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RESEARCH Open Access

Model-based analysis of experimental data
from interconnected, row-configured huts
elucidates multifaceted effects of a volatile
chemical on Aedes aegypti mosquitoes
Quirine A. ten Bosch1,2* , Fanny Castro-Llanos3, Hortance Manda4, Amy C. Morrison3,5, John P. Grieco1,
Nicole L. Achee1 and T. Alex Perkins1*

Abstract

Background: Insecticides used against Aedes aegypti and other disease vectors can elicit a multitude of dose-dependent
effects on behavioral and bionomic traits. Estimating the potential epidemiological impact of a product requires thorough
understanding of these effects and their interplay at different dosages. Volatile spatial repellent (SR) products come with
an additional layer of complexity due to the potential for altered movement of affected mosquitoes and diffusion of
volatile particles of the product beyond the treated house. Here, we propose a paired experimental design and statistical
inference framework for estimating these nuanced effects of volatile SRs.

Method: We fitted a continuous-time Markov chain model in a Bayesian framework to data on marked mosquitoes
released in interconnected experimental huts conducted in Iquitos, Peru. We estimated the effects of two dosages of
transfluthrin on Ae. aegypti behaviors associated with human-vector contact: repellency, exiting and knockdown in the
treated space and in connected, adjacent huts. We validated the framework using simulated data.

Results: The odds of a female Ae. aegypti being repelled, and thus prevented from entering a treated hut (HT),
increased at both dosages (low dosage: odds = 1.64, 95% highest density interval (HDI) = 1.30–2.09; high
dosage: odds = 1.35, HDI = 1.04–1.67). The relative risk of exiting from the treated hut was reduced (low: RR
= 0.70, HDI = 0.62–1.09; high: RR = 0.70, HDI = 0.40–1.06), with this effect carrying over to untreated spaces
two huts away from the treated hut (H2) (low: RR = 0.79, HDI = 0.59–1.01; high: RR = 0.66, HDI = 0.50–0.87).
Knockdown rates were increased in both treated and downstream huts, particularly under high dosage (HT:
RR = 8.37, HDI = 2.11–17.35; H1: RR = 1.39, HDI = 0.52–2.69; H2: RR = 2.22, HDI = 0.96–3.86).

Conclusions: Our framework is effective at elucidating multiple effects of volatile chemicals used in SR
products, as well as their downstream effects. For the examined formulations of transfluthrin, we found
notable dose-dependent effects on repellency, movement and knockdown that carry over to adjacent,
untreated spaces.

Keywords: Aedes aegypti, Bayesian parameter estimation, Continuous-time Markov-chain models, Dengue,
Spatial repellent, Transfluthrin, Vector control, Zika
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Background
Insecticidal strategies against adult mosquitoes have
been used extensively in the control of mosquito-borne
diseases [1]. However, certain mosquito behaviors, such
as outdoor and daytime biting, challenge the efficacy of
traditional control tools like insecticide treated nets
(ITNs) and indoor residual spraying (IRS) [2]. The evo-
lution of physiological resistance to insecticides [3] and
behavioral adaptation of mosquitoes [4, 5] also pose
limitations to the effectiveness of such products.
The effect of vector control products often goes be-

yond their acute lethal effects. For example, ITNs can
elicit knockdown with potential for mosquito recovery
and can divert mosquitoes away from a protected hu-
man to alternate hosts [6–8]. Volatile chemicals such as
transfluthrin and metofluthrin can be delivered in high
dosages and result in high lethality or can be formu-
lated at lower dosages where acute toxicity is attenu-
ated and other sublethal effects, such as incapacitated
host-attraction and/or blood-feeding, are elicited in-
stead, as was described previously for residual pyre-
throids [9, 10]. Currently, the term “spatial repellency”
is used to describe a range of behaviors that products
with volatile chemicals, including spatial repellents
(SR), may invoke [11], including repellency (reduced
entry), diversion (product-induced movement to an un-
treated space), knockdown, mortality, irritancy (in-
crease in exiting), attraction-inhibition and reduced
biting [12–14]. These modes of action can have a con-
certed impact on disease transmission on an individual
and community level [15–18].
Mark-release-recapture-type (MRR) experimental

hut studies, in which marked mosquitoes are released
in or outside an experimental hut system and moni-
tored using traps and knockdown rates, offer unique
opportunities to elucidate dosage and behavioral ef-
fects of SRs by measuring lethality, repellency and ir-
ritancy of a target vector species [10, 19–21].
However, studies such as these have not yet provided
the granularity required to disentangle distinct behav-
ioral and bionomic effects. The primary challenge as-
sociated with the design and interpretation of these
studies is that each mosquito is only observed once:
when knocked down or when trapped in entry or exit
traps. This leaves movement trajectories in between
release and recapture locations unobserved, making it
challenging to quantify the relative contributions of
multiple competing effects that could account for ob-
served individual-level outcomes under a multitude of
equally plausible scenarios. One recent study [22]
showed that even short periods of transient exposure
to volatile SRs can have significant, and sometimes
delayed, effects on vectors. Such unobserved effects
may compromise traditional statistical analyses.

Models used for the analysis of MRR data have a
long history in ecology [23–27]. Originally developed
to estimate survival probabilities and population sizes
[28], they are now increasingly being used to inform
spatial processes [29]. These models partition animal
movement trajectories into states (e.g. breeding or
foraging), with multi-state MRR models accounting
for the probability of the animal occupying any of the
possible states at a given time. Given sufficient infor-
mation from sampling at multiple points in time and
appropriate model constraints, these models can be
extended for parameter estimation in the presence of
unobserved states [30]. Bayesian methods are increas-
ingly being applied to these types of problems given
their treatment of all quantities as random variables
[31–33]. These methods allow for formal treatment
and quantification of parameter uncertainty and they
allow researchers to explicitly build on previous
studies.
Here, we present a new approach to infer effects of

SR products on adult female Ae. aegypti by develop-
ing a hierarchical Bayesian model and applying it to
a MRR study uniquely designed to measure SR
product-induced effects resulting from a single treated
home amongst a series of adjacent, untreated homes.
The design mimicking an anticipated SR operational
scenario in a typical semi-urban, dengue-endemic
environment whereby product is implemented at
< 100% household coverage and houses are adjoined,
thereby forming shared interior spaces. This analytical
approach was necessitated by the fact that the MRR
study was conducted in a set of five interconnected
huts, meaning that the time spent by individual mos-
quitoes in each of the five huts could not be directly
observed. We first demonstrate the accuracy of this
approach using data simulated under the same design
as in our field experiments. We then demonstrate the
dose-dependency of knockdown, repellency and exit-
ing effects of the SR in both treated and untreated
huts. We discuss the potential use of this framework
to inform the projected impact and implementation
of SRs and other vector control tools with volatile
chemicals.

Methods
The study was performed at the Instituto Veterinario de
Investigaciones in Iquitos, Peru (73.2°W, 7.3°S) during
May-June, 2011.

Product
Technical grade transfluthrin (Sigma-Aldrich 105
Co. LLC, St. Louis, MO, USA), a volatile pyrethroid
insecticide, was applied to cotton strips at 1/16th
(0.0025 g/m2) and 1/8th (0.005 g/m2) dilutions of a
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field application rate (0.04 g/m2) using previously
established protocols [34]. Control strips of
matched cotton material were treated with acetone
alone. Cotton material was applied to the interior
walls of a designated experimental hut at 25%
surface area coverage using magnets and metal
frames [34].

Experimental huts
A unique experimental hut configuration was used
for this study. Five independent structures were po-
sitioned adjacent to one another in a single row
creating adjoining walls (Figs. 1, 2). Side eave gaps
of each structure were open, subsequently allowing
a continuum of indoor space among all five huts
available for mosquito and volatile chemical move-
ment. This design was deliberate to mimic the
housing configuration common in the study loca-
tion in Iquitos, Peru and other dengue-endemic
areas (i.e. semi-urban settings in resource-poor,
tropical areas). The huts measured 4 × 6 m and
had 2 m high sidewalls. Each sidewall had an eave
space 40 cm high and 6 m long (one-fifth of wall
surface) (Fig. 2). The eave passage between adjoin-
ing huts was fitted with netting on all sides except
those facing the interior hut space. In essence, mos-
quitoes could move between hut interiors but not
enter the exterior space between huts. Each hut had
two windows (one each on the front and back
walls) equipped with exit traps and each hut had
two doors (one of each on the front and back
walls). All window and door openings were
equipped with exit intervention traps. The two
outermost huts had additional eave exit interven-
tion traps on sidewalls (Fig. 2). Hut construction
materials and structural design were based on pre-
vious MRR hut studies [19, 20].

Mosquitoes
Female Ae. aegypti test populations (F1-F2 genera-
tions) of 5–7 days-old were reared from
field-collected larvae following previously estab-
lished protocols [35]. Mosquitoes were not
blood-fed but were provided with cotton soaked
with sucrose solution until 24 h before being re-
leased in the experimental huts. Prior to release,
five cohorts each with 25 female mosquitoes each
were marked with a unique color of fluorescent
powder that corresponded to a single, specific ex-
perimental hut in which a cohort was released. This
marking facilitated monitoring of mosquito move-
ment from release origination to recapture location.

Study design
The study was performed using previously described
experimental hut collection protocols [34, 36]. Three
trials were performed: i) baseline (no cotton material
application); ii) low transfluthrin dosage (0.0025 g/
m2); and iii) high transfluthrin dosage (0.005 g/m2).
A single trial consisted of five experimental days (i.e.
five replicates). Transfluthrin-treated cotton was ap-
plied to all interior walls of the center hut (HT),
while solvent-only material (control) was applied to
all remaining huts adjacent. Treatments remained
fixed throughout a single experimental trial. This
treatment allocation was purposive to reflect a
semi-urban scenario in a dengue endemic setting
whereby an SR product is implemented at only one
home in a group of connected houses. Movement
during the baseline trial was measured prior to
transfluthrin-integrated trials to monitor residual im-
pact of treatment across trials. There was a period
of at least two weeks between each trial, in which
the huts were thoroughly cleaned and left ventilating
with traps removed from windows, doors and eaves.

Fig. 1 Experimental huts in row house configuration. Iquitos, Peru
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On each experimental day a single, uniquely
marked mosquito test cohort was released inside
each of the huts (here named according to the side
and distance to the treated hut: H2L, H1L, HT, H1R,
H2R) at 05:30 hours by five persons. Each individual
then remained in the hut, under an untreated bed
net, during the 12 h evaluation replicate period to
generate host-seeking cues and monitor indoor
mosquito knockdown. Knockdown on the floor in-
side huts was monitored at the top of each hour
starting from 06:00 hours until 18:00 hours. Speci-
mens were placed into labeled holding cups, imme-
diately removed from huts and provided access to
10% sugar solution to monitor 24 h mortality. In-
door collectors rotated among huts at the beginning
of each replicate day to control for host cue bias.
All window, door and eave exit interception traps were

monitored for both alive and knocked down mosquitoes
every 30 minutes for a standardized 3-minute collection
period per trap. Trap monitoring began at 06:00 hours
and continued until 18:00 hours by two-person collection
teams (five teams total) positioned outdoors. Collector
teams rotated among huts at each sampling period (every
30 min) to control for observer bias and remained at a
screened base station positioned 50 m from the experi-
mental huts when not sampling to avoid influencing exit
behavior due to outdoor human host cues.
At 18:00 hours, hand-held Prokopack aspirators [37]

were used by indoor collectors to recapture remaining
mosquitoes inside each hut to calculate loss to
follow-up. All recaptured mosquitoes (those from indoor

Prokopack aspiration and from exit intervention traps)
were held with access to a 10% sugar source to monitor
24 h mortality. Color codes were used to record release
origin and location of recapture in a single day.

Model
A continuous-time Markov chain model was developed
for the analysis of these data [38]. At any given time, mos-
quitoes can occupy any one of five huts (transient states:
H2L, H1L, HT, H1R or H2R) or have experienced one of 15
events represented by the absorbing states: X2L, X1L, XT,
X1R or X2R for the exit traps in each hut, K2L, K1L, KT, K1R

or K2R for knockdown in each hut and U2L, U1L, UT, U1R

or U2R for mosquitoes that were unaccounted for at the
end of the experiment and were thus lost to follow-up at
some unknown time. The infinitesimal generator matrix
A contains the rates at which mosquitoes leave one state
to move to another, such that aij gives the rate at which a
mosquito in state i moves to state j. These rates were as-
sumed to be independent of time or previous trajectories;
therefore, the time spent in state i before leaving follows

an exponential distribution with mean a−1i with ai

¼ P20
j¼1; j≠iaij . Note that the rates out of the absorbing

states are zero and that, given symmetry in the system, the
rates for hut 2L and 2R are equivalent (likewise for 1L and
1R). Subscripts in A indicate the distance from the treat-
ment hut. The 20 × 20 matrix A is defined as

A ¼ AH AX AK AUð Þ; ð1Þ
with

Fig. 2 Longitudinal (a) and transversal (b) images of the interconnected huts with door, window and eave traps (c-e) and the eaves between
adjoining walls (f)
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AX ¼

q2r2 0 0 0 0
0 q1r1 0 0 0
0 0 qT rT 0 0
0 0 0 q1r1 0
0 0 0 0 q2r2
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;

AK ¼

k2 0 0 0 0
0 k1 0 0 0
0 0 kT 0 0
0 0 0 k1 0
0 0 0 0 k2
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;

and

AU ¼

u2 0 0 0 0
0 u1 0 0 0
0 0 uT 0 0
0 0 0 u1 0
0 0 0 0 u2
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
:

The rate qi signifies the movement rate out of a hut.
The direction of this movement depends on ri (propor-
tion of movement directed to outdoors) and, for H1, it
further depends on repellency p1 (defined as the propor-
tion of indoor movement from H1, adjacent to HT, di-
rected away from HT). The knockdown rate ki is allowed
to vary by hut, whereas the loss to follow-up rate u is as-
sumed to be the same across huts. Hereafter, we refer to
the exit rate qiri as xi (Fig. 3).
The dynamics of the probabilities Pij(t) of occupying

any of the 20 states are governed by a system of differen-
tial equations with rates A and are known as the back-
ward Kolmogorov differential equations [38]

dP
dt

¼ AP tð Þ: ð2Þ

From this, we can derive the rates of change in the
probability of occupying a given state
By initializing this system in one hut (e.g. H2L = 1 and all

other states are zero at t = 0), solving for this system of dif-
ferential equations gives the probability that a mosquito re-
leased in a given hut occupies a specific state at time t.
The absorbing states (i.e. Xi, Ki and Ui) represent com-

peting endpoints in the sense that an individual who en-
ters one of these states is no longer capable of entering
any of the other states at some future time. This is

AH ¼

−q2 1−r2ð Þ−q2r2−k2−u2 q2 1−r2ð Þ 0 0 0
p1q1 1−r1ð Þ −q1 1−r1ð Þ−q1r1−k1−u1 1−p1ð Þq1 1−r1ð Þ 0 0

0 0:5qT 1−rTð Þ −qT 1−rTð Þ−qTrT−kT−uT 0:5qT 1−rTð Þ 0
0 0 1−p1ð Þq1 1−r1ð Þ −q1 1−r1ð Þ−q1r1−k1−u1 p1q1 1−r1ð Þ
0 0 0 q2 1−r2ð Þ −q2 1−r2ð Þ−q2r2−k2−u2
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
;

Fig. 3 Illustration of experimental hut design and associated model parameters, with q = movement rate, p = proportion of between-hut
movement directed away from the treated hut (repellency), r = proportion of movement directed outdoors, q r = x = exit rate, k = knockdown
rate and u = loss to follow-up rate. The red hut is the treated hut HT where the SR treatment is applied. The subscripts indicate whether the
parameter applies to HT (subscript T) or to a hut one or two removed from HT
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reflective of the nature of the experimental data, wherein

captured mosquitoes can only be classified as knocked
down or exited, but not both. The Markov chain ac-
counts for these competing endpoints vis-à-vis the prop-
erty that the states are discrete and mutually exclusive.
In addition, a mosquito released in 2L can only be
knocked down in 2R conditional on having moved there
prior to the knockdown event. The absence of non-zero
rates to any of the absorbing states from other huts en-
sures this conditionality.

Likelihoods
To estimate A, we fitted eqn. (3) to the data using a
likelihood-based approach. The data collected during the
experiments consisted of a set of interval- and
right-censored time-to-event data. Outcome measures of
interest included exiting (i.e. leaving a space), repellency
(i.e. reduced entry into a treated space), knockdown, di-
version (defined as the movement to a hut other than
the release hut) and loss to follow-up, where exiting,
knockdown and loss to follow-up are competing events
(i.e. the occurrence of one event precludes the occur-
rence of another). The cumulative, conditional probabil-
ities for all events observed in the experiment can be
directly obtained from the solutions of eqn. (3), as de-
tailed in eqns. (4), (5) and (6).

Interval-censored events
Data pertaining to knockdown and exit events are
interval-censored between time points t1 and t2, with
exit events recorded at 30 minute intervals and knock-
down events at hourly intervals. Given model parameter
set θ, the probability that a mosquito released in Hrel is
observed to be knocked down in hut H at time t2 is

Pr t1 < T < t2;Y ¼ kdH jHrel; θð Þ ¼ FkdH t2jHrel; θð Þ−FkdH t1jHrel; θð Þ
F divH t2jHrel; θð ÞS t2jHrel; θð Þ

¼ KH t2jHrel; θð Þ−KH t1jHrel; θð Þ;
ð4Þ

where F(t) denotes the probability that a specific event
(here knockdown and movement to H) occurred in hut
H by time t and S(t) denotes the survival function (i.e.
the probability that no knockdown, exit or loss to
follow-up has occurred by time t). Exit and knockdown
events contain indirect information on the diversion
event, namely that the mosquito has moved from its re-
lease location to the hut where the event took place be-
fore the event occurred. This condition, as illustrated by
Fdiv in the denominator of eqn. (4), is implicitly
accounted for within eqn. (3); hence, the absence of con-
ditioning in the second part of eqn. (4).

Loss to follow-up
Of mosquitoes that are not retrieved at the end of the
experiment, we know that they must have been lost to
follow-up at some point between the start and the end
of the experiment with probability

Pr tstart < T < tend;Y ¼ ujHrel; θð Þ
¼ Fu tendjHrel; θð Þ

S tendjHrel; θð Þ ¼
X2R
i¼2L

U tjHrel; θð Þ: ð5Þ

Here, the rate of loss to follow-up u was assumed con-
stant across the huts.

dH2L

dt
¼ −q2 1−r2ð Þ−r2q2−k2−u2ð ÞH2L þ p1q1 1−r1ð ÞH1L

dH1L

dt
¼ −q1 1−r1ð Þ−r1q1−k1−u1ð ÞH1L þ q2 1−r2ð ÞH2L þ qT 1−rTð Þ0:5HT

dHT

dt
¼ −qT 1−rTð Þ−rTqT−kT−uTð ÞHT þ q1 1−r1ð Þ 1−p1ð ÞH1L þ q1 1−r1ð Þ 1−p1ð ÞH1R

dH1R

dt
¼ −q1 1−r1ð Þ−r1q1−k1−u1ð ÞH1R þ q2 1−r2ð ÞH2R þ qT 1−rTð Þ0:5HT

dH2R

dt
¼ −q2 1−r2ð Þ−r2q2−k2−u2ð ÞH2R þ q1 1−r1ð Þp1H1R

dXi

dt

����
i¼2L;:::2R

¼ riqiHi

dKi

dt

����
i¼2L;:::2R

¼ kiHi

dUi

dt

����
i¼2L;:::2R

¼ uiHi:

ð3Þ
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Right-censored data
Mosquitoes retrieved by the end of the experiment are
treated as right censored. Namely, the time before
knockdown, exit or loss to follow-up would have oc-
curred is longer than the duration of the study, but by
how much is uncertain. In addition, we know that the
mosquito moved from the release hut to the hut where
it was retrieved with probability

Pr T > tendjHrel;θ
� � ¼ S tendjHrel; θð ÞF divH tendjHrel; θð Þ

¼ HH tendjHrel; θð Þ:
ð6Þ

Likelihood function
The overall likelihood of the parameters given the data
is equal to the product of the probabilities of each indi-
vidual observation conditional on the parameters. These
observations include the number of mosquitoes exited
or knocked down during specific time intervals during
an experiment for different release huts, event huts and
experimental day, as well as numbers recaptured or lost
to follow-up at the end of the experiment, resulting in

L ¼ Pmultinomðkexitt¼i;H¼ j;rel¼k;day¼l ; kkdt¼i;H¼ j;rel¼k;day¼l ;

khutt¼750;H¼ j;rel¼k;day¼l ; kut¼750;rel¼k;day¼l j pexitt¼i;H¼ j;rel¼k
;

pkdt¼i;H¼ j;rel¼k
; phutt¼750;H¼ j;rel¼k

; put¼750;rel¼k
Þ;

ð7Þ
with i time points, j event-huts (H2L, H2L, HT, H1L,

H2R,), k release-huts and l experiment days (1 to 5). Each
kexit, for instance, denotes the number of mosquitoes
exiting from hut H observed at time t, by release hut
and experiment day. The corresponding probabilities p
are derived as detailed in eqns. (4), (5) and (6) and are
assumed to be independent of the experiment day.

Model fitting
We used a Bayesian Markov chain Monte Carlo
(MCMC) approach for parameter estimation. Using

Bayes’ theorem, we define the posterior probability dens-
ity of the model’s parameters (θ) given the data as

π ¼ P θjdatað Þ ¼ P datajθð ÞP θð ÞR
P datajθð ÞP θð Þdθ ; ð8Þ

where P(θ) is the prior probability of the parameters.
We utilized beta-distributed priors with median 0.5 for
p1 and median 0.25 for ri (i.e. a mosquito is three times
as likely to move to an adjacent hut than to move out-
side), a gamma-distributed prior with mean 0.02 on the
movement rates qi (i.e. average time before moving to
another hut of 50 minutes) and uniform priors for the
remaining parameters (see Table 1 for distribution pa-
rameters). Average times before exiting from each hut
(1/qi) were constrained between 5 minutes and 20 hours
and the average time until knockdown (1/ki) between 12
hours and 10 days [10, 19]. We explored the parameter
space of θ more broadly using the Metropolis-Hastings
algorithm.
We started from an initial parameter set θ1, which was

randomly sampled from uniform distributions with
bounds: q: 360-1–30-1, p1: 0.5–1, ri: 0–0.5, k: 1400-1–
720-1 and u: 2000-1–1000-1. A new parameter was pro-
posed such that λ2 = λ1+Λ, where Λ is a random value
from a truncated normal proposal distribution g with
mean λ1 and standard deviation formulated relative to λ1
and selected so as to ideally have an acceptance rate be-
tween 10% and 50% [39]. Which parameter was updated
at a given iteration was determined by taking a random
draw from a categorical distribution with 11 categories
(i.e. the number of model parameters to be estimated)
and equal probabilities for each parameter. The prob-
ability for λ2 to be accepted depends on the likelihood of
both θ1 and θ2 according to the Metropolis-Hastings
rule as

A θ1; θ2ð Þ ¼ min 1;
π2

π1

g λ1jλ2ð Þ
g λ2jλ1ð Þ

� �
; ð9Þ

where θ2 differs from θ1 only with respect to λ and g
denotes truncated normal proposal distributions

Table 1 Parameter definitions and prior probability distributions for each

Parameter Description Distribution Parameters Reference Note

qi Movement rate gamma shape = 1.5; mean = 0.02; rate = shape /
mean

[10] Assuming symmetry

p1 Proportion of movement away
from SR

beta mean = 0.5; shape1 = 4; shape2 = shape1
/ (mean-shape1)

– –

r Proportion of movement directed
outdoors

beta mean = 0.25; shape1 = 1.25; shape2 = shape1
/ (mean-shape1)

[10] Assuming symmetry

k Knockdown rate uniform min = 1 h-1; max = 16 days-1 [10, 19] Assuming symmetry

u Loss to follow-up rate uniform min = 30 min-1 ; max = 100 days-1 – Assumed the same between
huts

ten Bosch et al. Parasites & Vectors  (2018) 11:365 Page 7 of 15



(between zero and one for each of p and r and from zero
to infinity otherwise):

g λ2jλ1ð Þ ¼ P Λ ¼ λ2ð Þ
P Λ≤1ð Þ−P Λ≤0ð Þ for p1 and ri

g λ2jλ1ð Þ ¼ P Λ ¼ λ2ð Þ
1−P Λ≤0ð Þ for all other parameters;

ð10Þ

where Λ is normally distributed with mean λ1 and
standard deviations corresponding to each parameter’s
proposal distribution.
In the event that the acceptance probability was larger

than a randomly generated uniform value between zero
and one, θ2 was accepted into the chain. Otherwise, θ1
was retained. Multiple iterations of this routine were per-
formed (n = 90,000). This process was repeated five times
starting from different initial parameter sets to assess con-
vergence using the Gelman-Rubin (GR) statistic [40]. The
resulting chains of accepted parameters (φ), after discard-
ing a ‘burn-in’ period (10,000), were combined to repre-
sent our sample from the posterior distribution (π).

Simulation experiments
To validate the accuracy of the model-fitting algorithm,
we simulated data with a known data-generating process
corresponding to our likelihood formulation and with
known model parameters. Probabilities for released mos-
quitoes to occupy a specific state over time were derived
using eqn. (3). As follows from eqns. (4–6), these prob-
abilities are defined for interval- and right-censored
events. Random draws from a multinomial distribution
with the simulated probabilities and a given number of
released mosquitoes were taken to simulate numbers of
mosquitoes occupying each state at the time points at
which sampling was simulated to occur. In general, these
simulation experiments were designed to mimic features
of the empirical experiments.
Ten distinct simulated parameter sets were used to val-

idate the accuracy of our statistical inference framework.
These parameter sets were sampled from across the com-
posite parameter space θ using the Sobol algorithm [41,
42], where the same bounds to this sampling space were
applied as for the prior distributions (Table 1). Data were
simulated for different numbers of released mosquitoes
(25: field scenario; 1000: large sample size scenario) for
five replicates per parameter set and fitted to eqn. (3) as
described before (n = 60,000, of which 10,000 was
‘burn-in’).

Results
Validating the inference methodology
We first validated the inference framework against data
simulated with the system of ordinary differential

equations described in eqn. (3), with an observation
process that mimicked the field experiment and with pa-
rameters reflecting the range of values in the prior
distributions.

Large sample size scenario
In the large sample size scenario (five replicates with
1000 released mosquitoes each), we accurately estimated
the values of all parameters used in the simulations. All
true parameter values fell within the 95% highest density
interval (HDI) of the estimated posterior distributions
(Fig. 4). Most posterior medians approximated the true
parameter well (Pearson’s r > 0.98), but somewhat less
so for knockdown in the treated hut (Pearson’s r = 0.74).
Posterior distributions were relatively wider for rate

Fig. 4 Estimated parameters from simulation experiments for five
replicates of 1000 released mosquitoes (large sample size scenarios)
with the true value used in the simulation (blue diamonds) and the
estimated median (black circles). The dashed gray line depicts p1 = 0.5,
i.e. no repellency effect. Each estimate was based on five chains with
distinct starting conditions. 60,000 MCMC iterations were performed
inclusive of a ‘burn-in’ period of 10,000
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parameters associated with the treated hut (xT and kT).
Standard deviations of these parameters were a fraction
(i.e. 11% and 12%) of their respective medians, whereas
the s.d.:median ratio was below 3.5% for all other param-
eters. This reduced precision may be a consequence of
the fact that rate parameters associated with huts other
than the treated hut were informed by twice as much
data as were the rate parameters associated with the
treated hut, which derives from our assumption of
shared parameters for huts a given distance from the
treated hut (Fig. 3). GR statistics were below 1.1 for
most simulation sets (average 1.04). When simulation
sets resulted in parameters with GR statistics above 1.1,
these were related to mosquito movement (qi, ri and p1)
and were most commonly associated with the untreated
huts (Additional file 1: Table S1). This indicates that
those parameters may be among the most difficult to
estimate.

Field scenario
We also tested the performance of the inference frame-
work on data simulated with the same number of mos-
quitoes as were released in the experiments (Fig. 5). All
true parameter values fell within the 95% HDI, but the
posterior medians were less consistent with the simu-
lated values (r > 0.8 for all but xT: 0.68; k2:0.03; kT: -0.29)
than under the large sample size scenario (Fig. 5). No
systematic underestimation or overestimation was ob-
served based on these simulations, suggesting that the
additional discrepancy between simulated and inferred
parameter values in the field scenario relative to the
large sample size scenario was due to stochasticity asso-
ciated with the smaller sample size in the field scenario
(i.e. n = 25 vs n = 1000). GR statistics were, across all pa-
rameters and simulation sets, close to 1 (average GR
1.01) (Additional file 1: Table S1).

Product effects on mosquito behavior
We first fitted the Markov chain model to the experi-
mental hut data allowing all parameters to vary. Strong
correlations between ri, qi and pi indicated that these pa-
rameters were not identifiable given that a wide range of
combinations of values of these parameters explained
the data equally well (Additional file 1: Figure S1). To re-
solve this identifiability issue, we fitted the exit rate xi as
a single composite parameter (qiri). The rate of move-
ment between huts is directly related to the exit rate;
namely, it is a proportion (1-ri) of the overall movement
rate out of a specific hut (qi). In doing so, we fixed the
values of ri at the medians of the posterior marginal
density of the ri corresponding to each hut that was ob-
tained from the full parameter fit on the baseline data
set (rT: 0.040, r1:0.036 , r2: 0.088) (Additional file 1: Fig-
ure S1). This reduced the amount of cross-correlation

from Pearson’s r as high as 0.86 in the original (Add-
itional file 1: Figure S1) to as low as 0.72 upon fixing ri
(Additional file 1: Figure S2, Figure S3 and Figure S4).
Most importantly, it markedly improved convergence
from GR statistics as high as 1.38 (q2, low dosage) to as
low as 1.00 for all parameters after fixing ri, indicating
that other parameters became identifiable once this ad-
justment was made (Additional file 1: Figure S7, Figure
S8, Figure S9). Choosing either the 2.5th (rT: 0.031,
r1:0.027, r2: 0.065) or 97.5th (rT: 0.054, r1:0.040 , r2: 0.11)
percentile of ri instead did not affect this conclusion
(Additional file 1: Figure S5 and Figure S6). Acceptance
rates for each chain tended to remain relatively constant
following a ‘burn-in’ period and varied across chains and
parameters within the range of 21–54%.

Fig. 5 Estimated parameters from simulation experiments for five
replicates of 25 released mosquitoes (field scenarios) with the true value
(blue diamonds) and the estimated median (black circles). The dashed
gray line depicts p1 = 0.5, i.e. no repellency effect. Each estimate is based
on five chains with distinct starting conditions. 60,000 MCMC iterations
were performed inclusive of a ‘burn-in’ period of 10,000
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Exit and movement rates
Under baseline conditions (no chemical), exit rates (xi) from
huts at different distances i from the treatment hut were
relatively similar (medians for xT: 2.2 ×10-3, x1: 1.6 ×10-3, x2:
1.8 ×10-3) (Fig. 6a-c). In subsequent treatment experiments,
exit rates out of the treated hut were reduced relative to the
baseline in response to both the low (RR = 0.70, HDI =
0.62–1.09) and the high transfluthrin dosage (RR = 0.70,
HDI = 0.40–1.06), with no perceptible difference in the re-
spective effects of the two dosages (Fig. 6c). This effect car-
ried over to the adjacent huts (H1) with exit rates lower than
observed in the baseline experiment (low: RR = 0.79, HDI =
0.59–1.01; high: RR = 0.66, HDI = 0.50–0.87) (Fig. 6b). In
the huts furthest from the SR application (H2), the low dos-
age had no effect on exit rates relative to when no SR was
applied (RR = 0.94, HDI = 0.72–1.18). In contrast, the high
dosage reduced exit rates (RR = 0.71, HDI = 0.54–0.92) in
all huts adjacent to the source of transfluthrin, including the
furthest adjoining structures (Fig. 6a). Given that the propor-
tion of movement that was directed outdoors (ri) was held
constant in this exercise, these results on exit rates (qiri) are
directly proportional to movement rates (qi).

Repellency
In the baseline experiment, mosquitoes moved away from
or towards the treated center hut (HT) with roughly equal
probability (p1 = 0.54, HDI = 0.48–0.59), although with a
possible slight preference for movement away from HT

(odds of moving away = 1.16, HDI = 0.92–1.41) (Fig. 6d). In
the experiment using low-dosage SR treatment, significant

repellency from the treated center hut was observed (odds =
1.64, HDI = 1.30–2.09), with a median probability of moving
away from this hut of 0.62 (HDI = 0.57–0.68) (Fig. 6d). In
the high-dosage treatment, repellency was still clear (odds =
1.35, HDI = 1.04–1.67), but the effect was somewhat smaller
(p1 = 0.57, HDI = 0.52–0.63) (Fig. 6d).

Knockdown
Knockdown was a very rare event during baseline exper-
iments (2/125 mosquitoes across all five replicates). As a
consequence, estimates of knockdown rates in the base-
line approached the lower boundary of the prior distri-
bution (medians for HT = 5.8 × 10-5,H1 = 4.4 × 10-5, H2

= 4.0 × 10-5) (Fig. 6e-g). There was no effect of the low
SR dosage on knockdown rates relative to the baseline,
both in the treated hut HT (RR = 1.39, HDI = 0.26–3.84)
(Fig. 6g) and in the H1 huts directly adjacent (RR = 1.00,
HDI = 0.45–1.76) (Fig. 6f ). In the H2 huts furthest away
from the treatment, a somewhat increased knockdown
rate was observed in response to the low dosage relative
to the baseline (RR = 1.37, HDI = 0.64–2.46) (Fig. 6e).
Knockdown rates in the high-dosage scenario were ele-
vated in all huts, in particular in the HT treatment huts
(RR = 8.37, HDI = 2.11–17.35) (Fig. 6g) but also in the
H1 and H2 huts (H1: RR = 1.39, HDI = 0.52–2.69; H2:
RR = 2.22, HDI = 0.96–3.86) (Fig. 6e, f ).

Loss to follow-up
Rates of loss to follow-up were similar across the base-
line and two SR treatment experiments, although there

Fig. 6 Posterior distributions of model parameters fitted to experimental data for the baseline (gray), low (orange) and high (pink) transfluthrin
dosage for the treated hut (subscript T) and huts one or two removed from the treated hut (subscript 1 and 2, respectively). a-c Rates at which
mosquitoes exit the huts. d Proportion of movement from H1 (hut directly adjacent to the treatment hut) away from the SR, where the dashed
line indicates p1 = 0.5, i.e. no repellency effect. e-g Knockdown rates. h Loss to follow-up rates. Under this parameterization, the movement rate
qi is exactly equal to the product xi/ ri. The algorithm was run for 90,000 iterations inclusive of a ‘burn-in’ period of 10,000
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was a signal for a small increase in these rates with in-
creasing dosage (low: 5%; high: 8%) (Fig. 6h). In compar-
ing posterior samples across dosages, a signal for a
positive dose-response relationship [i.e. u(high) > u(low)
> u(baseline)] was confirmed in 61% of samples from
the posterior. Loss to follow-up rates in the baseline sce-
nario were an order of magnitude higher than the esti-
mated knock-down rates. While some of mosquitoes
that were lost to follow-up at the end of the experiment
could have been knocked down, the differences in trends
between treatment effects on knockdown and loss to
follow-up indicate that this could likely only be true for
a small portion of the mosquitoes.

Time spent in a hut
The total amount of time a mosquito spent in each hut
results from the composite of treatment effects. By run-
ning simulations of the system of ordinary differential
equations (eqn. (3)) with the estimated posterior param-
eter values, we derived a posterior estimate of the pro-
portion of the time a mosquito spent in each hut relative
to the total time a mosquito was in the hut system (i.e.
before exit, knockdown or loss to follow-up). This pro-
portion was found to be similar but slightly reduced for
the treated hut HT relative to the baseline scenario in ei-
ther treatment scenario (Fig. 7e) and without any effect
in the downstream huts H1 and H2 (Fig. 7a, c). However,
when considering the total duration of the experimental
day, the proportion of time spent in the adjacent, down-
stream huts H1 and H2 was higher during experiments
using both low and high SR dosage than during baseline
(Fig. 7b, d). This was a result of reduced exit rates and
thus an overall increase in time spent in the hut system
as a whole (Fig. 6a, c).

Discussion
Novel Ae. aegypti vector control strategies are currently
being evaluated to address challenges related to dengue
transmission expansion [2]. Spatial repellent (SR) prod-
ucts, which release volatile chemicals into treated spaces
to interrupt host-vector contact, are among these [14].
One challenge for evaluating the efficacy of SRs, and
other products that may include non-lethal outcomes, is
characterizing the multifaceted, incapacitating effects of
a given product on mosquito behavior under field condi-
tions and across a dosage gradient, which is critical for
identifying opportunities to exploit new mechanisms of
action and guiding product formulation and implemen-
tation under operational conditions. To quantify concur-
rent and downstream (i.e. untreated spaces adjacent to
the treated space) effects of a transfluthrin-based SR
product on Ae. aegypti behavior, we used a
continuous-time Markov chain model informed by ex-
perimental data under a Bayesian inference framework.

Examination of posterior estimates of model parame-
ters showed that test mosquitoes were deterred from en-
tering the experimental hut where the product was
located and that this effect was stronger for the lower
dosage SR, an effect of transfluthrin consistent with
other studies [43, 44]. Posterior estimates of model pa-
rameters also indicated lower movement rates out of the
treatment hut (either to a neighboring hut or out of the
hut system) under both treatments, presumably due to
confusion effects, similar to previously demonstrated ef-
fects of metofluthrin [13]. Under the higher SR dosage,
the reduced out-of-hut movement was noticeable in ad-
jacent untreated huts as far as two huts away from the
SR application. This dose-dependent effect may be a re-
sult of irritancy and disorientation, as reviewed in Bibbs
& Kaufman [45]. Similarly strong effects in adjacent con-
nected huts were observed on knockdown rates, which
were markedly increased in all huts in the presence of
the higher SR dosage, yet little effect on knockdown was
observed at the lower dosage. These results are in agree-
ment with dose- and distance-dependent effects on

Fig. 7 Distributions of time mosquitoes spent in each hut relative to
the posterior median of the baseline scenario (gray), low (orange) and
high (pink) transfluthrin dosage for huts two (a and b) or one (c and d)
removed from the treated hut (e and f). The left column signifies the
proportion of time spent in each hut before having experienced an
event (a, c and e), where kd is knockdown. The right column signifies
the proportion of the total experiment time spent in each hut relative
to the baseline (b, d and f)
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knockdown observed upon metofluthrin exposure in Ae.
aegypti [46].
While metrics of repellency and exit rates from trad-

itional experimental hut studies are often affected by
treatment effects on mosquito knockdown, our inference
framework explicitly accounts for such confounding ef-
fects. We found knockdown and loss to follow-up rates
to be small relative to mosquito movement rates, indi-
cating that for the formulations considered, effects on
repellency and exit rates could have meaningful impacts
on mosquito-human contact rates.
We validated our inference method by demonstrating its

ability to accurately estimate the model’s parameters given
simulated data. This assessment was conditional, however,
on the assumption that the model is a realistic representa-
tion of reality. Some of the known limiting assumptions of
our analysis include (i) effects that depend on distance from
the treated hut rather than on each hut individually; (ii)
equal loss to follow-up across huts; and (iii) time-invariant
parameters. Of these, the first may be most problematic
when considering that air flow within the hut system could
result in asymmetric effects of transfluthrin dispersion to
huts of the same distance from the treated hut but on dif-
ferent sides of it [47]. In principle, it would be possible to
account for such factors in future studies by measuring air
flow and incorporating its effect on the data through an ap-
propriate modification of the model. For example, repel-
lency (p1) could be allowed to vary across huts and treated
as a function of readings from a wind gauge. Posterior esti-
mates of the parameters governing the relationship between
wind and p1 would then allow for inferences about the re-
pellency of the product under varying airflow conditions
and beyond those observed in the current experiment.
Planning for required sample sizes and sampling schemes
for such experiments would benefit from our model and re-
sults by using our posterior distributions to inform prior
distributions in those future studies [48].
Repellency (i.e. reduced entry into the treated hut from

adjacent connected huts) and increased knockdown re-
duced the overall time that mosquitoes spent transiently in
the treated hut, whereas decreased movement rates have
the potential to offset this effect. The result of the SR’s im-
pact on the time mosquitoes spent transiently in the treated
hut indicates potential for such a product to limit
human-vector contact (and thereby reduce the probability
of pathogen transmission) in the treated hut. Furthermore,
the reduced exit rates that we observed may be a result of
confusion and disorientation and may be accompanied by
impaired host-seeking [45]. However, because
blood-feeding was prohibited in our study, it is uncertain to
what extent host-seeking and blood-feeding behaviors of
these mosquitoes exposed to the SR may have been affected
in the current study. Other studies using similar volatile
products have shown these effects to also be associated

with reduced human landing [13, 49, 50]. The inclusion of
blood-feeding metrics in experiments with volatile pyreth-
roid products using anophelines under field conditions [51]
and against the topical repellent DEET using Ae. aegypti in
the laboratory [52] have been valuable in establishing ex-
pectations of such synergistic chemical effects.
The effect of SR products on untreated neighboring

premises has been a consistent and critical question to
the public health value of these products [14, 53]. Three
aspects of our results suggest that the risk of diversion
(i.e. movement of mosquitoes from a treated space to an
adjacent untreated space) may be limited for the formu-
lation used in our experiments. First, SR exposure re-
duced movement rates between huts. Secondly, there
was a marked increase in knockdown in untreated huts
at the high SR dosage. At the same time, there was also
a marked reduction in exit rates out of untreated huts,
which resulted in prolonged time spent in adjacent huts.
Evaluating the overall potential for diversion based on
these effects will require pairing experimental results
such as ours with theory that is capable of translating
this range of behavioral effects into estimates of their
epidemiological consequences [15, 54, 55].
Under our experimental design, we cannot distinguish

between downstream effects caused by volatile particles
dispersed into untreated huts or by a residual,
post-exposure effect of transfluthrin on mosquitoes that
are exposed in the treated hut and move elsewhere. In-
deed, this highlights that SR post-exposure effects re-
main understudied. A mosquito that remains alive in a
treated space, and/or does not exit after being exposed
to a SR product, may exhibit attraction-inhibition to hu-
man hosts inside the space or may be inhibited to
blood-feed due to being chemically incapacitated.
Underlying physiological mechanisms causing these re-
sponses are yet to be characterized. Correlations be-
tween air sampling measurements in experimental huts
and mosquito behavior responses have been explored in
previous studies using spatial repellents but with limited
success due to limits of chemical detection and quantifi-
cation [56–58]. Combining air chemistry inferences of
specific active ingredients (i.e. vapor pressure or particle
weight) with environmental data (i.e. air current or flow
rate) into our new inference framework is therefore war-
ranted and could enable quantification of the extent to
which downstream effects result from movement of the
volatile chemical or movement of exposed mosquitoes
with lingering post-exposure effects. The latter possibil-
ity has been indicated in other studies to have potential
for innovative applications of SRs [59].

Conclusions
The need for development and efficient testing of new
vector control products and innovative formulations of
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existing tools is evident [2, 60]. Advancing the
characterization of SRs and other volatile vector control
products must include understanding how all
product-induced effects, independent or in combination,
contribute to potential impact on pathogen transmission.
Here, we advance SR product characterization methods
by integrating multiple aspects of the complexity of as-
sumed product-induced responses. The complementary
experimental design and inferential framework we intro-
duce provides a flexible approach for estimating a prod-
uct’s effects on mosquito behavior in a quantitative and
probabilistic fashion. Using this framework, we disen-
tangled complex, dose-dependent effects of transfluthrin
on mosquito behavior. While a low-dosage treatment re-
sulted in notable repellency and minor knockdown in
Ae. aegypti mosquitoes, higher dosages presented with
much higher knockdown rates yet minor repellency ef-
fects. Exposure to transfluthrin has the potential to di-
minish mosquito movement, host attraction-inhibition
and/or blood-feeding inhibition, possibly due to confu-
sion or disorientation of the mosquito. The use of an ex-
perimental row-house hut design allowed for the
estimation of transfluthrin effects beyond a treated
space, which is of particular interest as adjacent,
inter-connected houses are common in semi-urban envi-
ronments where SR products are under evaluation as a
tool against arbovirus transmission. These findings high-
light the need to estimate context and dosage-specific
diversion (product-induced movement to an untreated
space) and downstream (adjacent spaces) effects under
scenarios similar to operational settings for which the
product is intended to be used.

Additional file

Additional file 1: Table S1. Average Gelman-Rubin statistics across
simulated data sets (median and the upper bound of the 95% confidence
interval). Figure S1. Correlations between parameter posteriors of model fit
on baseline scenario with all parameters estimated. Marginal posteriors are
depicted on the diagonals. The numbers on the right of the diagonal depict
the Spearman rank correlation coefficients for each side by side comparison.
Figure S2. Correlations between parameter posteriors of model fit on
baseline scenario with ri fixed (rT: 0.040, r1:0.036, r2: 0.088). Marginal
posteriors are depicted on the diagonals. The numbers on the right
of the diagonal depict the Spearman rank correlation coefficients for
each side by side comparison. Under this parameterization, the
movement rate qi is exactly equal to the product xi/ ri. Figure S3.
Correlations between parameter posteriors of model fit on low
dosage scenario with ri fixed (rT: 0.040, r1:0.036, r2: 0.088). Marginal
posteriors are depicted on the diagonals. The numbers on the
right of the diagonal depict the Spearman rank correlation coefficients for
each side by side comparison. Under this parameterization, the movement
rate qi is exactly equal to the product xi/ ri. Figure S4. Correlations between
parameter posteriors of model fit on high dosage scenario with ri
fixed (rT: 0.040, r1:0.036, r2: 0.088). Marginal posteriors are depicted on
the diagonals. The numbers on the right of the diagonal depict the
Spearman rank correlation coefficients for each side by side comparison.
Under this parameterization, the movement rate qi is exactly equal to the
product xi/ ri. Figure S5. Posterior distributions of model parameters fitted

to experimental data while fixing the values of ri at the 2.5th percentile of
the posterior from the full parameter fit to the baseline data (rT: 0.031,
r1:0.027, r2: 0.065). Posteriors are shown for the baseline (gray), low dosage
(orange) and high dosage (pink) for the SR-hut (subscript 0) and huts 2 or 1
removed (subscript 2 and 1, respectively). a-c rates at which mosquitoes exit
the huts, d proportion of movement from H1 (hut directly adjacent to the
treatment hut) away from the SR-product. e-g knockdown rates and h loss
to follow-up rates. Under this parameterization, the movement rate qi is
exactly equal to the product xi/ ri.The algorithm was run for 25,000 iterations
with a ‘burn-in’ period of 10,000. Figure S6. Posterior distributions of model
parameters fitted to experimental data while fixing the values of ri at the
97.5th percentile of the posterior from the full parameter fit to the baseline
data (rT: 0.054, r1:0.040, r2: 0.11). Posteriors are shown for the baseline (gray),
low dosage (orange) and high dosage (pink) for the SR-hut (subscript 0) and
huts 2 or 1 removed (subscript 2 and 1, respectively). a-c rates at which mos-
quitoes exit the huts, d proportion of movement from H1 (hut directly adja-
cent to the treatment hut) away from the SR-product. e-g knockdown rates
and h loss to follow-up rates. Under this parameterization, the movement rate
qi is exactly equal to the product xi/ ri. The algorithm was run for
25,000 iterations with a ‘burn-in’ period of 10,000. Figure S7.
Gelman-Rubin convergence diagnostics by iteration for the baseline
scenario. Figure S8. Gelman-Rubin convergence diagnostics by
iteration for the low dosage scenario. Figure S9. Gelman-Rubin
convergence diagnostics by iteration for the high dosage scenario. Figure S10.
Trace plots for the baseline scenario. Figure S11. Trace plots for the low dosage
scenario. Figure S12. Trace plots for the high dosage scenario. (DOCX 50818 kb)
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