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1Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, United States

2Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles

3College of Osteopathic Medicine, Nova Southeastern University

Abstract

Psychological researchers often use standard linear regression to identify relevant predictors of 

an outcome of interest, but challenges emerge with incomplete data and growing numbers of 

candidate predictors. Regularization methods like the LASSO can reduce the risk of overfitting, 

increase model interpretability, and improve prediction in future samples; however, handling 

missing data when using regularization-based variable selection methods is complicated. Using 

listwise deletion or an ad hoc imputation strategy to deal with missing data when using 

regularization methods can lead to loss of precision, substantial bias, and a reduction in predictive 

ability. In this tutorial, we describe three approaches for fitting a LASSO when using multiple 

imputation to handle missing data and illustrate how to implement these approaches in practice 

with an applied example. We discuss implications of each approach and describe additional 

research that would help solidify recommendations for best practices.

Translational Abstract

Standard linear regression is a commonly used model in psychological research that tests the 

relationships between hypothesized predictors and an outcome of interest; however, the estimated 

regression coefficients representing such associations are highly variable from sample to sample, 

making the conclusions less generalizable. Regularization methods like the LASSO reduce the 

variance of the estimates, increase model interpretability, and improve prediction in future 

samples. Until recently, regularization methods were primarily applied on data sets without 

missing values. Missing data are prevalent in psychological research and need to be handled 

appropriately to avoid substantial bias. Multiple imputation has gained currency as a principled 

approach to deal with missing data. This tutorial describes three approaches for fitting a LASSO 

for variable selection when using multiple imputation to handle missing data, highlighting the 

additional research needed to solidify recommendations for best practices.

Correspondence concerning this article should be addressed to Heather J. Gunn, Department of Quantitative Health Sciences, Mayo 
Clinic, 205 3rd Avenue Southwest, Harwick 7-37C, Rochester, MN 55905, United States. Gunn.Heather2@mayo.edu. 

The authors declare they have no conflicts of interest.

HHS Public Access
Author manuscript
Psychol Methods. Author manuscript; available in PMC 2023 July 01.

Published in final edited form as:
Psychol Methods. 2023 April ; 28(2): 452–471. doi:10.1037/met0000478.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

LASSO; missing data; multiple imputation; regularization; regression

Machine learning variable selection methods like the least absolute shrinkage and selection 

operator, familiarly known as LASSO (Tibshirani, 1996), and elastic net (Zou & Hastie, 

2005) have not been widely used in psychological research despite appealing properties such 

as reduced risk of overfitting, increased model interpretability, and improved prediction in 

future samples compared with the standard linear regression model (McNeish, 2015). A 

pragmatic consideration inhibiting the use of machine learning variable selection methods 

is the complication that arises when data contain missing values, a problem prevalent in 

psychological research. When estimating a standard linear regression model, there are clear 

guidelines on how to use modern missing data handling techniques like multiple imputation 

(MI) to reduce bias and increase power (Enders, 2010). However, when using variable 

selection techniques like the LASSO, there is a lack of accessible guidance on the numerous 

decisions that must be made to implement the variable selection process in conjunction with 

modern missing data handling methods. The goal of this article is to provide a tutorial on 

how to implement the LASSO when using MI to handle missing values, highlighting three 

approaches that could be readily extended to the elastic net procedure.

Selecting meaningful predictors of an outcome of interest is a challenging statistical 

problem that psychologists face (Hesterberg et al., 2008). If all hypothesized predictors 

are included in a simple linear model simultaneously, this can lead to overfitting, inflation 

of regression coefficient standard errors, and nonparsimonious models. Variable selection 

methods identify a set of variables that are most associated with or predictive of the outcome 

of interest. They are primarily used when it is not feasible to include all the relevant 

predictors and their interactions in the model. Classical variable selection methods such as 

backward, forward, or stepwise selection (Harrell, 2001) typically provide an interpretable 

model, where the best model is selected via significance tests or some form of information-

based criterion (e.g., Akaike information criterion [AIC] and Bayesian information criterion 

[BIC]). However, they have been frequently criticized due to their potential for overfitting, 

inferior predictive ability, and difficulties with handling collinearity (Harrell, 2001).

Another way to improve standard linear regression is to use regularization techniques (also 

called penalization or shrinkage methods) to constrain or shrink the regression coefficients. 

Three common machine learning shrinkage methods are ridge regression, LASSO, and 

elastic net. Ridge regression uses a penalty parameter to shrink the regression coefficients 

toward zero but does not fix them to zero. LASSO uses a different penalty parameter that 

also shrinks the estimated regression coefficients toward zero, but unlike ridge, it shrinks 

some of the estimated coefficients to exactly zero. Thus, LASSO performs variable selection 

whereas ridge regression does not. Elastic net combines the penalties of both LASSO and 

ridge regression and is also considered a variable selection procedure because it typically 

sets some coefficients to zero.

The elastic net improves performance compared with the LASSO in situations where highly 

correlated variables exist, particularly in large-scale data sets where the number of variables 
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is greater than the sample size (Zou & Hastie, 2005). The application of elastic net is 

commonly found in neuroimaging studies (e.g., Cui & Gong, 2018; Gabrieli et al., 2015; 

Ryali et al., 2012) and in gene expression microarray data analysis (e.g., De Mol et al., 2009; 

Waldmann et al., 2013). For instance, in gene selection problems, where the sample size is 

often small due to the high cost of data collection involving human subjects, and there is a 

strong dependency between genes sharing a common biological pathway, elastic net tends 

to select (or omit) all the highly correlated genes as a group. In such scenarios, elastic net 

may be a better choice when the goal is explanation rather than prediction; when the goal 

is prediction, LASSO may be preferred since it only selects one predictor from a group of 

highly correlated predictors.

Research in psychology often focuses on explanation over prediction, but the possibility of 

improving upon predictions from explanatory models has long been recognized (Hagerty 

& Srinivasan, 1991; Shmueli, 2010). Yarkoni and Westfall (2017) argue that research 

in psychology would benefit from the use of machine learning models, which often 

outperforms traditional implementation of statistical models like standard linear regression. 

Machine learning models should supplement, not replace, currently used models, expanding 

the type of research questions psychologists can answer. In this tutorial, we focus on the 

LASSO, which has been used in a variety of behavioral science studies (Ammerman et al., 

2018; Comulada et al., 2021; Dumas et al., 2020; Feng et al., 2020; Harris et al., 2020; 

Hung et al., 2020; Immekus et al., 2019; Smith et al., 2019), scrutinized in simulation 

studies (Chen & Wang, 2013; Thao & Geskus, 2019), and recommended for wider use in the 

behavioral sciences (Johnson & Sinharay, 2011; McNeish, 2015). The approaches discussed 

in this tutorial could readily be applied to the elastic net as well.

Missing data are inevitable in psychological research and can be expected to affect the 

precision and generalizability of the results, especially if not handled properly. Many 

previous research projects have relied on listwise deletion (also known as complete case 

analysis) or ad hoc imputation approaches such as mean substitution. Listwise deletion 

excludes cases with any incomplete values, which can greatly reduce the sample size, 

resulting in a loss of precision and statistical power, and gives biased results if individuals 

with missing observations differ systematically from those with complete observations 

(Greenland & Finkle, 1995; Horton & Kleinman, 2007; Sterne et al., 2009). Mean 

substitution overstates the precision of unobserved values, carrying potential to bias point 

estimates and understate estimates of variability, thereby exaggerating the precision of 

parameter estimates.

Modern principled methods for handling missing data include maximum likelihood 

estimation (Arbuckle, 1996; Beale & Little, 1975; Dempster et al., 1977; Enders, 2010), 

Bayesian estimation (Gelman et al., 2014), inverse probability weighting (Li et al., 2013; 

Seaman & White, 2013), and MI (Little & Rubin,2019; Rubin, 1987, 1996; Schafer, 

1997; van Buuren, 2018). With expanded computing power and accompanying software 

development, these methods, which overcome the restriction of listwise deletion and account 

for the uncertainty surrounding missing data, have become more accessible to researchers in 

social and behavioral disciplines.
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MI, in particular, has been increasingly used as a flexible and accessible approach to 

address missing data (Hayati Rezvan et al., 2015; Mackinnon, 2010), and is now widely 

recommended by journal reviewers (Little et al., 2012; Ware et al., 2012). MI includes 

all available data, but more importantly, it accounts for the uncertainty of missing data by 

imputing missing values multiple times, which results in multiple imputed data sets. The 

analysis of interest is conducted on each imputed data set separately, and then the estimates 

obtained from each imputed data set are aggregated via Rubin’s rules (Rubin, 1987).

Given the drawbacks of using listwise deletion or ad hoc imputation methods when 

performing variable selection, several studies have used maximum likelihood estimation 

(Garcia et al., 2010a, 2010b; Sabbe et al., 2013), Bayesian estimation (Ibrahim et al., 2008; 

Makalic & Schmidt, 2016; Park & Casella, 2008; Yang et al., 2005), inverse probability 

weighting (Johnson, 2008; Johnson et al., 2008; Wolfson, 2011), or MI (Zhao & Long, 

2017) to address missing data. Still, it is not uncommon for variable selection with 

incomplete data to be implemented in behavioral science research using listwise deletion 

(e.g., Comulada et al., 2021; Comulada et al., 2020; Feelders, 1999; Nam et al., 2020), 

or ad hoc imputation methods such as median or mean substitution (e.g., Masconi et al., 

2015; Pelham et al., 2020; Simon et al., 2013; Smith et al., 2019). This is partly due to 

limitations of commonly used statistical software programs. For example, glmnet, a package 

in R software (R Core Team, 2018) that estimates LASSOs, is premised on complete case 

analysis.

There has been particular focus on using MI to address missing data when performing 

classical variable selection (Austin et al.,2019; Vergouwe et al., 2010; Wood et al., 2008) and 

machine learning variable selection (Chen & Wang, 2013; Deng et al., 2016; Lachenbruch, 

2011; Thao & Geskus, 2019; Wan et al., 2015). A complication of combining MI with 

variable selection methods, particularly LASSO, is that conducting variable selection on 

each imputed data set results in different variables selected across the imputed data 

sets. There are open questions on how to best aggregate variable selection results across 

multiple imputed data sets to obtain an overall result. This tutorial illustrates three strategies 

for estimating a LASSO when using MI to handle missing data and discusses how to 

incorporate cross-validation and training and test sets in the process, which has received 

little attention in the literature.

The tutorial is organized as follows. First, we describe the foundations for estimating a 

LASSO when using multiple imputation to handle missing data by introducing an applied 

setting that we use as a motivating example throughout the tutorial, reviewing the LASSO 

procedure assuming there is complete data, and reviewing the MI framework for handling 

missing data. Then, we consider three approaches for fitting a LASSO with multiply 

imputed data (henceforth referred to as imputation LASSO approaches). We investigate: 

(a) LASSO using a traditional penalty applied to each of the imputed data sets (henceforth 

described as the separate approach); (b) LASSO using a traditional penalty applied to 

a stacked version of the imputed data sets (henceforth, the stacked approach); and (c) 

a group LASSO applied to the imputed data sets jointly via the MI-LASSO method 

(Chen & Wang, 2013). We embed the applied example throughout the review of these 

statistical methods. We supplement these illustrations with a discussion of implications of 
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the imputation LASSO approaches and consideration of additional research that would help 

solidify recommendations for best practices.

Foundations for Tutorial Investigation

Applied Example

To solidify the concepts presented throughout this tutorial, we use data from a randomized 

controlled trial conducted through the Adolescent Medicine Trials Network (study protocol 

149; UCLA IRB #16-001674-AM-00006) as a motivating example. The study evaluated 

interventions to improve HIV prevention continuum outcomes in youth at high risk for 

acquiring HIV, as well as secondary outcomes including mental health symptoms, substance 

use, and housing insecurity. A detailed study description is found in Swendeman et al. 

(2019).

For this tutorial, we performed secondary data analyses using baseline data from the 1,486 

adolescent study participants aged 14 to 24 years (M = 20.89, SD = 2.15). The adolescents 

varied in terms of gender identity, sexual orientation, race/ethnicity, and risk factors. As 

shown in Table 1, the outcome variable and many of the predictor variables had missing 

data. The percentage of missing values across the 47 variables varied between 0% and 12%. 

In total, 837 out of 47 × 1,486 = 69,842 (1.20%) observations were missing. Only 1,004 

participants (68%) had complete observations on all 47 variables.

The research goal was to develop a predictive model for recent depression severity using a 

set of potential predictors (e.g., demographics, social determinants, risk factors, protective 

acts). The outcome variable was a continuous scale score from the nine-item Patient Health 

Questionnaire (PHQ-9; Kroenke et al., 2001) that indicated a participant’s severity of 

depression symptoms in the past 2 weeks. The 46 candidate predictor variables included 

one nominal variable with four categories (i.e., race/ethnicity), 25 binary variables, and 20 

continuous variables. To avoid convergence problems, some categories of variables were 

collapsed due to low cell counts (e.g., categories of gender identity were collapsed into only 

two categories: cisgender and transgender).

LASSO With Complete Data

LASSO Frameworand Loss Function—Ordinary least squares (OLS) estimation is a 

common way to obtain a solution for a regression model (i.e., assign values to the regression 

coefficients) with a continuous outcome. The optimal solution in OLS is determined by 

finding the values of the regression coefficients that minimize the following loss function

∑
i = 1

N
yi − β0 + ∑

j = 1

p
βjxij

2
, (1)

where N is the total number of participants, yi is the raw score on the outcome for participant 

i, β0 is the intercept, p is the total number of predictors βj is the regression coefficient for 

predictor j, and xij is the raw score for participant i on predictor j. The terms in the brackets 
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can be replaced by y i, the predicted outcome score for participant i based on the model. 

Equation 1 is known as the residual sum of squares (RSS).

An advantage of OLS estimation is that it is the best linear unbiased estimator (BLUE). 

An estimator is unbiased if the sample estimates equal the population value in expectation. 

A disadvantage of OLS estimation is that the sample estimates have high variance such 

that from sample to sample, we can estimate vastly different parameter values. Models 

using OLS estimates typically have better model performance (e.g., predictive accuracy) in 

the sample used to estimate those coefficients compared with a different sample from the 

same population (McNeish, 2015). This is because OLS models are prone to overfitting. By 

overfitting we mean modeling relationships specific to the sample that do not exist in the 

population. Random noise in a sample can be confused as signal due to sampling error.

The LASSO is similar to OLS estimation, except it includes a penalized loss function that 

shrinks the coefficients toward zero and even sets some coefficients to exactly zero. For 

continuous outcomes, the formula the LASSO minimizes is

∑
i = 1

N
yi − β0 + ∑

j = 1

p
βjxij

2
+ λ ∑

j = 1

p
βj , (2)

where the first half of the equation is the RSS and the last half of the equation is the 

shrinkage penalty. The RSS is small when the model has near perfect prediction of the 

outcome variable (i.e., the residuals are small). The shrinkage penalty, on the other hand, is 

small when the regression coefficients are near zero. The tuning parameter, λ (lambda), is 

a predetermined constant (we explain later how to determine it) that controls the impact of 

the shrinkage penalty on the parameter estimates. If λ is zero, then the solution is identical 

to OLS estimates. If λ is infinity, then all regression coefficients (except the intercept) are 

shrunk to zero. A tuning parameter in between these two extremes will fix some regression 

coefficients to zero and will estimate nonzero, but attenuated coefficients for the other 

coefficients. By doing so, the LASSO selects predictors that make sufficient contributions 

to predicting the outcome variable to achieve a parsimonious model compared to the OLS 

model.

The scaling of the predictors affects the magnitude of the coefficients, βj, and thus impacts 

the shrinkage penalty and the solution. In other words, the scaling of predictors (e.g., 

measuring age in years vs. weeks) can lead to a predictor being favored over others simply 

because of scaling and not because of its strength in prediction. Thus, before a LASSO is 

estimated, all predictors are rescaled so that they have equal variances (James et al., 2013). 

Centering the predictors is not necessary because it only affects the value of the intercept, 

which is not penalized, but is often done to standardize each predictor to have a mean of 

zero and a standard deviation of one (e.g., Stata, StataCorp, 2019; and the glmnet package in 

R, Friedman et al., 2020, do this by default).

An advantage of the LASSO over OLS is that it decreases the risk of overfitting the model. 

By reducing the risk of overfitting, the LASSO has greater predictive ability compared to 

OLS (McNeish, 2015). However, reducing the risk of overfitting comes at the cost of adding 
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bias to the coefficients. By intentionally attenuating the coefficients, the LASSO sample 

estimates no longer equal the population value in expectation; however, the variances of 

the coefficient estimates from sample to sample are reduced. OLS estimates are unbiased; 

however, they have high variance from sample to sample. This is known as the bias-variance 

tradeoff.

Unlike OLS, there is no closed-form solution for the LASSO even for a fixed λ (Hastie 

et al., 2009). There are many options to obtain a solution for LASSO including coordinate 

descent (Daubechies et al., 2004; Wu & Lange, 2008), least-angle regression (LARS; Efron 

et al., 2004), and proximal gradient methods (Chen et al., 2012; Nesterov, 2005). For this 

tutorial, we used coordinate descent, the estimation procedure of the glmnet package in R 

(Friedman et al., 2020).

Before describing the steps of creating a LASSO model, we highlight a debate about how 

to best represent the categories of a categorical predictor variable with more than two 

categories (Huang & Montoya, 2020). One option is to overparameterize the model so that 

a reference group is not entered into the model. Specifically, if a variable has c categories, 

then c dummy codes are included in the LASSO (StataCorp., 2019, p. 190). This creates 

a singular (and non-invertible) design matrix. A singular design matrix cannot be used in 

OLS estimation because OLS requires inverting the design matrix. Thus, there is no OLS 

solution if the design matrix is singular. We can, however, estimate a LASSO solution with 

a singular design matrix by choosing which categories improve prediction and fixing the 

dummy codes for the remaining categories to have a coefficient of zero. Thus, we used c 
dummy variables to represent categorical variables with more than two categories for all 

LASSOs. Specifically, the four race/ethnicity categories were represented by four dummy 

variables. So even though there were 46 predictors initially (race/ethnicity treated as one 

variable), there were a total of 49 predictors used in the LASSO models (race/ethnicity 

entered as four variables) for this applied example.

Steps for Estimating a LASSO—In this section, we illustrate the process for estimating 

a LASSO assuming there is complete data (see Figure 1). Given missing values in the 

variables of interest in our applied example and the fact that a LASSO cannot be estimated 

with an incomplete data set, we used listwise deletion to remove participants with missing 

data on any of the studied variables (Figure 1, Step 1). This reduced the sample size in the 

applied example from 1,486 to 1,004. We used R software v. 3.1.2 (R Core Team, 2018) 

to analyze the data and the package glmnet (Friedman et al., 2020) to estimate the LASSO 

models. Annotated R code used for all approaches is available on the first author’s OSF 

account.1

Split Data Into Training and Test Sets.: Machine learning methods like the LASSO tend 

to be exploratory, so an important step is to validate the final model in a holdout sample 

to assess the model’s generalization error (Chen & Wojcik, 2016). A holdout sample can 

be synthetically created by splitting the observed data set into two nonoverlapping sets: a 

training set of data and a test set of data (Figure 1, Step 2). All models and modifications 

1https://osf.io/7ys4m/.
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to the models are analyzed in the training set. In the case of LASSO, this includes running 

multiple LASSOs with different values for the penalty parameter (lambda) to find the 

optimal value. Then, once the final model or models are decided on, they are evaluated in 

the test set. The test set should only be used at the very end of the analysis to provide a 

measure of prediction error of the model(s) on new data. Modifications to a model should 

not be made once fit to the test set. If a model performs well in the training set but does not 

perform well in the test set, then the model does not exhibit good predictive ability.

Selecting the ratio of the split of the training and test sets is complex due to competing 

needs: the need to have a large enough sample size in the training set to maximize 

performance of the statistical model and the need to have a large enough sample size in 

the test set to minimize the validation error (Guyon, 1997; James et al., 2013, p. 180). There 

are no clear guidelines on how to select an appropriate ratio given factors like the sample 

size, the ratio of signal-to-noise, and the complexity of the models being evaluated (Hastie 

et al., 2009). A common ratio is 75:25 such that 75% of the data is in the training set and 

25% of the data is in the test set (Hastie et al., 2009, p. 222). If the sample size is relatively 

small, larger splits (e.g., 90:10) are recommended to accurately train the model (Dobbin & 

Simon, 2011; James et al., 2013). Because the sample size for a complete case analysis in 

the applied example is large (N = 1,004), we used the 75:25 split such that 753 participants 

were assigned to the training set and 251 participants were assigned to the test set.

k-Fold Cross-Validation in Training Set.: To estimate the function in Equation 2, we need 

to obtain a λ value (Figure 1, Step 3). However, it is difficult to know which value of λ 
will produce the best prediction a priori. The goal is to choose a λ value that creates an 

interpretable model (i.e., shrinks some coefficients to zero), but not shrink coefficients so 

much that excessive bias is added into the estimates and the prediction error increases. There 

are a few ways to determine which λ value to use. We focus on k-fold cross-validation, a 

type of resampling method that improves the replicability of the model (James et al., 2013), 

because it optimizes the value of λ such that the predicted error in an independent sample is 

minimized. The eight steps of k-fold cross-validation are as follows:

CV1. Select a set of l candidate λ values.

CV2. Divide the data set into k roughly equally sized portions or folds.

CV3. Hold out the first fold as a validation sample.

CV4. With the remaining k − 1 folds, estimate a LASSO for every single candidate value of 

λ and save the coefficients for each of these l models.

CV5. Test each of these l models in the validation sample separately. Record a model 

performance measure like the mean squared error (MSE; i.e., the mean of Equation 1).

CV6. Repeat steps CV3, CV4, and CV5 so that each of the k folds acts as a validation 

sample one time. After this step is completed, there will be a total of k × l model 

performance measures.
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CV7. To obtain one model performance measure for each λ, average the k measures of 

model performance for each candidate value of λ.

CV8. Select the value of λ associated with the best measure of model performance (e.g., 

smallest MSE).

The function cv.glmnet in R, which we use to select λ in this tutorial, conducts the above 

eight steps automatically (Friedman et al., 2020), but we explain each step in detail using the 

applied example for clarity.

The first step of k-fold cross-validation (i.e., step CV1 in the checklist) is to create a set of 

candidate values for λ. The default of cv.glmnet is to select 100 values of λ (i.e., l = 100) 

between λmin and λmax. The largest candidate value of λ, λmax, is the smallest data-derived 

value that induces all coefficients to shrink to 0. In the case of our applied example, λmax 

= 4.465. To confirm, we estimated a LASSO in the entire training set using λ = 4.465 

and all regression coefficients except the intercept were shrunk to 0. The smallest candidate 

value of λ, λmin, by default is .0001*λmax if N is greater than p, which is the case for our 

example (N = 753 > p = 49). Based on these defaults, we would expect λmin = .0004 for 

the applied example; however, due to a stopping rule in the cv. glmnet function, only 77 

λ values between λ = .004 and λ = 4.465 were included in the set of candidate values. 

This stopping rule was put in place to reduce computation time. Otherwise, there are no 

drawbacks to testing 100 values between λ = .0004 and λ = 4.465.

The next step is to choose a value of k and divide the data set into k equally sized folds 

(i.e., Step CV2). There are many options for which value of k to choose. Leave-one-out 

cross-validation is when k = N. In this case, a single participant acts as the validation 

sample and the model is trained on the remaining observations. Other popular choices are 

k = 5 and k = 10 (Hastie et al., 2009). There is a bias-variance tradeoff when selecting 

the value of k (Yarkoni & Westfall, 2017). As k increases, the bias of the test error 

estimates decreases because the model is trained on more observations, but the variance 

of the test error estimates increases (James et al., 2013). Additionally, as k increases, the 

cross-validation procedure becomes more computationally demanding. For our analyses, we 

specified 10-fold cross-validation for all approaches. Dividing the training set of 753 cases 

into 10 equal folds resulted in seven folds with 75 participants and three folds with 76 

participants. The participants need to be randomly assigned to these 10 folds. To reproduce 

the results, we set a seed so that participants would be assigned to the same fold each time 

the models were analyzed. If participants are shuffled into different folds, then a slightly 

different optimal λ value will be selected due to sampling error.

In Steps CV3–CV5 in the checklist, one fold is selected as a validation sample and the 

remaining folds are used to train the model. For instance, in our applied example, the first 

fold with 75 participants is labeled as the validation sample and the remaining nine folds are 

combined to form a sample of 678 participants. Then, 77 LASSOs are estimated using the 

77 candidate λ values and these 678 participants. Next, the 77 estimated LASSOs are fit to 

the validation sample of 75 participants and the MSE is calculated for each model.
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As it states in Step CV6, Steps CV3–CV5 are repeated so that each fold acts as a validation 

sample and the data set the LASSO is trained on is systematically resampled (i.e., a different 

combination of nine folds are merged into one data set to estimate the LASSOs). After 

this iterative process is completed, each λ value is associated with 10 different MSE values 

produced from the 10 different folds.

The 10 MSE values associated with a particular λ value vary slightly due to sampling 

variability (different coefficients due to different participants in the 9 folds and different 

participants in the validation fold). Thus, in Step CV7, the 10 MSE values are averaged for 

each λ value. For instance, in the applied example, the averaged MSE value for λ = 4.465 

was 34.060 and for λ = .004 the averaged MSE value was 11.368.

The final step of cross-validation (i.e., Step CV8) is to select the λ value that produced the 

smallest averaged MSE value. The smallest averaged MSE value in our example was 10.667, 

which was produced by λ = .143. This λ value is referred to as the optimal λ value or the 

cross-validated λ value as it was selected via cross-validation.

Estimate a LASSO in Training Set.: Once the optimal λ value has been selected via k-fold 

cross-validation, a LASSO is estimated in the entire training set using the cross-validated λ 
value (Figure 1, Step 4). Returning to the applied example, we fit a LASSO with λ = .143 

to the training set using the function glmnet (see annotated code for specific details). The 

estimated coefficients from this model are shown in the second column in Table 2. Using 

this model, a measure of model performance (e.g., MSE) can be calculated, though it is not 

necessary. The goal of the LASSO is not to determine how well the model predicts outcomes 

in the training sample, but in the test sample.

Fit Estimated LASSO Model to Test Set.: The training model (i.e., the coefficients in 

Table 2) is then fit to the test set to produce predicted outcome scores for participants in 

the test set (Figure 1, Step 5). Using the predicted and observed outcome scores, a model 

performance measure (e.g., MSE) is calculated (Figure 1, Step 6). This estimate of the test 

error rate quantifies the generalizability of the model to future samples. If multiple models 

are compared (e.g., LASSO vs. OLS), the model associated with the lower test MSE is 

typically selected as the better model. If only one model is examined, comparing the test 

MSE to the training MSE gives a sense of the generalizability of the model; however, there 

are no guidelines for what constitutes a concerning discrepancy. As shown in Table 2, the 

test MSE for the applied example was 12.579. This value is larger than the training MSE 
(10.085), which is often the case.

Perspectives on Statistical Inference When Using LASSO—There is no consensus 

on how to derive standard errors for LASSO coefficients (Kyung et al., 2010). Part of 

the complication is that implementations of LASSO often return a value of zero for the 

associated standard error if the LASSO coefficient is set to zero. Proposals for calculating 

standard errors include bootstrapping (Chatterjee & Lahiri, 2011; Tibshirani, 1996; Wan et 

al., 2015), using the standard errors of the coefficients estimated via ridge regression as an 

approximation of the standard errors of the coefficients estimated via LASSO (Tibshirani, 
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1996), using a sandwich estimator (Fan & Li, 2001), and post-LASSO estimation (Belloni & 

Chernozhukov, 2013; Efron et al,. 2004; Hansen, 2016).

Given the complication with standard errors and because calculating the degrees of freedom 

is not straightforward (Zou et al., 2007), any attempt to calculate p-values is necessarily 

complex. Meinshausen and Bühlmann (2010) and Wasserman and Roeder (2009) proposed 

methods for calculating p-values that subset the data set, which can create complications 

for small sample sizes. Lockhart et al. (2014) created significance tests that utilize the full 

data set using results from the LARS algorithm. A few LASSO-based algorithms, which are 

available in Stata software (StataCorp., 2019), have been proposed to estimate regression 

coefficients, standard errors, and p-values for a specified subset of predictors and to select 

from potential control variables that are entered in the model (Belloni et al., 2012; Belloni 

et al., 2014a, 2014b; Belloni et al., 2016; Chernozhukov et al., 2018; Chernozhukov et al., 

2015).

We view the relevance of LASSO coefficient inference as dictated by the purpose of the 

analysis. More broadly, it has been noted that statistical significance of the coefficients 

of candidate predictor variables does not necessarily imply good predictive ability in 

future samples (Lo et al., 2015). Alternatively, nonsignificant independent variables may 

be important for prediction. Here, we view the central goal of the LASSO as creating a 

predictive model in a way that avoids the risk of overfitting and in contexts where inferential 

or causal claims are not of primary importance (Yarkoni & Westfall, 2017). Thus, we focus 

on the predictive ability of fitted models rather than the significance of the coefficients of the 

selected variables.

Multiple Imputation

General Framework—Rather than removing participants with missing data, MI can be 

used to handle the missing values as it can improve the predictive ability of a machine 

learning model compared with listwise deletion (Poulos & Valle, 2018). MI consists of three 

phases: imputation, analysis, and pooling (Enders, 2010; Little & Rubin,2019; Rubin, 1987; 

Schafer, 1997; van Buuren, 2018). In the imputation phase, multiple copies of the data are 

created where the missing values are replaced with plausible values drawn independently 

from an appropriate statistical model. In the analysis phase, the resulting imputed data sets 

are analyzed separately using statistical methods applicable to complete data. Finally, in the 

pooling phase, the parameter estimates and standard errors obtained from each imputed data 

set are combined using Rubin’s rules (Rubin, 1987) for a single set of results that support an 

overall inference.

The overall MI estimate of a parameter is the average of the parameter estimates over the 

multiply imputed data sets, and the variance of the MI parameter estimate incorporates both 

within-imputation variability (the sampling variation of the estimate in each imputed data 

set) and between-imputation variability (the variation in estimates between the data sets) of 

the estimates. Thus, MI takes into account the uncertainty in the estimate due to the missing 

data (Little & Rubin, 2019). Standard implementations of MI are valid under the unverifiable 

assumption of missing at random (MAR), where the probability of a value being missing 

depends on the other observed data but not on the unobserved data (Little & Rubin, 2019).
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Joint Modeling and Fully Conditional Specification Estimation Strategies—
Two general estimation frameworks for implementing MI include joint modeling (JM; 

Schafer, 1997, 1999; Schafer & Olsen, 1998) and fully conditional specification (FCS; 

van Buuren, 2018; van Buuren et al., 1999; van Buuren et al., 2006), also known as 

multivariate imputation by chained equations (MICE; Carpenter & Kenward, 2013) or 

sequential regression (Raghunathan et al., 2001). Both the JM and FCS approaches are 

well represented in widely available statistical software. JM draws missing values for all 

incomplete variables from an explicit multivariate distribution, often through the use of a 

Markov chain Monte Carlo (MCMC) algorithm that includes steps involving overlapping 

conditional distributions (Jackman, 2000; Tanner & Wong, 1987). Within a multivariate 

normal model, for example, the model parameters are represented through a vector of means 

and a variance-covariance matrix, and the conditional distributions are linear regressions. 

The iterative sampling procedure begins with (a) estimating the model parameters for all the 

variables included in the imputation model conditional on the observed data, (b) drawing 

missing values from a predictive distribution that conditions on the current parameter 

estimates, and (c) drawing new values of the parameters from their posterior distribution 

given complete data. Steps (b) and (c) are iterated until a convergence criterion is satisfied.

FCS similarly draws missing values iteratively from a specified set of overlapping (usually 

univariate) conditional distributions for each incomplete variable, conditioning on the 

remaining variables. In particular, FCS sets up a sequence of regression models where 

each incomplete variable is regressed on all others, and the iterative algorithm proceeds 

by estimating parameters of each regression model one at a time. FCS procedures 

are understood not as rigorous implementations of MCMC procedures but rather as 

approximations motivated by MCMC procedures that tend to have satisfactory statistical 

properties.

In general, the JM imputation approach has a secure theoretical foundation through 

assuming a parametric model for multivariate data and can handle mixtures of continuous 

and categorical variables. This framework allows us to accommodate incomplete binary, 

ordinal, and nominal variables via underlying normal latent variables (Muthén & 

Muthén, 1998–2017; Quartagno & Carpenter,2019; Quartagno & Carpenter, 2020). Unlike 

JM imputation, FCS is very flexible in allowing an appropriate univariate regression 

specification for each incomplete variable, and in accommodating mixed types of missing 

data. However, there is the theoretical issue of incompatibility between specified conditional 

distributions for incomplete variables. In many settings, the impact of incompatibility among 

conditional distributions is apt to be relatively minor (Raghunathan et al., 2001; van Buuren, 

2018; van Buuren et al., 2006); greater concerns are apt to be present in scenarios where 

the analysis model includes interaction terms or nonlinear effects involving incomplete 

variables. Model-based (fully Bayesian) imputation methods (Enders et al., 2020; Erler et 

al., 2016; Ibrahim et al., 2002; Kim et al., 2018; Kim et al., 2015; Ludtke et al., 2020) and an 

extension of the FCS approach known as substantive model-compatible imputation (Bartlett 

et al., 2015) are alternative strategies that have been recently developed to tailor imputations 

around a specific model that accommodates incomplete interactive or nonlinear effects.
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In the case of imputation LASSO approaches, the same set of candidate predictors (in the 

same form) used in the LASSO should appear in the imputation model. Therefore, the 

final LASSO model will be nested within the imputation model. Excluding any candidate 

predictor from the imputation model may introduce additional bias to the parameter 

estimates separate from the added bias due to attenuation (e.g., set a coefficient incorrectly 

to zero) because the imputation model does not preserve the associations between the 

imputed values and excluded variable. Furthermore, any potential auxiliary variables (i.e., 

variables that are not included in the analysis model but predict variables with missing data 

or predict the mechanism giving rise to missing data) need to be included in the imputation 

model (Collins et al., 2001; Graham, 2012). Strong auxiliary variables can enhance the 

plausibility that the missing data mechanism is MAR, help improve the imputation process, 

and increase power.

MI Details for Applied Example—We used the Blimp 2.1 application (Keller & Enders, 

2019) and adopted MI using FCS to handle missing values in our applied example. 

Annotated Blimp code is available on the first author’s OSF account.2 For simplicity, 

our analysis model did not have interaction effects nor nonlinear terms and no auxiliary 

variables were included in the imputation model. Before imputing the missing values, the 

number of imputations (m) needs to be selected. Recent literature recommends that the 

number of imputations should at least be greater than the percentage of missing data in the 

analysis variables (White et al., 2011) and some recommend 100 imputations or more to 

replicate standard errors and increase power (von Hippel, 2018). For our applied example, 

we generated m = 50 imputed data sets to achieve a precise inclusion frequency (explained 

later) and better precision in point estimates (von Hippel, 2018).

Convergence of the MCMC algorithm was determined by calculating potential scale 

reduction factors (PSRF; Brooks & Gelman, 1998; Gelman et al., 2014) for each parameter 

and examining trace plots of the parameters, which are the plots of estimated parameter 

values against the MCMC iteration numbers, to evaluate mixing of the Markov chains. A 

rule of thumb is to conclude the algorithm converged if all PSRF values are below 1.10 

(Gelman et al., 2014). Using the applied example, the largest PSRF value after 800 iterations 

was 1.08. Thus, we used a conservative burn-in period of 1,000 iterations and a thinning 

interval of 1,000 iterations to generate 50 imputed data sets.

Imputation LASSO Approaches

Figures 2, 3, and 4 illustrate the steps for implementing the separate approach, stacked 

approach, and MI-LASSO, respectively. The first two steps in Figures 2–4 (i.e., using 

multiple imputation to generate m imputed data sets and splitting each imputed data set 

into a training and test set) are the same across the three imputation LASSO approaches. 

For multiply imputed data, each row of data for the same participant should be in the same 

split. Thus, for the running example, we used a 75:25 ratio for each imputed data set to 

split the 1,486 participants such that the same 1,114 participants were always assigned to 

the training set and the remaining 372 participants were always assigned to the test set. For 

2https://osf.io/7ys4m/.
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simplicity, we refer to these data sets collectively as the imputed training sets and imputed 

test sets, respectively. The total number of imputations (m) is preserved as there are 50 

imputed training sets and 50 imputed test sets for the applied example. We now describe the 

remaining steps that slightly differ across the three imputation LASSO approaches.

Separate Approach

The separate approach (see Figure 2) involves fitting a variable selection procedure 

separately in each of the m imputed data sets. This will typically result in different variables 

selected in each imputed data set. There is debate as to how to determine the final selection 

of variables and how to pool the coefficients if different variables are selected (Zhao & 

Long, 2017). The first discussion of the variable selection problem within the MI framework 

was raised by Brand (1999), who proposed a two-step solution using stepwise regression. 

Others expanded on Brand’s work by exploring alternative solutions to the variable selection 

problem using stepwise regression (Wood et al., 2008), LARS (Lachenbruch, 2011), LASSO 

(Thao & Geskus, 2019), and Bayesian methods (Yang et al., 2005). When using the LASSO 

as the variable selection procedure for the separate approach, the steps described in the Steps 

for Estimating a LASSO section can be used as is except they are applied to each imputed 

data set individually.

k-Fold Cross-Validation in Imputed Training Sets—The eight steps of k-fold cross-

validation (i.e., CV1–CV8) are conducted in each imputed training set separately (Figure 2, 

Step 3). This will result in m different λ values. To our knowledge, there has not been an 

investigation as to the best way to select the cross-validated λ value for multiply imputed 

data. The only explicit reference to validating λ using the separate approach was made 

by Thao and Geskus (2019). They performed 10-fold cross-validation on just one imputed 

data set to obtain a single cross-validated λ value. For this tutorial, we explored five other 

options: (a) allow each imputed training set to have its own imputation-specific λ value, 

or use the (b) mean, (c) median, (d) minimum, or (e) maximum of the m λ values for 

all imputed training sets. For the applied example, the cross-validated λ values for options 

(b–e) were .109, .112, .078, and .136, respectively. These five options led to a different 

selection of variables when including any variable selected in at least one imputed training 

set. Option (d), the least penalized option, selected 33 predictors; option (a) selected 30 

predictors; options (b) and (c) selected the same 29 predictors; and option (e), the most 

penalized option, selected 24 predictors. For simplicity, we selected option (b), λ = .109, 

as the cross-validated λ value used for all imputed data sets as a compromise between the 

extreme values.

Estimate LASSO Models in Imputed Training Sets—Using the cross-validated λ 
value(s) from the previous step, a LASSO is estimated in each imputed training set (Figure 

2, Step 4), resulting in m LASSO results (henceforth referred to as imputation-specific 

LASSO models). The set of selected predictors varies across the imputation-specific LASSO 

models: some predictors are never selected, some predictors are selected in some of the 

imputed training sets, and some predictors are selected in every imputed training set. This 

complication has resulted in debate on the appropriateness of pooling and how to pool 

coefficients and model performance measures if it is appropriate.
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Before discussing the mathematics of pooling, it is important to address if pooling is 

appropriate when different variables are selected across the imputed data sets. Chen and 

Wang (2013) argue that if different predictors are selected, then the coefficient estimates 

cannot be pooled because “covariates of regression models in each imputation are different” 

(p. 3649). For example, if the variable ever smoked was selected in some but not all the 

imputed data sets, then the partial regression coefficients for the other selected variables 

will account for the effect of ever smoked in some of the imputed data sets but not in 

others. However, if the LASSO was estimated without including the nonselected predictors 

as inputs in the model, the resulting coefficient estimates will differ from the original 

estimates. Thus, the nonselected predictors are in effect controlled for. Regardless, this 

appears to be a negligible issue because the goal of the LASSO is to create a predictive 

model, not inference. Therefore, for the applied example, we proceed assuming that pooling 

the regression coefficients is acceptable even when different covariates are selected across 

the imputed data sets.

Previous studies obtained the pooled estimate of a slope for a predictor by averaging 

the m LASSO coefficients in the m imputation-specific LASSO models for the predictor 

(Musoro et al., 2014; Thao & Geskus, 2019). This is what is done for OLS estimates 

of regression coefficients as it is assumed that the estimates form a normally distributed 

sampling distribution. In the case of LASSO estimates, however, this may not be the 

accurate pooling procedure. There are three scenarios for the combination of individual 

slope values: (a) the pooled slopes reflect nonzero slopes in all m imputed data sets, (b) the 

pooled slopes reflect a mix of zero and nonzero values, and (c) the pooled slopes reflect zero 

slopes in all m imputed data sets. Returning to our example, Table 3 shows the 50 slope 

estimates for four predictors in the applied example. Anxiety as measured by the GAD-7 

was selected in all 50 imputed data sets, ability to make friends was selected in 37 imputed 

data sets, ever smoked was selected in 23 imputed data sets, and age was not selected in any 

imputed data sets. Both ability to make friends and ever smoked variables reflect scenario 

(b) such that the pooled estimates reflect a mixture of zero and nonzero values. In this 

scenario, because there is an inflation of zero slope values and all nonzero slope values have 

the same sign (e.g., all nonzero slope values are positive for the ever smoked variable and all 

nonzero slope values are negative for the ability to make friends variable), it is difficult to 

believe that the sampling distribution of the slopes is a normal distribution. In the absence of 

guidance on how to pool results given this inflation, we averaged the 50 LASSO coefficients 

for all predictors. The coefficients for the final model of the applied example are presented 

in Table 2 under the Separate approach column. The final model is the predictive LASSO 

model that uses the MI point estimates for the coefficients of selected variables. In this case, 

the set of variables selected in the final model are any predictors that were selected in at least 

one imputed training set.

A model performance measure such as the MSE can be calculated in the training set to 

compare it to a model performance measure in the test set. In the context of multiple 

imputation, this means calculating the MSE in each imputed training set using the 

corresponding imputation-specific LASSO model and pooling the m MSE values by taking 

the average. Using the applied example, the 50 MSE values ranged from 10.42 to 11.00 with 

an average value of 10.68.
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Potential downsides of the process just described are the selection of noise variables 

(a predictor only needs to be selected in one imputed data set to be included in the 

final selection of predictors) and using different models (due to inconsistently selected 

predictors) to calculate a model performance measure. Thus, previous researchers have used 

an inclusion frequency or IF (i.e., number of imputed data sets the variable was selected in 

divided by the total number of imputed data sets) to select fewer variables. If the IF for a 

predictor is at or above a threshold value, π, where 0 < π ≤ 1 (Heymans et al., 2007), then 

the predictor is included in the final model. Common choices for π are (a) π = 1/m (i.e., 

predictor was selected in at least one imputed data set); (b) π = .5 (predictor was selected 

in at least half of the imputed data sets); and (c) π = 1 (predictor was selected in all of 

the imputed data sets; Thao & Geskus, 2019; Vergouwe et al., 2010; Wood et al., 2008). 

Not surprisingly, the final selection of variables is sensitive to the value of π. Strategy (c) 

leads to a more parsimonious model relative to any other choice for π as fewer variables 

are included in the final selection of predictors. Strategy (a), which is the process we just 

described, is more susceptible to selecting noise variables, especially as the number of 

imputations (m) increases (Thao & Geskus, 2019), but the estimates have less bias compared 

to larger π values. Thus, the selection of π is related to the bias-variance tradeoff such that 

as π increases, the bias of the estimates increases (more shrinkage occurs by virtue of not 

selecting predictors), but the variance of the estimates decreases.

Returning to the applied example, estimating LASSOs in the imputed training sets using 

the mean cross-validated λ value (.109) led to 29 variables selected in at least one imputed 

training set, 20 variables selected in at least 50% of the imputed training sets, and 15 

variables selected in all imputed training sets. The inclusion frequencies for all predictors are 

provided in Table 2.

If using π = .5, which is a popular choice for applied and simulation studies (Lachenbruch, 

2011) as it balances the bias-variance tradeoff, the coefficients for predictors selected in 

fewer than 50% of the imputation-specific LASSO models need to be manually changed to 

0 when calculating model performance measures like the MSE Returning to Table 3, ever 

smoked would not be included in the final selection of variables in this scenario because it 

was selected in only 46% of the data sets. Thus, its coefficients in the imputation-specific 

LASSO models would be changed to 0 and the m MSEs would be calculated using these m 
revised imputation-specific LASSO models. Additionally, the coefficient in the final model 

associated with ever smoked would be 0. This is illustrated in the second to last row of Table 

3. If π = 1, the last row of Table 3 shows that of the four variables, only anxiety would have 

a nonzero coefficient in the final model (and in each revised imputation-specific LASSO 

model) because it was the only variable consistently selected.

Fit Estimated LASSO Models to Imputed Test Sets and Pool Results—There is 

little to no guidance on how to fit the training models in the imputed test sets (Figure 2, Step 

5). Should the final model (using the pooled estimates) or the imputation-specific LASSO 

models be fit to the test sets? In an applied example, Musoro et al. (2014) calculated model 

performance measures in each imputed test set using the coefficients from the final model, 

but it is unclear if this method gives the best estimate of the test error rate. To be consistent 

with how the pooled MSE was calculated in the training set, we fit each imputation-specific 
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LASSO model to its corresponding imputed test set and calculated the MSE (Figure 2, 

Step 6). We then calculated the pooled test MSE (Figure 2, Step 7) by taking the average 

of the 50 MSE values. The 50 MSE values ranged from 11.11 to 11.76 with an average 

value of 11.37. This value can be compared with the training MSE (10.68) to get a sense 

of the generalizability of the model, but there are no guidelines for determining what is an 

acceptable difference between the two values.

Stacked Approach

Rather than estimating a LASSO in each imputed data set, a LASSO model can be estimated 

using the stacked set of imputed data sets. A stacked data set is a long format data set that 

includes all the imputed data sets stacked on top of one another with N × m rows for N 
participants and m imputed data sets. In the stacked approach, the m imputed training sets 

are stacked on top of one another as are the m imputed test sets, resulting in a stacked 

training set (Figure 3, Step 2a) and a stacked test set (Figure 3, Step 2b), respectively. For 

the applied example, this results in a stacked training set with 1,114 × 50 = 55,700 rows 

and a stacked test set with 372 × 50 = 18,600 rows. Fitting the LASSO using the stacked 

approach is straightforward as there is one data set with no missing values. Because this 

approach requires only one analysis, there is not an inconsistent selection of predictors, 

simplifying the process and removing decisions needed in the separate approach such as 

selecting π.

k-Fold Cross-Validation in Stacked Training Set—Steps CV1–CV8 of k-fold cross-

validation can be conducted using the stacked training set (Figure 3, Step 3) as is with one 

potential exception: the inclusion of weights when estimating the LASSO. Generally, when 

an analysis is performed using the stacked data set, the parameter estimates are unbiased 

and consistent if they are unbiased and consistent for the individual imputed data sets, 

but the standard errors are underestimated due to the inflated sample size (Cohen et al., 

2003; Zhao & Long, 2017). (For the applied example, the number of participants in the 

training set is 1,114, but the statistical program assumes a sample size of 55,700 when 

conducting analyses using the stacked training set.) Similar to the separate approach, the 

stacked approach was first applied using stepwise regression (Wood et al., 2008). Because 

standard errors are needed for that selection process, the standard errors were corrected 

by incorporating weights. Multiple weighting strategies have been proposed for stepwise 

regression including weights for individuals (Wood et al., 2008) and weights for variables 

(Vergouwe et al., 2010).

Weights have also been included when using machine learning variable selection methods. 

Wan et al. (2015) fit the elastic net on the stacked imputed data set utilizing one of 

two weighting schemes: wi = 1/m and wi = fi/m, where fi is the number of predictor 

variables with no missing values for participant i (the authors assumed complete data on the 

outcome variable) divided by the total number of predictors. If a participant has complete 

data on all predictors, then for both weighting schemes, the weight for their row in one 

imputed data set is equal to 1/m. By summing across the imputed data sets, the total 

weight for one participant with complete data is equal to 1. In their simulation study, both 

weighting schemes exhibited similar predictive performance. Thao and Geskus (2019) used 
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the LASSO to compare the weighting scheme wi = fi/m to a stacked approach that did not 

use weights and found that both approaches had similar predictive performance. If standard 

errors are not calculated and only point estimates are desired, it is unclear why a weighting 

scheme is needed when fitting a LASSO as the stacked data set yields consistent estimates 

(van Buuren, 2018).

Returning to the applied example, we conducted 10-fold cross-validation in the stacked 

training set with no weights, with wi = 1/m, and with w = fi/m. The glmnet function in R 

easily incorporates weights in the analysis (see annotated code for details). The first two 

weighting schemes produced identical cross-validated λ values while the third weighting 

scheme produced a slightly different cross-validated λ value (different at the sixth decimal 

place). Note, the default option of the glmnet package in R is to standardize the predictors in 

relation to the stacked training set. This standardization retains between-cluster variation.

Estimate LASSO in Stacked Training Set—Using the chosen weighting scheme from 

the previous step, a LASSO is estimated in the stacked training set using the cross-validated 

λ (Figure 3, Step 4). In our case, the unweighted and 1/m weights produced identical point 

estimates and thus model performance measures (MSE = 10.4560). Using fi/m weights led 

to one fewer predictor selected (self-rating of ability to live drug free) and slightly different 

coefficient estimates, but similar model performance measures (MSE = 10.4562). Because it 

has not been shown that weights are needed for the point estimates, we present the results 

for the unweighted solution only in Table 2. Only two predictors were not selected by the 

LASSO: the Latinx and ever homeless dummy variables. Because all other race/ethnicity 

dummy variables were selected, the Latinx group became the reference group in this model.

Fit Estimated LASSO to Stacked Test Set—Next, the training model is fit to the 

stacked test set (Figure 3, Step 5) and a model performance measure is calculated (Figure 3, 

Step 6). Although the fi/m weights led to slightly better model performance measures in the 

test set (MSE = 11.642) compared with the other two weighting schemes (MSE = 11.647), 

we cannot recommend these weights over the unweighted solution in all situations. In fact, 

when using a different split for the training and test sets, the unweighted LASSO performed 

better in the test set.

The test MSE for the stacked approach should be compared to the test MSE for the separate 

approach. Because the test MSE for the separate approach is smaller than the test MSE 
for the stacked approach, we can conclude the separate approach is better than the stacked 

approach for prediction for this applied example.

MI-LASSO

To ensure consistent variable selection across the imputed data sets, a group LASSO can be 

applied to the stacked set of imputed data sets (Chen & Wang, 2013). The group LASSO 

enters a set of variables as a group (Yuan & Lin, 2006). This is sometimes seen when 

including an interaction and its main effects in the LASSO so that the main effects are 

selected if the interaction is selected or when a set of dummy variables that represent the 

same nominal variable (e.g., race) is entered into the LASSO. The group LASSO will select 
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all the variables within the group or shrink the coefficients for all variables within the group 

to zero.

The MI-LASSO approach uses the group LASSO penalty to estimate a LASSO in all 

imputed data sets jointly. Specifically, the MI-LASSO minimizes

∑
d = 1

m
∑
i = 1

N
ydi − βd0 + ∑

j = 1

p
βdjxdij

2
+ λ ∑

j = 1

p
∑

d = 1

m
βdj

2 , (3)

which is similar to Equation 2; however, the coefficients are now indexed by imputed data 

set as well as by predictor. Like the separate approach, each imputed data set has its own 

intercept and set of p estimated regression coefficients. Unlike the separate approach, the m
imputed data sets are analyzed jointly in one analysis rather than separately. Each predictor 

acts as its own group such that the m regression coefficients associated with one predictor 

will either all be zero or all be nonzero. This approach assumes that if a predictor is 

important, then it should be selected in all imputed data sets. Conversely, if a predictor is not 

important, then it should not be selected in any imputed data set. While intuitively this seems 

like an optimal feature of the approach, rendering a binary judgment on the importance of 

the predictor (i.e., selected or not selected) does not allow for uncertainty due to missing 

data. Figure 4 illustrates the process of implementing the MI-LASSO.

k-Fold Cross-Validation Via MI-LASSO—The authors of the MI-LASSO provide SAS 

code and an R function for using the MI-LASSO,3 but rather than using cross-validation 

or a training/test split, the optimal λ value is the value that minimizes the BIC. Unlike 

the MSE, which decreases as model complexity increases (e.g., the number of predictors 

increases), the BIC balances model performance with model complexity. However, as stated 

earlier, calculating the degrees of freedom for the LASSO is not straightforward (Zou et al., 

2007), calling into question the accuracy of the BIC, which relies on degrees of freedom. 

Thus, we modified the MI-LASSO function to calculate the MSE and conducted 10-fold 

cross-validation on the stacked training set (Figure 4, Step 3). As seen in Table 2, the cross-

validated λ value for the MI-LASSO approach (λ = 27.542) was much larger compared to 

the other approaches. The reason for this is because the MI-LASSO is penalizing a different 

quantity compared to the other two imputation LASSO approaches. As shown in Equation 2 

and 3, the number of coefficients minimized for the MI-LASSO is m times greater than the 

number of coefficients minimized for the LASSO.

Estimate MI-LASSO in Imputed Training Sets Jointly—The MI-LASSO is 

estimated using the cross-validated λ value and the imputed training sets (Figure 4, Step 

4). The result is m sets of coefficients that vary across the imputed data sets. Unlike the 

separate approach, if the coefficient for a particular variable is zero in one imputed data set, 

then it is zero in all other imputed data sets due to the group LASSO penalty, resulting in 

consistent variable selection and no need for the arbitrary threshold parameter, π. However, 

the nonzero coefficients are not identical across imputed data sets. Thus, the coefficient 

3www.columbia.edu/~qc2138.
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estimates for a selected predictor need to be pooled to obtain a single point estimate. Like 

in the separate approach, the coefficients for a selected variable are pooled by calculating 

the mean (Musoro et al., 2014; Thao & Geskus, 2019). Estimating the MI-LASSO using 

the cross-validated λ value (27.542) led to the selection of 20 predictors, a subset of the 29 

predictors selected by the separate approach. Table 2 presents the pooled point estimates for 

the regression coefficients in the final LASSO model.

A model performance measure like the MSE can be calculated in each imputed training set 

using the imputation-specific LASSO coefficients. To obtain a single point estimate, the m 
MSE values are pooled by taking the average. For the applied example, the 50 MSE values 

ranged from 10.45 to 11.01, with an average value of 10.70.

Fit Estimated LASSO Models to Imputed Test Sets and Pool Results—The 

final steps of the MI-LASSO procedure involve fitting the model in the imputed test sets 

(Figure 4, Step 5) and calculating a pooled model performance measure (Figure 4, Steps 

6, 7); however, like the separate approach, it is not clear if the final model or the imputation-

specific LASSO models should be tested. To be consistent with the separate approach, 

we calculated the MSE values using the imputation-specific LASSO models. The 50 MSE 
values ranged from 11.14 to 11.74, with an average value of 11.37. Comparing this value 

to the test MSEs of the separate and stacked approaches, the separate approach is likely 

to perform the best in a holdout sample and thus should be selected as the best predictive 

model of the three imputation LASSO approaches.

Discussion

This article provides a tutorial on how to implement three approaches for estimating a 

LASSO with multiply imputed data. In doing so, we moved the needle on an analytic 

framework that bridges the gap between the machine learning and traditional statistical 

“cultures” as they were referred to in Leo Breiman’s landmark paper (Breiman, 2001). 

Breiman’s paper, as well as numerous other articles (e.g., Donoho, 2017; Mukhopadhyay 

& Wang, 2020; Yarkoni & Westfall, 2017), have advocated for a blended culture so that 

the best method for a given task is chosen, such as LASSO for increasing the predictive 

ability of a model in future samples. The presence of missing data, a common and 

practical issue in psychological analyses, often supersedes conceptual reasons for selecting 

analytic approaches. Traditional statistical analyses such as standard linear regression are 

favored because the theoretical basis for combining them with multiple imputation are more 

straightforward and more easily implemented through available statistical software relative 

to machine learning methods.

A strength of this tutorial was the provision of step-by-step procedures that can be applied 

to free software packages that are accessible by psychologists and other researchers. Until 

now, there has not been a clear discussion on how to validate the LASSO when using 

multiply imputed data. We provided clear guidance on how to conduct cross-validation and 

include a training/test split for the approaches discussed. One decision point for determining 

which imputation LASSO approach to implement are the available options across different 

statistical software packages. In this vein, the separate and stacked approaches are ideal 
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because they can be implemented in freely-distributed software packages (e.g., Blimp and 

glmnet were used for MI and LASSO in this article, respectively), as well as commercial 

software that supports MI and LASSO (e.g., Stata). Data preparation and analysis is easiest 

to conduct using the stacked approach relative to the other two approaches as LASSO can 

be applied to a single stacked data set. To the best of our knowledge, the MI-LASSO 

approach can only be implemented via the R or SAS code provided by the original authors, 

making options limited (e.g., k-fold cross-validation automation unavailable, BIC is the only 

model performance measure provided, elastic net would need to be programmed, code needs 

modification if using a categorical outcome). Additionally, it is the most computationally 

intensive of the three procedures. In our analyses, MI-LASSO took over 10 min to conduct 

10-fold cross-validation for two λ values whereas it took 6 s for the separate approach to 

conduct 10-fold cross-validation for 77 λ values.

Another deciding factor in selecting an imputation LASSO approach is model 

interpretability. In the separate approach, each imputed data set can have a different set of 

selected variables, bringing into question how valid it is to pool parameter estimates if they 

have different interpretations across the different imputed data sets (the partial regression 

coefficients are controlling for the effects of different predictor variables). The stacked 

approach avoids this issue but, in our example, all but two of the 49 predictor variables were 

selected, which makes for a less parsimonious model compared with the other approaches. 

Additionally, the stacked approach had the worst predictive ability (i.e., largest test set 

MSE). The inflated sample size of the stacked data set may affect the value of λ, leading to 

an inaccurate number of selected variables. With almost all predictors selected due to a small 

cross-validated λ value, it is not surprising to see that the test MSE was the worst compared 

to the other two imputation LASSO approaches. In our example, the MI-LASSO is the most 

intuitively appealing of the three imputation LASSO approaches because it does not require 

selecting an arbitrary threshold, only one analysis was required after cross-validation, and 

the final model selected fewer variables compared with the stacked approach.

It is difficult draw a clear winner from the three imputation LASSO approaches, but the 

stacked approach performed the worst of the three based on the test model performance 

measures. However, it is important to provide caution in generalizing these findings as 

the analyses were applied to a single data set. Prior studies did not find any difference in 

the number of variables selected between the stacked and separate approaches (Thao & 

Geskus, 2019; Wood et al., 2008). This could be because our results are an outlier (e.g., 

we used m = 50 while others tend to use smaller values like m = 5 or m = 20) or because 

the data structure of our applied example was not examined in their simulation studies. If 

the latter, simulation studies need to expand the examined simulation models/conditions to 

increase the generalizability of the findings. Simulation results from prior studies have yet 

to confirm a preferred imputation LASSO approach, especially in striking a balance between 

improvements in performance across multiple metrics and low implementation burden.

In this tutorial, we illustrated the application of the separate, stacked, and MI-LASSO 

approaches for fitting a LASSO to multiply imputed data due to their ease of implementation 

through readily available software and/or theoretical basis. Other approaches to explore 

include a multiple imputation random LASSO (MIRL) method (Liu et al., 2016) that 
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combines MI and random LASSO (Wang et al., 2011), methods that perform variable 

selection on data sets that combine MI and bootstrapping (e.g., Deng et al., 2016; Long 

& Johnson, 2015; Musoro et al., 2014; Thao & Geskus, 2019; Zhao & Long, 2016), 

group LASSO methods that use penalized pooled objective functions that force consistent 

variable selection across the imputed data sets (e.g., Du et al., 2020; Geronimi & Saporta, 

2017; Marino et al., 2017), generating only one imputed data set, and Bayesian penalized 

regression techniques (Makalic & Schmidt, 2016).

We stated earlier that the imputation LASSO approaches discussed in the tutorial could 

easily be applied to elastic net because they both select predictors by fixing coefficients 

to zero. Ridge regression, on the other hand, is a regularized regression method that 

does not fix coefficients to zero and thus does not suffer from the same complications 

discussed in the tutorial. Further, ridge regression has a closed-form solution, making the 

use of inferential statistics more tenable. While our tutorial was specific to regularization 

of the standard linear regression model, the general framework of the three imputation 

LASSO approaches can be applied to more complex statistical models that incorporate 

regularization such as regularized structural equation modeling (Liang & Jacobucci, 2020) 

and regularized partial correlation networks (Epskamp & Fried, 2018). Additionally, future 

research should explore how these frameworks can be applied to other machine learning 

and artificial intelligence algorithms—such as random forests, decision trees, and artificial 

neural networks—encountered in psychosocial studies (Feelders, 1999; Parker, 2010; Poulos 

& Valle, 2018; Rodgers et al., 2021; Twala et al., 2008).

There are further extensions to explore that our tutorial did not cover. For instance, 

our analyses explored linear relationships between predictors and a continuous outcome 

using cross-sectional data. Other psychological studies call for evaluations of nonlinear 

relationships (e.g., interaction effects) between predictors and discrete outcomes using 

longitudinal data. Most existing approaches for variable selection in the presence of missing 

data are developed under the MAR mechanism, which is often implausible in many settings. 

Although it is not widely done in practice, MI can accommodate known missing not at 

random (MNAR) mechanisms (i.e., the probability of a value being missing depends on 

the unobserved values of that variable) under the selection modeling (Beesley & Taylor, 

2021; Carpenter et al., 2007; Hayati Rezvan et al., 2015) and pattern-mixture modeling 

(Hayati Rezvan et al., 2018; Leacy et al., 2017; Tompsett et al., 2018; Tompsett et al., 2020) 

frameworks. Addressing challenges that arise during implementation of variable selection 

strategies when using MI to address MNAR missingness is an area for future development. 

Further work could explore the validity of inferential statistics for LASSO with multiply 

imputed data. Despite the various methods for calculating standard errors for the LASSO, 

significance tests have not yet been applied for the LASSO or elastic net in the context of 

MI.

This tutorial showcased and evaluated three imputation LASSO approaches to prompt a 

wider scale adoption of machine learning variable selection approaches by psychological 

researchers, even when the variables have missing values. Given the pros and cons of each 

imputation LASSO approach, we refrain from recommending one over another and instead 

provide steps for researchers to use each imputation LASSO approach. The intersection of 
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the missing data literature and machine learning literature is relatively small (Twala et al., 

2008), but this article contributes to that intersection, illustrating places for further research 

and providing guidance for methodological and applied researchers on how to use three 

different approaches for fitting a LASSO when using multiple imputation to handle missing 

data.
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Figure 1. LASSO Procedure for Complete Data
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Figure 2. LASSO Procedure for Separate Approach
Note. The subscripts index the m imputed data sets.
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Figure 3. LASSO Procedure for Stacked Approach
Note. The subscripts index the m imputed data sets.
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Figure 4. LASSO Procedure for MI-LASSO
Note. The subscripts index the m imputed data sets.
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Table 1

Descriptive Statistics of Variables Entered in LASSO

Variable M (SD) N missing (%)

Outcome variable

 PHQ-9 depression 7.05 (5.89) 50 (3.36)

Continuous variables

 Age 20.89 (2.15) 0 (0.00)

 AUDIT-C 3.01 (2.90) 15(1.01)

 Count of unique drugs ever used 3.11 (2.86) 3 (0.20)

 Rumination on something bad 0.78 (1.01) 11 (0.74)

 SF-12 calm and peaceful 3.03 (1.40) 22(1.48)

 SF-12 sad and blue 2.03 (1.39) 21 (1.41)

 SF-12 emotional problems 1.69 (1.63) 27 (1.82)

 SF-12 energy 3.21 (1.43) 19 (1.28)

 GAD-7 anxiety 6.48 (5.52) 23 (1.55)

 SR of mental health 7.02 (2.38) 3 (0.20)

 SR of physical health 7.81 (1.90) 2(0.13)

 SR of living situation 7.27 (2.54) 2(0.13)

 SR of ability to live drug free 7.20 (3.04) 6 (0.40)

 SR of social network 7.28 (2.70) 3 (0.20)

 SR of sexual relationships 7.09 (2.90) 182(12.25)

 Social help 7.17 (3.13) 2(0.13)

 Emotional support 7.18 (3.16) 3 (0.20)

 Ability to make new friends 7.88 (2.80) 4 (0.27)

 Frequency of social media use 4.27 (1.56) 9 (0.61)

 Frequency of dating app use 1.68 (2.05) 14 (0.94)

Binary variables

Los Angeles 0.56 (0.50) 0 (0.00)

Black/African American 0.51 (0.50) 0 (0.00)

Latinx 0.24 (0.43) 0 (0.00)

White 0.18 (0.39) 0 (0.00)

Other race/ethnicity 0.07 (0.25) 0 (0.00)

Female at birth 0.19 (0.39) 0 (0.00)

Cisgender 0.87 (0.34) 0 (0.00)

Heterosexual 0.27 (0.44) 0 (0.00)

Employed 0.71 (0.45) 31 (2.09)

Income below poverty line 0.71 (0.45) 10 (0.67)

Has health insurance 0.80 (0.40) 122 (8.21)

Has health care provider 0.69 (0.46) 6 (0.40)

Medical utilization 0.65 (0.48) 9 (0.61)

Received ER/urgent care 0.30 (0.46) 3 (0.20)

Participated in substance abuse program 0.20 (0.40) 0 (0.00)
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Variable M (SD) N missing (%)

Participated in HIV prevention program 0.21 (0.41) 4 (0.27)

Ever homeless 0.49 (0.50) 0 (0.00)

Ever incarcerated 0.25 (0.43) 6 (0.40)

Experienced partner violence 0.37 (0.48) 44 (2.96)

Exchanged sex for money 0.25 (0.43) 8 (0.54)

Attempted suicide 0.33 (0.47) 37 (2.49)

Hospitalized for mental health problems 0.30 (0.46) 0 (0.00)

Sexually abused 0.30 (0.46) 29 (1.95)

Had sex with someone 5+ years older

before age 16 0.31 (0.46) 18 (1.21)

Ever been robbed 0.31 (0.46) 13 (0.87)

Seen serious injury or death 0.49 (0.50) 11 (0.74)

Family member was murdered 0.42 (0.49) 13 (0.87)

Used drugs during last sexual encounter 0.43 (0.50) 7 (0.47)

Ever smoked 0.45 (0.50) 45 (3.03)

Note. PHQ-9 = 9-item Patient Health Questionnaire scale; GAD-7 = 7-item Generalized Anxiety Disorder scale; AUDIT-C = scale score from 
Alcohol Use Disorders Identification Test; SF-12 = Item from 12-item Short Form health survey; SR = self-rating.
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Table 3

Coefficient Estimates From Imputation-Specific LASSO Models for Four Predictors Using the Separate 

Approach

Imputation GAD-7 anxiety Ability to make friends Ever smoked Age

 1 0.532 0 0.017 0

 2 0.527 −0.006 0 0

3 0.524 0 0.092 0

 4 0.526 −0.006 0 0

 5 0.514 −0.008 0 0

 6 0.534 −0.001 0 0

 7 0.529 −0.022 0.03 0

 8 0.525 −0.013 0.026 0

 9 0.516 −0.001 0 0

10 0.519 0 0.009 0

11 0.534 −0.013 0.019 0

12 0.528 −0.009 0 0

13 0.526 −0.009 0.024 0

14 0.526 −0.012 0 0

15 0.525 −0.011 0.075 0

16 0.529 −0.011 0 0

17 0.528 0 0 0

18 0.533 0 0.017 0

19 0.527 −0.004 0.034 0

20 0.515 0 0.070 0

21 0.522 0 0.009 0

22 0.521 −0.006 0.008 0

23 0.529 −0.015 0.002 0

24 0.528 −0.015 0.030 0

25 0.524 0 0 0

26 0.528 −0.005 0 0

27 0.516 0 0 0

28 0.525 −0.009 0 0

29 0.527 −0.008 0.010 0

30 0.520 −0.012 0 0

31 0.530 −0.003 0 0

32 0.538 0 0.047 0

33 0.530 0 0 0

34 0.530 −0.004 0.041 0

35 0.528 −0.003 0.008 0

36 0.533 −0.020 0 0

37 0.532 −0.008 0.078 0

38 0.529 −0.005 0 0
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Imputation GAD-7 anxiety Ability to make friends Ever smoked Age

39 0.526 0 0 0

40 0.532 0 0 0

41 0.526 −0.002 0 0

42 0.526 −0.003 0 0

43 0.533 −0.014 0 0

44 0.529 −0.015 0 0

45 0.530 0 0 0

46 0.521 0 0.093 0

47 0.529 −0.005 0 0

48 0.526 0 0 0

49 0.525 −0.003 0.002 0

50 0.531 −0.018 0.009 0

Average 0.527 −0.006 0.015 0

Inclusion frequency 1.0 .74 .46 0

Coefficient in final model when

 π = 1/m 0.527 −0.006 0.015 0

 π = .5 0.527 −0.006 0 0

 π = 1 0.527 0 0 0

Note. Inclusion frequency = proportion of imputed data sets that selected that predictor. GAD-7 = 7-item Generalized Anxiety Disorder scale; p = 
threshold for inclusion in the final model.
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