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"The Transiénf,>5téady State and Stabi]ity Behavior
of a Thermosyphon with Throughflow"*

‘ o by
A. Mertol and R. Greif
Passive Solar Analysis and Design Group,

Lawrence Berkeley Laboratory and Department of Mechanical Eng1neer1ng’
Un1vers1ty of Ca11forn1a, Berkeley, CA 94720 °

: Y. Zvirin
Faculty of Mechanical Engineering, Techmon
Israel Institute of Techno1ogy
Haifa, Israel

On 1eave,'E1e¢tric Power Research Institute
Palo Alto, CA 94303

Abstract

A study hés been made of the flow, heat transfer and sﬁabi]ity of a
natural convection loop when there is an addition and withdrawal of fluid.
~The 1oop,js artorqid-that’is'oriented in a vertical plane and is heated over
the lower half and coo1éd, by maintéining a constaht wall temperature, on

the upper half. The results include stable, as well asvuhstabie con-

(-

figurations and also reveal multiple solutions.

\
e

*This work was supported by the Research and Development Branch, Passive
and Hybrid Division, of the Office of Solar Applications for. Buildings,
U.S. Department of Energy, under Contract No. W-7405-ENG-48.
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NOMENCLATURE

cross-sectional area of the toroid
specific heat

dimensionless parameter, Eq. (11)

heat flux

friction coefficient -
acceleration of gravity

heat transfer coefficient

total number oflgrids

pressure

volumetric flow rate of the circulating fluid in the system

radius of the circular loop, Fig. 1

Reynolds nﬁmber'.

radius of the toroid, Fig. 1

tempekature

time

characferistic velocity, Eq. (8)

velocity of the circulating fluid

dimensionless volumetric flow rate or velocity, Eq. (7)

Greek Symbols

thermal expansion coefficiént
dimensionless parameter, Eq. (11)
efficiency, Eqs. (15), (16) and (17) A
space coordinate, Fig. 1 |

thermal penetration depth
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dimensionless volumetric throughflow rate, Eq. (7)

volumetric throughflow rate
absolute viscosity

" density .

dimensionless time, Eq. (7)
wall shear stress

dimensfonTess temperature,'Eq. (7)

Subscripts

ch

in

M

SS

1T

location at 6 = 0
characteristic

initia]bvalue, space‘step‘in the finite difference equations

~inlet

1ower‘portion of the loop

location at 6 = 27

time step in the finite difference eqdations
steady-state

upper portion of the ]bop

wall
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INTRODUCTION

This paper is concerned with the transient and ﬁteady statevbeﬁavior
and Stability of natural convection loops; i.e. thefmosyphons, when‘there is
an addition and withdrawal of fluid (throughf]ow). 'Increasing intefest‘ | -
in ‘this area has occurred in respect to applications in solar enehgy, nu-
clear reactor cbo]ing and geothermaT systems. Most stuqies have been h
carried out for closed loops, that is, without a throughf]éw. This in- .
cludes the early stability studies of the steady state motibn by Ke11er
[1] and welénder [2] for the simple geometry consisting of a point heat
source and sink with two veft{ca] branches. Creveling, et al [3] and
Damerell and Schoenhals [4] considered a toroidal loop and showed, ex-‘
perimentally and theoretically, the presence and importance of = instabi-
lities.  Zvirin, Shitzer and Grossman [5] and Zviriﬁ et al [6] studied

the stabi]ity characteristics of the thermosyphonic solar water heater

. and showed that this system can become unstable at high energy utili-

-zations.' Mertol, Place, Webster and Greif [7,8] studied fhe transient
daytime and nighttime performance of a thermosyphon So]ar water heater
-With a heat-exchanger in the storage tank and found, analytically, that
the flow reverses during the night but the magnitude 6f the reverse
flow is reduced when high viscosity fluids, such as propylene glycol are
used. - It was also observed that low viscosity fluids have,strong

oscillations during the night. A study of the transient behavior and -

Ca

stability of the toroidal loop was carried out by Greif, Zvirin and
Mertol [9] and Mertol [10]. Other studies by Japikse [11], Zvirin et %
al [12,13] and Ong [14,15] should also be noted.

The references cited above refer to closed loops and much less

information is available on open thermosyphons. Torrance [16] studied
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the steady flow and heat transfer in an open geothermal system where

- the inlet and outlet are at a boundary of. the medium, “Zvirin

[17,18] studied the effects of a(thr@ughf]ow on‘the 1dop with two ver-
tical branches with a‘point heat source and sink.

The present work analyzes the steady state, transient and stability
behavior of an open toroidal loop. The loop is oriented in a Qertica]
plane which is heated over the lower half énd cooled by maintaining a
constant wa11 temberatufe on the upper half (cf. Fig. 1). The con-

servation equations are averaged over the cross-section and an‘analy-

vtica] so1ution is derived for the steady state condition. A numerical

method is used to obtain the transient flow and heat transfer by solving-

simultaneously the momentum and energy equations.. The numerical method

is also used to evaluate the stability characteristics of the system

~and small ampTitude instabilities associated with oscillatory motion in

thermosyphons have been shown to be present. In addition,‘the steady state
motion revea1s,another type_of instability associated with multiple solutions
(double or.triple) for certain ranges of the system and throughf1ow

parameters.



-6-

 ANALYSTS ~

The aha]ysis which follows predicts the transient and steady state
volumetric flow rate and temperature profiles in an open toroidal thermo-
- syphon Qith throughflow. The loop is heated continuous]y-by a constant

heat flux F over the bottom half and,is cooled continuously over the top

half by maintaining arcohstant wall temperature‘at Tw (cf. Fig. 1).v A_constant
volumetric throughflow rate,'K: is maintained with the inlet at the entrance
to the heated region, 6 = m, and the outlet at the exit from the heated
region, 6 = 0 or 2n. Perfect mixing is assumed to occur at the inlet,.
between 6 = n~ and 7. |

The conservatipn eqdations; continuity, momentum end energy, are
averaged over the cross-section [ 3, 9] so that the control volume is
of .diameter 2r and length Rd® (cf. Fig. T). The flow is assumed to be
Taminar .and the fiuid prqpertiesvare taken as constant except in the
buoyancy term in which the Boussinesg approximation is used. Viscous
heating, axial conduction and- curvature effects are neglected.

From the eduation of contthity for One-dimensional incompressible
flow, We have that the velocity and the volumetric flow rate are functions

of time only. In the upper region this is given by
q (t) = wrzv (t)
u u

and in the lower region by

%

q,(t) = q (t) + < = NPZVQ(t) = nrz[vu(t) + i;é

(1a)

*
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The momentum equation in the 6 direction for these regions is:

_EZHL& = - %- %g - pg cosb - E;ﬂ o - (2)
dt '
where Vu and v, are used in the upper and lower regions, respectively.
Multiplying Eq. (2) by the cross-sectional area, A = nrz, using the
relation p = Py [1-8(T-TQ)].in the body force term, and integrating around
the-]oop yﬁe]ds,the following equations for the ﬁbper and,]ower'regions;

respectively:

2 m _ ,
- 2 R ( ‘
Py %%—% - %{ [p(r,t)-p(o,t)] + o ar"8 JO(T-TW)COSGde-Tw’UZWr, _o <6< (3a)

and
oy o @+ ) = - T [plen,t) - p(rt,0)] +
(3b)
2 21 _ v
09" B Iv+(T-Tw)cosede-Tw’22nr, ™< B <2n
il
where q = qu; Adding Eqs. (3a) and (3b) and using cqntinuity'of the pressure:
p(r7,t) = p(r,t) .,  plo,t) = p(emt) - ()

yields



2m

d 2 '
LS (2q k") = g0 8 JO(T-Tw)cosede-Zﬂr(Tw’u + 1 g) | (5)

To solve for the volumetric flow rate from Eq. (5), it.is necessary to

obtain the temperature variation, T(6,t). The energy equations for the

@

heated lower and cooled upper regions are given by:

' 3T q o7
o. ¢ [= -—J (T T ), 0<8<m ,
wo ot nrzR _ (6a)
and
%* . ) .
o L late) BTy | 2F |
e lop + i J1 = F L o< (60)

Eqs. (5) and (6) must be solved simultaneously to obtain the volumetric flow
rate and the temperature profiles.
The governihg equations are made dimensionless by defining the

following relations:

*
¢= W w:-g__ K:E—- T = t R (7)

where q_, s the characteristic volumetric flow rate defined as the product
of the characteristic velocity, V, and the cross-sectional area, A, (cf.

Creveling et al..[3]).



1/2
_ _ - .2 (GBRrF
Qe 7AV = mr°V = qr (21TCU ) (8)
The wall shear stresse; in Eq.,(5) are expressed as T - §'fh°w A2
“ . 2 . . - ) .
and T = l—f’p iﬂ_i;__l__ , for the upper and lower portions of the loop,
) .W,,Q, ) 2 Uw AZ ; :
respectively, where the friction coeffi;ients for laminar flow are given by
. » *»
,fu,z = ]6/Reu’2 with Reu‘= 2pwq/uﬂr and Re£.= 2pw(q + K )/umr.
The dimensionless forms of Eqs. (5) and (6) then become
4 w+E+rw+s=2 1L o ¢ cogede | (9)
- dT 2 2’ 4 D o o . '
. , . v _ :
ad> L _aig Z - .
5? + 27w 55 ZQ¢ , 0<oc<m {10a)
ahd
2 ramwr)R =2, mco<om | | (10b)
" where the dimensionless system parametérs D and T are defined by
' 2mRh . 161;uR | an
D =% and - T = 2LE - | n
Py p.rv ' |
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Steady-State Solutions

The steady-state temperature profile is obtained by solving Egs. (10)
with 3¢/3T = 0 subject to the conditions of temperature continuity at the

outlet:

(0) = o (2m) - (122)

<4

and an energy balance at the inlet:

' W -
ty oSS - K -
¢ss(n ) = 'WSS\* K ¢ss(" )+ W Tk ®in . (12b)
The results are
..Bb 8
D+ k¢ . : W m
in s$S
e , 0<6 < (13a)
[ -D/wSS ]
K+ Weo 1-e _ :
8(8) = o =
)
D 0 Weo 2e -1/ + B'¢in(wss K) - <2
Weo + « T -D7wSS > T m
g + Weo 1-e
(]3b) it
”

where ¢ss and w denote the steady-state values for the temperature and the
volumetric flow rate, reSpective1y. Substituting Eqs. (13a) and (13b) into

the momentum Eq. (9), with dw/dt = 0 yields the following a1gebraic equation

for Weo!



zﬁ

+ %_K)]

For no throughflow « = 0, Eqs. (13) and (14) reduce to the results for the

*
closed thermosyphon (cf. [ 3, 9]) .
The system efficiency, n, is.defined as the ratio of the energy carrigd
away'by the throughflow to the total energy added to the loop. At steady state
conditions this is given by
*:' l_-
px*C [T(Zﬁ) Tin]

nSS_ B 2m
J F2mr Rd6

m

which in dimensionless form is

=
n
olR

SS

[¢(2w) : bin ] . | | - (e)

Note that for the transient condition the efficiency is

[o(2m,T) - ¢;,] | -an

3
I
olx

*Creve1ing, et al [ 3] obtained an approximate solution for small values of
D for a closed toroidal loop. :
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Transient and Stability Solutions

The coupled, time dependent governing equations, Egs. (9), (10a) and (10b)
have been solved numerically by using a finite difference method to calculate the
temperature and the volumetric flow rate variations. The backward difference
formula was used in the spatial derivatives and the forward difference formula
was used in the time derivatives. The integral in the momentum equation, Eq. (9),
was evaluated by using the trapezoidal rule. The governing equatiéns in finite

ditference form are given by:

- ] T 1
Woyr = wn(1-FAT) - 5 TkbT + E-ﬁ-'{§-¢o’n+]cos(0) + E] ¢i’n+]cos(1Ae) .
(18)
+ %—¢M’n+]cos(MAe)} p6AT
6 = ¢.  (1-20ar-2mw_ 23) 4+ 2mw e o AL, 0<p < 19)
i,n+l i,n n A8 n'i-1,n A6 °’
- AT AT .
Oi,me1 T b5, [1-2nluy + ) Zgl + 2wy + k) 054 g * 20T sm< B < 2m

&

where 6 = iAB, 2m = MAB and T = nAT. The initial conditions are specified

and the boundary conditions are given by:
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¢o,n+1 = d’21r,n+1»
and
W '
= __ntl K '
¢w+,n+1 Wt + « ?w Sn+1 + wn+] + « ¢in

Several cases of initial conditions were treated, as discussed later.

The time and space intervais were chosen so as to satisfy the stability

criteria of the finite difference equations which are given by:

1 - TAt =20
1 - 2pat - 2w B >0
n A6
and
o At
1 - Zﬂ(wn"'K) -A—e =0

A time increment of 0.005 was used and a space increment of A8 equal to

21/80 was chosen.

The numerical formulation, Egs. (18)-(22), was also used to investigate
the stability characteristics 6f tﬁe natural circulation flows in the loop. For
this part of the study the equations were solved with'initia1 conditions corres-
bonding to smal]lperturbations of the‘(known) steady stéte flows. Stability was
determined by the behavior of the solutions, i.e., the growth or decay of the

perturbations.
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RESULTS AND DISCUSSION

The trans1ent, steady state and stab111ty behavior of a thermosyphon
w1th throughf]ow has been 1nvest1gated Numer1ca1 calculations were
started at time T_= 0 for a spec1f1ed initial volumetric flow rate, W
and temperature distribution, ¢ of the circulating fluid.’ The volumetric

flow rate, «, and inlet temperature, .¢.

in» Of the injected fluid (through-

flow) have been taken as constant. The circu]ating and the injected
fluid are assumed to be mixed perfectly at 6 = 7, the inlet to the heating
region. The same amount of injected fluid is withdrawn at 6 = 27 which
is the out1et from the heating region. The remaining fluid cools in the
upper region, 0 < 6 < 7w by convection to the cold wa11 which is maintained
at a censtaht temperatufe (cf. Fig. 1). |

Tybica] results for the temperature are shown in Figs. 2a and 2b for
values of T =1, D = 2.5, an initial temperature profile ¢i = 0, an
initial volumetric flow rate W, = 1.5, a volumetric>throughflow rate

= 0.2 and different in]et'temperature of the throughflow, ¢in = 0.5

and 0. It is pdinted out that the conditton of initial flow with a uniform
temperature (¢i = 0) corresbonds to fOECed flow in the loop (driven by a
pump) before activation df the heater. It can also represent, approximately,
a strohg torced flow with respect to the input power, where thed
temperature differences are small. xThis iditia] conditton may be en- .
countered dur1ng nuclear reactor power plant cooling after a reactor
scram and the pumps tr1p. Other types of boundary cond1t1ons, e.g.,
initiation'of'f1ow from kest, have also been studied [12,17] and a]so
perturbations from the steady state condition (cf. Figs. 7—9). The
variations of the volumetric flow rate, w, are shoyn in Figs. 3a and 3b
for the cases ¢in = O and -0.5 for ihitia] volumetric t]ow rates, rahging

from wi = 0.2 to 1.5.

=y



~15-

For small times, there is a thermal penetration depth'in the cooled
region (0 < 6 < m) beyond which there is nolheating effegt (that is,
3¢/ 36 =‘0, cf;,Figs. 2a and 2b). Similarly, there is a penetration depth
in the heated region (m < 6 < 2m) beyond which 3¢/36 = 0, cf. Figs. 2a
and 2b. These results may q]so be deduced frdm the formal solution to
equations (10a) and (10b) for small times which are presented in the
Appendix. Comparfng the results for the penetration depth, Gp, with those
of [9]vfor a closed ]OOP,VK = 0, it is concluded tﬁat the throughf1ow
tends to slightly reduce'ep. (Also refer to Figs. 3a and 3b which
| explicitly show for wi‘= 0.6 that the velocity is less for the'through-
flow case. In the Appendix it is shown:thét smal]ér ve]bcities yield
smaller penetration depths.) It is a]so:seeh that there is a discontinuity
in the temperature at 6 = 7 which results from the éssumption of'perfect
mixing at -this location of the circulating fluid wifh the injected fluid
‘(throughflow). |

Results for Targer times, as well as for smaller times are showﬁ in -
Figs. 2a and 2b for the tempérhture and in Figs. 3a and 3b for the
volumetric flow rate (for initial volumetric flow rates, ranging‘from
W = 0.2 to 1.5). For completeness, it is ﬁoted that results for the
closed loop, « = 0, (Greif, Zvirin and Mertol [9]) have larger flow
.rates than those obtained for the througﬁf1ow case for thé condition
k = 0.2 for both ¢in = 0 and -0.5.

The temporal vériatioﬁ of the temperaturé ié shown in Figs. 4a and
4b at three iocations, 9 = O, ﬁ/2 and 3n/2. For all tHe cases considered;
the flow rate initially decreases (cf. Figs. 3a and 3b). For Wy = 0.2,
0.6 and 0.8 this initial decrease causes the velocity td differ (for

small times) from the steady state value, wSS = 0.814. This is accompanied
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by an overshoot of the temperature; that is, ¢/¢SS > 1, with the greatest
effects occurring when the flow rate is small and the heating of the fluid
is therefore more prolonged and effective. Note that there is a small
flow overshoot for Wy = 0.2 (cf. Fig. 3b). A comparison of the closed
Toop (k = 0) and the present ]oob with throughflow is made in Fig. 3b. -
For W, = 0.6 the closed loop has a flow overshoof while the loop with -
throughflow has no overshoot.

The steady étate values of the flow rate, w__, and the temperature,

SS

, are given in Table 1. Note in Figs. 4a (¢._ = 0) and 4b (¢, = -0.5)

q)SS in in

that the temperatures with throughflow are lower than for the closed loop,
k = 0 (the comparison is shown for Wy = 0.6). _ | .‘ _

In Figs. Sa (¢in = ~0.5) and 5bi(¢in = 0) the variations of the
efficiency with time are shown for different initia] fTow rates, W From
.the definition of the efficiency, Eq. (17), we have that the only time
depéndenf quantity is the temperature ¢(2m,t). According]y,vthe shape
of the curves fo]]ows.directly from the{previo&s discussion; the rate of
increase of the efficiency being greatest (and in fact; linear) for small
times when‘the flow rate is decreasing. In Fig. 6 the efficiency is
plotted for one f]ow_rate; We = 1.5, for three values of the inlet
. temperature, Pin = -0.5, O, 0.5 and for volumetric throughflow rates,

ranging from « = 0.2 to 1.0." For small times, there-is some crossing

over of the curves but for larger times the efficiency increases for in-

ey

creasing values of the volumetric throughflow rate and for decreasing values

of the inlet temperature. These trends may also be -noted in.the steady state

tabulation of the efficiencies, Table 1.
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The above results correspond to flows which approach the steady state values

and are denoted as stable flows. There are, however, unstable cases

when the flow and.temperature osci]lete with increasing'amplitude (cf. Figs. 7
and 8) as well as neutrally stable cases where the magnitude of the
oscillations about the steady-state va]uee remain'constant (cf. Fig. 9).

In the absence of a throughflow, the instabilities in the toroidal loop
have been studied experimentally [3,4] and theoretically [3;4,9,10}. It is
generally bhelieved that‘these instabilities are caused by phase shifts between
the buoyancy (driving) forees created by temperature differences, and the
friction forces (or flow rates). Such a phenomenon can occur when a "pocket"

of fluid at a temperature higher than usual enters the heating region at a
X .

_flow rate lower than usual. The pocket will then be heated to a much higher

value (due to its smaller velocity), and if if cannot be adeqﬁate]y cooled |
down it will reenter the heating region at a still higheb temperature and the
process will be repeéted and amp]ified: A‘stability'map is shown in Fig. 10
for ¢., = 0 and 0.5, respectively. |

In Fig. 10 the effect of throughflow, «, is seen to increase the etqbility
of the loop since some.perturbations which weuld cause instability (for k = 0)
are now carried out of the loop with the throughflow. ‘The stable-portioh of
the graph is therefdre'increased, that is, the neutrally stable curve shifts
to the leftAfor increasingly larger values of k. The cooler inlet case,

¢in = 0, yields lower temperatures; hence, less buoyancy and smaller velocities
result, and consequently a more stable system is obtained. It is noted that

the cool inlet case ¢in = -0.5 was completely stable for the range of values

of Fig. 10.
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The steady state behavior is obtained from the analytical solutions,
Egs. (13) and (14). In general, Eq. (14) must be solved numerically to

obtain the steady state flow rate, w__, which depehds‘on the system parametef

Ss

D and the throughflow conditions k and ®in: Once w__ is known, the steady-state

SS

temperatures, ¢ ., can be calculated from Eq. (13).

sS
The steady-state values are summarized in Table 1 and in Fig. 11.

An interesting result, namely, the existence of multiple steady-state solutions

is obtained for small values of D (cf. Fig. 11). The existence of multiple

solutions implies metastable equilibrium and a finite amplitude mode of

instability. This differs from the small amplitude instabilities associated

with oscillatory motion-which were previously discussed. The multiple

solutions can be explained as follows. At steady state the frictional

resistance is balanced by the driving buoyancy force. While the former is a

monotonically increasina function of the flow rate, Weoo (1inear in our case),

the latter is a complicated function of We (cf. Eq. (9) with d/dt = 0) which has

s
one or two extremum. The result is that there are sometimes cases where there are
two and even three values of W for which the‘two forces are balanced. It
is noted that‘multiple solutions have been obtained by Damerell and
Schoenhals [4 ] for a toroidal asymmetrical 1loop and by Zvirin [18] for the
- vertical loop with poini heat source and sink.
As mentioned above, thé steady state flow rate, wss,vmust, in genera],-
be solved numerica]]y.frbm Ed. (14). It is possible, however, to obtain
simpler relations for limiting values of the parameters which yield results

that are in agreement with Fig. 11. In detail, for 1argérva1ues of D Eq. (14)

reduces to

W~ (%) (-3c+ /2 e8) 40 (/D) D1 (26)

SS

ey
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/

Thus, only single steady-state solution exist in this range. For small values

- of D and D/w,,» Eq. (14) reduces to the cubic equation

D + «¢. ' D + ko,
3 2 2 . in in _
o ‘2 Weg * 3k Wt ["-1- R R
' “ (27)
- | D<<1andD <«< 1 |
o ' - and D/w
For D = C.01, « = 0.1 and ¢in = -0.5, values of Weo equal to 0.453 and
0.0605 are obtained which agree with the results shown in Fig. 11. Note that
the third steady state result for this condition cannot be obtained from
Eq.- (27) bécause it does not satisfy the,constraint,'D/wss << 1. However,
the third result may be obtained from the solution to the following equation
' 2 D+ ko, :
2 3k _ T in ] 2 N
Wes * (G T 02 Jwgg + 3 (7-1) = 0,
) (28)

D << 1 and D/wSS >> ]

which yields a»va]ue of Wes = 5.00-x 10'4, in agreement with the resuilt

shown in Fig. 11.

Detailed stability calculations were carried out for the case D = 0.1

“and ¢in = 0.5, and for the upper portion of the wSS‘vs. ik curve in Fig. 11

stable results were obtained for both small and large values of D in agreement

.~

| with Fié. 11. However, for7the lower portion of the wss'vs. K in Fig. 11
o these solutions always exhibited unstable behavior for-all the values of D
that were used. Note that for these calculations, the very smé11 values of
the velocity (cf. Fig.'ll) in conjunction with the initial decrease in the
velocity (cf. Figs. 3a and 3b) lead td negative values of the velocity and.

this flow reversal denotes an unstable condition.
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APPENDIX

Solution for Small Time and Determination of the»

-Thermal Penetration Depth

A formal solution of the energy equation, eq. (10) may be obtained for

small times and this will yield the "thermal penetration depth." From the

T .
theory of characteristics for 2nm J w(T)dT < 7 the temperature is given by:
0
0 for 6= ep
¢(6,1) = 2Dt . : for 0< 6 <7 (A-1)
e fen; [Zw j w(T)dT - 6] for 6 < §
\ 0o -
v .
For 2m J w(t)dt + 2mtk < 7, the temperature is:
o ,
2Dt for 6-m = BP + 2nTK
o(6,1) =

T
ZDT-fcnII[Zw I w(T)dT + znTK-(e-n)] for (6-7) < bp + 21Tk
_ o | v

} (A-2)
for 1T < 8 < 21

where 6#, is the thermal penetration depth or thermal signal, is equal to

2 | : w(T)d.

It should be noted that the functions in eqs. (A-1) and (A-2) may be

obtained by using the conditions that are valid for small time, namely:

prs
.
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. .

$(0,1) = 20t
¢(m ,1) = 0
and
+ _ w(T - K
o(m,1) = w(t) + o(n,7) WD) *x %in
- so that
T .
fen; [Zﬂ [ w(T) d?f] = 2D1 o201
. o ‘.
and

T H
feny; [ZW I w(T)dT + ZﬂTK] = ZDj - W’TK

(A-3a)

(A-3b)

| (A-3c)

(A-4)
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3., (0)
- +

D ¢1’n K Wes 6=0,2m  6=1/2 f=n 6=7 6=3n/2 Ngs
0.5 0.0 1.000 1.051 1.000 0.951 0.951 1.000 0.000

. 0.1 0.724 0.259 0.241 0.225 0.137 0.198 0.759

0.1 0.0 0.0 1.000 1.051 1.000 0.951 0.951 1.000 0.000
’ ) 0.1 0.804 0.515 0.484 0.455 0.405 0.460 0.515
0.5 0.448 0.170 0.152 0.136 0.064 0.117 0.848

0.9 0.202 0.102 0.080 0.062 0.011 0.057 0.919

0.5 0.0 1.000 1.051 1.000 0.951 0.951 1.000 0.000

’ 0.1 0.877 0.771 0.728 0.688 0.669 0.720 0.271

0.5 0.628 0.591 0.546 0.504 0.502 0.546 0.454

1.0 0.426 0.551 0.490 0.436 0.481 0.516 0.509

-0.5 0.0 0.99 1.585 0.959 0.580 0.580 1.083 0.000

’ 0.1 0.897 1.352 0.774 0.443 0.349 0.850 0.185

0.5 0.542 0.784 0.312 0.124 -0.176 0.304 0.642

1.0 0.015 0.493 0.000 0.000 -0.493 0.000 0.993

1.0 0.0 0.0 0.996 1.585 0.959 0.580 0.580 1.083 0.000
’ ) 0.1 0.909 1.416 0.817 0.471 0.424 0.920 0.142
0.5 0.598 1.014 0.440 0.191 0.104 0.559 0.507

1.0 0.215 N.824 0.081 0.008 0.001 0.413 0.824

0.5 0.0 0.99 1.585 0.959 0.580 0.580 1.083 0.000

o 0.1 0.920 1.479 0.859 0.499  0.499 0.989 0.098

0.5 0.651 1.237 0.574 0.266 0.368 0.802 0. 368

1.0 0.341 1.134 0.262 0.061 0.388 0.761 0.634

-0.5 0.0 0.974 2.780  0.770 0.214 0.214 1.497 0.000

o 0.1 0.889 2.618 0.642 0.157 ~0.091 1.354 0.125

0.5 0.548 2.159 0.221 0.023 -0.227 0.966 0.532

1.0 0.017 1.966. 0.000 0.000 -0.491 0.737 0.986

2.5 0.0 0.0 0.974 2.780 0.770 0.214 0.214 1.497 0.000
) ) 0.1 0.894 2.661  0.657 0.106 0.146 1.404 0.106
0.5 0.571 2.349 0.264 0.030 0.016 1.182 0.470

1.0 0.023 2.443  0.000 0.000 0.000 1.221 0.977

0.5 0.0 0.974 2.780 0.770 0.214 0.214 1.497 0.000

' 0.1 0.899 2.704 . 0.673 0.168 0.201 1.452 0.088

- 0.5 0.595 2.533 0.310 . 0.038 0.249 1.39 0.407

1.0 0.033 2.905 0.000 0.000 0.484 1.695 0.962

0.5 0.0 0.919 5.466 0.360 0.024 0.024 2.745 0.000

’ 0.1 0.832 5.324 0.264 0.013 -0.042 2.641 0.116

0.5 0.474 4.875 0.025 0.000 -0.257 2.309 0.538

1.0 0.018 4.418 0.000 0.00% -0.491 1.964 0.984

5.0 0.0 0.0 0.919 5.466 N.360 0.024 0.024 2.745 0.000
’ : 0.1 0.834 5.366 0.268 0.013 0.012 2.689 0.107 .
0.5 0.482 5.089 0.029 0.000 0.000 2.545 0.509

1.0 0.021 4.899 0.000 0.000 0.000 2.500 0.980

0.5 0.0 0.919 5.466 N.360 0.024 0.024 2.745 0.000

) 0.1 0.836. 5.408 0.272 0.014 0.066 2.737 0.098

0.5 0.491 5.299 0.032 0.000° 0.252 2.776 0.480

1.0 0.023 5.378 0.000 0.00n 0.489 2.934 0.976

TABLE 1. Steady state values.
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