid needs. 
Cost-effectiveness tests that account for the value of 
savings in a future grid may suggest investments in the 
short-run different from those most preferred in exist-
ing grid conditions. Since electric efficiency savings 
on average persist for more than 10 years (Murphy & 
Deason, 2021), attention to the evolving grid is war-
ranted when making these investments.

Conclusion

We quantify the value of residential space-condi-
tioning energy efficiency projects in California using 
hourly estimates of electricity savings combined with 
hourly avoided electricity system avoided costs. We 
compare these values to naïve estimates of energy 
efficiency value, which assume constant savings in all 
hours and take their ratio to create impact multipliers.

We find that the timing of electricity savings is 
important to their valuation. A time-sensitive valu-
ation of savings generally reveals extra value from 
these measures that naïve estimates miss. For the 
space-conditioning efficiency measures that we 
study, hourly savings that coincide with high avoided 
capacity costs in peak load hours increase value by 
40–50%. Programs that support these measures, by 
extension provide more value than standard esti-
mates recognize. Program implementers and policy 
makers should consider the time-sensitive value of 
efficiency when designing programs and prioritizing 
investments.

Weather-normalized metered energy consumption 
methods are well-established, and software imple-
menting these methods is readily available. Utilities 
have access to the electricity load data and measure 
installation data necessary for developing savings 
shapes and to the information necessary to develop 
avoided cost estimates. Program implementers can 
follow the method we have presented here to identify 
which efficiency investments are most valuable in their 
grid context and structure their programs accordingly.

While we study efficiency performance in Califor-
nia, the time-sensitive value of efficiency has broader 
geographic relevance. Other jurisdictions that have 
summer-peaking systems would likely find impact 
multipliers above one for space-conditioning meas-
ures. Furthermore, our comparison of these multipli-
ers using two avoided cost models provides insight into 
how an evolving grid affects the value of energy effi-
ciency measures. Our results suggest that if battery stor-
age replaces gas turbines as the marginal resource and 
decrease peak summer system costs, energy savings 
from residential space-conditioning energy efficiency 
measures will still coincide with high avoided costs, 
in particular in late evenings, and therefore continue to 
provide more value than standard estimates recognize.
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