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Abstract

Tumors are characterized by extracellular matrix (ECM) deposition, remodeling, and cross-linking 

that drive fibrosis to stiffen the stroma and promote malignancy. The stiffened stroma enhances 

tumor cell growth, survival and migration and drives a mesenchymal transition. A stiff ECM also 

induces angiogenesis, hypoxia and compromises anti-tumor immunity. Not surprisingly, tumor 

aggression and poor patient prognosis correlate with degree of tissue fibrosis and level of stromal 

stiffness. In this review, we discuss the reciprocal interplay between tumor cells, cancer associated 

fibroblasts (CAF), immune cells and ECM stiffness in malignant transformation and cancer 

aggression. We discuss CAF heterogeneity and describe its impact on tumor development and 

aggression focusing on the role of CAFs in engineering the fibrotic tumor stroma and tuning tumor 

cell tension and modulating the immune response. To illustrate the role of mechanoreciprocity in 

tumor evolution we summarize data from breast cancer and pancreatic ductal carcinoma (PDAC) 

studies, and finish by discussing emerging anti-fibrotic strategies aimed at treating cancer.

Keywords

Mechanoreciprocity; Cancer; ECM; CAF; Fibrosis

1. Introduction

Tissue homeostasis requires maintenance of its structure and function. Extracellular matrix 

(ECM) composition, organization and stiffness influence cell adhesion-dependent 

cytoskeletal tension to modulate tissue structure and thus is a key regulator of tissue 

homeostasis. Not surprisingly, pathological conditions linked to ECM stiffening that 

abnormally elevates cytoskeletal tension, including liver fibrosis and chronic pancreatitis are 
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accompanied by perturbations in tissue structure and function and associate with increased 

risk of malignancy [1–4]. Indeed, the physical properties or stiffness of the ECM, has 

increasingly been recognized as an important component of the tumor microenvironment 

(TME), and is now appreciated as a key factor that not only fosters malignant transformation 

but also regulates tumor aggression. Consistently, solid tumors are stiffer than healthy tissue 

and this feature has been exploited to detect cancer either by physical palpation or using 

imaging modalities such as magnetic resonance imaging, computerized tomography and 

elastography (Fig. 1) [5,6]. Moreover, breast cancer and pancreatic ductal adenocarcinoma 

(PDAC) aggression both associate with a stiffer ECM, and experimental models attest to 

causal links between tissue mechanics and malignancy.

“Mechanoreciprocity” is a term that has been coined to describe how a cell “tunes” its 

actomyosin cytoskeletal tension in response to the stiffness of its ECM, and thereafter how a 

cells intrinsic contractile phenotype will in turn remodel and stiffen its local ECM until cells 

reach a state of “tensional homeostasis” or “mechano equilibrium” [7]. In this article, we 

review the reciprocal physical interactions between cells and the ECM in the context of 

malignancy. We begin by describing the ECM and discussing basic concepts of 

mechanotransduction. We then describe the role of cancer-associated fibroblasts (CAFs) in 

generating the fibrotic, stiffened stroma and how this influences tumor progression. We 

thereafter summarize data from breast cancer and PDAC studies that illustrate the role of 

mechanoreciprocity in tumor evolution, and discuss emerging therapeutic strategies aimed at 

targeting fibrosis to improve cancer treatment.

2. Mechanical properties of the ECM

2.1. Structural organization of the ECM

The ECM is the non-cellular component present within all tissues. The ECM not only 

provides structural support for resident cells but also critical biochemical and biomechanical 

cues that drive morphogenesis and tissue-specific differentiation and maintain tissue 

homeostasis [8]. Although the basic building blocks of the ECM are water, proteins and 

polysaccharides, the ECM is a highly dynamic structure that is constantly being remodeled 

through enzymatic and non-enzymatic post-translational modifications that alter its 

instructive capacity [9]. Functionally discrete tissues are thus defined by unique ECM 

compositions and topology that are achieved through dynamic and reciprocal biochemical 

and biomechanical dialogues between the various cellular constituents of the tissue.

The ECM is broadly classified as either basement membrane (BM) or interstitial matrix. The 

BM which surrounds cells such as epithelial, endothelial and hepatocytes, is composed of a 

laminin and collagen IV network that is linked by a perlecan and nidogen network [8]. The 

BM not only provides structural support but also orchestrates the establishment of cell 

polarity and binds critical growth factors and cytokines that regulates cell differentiation and 

maintains tissue homeostasis [10,11]. Although the basic building blocks are conserved, the 

BM in each tissue has a specific composition and structure that is specifically tuned to the 

functional requirement of the organ system.

Piersma et al. Page 2

Biochim Biophys Acta Rev Cancer. Author manuscript; available in PMC 2020 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Interstitial ECMs are composed of proteoglycans and fibrous proteins that maintain tissue 

hydration and mechanical strength. The proteoglycans in the interstitial ECM (e.g. 

hyaluronic acid (HA)) bind water through their glycosaminoglycan (GAG) chains. GAGs are 

un-branched polysaccharide chains composed of repeating disaccharide units that are quite 

hydrophilic and they adopt highly extended formations that bind water to provide hydration 

and permit compression resistance in the tissue. Fibrillar collagens are the main structural 

component of the interstitial ECM that contribute to the tensile strength of the tissue. 

Heterotypic fibrils of collagens I, III, and V are the main fibrillar collagens that are 

assembled into large mechanically resilient fibers. Collagen I fibril assembly involves a 

number of enzymatic post-translational modifications, including the hydroxylation of lysine 

residues by lysyl hydroxylase 2 (LH2), glycosylation of hydroxylysine residues, and 

covalent cross-linking between lysine or hydroxylysine residues by lysyl oxidases (LOX) 

and LOX-like (LOX-L) members; all of which function to strength collagen fibrils [12]. 

Fibronectin is another fibrous protein, which is intimately involved in collagen 

fibrillogenesis [13,14]. Fibronectin is secreted as a dimer, and following integrin receptor 

engagement and actomyosin-dependent cell contraction their cryptic binding sites are 

exposed which allows them to bind to one another to induce fibronectin fibril assembly and 

confers a stretching phenotype to the fibers [15]. Nascent collagen molecules preferentially 

co-localize with relaxed fibronectin fibers, and in turn, dominate as the load-bearing 

structure and prevent further stretching of fibronectin [13,14]. The mechanical dynamic that 

exists between collagen and fibronectin fibrillogenesis is just one example of the mechanical 

regulation of ECM assembly and homeostasis. Many other interactions contribute to 

collagen organization including small leucine-rich repeat proteoglycans (SLRPs) such as 

decorin, and FACIT (Fibril Associated Collagens with Interrupted Triple helices) collagens. 

These interactions and modifications provide the collagenous, interstitial ECM with its 

unique physical properties. In order to understand the complex processes that underlie tumor 

evolution, we need to understand how the tumor ECM is altered from its healthy state, and 

how the chemical and physical composition and topography of the ECM are sensed and 

interpreted, and thereby influence cancer cell behavior.

2.2. The fibrotic tumor stroma

Tumors are “fibrotic wounds that do not heal” and chronic fibrosis is a risk factor for cancer 

[16,17]. For example, idiopathic lung fibrosis is an independent risk factor for lung cancer, 

and the fibrosis induced by epidermolysis bullosa correlates with increased risk for 

metastatic melanoma [18,19]. Wound repair is initiated by the infiltration of inflammatory 

cells that secrete growth factors, cytokines and matrix metalloproteinases (MMPs) that 

recruit fibroblasts and remodel the fibrin clot. The recruited fibroblasts synthesize and 

deposit ECM proteins that generate a provisional matrix and induce mechanical stresses that 

promote the differentiation of fibroblasts into myofibroblasts and stimulate keratinocyte 

migration. The high contractility of myofibroblasts facilitates wound closure and secreted 

MMPs remodel the collagenous matrix to permit wound resolution [20]. Tumor fibrosis by 

contrast is characterized by chronic inflammation, elevated numbers of contractile 

myofibroblasts that secrete abundant ECM proteins and remodeling enzymes that 

reorganize, cross-link and stiffen the matrix, and cytokines and growth factors that stimulate 

tumor cell proliferation and invasion yielding a markedly different stroma (Fig. 2) [21–26].
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In healthy tissues, interstitial collagen is isotropically oriented, whereas the collagen in 

tumors is often aligned and anisotropic. Aligned collagen fibrils in tumors not only reflect 

differences in ECM composition including an increased ratio between collagen I/III but 

tracks with tumor aggression and has been exploited to predict breast cancer patient outcome 

using a tumor-associated collagen signature (TACS3) [22,27–30]. Similarly, highly aligned 

stromal collagen correlates with reduced post-surgical survival in patients with PDAC [31].

The filamentous components of the ECM undergo internal rearrangements in response to 

applied stresses conferring ECM networks with mechanical properties of both liquids and 

solids; defined as viscoelastic [32]. Accordingly, ECM fibers exhibit a non-linear elasticity: 

fibers are strain-stiffening materials (or increase the elasticity as the strain increases). ECM 

fibers also present a viscoelastic response [32–34]. This means that as a result of local ECM 

contraction, the stiffness sensed by neighboring cells hundreds of microns away can be 

magnitudes higher [35–37]. However, whether the increased ECM stiffness caused by strain-

stiffening is responsible for long range communication between cells remains inconclusive. 

Another proposed mechanism that could explain how cells can propagate signals multiple 

cell diameters through the ECM, is described by the cell tension-driven formation of aligned 

fibers of e.g. collagen or fibrin [35–38]. Regardless, these findings suggest that in fibrotic 

tumors, cell-mediated fiber organization can exert profound effects, not only on neighboring 

adjacent cells, but also on cells hundreds of microns away.

The normal healthy tissue stroma transitions into a dense fibrotic tumor stroma through the 

progressive accumulation, alignment and post-translational cross-linking of fibrillar ECMs 

including collagens type I and III. Consistently, breast, pancreas, lung and colon cancer 

aggression are associated with levels and extent of dense, linearized and cross-linked ECM 

in the tissue [21,22,27,28,39,40]. Collagen cross-linking is a multi-step process initiated by 

LHs, which catalyze lysine (Lys) hydroxylation (Hyl). LOX and LOX-L family members 

then catalyze the oxidative deamination Lys and Hyl to generate reactive aldehydes (Lysald 

and Hylald, respectively) that in turn form spontaneous cross-links with opposing Lys or Hyl 

residues [41,42]. In healthy soft connective tissues such as skin, Lysald-derived collagen 

cross-links (LCCs) are abundant, while Hylald-derived cross-links (HLCCs) are abundant in 

load-bearing tissues such as bone [21]. In tumors LH2 may stabilize, organize and stiffen the 

collagen matrix by switching collagen cross-links from LCCs to HLCCs [21,43]. LH2 is 

upregulated in breast and lung cancers, and elevated levels correlate with ECM stiffness, 

tumor aggression and reduced survival [21,44]. These cross-links prevent the sliding of 

fibers relative to one another when the ECM is subject to external load, leading to changes in 

the plasticity (irreversible deformations) of the matrix. Collagen cross-linking also increases 

the resistance of the ECM to applied force, which manifests as an increased elastic modulus 

of the ECM [45]. Moreover, while healthy tissues demonstrate a balance between ECM 

synthesis and enzymatic degradation, in a highly cross-linked diseased tissue, this balance is 

tipped in favor of ECM synthesis primarily due to the inability of MMPs to digest collagen 

[46].
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2.3. Mechanosensing and mechanotransduction

Cells within a tissue are constantly subjected to force (compression, tensile and sheer stress; 

Box 1). All cells actively sense and respond to these forces via a process termed 

mechanotransduction. Cells sense externally applied force through conformational changes 

in transmembrane proteins such as stretch-activated ion channels, cadherins and integrins 

(mechanosensing). Mechanical cues are then translated into biochemical signals within the 

cell to modify cell behavior (mechanotransduction). Thus, when cellular integrins 

experience shear flow their ectodomain undergoes a conformational change that induces a 

high-affinity state that fosters ligand binding (integrin activation) (Fig. 3). Force can also 

influence the lifetime of ECM-integrin adhesions as is illustrated by integrin αIIbβ3 which 

exhibits a slip-bond behavior in which the ligand bond lifetime is shortened, or with integrin 

α5β1 which demonstrates a catch-bond behavior that prolongs the bond lifetime [47,48]. 

Force can also reinforce integrin adhesions by promoting the unfolding of protein domains 

in ECM ligands including fibronectin fibrils where force exposes cryptic bindings sites that 

promote α5β1 integrin engagement (mechanical reinforcement; [49]), that promotes 

fibronectin assembly [50].

Cells translate force by activating intracellular signaling pathways. For example, force 

applied to ECM-integrin adhesions promotes the formation of focal adhesions that recruit 

adhesion plaque proteins to trigger signaling cascades and cytoskeletal reorganization. Many 

of the proteins within focal adhesions also undergo force-induced conformational changes. 

Force exposes cryptic binding sites in talin and vinculin. Talin directly interacts with the 

cytoplasmic domain of the integrin beta chain and tension-stabilized interactions between 

talin and vinculin acts as a molecular clutch to bind the actin cytoskeleton [51]. The slow 

loading rates induced in cells interacting with a soft ECM fail to induce talin unfolding and 

vinculin recruitment before the slip-bond between the integrin and its ligand ruptures. By 

contrast, in cells interacting with a stiff ECM the high loading rate induces vinculin-

dependent clutch reinforcement and facilitates catch-bond formation. Consequently, both 

catch-bond–dependent adhesion strengthening, and vinculin-dependent clutch reinforcement 

are essential for triggering downstream signaling by integrins including the activation of 

FAK and the nuclear translocation of the transcription factor YAP [48,52]. Force can also 

alter the conformation of intracellular signaling molecules such as the tension induced 

exposure of tyrosine motifs in p130Cas (also known as BCAR1) that are phosphorylated by 

Src kinases and that serve as a docking hub for signaling molecules [53,54]. Force can 

additionally remodel protein-protein interactions in focal adhesions, as was demonstrated for 

adhesion-associated LIM domain-containing proteins [55]. Force can also promote integrin 

clustering to drive focal adhesion assembly. Theoretical analysis suggests that lateral cross-

linking of adjacent integrins by adaptor proteins allows the redistribution of the tensile load 

between adjacent bonds within the cluster, increases integrin rebinding rates, and extends the 

duration of mechanotransduction [56]. The functional significance of integrin clustering has 

been demonstrated in a tumor model, where enhanced β1 integrin clustering induced by the 

V737N point mutation in the β1 integrin transmembrane domain, but not constitutive β1 

integrin activation induced by G429N point mutation in the β1 integrin ectodomain, can 

bypass the requirement of ECM stiffness for inducing FAK activation and malignant 

phenotypes in tumor cells cultured on soft substrates [57,58]. Integrin clustering may be 
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further modified by regulation of cell surface glycans on the protein and lipid backbones that 

form the glycocalyx [59]. A bulky glycocalyx and in particular rigid glycoproteins such as 

mucin 1, create a kinetic trap that both applies tension on the integrin to activate it (outside-

in activation) but also promotes integrin clustering and focal adhesion assembly [60,61].

Cells then modify the composition, organization and elasticity of their microenvironment, 

and reciprocally adjust their behavior in response to this tensile resistance 

(mechanoreciprocity). ECM tensile resistance increases actomyosin-mediated tension and 

induces cytoskeletal remodeling that promote ECM remodeling and stiffening. For example, 

activation of Rho-associated protein kinase (ROCK) phosphorylates myosin light chain 

(MLC) to enable cells to pull on and remodel the ECM through actomyosin-mediated 

contractility [62,63]. ROCK can also inhibit the phosphatase that acts on MLC, further 

enhancing its phosphorylation and activity. Force can also trigger sustained cellular 

responses by altering gene expression. For instance, force-mediated biochemical signaling 

can induce the expression of ECM proteins (fibronectin and collagen) and ECM-modifying 

proteins (MMPs and LOX) which remodel and stiffen the surrounding microenvironment 

and reinforce mechanosignaling. In this manner, cells can alter the composition, 

organization and elasticity of their tissue microenvironment and alter their adhesions and 

cell shape and orientation to tune their behavior according to the magnitude, direction and 

nature of applied mechanical stress. Cells maintain a state of tensional homeostasis by 

adjusting to balance forces in order to maintain function and integrity within a 

heterogeneous tissue [64].

3. Cancer-associated fibroblasts in the tumor stroma

3.1. CAF function

Fibroblasts synthesize and remodel the interstitial matrix and are therefore aptly named the 

engineers of the ECM. Not surprisingly, fibroblasts are essential for tissue repair and 

homeostasis [65]. In wound healing, a variety of growth factors and cytokines stimulate 

fibroblast recruitment. These recruited fibroblasts deposit ECM proteins, which elevates 

mechanical stress in the wound, that in turn, induces the transdifferentiation of fibroblasts 

into myofibroblasts, through a process characterized by the de novo expression of α smooth 

muscle actin (αSMA) [66]. In response to transforming growth factor (TGF) β1, fibroblasts 

produce the EDA splice variant of fibronectin and this in turn enhances cellular tension 

through fibronexus adhesions [67,68]. The elevated cellular tension promotes the assembly 

of focal adhesions and the recruitment of αSMA to the actomyosin fibers [69]. Notably, 

while smooth muscle cell contraction is rapid and short in duration, αSMA-positive 

myofibroblasts contract the ECM over longer time periods, to permit permanent tissue 

contraction [70]. This chronic tissue contraction is mediated by both calcium-calmodulin-

MLC kinase-dependent contraction and Rho-ROCK-myosin light chain phosphatase-

mediated contraction [71]. Chronic tissue contraction also stiffens the ECM, and via EDA-

fibronectin, promotes the tension-induced release of TGFβ1 from the latent complex thereby 

activating it and further amplifying fibroblast activation through a feedforward 

reinforcement circuit. Actomyosin-mediated contraction in fibroblasts also activates 

YAP/TAZ and MRTF and enhances ECM remodeling by transcriptionally increasing ECM 
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protein expression, thereby linking physical stress with gene transcription in myofibroblasts 

[72–74]. In a healthy tissue, wound resolution either induces myofibroblast apoptosis or 

reverts their phenotype towards a quiescent fibroblastic state [75–77]. In this manner 

mechanical and biochemical signaling control myofibroblast differentiation and phenotype.

Fibroblasts within the TME are collectively termed CAFs, and in many solid tumor types, 

correlate with tumor aggression and reduced survival [78–80]. Similar to myofibroblasts, 

CAFs were originally identified as αSMA-positive fibroblast-like cells [81,82]. However, 

CAFs are fundamentally different from normal, and even wound-associated fibroblasts. Key 

distinctions include the fact that fibroblasts are in a resting, non-proliferative and low 

metabolic state. Wound-associated fibroblasts and CAFs alike, are characterized by loss of 

certain fibroblast markers (fibroblast activation protein; FAP) and acquisition of muscle-like 

markers (αSMA), as well as increased ECM synthesis and remodeling, and a contractile 

phenotype. The distinction between wound-associated fibroblasts and CAFs is the sensitivity 

of fibroblasts to undergo apoptosis, and/or dedifferentiate to a resting state following 

resolution of the wound. Moreover, CAFs, and not normal fibroblasts, promote tumor cell 

proliferation and migration [83–86]. Through direct contact, CAFs can also pull and lead 

tumor cells away from the primary tumor, and thereby support metastasis [87,88]. Like 

normal fibroblasts, CAFs are recruited to the tumor stroma by growth factors secreted by 

tumor cells and they are likely converted to myofibroblasts by similar signals to those found 

in wounds. Initially, CAFs are likely recruited to the tumor to repair the injured tissue where 

they may initially restrain tumor cell invasion. However, as the tumor evolves the CAFs 

continue to deposit ECM proteins, secrete growth factors and contract and remodel the 

ECM. As a consequence, CAFs re-organize and cross-link collagen to induce stiff and 

oriented collagen fibers along which tumor cells can migrate [89]. Thereafter, the MMPs 

secreted and activated by the tumor cells and CAFs facilitate BM degradation and promote 

tumor cell migration to foster malignant transformation and tumor cell dissemination. In this 

manner, a mechanical feedback loop exists between CAF activation status and ECM 

stiffening [15,90].

CAFs reside in almost all solid tumors; however, their contribution to the stromal population 

varies between different types of cancers. For example, breast and pancreatic cancers display 

high CAF density, whereas brain, kidney and ovarian cancers display lower CAF density 

[91]. While CAF density has been associated with poor prognosis, the CAF population 

remains poorly defined in terms of origin, subtype and biology in part due to their extreme 

phenotypic heterogeneity coupled with the lack of specific, definitive markers.

3.2. CAF heterogeneity

Historically, CAFs were identified by αSMA expression, and studies underestimated the 

complexity of CAF heterogeneity, with adoption of the misconception that CAFs represent a 

homogenous and static population of stromal cells [82]. It is now appreciated that not all 

CAFs express the classical marker αSMA. Recent advances in studies of CAF heterogeneity 

indicate multiple CAF subtypes coexist in the TME, each influencing the tumor in a unique 

manner with tumor-promoting or tumor-restrictive roles [79,92]. Currently, there is no 

consensus to the molecular definition of CAFs [93]. In principle, determining specific pro-
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tumorigenic CAF subtypes would provide direction for the development of CAF-targeted 

anti-cancer therapies. Studies in breast cancer and PDAC have since compared the 

expression profiles of multiple molecular markers associated with CAFs and demonstrated 

functionally distinct CAF subsets [79,94–96]. In breast cancer, CAF subtypes have been 

associated with certain tumor subtypes. For example, CAFs with low expression of β1 

integrin, αSMA, FAP, and PDGFRβ associate primarily with luminal subtypes (less 

aggressive), whereas CAFs positive for these CAF-associated markers were predominantly 

found in human epidermal growth factor receptor 2 (HER2) and triple negative breast 

cancers (TNBC) (more aggressive) [79]. Moreover, TNBC-associated CAFs demonstrate 

immune-suppressive functions by recruiting and activating FoxP3+ regulatory T-cells (Treg), 

whereas HER2-associated CAFs do not. Although these CAF subsets did not correlate with 

patient survival, the authors linked CAF subsets to histological grade and tumors from 

patients that received chemotherapy treatment. Similarly, two CAF subtypes were identified 

in PDAC as CD10-negative and CD10-positive, with the latter having a more pro-

tumorigenic role. This finding was supported in both breast and lung cancers, with CD10-

positive CAFs (CD10+ GPR77+) promoting tumorigenesis and chemoresistance [97]. In 

PDAC, one study identified two distinct CAF subsets; αSMAHighFAP+ myofibroblastic 

CAFs (MyCAF), which were responsive to TGFβ1, and αSMALow inflammatory CAFs 

(iCAF), which secreted inflammatory mediators such as IL-6 [95]. Moreover, MyCAFs were 

located adjacent to the tumor, while iCAFs were located in the dense stroma. These studies 

allude to the notion that tumors influence CAF heterogeneity. Such that, PDAC-derived IL-1 

pushes CAFs towards an iCAF phenotype, while TGFβ1 pushes towards a MyCAF 

phenotype. Moreover, TGFβ1 can push iCAFs towards a MyCAF phenotype by antagonism 

of the pro-inflammatory IL-1/JAK/STAT pathway [92]. These studies suggest that 

fibroblasts can adopt multiple cell states, ranging from a pro-inflammatory to an anti-

inflammatory, myofibroblast-like phenotype [92,95]. Together, these reports indicate 

diversity of CAFs, in regard to marker expression, spatial distribution and tumor subtype. 

The resolution of CAF heterogeneity is an essential to enable the development of CAF-

based therapeutic strategies.

3.3. CAF immune cell interactions

Chronic inflammation has been implicated in malignant transformation and metastasis. The 

infiltrating macrophages in a chronically inflamed tissue secrete factors such as TGFβ that 

stimulate the resident stromal fibroblasts to synthesize and secrete ECM proteins, MMPs 

and increase the levels and activity of collagen cross-linking enzymes that remodel and 

stiffen the tissue stroma [22,98,99]. Indeed, early during cancer development immune cell-

derived IL-1β activates nuclear factor-κB (NF-κB) signaling in CAFs to instruct their 

production of a tumor-promoting inflammatory response [100]. Accordingly, over time 

chronic inflammation will induce tissue fibrosis. Whether chronic inflammation increases 

risk to malignancy and promotes malignancy and tumor aggression by inducing tissue 

fibrosis remains an open question. What is clear is that the stromal CAF secretome can 

modify tumor immunity by influencing innate immune cell recruitment and activation and 

polarizing the adoptive immune response towards a pro-tumor phenotype. CAF secreted 

IL-6 recruits tumor-associated macrophages and promotes their transition to an 

immunosuppressive phenotype (M2). Moreover, the expression of CAFs and M2 markers is 
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associated with poor clinical outcome in colorectal cancer and oral squamous cell carcinoma 

patients [101–103]. CAFs also recruit and induce differentiation of Tregs to repress anti-

tumor immunity [104]. The secretome of CAFs can also enhance the tumor promoting 

function of CD4+ Helper T (Th) lymphocytes, favoring the tumor-promoting Th2 and Th17 

phenotype over the tumor protective Th1 response. Indeed, CAFs can directly reduce the 

activation of CD8+ cytotoxic T cells and natural killer (NK) cells by expressing inhibitory 

immune checkpoint signals, programmed death-ligand (PD-L)1 and PDL-2 [105], or they 

can secrete immune suppressive factors, such as prostaglandin E2 (PGE2) [106]. In this way, 

CAFs have the capacity to recruit and stimulate immunosuppressive cells as well as inhibit 

various immune effector cells.

The dense, stiffened fibrotic ECM induced through CAF activity can also physically prevent 

immune cells from efficiently infiltrating the tumor to limit T cell contact with cancer cells 

[107]. Indeed, immune exclusion has been linked to a lack of anti-PDL1 therapy response, 

particularly in some tumors with a gene signature that reflects high TGFβ1 signaling in the 

tissue CAFs [108]. Consistently, co-treating mouse breast and colorectal tumors with 

inhibitors against TGFβ and PD-L1 reduced CAF expression of ECM-modifying enzymes to 

enable T cell penetration which reduced the primary and metastatic tumor burden 

presumably by overcoming their immune exclusion phenotype [109]. A note of caution is 

needed however, since ECM remodeling can release growth factors and cytokines that 

promote tumor cell growth and recruit immune suppressive myeloid cells, as well as unmask 

cryptic binding sites in the ECM that could deleteriously alter immune cell interactions, and 

may also promote the unrestrained dissemination and expansion of tumor cells that express 

high levels of immune suppressive glycoproteins such as sialic acid that can severely 

compromise checkpoint inhibitor response [110].

3.4. CAF phenotype regulation

The biophysical and biochemical properties of the tumor ECM are largely dictated by the 

subtype and phenotype of the resident CAFs, and their location with the tissue [63]. CAF 

heterogeneity has been highlighted by deep-sequencing studies conducted using human 

tumor biopsies [88,111,112]. Functional studies have revealed the relevance of this 

heterogeneity by showing how some CAFs regulate ECM synthesis, remodeling and 

stiffening, whereas others primarily function as immune cell modulators [96]. Indeed, recent 

data suggest that distinct CAF subtypes are located within specific regions of the tumor and 

indicate that each cancer type may harbor different CAF subtypes [96,113]. This division of 

CAF location, subtype and function can have profound implications on tumor evolution. For 

example, in lung fibrosis, fibroblasts are primarily activated by synergistic interactions 

between tissue tension and TGFβ, and these “activated fibroblasts” produce and remodel the 

ECM to progressively stiffen the stroma adjacent to the CAFs that compromises alveolar 

function [72,114]. Clearly, elucidating the spatio-mechanical heterogeneity of CAFs and 

their surrounding ECM will clarify how specific CAF subsets arise, whether and how they 

switch from one phenotype to another, and which subsets needed to be targeted to achieve 

the best therapeutic outcome, while minimizing detrimental effects of broadly targeting all 

CAFs.
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4. Mechanoreciprocity: push me, pull you

In all tissues, the dynamic and reciprocal interplay between cellular contractility and ECM 

stiffness is key for the maintenance of tissue homeostasis. In tumors, a stiffened ECM and 

elevated tumor cell contractility due to increased oncogene activity [115] severely disrupts 

tensional homeostasis [7]. CAFs synthesize, remodel and cross-link the ECM to increase 

stiffness, and ECM stiffness is feedback to further stiffen, remodel and reorient the ECM 

[85]. A stiff ECM promotes focal adhesion assembly and enhances cytoskeletal tension to 

increase growth factor receptor signaling-dependent activation of ERK and PI3K in tumor 

cells. In the transformed epithelium in particular, the increased cellular tension stimulates 

cell growth, disrupts cell-cell adhesions, compromises tissue polarity and promotes tumor 

cell invasion into the stroma [57,58,116]. The stiffened ECM also promotes the release of 

the transcription factor Twist1 from its cytoplasmic binding partner G3BP2, so that its 

nuclear translocation can activate genes that promote an epithelial to mesenchymal transition 

(EMT), which is a tumor state linked to tumor aggression and metastasis [117]. Interestingly, 

in addition to their effects on the ECM and secretion of soluble factors, CAFs can also 

modulate tumor cell behavior through direct cell-cell contact. Thus, CAFs can exert tensile 

force on tumor cells through heterophilic E-cadherin/N-cadherin junctions that recruit the 

actin associated molecules α-actinin, vinculin, nectin-1 and −2, and afadin to prevent 

polarity reversal and promote tumor cell detachment to drive their invasion [88,118].

As tumor cells in solid cancers such as the breast and pancreatic proliferate, their increased 

volume imposes tensile forces on the surrounding fibrotic ECM which in turn constrains the 

tumor mass [97,119]. The resultant stored stress deforms compliant structures within the 

tumor including blood and lymphatic vessels, and this deformation compromises vessel 

structure and function to impair fluid flow that induces hypoxia and prevents lymphatic 

drainage. This reciprocal interaction between a proliferating and growing tumor and the 

tense surrounding ECM also creates a feedback loop where surrounding stromal cells are 

continuously stimulated to further potentiate tumor progression [68]. This growth-induced 

mechanical tissue stress can also activate the Ret-β/catenin pathway in the tumor cells 

themselves to potentiate tumor cell growth and invasion and when/if chronic can induce an 

EMT that can promote metastasis [120].

A stiffness gradient in the ECM, such as that at the invasive front of tumors, promotes the 

migratory behavior of single cells up the stiffness gradient through a process termed 

durotaxis, and this phenotype has been implicated in tumor cell dissemination and metastasis 

[121,122]. Indeed, an ECM stiffness gradient may also foster the migration of tumor 

aggregates, through a process mediated by the collective contraction of the actomyosin 

cytoskeleton and retrograde flow of polymerizing actin in the cell cluster [123]. These 

migrating tumor clusters preferably migrate along stiff EDA-fibronectin fibers using integrin 

α9β1 [124]. In this regard, CAFs can tunnel through the ECM to create collagen, fibronectin 

and tenascin C enriched tracks along which tumor cells can migrate; the relevance of which 

was clinically validated in head and neck squamous cell carcinoma specimens [87]. Indeed, 

CAFs can deposit and create fibronectin fiber tracks on their surface along which tumor cells 

can migrate using α5β1 integrins [125]. CAFs can also exert actomyosin-dependent forces 

on the BM to generate MMP-mediated thinning and stromal heterogeneity previously 
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implicated in tumor progression [126]. Tumor cells and presumably CAFs can also strain-

stiffen the ECM through increased actomyosin contraction and cytoskeletal tension [127]. 

This strain-stiffened ECM can thereafter create stress fields that can be sensed hundreds of 

microns away where it can distally stimulate single cell and collective cell migration to 

foster tumor cell dissemination [38].

Many oncogenes implicated in cancer such as mutant Ras stimulate Rho GTPases and 

ROCK to increase actomyosin contractility in the transformed cells. Increased tumor cell 

tension can activate integrins via inside-out signaling and stimulate the remodeling of the 

tumor adjacent stroma. The importance of this phenotype was illustrated by studies in Ras-

induced squamous cell carcinoma, whereby activated Ras stimulated ROCK activity in the 

tumor cells to increase their actomyosin contractility. The high contractility of the Ras pre-

transformed cells induced the remodeling, cross-linking and stiffening of the tumor adjacent 

stroma. The stiffened tumor adjacent ECM and increased tumor cell contractility activated 

the tumor cell integrins which in turn promoted β-catenin activation and drove tumor cell 

growth and ultimately malignant transformation [115]. Tumor cells can also synthesize 

ECM components that are distinct from those generated by CAFs and these ECM proteins 

have been implicated in tumor cell metastasis [25,128]. Critically, over time and in response 

to chronic stiffness some cancer cells soften, and the degree of their softening correlates 

with their metastatic potential [129–131]. The stiffness of a cell depends primarily on the 

mechanical properties of the nucleus and cytoskeleton with some contribution from the 

cellular organelles [132].

5. Mechanoreciprocity in solid tumors

Mammographic density (MD) associates with an overall increase in lifetime risk for 

malignancy [133,134]. MD not only reflects a higher epithelial density in the tissue but 

detects the increased levels of fibrillar collagen that stiffens the breast tissue [135]. Stromal 

stiffness also associates with breast cancer aggression, in which the more aggressive 

subtypes (HER2 and TNBC) contain more linearized collagen and have a stiffer stroma than 

the less aggressive subtypes (luminal A and luminal B) [22]. The abundance of fibrillar 

collagen in a primary breast tumor is a significant risk factor for patient survival [136]. 

Tumor collagen abundance also associates with distant metastasis in TNBC [137], and was 

shown to promote tumor aggression and metastasis in experimental mouse models [138] 

(Fig. 4).

Transcriptome-wide analyses demonstrated that dramatic and consistent changes in gene 

expression occur within the breast cancer associated fibroblast and myoepithelial population, 

and that it is possible to derive a prognostic gene signature (26-gene) that can predict 

relapse-free survival in breast cancer patients [139–141]. Indeed, one ‘wound-healing’ gene 

signature, identified using microarray analysis of serum stimulated cultured fibroblasts 

predicted breast cancer patient survival [142], whereas another identified a predictive 

association between a stromal gene expression signature and resistance to neoadjuvant 

chemotherapy [143]. These data clearly implicate CAFs in breast cancer progression and 

imply the phenotype/genotype of the tumor stroma has potential predictive value.
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PDAC which is an aggressive cancer with an overall 5-year survival rate between 6 and 7% 

[96]. PDAC is characterized by an intense fibrotic stroma, with high abundance of CAFs, 

immune cells and excessive ECM accumulation, that accounts for most of the tumors 

volume (50–80%) [96,144–146]. The dense and poorly vascularized stroma compromises 

the tumor vasculature to inhibit drug penetration and induce hypoxia which promotes 

therapeutic resistance and tumor aggression [31,147,148]. Not surprisingly, a major 

challenge in PDAC treatment is overcoming the profound fibrotic response.

In PDAC, tumor cells at both the primary site and metastatic tissues, secrete factors such as 

TGFβ1 that activate stromal fibroblasts and pancreatic stellate cells (PSCs) to stimulate the 

synthesis, deposition and cross-linking of the stromal ECM and this ability to activate the 

stroma is dictated by the tumor cell genotype [23,149–151]. In turn, changes in the ECM 

may also drive the early stages of tumor formation. Furthermore, pancreatic tumor cells 

themselves can produce ECM proteins including collagen type IV [152]. Importantly, PDAC 

fibrosis is most evident in the periductal regions, consistent with the idea that tumor cell 

tension and paracrine signaling are potent drivers of the unique fibrotic response found in 

this disease. Clearly PDAC progression and aggression hinge on the complex interplay 

between the genotype/phenotype of the tumor cells, the nature and abundance of the CAFs 

or PSCs in the tumor and their respective impact on the ECM and tissue tension. As such 

clarifying this tumor-stromal dynamic should help improve patient treatment.

6. Anti-fibrotic therapies in cancer treatment

6.1. Targeting the ECM and ECM modulators

The stiff, dense ECM is an attractive anti-tumor cancer target. Not surprisingly, strategies 

have been developed to target ECM deposition and collagen-modifying enzymes to reduce 

ECM stiffness. The pharmacological inhibitor of lysyl oxidase (LOX), BAPN and a LOX-

specific function blocking antibody both prevented LOX-dependent collagen cross-linking 

and reduced tissue fibrosis to delay breast cancer progression and reduce malignant 

transformation in a transgenic mouse model of HER2-positive mammary cancer [58]. 

Although chronic use of BAPN is contraindicated for long term clinical use, a LOX function 

blocking antibody has been developed. However, initial clinical trial results have been 

disappointing and attributed to inefficient enzymatic inhibition and poor tumor penetration 

of the inhibitory antibodies. Importantly, epithelial LOX has other functions including anti-

Ras activity of the pro-peptide that is released following LOX activation that would be 

prevented when LOX activity is inhibited and this could impede its anti-tumor effect [153]. 

LOX-L2 inhibitory antibodies including simtuzumab, have also been developed, but these 

inhibitors have also proven to be unsuccessful in early clinical trials [154–156], possibly 

because this enzyme is primarily expressed by the tumor epithelium which preclinical 

studies in knock-in and knock-out transgenic mouse models of mammary tumors clearly 

demonstrate has little to no effect on the tumor ECM [157]. CAFs also express lysyl 

hydroxylases that modify fibrillar collagens prior to their secretion. CAF LH2 depletion 

prevented collagen gel stiffening and prevented collagen-mediated tumor cell invasion and 

LH2-mediated collagen cross-links correlated with human breast tumor aggression and poor 

patient survival [43,158]. Although no specific small molecule inhibitors against LH2 other 
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than Minoxidil exist [159], the development of 3D structure models and a high throughput 

assay for LH2 activity should accelerate the identification of anti-LH2 compounds 

[160,161].

A stiff, dense tumor ECM compresses intratumoral blood and lymphatic vessels to increase 

interstitial tissue pressure, induce hypoxia and impede anti-cancer drug treatment delivery 

[55]. Much effort has been expended to reduce ECM density and stiffness to ameliorate the 

high interstitial tissue pressure and permit efficient drug delivery to the tumor. One example 

is the enzymatic degradation of HA that preclinical PDAC transgenic models demonstrated 

very efficiently attenuated interstitial pressure to facilitate Gemcitabine penetration, decrease 

metastatic burden and improve mouse survival [162,163]. Unfortunately, a phase Ib trial 

evaluating the PEGPH20 (PEGylated recombinant human hyaluronidase) plus gemcitabine 

combination demonstrated modest improvements in overall survival and progression free 

survival in patients selected for high HA content [164]. Nevertheless, PEGPH20 plus nab-

paclitaxel/gemcitabine combination-therapy improved PFS in patients with untreated 

metastatic PDAC, especially in patients with high HA levels [165]. In contrast, a large 

multicenter phase III study on the combination of PEGPH20 plus nab-paclitaxel/

gemcitabine failed to improve the median OS (NCT02715804, [166]). Moreover, a phase 

I/IIb evaluation of PEGPH2 with FOLFIRINOX in metastatic pancreatic cancer reported 

detrimental outcomes due to higher PFS and OS in the control arm, and increased toxicity 

rates in the combination arm [167]. Despite potential adverse effects the addition of 

PEGPH2 treatment may increase treatment efficacy in patients with high-HA tumors. 

Consistently, PEGPH20 in combination with anti-PD-L1 antibody immune therapy 

increased sensitivity towards PD-L1, reduced therapy resistance and increased survival in 

mouse models of breast cancer [163]. The findings suggest that HA targeting may comprise 

an effective strategy to improve drug delivery and enhance cancer therapy.

Recent studies suggest that the ECM may constitute a viable targeting strategy. For example, 

the collagen-binding properties of the protein lumican tethered to the cytokines IL-2 and 

IL-12 effectively increased cytokine retention and provided long-term therapeutic effects in 

combination with simultaneous dual checkpoint blockade using anti-PD-L1 treatment [168]. 

Clearly, targeting the ECM or its post translation modification or using it for a targeting 

vector are viable strategies to treat tumors.

6.2. Targeting mechanosensing and transduction

Mechano-sensing and -signaling through focal adhesions is increased in fibrotic tumors and 

fuels tumor cell proliferation, survival, migration and invasion. Nevertheless, and despite 

encouraging pre-clinical study results using α5β1and αvβ3 integrin function blocking 

antibodies and cyclic peptides or peptidomimetics, clinical trials failed to demonstrate 

significant therapeutic efficacy [169]. The search for effective anti-integrin function blocking 

antibodies continue with a recent focus on integrin α11, whose expression is high in stromal 

fibroblasts [170], and synergizes with PDGFβ to induce CAF-dependent breast cancer cell 

invasion [171].

Better success has been achieved by targeting integrin-dependent signaling. The dual focal 

adhesion kinase 1–2 (FAK1-FAK2) inhibitor VS-4718 not only repressed integrin-dependent 
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mechanosignaling but also effectively decreased fibrosis in a transgenic mouse model of 

PDAC [23], and normalized tumor immunity in syngeneic PDACs and rendered them 

responsive to chemo- and immune-therapy [172]. Similarly, another FAK inhibitor 

Defactinib, effectively reduced the frequency of cancer stem cells in a pre-clinical breast 

cancer model [173]. Defactinib is current being investigated in a phase II clinical trial as 

combination therapy with anti-PD-1 immunotherapy and gemcitabine in patients with 

advanced pancreatic cancer, and the first reports are expected in 2020 [NCT02546531]. 

Notwithstanding these encouraging results, FAK inhibition can induce tumor-intrinsic 

STAT3 hyperactivation that promotes disease progression [174] but that could be 

ameliorated using combinatorial FAK and JAK/STAT3 inhibitors. Indeed, analogous to the 

complexity and resistance that routinely arises in tumor-targeted therapies, anti-stromal 

therapies will also likely induce resistance that can be addressed using combinatorial 

therapies.

6.3. Targeting CAFs

CAFs comprise an attractive anti-tumor therapeutic target. CAF depletion using CD8+ T 

cell-mediated killing of FAP+ CAFs suppressed primary breast and colon tumor growth and 

metastasis in experimental models [175]. Similarly, adoptive transfer of FAP-specific 

chimeric antigen receptor (CAR) T cells, restrained the growth of desmoplastic human lung 

cancer xenografts and syngeneic murine pancreatic cancers [176]. However, and 

unfortunately, FAP is not exclusively found in CAFs, and its expression by multipotent bone 

marrow stem cells and skeletal muscle means that therapies targeting this protein can induce 

unwanted and potentially deleterious effects including cachexia and lethal bone toxicity 

[177]. One approach that could be used to avoid the toxicity associated with targeting 

conserved CAF proteins is the targeting of specific CAF subsets particularly if they are 

implicated in tumor phenotypes such as chemoresistance as was illustrated using a GPR77-

neutralizing antibody to target CD + GPR77+ CAFs to reduce tumor stemness and enhance 

chemosensitivity in breast and lung cancer patient PDX xenografts [178].

The phenotype of tumor associated fibroblasts or myofibroblasts is quite plastic and they can 

spontaneously revert to an inactive state as has been observed following liver fibrosis 

regression [77]. This concept has prompted the development of therapeutic strategies to shift 

the CAF phenotype from tumor-promoting to tumor-suppressive as was demonstrated by 

replenishing the depleted retinoic acid stores in activated (PSCs) by administering all-trans 

retinoic acid (ATRA) to inactive them [179]. Similarly, treatment of PSCs with calcipotriol, 

the active component of vitamin D, suppressed pancreatitis, reduced PDAC growth and 

enhanced therapeutic efficacy by reprogramming the PSCs towards a quiescent state [180].

Strategies have also been developed to either deplete CAFs or prevent their induction. For 

instance, nanoparticles loaded with TRAIL can block TGFβ-mediated fibroblast 

differentiation into CAFs [181] and metronomic chemotherapy can limit CAF induction in 

tumors by decreasing chemokine expression [182].
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7. Conclusions and future perspectives

There is increasing recognition that the density, organization and tensile properties of the 

ECM play an important role in tumor pathogenesis. ECM stiffness and tumor cell 

contractility can potentiate tumor cell growth and survival to drive malignant transformation, 

promote invasion and facilitate metastasis. Nevertheless, it is still unclear whether there exist 

cancer-specific ECM mechanophenotypes, and if so, what dictates these differences and 

their physiological relevance for tumor behavior. Are there qualitative differences in ECM 

composition, architecture and collagen cross-linking that distinguish chronic fibrosis from 

tumor fibrosis and if so, what regulates these differences, and do they contribute to cancer 

initiation? Do tissue specific differences in CAF subsets exist, and do they derive from 

distinct lineages and what role do they play? Are there distinct immune suppressive CAFs 

and is it possible to reprogram these CAFs to promote anti-tumor immunity and could this 

be used to prevent malignant transformation and/or metastasis? Clearly constructing a 

comprehensive atlas of ECM organization, mechanical phenotype and CAF subtype, 

function and origin will provide critical information with which to clarify the role of the 

ECM in malignancy help develop stromal-specific anti-cancer treatments.
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Abbreviations:

BM basement membrane

CAF cancer-associated fibroblast

DCIS ductal carcinoma in situ

ECM extracellular matrix

EMT epithelial-to-mesenchymal transition

FACIT fibril associated collagens with interrupted triple helices

FAP fibroblast activation protein

FAK focal adhesion kinase

GAG glycosaminoglycan

HA hyaluronic acid

HER2 human epidermal growth factor receptor 2

HLCC Hylald-derived cross-links

ICAF inflammatory CAF

LCC Lysald-derived collagen cross-links
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LH2 lysyl hydroxylase 2

LOX lysyl oxidase

MEC mammary epithelial cell

MLC myosin light chain

MMP matrix metalloproteinase

MYCAF Myofibroblastic CAF

PDAC pancreatic ductal carcinoma

ROCK rho-associated protein kinase

SLRP small leucine-rich repeat proteoglycan

SMA smooth muscle actin

TACS tumor-associated collagen signature

TGF transforming growth factor

TME tumor microenvironment

TNBC triple negative breast cancer
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Box 1

Biomechanical concepts in tumor biology.

Stress:

describes the internal resistance produced when an object is deformed by an external 

force, measured as force per unit area and expressed in pascals (Pa), where 1 Pa = 1 

N/m2. There are three types of stress: tensile (pulling) and compression stress (pushing) 

are due to a force applied perpendicular to the object surface; shear stress results from a 

force that acts parallel to the object surface.

Strain:

describes the deformation of an object relative to its original length, measured in percent.

Stiffness:

describes the elasticity of a material or the property of restoration to its original shape 

after deformation, measured in pascals (Pa). Stiffness is related to elasticity however; 

stiffness may change as the force increases and is not a characteristic property of the 

object.

Elasticity:

describes the ability of an object to return to its original shape after removal of a force. 

Elasticity is described by the modulus of elasticity, which is defined as the ratio of stress 

to strain. Youngs modulus (E) describes the elasticity of a material subjected to tensile or 

compression loading. Shear modulus (G) describes the shear elasticity of a material 

subjected to shear loading.

Viscoelasticity:

is the property of materials that exhibit both elastic and viscous properties when 

undergoing deformation. The strain of viscous materials is time-dependent, whereas 

elastic materials is time-independent.

Mechanoreciprocity:

describes the bi-directional mechanical interaction between a cell’s response to external 

force by reciprocally exerting force.
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Fig. 1. 
Elastic moduli in healthy human tissues and tumors. Cells within a tissue interact with their 

ECM which is tuned to a specific elastic modulus (measured in Pa) that dictate the function 

of the tissue. The ECM in the brain, lung or breast is relatively soft (compliant; <100 Pa), 

whereas the ECM in tissues that are exposed to high mechanical loading such as skeletal 

muscle and bone are by comparison stiff (>100 kPa). Soft ECMs promote neural cell 

growth, survival and intercellular connections, and critically permits the expansion of lung 

alveoli and mammary epithelial cells associated with breathing and milk delivery. By 

contrast, stiff ECMs favor osteoblast cell differentiation and cardiac contractility function. 

Tumors are often fibrotic, and the ECM is stiffer than that found in a healthy tissue (~4–10 

kPa), and this ECM stiffness induces cytoskeletal tension that perturbs tissue organization 

and function. Critically reducing cytoskeletal tension reverts the malignant phenotype of 

tumor cells and inhibiting ECM stiffening prevents malignant transformation.
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Fig. 2. 
ECM homeostasis in healthy tissues and tumors. The interstitial ECM is composed of 

collagens, glycoproteins including fibronectin and proteoglycans, and water. Cells ligate to 

the ECM through transmembrane bound receptors such as integrins, which activate 

intracellular signaling and induce cytoskeletal reorganization to modify cell growth, survival 

and motility. The process by which cells sense mechanical signals from their 

microenvironment and translate these into biochemical signals is termed 

mechanotransduction. Activated integrins in cells ligating a soft ECM, assemble nascent, 

dynamic adhesions. By contrast, cells ligating a stiff ECM assemble stable focal adhesions 

as the resistance here favors the unfolding of tension sensitive adhesion plaque proteins such 

as talin and vinculin, which interact and nucleate multiple proteins that either stimulate 

downstream biochemical signaling cascades or activate GTPases that induce actin 
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cytoskeletal reorganization. In a fibrotic tumor, the production and remodeling of the ECM 

is disturbed. CAFs produce increased amounts of ECM, as well as growth factors and 

enzymes that induce its remodeling and post-translational cross-linking that stiffens and 

aligns its fibrils to increases its tensile properties, enhance its density and elevate the 

compressive force experienced by cells within the tissue.
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Fig. 3. 
Integrin-dependent mechanotransduction. Integrins exist in a resting, inactive state and can 

be activated by internal (inside-out activation) or external (outside-in activation) cues 

including extracellular force (outside-in) or actomyosin contractility or tension (inside-out). 

Integrin activation is mediated by conformational changes in the integrin ectodomain that 

shifts the integrin from a low- to a high-affinity ligand binding state. A sufficient force upon 

integrin engagement will trigger the force-dependent unfolding of talin to expose vinculin 

binding sites. Vinculin binding to talin promotes its unfolding and recruits a suite of 

adhesion plaque proteins including Src, paxillin, α-actinin, and FAK that trigger 

downstream signaling and initiate actin reorganization and RhoGTPase-mediated 

actomyosin contractility to drive focal adhesion maturation.
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Fig. 4. 
Tumor-associated mechanoreciprocity. A simplified schematic of mechanoreciprocity in 

breast cancer evolution. Breast ducts are composed of two epithelial linings: inner luminal 

epithelial cells and outer myoepithelial cells. Breast ducts reside in an ECM populated by 

fibroblasts, endothelial cells, pericytes, leukocytes, and adipocytes. In a healthy breast, the 

tension exerted between the epithelium and stroma maintains tensional homeostasis. In 

ductal carcinoma in situ (DCIS), neoplastic epithelial cells proliferate and fill the lumen of 

the duct, thereby increasing solid stress. Neoplastic cells secrete factors that activate CAFs 

in the stroma to synthesize, remodel and stiffen the interstitial stroma, which mechanically 

resists the expansion of the DCIS lesion. The neoplastic epithelium in DCIS lesions 

responds to these forces by increasing their actomyosin tension that drives the assembly of 

focal adhesions to potentiate growth factor-dependent PI3K and ERK signaling and 
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increases tumor cell contractility. Through the combined activity of the contractile tumor 

epithelium and activated CAFs, the BM surrounding DCIS lesions is compromised, and the 

collagenous-rich interstitial stroma becomes aligned and perpendicularly reorganized to 

support the invasion of the transformed breast epithelium into the interstitial stroma.
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