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HIGHLIGHTED ARTICLE
GENETICS | INVESTIGATION

A Coalescent Model for a Sweep of a Unique
Standing Variant

Jeremy J. Berg*,†,‡,1 and Graham Coop†,‡,1

*Graduate Group in Population Biology, †Center for Population Biology, and ‡Department of Evolution and Ecology, University of
California, Davis, California 95616

ABSTRACT The use of genetic polymorphism data to understand the dynamics of adaptation and identify the loci that are involved has
become a major pursuit of modern evolutionary genetics. In addition to the classical “hard sweep” hitchhiking model, recent research
has drawn attention to the fact that the dynamics of adaptation can play out in a variety of different ways and that the specific
signatures left behind in population genetic data may depend somewhat strongly on these dynamics. One particular model for which
a large number of empirical examples are already known is that in which a single derived mutation arises and drifts to some low
frequency before an environmental change causes the allele to become beneficial and sweeps to fixation. Here, we pursue an
analytical investigation of this model, bolstered and extended via simulation study. We use coalescent theory to develop an analytical
approximation for the effect of a sweep from standing variation on the genealogy at the locus of the selected allele and sites tightly
linked to it. We show that the distribution of haplotypes that the selected allele is present on at the time of the environmental change
can be approximated by considering recombinant haplotypes as alleles in the infinite-alleles model. We show that this approximation
can be leveraged to make accurate predictions regarding patterns of genetic polymorphism following such a sweep. We then use
simulations to highlight which sources of haplotypic information are likely to be most useful in distinguishing this model from
neutrality, as well as from other sweep models, such as the classic hard sweep and multiple-mutation soft sweeps. We find that in
general, adaptation from a unique standing variant will likely be difficult to detect on the basis of genetic polymorphism data from
a single population time point alone, and when it can be detected, it will be difficult to distinguish from other varieties of selective
sweeps. Samples from multiple populations and/or time points have the potential to ease this difficulty.

KEYWORDS coalescent theory; genetic hitchhiking; natural selection; soft sweep; standing variation

IN recent decades, an understanding of how positive di-
rectional selection and the associated hitchhiking effect

influence patterns of genetic variation has become a valuable
tool for evolutionary geneticists. The reductions in genetic
diversity and long extended haplotypes that are characteristic
of a recent selective sweepcanallow forboth the identification
of individual genes that have contributed to recent adaptation
within a population (i.e., hitchhiking mapping) and under-
standing the rate and dynamics of adaptation at a genome-wide
level (Wiehe and Stephan 1993; Andolfatto 2007; Eyre-Walker
and Keightley 2009; Elyashiv et al. 2014).

While the contribution of many different modes to the
adaptive process has long been recognized, early work on the
hitchhiking effect focused largely on the scenario where
a single codominant mutation arose and was immediately
beneficial, rapidly sweeping to fixation (Maynard Smith and
Haigh 1974; Kaplan et al. 1989). Both simulation studies and
analytical explorations during the last decade, however, have
drawn attention to models in which adaptation proceeds
from alleles present in the standing variation or arising via
recurrent mutation once the sweep has already begun (Innan
and Kim 2004; Przeworski et al. 2005; Hermisson and Pen-
nings 2005; Pennings and Hermisson 2006a,b; Barrett and
Schluter 2008; Hermisson and Pfaffelhuber 2008; Ralph and
Coop 2010; Pokalyuk 2012; Roesti et al. 2014; Wilson et al.
2014). Collectively, these phenomena have come to be known
as “soft sweeps,” a term originally coined by Hermisson and
Pennings (2005) and now often used as a catchall phrase
to refer to any sweep for which the most recent common
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ancestor at the locus of the beneficial allele(s) predates the
onset of positive selection (Messer and Petrov 2013).

Empiricalworkoccurring largely in parallelwith the theory
discussed above suggests that soft sweeps of one variety or
another likely make a substantial contribution to adaptation.
For example, many freshwater stickleback populations have
independently lost the bony plating of their marine ancestors
due to repeated selection on an ancient standing variant at the
Eda gene (Colosimo 2005), and a substantial fraction of the
increased apical dominance in maize relative to teosinte can
be traced to a standing variant that predates domestication
by at least 10,000 years (Studer et al. 2011). Additional
examples of adaptation from standing variation have been
documented in Drosophila (Magwire et al. 2011), Peromyscus
(Domingues et al. 2012), and humans (Peter et al. 2012),
among others. Adaptations involving simultaneous selection
on multiple alleles of independent origin at the same locus
have also been documented across a wide array of species
(Menozzi et al. 2004; Nair et al. 2006; Karasov et al. 2010;
Salgueiro et al. 2010; Schmidt et al. 2010; Jones et al. 2013).
Nonetheless, the general importance of soft sweeps for the
adaptive process remains somewhat contentious (see, e.g.,
Jensen 2014; Schrider et al. 2015).

While models of the hitchhiking effect under soft sweeps
involving multiple independent mutations have received a
fair amount of analytical attention (Pennings and Hermisson
2006a,b; Hermisson and Pfaffelhuber 2008; Pokalyuk 2012;
Wilson et al. 2014), themodel of a uniquely derivedmutation
that segregates as a standing variant before sweeping in re-
sponse to an environmental change is less well characterized.
Present understanding of the hitchhiking effect in a single
population under this model comes primarily from two sour-
ces. The first one is a pair of simulation studies (Innan and
Kim 2004; Przeworski et al. 2005), which focused largely on
simple summaries of diversity and the allele frequency spec-
trum, and the second one is the general verbal intuition that,
similar to the multiple-mutation case, the beneficial allele
should be found on “multiple haplotypes.” In contrast to
the multiple-mutation case, these additional haplotypes are
created as a result of recombination events during the period
before the sweep when the allele was present in the standing
variation, rather than due to recurrent mutations on different
ancestral haplotypes (Barrett and Schluter 2008; Messer and
Petrov 2013).

Before we turn to the coalescent for sweeps from uniquely
derived standing variation, it is worth first asking under what
circumstances wemight expect such sweeps. To illustrate this
we consider a single-locus model in which a population that
was previously at mutation–drift equilibrium adapts in re-
sponse to an environmental change, either by drawing on
material from the standing variation or from new mutations
that occur after the environmental change. In particular, we
are interested in exploring the relationship between the
source of genetic material the population uses to adapt and
the specific signature left behind in genetic polymorphism
data at the conclusion of the event. If adaptation proceeds

entirely from de novo mutation, the signature will be that of
either a classic hard sweep or amultiple-mutation soft sweep.
However, if the population adapts at least partially from
standing variation, a broad range of possible signatures are
possible. First, the population may use more than one allele
present in the standing variation, in which case we again
have amultiple-mutation soft sweep. Alternately, if only a sin-
gle allele from the standing variation is used, a range of
signatures are possible. If the allele was at a frequency
, 1=2Ns at the moment of the environmental change, then
a hard sweep signature is produced because, conditional on
escaping loss due to drift and eventually reaching fixation,
the allele must have rapidly increased in frequency even be-
fore it became beneficial. If adaptation proceeds via an allele
that was at some low frequency greater than .1=2Ns; an
altered signature is produced (e.g., Przeworski et al. 2005,
and a model for generating that pattern is the primary focus
of this article), whereas adaptation from a single high-
frequency derived allele leaves essentially no detectable
signature in polymorphism data. Drawing on results from
a number of previously published studies (Hermisson and
Pennings 2005; Przeworski et al. 2005; Pennings and
Hermisson 2006a) in the Appendixwe calculate the probabil-
ity of observing each of these different signatures for this
model of a sharp transition from drift–mutation equilibrium
to positive selection as a function of the population size,
strength of selection, and time since the environmental
change and present the results in Figure 1. These calculations
reveal that, under this model, all of these signatures are of
importance at least in some parameter regimes and in partic-
ular suggest that a sweep of a uniquely derived allele from
the standing variation should constitute a nonnegligible pro-
portion of all sweeps that begin from mutation–drift equilib-
rium. Our model also applies to sweeps of alleles that
previously exhibited long-term asymmetric balancing selec-
tion, which represent an unknown fraction of adaptive alleles.

In this article, we present an analytical treatment of the
model in which an allele with a single mutational origin
segregates at a low frequency . 1=2Ns (either neutrally or
under the influence of balancing selection with asymmetric
heterozygote advantage) and then sweeps to fixation after
a change in the environment. The central observation is that,
with some simplifying assumptions, the recombination
events that are responsible for the multiple haplotypes on
which the beneficial allele is found have a close analogy to
mutations in the infinite-alleles model, and we can therefore
leverage the Ewens sampling formula (Ewens 1972) to ob-
tain an analytical description for the genealogical history of
a neutral locus linked to the beneficial allele. We then show
that this model can be used to obtain a highly accurate
approximation for the expected deviation in the frequency
spectrum at a given genetic distance, as well as to shed light
on how the expected patterns of haplotype structure differ
between the multiple recurrent mutation and sweep from
standing variation cases. We conclude with a brief simulation
study examining the order statistics of the haplotype frequency
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spectrum under the classic hard sweep, multiple-mutation soft
sweep, and standing sweep models, with the aim of demon-
strating how future methods to identify and classify sweeps
can best make use of this information.

Model

We consider two linked loci separated on the chromosome by
a recombination distance r. At one of these loci a new allele, B,
arises in a background of ancestral b alleles. This allele segre-
gates at low frequency for some period of time (either due to
neutral fluctuations or because it is a balanced polymorphism),
before a change in the environment causes it to become ben-
eficial and sweep to fixation. A schematic depiction of the
model is given in Figure 2. Our aim is to describe some features
of genealogies both at the locus of the B allele and at nearby
linked sites and to use this understanding to build intuition
regarding the process of a sweep from standing variation, as
well as to derive the patterns of DNA sequence variation we
expect to observe near a recently completed sweep from stand-
ing variation. For the most part, we focus on describing the
pattern of recombination events that (backward in time)move
lineages from the B background onto the b background, with
nucleotide diversity generated via ancestral diversity that
enters via these recombination events. Where necessary, we
develop additional approximations to include the effect of new
mutations occurring on the B background.

Our general approach is to break thehistory of the standing
sweep into two periods, the first one being the time during
which the B allele is selectively favored and rising in fre-
quency (we refer to this as the sweep phase) and the second
one being the period after the mutation has arisen but before
the environmental shift causes it to become beneficial (we
refer to this as the standing phase). We assume that the
frequency trajectory of the allele is logistic during the sweep
phase and that selection is sufficiently strong relative to the
sample size such that only recombination (i.e., no coalescence)
occurs during this phase. We approximate the standing phase
by assuming that the frequency of the B allele is held at some
constant value f infinitely far into the past prior to the onset of
selection. While this is obviously a coarse approximation to
the true history of a low-frequency allele, it is nonetheless
accurate enough for our purposes and enjoys some theoreti-
cal justification, as we discuss below. The key advantage to
using this approximation is that it allows us to model the
genealogy of the B alleles as a standard neutral coalescent
(rescaled by a factor f) and therefore to treat recombination
events moving away from the selected locus in a manor anal-
ogous to that for mutations in the standard infinite-alleles
model. This allows us to use a version of the Ewens sampling
formula to calculate a number of summaries of sequence di-
versity and to build intuition for how patterns of haplotype
diversity should change in regions surrounding a standing
sweep.

Figure 1 The probability of observing
a number of different sweep signatures
in a sample of 20 chromosomes, assum-
ing a model in which an allele that was
previously neutral suddenly becomes
beneficial in response to an environ-
mental change. Calculations are given
in the Appendix. Results are displayed
for a range of population sizes (N), se-
lection coefficients (s), and mutational
target sizes (L) and assuming 1000
generations since the environmental
change. In general, we see that selec-
tive sweeps in which adaptation pro-
ceeds from a uniquely derived allele
represent a nontrivial proportion of all
sweeps under this model, provided that
the mutational target size is not large
and that Ns is not too small. A hard
sweep signature is left by any sweep
for which a single allele sweeps from
a frequency of ,1=2Ns; while a unique
sweep from standing variation (SSV)
corresponds to any sweep in which
a single allele sweeps from a frequency
greater than this value. Multiple-mutation
soft sweeps refer to the variety described
in Pennings and Hermisson (2006a,b). De
novo hard sweep refers to sweeps in
which the beneficial allele did not arise

until after the environmental change (corresponding to the model originally studied by Maynard Smith and Haigh 1974), while detectable SSVs are sweeps
of a single unique allele that was present at a frequency 1=2Ns, f ,0:15 and may therefore plausibly be distinguished from both the hard sweep model and
the neutral model.
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Figure 2 A schematic depiction of our model along with two other common sweep models. (A) The frequency trajectory of alleles in the sweep from
the standing variation model. Gray lines depict 10 simulated sweeps with s ¼ 0:01 and f ¼ 0:03 in a population of N ¼ 10; 000: The solid black line
represents the frequency trajectory assumed for our analytical calculations for a sweep with those parameters. (B and C) The genealogy, history of
recombination events, and sequence associated with a sample of nine chromosomes taken at the moment of fixation under the sweep from standing
variation model. The red diamond (on both the genealogy and the sequence) represents the mutation responsible for the beneficial allele. The tree
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Data availability

All custom simulation code was written by J.J. Berg in R and
is provided in File S1. We also made use of the as yet un-
published program mssel, written by Dick Hudson, a copy of
which is also provided in File S1.

Analysis and Results

Sweep phase

Looking backward in time, let XðtÞ be the frequency of the B
allele at time t in the past, where t ¼ 0 is the moment of
fixation [i.e., Xð0Þ ¼ 1;XðtÞ, 1  "  t. 0]. If we consider
a neutral locus a genetic distance r away from the beneficial
allele, the probability that it fails to recombine off of the
selected background in generation t, given that it has not
done so already, is 12 rð12XðtÞÞ: If we let tf be the gener-
ation in which the environmental change occurred, marking
the boundary between the sweep phase and the standing
phase [i.e., Xðtf Þ ¼ f], then the probability that a single lin-
eage fails to recombine off the selected background at any
point during the course of the sweep phase is given by

PNR ¼
Ytf
t¼0

12 rð12XðtÞÞ � exp
�
2r
Z tf

0
ð12XðtÞÞdt

�

(1)

for r � 1: If the effect of our beneficial allele on relative
fitness is strictly additive, such that heterozygotes enjoy a se-
lective advantage of s and homozygotes an advantage of 2s;
then the trajectory of the beneficial allele through the pop-
ulation can be approximated deterministically by the logistic
function, and the integral in the exponential in Equation 1
can be approximated as lnð1=f Þð1=sÞ; yielding

PNR � exp
�
2
r
s
ln
�
1
f

��
: (2)

We assume selection is strong, such that there is not enough
time for a significant amount of coalescence during the sweep
phase. Therefore, each lineage either recombines off the
beneficial background or fails to do so, independently of all
other lineages. The probability that i of n lineages fail to
escape off the sweeping background is then

PNRðijnÞ ¼
�
n
i

�
PiNRð12PNRÞn2i: (3)

This binomial approximation has been made by a number of
authors in the context of hard sweeps (e.g., Maynard Smith
and Haigh 1974; Fay andWu 2000; McVean 2006; Coop and
Ralph 2012), but better approximations do exist (Barton
1998; Durrett and Schweinsberg 2004, 2005; Schweinsberg
and Durrett 2005; Etheridge et al. 2006; Messer and Neher
2012). Under the hard sweep model, most of the error of the
binomial approximation arises due to coalescent events dur-
ing the earliest phase of the sweep. Because this phase is
replaced in our model by the standing phase described below,
the binomial approximation is a better fit for our use than in
the classic hard sweep case.

Standing phase

Looking backward in time, having originally sampled n line-
ages at t ¼ 0; we arrive at the beginning of the standing
phase at time tf with i lineages still linked to the beneficial
background, the other n2 i having recombined into the non-
beneficial background during the sweep.

We apply a separation of timescales argument, noting that
coalescence of the i lineages that fail to recombine off the B
background during the sweep will occur much faster than co-
alescence of the n2 i lineages that do recombine during the
sweep. We therefore assume that nothing happens to lineages
on the b background until all lineages have escaped the B
background via either mutation or recombination, at which
point b lineages follow the standard neutral coalescent.

The coalescent process of the B alleles: Anumber of previous
studies have examined the behavior of this process (Rannala
1997; Griffiths and Tavare 1998, 1999; Wiuf and Donnelly
1999; Wiuf 2000; Griffiths 2003; Patterson 2005), condi-
tional on the frequency of the allele either in a sample or in
the population. Wiuf (2000) has shown that the expected

time to the first coalescent event is 2Nf=
�

i
2

�
in the absence

of other information, e.g., as to whether the allele is ancestral
or derived. However, the distribution of coalescence times
is no longer exponential. The variance of the time between
coalescent events is increased relative to the exponential as

subtending this mutation in B is the genealogy at the locus of this mutation. Solid lines represent the genealogy experienced by a neutral site located at
the position of the vertical orange bar in C, with lineages that escape coalescence under the red mutation coalescing on a longer timescale off the left
side. Circles on the genealogy in B represent the recombination events falling between the beneficial mutation and the orange bar in C and are
responsible for changes in haplotype identity (color) along the sequence. Short dashed lines represent components of the ancestral recombination graph
between the red mutation and the orange bar that are not a part of the local genealogy at the position of the orange bar. Long dashed lines represent
movement from the selected to the nonselected background via recombination. At the distance marked by the orange bar, there are three sweep phase
recombinants, and the remaining six sequences are partitioned into three haplotypes of frequencies three, two, and one, according to the infinite-alleles
process described in the main text. (D and E) Genealogy, recombination history, and sequence associated with a standard hard sweep. Here, the
beneficial mutation generally occurs after the onset of positive selection, and most recombination events occur as singletons during the middle of the
sweep. The sweep signature therefore consists chiefly of a single core haplotype that is slowly whittled down by singleton recombinants. (F and G)
Genealogy, recombination history, and sequence associated with a multiple-mutation soft sweep. Here, the beneficial mutations all generally occur
around the time of the onset of position selection, creating multiple core haplotypes, which are each subsequently whittled down by recombination
events during the course of the sweep.
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a direct result of the fact that the frequency may increase or
decrease from f before a given coalescent event is reached.
Further, in contrast to the standard coalescent, there is nonzero
covariance between subsequent coalescent intervals, as a result
of the information they contain about how the frequency of the
allele has changed and thus about the rate at which subsequent
coalescent events occur. Finally, if the allele is known to be either
derived or ancestral, the expected coalescent times have amore
complicated expression, as the allele is in expectation either
decreasing or increasing in frequency backward in time due to
the conditioning on derived or ancestral status, respectively.

Despite these complications, we have found that assuming
that all pairs of lineages coalesce at a constant rate 1=ð2Nf Þ
and that coalescent time intervals are independent (in other
words, that the allele frequency does not drift from f) is not
a bad approximation when f � 1; even when we condition
on the allele being derived (Supporting Information, Figure
S1, Figure S2, and Figure S3).

The main reason for using this approximation is that, in
conjunction with the separation of timescales, it allows us to
work with a simple, well-understood caricature of the true
process (i.e., the neutral coalescent) that still describes the
genealogy at the selected site with reasonable accuracy.
Given this simplified coalescent process, we can study the
recombination events occurring between the beneficial and
neutral loci to understand the properties of the genetic var-
iation at the neutral locus that will hitchhike along with the B
allele once the sweep phase begins.

Recombination events occurring during the standing
phase:We again rely on the condition that f � 1 and assume
that any lineage at the neutral locus that recombines off of
the background of our beneficial allele will not recombine
back into that background before it is removed by mutation.
Under these assumptions, recombination events that move
lineages at the neutral locus from the B background onto
the b background can be viewed simply as events on the
genealogy at the beneficial locus that occur at rate rð12 f Þ
for each lineage independently. Rescaling time by 2Nf ; an
understanding of the genealogy at the neutral locus can
therefore be found by considering the competing Poisson pro-
cesses of coalescence at rate 1 per pair of lineages and re-
combination at rate 2Nrf ð12 f Þ per lineage.

We are interested in the number and size of different
recombinant clades at a given genetic distance from the
selected site (colored clades in Figure 2B, which give rise to
colored haplotypes in Figure 2C). Under our approximate
model for the history of coalescence and recombination at
these sites, this a direct analogy of the infinite-alleles model
(Kimura and Crow 1964; Watterson 1984). In the normal
infinite-alleles process, we imagine simulating from the co-
alescent, scattering mutations down on the genealogy, and
then assigning each lineage to be of a type corresponding
to the mutation that sits lowest above it in the genealogy.
Alternately, we can create a sample from the infinite-alleles
model by simulating the mutational and coalescent processes

simultaneously: coalescing lineages together as we move
backward in time, “killing” lineages whenever they first en-
counter a mutation, and assigning all tips sitting below the
mutation to be of the same allelic type (Griffiths 1980).

Given the direct analogy to the infinite-allelesmodel under
our set of approximations, the number and frequency of the
various recombinant lineage classes at a given distance from
the selected site can be found using the Ewens sampling
formula (ESF). The population-scaled mutation rate in the
infinitely many alleles model (u=2 ¼ 2Nm) is replaced in our
model by the rate of recombination out of the selected class
[Rf=2 ¼ 2Nrfð12 f Þ]. If i lineages sampled at the moment of
fixation fail to recombine off of the beneficial background
during the course of the sweep, then the probability that these
i lineages coalesce into a set of k recombinant lineages is

pESFðkjRf ; iÞ ¼ Sði; kÞ
RkfQi21

ℓ¼1ðRf þ ℓÞ
; (4)

where Sði; kÞ is an unsigned Stirling number of the first kind,

Sði; kÞ ¼
X

i1þ...þik¼i

i!
k!i1 . . . ik

: (5)

These recombinant lineages partition our sample up between
themselves, such that each lineage has some number of
descendants in our present-day sample fi1; i2; . . . ; ikg; wherePk

j¼1ij ¼ i:Conditional on k, the probability of a given sample
configuration is

pðfi1; i2; . . . ; ikgjk; iÞ ¼
i!

k!i1⋯ikSði; kÞ
: (6)

Note that this does not depend on Rf ; which gives the classic
result that the number of alleles is a sufficient statistic for Rf

(i.e., the partition is not needed to estimate Rf ). Figure 3
shows a comparison of this approximation to simulations
for the number of distinct coalescent families at a given dis-
tance from the focal site.

We are usually interested in the casewhere f � 1 and thus
Rf � 4Nfr: As such, the properties of the standing part of the
sweep are well captured by the population sized-scaled com-
pound parameter 4Nf ; the number of individuals who carry
the selected allele when the sweeps begins. This means that
the effect of standing variation on sweep patterns depends
critically on the effective population size. A sweep from a var-
iant at frequency 1=5000 would for all intents and purposes
be a hard sweep in humans, where the historical effective
population size is �10,000, but would result in quite differ-
ent patterns in Drosophila melanogaster, whose long-term ef-
fective population size is closer to 1 million.

Patterns of neutral diversity surrounding
standing sweeps

This approximate model of the coalescent for a sweep from
standing variation allows us to calculate a number of basic
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summaries of sequence variation in the region surrounding
the sweep. For now we neglect mutations that occur over the
timescale of our shrunken coalescent tree and assume that all
diversity comes from mutations that occurred prior to the
sweep or equivalently that this part of the genealogy contrib-
utes negligibly to the total time. This corresponds to an
assumption that 2Nmf � 2Nm; in line with our previous as-
sumption that f � 1: As long as this assumption holds, we
can consider patterns of diversity in our sample at a given site
simply by considering properties of the recombinant lineages
in our sample, which correspond to alleles drawn indepen-
dently from a neutral population prior to the start of our
sweep. We partially relax this assumption in the Appendix
for those of our calculations where it substantially affects
the fit to simulation data.

Reduction in pairwise diversity: The expected reduction in
pairwise diversity following a standing sweep relative to
neutral expectation is given by the probability that at least
one lineage in a sampleof twomanages to recombineoff of the
B background (during either the sweep phase or the standing
phase) before the coalescent event during the standing phase

E

�
pR
p0

�
�
�
12

1
1þ Rf

e2ðr=sÞlnð1=fÞ
�

(7)

(Figure 4). Given the exponential form of PNR and the
fact that 1=ð1þ Rf Þ can be approximated as e2Rf for
small values of Rf ; we can further approximate (7) as
12 e2rðlnð1=f Þ=sþ4Nf ð12f ÞÞ: Recalling that the reduction in diver-
sity for a classic hard sweep with strong selection can be
approximated as 12 e2rðlogð2NŝÞ=ŝÞ (Durrett and Schweinsberg

2004; Pennings and Hermisson 2006b), it is tempting to
suppose that there may exist a choice of ŝ; an “effective”
selection coefficient, for which the classic hard sweep
model produces a reduction in diversity over the same
scale as the standing sweep model. While it is simple to
set the terms in the exponentials equal to one another and
solve for the appropriate value of ŝ (see Appendix), it turns
out that for all choices of N, s, and f for which our model
applies, ŝ � 1=2N: In other words, the reduction in diver-
sity caused by a sweep from standing variation cannot be
caused by a hard sweep in which standard strong selection
approximations apply, which means that care should be
taken when interpreting estimates of the rate of adapta-
tion that depend solely on classic hard sweep–strong se-
lection approximations (Elyashiv et al. 2014). No doubt
there is a choice of selection coefficient under which
a weakly selected allele will produce a similar reduction
in diversity, but there are no adequate approximations
available under this model, and we do not pursue it fur-
ther here.

Number of segregating sites: We can also use our approxi-
mation to calculate the total time in the genealogy at a given
distance from the selected site, which allows us to calculate
the expected number of segregating sites. Conditional on m
independent lineages escaping the sweep, the expected total
time in the genealogy is 2N

Pm21
j¼1 1=j; the standard result for

a neutral coalescent with m lineages (Watterson 1975). For
a moment conditioning on no recombination during the
sweep phase (i.e., i ¼ n), the probability that k independent
lineages escape during the standing phase, given that there

Figure 3 The probability that a sample of 10 lineages taken on the background of an allele at frequency 1% (A) or 5% (B) coalesce into k families
before exiting the background, as a function of population-scaled genetic distance (4Nr) from the conditioned site. The effective population size in the
simulations is N ¼ 10; 000: The solid lines give the proportion of 1000 coalescent simulations, with an explicit stochastic frequency trajectory (as
described in Simulation details), in which k families of lineages recombined off of the sweep at distance 4Nr: The dotted lines give our approximation
under the ESF (Equation 4) with Rf ¼ 4Nrf ð12 fÞ:
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are at least two (otherwise all coalescence occurs on the B
background and the total time in the genealogy, TTOT � 0), is

pESFðkjRf ; i; k. 1Þ ¼ pESFðkjRf ; iÞ
12 pESFð1jRf ; iÞ

: (8)

Conditional on no recombination during the sweep phase, the
expected time in the genealogy is

EðTTOTji ¼ nÞ � 2N
Xn
k¼2

pESFðkjRf ; i ¼ n; k. 1Þ
Pk21

j¼1 1

j
:

(9)

Whenwe allow for all possible numbers of singleton recombi-
nants during the sweep phase, the expected total time in the
genealogy is

EðTTOTÞ � 2N

 
PNRði ¼ njnÞ

Xn
k¼2

pESFðkjRf ; i ¼ n; k. 1Þ
Pk21

j¼1 1

j

þ  
Xn21

i¼0

PNRðijnÞ
Xi
k¼0

pESFðkjRf ; iÞ
Pkþn2i21

j¼1 1

j

!

(10)

[note that we have taken pESFð0jRf ; 0Þ ¼ 1 and
pESFð0jRf ; iÞ ¼ 0  "  i. 0; whereas it is typically impossible
to obtain a sample with zero alleles, in our case we must
define these probabilities to accommodate the case in which
all n lineages recombine out during the sweep phase] and the
expected number of segregating sites can be found by multi-
plying this quantity by the mutation rate (Figure 4).

The frequency spectrum: Finally, we can use our approxima-
tion to obtain an expression for the full frequency spectrum at
sites surrounding a sweep from standing variation. To break
the problem into approachable components, we first con-
sider the frequency spectrum of an allele that is polymorphic
within the set of lineages that do not recombine during the

sweep (i.e., ignoring sweep phase events for now), and we
condition on a fixed number k recombinant families from the
standing phase. Borrowing from Pennings and Hermisson
(2006b) (equation 14 of their article), if we condition on j
of these k recombinant lineages carrying a derived allele,
then we can obtain the probability that l of the i sampled
lineages carry the derived allele by summing over all possible
partitions of the i lineages into k families such that the j
recombinant ancestors carrying the derived mutation have
exactly l descendants in the present day:

pancðlj j; k; iÞ ¼
X

i1þ⋯þij¼l
ijþ1þ⋯þik¼i2 l

p
�
fi1; . . . ; ikgjk; i

�

¼

 
i

l

!
 
k

j

! Sðl; jÞSði2 l; k2 jÞ
Sði; kÞ :

(11)

Next, we write qðjjkÞ to denote the number of polymorphic
mutations that were present j times among the k ancestral
lineages that escape the standing phase. For our purposes,
we assume this follows the standard neutral coalescent
expectation

qð jjkÞ ¼
u

j
; k$ 2

0; otherwise

8<
: (12)

although an empirical frequency spectrum measured from
genome-wide data, as in Nielsen et al. (2005), could also be
used. The expected number of derived alleles that are present
in l of i sampled lineages, conditional on there having been k
recombinant families, is then

pðljk; iÞ ¼
Xk21

j¼1

pancðlj j; k; iÞqð jjkÞ: (13)

Summing over the distribution of k given by (4), we obtain an
expression for the frequency spectrum within the set of i
lineages that do not recombine during the sweep as

pðljiÞ ¼
Xn
k¼2

pESFðkjRf ; i; k.1Þ
Xk21

j¼1

qð jjkÞpancðlj j; k; iÞ: (14)

This expression is essentially identical to the one presented in
equation 15 of Pennings and Hermisson (2006b). The only
difference is that the Ewens clustering parameter in their
model is given by the beneficial mutation rate and holds only
for sites fully linked to the selected loci, whereas in ourmodel
it is a linear function of the genetic distance from the selected
site. In terms of accurately describing observed patterns of
polymorphism, this approximation is highly accurate for loci
that are distant from the focal site, but breaks down for loci
that are tightly linked. The reason for this is that very near the

Figure 4 A comparison of our approximations for the reduction in (A)
pairwise diversity and (B) the number of segregating sites for a sweep
with s ¼ 0:05 and N ¼ 10; 000 starting from a variety of different fre-
quencies. For pairwise diversity we also include the hard sweep approx-
imation given in Equation A1. Our approximations are generally accurate
as long as the sweep begins from a frequency .1=2Ns:
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focal site, it is actually very unlikely that there have been any
recombination events at all, and so while polymorphism is
rare, when it is present it is likely to have arisen due to new
mutations on the genealogy of the B allele (in which case
their distribution is that of the standard neutral frequency
spectrum), rather than ancestrally. While a full accounting
for the contribution of all new mutations under this model
is beyond our scope, we can develop an ad hoc approximation
by assuming that mutations are new if there have not been
any recombination events and are old if there has been at
least one recombination (see Appendix). This approximation
is quite accurate, especially when the focal allele is at low
frequency (Figure 5).

When we allow for recombination during the sweep, the
expression becomes more complex, as we must take into
account the fact that a mutation may be polymorphic after
the sweep even if it is either absent or fixed in the set of
lineages that hitchhike. Nonetheless, we obtain an expression
for the frequency spectrum of ancestral polymorphism as

pðljnÞ ¼
Xn
i¼0

PNRðijnÞ
Xi
k¼1

pESFðkjRf ; n2 iÞ

3
Xminðkþn2i21;ℓÞ

j¼1

qð jjkþ n2 iÞ

3  
Xminðj;ℓ;ðn2iÞÞ

g¼maxð j2k;0Þ
Hðgj j; k; n2 iÞpancðℓ2 gj j2 g; k; iÞ;

(15)

where

Hðgj j; k; n2 iÞ ¼

�
n2 i
g

��
k

j2 g

�
�
kþ n2 i

j

� (16)

gives the probability that g of a total of j derived alleles that
existed before the sweep are found on singleton recombi-
nants created during the sweep, given that there are n2 i
singletons, and k recombinant families created during the
standing phase.

In words, n2 i lineages recombine out during the selected
phase, while the remaining i lineages are partitioned into k
families at frequencies fi1; . . . ; ikg due to recombination and
coalescence in the standing phase. Of the n2 i singleton lin-
eages, g of them carry the derived allele, while the remaining
j2 g copies of the derived allele give rise to l2 g derived
alleles due to coalescence during the standing phase, and
we take the sum over all possible combinations of these val-
ues that result in a final frequency of l=n in the present-day
sample.

Onceagain, this expression is accurate far fromthe selected
site, but in error at closely linked sites due to the contribution
of new neutral mutations on the background of the B allele.

Again, we can develop an ad hoc approximation by allowing
for new mutations during the sweep phase on any lineage
that does not recombine during that phase and on the i lin-
eages that reach the standing phase, provided there are no
recombination events during that phase (see Appendix and
Figure 5). New mutations during the standing phase are ig-
nored once there has been at least one recombination event
during that phase. This approximation is quite accurate at all
distances (especially when the sweep comes from relatively
low frequency) and highlights the fact that sweeps from
standing variation are characterized by an excess of derived
mutations at a range of frequencies .40–50%, in contrast to
hard sweeps, which exhibit a much stronger skew toward
extremely low- or high-frequency alleles (Przeworski et al.
2005).

Patterns of haplotype variation and routes to inference

To this point, we have focused on an analytical description for
the effect of a sweep from standing variation on a single tightly
linkedneutral locuson the samechromosome. It is alsoofvalue
to consider the effect of a sweep as a process that occurs along
the sequence, as this gives some perspective into how haplo-
type structure unfolds in the region surrounding a standing
sweep. Efforts to identify standing sweeps via polymorphism
data hinge on identifying recombination events that occurred
during thestandingphasebyrecognizingtheway inwhich they
breakasinglecorehaplotypedown intoasuccessionofcoupled
samples from the Ewens distribution with progressively larger
clustering parameters. We first describe some properties of
pairs of sequences, before considering larger samples.

For any pair of sequences, recombination events from the
sweep phase are encountered at rate lnð1=f Þð2=sÞ; while
events from the standing phase are encountered on average
at rate 2Nf : A simple measure of the relative importance of
the two phases for patterns of haplotype structure and link-
age disequilibrium can be found by competing Poisson pro-
cesses. Using the expectation of the pairwise coalescence
time from the standing phase, the probability that the first
recombination encountered traces its history to the standing
phase is approximately

Nf
Nf þ lnð1=f Þð1=sÞ (17)

and ingeneral events occurringduring the standingphasewill
dominate the haplotype partition when Nf � lnð1=fÞð1=sÞ;
while those from the sweep phase will dominate when
Nf � lnð1=f Þð1=sÞ:

Next consider that the lower bound on the frequency from
which a sweep can start and still conform to our model is
f . 1=2Ns (Przeworski et al. 2005). Below this frequency, the
effect of conditioning on fixation creates a more complicated
set of dynamics that skew the shape of the genealogy away
from that expected under our model. As either the selection
coefficient or the population size increases, this stochastic
threshold gets pushed down into the high-density region of
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the neutral frequency spectrum, with the result that the gene-
alogy for a larger and larger proportion of all single-mutation
sweeps can be described by our model. However, for standing
sweeps from low frequency, it will tend to be the case that
most of the recombination events encountered trace their his-
tory to the sweep phase as opposed to the standing phase.

Therefore, while increases in 2Ns result in an increased
probability of sweeps conforming to our model relative to the
classic hard sweep model (Figure 1), these sweeps will be
difficult to distinguish from classic hard sweeps because most
of the recombination events will occur during the sweep
phase, where the two models are identical.

The practical task of identifying a sweep from standing
variation requires more extensive knowledge about the hap-
lotype partition from a larger sample. The necessary task is to
identify recombination events from the standing phase as they
unfold along the sequence (see Figure 2C). Unfortunately,
explicit analytical expressions for these haplotype partition
transitions are unavailable under any sweep model, and ours
is no exception (although Innan and Nordborg 2003 have
provided some results regarding our standing phase). None-
theless, we gain a few simple insights from a description of
the process, and this description motivates some further
simulations.

If we consider the best case for identifying a sweep
from standing variation and distinguishing it from a classic

hard sweep, this should occur in the parameter regime
2Ns/N;  1=2Ns � f � 0:15; where events from the sweep
phase tend to happen much more distantly than those from
the standing phase, but the decay in haplotype structure at-
tributable to events occurring during the standing phase still
occurs gradually enough that it can be distinguished from
neutrality.

In this limit, the sweep happens instantaneously, and the
total time in the tree is equal to the total time fromthe standing
phase Tstand: The distance to the first recombination is
�expðrBPð12 fÞTstandÞ; where rBP gives the recombination
rate per base pair. Using the standard approximation for the
total time in the tree, the expected length scale over which
a single haplotype should persist away from the selected site
is � 1=ð2NerBPf ð12 f Þlnðn21ÞÞ (and twice this distance if
we consider both sides of the sweep). This recombination
partitions the haplotypes according to the standard neutral
frequency spectrum (e.g., the green recombinant moving to
the left in Figure 2C). Moving down the sequence we then
generate the next distance to a recombination, again from
�expðrBPð12 f ÞTstandÞ: We again uniformly simulate a posi-
tion on the tree for this new recombination; however, this
time only a recombination on some of the branches would
result in a new haplotype being introduced into the sample
(e.g., the red recombinant in Figure 2B is responsible for the
second transition in the haplotype partition scheme in Figure

Figure 5 The frequency spectrum, in a sample of n ¼ 10 in a population of N ¼ 10; 000: In A–C, we take a sample on the background of a focal allele
at the end of the standing phase, but before the sweep phase. In D–F, we take a sample from the full population immediately after fixation of the
beneficial allele. Results are shown as the log ratio of the normalized frequency relative to its expectation under the standard neutral coalescent. s = 0.05
for the postfixation case. Solid circles give simulations, while solid lines give the theoretical result of Equation A6.
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2C). If the recombination falls in a place that does not alter
the configuration, we ignore it and simulate another distance
from this new position. Otherwise, we keep the recombina-
tion event and split the sample configuration again. (For ex-
ample, the orange recombinant in Figure 2C does not alter
the status of identity-by-descent relationships with respect to
the sweep and therefore does not result in an increase in the
number of haplotypes under our convention.) We iterate this
procedure, moving away from the selected site, generating
exponential distances to the next recombination, placing
the recombination down, and updating the configuration if
needed, until we reach the point that every colored haplotype
is a singleton.We then repeat this procedure on the other side
of the selected site, using the same underlying genealogy.

An equivalent way to describe this process is to simulate
distances to the next recombination that alters the configu-
ration, given the tree and the previous recombinations. To do
this we consider the total time in the tree where a recombi-
nationwouldalter the configuration.Numbering these recom-
binationsout fromtheselected site,westart at the selected site
i ¼ 0; with T0 ¼ Tstand; and generate a distance to the first
recombination,�expðrBPð12 f ÞT0Þ:Weplace the recombina-
tion on the tree and then prune the tree of branches where no
further change in sample configuration could result in a new
colored haplotype. We then set Ti to the total time in these
pruned subtrees, place the next recombination uniformly on
the pruned branches at an �expðrBPð12 f ÞTiÞ distance, and
carry on this process until we have pruned the entire tree
such that all lineages reach their own unique recombination
event before coalescing with any other lineage.

The result of this process is a series of coupled partitions
and breakpoints between them, where the units of the break-
points are on the same scale as the clustering parameter of the
ESF (Rf in our case). As laid out above, any marginal slice
through the outcome of the process is a valid sample from the
ESF with the clustering parameter equal to the distance from
the focal site at which the slice is taken, as measured in units
of Rf : Progress toward analytical results regarding the set of
coupled partitions and their breakpoints created by this pro-
cess is not likely to come easily (J. Hermisson, personal com-
munication), but would represent significant developments
in relating the infinite-sites and infinite-alleles models, and
given the general interest in the ESF motivated by exchange-
able partitions and clustering algorithms, would likely be of
wider interest.

Routes to inference: Any effort to identify and distinguish
betweendifferent varieties of sweeps is necessarily an attempt
to determine the shape and size of the genealogy during the
earliest phase of the selected allele’s history. One approach to
building inference machines to distinguish these different
varieties may be to build upon recent developments in co-
alescent hidden Markov models (Li and Durbin 2011; Paul
et al. 2011; Sheehan et al. 2013; Rasmussen et al. 2014) that
provide efficient algorithms to explore the space of gene
trees consistent with the sequence data and leverage these

algorithms to explicitly model the effect of selective sweeps
on the ancestral recombination graph. To do this effectively,
we need a way to evaluate the likelihood of a particular pat-
tern of coalescence under a variety of sweep models. Our
results suggest a way to accomplish this effectively for sweeps
from standing variation, and recent works on both hard and
soft sweeps (Barton 1998; Durrett and Schweinsberg 2004,
2005; Schweinsberg and Durrett 2005; Etheridge et al. 2006;
Hermisson and Pfaffelhuber 2008; Messer and Neher 2012)
provide a route to doing so under these models.

Alternately, it will likely be fruitful to continue along the
lines of popular sweep-finding approaches implemented to
date and define summary statistics that can effectively distin-
guish between different models. Below, we use simulations to
illustrate how different features of the haplotype frequency
spectrum can be informative for distinguishing between dif-
ferent varieties of sweeps and draw attention to which fea-
tures of the underlying genealogy are indicated by certain
patterns in the haplotype frequency spectrum.

Observed haplotype frequency spectrum

To this point, our discussions of haplotype variation have
focused on haplotypes defined via identity-by-descent, which
cannot be observed directly. It is useful to consider how the
understanding gained here can be leveraged to improve our
ability to identify standing sweeps. To do this we turn to the
ordered haplotype frequency spectrum.

For a window of size L, we define the ordered haplotype
frequency spectrum (OHFS) asHL ¼ fh1; h2; . . . ; hHLg;where
hp gives the sample frequency of the pth most common hap-
lotype and there are a total of HL distinct haplotypes within
the window. Coarse summaries of the OHFS have been a pop-
ular vehicle for sweep-finding methods [e.g., EHH, iHS, and
H12 (Sabeti et al. 2002; Voight et al. 2006; Garud et al. 2015;
Garud and Rosenberg 2015)]. We focus on identifying which
aspects of the OHFS should be most informative about the
size as well as the shape of the genealogy at the focal site.

Specifically, we conducted coalescent simulations with
a sample size of n ¼ 100 chromosomes under four different
models of sequence evolution (hard sweeps, standing sweeps
from f ¼ 0:05; soft sweeps conditional on three origins of the
beneficial mutation, and neutral), with all sweep simulations
set to s ¼ 0:01: For the standing sweeps, this corresponds to
a situation in which the signature of the standing phase is
largely visible, but partially obscured by the sweep phase.

One simple prediction on the basis of our analytical in-
vestigationabove is that,because thegenealogyunderastand-
ing sweep is generally larger than that under a hard sweep,
recombination events out of the sweep should accumulate
more quickly along the sequence and therefore the total
number of haplotypes in a window of a given size should
be larger for a standing sweep than for a hard sweep. In Figure
6 we show from simulations PðHstand

L $ iÞ=PðHhard
L $ iÞ over

a range of L for one-sided windows extending away from
the selected site. As expected, we see that the number of
haplotypes increases more quickly with distance from the
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selected site for a standing sweep than for a hard sweep.
Unfortunately, as we alluded to above, this signal is largely
confounded by the fact that one can also obtain a similarly
rapid increase in the number of haplotypes from a hard sweep
with a slightly weaker selection coefficient.

Alternately, we may want to use the OHFS to obtain in-
formation about the shape of the genealogy at the focal site,
which should hopefully be less confounded by a change in
selection coefficient. This information is found in differences
in the relative frequencies of certain haplotypes between
the different models, rather than in the total number of
haplotypes. Specifically, if there are multiple haplotypes
present close to the selected site, they should be more
common under the sweeps from the standing variationmodel
than under the full sweep model. In other words, there
should be a window near the selected site where
E½hstandi

���hstandi . 0�.E½hhardi

���hhardi . 0� for 1, i � n; due to
recombinations occurring on internal branches of the gene-
alogy from the standing phase.

In Figure 7, we show E½hM1
i

��hM1
i . 0�=E½hM2

i

��hM2
i . 0�;

where M1 and M2 denote different models of sequence evo-
lution (i.e., standing, hard, or soft sweep or neutral). In par-
ticular, we want to draw attention to the fact that, similar to
the multiple-mutation model, most of the useful information
within the OHFS for distinguishing standing sweeps from
hard sweeps lies within a small window near the selected site
and comes in the form of a decrease in the relative frequency
of the core haplotype and corresponding overabundance of
the next few most common haplotypes. In contrast to the
multiple-mutation case, the enrichment of moderate-frequency
haplotypes for the standing case is relatively subtle, and be-
yond moderate recombination distances, there is little infor-
mation to distinguish a standing sweep from a hard sweep.
We also observe that, contrary to the multiple-mutation soft
sweep model, far away from the selected site, standing
sweeps resemble hard sweeps across the majority of the
OHFS. This is in line with expectations from our results
above, in that close to the selected site the haplotype partition
is dominated by events occurring during the standing phase,
while far from the selected site it is dominated by events
occurring during the sweep phase.

On the basis of these simulation results, we suspect that
future methods for identifying and distinguishing different
varieties of sweeps will see benefits from incorporating hap-
lotypic information over a range of window sizes surrounding
the focal site and from pushing deeper into the haplotype
frequency spectrum, particularly when large samples are
available.

Discussion

An accurate portrait of the patterns of sequence diversity
expected in the presence of recent or ongoing positive selec-
tion has proved to be vital for the identification of adaptive
loci. Recent theoretical and empirical work has drawn atten-
tion to the fact that adaptation from standing variation may

be relatively common and that patterns of sequence variation
produced in such scenarios may differ markedly from those
producedunder the classical hard sweepmodel. In this article,
we have focused on developing a tractable model of strong
positive selection on a single mutation that was previously
segregating (or balanced) at low frequency. We have shown
that many aspects of the presweep standing phase of the
mutation’s history on posthitchhiking patterns variation can
be approximated via an application of the ESF. This provides
a way to build intuition for the process and obtain various
analytical approximations for patterns of variation following
a sweep from standing variation.

Our results can be understoodwithin the context of a num-
ber of recent approximations for different sweep phenomena,
which divide the sweep into distinct phases (see, e.g., Barton
1998; Etheridge et al. 2006). Because rates of coalescence
and recombination vary across these phases, different sec-
tions of the sequence surrounding a sweep will convey in-
formation about different phases, with sites distant from the
selected locus generally conveying information about the late
stages of the sweep and sites close to the selected locus con-
veying information about the early stages of the sweep. In our
model, the late phase corresponds largely to what we have
called the sweep phase, while the early phase corresponds to
our standing phase. In general, the major differences be-
tween different sweep phenomena occur during the earliest
phases, and thus the information to distinguish them is found
near the selected site, while extra information about the
strength of the sweep can be found at sites that are more
distant.

It is worth noting, however, that all of our results are
obtained for populations with equilibrium demographics. If
population size is variable, particularly over the course of the
standing phase, then the ESF fails to accurately describe
recombinations during this phase, just as it fails to accurately
describe the infinite-alleles model with nonequilibrium de-
mographics. Inference methods based on our analytical cal-
culations would likely be inaccurate in these situations (Bank
et al. 2014). Nonetheless, the general insight remains that,
holding demography equal, sweeps from standing variation
will generate genealogies with longer internal branches than
classic hard sweeps and will therefore be characterized by
more intermediate-frequency haplotypes.

Although we do not pursue it, essentially all of our results
also likely apply to fully recessive sweeps from de novo mu-
tation. This is because a recessive beneficial mutation is ef-
fectively neutral until it reaches sufficient frequency for
homozygotes to be formed at appreciable enough rates to
feel the effects of selection. The result is that recessive sweeps
should be fairly well approximated by setting f ¼ 1=

ffiffiffiffiffiffiffiffi
2Ns

p
in

our model for the standing phase and taking the value of PNR
for the latter phase to be

exp

 
2r
Z 1

1=
ffiffiffiffiffiffi
2Ns

p ð12XÞgðXÞdX
!
; (18)
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where gðXÞ is Green’s function for a recessive allele under
positive selection. This conclusion is foreseen by Ewing
et al. (2011), who suggested just this sort of approximation
for the reduction in diversity following a recessive sweep. The
result is that it is likely to be extremely difficult to distinguish
between a sweep from previously neutral or balanced stand-
ing variation and a recessive sweep without additional bio-
logical information about dominance relationships at the
locus of interest.

It is alsoworth addressing the fact that ourmodel relates to
standing variation that is either neutral or balanced prior to
the onset of positive selection, while many sweeps from
standing variation may in fact proceed from alleles that were
previously deleterious (Orr and Betancourt 2001; Hermisson
and Pennings 2005). Exactly to what extent this is true is an
empirical question that remains largely unanswered, but
there is at least some support in the empirical literature for
both conditional neutrality and antagonistic pleiotropy (e.g.,
Anderson et al. 2013). Our model therefore represents one
bound of what is effectively a continuum of possible histories
for the beneficial allele prior to the onset of positive selection.
When alleles are neutral or balanced prior to the onset of
positive selection, the distribution on the number and size
of recombinant families at linked sites is approximately given
by our singleton inflated ESF. As the selection coefficient
experienced by the standing variant prior to the environmen-
tal change becomes more negative, this distribution shifts
toward fewer independent recombinant families, and the
largest family comes to dominate the distribution as the ge-
nealogy at the selected locus becomes more and more star-
like.

Whilewe do not pursue thismodel in detail, consider a few
simple observations. Conditional on being derived and being
found at frequency f at the time of the environmental change,
the trajectory that an allele with a deleterious selection

coefficient of some value took to get there is precisely the
same trajectory that would be taken by a beneficial allele
with a selection coefficient of equal magnitude but opposite
sign (Nagasawa and Maruyama 1979). If the environmental
switch merely caused a change in the sign of the selection
coefficient, but no change in magnitude, then this sweep
from standing variation would be impossible to distinguish
from a classic hard sweep with a constant beneficial selection
coefficient, as the trajectories are exactly identical. If, how-
ever, the magnitude of the selection coefficient were to
change as well, then one might in principle be able to de-
termine that the sweep came from standing variation by spot-
ting the fact that the selection coefficient implied by the
changes in the partition scheme occurring close to the se-
lected site, which reflect the earliest portion of the sweep’s
history, and the period when deleterious selection would
have been operating are inconsistent with the selection co-
efficient implied by the distances at which singleton recom-
bination events are observed, which largely reflect the later
portion of the frequency trajectory, when the allele was ben-
eficially selected. To what extent this task can be accom-
plished in practice requires further investigation.

Unfortunately, our work largely confirms the intuition and
existing results indicating that standing sweeps are likely to be
rather difficult to identify, and characterize, on the basis of
genetic data from a single population time point, and when
they canbe identified, theymaybedifficult todistinguish from
classic hard sweeps (Peter et al. 2012; Schrider et al. 2015).
This can be understood from first principles by recognizing
that the identification of a standing sweep amounts to recog-
nizing that a particular region of the genome effectively ex-
perienced a reduction in effective population size by a factor
of f, followed by a period of rapid growth back up to the Ne

experienced by the bulk of the genome. This task is made
difficult by the fact that one has effectively only a single

Figure 6 The ratio of the probability
that there are at least i haplotypes in
a one-sided window extending away
from the selected site for the standing
sweep model relative to the hard sweep
model (left) and the neutral model
(right). For all simulations n ¼ 100;
N ¼ 10; 000; and we simulate a chro-
mosomal segment with total length
4Nr ¼ 200 divided into 500;000 dis-
crete loci, with 4Nm ¼ 200 for the
whole segment. Probabilities are cal-
culated using the basis of 5000 sim-
ulations under each model.
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Figure 7 The ratio of expected sample frequency of the ith most common haplotype, conditional the haplotype existing in our sample, between two
different models M1 and M2; i.e., E½hM1

i

���hM1
i .0�=E½hM2

i

���hM2
i .0�. This is shown as a function of the recombination distance from the selected site.

Green indicates that the frequency of the ith most common haplotype is similar in the two models, blue that it has lower frequency under model M1;
and red that it has lower frequency in M2: We simulated coalescent histories for a sample size of n ¼ 100 chromosomes under four different models of
sequence evolution, hard sweeps, standing sweeps from f ¼ 0:05; soft sweeps conditional on three origins of the beneficial mutation, and a neutral
model, with all sweep simulations using a selection coefficient of s ¼ 0:01: For all simulations N ¼ 10; 000; and we simulate a chromosomal segment
with total length 4Nr ¼ 200 divided into 500; 000 discrete loci, with 4Nm ¼ 200 for the whole segment. Expectations are taken over 5000 simulations
of each model.
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genealogy with which to make this inference and rather im-
perfect information about its shape and size and that it shares
features both with genealogies expected under a classic hard
sweep and with those under neutrality. As discussed above,
this problem becomes even more challenging when the allele
was previously deleterious, as the genealogy prior to the en-
vironmental change will be even more similar to that expe-
rienced in a classic hard sweep.

As a result, we suspect that efforts to detect selection from
standing variation will continue to be most effective when
additional data are available from populations where the
allele was not favored or failed to spread for some other
reason (Innan and Kim 2008; Chen et al. 2010; Roesti et al.
2014). If we have good evidence that the allele has spread
rapidly, e.g., if the populations are very closely related, then
evidence that it is a sweep from standing variation could be
gained from demonstrating that the genomic width of the
sweep was much smaller than expected and there are too
many intermediate-frequency haplotypes, given how quickly
it would have to have transited through the population. An-
cient DNA is also likely to be of value, as we may similarly be
able to identify alleles that were at low frequency too recently
in the past given observed present-day patterns of genetic
variation.

Simulation details

To check our analytical results, we wrote a program to
simulate allele frequency trajectories under our model and
then either ran custom-written structured coalescent simu-
lations (Figure 3, Figure S1, Figure S2, and Figure S3) or
submitted these trajectories to the programmssel to generate
sequence data (Figure 4, Figure 5, Figure 6, and Figure 7).

Frequency trajectories

We simulate frequency trajectories under a similar discretized
approximation to the diffusion to that used by Przeworski
et al. (2005). To simulate trajectories conditional on selection
having begun when the allele was at frequency f, we set
Xð0Þ ¼ f and simulate allele frequency change forward in
time according to

Xðt þ 1Þ � NðmSðXðtÞÞDt;sðXðtÞÞDtÞ; (19)

where

mSðXðtÞÞ ¼
2NsXðtÞð12XðtÞÞ
tanhð2NsXðtÞÞ (20)

sðXðtÞÞ ¼ XðtÞð12XðtÞÞ (21)

and we take Dt ¼ 1=2N so that one time step is equivalent to
the duration of one generation in the discrete-time Wright–
Fisher model, and we have conditioned on the eventual fix-
ation of the allele. To simulate the neutral portion of the
frequency trajectory prior to the onset of selection, condi-
tional on the allele having been derived, we take advantage
of the time reversibility property of the diffusion process,

which dictates that the distribution on the prior history of
an allele conditional on being derived and being found at
frequency f is the same as the future trajectory of an allele
that is at frequency f and destined to be lost from the pop-
ulation. This allows us to simulate from

Xðt2 1Þ � NðmNðXðtÞÞDt;sðXðtÞÞDtÞ; (22)

where

mNðXðtÞÞ ¼ 2XðtÞ: (23)

We simply then paste these two trajectories together to give
a frequency trajectory that is conditioned on a sweep begin-
ning when the allele is at frequency f without any unnatural
conditioning on the sweep beginning the first time the allele
reaches frequency f. For simulations intended to check our
standing phase calculation independent of the sweep phase,
we simply discard the sweep portion of the simulation and
retain only the neutral trajectory.

Genealogy and recombination histories

Wesimulate thegenealogybackward in timeat the locusof the
beneficial allele by allowing a coalescent event to occur
between two randomly chosen lineages in generation t with

probability
�
nðtÞ
2

��
2NXðtÞ;where nðtÞ gives the number of

lineages existing in generation t. Coalescent times obtained
from these simulations are then used to generate Figure S1,
Figure S2, and Figure S3. We then simulate the history of
recombination events that move lineages off of the beneficial
background as follows.

We calculate the total time in the genealogy, T, and sim-
ulate an expð2rTÞ distance to the first recombination event.
A position on the tree (i.e., a branch and a specific genera-
tion for the event to occur in) is chosen uniformly at ran-
dom. This event is accepted with probability 12XðtrecÞ;
where trec gives the generation in which the event occurred;
otherwise it is ignored. This process is repeated outward
away from the focal site until the end of the sequence is
reached, and the physical position along the sequence, the
branch, and the generation of each recombination event are
recorded.

We then generate haplotype identities (i.e., the colors in
Figure 2) as follows. We begin at the root of the tree and
assign each sequence to have the same identity over its entire
length. We then move forward in time, from one recombina-
tion event to the next, and for each recombination event we
assign the chromosomes that subtend it a unique new iden-
tity extending from the position where that event occurred
out the end of the sequence, overwriting whatever identity
previously existed there. We iterate this procedure all the
way until the present day. An equivalent method would be
to simply assign each portion of sequence an identity corre-
sponding to the most recent recombination event that falls
between it and the focal site. These haplotype identities are
what we use to generate Figure 3.
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Simulated sequence data

To simulate sequence data, we simply submit the trajectories
simulated as described above to the programmssel (developed
byR. R.Hudson, compiled code is included in File S1).Whereas
our simulations of haplotype identity above still represent
a somewhat heuristic approximation to the true process, in that
they ignore recombination events that do not result in transi-
tions to the alternate background, these simulations of se-
quence data are exact under the structured coalescent with
recombination for our model up to the discretization of the
diffusion process used for the selected allele. These simulations
are used to generate Figure 4, Figure 5, Figure 6, and Figure 7.
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Appendix

Incompatibility of Standing Sweep and Classic Strong Selection Models

Consider the small r approximation 12 expð2rðð1=sÞlnð1=f Þ þ 4Nf ð12 f ÞÞÞ for the recovery of diversity under our standing
sweep model and the approximation

E

	
pR

p0

���hard  sweep


¼ 12 exp

�
2
r
ŝ
lnð2NŝÞ

�
(A1)

for the hard sweep model. We can set these two expressions equal to one another and solve for ŝ; yielding

ŝ ¼ 1
2Ne

e2Wðð4Nesf 224Nesf2lnð1=f ÞÞ=2NesÞ; (A2)

whereWðzÞ is Lambert’sW function. This function evaluates to approximately zero for all sensible combinations of parameters
under ourmodel, and this fact is responsible for the inability tomap the effect of sweeps under the standing sweepmodel to the
strong selection–hard sweep model.

Inclusion of New Mutations in the Frequency Spectrum

In the main text, we defined qð jjkÞ as the expected number of segregating mutations present on j of k ancestral lineages. Here,
we introduce a subscript qancð jjkÞ ¼ u=j and then define

qnewðljk; i; nÞ ¼
uf
l
; if   i ¼ n; k ¼ 1

0; otherwise:

8<
: (A3)

We can then give an improvement upon Equation 14 as

pðljiÞ ¼
Xn
k¼2

pESFðkjRf ; iÞ
Xk21

j¼1

ðqancð jjkÞpðlj j; k; iÞ þ qnewðljk; i; nÞÞ (A4)

and obtain the normalized version by dividing by their sum.
We can make an improvement upon Equation 15 in a similar manner. We first redefine

qnewðljk; i; nÞ ¼

uf þ mn
tf

2
; if   i ¼ n; k ¼ 1; l ¼ 1

mi
tf

2
; if   i, n; k ¼ 1; l ¼ 1

uf
l
; if   i ¼ n; k ¼ 1; l. 1

0; otherwise:

8>>>>>>>>><
>>>>>>>>>:

(A5)

In other words, we allow new mutations to occur during the standing phase provided that there have been no recombination
events during this phase, andwe also allownewmutations during the sweep phase on all lineages that do not recombine during
that phase.Obtaining an improvement over Equation15 is thenonce again simply amatter of adding the term for newmutations
into the previous expression,

pðljnÞ ¼
Xn
i¼0

PNRðijnÞ
Xi
k¼1

pESFðkjRf ; n2 iÞ

3  
Xminðkþn2i21;ℓÞ

j¼1

0
@qnewðljk; i; nÞ þ qancð jjkþ n2 iÞ

Xminð j;ℓ;ðn2iÞÞ

g¼maxð j2k;0Þ
Hðgj j; k; n2 iÞpancðℓ2 gj j2 g; k; iÞ

1
A:

(A6)
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When Does This Model Apply?

FromHermisson and Pennings (2005), given that one or more adaptive alleles are present in the population and either fixed or
destined for fixation G generations after an environmental change, and that these alleles were neutral prior to the environ-
mental change, the probability that a population uses material from the standing variation is approximately

Psgv ¼ 12 expð2QBlnð1þ 2NsÞÞ
12 expð2QBðlnð1þ 2NsÞ þ NsGÞÞ: (A7)

If the population usesmaterial from the standing variation, the probability of finding a single uniquely derived copy of the allele
in a sample of n lineages is approximately

Pðuniquely   derivedÞ � pESFð1jQB; nÞPsgv; (A8)

following from the work of Pennings and Hermisson (2006a). If this allele was at a frequency , 1=2Ns at the moment of the
environmental change, the signature left in polymorphism data will be that of a hard sweep (see Przeworski et al. 2005). The
probability density function for the frequency f of a derived allele at the moment of the environmental change, conditional on
its eventual fixation, is

pð fÞ ¼ 1
f
12 expð24Nsf Þ
ð12 expð24NsÞÞ; (A9)

such that we can define the probability that our sweep from standing variation comes from between frequencies a and b as

qða; bÞ ¼
R b
a pð fÞdfR 121=2N

1=2N pð f Þdf
: (A10)

The probability that a sweep of a uniquely derived allele from the standing variation will leave a classic hard sweep signature is
therefore

Pðhard  sweep  from  standing  variationÞ ¼ pESFð1jQB; nÞPsgvq
�

1
2N

;  
1

ð2NsÞ
�
: (A11)

If we take f ¼ 0:15 as an approximate upper bound on the frequency from which a uniquely derived sweep from standing
variation can be successfully detected, then the probability of such an event is

Pðdetectable  sweep  from  uniquely   derived  standing  variantÞ ¼ pESFð1jQB; nÞPsgvq
�

1
ð2NsÞ; 0:15

�
; (A12)

whereas the probability that adaptation proceeds from a uniquely derived standing variant but is essentially undetectable is

Pðundetectable  sweep  from  uniquely   derived  standing  variantÞ ¼ pESFð1jQB; nÞPsgvq
�
0:15; 12

1
ð2NÞ

�
: (A13)

On the other hand, the probability of obtaining a classic hard sweep signature via a new mutation that occurs after the
environmental change is

Pðhard  sweep  from  de  novo mutationÞ ¼ pESFð1jQB; nÞð12 PsgvÞ; (A14)

while the probability of a multiple-mutation soft sweep, regardless of whether it comes from standing variation or de novo
mutation, is

Pðmultiple-mutation  soft  sweepÞ ¼ 12 pESFð1jQB; nÞ: (A15)
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Figure S1: The expected pairwise coalescent time, in units of 2N generation, on the background of a
derived neutral allele with frequency f in the population. The dashed x = y line shows our approximation
E[T2] = 2Nf . The red dots show the mean of our pairwise coalescent simulations featuring an explicit
stochastic trajectories. The solid line shows the analytical expectation from Griffiths (2003), equation
93, E[T2] =

∫ 1

0
x/(f(x+ (1− x)f))(2− f + 2(1− f) log(1− f)/f)dx.
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Figure S2: Expected inter-coalescent time intervals for 10 lineages sampled in the current day on the
background of a derived neutral allele with frequency f in the population. The colored dots give means of
Tk from our simulations using stochastic trajectories. The solid lines show the expected coalescent times
under our approximation E[Tk] = 2Nf/

(
k
2

)
. Note the good agreement except for k = 2. Presumably our

approximation over estimates this time as it fails to acknowledge that the allele is derived, and hence is
decreasing in frequency backward in time.
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Figure S3: The coefficient of variation (CV) of the inter-coalescent time intervals for 10 lineages sampled
in the current day on the background of a derived neutral allele with frequency f in the population.
The colored dots give the CVs of Tk from our simulations using stochastic trajectories. Under our
approximation the coalescent time intervals are exponential, and so have CV=1. The deeper coalescent
time-intervals (low ks) are more variable than our predictions presumably because neutral trajectories
are highly variable so increasing the variance of the coalescent times. More recent time-intervals (high
k) are in better agreement with our approximation, as the trajectory with not have strayed far from a
frequency f a short way back in time.
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Available for download at www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.178962/‐/DC1 




