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Abstract 

The „wisdom of the crowds‟ effect describes the finding that 
combining responses across a number of individuals in a 
group leads to aggregate performance that is as good as or 
better than the performance of the best individuals in the 
group. Here, we look at the wisdom of the crowds effect in 
the Minimum Spanning Tree Problem (MSTP). The MSTP is 
an optimization problem where observers must connect a set 
of nodes into a network with the shortest path length possible. 
A method is developed that creates aggregate solutions based 
only on the nodes connected in individuals‟ solutions, without 
access to spatial information about the nodes. Across the three 
problems analyzed, the solutions produced by the aggregation 
method perform better than even the best individual, leading 
to a strong wisdom of the crowds effect. We show this effect 
can be observed even with sample sizes as small as 6 
individuals. 
 
Keywords: Wisdom of the Crowds; Minimum Spanning Tree 
Problem; Decision Making; Problem Solving 

Introduction 

When a problem is posed to a group of individuals, a 

variety of answers or solutions may be returned. If the 

accuracy of the individual solutions is unknown, it would be 

useful to have the ability to extract the collective wisdom 

contained in the collection of individual responses by 

aggregating their solutions. The idea that an aggregate 

solution will perform better than the majority of individuals 

in the group is referred to as the „wisdom of the crowds‟ 

effect (Surowiecki, 2004). Unlike most research in the topic 

of distributed cognition and collective intelligence (see 

Goldstone & Gureckis, 2009 for an overview), where 

individuals are able to interact in some fashion, individuals 

in a wisdom of the crowds environment tend to operate 

independently of one another. Despite this independence 

and the fact that group members may have widely varying 

levels of proficiency, aggregation can be found to be 

effectual in a number of scenarios. 

The wisdom of the crowds effect has traditionally been 

demonstrated for simple questions for which there is a 

single answer. For example, Galton (1907) asked a large 

number of individuals to estimate the weight of an ox. He 

found that the median estimate for the weight of the ox was 

within 1% of the ox‟s actual weight. Similarly, Surowiecki 

(2004) reports that, when polled, the modal answer given by 

the audience in the US version of the game show “Who 

Wants To Be A Millionaire” for multiple choice questions is 

correct more than 90% of the time. 

Recently, the wisdom of the crowds idea has also been 

applied to more complex problems. Steyvers, Lee, Miller, 

and Hemmer (2009) demonstrated the wisdom of the 

crowds effect for ordering problems, such as ordering a list 

of ten states from east to west, ordering the first ten 

amendments to the U.S. Constitution, or remembering the 

order of U.S. Presidents. For ordering data, simply taking 

the mode of individual answers can be problematic because, 

in many cases, all of the individual orderings are unique. 

Instead, Steyvers et al. (2009) developed several Bayesian 

aggregation models that looked at the underlying 

consistencies in the individuals' orderings to produce an 

aggregated solution. 

A wisdom of the crowds effect has also been observed 

recently by Yi, Steyvers, Lee, and Dry (submitted), for a 

difficult combinational optimization problem known as the 

Traveling Salesman Problem (TSP: see Applegate, Bixby, 

Chvátal, & Cook, 2006 for a review). In the TSP, the goal is 

to connect a set of nodes to make the shortest path possible, 

with the constraints that each node can be visited only once, 

and the path must end at the same node as it started. The 

aggregation method developed by Yi et al. (submitted) did 

not require any spatial information about the locations of the 

nodes. Instead, the method took advantage of the knowledge 

of which nodes are connected in individual solutions and 

selected a solution that maximized the agreement across 

individuals as to the sequence of nodes visited. 

Generating a wisdom of the crowds effect for TSP 

problems in this way provides an example of a potentially 

powerful and general approach to aggregating individual 

knowledge and abilities. The key feature is that all of the 

aggregation is based on the observed ordering of individuals 

and their patterns of agreement. No representation was 

needed of the complex multidimensional TSP stimuli, nor 

were evaluation measures for individual performance used. 

For these reasons, the results of Yi et al. (submitted) suggest 
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an approach to finding the wisdom of the crowd in 

challenging real-world situations where the problem space 

is too large or complicated to represent formally, and there 

is no clear way to quantify the merits of proposed solutions. 

Of course, however, it may be that the TSP result is 

simply a special or isolated case. Accordingly, in this paper, 

we explore the possibility of a wisdom of the crowds effect 

for another complex problem solving task, known as the 

Minimum Spanning Tree Problem (MSTP). First, as for 

TSPs, we develop an aggregation method that is based on 

easily observed features of individual solutions. Then, we 

apply the method to previously collected data for several 

MSTPs. We observe a strong wisdom of the crowds effect, 

in which the aggregate solution is closer to optimal than any 

individual solution. Finally, we examine how many 

individual solutions are needed for good aggregation, and 

discuss how our approach could be extended, modified, and 

applied to more general problems. 

Minimum Spanning Tree Problems 

In MSTPs, participants are required to find the shortest 

possible network that links together a set of nodes in some 

spatial configuration. An example stimulus and optimal 

solution for an MSTP is shown in Figure 1. In contrast to 

the TSP, there is no constraint on the paths that can be 

formed. Each node can be connected to multiple nodes. The 

optimal solution is an open, branching path system or tree, 

in which nodes can be linked to one or more other stimulus 

nodes. 

Finding the optimal solution to MSTPs has an obvious 

real-world engineering application in regards to finding the 

minimal length network of cables or pipes needed to join 

discrete geographical locations (e.g., Borůvka, 1926). 

However, MSTPs are also of interest from a psychological 

perspective, providing insight into human decision-making, 

individual differences in cognitive abilities, and visuo-

perceptual organization (e.g., Burns, Lee & Vickers, 2006; 

Vickers, Mayo, Heiman, Lee & Hughes, 2004). 

Specifically, the MSTP belongs to a class of difficult visual 

optimization problems such as the TSP and the Generalized 

Steiner Tree Problem (GSTP). Despite the apparent 

difficulty (and in some cases intractability) of these 

optimization problems, human observers are often able to 

find optimal or close-to-optimal solutions in a time frame 

that increases as a linear function of problem size (e.g., Dry, 

Lee, Vickers & Hughes, 2006; Graham, Joshi, & Pizlo, 

2000). 

An important finding from the literature on human 

solutions to MTSPs is that there are meaningful individual 

differences (e.g., Burns et al., 2006). As Surowiecki (2004) 

and others have emphasized, a precondition for the wisdom 

of the crowds effect is that there is variation between 

individuals. Intuitively, the hope is that some individuals 

complete some parts of an MSTP optimally or near-

optimally, while other individuals complete different parts 

well. In this scenario, the aggregation of the individual 

solutions could potentially improve on both. 

Dataset 

The data were taken from Burns et al (2006). In that study, 

as part of a larger battery of optimization tasks and 

cognitive abilities tests, 101 participants completed 3 

MSTPs, with 30, 60 and 90 nodes. The problems were 

comprised of black nodes on a uniform white background 

and were presented on color computer monitors. 

The participants generated spanning trees by pointing and 

clicking with the mouse cursor, and were allowed to add or 

remove links as they saw fit. They were instructed to 

connect the nodes by making a system of links, using as 

many links as they felt necessary, under the condition that 

the resulting system had the minimum overall possible 

length. The participants worked without time limits and 

were asked to be as accurate as possible. The results of the 

empirical solutions are displayed in Figure 2, expressed as 

the percentage above optimal solution length (PAO = 

100*[empirical length/optimal length - 1]). Participants 

provided solutions that were on average around 6% longer 

than the optimal solution. Importantly however, there were 

significant individual differences with some individuals 

providing solutions that were much closer to the optimal 

solution. Despite the large number of participant solutions 

available, there was no case in any problem where any 

participant‟s solution exactly matched that of another 

participant. 

Figure 2. Mean empirical PAO for MSTP with 30, 60 

and 90 nodes; error bars indicate standard deviation of 

individual performance. 
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Figure 1: An example MSTP solution (a) and its optimal 

solution (b). 

a) b) 

1841



Aggregation Method 

The data for the aggregation method were restricted to the 

information of which nodes each participant connected in 

their solutions. In particular, the method was not given any 

spatial information about the node locations, and so relied 

solely on the information contained in the participant 

solutions to create a proposed network. The aggregation 

method operates under the assumption that vertices between 

nodes that are better for inclusion in a MSTP solution tend 

to be selected by more participants. An aggregate solution 

that maximizes the degree of agreement with participant 

solutions can therefore be expected to have good 

performance. 

In order to obtain an aggregate solution, we first arranged 

the solutions of all individuals in an n × n agreement matrix, 

where n is the number of nodes in the problem. Every cell 

aij in the matrix records the number of participants that 

connected nodes i and j in their solutions. A visualization of 

the agreement matrix is depicted in Figure 3b. We then 

derived a cost matrix of the same size with cell values 

cij = k – aij, where k was the total number of participants; 

connections with higher agreement would thus have lower 

costs. This cost matrix is then used as the input to a standard 

MSTP algorithm to obtain a proposal solution for the 

aggregate. 

The MSTP can be solved optimally in polynomial time 

through the use of simple greedy algorithms such as Prim‟s 

algorithm (Jarník, 1930; Prim, 1957). In Prim‟s algorithm, a 

starting node is randomly selected from all nodes. At each 

step in the algorithm, the vertex with the smallest cost that 

connects an unconnected node to the already-connected 

nodes (or starting node, in the first step) is added to the 

network, until all nodes are connected. Despite the fact that 

the algorithm is greedy in nature, it is always guaranteed to 

output the minimum spanning tree depending on the cost 

metric being used. When the vertex costs are equal to the 

distances between nodes, Prim‟s algorithm is guaranteed to 

produce a spanning tree with the shortest total length. In our 

research, the vertex costs upon which Prim‟s algorithm is 

Figure 3. a) Representative subject solutions for the 30-node MSTP, the best subject solution in the upper left with 

decreasing performance across rows and the worst subject in the lower right. b) Visualization of agreement matrix on 

problem nodes. Vertices selected by at least one subject are drawn; thicker lines indicate higher agreement. 

 

a) b) 

Figure 4. Example demonstration of Prim‟s algorithm on the 30-node MSTP. A random node is selected, shown in white 

(a.). At each step of the algorithm, vertices with the smallest cost (i.e., highest agreement) that connect an unconnected 

node (black) to those already connected (white) are added to the network until all nodes are connected (b-d.) 

a) b) c) d) 
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applied are set using the cost matrix based on subject 

agreement above. The algorithm will still produce a network 

with minimum total cost, but in this case, the network 

represents the spanning tree that has the highest agreement 

with the participant solutions. It is this solution that is 

selected by the aggregation method. A demonstration of the 

algorithm is shown in Figure 4. 

Optimality of Prim‟s algorithm can be verified by 

considering the necessary conditions for a minimum 

spanning tree. For a solitary node, it is necessary for it to 

connect to its nearest neighbor using the vertex with the 

lowest cost. If a spanning tree is created without using such 

a vertex, and that node is connected to the others via some 

other vertex, it does not change the connectedness of the 

network by deleting that other vertex and instead connecting 

to the nearest neighbor, but it does reduce the total path 

length. This makes the first step of Prim‟s algorithm, 

connecting a random node to its nearest neighbor, a sensible 

action. The logic can be followed by induction to the sub-

networks drawn by Prim‟s algorithm by treating each sub-

network as if it were a single node, thus showing optimality. 

In cases where multiple potential vertices with the same cost 

may be selected for addition to the spanning tree, then any 

of the candidates may be chosen without affecting the 

solution‟s optimality. 

Results 

Figure 5 shows the optimal minimum spanning trees in 

thick gray lines and solutions selected by the aggregation 

method in thin black lines while participant and aggregate 

solution performance is provided in Table 1. Additional 

performance statistics are noted for the aggregate solutions: 

the amount of agreement the aggregate solutions had with 

subject solutions and a count of the number of participants 

whose performance is better than, worse than, or same as 

the aggregate. Subject agreement values were calculated as 

the proportion of subject vertices coinciding with vertices 

present in the aggregate solution; these can be obtained by 

noting the value of the aggregate path as measured on the 

agreement matrix, then dividing by (n-1)k, the number of 

vertices multiplied by the number of subjects. The aggregate 

a) b) c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5. Solution paths for the aggregate method (thin black) and the optimal minimum spanning tree (thick gray) for the 

a) 30-node, b) 60-node, and c) 90-node MSTPs. 
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Figure 6: Ranked performance of subjects and the 

aggregation method averaged over all problems. Dashed 

horizontal line indicates mean subject performance. 
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method solutions perform quite well, beating the average 

participant by a large margin. In the 30- and 90-node 

problems, the performance of the aggregate is bested only 

by a single participant out of the full set of 101. The 

aggregate performs relatively worse in the 60-node problem, 

but still better than most individuals. When performance is 

averaged over all problems, the aggregate performs better 

than any individual (Figure 6). Interestingly, the proportion 

of vertex agreement with participants increased with 

problem size, and solutions selected by the aggregate did 

not completely match any single individual on any problem. 

Figure 7 contains a plot of solution performance against the 

proportion of agreement with participant solutions averaged 

equally over all problems for all subjects, the optimal 

solution, and the aggregate solution. There is a clear 

correlation between individual performance and the amount 

of agreement their solutions had with other participants (r = 

-.9602). The optimal solution also has a high rate of 

coincidence with participant solutions, more than any 

individual. 

Performance of the aggregation method under smaller 

sample sizes was also investigated. For each sample taken, 

subjects were selected randomly from the full dataset and 

aggregate solutions were created for all problems, their 

performances compared to the subjects in the sample that 

generated them. In cases where Prim‟s algorithm 

encountered a choice between vertices of the same cost, one 

was chosen at random to create the proposal solution. 

Solution performance for selected sample sizes is noted in 

Figure 8, averaged over 1000 random draws at each sample 

size. We find that for samples of as small as size 6, the 

aggregate is able to obtain performance that is, on average, 

significantly better than the mean subject and close to that 

of the best subject in the sample. Averaged over all 

problems, the aggregate was outperformed by about one 

participant at all sample sizes investigated. In certain cases 

for individual problems, the aggregate solution 

outperformed all participants in the sample; this was much 

more common for the 30-node and 90-node problems than 

the 60-node problem. 

Conclusions 

We have demonstrated a strong wisdom of the crowds effect 

for the MSTP using a simple aggregation method on 

participant solutions. The aggregation method was reliant 

only on the knowledge of which nodes were connected by 

each participant, requiring no information regarding the 

spatial characteristics of the problems themselves. In 

addition, the simple greedy algorithm used to generate 

solutions required no input parameters to run. The 

aggregation method solutions generally have performances 

ranking among the best participants on individual problems, 

and perform better than any individual when averaged over 

all problems. Even when the number of available 

participants was reduced down to as low as 6, the 

aggregation method was still able to extract enough 

information to propose solutions that produced 

performances significantly better than the mean subject and 

exceeding most or all participants in the sample. 

While performance of the aggregation method is quite 

good, there are potential areas for expanding on the method. 

It was noted that there was a clear correlation between a 

 

Table 1: Subject and Aggregate Method Performance on MSTPs (% network length over optimal) 

 

  subject performance  aggregate method performance 

Problem  subj. best subj. 

mean 

 path 

length 

subj. 

agreement 

# subj. 

better 

# subj. 

same 

# subj. 

worse 

30 nodes  +0.000% +5.672%  +0.059% .7856 1 0 100 

60 nodes  +0.037% +6.010%  +1.410% .8263 21 0 80 

90 nodes  +0.235% +6.533%  +0.310% .8392 1 0 100 

Overall  +0.644% +6.072%  +0.593% .8171 0 0 101 

 

Figure 8. Performance of the aggregate method for selected sample sizes, taken across problems. a) Mean PAO for 

aggregate and best subject in each sample, error bars indicate standard deviation of individual samples. b) Proportion of 

subjects with better, same, or worse performance than the aggregate. 
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participant‟s performance and the amount of agreement they 

had with other participants. It may be useful if it were 

possible to identify „experts‟ in the data and weight their 

responses over that of others. This approach of amplifying 

expertise may be most useful for when sample sizes are 

small. Due to the fact that there are so few participant 

solutions to draw from, there may be many networks that 

can potentially be chosen by the algorithm that share the 

same agreement with participant solutions, but carry very 

different performances in terms of actual distance. If 

participants can be weighted differently, then there will be 

less ambiguity. However, with the complexity of the 

problem structure, it is a difficult problem to create a formal 

system in which this can be done. 

More generally, the results presented here, when coupled 

with those presented by Yi et al. (submitted) for the TSP, 

suggests that it may be possible to achieve wisdom of the 

crowds effects for complicated and only partly defined 

problems. While the MSTP does have a simple solution 

algorithm, and the TSP has good approximate solution 

algorithms for small numbers of nodes, our results show that 

near-optimal performance can be obtained from simple 

properties of the sub-optimal sets of solutions produced by a 

group of people. 

In other words, our results show that there is an 

alternative route to solving these problems, not based on 

complicated algorithms, detailed stimulus information, and 

precise performance metrics. Instead, we have shown that 

the orders people produce can be combined to achieve near-

optimality. Of course, for TSPs and MSTPs, there is not 

much reason to go to the effort of collecting human 

solutions when good algorithms are available. But our 

approach will continue to apply for different sorts of 

difficult problems where, for example, the stimuli or 

problem space is hard to represent in a formal way. This 

representational burden is borne by the individual providing 

solutions, and there is no need for any formal attempt to 

characterize the problem space. Even more intriguingly, our 

approach will apply in situations, such as some types of 

aesthetic judgment, where people agree on what constitutes 

a good answer once it is produced, but cannot define exactly 

what metric they are using. Since our aggregation approach 

just uses the patterns of relationships between individual 

judgments, and does not need a performance measure, it is 

equally applicable to these poorly defined problems. 

We are currently investigating the use of the wisdom of 

the crowds approach described in this paper to the “wisdom 

of the crowds within”, the idea that one can aggregate over 

multiple judgments from a single individual to obtain 

performance better than the individual judgments alone (Vul 

& Pashler, 2008). By applying transformations to MSTPs, 

we can easily test an individual on multiple repetitions of 

the same problem while minimizing bias from their 

responses on previous trials. We are also looking at 

applying the aggregation approach to a less-well defined 

aesthetic judgment task. Participants were asked in Dry, 

Navarro, Preiss, and Lee (2009) to connect point stimuli 

based off of constellations into perceived structures. It is 

possible that a structure created by aggregating over 

individuals is perceived as more aesthetically pleasing than 

individual patterns. The application of our approach to 

aggregation to these sorts of challenging problems seems a 

promising direction for further wisdom of the crowds 

research. 
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