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Abstract

Nonparametric Learning Methods for Graphical Models

by

Hao Dong

Graphical models reveal the conditional dependence structure between random vari-

ables. By estimating the joint density or conditional density, we can detect edges and

recover the structure of a graphical model. We propose new nonparametric methods to

learn edges for graphical models under a consolidated framework of smoothing spline

ANOVA (SS ANOVA) decomposition.

We first develop an automatic nonparametric edge detection method by estimating

the joint density function with an L1 penalty to interactions in the SS ANOVA decompo-

sition. In the second project, we work directly on the conditional dependence structure

and develop a fully nonparametric neighborhood selection method. We detect edges by

applying an L1 regularization to interactions in the SS ANOVA decomposition of con-

ditional density functions. These two methods are flexible and contain many existing

models as special cases. They also provide a unified framework without any restrictions

on the type of each random variable. The joint density approach requires a large com-

puter memory and is thus computationally feasible only when the dimension is small.

The neighborhood selection approach overcomes this disadvantage and is more compu-

tationally efficient.

We propose iterative procedures to compute the estimates and establish the conver-

gence rates for both the joint and conditional density as well as interactions. Simulations

indicate that both joint and neighborhood selection methods perform well under Gaus-

sian and non-Gaussian settings. We illustrate the proposed methods using real data
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Chapter 1

Introduction

1.1 Graphical Models

Discovering the conditional independence among random variables is an important

task in statistics. Undirected probabilistic graphical models play a significant role in char-

acterizing conditional independence and have been utilized in a wide range of scientific

and engineering domains, including statistical physics, computer vision, machine learning,

and computational biology (Koller and Friedman [22]). A graphical model is constructed

based on an undirected graph G = (V,E) with node set V = {1, · · · , p} representing p

random variables X1, · · · , Xp and edge set E ⊆ V × V describing the conditional inde-

pendence among X1, · · · , Xp. Denote Xj as the domain of Xj, and X = X1×· · ·×Xp. Let

X = (X1, · · · , Xp) and X\{i1,··· ,ik} be the sub-vector of X without elements {i1, · · · , ik}.

Then, {i, j} /∈ E corresponds to the conditional independence between Xi and Xj given

other variables in X, which is denoted as Xi ⊥ Xj|X\{i,j}.

Many parametric and semi-parametric graphical models have been studied in the

literature with assumptions on the joint density or conditional density. We will review

some existing joint density and neighborhood selection approaches in Section 1.2 and

1



Introduction Chapter 1

Section 1.3, respectively. We review the nonparametric SS ANOVA model for joint

density and conditional density estimation in Section 1.4 and Section 1.5, respectively.

In Section 1.6, we review two SS ANOVA model-based edge detection methods.

1.2 Joint Density Approach for Graphical Model Es-

timation

As joint density ultimately determines the conditional relationship, methods for edge

detection based on estimating the joint density have been proposed. The key idea of

using the joint density approach for edge detection is to represent the joint distribution

as a product of clique-wise compatibility functions. For any given graph, each of these

compatibility functions depends only on a subset of variables within any clique of the

underlying graph. Let C be a set of cliques (fully-connected subgraphs) of the graph G

and let {ϕc(Xc)}c∈C be a set of clique-wise basis functions and Xc contains all variables

in the clique c. By the Hammersley-Clifford theorem (Dobruschin [7]), the joint density

function represented by the graph G takes the form:

f(x) ∝ exp

{∑
c∈C

θcϕc(xc)

}
,

where {θc} are parameters over the basis functions. In this dissertation, we will consider

an important special case, pairwise graphical models, where all cliques have size no more

than two. For a pairwise graphical model, the joint density distribution has the form of

f(x) ∝ exp

{
p∑

j=1

θjϕj(xj) +
∑

1≤j<k≤p

θjkϕjk(xj, xk)

}
. (1.1)

2



Introduction Chapter 1

Then Xj ⊥ Xk|X\{j,k} if and only if θjk = 0. We want to perform edge detection

to reveal conditional dependence structure and discover all pairwise cliques. We note

that the proposed methods in this dissertation may be extended to more general density

(graphical) models with high-order interactions. There exists a close connection between

density estimation and graphical model estimation. The graph is completely decided

by the joint density function. On the other hand, the graph structure can be used to

simplify the density estimation. Therefore, learning structures in the density and graph

are two sides of the same coin.

In parametric graphical models, ϕj and ϕjk are known up to some parameters. The

functional form of ϕj and ϕjk are either decided by specific distributions or expressed

using well-chosen basis functions.

Univariate exponential family distributions are used to model different types of data

including skewed continuous data and count data. Some special multivariate pairwise

graphical model distributions have been derived from univariate exponential family distri-

butions, such as Normal, Poisson, and exponential distributions. The assumption is that

the distribution of each variable conditioned on the other variables has an exponential

family form (Suggala et al. [37]), which leads to the following joint density

f(x) = exp

{
p∑

j=1

θjB(xj) +
∑

1≤j<k≤p

θjkB(xj)B(xk) +

p∑
j=1

C(xj)− A(θ)

}
, (1.2)

where B(·) is a basis function, C(·) is a base measure and A(θ) <∞ is the log-partition

function defined as

A(θ) := log

∫
χ

exp

{
p∑

j=1

θjB(xj) +
∑

1≤j<k≤p

θjkB(xj)B(xk) +

p∑
j=1

C(xj)

}
dx.

3



Introduction Chapter 1

Since B(·) and C(·) are known, the exponential family graphical models are parametric

pairwise graphical models with multiplicative interactions. The conditional independence

Xj ⊥ Xk|X\{j,k} holds if and only if θjk = 0. We now list some examples of multivariate

exponential graphical model distributions with linear functions B(xj) = xj. More details

can be found in Yang et al. [44].

The popular Gaussian graphical model can be derived from univariate Gaussian dis-

tribution with basis function B(xj) =
xj

σj
and base measure C(xj) = − x2

j

2σ2
j
. Some well-

developed methods for the Gaussian graphical model are to estimate the precision matrix

(Banerjee et al. [4], Friedman et al. [10], Yuan and Lin [47]). The jkth element in the

precision matrix equals zero if and only if θjk = 0. The Ising model can be derived from

the Bernoulli distribution, where B(xj) = xj and base measure C(xi) = 0 with variables

taking values in the set Xj = {0, 1} for j = 1, · · · , p. Poisson graphical models have the

Poisson distribution as the univariate exponential family distribution with B(xj) = xj

and C(xj) = −log(xj!) with variables taking values in the set Xj = {0, 1, 2, · · · } for

j = 1, · · · , p. Exponential graphical model distribution has B(xj) = −xj and C(xj) = 0

with variables taking values in Xj = [0,∞).

As extensions of the exponential family, more flexible pairwise graphical models have

been studied in the literature. Yuan et al. [48] proposed a way to model ϕj and ϕjk

parametrically using basis functions. They assume the formulations of ϕj and ϕjk are

unknown but admit linear representations over two sets of pre-fixed basis functions

{φt(·), t = 1, 2, · · · , s} and {ψl(·, ·), l = 1, 2, · · · , r} respectively, that is

ϕj(xj) =
s∑

t=1

θj,tφt(xj), ϕjk(xj, xk) =
r∑

l=1

θjk,lψl(xj, xk),

where s and r are the truncation order parameters. In this formulation, the choice of

basis and their sizes is flexible and task-dependent.

4



Introduction Chapter 1

Suggala et al. [37] assumed the distribution of each variable conditioned on the other

variables has a non-parametric exponential family form which leads to a consistent joint

density of (1.1) with ϕj(xj) = θjBj(xj) and ϕjk(xj, xk) = θj,kBj(xj)Bk(xk). For estima-

tion, Bj(·) is over a uniformly bounded, orthonormal basis {φl(·)}∞l=0 with φ0(·) ∝ 1:

Bj(xj) =
m∑
l=1

αj,lφl(xj) + ρj,m(xj) where ρj,m(xj) = αj,0φ0(xj) +
∞∑

l=m+1

αj,lφl(xj).

Suggala et al. [37] imposes additional constraints on its parameters and require Bj(xj)

to satisfy
∫
Xj
Bj(x)dx = 0, which is equivalent to αj,0 = 0. To convert the infinite

dimensional optimization problem into a finite dimensional problem, they truncate Bj(xj)

to the first m terms and drop the remainder term ρj,m(xj).

Yang et al. [45] proposed a general semiparametric model with unspecified base mea-

sure functions for each node. They modeled ϕj nonparametrically and ϕjk parametrically

using ηjk = θjkxjxk. The joint probability distribution has the density in the form of

f(x) = exp

{
p∑

j=1

ηj(xj) +
∑

1≤j<k≤p

θjkxjxk − A(θ,η)

}
,

where η = (η1, ..., ηp) and ηj(·) is an unknown base measure function and A(·) is still the

log-partition function given by

A(θ,η) := log

{∫
χ

exp[

p∑
j=1

ηj(xj) +
∑

1≤j<k≤p

θjkxjxk]dx

}
.

For edge detection, Yang et al. [45] treat θjk as the parameter of interest and the base

functions ηj(·) as nuisance parameter. They exploited a pseudo-likelihood loss function

to eliminate the presence of ηj(·) and estimate θjk.

5



Introduction Chapter 1

1.3 Neighborhood Selection Approach

The neighborhood selection approach is usually more computationally efficient by

working on conditional densities instead of the joint density. By the conditional indepen-

dence properties of undirected graphical models, for any node α ∈ V , Xα only depends

on other variables in its neighborhood set nbG(α), where nbG(α) = {k ∈ V |{α, k} ∈ E}.

Consequently, the conditional independence structure of graph G can be constructed by

estimating all of its neighborhoods nbG(α) for α = 1, · · · , p. The goal of neighborhood

selection is to determine a minimal set of variables in nbG(α) that Xα depends on for

each node α ∈ V .

Many neighborhood selection methods have been developed based on the conditional

likelihood or pseudo-likelihood for learning sparse graphical models (Hastie et al. [18], Dr-

ton and Maathuis [8]). Flexible models were proposed for discrete data (Höfling and Tib-

shirani [19], Ravikumar et al. [33]). For the continuous type, methods are usually based

on modeling the conditional mean (Meinshausen and Bühlmann [30], Voorman et al. [40])

or conditional quantiles (Ali et al. [2]). For example, Meinshausen and Bühlmann [30]

considered a linear model for the conditional mean while Voorman et al. [40] considered

an additive model for the conditional mean. It is worth noting that the conditional mean

approach seems distribution-free since no specific distributional assumption is made for

the regression errors. However, the joint distribution must be multivariate Gaussian un-

der mild assumptions if the conditional relationships are linear (Voorman et al. [40]).

In other words, the restriction of Gaussianity has not been removed as it appears. For

the mixed type of data, Lee and Hastie [26] and Cheng et al. [6] both proposed to fit

a conditional Gaussian model for continuous variables. Lee and Hastie [26] considered

discrete variables and each conditional distribution given the rest is multinomial. Then,

a regularized multi-class logistic regression problem was optimized. Cheng et al. [6] con-

6
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sidered binary variables and logistic regression models are fitted for each binary variable

given all other variables. For discrete responses and a covariate in a generic domain, Gu

and Ma [14] proposed to estimate the conditional density nonparametrically in a func-

tional ANOVA decomposition way and use the Kullback-Leibler projection to identify

the conditional independence structures. However, analyzing the mixed types of data is

still very challenging. Most well-developed methods are parametric or semi-parametric

and Gaussian assumption is used for parameter estimation. Gu and Ma [14] introduced a

nonparametric method but the dimension of continuous variables is just one in both sim-

ulation and real data. Therefore, there is still no nonparametric neighborhood selection

method for high-dimensional continuous variables to the best of our knowledge.

1.4 SS ANOVA Models for Joint Density

SS ANOVA models are extensions of the classical ANOVA models from discrete do-

mains to general domains. It decomposes the logistic transformation of a joint density

function into a summation of main effects and interactions. Let f(x) be the joint density

function of X, and consider the transformation f(x) = eη(x)/
∫
eη(x)dx to enforce the

conditions of f > 0 and
∫
f = 1. The function η(x) is referred as the logistic transfor-

mation of f . The function η(x) can be decomposed as a summation of a constant term,

main effects and interactions:

η(x1, · · · , xp) = c+

p∑
j=1

ηj(xj) +
∑

1≤j<k≤p

ηjk(xj, xk) + · · ·+ η1···p(x1, · · · , xp). (1.3)

The identifiability of the terms in (1.3) is ensured by side conditions through averaging

operators (Gu [12], Wang [41]).

Let H(j) be a reproducing kernel Hilbert space (RKHS) on Xj and H(j) = {1(j)} ⊕

7
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H(j), where {1(j)} is the space of constant functions on Xj and H(j) is its orthogonal

complement. The decomposition in equation (1.3) for the logistic transformation of the

joint density corresponds to the following SS ANOVA decomposition of the tensor product

space H on X

H =

p⊗
j=1

H(j) =

p⊗
j=1

{
{1(j)} ⊕H(j)

}
= {1} ⊕

{
p⊕

j=1

H(j)

}
⊕

{ ⊕
1≤j<k≤p

[H(j) ⊗H(k)]

}
⊕ · · · ⊕

{
H(1) ⊗ · · · ⊗ H(p)

}
. (1.4)

The expansion in (1.3) is usually truncated in some manner to overcome the curse of

dimensionality. A common and simple truncated model is a pairwise model:

η(x1, · · · , xp) = c+

p∑
j=1

ηj(xj) +
∑

1≤j<k≤p

ηjk(xj, xk), (1.5)

where interactions of order higher than 2 are removed.

For an SS ANOVA model in (1.3), Gu and Qiu [15] proposed to estimate η via

minimizing the penalized likelihood

− 1

n

n∑
i=1

η(xi) + log

∫
X
eη(x)dx+

λ

2
J(η), (1.6)

where the first two terms correspond to the negative logarithm of the likelihood function,

and J(η) is a quadratic roughness functional, and the smoothing parameters λ controls

the trade-off between the smoothness of η and its fidelity to the data. The computation

of this minimization problem with cross-validated λ has been studied in Gu and Qiu [15]

and Gu and Wang [16].

This penalized likelihood method is infeasible when p is large since it needs to com-

pute the multivariate integral
∫
X e

η(x)dx. To avoid calculating the integration of high

8



Introduction Chapter 1

dimensional functions, Jeon and Lin [21] proposed a penalized pseudo-likelihood method

by estimating η as the minimizer of

1

n

n∑
i=1

e−η(xi) +

∫
χ

η(x)ρ(x)dx+
λ

2
J(η), (1.7)

where ρ(x) is some known density. The resulting estimate can be calculated as f̂(x) ∝

eη̂(x)ρ(x) where η̂(x) is the minimizer from penalized pseudo-likelihood method. With

a proper selection of ρ(x), the integral
∫
X η(x)ρ(x)dx can be decomposed into products

of univariate integrals. Specifically, one may choose ρ(x) =
p∏

j=1

ρj(xj) as the product of

marginal density estimates which can be modeled parametrically or nonparametrically.

Suppose that J(η) annihilates constant and the RKHS H for η can be decomposed into

H = {1}⊕G, where {1} is the constant space, and G is its orthogonal complement. Then

one can write η = l + g with l ∈ {1} and g ∈ G. The penalized pseudo-likelihood (1.7)

becomes

1

n

n∑
i=1

e−g(xi)−l +

∫
X
(g(x) + l)ρ(x)dx+

λ

2
J(g).

One can take derivative with respect to l and set it to be zero. Then el = 1
n

n∑
i=1

e−g(xi).

Plugging this term back and drop terms not involving g, the profile penalized pseudo-

likelihood can be written as:

log

{
1

n

n∑
i=1

e−g(xi)

}
+

∫
χ

g(x)ρ(x)dx+
λ

2
J(g). (1.8)

The solution to (1.7) do not fall in finite dimensional spaces. Gu [12] proposed to

approximate the solution in a space

H∗ = NJ ⊕ span {RJ(uj, ·), j = 1, · · · , q} , (1.9)

9
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where NJ = {f : J(f) = 0}, and {uj} is a random subset of {xi}. Denote ϕ1, · · · , ϕm as

a basis function ofNJ⊖{1}, and ξj(·) = RJ(uj, ·) for j = 1, · · · , q. Then, an approximate

estimate of g can be expressed as

g(x) =
m∑
v=1

dvϕv(x) +

q∑
j=1

cjRJ(uj,x) = ϕ
Td+ ξTc. (1.10)

Plugging (1.10) into (1.8), one can solve coefficients c,d using Newton method and select

the tuning parameter λ. More details can be found in Chapter 10.1 in Gu [12].

1.5 SS ANOVA Models for Conditional Density

We are interested in estimating the conditional density f(xα|x\{α}) for αth variable

given x\{α} = (x1, · · · , xα−1, xα+1, · · · , xp), and consider the logistic density transforma-

tion of f as

f(xα|x\{α}) =
eη(x)∫

Xα
eη(x)dxα

. (1.11)

An SS ANOVA model for η in (1.11) may contain any subset of components in the SS

ANOVA decomposition (1.4). For simplicity, we will consider a model with main effects

and two-way interactions only. We note that the SS ANOVA model (1.3) with two-way

interaction only is a pairwise graphical model which is commonly assumed in the existing

literature. Our methods developed in Chapter 6 can be easily extended to include higher

order interactions. Denote the model space for η as

Mα = {1} ⊕

{
p⊕

j=1

H(j)

}
⊕

{⊕
k ̸=α

[H(α) ⊗H(k)]

}
. (1.12)

10
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A function η ∈ Mα can be decomposed as follows:

η(x) = ς +

p∑
j=1

ηj(xj) +
∑
k ̸=α

ηαk(xα, xk), (1.13)

where each functional component in (1.13) belongs to the corresponding subspace in

(1.12). Two ways to estimate η were proposed in Gu [12]: one is penalized likelihood

estimation, and the other one is penalized pseudo-likelihood estimation.

Denote Xi = (Xi,1, · · · , Xi,p) and xi = (xi,1, · · · , xi,p) for i = 1, · · · , n as n i.i.d.

random vectors and their realizations. Let x\{α} = (x1, · · · , xα−1, xα+1, · · · , xp), xi,\{α} =

(xi,1, · · · , xi,α−1, xi,α+1, · · · , xi,p) be the ith realization of x\{α} and xα
i = (xi,\{α}, xα) =

(xi,1, · · · , xi,α−1, xα, xi,α+1, · · · , xi,p), where xα is still a variable. The penalized likelihood

estimation is to minimize

− 1

n

n∑
i=1

{
η(xi)− log

∫
Xα

eη(x
α
i )dxα

}
+
λ

2
J(η), (1.14)

where the first two terms are the negative logarithm of the conditional density function,

and J(η) is a quadratic roughness functional. The computation of this minimization prob-

lem with cross-validated λ has been stuided in Gu [12]. However, the calculation of the

integral
∫
Xα
eη(x

α
i )dxα could be computationally intensive. Penalized pseudo-likelihood

estimation is developed in Gu [12] to avoid repeated numerical integrations and gain

numerical efficiency.

For each node α ∈ V , we assume that η(x) ∈ Mα where Mα is given in (1.12). For

an SS ANOVA model in (1.13), the penalized pseudo-likelihood estimation approach is

to minimize

1

n

n∑
i=1

e−η(xi) +

∫
Xα

η(xα
i )ρ(x

α
i )dxα +

λ

2
J(η), (1.15)

11
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where ρ(·) is a known density of Xα conditional on X\{α} = xi,\{α}. A simple choice of

ρ is eηα(xα)/
∫
Xα
eηα(xα)dxα, an estimate of the marginal density on Xα. Alternatively, we

can choose ρ as

ρ(xα,x\{α}) =
ϕ((xα − µ(x\{α}))/σ)

Φ((1− µ(x\{α}))/σ)− Φ((−µ(x\{α}))/σ)
, (1.16)

where ϕ(·) and Φ(·) are the standard normal density and CDF, and µ(·) and σ are esti-

mated by fitting a nonparametric regression model in model space (1.12) with covariates

x\{α}. More estimation details can be found in Chapter 3 of Gu [12].

Similar to (1.8) in Section 1.4, by supposing that J(η) annihilates constant and rewrit-

ing η in (1.13) as η(x) = ς + g(x) where g(x) =
p∑

j=1

gj(xj) +
∑
k ̸=α

gαk(xα, xk) ∈ Mα ⊖{1},

gj = ηj, and gαk = ηαk, then (1.15) becomes

1

n

n∑
i=1

{
e−g(xi)−ς +

∫
Xα

(g(xα
i ) + ς)ρ(xα

i )dxα

}
+
λ

2
J(g). (1.17)

Setting the derivative of (1.17) with respect to ς to zero, we get eς = n−1
n∑

i=1

e−g(xi).

Plugging back to (1.17), we have the profile penalized pseudo-likelihood:

log

{
1

n

n∑
i=1

e−g(xi)

}
+

1

n

n∑
i=1

∫
Xα

g(xα
i )ρ(x

α
i )dxα +

λ

2
J(g). (1.18)

Similar to Section 1.4, an approximate estimate of g can be expressed as

g(x) =
m∑
v=1

dvϕv(x) +

q∑
j=1

cjRJ(uj,x) = ϕ
Td+ ξTc. (1.19)

Plugging (1.19) into (1.18), one can solve coefficients c,d using Newton method and

select the tuning parameter λ. More details can be found in Chapter 10.3 in Gu [12].

12
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1.6 Edge Detection via SS ANOVA Models

1.6.1 L1 Penalty to Both Main Effects and Interactions

SS ANOVA decomposition provides a consolidated framework for edge detection.

Jeon and Lin [21] relabelled the subspaces in (1.4), and denoted it asH = {1}⊕{
m⊕

α=1

G(α)}.

For edge detection, they considered J(g) in (1.8) as the sum of functional component

norms or L1 penalty to encourage sparsity, instead of sum of squared norms employed

in (1.6). Specifically, they set J(g) =
m∑

α=1

||Pαg||, where Pα projects g onto G(α) for

α = 1, · · · ,m. In the pairwise graphical model, there are p main effect spaces and

p(p−1)/2 two-way interaction spaces, thusm = p(p+1)/2. They considered an equivalent

form

log

{
1

n

n∑
i=1

e−g(xi)

}
+

∫
χ

g(x)ρ(x)dx+ λ0

m∑
α=1

θ−1
α ||Pαg||2 + λ

m∑
α=1

θα, (1.20)

subject to θα ≥ 0 and
m∑

α=1

θα ≤M for some constant M .

For fixed λ, θα’s, Jeon and Lin solved (1.20) as a smoothing spline problem and ap-

proximated the solution with form g(x) =
n∑

i=1

ciRθ(xi,x) =
m∑

α=1

θα
n∑

i=1

ciRα(xi,x), where

Rα is the RK in each G(α), and Rθ is the RK in
m⊕

α=1

G(α). The Newton-Raphson itera-

tion was applied to solve for ci’s. For fixed c = (c1, · · · , cn)T , the iteration for updat-

ing θ = (θ1, · · · , θm)T is via solving a quadratic programming subject to θα ≥ 0 and
m∑

α=1

θα ≤M .

The L1 penalty
m∑

α=1

||Pαg|| penalizes both main effects and interactions. Consequently,

it selects both nodes and edges. For graphical models, the nodes are usually given and

the goal is to detect edges. The L1 penalty on main effects may cause undesired effects

on edge selection.

13
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1.6.2 Squared Error Projection

Gu et al. [13] proposed the squared error projection approach to assess the practical

significance of interaction terms. This approach was based on the Kullback-Leibler ge-

ometry and was developed in Gu [11]. Let H = H0 ⊕H1, where H1 is a functional space

for which the practical significance is to be assessed. Consider the functional

Ṽ (f, g) =

∫
X
f(x)g(x)ρ(x)dx−

{∫
X
f(x)ρ(x)dx

}{∫
X
g(x)ρ(x)dx

}

and denote Ṽ (f) for Ṽ (f, f). One has

Ṽ (ĝ − g) =

∫
X
(ĝ − g)2(x)ρ(x)dx−

{∫
X
(ĝ − g)(x)ρ(x)dx

}2

(1.21)

for ĝ ∈ H0⊕H1. Ṽ (ĝ−g) can be treated as a proxy of the symmetrized Kullback-Leibler

distance KL(ĝ, g) + KL(g, ĝ). Then the squared error projection of ĝ in H0 is defined as

g̃ = argmin
g∈H0

{
Ṽ (ĝ − g)

}
.

Gu et al. [13] introduced a functional Ag̃,h(a) = Ṽ (ĝ − (g̃ + ah)) for h ∈ H0. Since

the derivative of Ag̃,h(a) with respect to a evaluating at a = 0 equals to zero, they have

Ṽ (ĝ − g̃, h) = 0, ∀h ∈ H0. Let gu = −log ρ(x). When gu ∈ H0, Ṽ (ĝ − g̃, g̃ − gu) = 0,

so Ṽ (ĝ − gu) = Ṽ (ĝ − g̃) + Ṽ (g̃ − gu). Gu et al. [13] proposed to cut out the subspace

H1 when the ratio Ṽ (ĝ − g̃)/Ṽ (ĝ − gu) is small, say 2%− 3%. The choice of the cut-off

percentage is ad hoc and there is no overall criterion.

14
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1.7 Dissertation Outline

In this dissertation, we propose two nonparametric methods for edge detection using

the SS ANOVA framework. Part 1 presents the first proposed method via joint density

estimation with L1 penalty. In Chapter 2, we propose the joint density method for

edge detection, which is a modification of the method in Section 1.6.1. We also present

estimation and computation methods in this chapter. Chapter 3 provides the theoretical

analysis of convergence rates for both joint density estimate and interactions. Chapter 4

and 5 present the simulation results and two real data applications.

The second method is the neighborhood selection approach through L1 penalty, which

is covered in Part 2. Chapter 6 develops this method and its computational algorithm.

We give the convergence rates for both conditional density estimate and its interactions

in Chapter 7. Chapters 8 and 9 show the simulation results and the estimated graphs on

two real data sets.

In Part 3, we first introduce an R package named edgeSelection for our two method

in Chapter 10. Chapter 11 provides the conclusions of two methods.

15



Part 1

Joint Density Approach
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Chapter 2

Edge Detection via SS ANOVA

Model Selection

2.1 Edge Detection Through L1 Penalty

In this section, we introduce our joint density method with an L1 penalty on inter-

actions. Let X = (X1, · · · , Xp), Xj be the domain of Xj, and X = X1 × · · · × Xp. The

domains Xj are arbitrary sets. Therefore, the proposed method can deal with mixture

of data. Let f(x) be the joint density function of X, and consider the transformation

f(x) = eg(x)/
∫
eg(x)dx to enforce the conditions of f > 0 and

∫
f = 1. The function g(x)

can be decomposed as a summation of a constant term, main effects and interactions:

g(x1, · · · , xp) = c+

p∑
j=1

gj(xj) +
∑

1≤j<k≤p

gjk(xj, xk) + · · ·+ g1···p(x1, · · · , xp). (2.1)

The decomposition in equation (2.1) for the logistic transformation of the joint density

corresponds to the following SS ANOVA decomposition of the tensor product space H

17



Edge Detection via SS ANOVA Model Selection Chapter 2

on X

H = {1} ⊕

{
p⊕

j=1

H(j)

}
⊕

{ ⊕
1≤j<k≤p

[H(j) ⊗H(k)]

}
⊕ · · · ⊕

{
H(1) ⊗ · · · ⊗ H(p)

}
. (2.2)

The expansion in (2.1) is usually truncated in some manner to overcome the curse of

dimensionality. A pairwise model is used for our joint density method:

g(x1, · · · , xp) =
p∑

j=1

gj(xj) +
∑

1≤j<k≤p

gjk(xj, xk), (2.3)

where interactions of order higher than 2 are removed and the constant is also removed

for identifiability.

H(j) is an RKHS of functions on Xj of the form H(j) = H0
(j) ⊕ H1

(j), where H0
(j) =

span{ϕj1, · · · , ϕjmj
}, and H1

(j) is the orthogonal complement of H0
(j) with RK Rj. Then,

H(jk) := H(j) ⊗H(k) = (H0
(j) ⊕H1

(j))⊗ (H0
(k) ⊕H1

(k))

= (H0
(j) ⊗H0

(k))⊕ (H0
(j) ⊗H1

(k))⊕ (H1
(j) ⊗H0

(k))⊕ (H1
(j) ⊗H1

(k)) = H0
(jk) ⊕H1

(jk),

where H0
(jk) = H(j)

0 ⊗ H(k)
0 = span{ψjk1, · · · , ψjkmjk

}, ψjk(mk(u−1)+v) = ϕjuϕkv, for u =

1, ...,mj, v = 1, ...,mk, andmjk = mjmk,H1
(jk) = H(1)

(jk)⊕H(2)
(jk)⊕H(3)

(jk),H
(1)
(jk) = H0

(j)⊗H1
(k),

H(2)
(jk) = H1

(j) ⊗H0
(k), and H(3)

(jk) = H1
(j) ⊗H1

(k). We denote Rjk1, Rjk2 and Rjk3 as the RKs

for H(1)
(jk), H

(2)
(jk) and H(3)

(jk). The RK of H0
(jk) is Rjk0(x, z) =

mjk∑
v=1

ψjkv(xj, xk)ψjkv(zj, zk).

In this case, we have H(jk) = H0
(jk) ⊕H(1)

(jk) ⊕H(2)
(jk) ⊕H(3)

(jk) and the corresponding RK of

this functional space is Rjk = Rjk0 +Rjk1 +Rjk2 +Rjk3.

In our joint density method, we consider the L2 penalty for main effects for smooth-

ness and L1 penalty for interactions for sparsity. Specifically, we propose the following
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penalized pseudo-likelihood:

log

{
1

n

n∑
i=1

e−g(xi)

}
+

∫
X
g(x)ρ(x)dx+

λ1
2
J1(g) + τ1J2(g), (2.4)

where J1(g) =
p∑

j=1

θ−1
j ||Pjgj||2, Pj is the projection operator in H(j) onto H1

(j), λ1θ
−1
j for

j = 1, · · · , p are smoothing parameters, J2(g) =
∑

1≤j<k≤p

wjk||gjk(xj, xk)|| is an L1 penalty

for interaction terms, and 0 ≤ wjk <∞ are pre-specified weights.

Similar to Lin and Zhang [27], we will minimize the following equivalent but more

convenient form

log

{
1

n

n∑
i=1

e−g(xi)

}
+

∫
X
g(x)ρ(x)dx

+
λ1
2

{
p∑

j=1

θ−1
j ||Pjgj||2 +

∑
1≤j<k≤p

wjkθ
−1
jk ||gjk(xj, xk)||

2

}
+ λ2

∑
1≤j<k≤p

wjkθjk, (2.5)

subject to θjk ≥ 0 for 1 ≤ j < k ≤ p, where λ1θ
−1
j for j = 1, · · · , p are smoothing

parameters and λ2 is a tuning parameter. Let θ1 = (θ1, · · · , θp)T , θ2 = (θ12, · · · , θ(p−1)p)
T ,

and w = (w12, · · · , w(p−1)p)
T . The equivalence is given by the following lemma.

Lemma 2.1 Set λ2 = τ 21 /2λ1. If ĝ minimizes (2.4), set θ̂jk = λ
1/2
1 λ

−1/2
2 ||ĝjk||/

√
2, then

the pair (θ̂2, ĝ) minimizes (2.5). On the other hand, if a pair (θ̂2, ĝ) minimizes (2.5),

then ĝ minimizes (2.4).

Proof: Denote the functional in (2.4) by A(g) and the functional in (2.5) by B(θ2, g). We

have λ1

2
θ−1
jk ||gjk||2 + λ2θjk ≥

√
2λ

1/2
1 λ

1/2
2 ||gjk|| = τ1||gjk||, for any θjk ≥ 0 and g ∈ H, and

the equality holds if and only if θjk = λ
1/2
1 λ

−1/2
2 ||gjk||/

√
2. Therefore, B(θ2, g) ≥ A(g)

for any θjk ≥ 0 and g ∈ H, and the equality holds if and only if θjk = λ
1/2
1 λ

−1/2
2 ||gjk||/

√
2

for 1 ≤ j < k ≤ p. The conclusion of lemma follows. □
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2.2 Computation and Algorithm

In this section, we derive our algorithm for solving (2.5). Since in general the

minimization problem (2.5) does not have a solution in a finite dimensional space,

as in Gu [12], we approximate the solution by a subset of representers. Specifically,

let {x̃u = (x̃u,1, · · · , x̃u,p), u = 1, · · · , q} be a subset of all observations {xi, i =

1, · · · , n}. We collect all basis functions ϕjk for j = 1, · · · , p and k = 1, · · · ,mj

and denote them as ϕ = (ϕ1, · · · , ϕm)
T , a vector of functions of x with dimension

m =
∑p

j=1mj. Let ξju(xj) = Rj(x̃u,j, xj), ξθ1,u(x) =
p∑

j=1

θjξju(xj), ξjku(xj, xk) =

Rjk((x̃u,j, x̃u,k), (xj, xk)), and ξθ2,u(x) =
p∑

1≤j<k≤p

w−1
jk θjkξjku(xj, xk) for u = 1, · · · , q. Let

ξθ1(x) = (ξθ1,1, · · · , ξθ1,q)T , ξθ2(x) = (ξθ2,1, · · · , ξθ2,q)T , and ξ(x) = ξθ1(x)+ξθ2(x). The

approximate solution can be represented as

ĝ(x) =
m∑
v=1

dvϕv(x) +

q∑
u=1

cu

{
p∑

j=1

θjξju(xj) +
∑

1≤j<k≤p

w−1
jk θjkξjku(xj, xk)

}

= ϕT (x)d+ ξT (x)c, (2.6)

where c = (c1, · · · , cq)T and d = (d1, · · · , dm)T are coefficients. Plugging ĝ(xi) in (2.6)

into (2.5), we need to compute c, d, and θ2 as minimizers of

log

{
1

n

n∑
i=1

e−ϕ
T

i d−ξT

i c

}
+ bTϕd+ bTξc+

λ1
2
cTQc+ λ2w

Tθ2 (2.7)

subject to θ2 ≥ 0 where ϕi = ϕ(xi), ξi = ξ(xi), bϕ =
∫
X ϕ(x)ρ(x)dx, bξ =

∫
X ξ(x)ρ(x)dx,

Q1 =
{ p∑

j=1

θjRj(x̃u,j, x̃v,j)
}q

u,v=1
, Qjk =

{
Rjk((x̃u,j, x̃u,k), (x̃v,j, x̃v,k))

}q

u,v=1
,

Q2 =
p∑

1≤j<k≤p

w−1
jk θjkQjk, and Q = Q1 +Q2.

In the following, we propose a computational procedure that solves (2.7) iteratively.

We first fix θ2 and update c and d using the Newton-Raphson algorithm. With fixed
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θ2, dropping the last term that does not depend on c and d, we update c and d by

minimizing

A1(d, c) = log

{
1

n

n∑
i=1

e−ϕ
T

i d−ξT

i c

}
+ bTϕd+ bTξc+

λ1
2
cTQc. (2.8)

Taking derivatives of A1(d, c) in (2.8) with respect to d and c at g̃ = ϕT d̃ + ξT c̃, one

has gradient vectors and Hessian matrices

∂A1

∂d
= −µg̃(ϕ) + bϕ = −µϕ + bϕ,

∂A1

∂c
= −µg̃(ξ) + bξ + λ1Qc̃ = −µξ + bξ + λ1Qc̃,

∂2A1

∂d∂dT
= Vg̃(ϕ,ϕ

T ) = Vϕ,ϕ,

∂2A1

∂c∂cT
= Vg̃(ξ, ξ

T ) + λ1Q = Vξ,ξ + λ1Q,

∂2A1

∂d∂cT
= Vg̃(ϕ, ξ

T ) = Vϕ,ξ,

where µg(f) =
n∑

i=1

e−g(Xi)f(Xi)/
n∑

i=1

e−g(Xi) and Vg(f1, f2) = µg(f1f2) − µg(f1)µg(f2).

Then, the Newton updating equation becomes

Vϕ,ϕ Vϕ,ξ

Vξ,ϕ Vξ,ξ + λ1Q


d− d̃

c− c̃

 =

 µϕ − bϕ
µξ − bξ − λ1Qc̃

 .

After arranging terms we get,

Vϕ,ϕ Vϕ,ξ

Vξ,ϕ Vξ,ξ + λ1Q


d
c

 =

 µϕ − bϕ + Vg̃(ϕ, g̃)

µξ − bξ − λ1Qc̃+ Vg̃(ξ, g̃)

 . (2.9)

We solve (2.9) using a modified version of the ssden1 function in the gss package, and

select λ1 and θ1 by the approximate cross-validation (ACV) method (Gu [12]). Details
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will be given in Section 2.3.1.

With fixed c and d, we update θ2 using the quadratic programming method. Let

ψj(x) =
q∑

u=1

cuξju(xj) for j = 1, · · · , p, ψ1(x) = (ψ1, · · · , ψp)
T , ψjk(x) =

w−1
jk

q∑
u=1

cuξjku(xj, xk) for 1 ≤ j < k ≤ p, and ψ2(x) = (ψ12, · · · , ψ(p−1)p)
T . We rewrite ĝ

in (2.6) as ĝ(x) = ϕT (x)d+ψT
1 (x)θ1 +ψ

T
2 (x)θ2. Plugging ĝ(xi) into (2.7) and keeping

terms involving θ2 only, (2.7) reduces to

log

{
1

n

n∑
i=1

e−ϕ
T

i d−ψT

1iθ1−ψ
T

2iθ2

}
+ bTψ2

θ2 +
λ1
2
cTQ2c+ λ2w

Tθ2 (2.10)

subject to θ2 ≥ 0, where ψ1i = ψ1(xi), ψ2i = ψ2(xi), and bψ2
=
∫
X ψ2(x)ρ(x)dx.

Furthermore, the constraint minimization problem (2.10) is equivalent to

A2(θ2) = log

{
1

n

n∑
i=1

e−ϕ
T

i d−ψT

1iθ1−ψ
T

2iθ2

}
+ bTψ2

θ2 +
λ1
2
cTQ2c (2.11)

subject to θ2 ≥ 0 and wTθ2 ≤ M for some constant M , where M controls the sparsity

in θ2. Note that A2(θ2) is a convex function of θ2. To prove the convexity, we now show

that the Hessian matrix HA(θ2) of A2(θ2) is positive semi-definite. For any vector ν ̸= 0,

let si = e−g̃(xi) and ti = ν
Tψ2(xi), we have

νTHA(θ2)ν =

(
n∑

i=1

sit
2
i

)(
n∑

i=1

si

)
−
(

n∑
i=1

tisi

)2

(
n∑

i=1

si

)2 ≥ 0, (2.12)

by the Cauchy-Schwartz inequality.

We solve (2.11) iteratively using the quadratic programming. Denote the current

estimate of θ2 as θ̃2 and g̃(x) = ϕT (x)d + ψT
1 (x)θ1 + ψT

2 (x)θ̃2. We update θ2 by

minimizing the following second order Taylor approximation of A2(θ2) (some constants
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independent of θ2 have been removed):

1

2
θT2HA(θ̃2)θ2 + θ

T
2

{
GA(θ̃2)−HA(θ̃2)θ̃2

}
(2.13)

subject to θ2 ≥ 0 and wTθ2 ≤ M for some constant M , where GA(θ̃2) = −µg̃(ψ2) +

bψ2
+λ1q2/2 is the gradient, HA(θ̃2) = Vg̃(ψ2,ψ

T
2 ) is the Hessian, q2 = (w−1

12 c
TQ12c, · · · ,

w−1
(p−1)pc

TQ(p−1)pc)
T , and Qjk =

{
Rjk((x̃u,j, x̃u,k), (x̃v,j, x̃v,k))

}q

u,v=1
for 1 ≤ j < k ≤ p.

We apply the quadratic programming to solve (2.13) and k-fold cross-validation to

select M . The iterative procedure for updating θ2 may be stopped after a fixed number

of steps or until convergence. We summarize the whole algorithm as follows.

Algorithm for the joint density approach:

1. Initialize: θ2 = θ
0
2.

2. Cycle until convergence: Update c, d and θ2 sequentially:

(a) Fix θ2 at the current estimate, update c and d by solving (2.9) with tuning

parameters λ1, θ1 selected by the ACV method.

(b) Fix d, c, λ1 and θ1 at the current estimates, update θ2 by applying quadratic

programming to iteratively solve the quadratic approximations (2.13) subject

to θ2 ≥ 0 and wTθ2 ≤ M where the tuning parameter M is selected by the

k-fold cross-validation.

2.3 Implementation of the Algorithm

In this section, we provide details about the implementation of the proposed algorithm

using existing R packages. Specifically, we implement Step 2.(a) in the algorithm using
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a modification of the ssden1 function in the gss package (Gu et al. [17]) and Step 2.(b)

using the R function solve.QP in the quadprog package (Turlach and Weingessel [38]).

2.3.1 Implementation of the Newton-Raphson Method

Given current value of θ2, we update c and d by minimizing (2.8) using the Newton-

Raphson method. We implement by modifying the function ssden1 in the gss package

since (2.8) has the same form as (10.6) in Gu [12] with different penalties. By definition,

H(jk) = H(j) ⊗ H(k) = (H0
(j) ⊕ H1

(j)) ⊗ (H0
(k) ⊕ H1

(k)) = (H0
(j) ⊗ H0

(k)) ⊕ (H0
(j) ⊗ H1

(k)) ⊕

(H1
(j) ⊗H0

(k))⊕ (H1
(j) ⊗H1

(k)) = H(0)
(jk) ⊕H(1)

(jk) ⊕H(2)
(jk) ⊕H(3)

(jk) where H(0)
(jk) = H0

(j) ⊗H0
(k),

H(1)
(jk) = H0

(j)⊗H1
(k), H

(2)
(jk) = H1

(j)⊗H0
(k), and H(3)

(jk) = H1
(j)⊗H1

(k). For density estimation,

the penalized likelihood method in Gu [12] does not penalize functions in the parametric

component space H0
(jk) and has different smoothing parameters for components in the

nonparametric component spaces H(1)
(jk), H(2)

(jk), and H(3)
(jk). Our goal is edge detection

by detecting non-zero interactions. Therefore, we penalize the combined interaction

gjk ∈ H(jk) as a whole with a smoothing parameter θjk for 1 ≤ j < k ≤ p. The interaction

gjk collects parametric and nonparametric interaction components in H(0)
(jk), H

(1)
(jk), H

(2)
(jk),

and H(3)
(jk). Note that θ2 = (θ12, · · · , θ(p−1)p)

T is fixed at this step. We modified the

function ssden1 to solve (2.8) with smoothing parameters λ1 and θ1 estimated by an

approximated cross-validation estimate of the Kullback-Leibler (KL) divergence. More

details can be found in Gu [12] and Gu et al. [13].
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2.3.2 Implementation of Quadratic Programming

With c and d being fixed at their current values, we need to update θ2 iteratively by

applying the quadratic programming algorithm to minimize

1

2
θT2HA(θ̃2)θ2 + θ

T
2

{
GA(θ̃2)−HA(θ̃2)θ̃2

}
(2.14)

subject to θjk ≥ 0 and wTθ2 ≤ M for some M , where M is a tuning parameter. We

use the R function solve.QP to solve (2.14). We estimate the tuning parameter M by

minimizing a k-fold cross-validation derived as follows.

Let Ij = {i1, · · · , ij} be the sample indexes in j-th fold. We consider the following

loss function

V (M) = log

 1

n

k∑
j=1

∑
i∈Ij

e−g
(−j)
M (xi)

+

∫
X
g
(−j)
M (x)ρ(x)dx, (2.15)

where g
(−j)
M denotes the estimate of g0 without the observations in j-th fold, and the

subscript M denotes the estimate is based on each fixed M . Let θ
(−j)
2,M be the estimate of

θ2 without the observations in j-th fold. Then, g
(−j)
M = ϕT (x)d+ψT

1 (x)θ1+ψ
T
2 (x)θ

(−j)
2,M .

We minimize the following version of (2.5) with respect to θ2

log

 1

n

∑
i/∈Ij

e−ϕ
T

i d−ψT

1iθ1−ψ
T

2iθ2

+ bTψ2

θ2 +
λ1
2
cTQ2c, (2.16)

subject to θ2 ≥ 0 and wTθ2 ≤M .

Define µ
(−j)
g̃ (h) =

∑
i/∈Ij

e−g̃(xi)h(xi)/
∑
i/∈Ij

e−g̃(xi). Then, we solve θ2 by minimizing the

following second order Taylor approximation of (2.16) (some constants independent of
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θ2 have been removed):

1

2
θT2H

(−j)
A (θ̃2)θ2 + θ

T
2

{
G

(−j)
A (θ̃2)−H

(−j)
A (θ̃2)θ̃2

}
(2.17)

subject to θ2 ≥ 0 and wTθ2 ≤ M , where G
(−j)
A (θ̃2) = −µ(−j)

g̃ (ψ2) + bψ2
+ λ1q2/2

is the gradient, H
(−j)
A (θ̃2) = Vg̃(ψ2,ψ

T
2 ) is the Hessian, Vg̃(ψ2,ψ

T
2 ) = µ

(−j)
g̃ (ψ2ψ

T
2 ) −

µ
(−j)
g̃ (ψ2)µ

(−j)
g̃ (ψT

2 ), q2 and bψ2
are defined as before. By minimizing (2.17), we can

obtain the estimate θ
(−j)
2,M for θ2 without the observations in j-th fold. Then, we obtain

g
(−j)
M using θ

(−j)
2M

and plug it into (2.15). We select the M that minimizes the k-fold

cross-validation score in (2.15).

2.3.3 Initial Values and Convergence Criterion

To get a good initial value θ02, we first estimate g(x) with τ1
∑

1≤j<k≤p

wjk||gjk|| in (2.4)

being replaced by (λ1/2)
∑

1≤j<k≤p

θ−1
jk ||gjk||2. We modified the ssden1 function in the gss

package to estimate g and denote the estimate of gjk as ǧjk. Since θjk = 0 in θ2 iff

gjk = 0, the magnitude of ǧjk provides one way to initialize θjk. Specifically, we set

θ0jk = {
∑n

i=1 ǧ
2
jk(xi)}1/2.

The convergence criterion in Step 2 in the algorithm is ||θ2− θ̃2||2/(||θ̃2||2+10−6) ≤ ε

or the number of zeros in θ2 stops increasing for fixed number of steps, where θ2 and θ̃2

are the updated and previous estimates, respectively, || · ||2 is the Euclidean norm, and ε

a threshold. We set ε = 0.001 in simulation and real data examples.
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Chapter 3

Theoretical Analysis

In this chapter, we study the theoretical properties of the proposed joint approach. Fol-

lowing similar steps and under same regularity conditions as Gu [12], we derive con-

vergence rate for the joint density estimate ĝ subject to both L1 and L2 penalties. In

addition, we derive the convergence rate for interactions in the SS ANOVA decomposi-

tion, which is new and important for edge detection.
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3.1 Notations

Let f0(x) = eg0(x)ρ(x) be the density to be estimated. Let g = g(1) + g(2) =
p∑

j=1

gj +∑
1≤j<k≤p

gjk. Let ĝ be the minimizer of (2.4). Define

V ∗(h1, h2) =

∫
X
h1(x)h2(x)ρ(x)dx

J1(h1, h2) =

p∑
j=1

θ−1
j

∫
Xj

(Pjh1)(Pjh2)dxj

J2(h1, h2) =
∑

1≤j<k≤p

wjk(

∫
Xj

∫
Xk

|(Pjh1)(Pjh2)|dxjdxk)1/2

J∗
2 (h1, h2) =

∑
1≤j<k≤p

θ−1
jk

∫
Xj

∫
Xk

(Pjh1)(Pjh2)dxjdxk

for any functions h1, h2 ∈ H. We denote ||h|| = (
∫
Xj
h2dxj)

1/2 as the L2 norm for any

h ∈ H(j). Then, we have V ∗(g) = V ∗(g, g). Denote V1(g
(1)) = V ∗(g(1)), V2(g

(2)) =

[V ∗(g(2))]1/2, J1(g) = J1(g, g) =
p∑

j=1

θ−1
j ||Pjgj||2, J2(g) = J2(g, g) =

∑
1≤j<k≤p

wjk||gjk||, and

J∗
2 (g) = J∗

2 (g, g) =
∑

1≤j<k≤p

θ−1
jk ||gjk||2. Without loss of generality, we assume wjk = 1

in the proof, simulations and real applications. Furthermore, we let V (g) = V1(g
(1)) +

V2(g
(2)), J = J1 + J2, and J

∗(g) = J1(g) + J∗
2 (g).

We derive convergence rates under metrics V ∗+λ1J
∗ and V +λ1J . For a sequence of

random variables, {An}, and a sequence of constants, {an}, the notation An = Op(an),

means that {An/an} is stochastically bounded (or bounded in probability). That is, for

any τ > 0, there exit a constant K(τ) and an integer n(τ) such that if n ≥ n(τ), we have

P (|An/an| ≤ K(τ)) ≥ 1− τ.
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The notation An = op(an) denotes that for ∀ϵ > 0

lim
n→∞

P (|An/an − 0| ≤ ϵ) = 1.

More details and examples of Op, op notations can be found in Section 1.2 of Serfling

[35]. Furthermore, let Sn be a sequence of random variables. We denote Sn ≤p C if

P (limsup
n→∞

Sn ≤ C) = 1 for a fixed constant C < ∞, and denote Sn
a.s.→ C if P ( lim

n→∞
|Sn −

C| ≤ ϵ) = 1 for ∀ϵ > 0.

3.2 Convergence Rates

We start this section by introducing conditions and lemmas that are needed for the-

oretical analysis.

Condition 3.1 V ∗ is completely continuous with respect to J∗.

From Theorem 3.1 of Weinberger [42], there exists eigenvalues γv of J∗ with respect to

V ∗ and the associated eigenfunctions ζv such that

V ∗(ζv, ζu) = δv,u, J∗(ζv, ζu) = γvδv,u,

where 0 ≤ γv ↑ ∞ and δv,u is the Kronecker delta. We refer to γv as the eigenvalues of

J∗ with respect to V ∗ and to ζv as the associated eigenfunctions. Functions satisfying

J∗(g) < ∞ can be expressed as a Fourier series expansion g =
∑
v

avζv, where av =

V ∗(g, ζv) are the Fourier coefficients.

Condition 3.2 For v sufficiently large and some φ > 0, the eigenvalues γv of J∗ with

respect to V ∗ satisfy γv > φvr where r > 1.
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Consider the quadratic functional

1

n

n∑
i=1

−e−g0(Xi)g(Xi) +

∫
X
g(x)ρ(x)dx+

1

2
V ∗(g − g0) +

λ1
2
J∗(g), (3.1)

and denote the minimizer of (3.1) as g̃. Plugging the Fourier series expansions g =
∑
v

avζv

and g0 =
∑
v

av,0ζv into (3.1), g̃ has Fourier coefficients ãv = (κv + av,0)/(1+ λ1γv), where

κv = n−1
n∑

i=1

{e−g0(Xi)ζv(Xi)−
∫
X ζv(x)ρ(x)dx}. It is not difficult to verify that E(κv) = 0

and E(κ2v) ≤ n−1
∫
X ζ

2
v (x)e

−g0(x)ρ(x)dx.

Condition 3.3 For some c1 <∞, e−g0 < c1.

Under Condition 3.3, noting that V ∗(ζv) =
∫
X ζ

2
v (x)ρ(x)dx = 1 by the definition of

V ∗ and ζv, we have E(κ2v) ≤ c1/n.

By the Fourier series expansions of g̃ and g0, we can show that

V ∗(g̃ − g0) =
∑
v

(ãv − av,0)
2 =

∑
v

κ2v − 2κvλ1γvav,0 + λ21γ
2
va

2
v,0

(1 + λ1γv)2
,

λ1J
∗(g̃ − g0) =

∑
v

λ1γv(ãv − av,0)
2 =

∑
v

λ1γv
κ2v − 2κvλ1γvav,0 + λ21γ

2
va

2
v,0

(1 + λ1γv)2
.

Since E(κv) = 0 and E(κ2v) ≤ c1/n, we have

E[V ∗(g̃ − g0)] ≤
c1
n

∑
v

1

(1 + λ1γv)2
+ λ1

∑
v

λ1γv
(1 + λ1γv)2

γva
2
v,0,

E[λ1J
∗(g̃ − g0)] ≤

c1
n

∑
v

λ1γv
(1 + λ1γv)2

+ λ1
∑
v

(λ1γv)
2

(1 + λ1γv)2
γva

2
v,0. (3.2)

We can further bound these two quantities by using the following lemma.
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Lemma 3.1 Under Condition 3.2, as λ→ 0, one has

∑
v

λγv
(1 + λγv)2

= O(λ−1/r),
∑
v

1

(1 + λγv)2
= O(λ−1/r),

∑
v

λγv
1 + λγv

= O(λ−1/r).

Proof: We prove the first equation.

∑
v

λγv
(1 + λγv)2

=

 ∑
v<λ−1/r

+
∑

v≥λ−1/r

 λγv
(1 + λγv)2

= O(λ−1/r) +O
(∫ ∞

λ−1/r

λxr

(1 + λxr)2
dx
)

= O(λ−1/r) + λ−1/rO
(∫ ∞

1

xr

(1 + xr)2
dx
)

= O(λ−1/r).

The other two follow similar arguments. □

Theorem 3.1 Assume J∗(g0) <∞. Under Conditions 3.1−3.3, as λ1 → 0 and n→ ∞,

(V ∗ + λ1J
∗)(g̃ − g0) = O(n−1λ

−1/r
1 + λ1).

Proof: Note that
∑

v ρvg
2
v,0 = J∗(g0) <∞. The theorem follows from (3.2) and Lemma

3.1. □

As in Gu [12], when g0 is “supersmooth”, in the sense that
∑

v γ
l
va

2
v,0 <∞ for some 1 <

l ≤ 2 which is assumed in Theorem 3.2, the rates can be improved to O(n−1λ
−1/r
1 + λl1).
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Now we want to bound the approximation error ĝ − g̃. Define

Af,h(α) =
1

n

n∑
i=1

e−(f+αh)(Xi) +

∫
X
(f + αh)ρ+

λ1
2
J∗(f + αh) + λ2

∑
1≤j<k≤p

θjk

Bf,h(α) =
1

n

n∑
i=1

−e−g0(Xi)(f + αh)(Xi) +

∫
X
(f + αh)ρ+

1

2
V ∗(f + αh− g0)

+
λ1
2
J∗(f + αh).

We take derivative for Af,h, Bf,h with respect to α evaluated at α = 0. Then we obtain

Ȧf,h(0) =
1

n

n∑
i=1

−e−f(Xi)h(Xi) +

∫
X
hρ+ λ1J

∗(f, h), (3.3)

Ḃf,h(0) =
1

n

n∑
i=1

−e−g0(Xi)h(Xi) +

∫
X
hρ+ V ∗(f − g0, h) + λ1J

∗(f, h). (3.4)

Plugging f = ĝ and h = ĝ − g̃ into (3.3), we have

1

n

n∑
i=1

−e−ĝ(Xi)(ĝ − g̃)(Xi) +

∫
X
(ĝ − g̃)ρ+ λ1J

∗(ĝ, ĝ − g̃) = 0. (3.5)

Setting f = g̃ and h = ĝ − g̃ in (3.4), we obtain

1

n

n∑
i=1

−e−g0(Xi)(ĝ − g̃)(Xi) +

∫
X
(ĝ − g̃)ρ+ V ∗(g̃ − g0, ĝ − g̃) + λ1J

∗(g̃, ĝ − g̃) = 0.

(3.6)

Subtracting (3.6) from (3.5), we have

λ1J
∗(ĝ − g̃)− 1

n

n∑
i=1

{e−ĝ(xi) − e−g̃(xi)}(ĝ − g̃)(xi)

=
1

n

n∑
i=1

{e−g̃(xi) − e−g0(xi)}(ĝ − g̃)(xi) + V ∗(ĝ − g̃, g̃ − g0). (3.7)
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Condition 3.4 For g in a convex set B0 around g0 containing ĝ and g̃, c2 < eg0−g < c3

holds uniformly for some 0 < c2 < c3 <∞.

Condition 3.5 For any u, v = 1, 2, · · · ,
∫
X ζ

2
vζ

2
ue

−g0ρ(x)dx < c4 for some c4 <∞.

Applying the mean value theorem, we have e−ĝ(Xi) − e−g̃(Xi) = −e−(g̃+τi(ĝ−g̃))(Xi)(ĝ −

g̃)(Xi) where τi ∈ [0, 1]. Since ĝ and g̃ belongs to B0 which is a convex set around g0,

under Condition 3.4, there exists a b
(i)
0 ∈ (c2, c3) such that −e−(g̃+τi(ĝ−g̃))(Xi)(ĝ− g̃)(Xi) =

−b(i)0 e
−g0(Xi)(ĝ − g̃)(Xi). Then

− 1

n

n∑
i=1

{
e−ĝ(Xi) − e−g̃(Xi)

}
(ĝ − g̃)(Xi) =

1

n

n∑
i=1

b
(i)
0 e

−g0(Xi)(ĝ − g̃)2(Xi)

≥c2
n

n∑
i=1

e−g0(Xi)(ĝ − g̃)2(Xi). (3.8)

By the same argument, there exists a c
(i)
0 ∈ (c2, c3) such that

1

n

n∑
i=1

{
e−g̃(Xi) − e−g0(Xi)

}
(ĝ − g̃)(Xi) = − 1

n

n∑
i=1

c
(i)
0 e

−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi).

(3.9)

Lemma 3.2 Under Conditions 3.1, 3.2 and 3.5, suppose h1 and h2 are functions satis-

fying J∗(h1) <∞, J∗(h2) <∞, as λ1 → 0 and nλ
2/r
1 → ∞, one has

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)− V ∗(h1, h2)
∣∣∣ = op

(
{(V ∗ + λ1J

∗)(h1)(V
∗ + λ1J

∗)(h2)}1/2
)
.

(3.10)

Proof: Since J∗(h1) <∞, J∗(h2) <∞, then h1 and h2 can be expressed as Fourier series
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h1 =
∑

v h1,vζv and h2 =
∑

v h2,vζv. Let

Ui = ζv(Xi)ζu(Xi)e
−g0(Xi) −

∫
X
ζv(x)ζu(x)ρ(x)dx.

Note that Ui are i.i.d. random variables with E(Ui) = 0. Then under Condition 3.5, we

have

E

(
1

n

n∑
i=1

Ui

)2

=
1

n
Var

(
ζv(X1)ζu(X1)e

−g0(X1)
)
<
c4
n
.

Furthermore,

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)− V ∗(h1, h2)
∣∣∣

=
∣∣∣∑

v

∑
u

h1,vh2,u
1

n

n∑
i=1

Ui

∣∣∣
≤

∑
v

∑
u

1

1 + λ1γv

1

1 + λ1γu

(
1

n

n∑
i=1

Ui

)2


1/2{∑
v

∑
u

(1 + λ1γv)(1 + λ1γu)h
2
1,vh

2
2,u

}1/2

=Op

(
n−1/2λ

−1/r
1 {(V ∗ + λ1J

∗)(h1)(V
∗ + λ1J

∗)(h2)}1/2
)

=op

(
{(V ∗ + λ1J

∗)(h1)(V
∗ + λ1J

∗)(h2)}1/2
)
,

where the second equality holds because of
∑
v

1
1+λ1γv

= O(λ
−1/r
1 ) and the strong law of

large numbers. □

Lemma 3.3 Under Conditions 3.1, 3.2 and 3.5, suppose h1 and h2 are functions satis-

fying V ∗(h1) <∞, V ∗(h2) <∞, as λ1 → 0 and nλ
2/r
1 → ∞, one has

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)−
1

n

n∑
i=1

c
(i)
0 e

−g0(Xi)h1(Xi)h2(Xi)
∣∣∣

≤p c0{(V ∗ + λ1J
∗)(h1)(V

∗ + λ1J
∗)(h2)}1/2, (3.11)
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where c0 = max{|c2 − 1|, |c3 − 1|}.

Proof: Note that for each Xi,

E|e−g0(Xi)h1(Xi)h2(Xi)| =
∫
X
|h1(x)h2(x)|ρ(x)dx

≤
{(∫

X
h21(x)ρ(x)dx

)( ∫
X
h22(x)ρ(x)dx

)}1/2

={V ∗(h1)V
∗(h2)}1/2 ≤ {(V ∗ + λ1J

∗)(h1)(V
∗ + λ1J

∗)(h2)}1/2,

where the first inequality follows Cauchy-Schwartz inequality. Since Xi’s are indepen-

dent, we have |e−g0(Xi)h1(Xi)h2(Xi)|’s are i.i.d. random variables with mean

E|e−g0(Xi)h1(Xi)h2(Xi)| ≤
{
V ∗(h1)V

∗(h2)
}1/2

< ∞. Therefore, by the strong law of

large numbers, 1
n

n∑
i=1

|e−g0(Xi)h1(Xi)h2(Xi)|
a.s.→ E|e−g0(X1)h1(X1)h2(X1)| as n → ∞.

Then, we have

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)−
1

n

n∑
i=1

c
(i)
0 e

−g0(Xi)h1(Xi)h2(Xi)
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

(1− c
(i)
0 )e−g0(Xi)h1(Xi)h2(Xi)

∣∣∣
≤ 1

n

n∑
i=1

|(1− c
(i)
0 )||e−g0(Xi)h1(Xi)h2(Xi)|

≤c0
n

n∑
i=1

|e−g0(Xi)h1(Xi)h2(Xi)|

a.s.→c0E|e−g0(X1)h1(X1)h2(X1)| (λ1 → 0, nλ
2/r
1 → ∞)

≤c0{(V ∗ + λ1J
∗)(h1)(V

∗ + λ1J
∗)(h2)}1/2.

□

Conditions 3.1-3.5 are common assumptions for convergence rate analysis of the SS

ANOVA estimates, which were also made in Gu [12]. Condition 3.2 states that the growth
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rate of the eigenvalues γv is at v
r, which controls how fast λ1 approaches zero. Condition

3.4 bounds eg0−g at g in a convex set B0 around g0. Condition 3.5 requires bounded

fourth moment of ζv. Now, we introduce the main theorems for the convergence rate.

Theorem 3.2 Assume
∑
v

γlva
2
v,0 < ∞ for some l ∈ [1, 2]. Under Conditions 3.1-3.5,

suppose V ∗(ĝ − g̃) <∞, for some r > 1, as λ1 → 0 and nλ
2/r
1 → ∞,

(V ∗ + λ1J
∗)(ĝ − g0) = Op(n

−1λ
−1/r
1 + λl1).

Proof: Note that for eachXi, E{e−g0(Xi)(ĝ− g̃)2(Xi)} =
∫
X (ĝ− g̃)

2(x)ρ(x)dx = V ∗(ĝ−

g̃) < ∞. Since Xi’s are independent, we have e−g0(Xi)(ĝ − g̃)2(Xi)’s are i.i.d. random

variables with mean E{e−g0(Xi)(ĝ− g̃)2(Xi)} = V ∗(ĝ− g̃) <∞. Therefore, by the strong

law of large numbers, 1
n

n∑
i=1

e−g0(Xi)(ĝ − g̃)2(Xi)
a.s.→ E{e−g0(X1)(ĝ − g̃)2(X1)} as n → ∞.

Substituting (3.8) into the left-hand side of (3.7), we have

λ1J
∗(ĝ − g̃)− 1

n

n∑
i=1

{
e−ĝ(Xi) − e−g̃(Xi)

}
(ĝ − g̃)(Xi)

≥c2
n

n∑
i=1

e−g0(Xi)(ĝ − g̃)2(Xi) + λ1J
∗(ĝ − g̃)

a.s.→ c2E{e−g0(X1)(ĝ − g̃)2(X1)}+ λ1J
∗(ĝ − g̃) (λ1 → 0, nλ

2/r
1 → ∞)

= c2V
∗(ĝ − g̃) + λ1J

∗(ĝ − g̃). (3.12)

Substituting (3.10) and (3.11) into the right-hand side of (3.7) and let h1 = ĝ − g̃,

36



Theoretical Analysis Chapter 3

h2 = g̃ − g0, as λ1 → 0 and nλ
2/r
1 → ∞, we have

∣∣∣ 1
n

n∑
i=1

{
e−g̃(Xi) − e−g0(Xi)

}
(ĝ − g̃)(Xi) + V ∗(ĝ − g̃, g̃ − g0)

∣∣∣
≤
∣∣∣V ∗(ĝ − g̃, g̃ − g0)−

1

n

n∑
i=1

e−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)
∣∣∣

+
∣∣∣ 1
n

n∑
i=1

e−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)−
1

n

n∑
i=1

c
(i)
0 e

−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)
∣∣∣

≤p(op(1) + c0){(V ∗ + λ1J
∗)(ĝ − g̃)(V ∗ + λ1J

∗)(g̃ − g0)}1/2, (3.13)

where the first inequality follows (3.9) and the second inequality directly follows Lemma

3.2 and 3.3. Combining (3.7), (3.12), and (3.13), we obtain

(c2V
∗ + λ1J

∗)(ĝ − g̃) ≤p (op(1) + c0){(V ∗ + λ1J
∗)(ĝ − g̃)(V ∗ + λ1J

∗)(g̃ − g0)}1/2.

(3.14)

Combining (3.14) with Lemma 3.1, as λ1 → 0 and nλ
2/r
1 → ∞, we have (V ∗ + λ1J

∗)(ĝ−

g̃) = Op(n
−1λ

−1/r
1 + λl1) and Theorem 3.2 holds. □

Theorem 3.3 Under the conditions in Theorem 3.2,

(V + λ1J)(ĝ − g0) = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ).

Proof: We know

∑
1≤j<k≤p

||gjk(xj, xk)||2 ≤

{ ∑
1≤j<k≤p

||gjk(xj, xk)||

}2

≤ (p− 1)p

2

∑
1≤j<k≤p

||gαk(xα, xk)||2.

(3.15)
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Then, there exists some constant C ∈ [1,
√

(p−1)p
2

] such that C {
∑

1≤j<k≤p

||gjk(xj, xk)||2}1/2

=
∑

1≤j<k≤p

||gjk(xj, xk)||. Since
∑

1≤j<k≤p

θjk is bounded by a fixed M < ∞, we can scale

λ1, λ2 such that θjk ≤ 1. Since J∗
2 (g) =

∑
1≤j<k≤p

θ−1
jk ||gjk(xj, xk)||2 = cT (

∑
1≤j<k≤p

θjkQjk)c,∑
1≤j<k≤p

||gjk(xj, xk)||2 = cT (
∑

1≤j<k≤p

θ2jkQjk)c, we have J
2
2 (g) = C2

∑
1≤j<k≤p

||gjk(xj, xk)||2 ≤

C2J∗
2 (g) and consequently J2 ≤ C(J∗)1/2.

Furthermore, since V 2
2 (g

(2)) =
∫
X

{
g(2)(x)

}2
ρ(x)dx = V ∗(g(2)), we have V2(g

(2)) =

[V ∗(g(2))]1/2. Therefore,

(V2 + λ1J2)(g
(2)) = ((V ∗)1/2 + C

√
λ1(λ1J

∗)1/2)(g(2)) ≤ (1 + C2λ1)
1/2(V ∗ + λ1J

∗)1/2(g(2))

by the Cauchy-Schwarz inequality. Finally,

(V + λ1J)(ĝ − g0) = (V1 + λ1J1)(ĝ
(1) − g

(1)
0 ) + (V2 + λ1J2)(ĝ

(2) − g
(2)
0 )

≤ (V ∗ + λ1J
∗)(ĝ(1) − g

(1)
0 ) + (1 + C2λ1)

1/2(V ∗ + λ1J
∗)1/2(ĝ(2) − g

(2)
0 )

= Op(n
−1λ

−1/r
1 + λl1) +O(n−1/2λ

−1/2r
1 + λ

l/2
1 )

= Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ). (3.16)

□

Corollary 3.1 Assume conditions in Theorem 3.3 hold, 0 < c5 < ρ(x) < c6 for some

positive constants c5, c6, we have

||ĝjk − g0jk|| = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ), 1 ≤ j < k ≤ p,

where g0jk are two-way interactions in the SS ANOVA decomposition of g0.

Proof: By definition of V (·), V (ĝ − g0) = V1(ĝ
(1) − g

(1)
0 ) + V2(ĝ

(2) − g
(2)
0 ) = V ∗(ĝ(1) −
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g
(1)
0 ) + [V ∗(ĝ(2) − g

(2)
0 )]1/2. Following (3.16),

[V ∗(ĝ(2) − g
(2)
0 )]1/2 = Op(n

−1/2λ
−1/2r
1 + λ

l/2
1 ).

Following Lin et al. [28], under the condition 0 < c5 < ρ(x) < c6 for some positive

constants c5, c6, [V
∗(g)]1/2 is equivalent to the L2 norm. Specifically,

V ∗(g) ∼ ||g||2 =
p∑

j=1

||gj||2 +
∑

1≤j<k≤p

||gjk(xj, xk)||2,

where ∼ means equivalence, || · || is the L2 norm, and V ∗(g(1)) ∼
p∑

j=1

||gj||2, V ∗(g(2)) ∼∑
1≤j<k≤p

||gjk(xj, xk)||2, respectively. By definition, V (g(2)) = [V ∗(g(2))]1/2

∼ (
∑

1≤j<k≤p

||gjk(xj, xk)||2)1/2. Consequently, two-way interactions under L2 norm have

the same convergence rate as [V ∗(g(2))]1/2,

||ĝjk − g0jk|| = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ), 1 ≤ j < k ≤ p.

□

The convergence rate in Theorem 3.3 is the square root of the rate in Theorem 3.2.

This is because V ∗ + λ1J
∗ is associated with the square of L2 norm while the L2 norm

was used in V + λ1J . Corollary 3.1 holds because V2 and J2 associated with two-way

interactions are equivalent to L2 norm. Consequently, two-way interactions under L2

norm have the same convergence rate as Theorem 3.3. We only show convergence rate

for interactions in Corollary 3.1 since we are mainly interested in edge selection.
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Simulation Studies

In this chapter, we evaluate the performance of our method (referred to as NEW) in

various settings, and compare it with Jeon and Lin [21]’s method (referred to as OLD)

for edge detection. In the implementation of our method, we estimate the joint density

with each variable on the data range and transform the data into [0, 1]. We construct an

SS ANOVA model using tensor product of cubic spline models. Specifically, let H(j) =

W 2
2 [0, 1] where

W 2
2 [0, 1] =

{
f : f, f ′ are absolutely continuous,

∫ 1

0

(f ′′)2dx <∞
}

(4.1)

is the Sobolev space for cubic spline models. Each H(j) can be decomposed as H(j) =

{1(j)}⊕H(j) and H(j) = H0
(j)⊕H1

(j) where H0
(j) and H1

(j) are RKHS’s with RKs R0
j (x, z) =

k1(x)k1(z) and R
1
j (x, z) = k2(x)k2(z)− k4(|x− z|) respectively, k1(x) = x− 0.5, k2(x) =

1
2
(k21(x)− 1

12
), and k4(x) =

1
24
(k41(x)−

k21(x)

2
+ 7

240
). SS ANOVA decomposition of

p⊗
j=1

H(j)

can then be constructed based on these decompositions. More details can be found in

Wang [41]. In all simulations and real data applications, we select the tuning parameter

M using the 5-fold cross-validation method as we described in Section 2.3.2. For the fair
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comparison between our method and Jeon and Lin’s method, we use the same subset

of representers {x̃u = (x̃u,1, · · · , x̃u,p), u = 1, · · · , q} in the fitting procedure with q =

max{40, 12n2/9}, which is the default value used in ssden1 function in the gss package.

For edge detection, we look into four different numerical experiments on domains

of dimensions three or five. We simulate data with n = 200, 400 and 600 for each

case. The simulation is repeated 100 times under each simulation setting. We record

the frequencies of appearance of each two-way interaction term in 100 runs. Also, to

evaluate the performance of edge detection, we compute three criteria: specificity (SPE),

sensitivity (SEN), and F1 scores, which are defined as follows:

SPE =
TN

TN+ FP
, SEN =

TP

TP + FN
, F1 =

2TP

2TP + FN + FP
,

where TP, TN, FP and FN are the numbers of true positives, true negatives, false positives

and false negatives.

To further compare overall performance, we create a search grid of tuning parameter

M and plot the average of the ROC curves under different M for two methods. Specif-

ically, the search grid contains 25 different values: nine values from 10 to 90 equally,

ten values between 100 and 1000 equally, four values from 1100 to 1700 equally, and

2500, 5000. We fix the sample size as n = 600 and run 100 simulations in total. For each

simulation, we record the true positive rate (TPR) and false positive rate (FPR) for each

M . Then, we take the average of TPRs and FPRs of 100 simulations for each M and

plot the average of the ROC curves.

Both Gaussian and non-Gaussian settings are considered in the simulation. A trivari-

ate simulation is studied in Section 4.1, which was an example used in Gu et al. [13].

Section 4.2 is a 5-dimensional multivariate Gaussian distribution with specified mean and

covariance matrix. We study a 5-dimensional skewed Gaussian distribution (Azzalini and
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Valle [3]) in Section 4.3. Lastly, a mixture model is studied in Section 4.4, and its setting

was also used in Gu et al. [13].

4.1 Trivariate Simulation on [0, 1]3

In this section, we consider a three variables simulation. Samples are taken from

f3(x1, x2, x3) ∝ f1(x1 − 0.3x3 + 0.1)f1(x2 − 0.2x3 + 0.1)e−12.5(x3−0.5)2 , (4.2)

where f1(x) ∝ e−50(y−0.3)2+2e−50(y−0.7)2 is the 1 : 2 mixture ofN (0.3, 0.12) andN (0.7, 0.12).

The joint observation (X1, X2, X3) is truncated to X = [0, 1]3. Note that X1 ⊥ X2|X3.

Then, the correct model has log density of form g(x1, x2, x3) = g1 + g2 + g3 + g1,3 + g2,3.

The true model has edges in (X1, X3), and (X2, X3).

Table 4.1 presents the frequencies of appearance of the two-way interactions. The

numbers in the Interactions row represent the corresponding edges between variables, for

example, (1, 2) represents the interaction between X1 and X2. In the Ground Truth row,

1s denote the presence of a two-way interaction while 0s denote the absence of a two-way

interaction. We notice that Jeon and Lin’s method missed the existing edge between X2

and X3 quite often. Table 4.2 displays the averages and standard deviations of SPE,

SEN, and F1 score for two methods. Both methods have small SPEs. As the sample size

increases, our method can better specify the false edge but also missed the edge between

X2 and X3 in some cases. Overall, our method performs much better in terms of the

sensitivity and F1 score.

We also plot the average of the ROC curves for both methods in Figure 4.1. Over-

all, the average of the ROC curves of our method is above the average of Jeon and

Lin’s method, which indicates that our method has better overall performance in edge
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detection.

NEW OLD
Edge Set (1,2) (1,3) (2,3) (1,2) (1,3) (2,3)

Ground Truth 0 1 1 0 1 1
n=200 43 99 96 45 92 68
n=400 56 99 99 45 98 51
n=600 43 99 96 43 97 63

Table 4.1: The frequencies of selected edges in 100 runs.

NEW OLD
SPE SEN F1 SPE SEN F1

n=200 0.570 0.975 0.898 0.550 0.800 0.771
(0.498) (0.110) (0.120) (0.500) (0.275) (0.216)

n=400 0.440 0.990 0.881 0.550 0.745 0.741
(0.499) (0.070) (0.103) (0.500) (0.271) (0.213)

n=600 0.690 0.885 0.861 0.570 0.800 0.784
(0.465) (0.211) (0.138) (0.498) (0.256) (0.205)

Table 4.2: Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for trivariate simulation.
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Figure 4.1: Averages of the ROC curves from our method (red) and Jeon and Lin’s
method (blue).

4.2 Multivariate Gaussian Distribution

In this section, we consider a 5-dimensional multivariate Gaussian distributionN (µ,Σ)

with µ = (0.5, 0.5, 0.5, 0.5, 0.5)T and

Σ−1 =



62 −20 0 0 −20

−20 62 −10 0 0

0 −10 62 10 0

0 0 10 62 −15

−20 0 0 −15 62


.
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Note that the edge set E = {(1, 2), (1, 5), (2, 3), (3, 4), (4, 5)}, and the correct model has

log density of form g(x1, x2, x3, x4, x5) = g1+g2+g3+g4+g5+g1,2+g1,5+g2,3+g3,4+g4,5.

Table 4.3 presents the frequencies of selected edges in 100 runs. Table 4.4 displays the

averages and standard deviations of SPE, SEN and F1 score for two methods. Based on

these two tables, our method has better SPE, F1 score for all three different sample sizes

and has better SEN for n = 200, 400. In Figure 4.2, the average of the ROC curves of

our method is above the average of Jeon and Lin’s method, which can indicate that our

method has better overall performance in edge detection.

NEW OLD
Edge Set 12 13 14 15 23 24 25 34 35 45 12 13 14 15 23 24 25 34 35 45

Ground Truth 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0 1
n=200 100 14 8 97 49 7 7 53 9 89 98 17 24 91 52 28 23 56 23 74
n=400 100 0 1 100 57 3 4 53 2 97 93 22 25 96 56 23 18 68 20 87
n=600 100 4 2 100 60 1 5 58 4 96 98 23 27 99 70 26 24 72 29 93

Table 4.3: The frequencies of selected edges in 100 runs.

NEW OLD
SPE SEN F1 SPE SEN F1

n=200 0.910 0.776 0.826 0.770 0.742 0.748
(0.176) (0.174) (0.116) (0.202) (0.191) (0.141)

n=400 0.980 0.814 0.879 0.784 0.800 0.789
(0.060) (0.164) (0.101) (0.179) (0.178) (0.134)

n=600 0.968 0.828 0.884 0.742 0.864 0.814
(0.123) (0.158) (0.102) (0.195) (0.161) (0.126)

Table 4.4: Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for multivariate Gaussian simulation.

45



Simulation Studies Chapter 4

Figure 4.2: Averages of the ROC curves from our method (red) and Jeon and Lin’s
method (blue).

4.3 Multivariate Skewed Gaussian Distribution

In this section, we consider the simulation setting when X follows a multivariate

skewed Gaussian distribution with density function (Azzalini and Valle [3])

f(x) = 2ϕp(x;µ,Σ)Φ(α
Tx),

where ϕp(x;µ,Σ) is the p-dimensional normal density with mean µ and covariance ma-

trix Σ, Φ(·) is the CDF of the standard Gaussian distribution, and α is a p-dimensional

vector that controls the skewness of the multivariate Gaussian distribution. When

α = 0, the distribution reduces to the multivariate Gaussian distribution. We set
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µ = (0.5, 0.5, 0.5, 0.5, 0.5)T and

Σ−1 =



62 −30 0 0 −30

−30 62 −15 0 0

0 −15 62 13 0

0 0 13 62 −19

−30 0 0 −19 62


.

Note that the correct model has the same form as the one in Section 4.2 and has the

edge set E = {(1, 2), (1, 5), (2, 3), (3, 4), (4, 5)}.

Table 4.5 presents the frequencies of selected edges in 100 runs. Table 4.6 displays

the averages and standard deviations of SPE, SEN, and F1 score for two methods. From

these two tables, we can see that our method has better SPE, F1 for all three different

sample sizes, and has better SEN for n = 200, 600. In Figure 4.3, the average of the ROC

curves of our method is above the average of Jeon and Lin’s method. Two tables and

Figure 4.3 can indicate that our method has better overall performance in edge detection.

NEW OLD
Edge Set 12 13 14 15 23 24 25 34 35 45 12 13 14 15 23 24 25 34 35 45

Ground Truth 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1
n=200 98 10 9 100 20 30 11 98 32 47 89 26 25 91 41 36 24 79 40 54
n=400 100 11 9 100 24 19 10 99 28 66 94 31 29 98 55 31 29 85 37 77
n=600 100 12 10 100 31 28 15 100 26 75 96 25 25 98 43 34 26 84 33 70

Table 4.5: The frequencies of selected edges in 100 runs.

47



Simulation Studies Chapter 4

NEW OLD
SPE SEN F1 SPE SEN F1

n=200 0.816 0.726 0.760 0.698 0.708 0.690
(0.192) (0.135) (0.099) (0.200) (0.240) (0.177)

n=400 0.846 0.778 0.806 0.686 0.818 0.765
(0.192) (0.133) (0.099) (0.213) (0.168) (0.123)

n=600 0.818 0.812 0.815 0.714 0.782 0.752
(0.205) (0.142) (0.092) (0.228) (0.191) (0.138)

Table 4.6: Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for multivariate skewed Gaussian simulation.

Figure 4.3: Averages of the ROC curves from our method (red) and Jeon and Lin’s
method (blue).
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4.4 Mixture Model Simulation

In this section, we conduct another 5-dimensional simulation from mixture distribu-

tions. We consider (X2, X3, X4)
T ∼ N (µ,Σ) with µ = (0.5, 0.5, 0.5)T and

Σ−1 =


62 −15 0

−15 62 −30

0 −30 62

 ,

X1 = Y1 − 0.4X2 − 0.1, and X5 = Y2 + 0.3X4 − 0.1, where Y1 and Y2 are independently

generated from f1 in Section 4.1. Note that the edge set E = {(1, 2), (2, 3), (3, 4), (4, 5)},

and the correct model has log density of form g(x1, x2, x3, x4, x5) = g1 + g2 + g3 + g4 +

g5 + g1,2 + g2,3 + g3,4 + g4,5.

Table 4.7 presents the frequencies of selected edges in 100 runs. Table 4.8 displays the

averages and standard deviations of SPE, SEN, and F1 score for two methods. It is clear

that our method has better performance in SPE and F1 score and outperforms Jeon and

Lin’s method in SEN when n = 400, 600. In Figure 4.4, the average of the ROC curves

of our method is above the average of Jeon and Lin’s method, which can also indicate

that our method has better overall performance in edge detection.

NEW OLD
Edge Set 12 13 14 15 23 24 25 34 35 45 12 13 14 15 23 24 25 34 35 45

Ground Truth 1 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1
n=200 75 13 14 13 63 5 10 100 11 57 77 20 26 33 67 11 26 98 24 63
n=400 86 9 7 7 87 3 6 100 8 74 84 29 31 43 81 18 38 100 41 74
n=600 98 4 2 3 91 2 2 100 4 73 95 33 32 32 75 16 31 100 38 76

Table 4.7: The frequencies of selected edges in 100 runs.
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NEW OLD
SPE SEN F1 SPE SEN F1

n=200 0.890 0.738 0.768 0.767 0.762 0.718
(0.184) (0.217) (0.150) (0.180) (0.217) (0.167)

n=400 0.933 0.868 0.879 0.667 0.848 0.726
(0.144) (0.179) (0.128) (0.212) (0.177) (0.138)

n=600 0.972 0.905 0.925 0.697 0.865 0.749
(0.089) (0.154) (0.108) (0.194) (0.172) (0.132)

Table 4.8: Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for mixture simulation.

Figure 4.4: Averages of the ROC curves from our method (red) and Jeon and Lin’s
method (blue).

4.5 Discussions

Overall, our method performs well in specificity and F1 score and can sometimes

outperform Jeon and Lin’s method in sensitivity. In general, Jeon and Lin’s method
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selects more false edges and misses true edges quite often. Based on four averages of the

ROC curve plots, our method’s curves are above those curves of Jeon and Lin’s method,

which indicates our method has a better overall performance in edge detection.

51



Chapter 5

Real Data Examples

In this chapter, we consider three different data sets: air pollution data, transcription

factor association, and cellular signaling networks. We plot the estimated graph and

compare the estimated graph structures with those from Jeon and Lin’s method. To

visualize the difference, we also add the symmetric difference plots. We use red and blue

edges to denote those edges selected by our method only and by Jeon and Lin’s method

only.

5.1 Air Pollution and Road Traffic

We first investigate the data set used in Jeon and Lin [21], which studied the rela-

tionship between air pollution on a road, traffic volume, and meteorological variables. It

contains a subset of 500 observations from Alnabru in Oslo, Norway, between October

2001 and August 2003. This data set can be found in gss package as a data frame NO2,

which contains six variables: no2 (the concentration of N02), cars (the number of cars

per hour), temp (temperature 2 meter above ground), wind (wind speed), temp2 (tem-

perature difference between 25 and 2 meters above ground), and wind2 (wind direction).
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Figure 5.1 shows the estimated graph from our method and Jeon and Lin’s method and

the symmetric difference between them. These two methods both select edges between

no2 - cars, cars - temp, cars - temp2, cars - wind, temp - wind2.

●

●●

●

● ●

no2

carstemp

wind

temp2
wind2

Our Method

●

●●

●

● ●

no2

carstemp

wind

temp2
wind2

Jeon and Lin

●

●●

●

● ●

no2

carstemp

wind

temp2
wind2

Our Method vs Jeon and Lin

Figure 5.1: The estimated graph for air pollution data and symmetric difference plot
between two methods. Red and blue edges are selected by our method only and by
Jeon and Lin’s method only.

In the symmetric difference plot, red edges are selected by our method only. Our

method gets a denser graph. Jeon and Lin’s method misses some connections related to

temp2, no2 and temp. The additional edges detected by our method may indicate that

air pollution has a more complicated relationship with traffic volume and meteorological

variables.
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5.2 Transcription Factor Association

Transcription factors are significant in the research of gene expression. Ouyang et al.

[31] studied 12 transcription factors on 18936 genes and this data set can be download

from https://www.pnas.org/doi/10.1073/pnas.0904863106. They found that a re-

markably high proportion of variation in gene expression (65%) can be explained by

the binding signals of these 12 transcription factors. In their paper, they identified two

groups of transcription factors. The first group (E2f1, Myc, Mycn, and Zfx) played the

role of activators in general. The second group (Klf4, Oct4, Nanog, Sox2, Smad1, Stat3,

Tcfcp2l1, and Esrrb) might act as either activators or repressors depending on the target.

Their results showed that these two groups might cooperate tightly to activate genes.

Figure 5.2 shows the estimated graph from our method and Jeon and Lin’s method

and the symmetric difference between them. We notice that Jeon and Lin’s method finds

two connections from two different groups but misses the relationship within either the

first or second group. Our method identifies connections within both the first group and

the second group. Also, connections between two groups are detected by our method.

Overall, our method finds interrelationships in two groups and their connections, which

may provide new interpretations in the study of gene expression.

5.3 Cellular Signaling Networks

Studying causal signaling pathways is an important task in biological field. Mea-

surements of 11 phosphorylated protein and phospholipid components in 7466 individual

primary human immune system cells have been studied by Sachs et al. [34] and they used

Bayesian network computational methods to report signaling relationships. This data set

is included in the gss package named Sachs where measured molecules are praf, pmek,
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Figure 5.2: The estimated graph for transcription data and symmetric difference plot
between two methods. Red and blue edges are selected by our method only and by
Jeon and Lin’s method only.

plcg, pip2, pip3, p44.42, pakts473, pka, pkc, p38, and pjnk. We use the undirected

graph in Figure 5.3 (left) to represent the causal relationships found by Sachs et al. [34]

and plot estimated graphs using our method (middle) and Jeon and Lin’s method (right)

for comparison.

Compared to the graph in Sachs et al. [34], our method and Jeon and Lin’s method

only select a subset of edges, including two common edges pip2 - plag and p44.42 -

pakts473. As shown in Sachs et al. [34], there are some intermediate molecules to help

build connections. Since some of them are not measured in this data set, it is possible that

our method and Jeon and Lin’s method miss those connections. For all edges identified

by our method, only edge plcg - pakts473 is not in Sachs et al. [34]’s graph, which can

indicate our method has good accuracy in edge detection. On the contrary, Jeon and
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Figure 5.3: The estimated graph for cellular signaling data. The left one is from
Sachs et al. [34]. The middle and right plots are from our method and Jeon and Lin’s
method.

Lin’s method identifies some edges that are not reflected in Sachs et al. [34], for example,

pip3 - pkc, pakts473 - p38, and praf - p38. Edges detected by our method may

show that some molecules have direct connections instead of indirect influences found

in Sachs et al. [34], which may provide new directions for researchers to consider causal

signaling relationships.
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Chapter 6

Neighborhood Selection Through

Conditional Density Estimation

6.1 Neighborhood Selection with L1 Penalty

In this section, we introduce our neighborhood selection method for edge detec-

tion. Let X = (X1, · · · , Xp) and X\{i1,··· ,ik} be the sub-vector of X without ele-

ments {i1, · · · , ik}. Denote Xj be the domain of Xj, and X = X1 × · · · × Xp. We

are interested in estimating the conditional density f(xα|x\{α}) for αth variable given

x\{α} = (x1, · · · , xα−1, xα+1, · · · , xp), and consider the logistic density transformation of

f as f(xα|x\{α}) = eg(x)/
∫
Xα
eg(x)dxα. Denote the model space for g as

Mα = {1} ⊕

{
p⊕

j=1

H(j)

}
⊕

{⊕
k ̸=α

[H(α) ⊗H(k)]

}
. (6.1)

We further decompose H(j) as H(j) = H0
(j) ⊕ H1

(j), where H0
(j) is a finite dimensional

space containing functions that are not subject to penalty. A function g ∈ Mα can be
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decomposed as follows:

g(x) = ς +

p∑
j=1

gj(xj) +
∑
k ̸=α

gαk(xα, xk), (6.2)

where each functional component in (6.2) belongs to the corresponding subspace in (6.1).

In general, we remove the constant ς for identifiability.

Note that model (6.2) contains many parametric models as special cases. Specifically,

the Gaussian graphical model is a special case with Xj = R, gj(xj) = βjxj − x2j/2 for

j = α and 0 otherwise, and gαk(xα, xk) = βαkxαxk for some constants βj and βαk. The

Ising model for binary data is a special case with Xj = {0, 1}, gj(xj) = xj for j = α and

0 otherwise, and gαk(xα, xk) = βαkxαxk. The Poisson graphical model for discrete data

is a special case with Xj = {0, 1, 2, · · · }, gj(xj) = xj − log(xj!) for j = α and 0 otherwise,

and gαk(xα, xk) = βαkxαxk. The exponential family model proposed by Suggala et al.

[37],

logf(xα|x\{α}) ∝

βαBα(xα) +
∑

{α,k}∈E

βαkBα(xα)Bk(xk) + Cα(xα)

 , (6.3)

is also a special case with gj(xj) = βjBj(xj) + Cj(xj) for j = α and 0 otherwise, and

gαk(xα, xk) = βαkBα(xα)Bk(xk). Note that many existing exponential family models

including (6.3) assume a multiplicative interaction while model (6.2) does not assume

any specific interaction. Therefore, the proposed neighborhood selection approach is

more general.

Denote Xi = (Xi,1, · · · , Xi,p) and xi = (xi,1, · · · , xi,p) for i = 1, · · · , n as n i.i.d. ran-

dom vectors and their realizations. Let x\{α} = (x1, · · · , xα−1, xα+1, · · · , xp), xi,\{α} =

(xi,1, · · · , xi,α−1, xi,α+1, · · · , xi,p) be the ith realization of x\{α} and xα
i = (xi,\{α}, xα) =

(xi,1, · · · , xi,α−1, xα, xi,α+1, · · · , xi,p), where xα is still a variable. We estimate g by mini-
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mizing the following profile penalized pseudo-likelihood:

Lα +
λ1
2

p∑
j=1

θ−1
j ||Pjgj||2 + τ1

∑
k ̸=α

wαk||gαk||, (6.4)

where Lα = log{n−1
n∑

i=1

e−g(xi)} + n−1
n∑

i=1

∫
Xα
g(xα

i )ρ(x
α
i )dxα, ρ(·) is a known density of

Xα conditional on X\{α} = xi,\{α}, Pj is the projection operator onto H1
(j), λ1, τ1, and

θj’s are tuning parameters, and 0 ≤ wαk < ∞ are pre-specified weights. We consider

the pseudo-likelihood since the integral can be computed easily with a proper choice of ρ

(Gu [12]). Lα measures the goodness-of-fit. The second element in (6.4) is the roughness

L2 penalty on main effects. The third element in (6.4) is the L1 penalty for selecting

the neighborhood nbG(α). We allow different weights in the L1 penalty for flexibility.

Gu [12] applied the L2 penalty to both main effects and interactions for the purpose of

density estimation. Jeon and Lin [21] applied the L1 penalty to both main effects and

interactions for edge selection. Consequently, it selects both nodes and edges. In practice,

the nodes are usually given and the goal is to detect edges. Therefore, we consider the

smoothness promoting L2 penalty to main effects and the the sparsity promoting L1

penalty to interactions. Note that Jeon and Lin [21]’s approach is a global method that

estimates the joint density, thus is computationally intensive and can only handle very

small dimensions.

The resulting estimate for the conditional density is f̂(xα|x\{α}) ∝ eĝ(x)ρ(x) where

ĝ is the minimizer of (6.4). Notice that the minimization problem (6.4) involves p − 1

two-way interaction terms. Solving (6.4) for all α = 1, · · · , p leads to two estimates for

each of the two-way interaction, denoted as η̂ακ and η̂κα for α, κ = 1, · · · , p and α ̸= κ.

To deal with the possible discrepancy, there are two commonly used rules: AND-rule

({α, κ} ∈ E iff η̂ακ ̸= 0 and η̂κα ̸= 0) or OR-rule ({α, κ} ∈ E iff η̂ακ ̸= 0 or η̂κα ̸= 0) [18].

As discussed in Section 4.2 in [5], when the αth and kth nodes are of the same type (same
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marginal distribution) or they are both non-Gaussian, there is no clear reason to prefer

one edge estimate over the other. In our simulations, all nodes are of the same type.

Also, there is no node having obvious normal marginal distribution in real applications.

So, either AND-rule or OR-rule can be used. Specifically, we adopt the AND-rule to

control false positives. for α, k = 1, · · · , p and α ̸= k. We adopt the commonly used

AND-rule ({α, k} ∈ E iff ĝαk ̸= 0 and ĝkα ̸= 0) or OR-rule ({α, k} ∈ E iff ĝαk ̸= 0 or

ĝkα ̸= 0) (Hastie et al. [18]).

Similar to Lin and Zhang [27], instead of (6.4), we will minimize the following equiv-

alent but more convenient form

Lα +
λ1
2

( p∑
j=1

θ−1
j ||Pjgj||2 +

∑
k ̸=α

wαkθ
−1
αk ||gαk||

2
)
+ λ2

∑
k ̸=α

wαkθαk, (6.5)

subject to θαk ≥ 0 for k = 1, · · · , p and k ̸= α. The proof of equivalence is the same as

Lemma 2.1 and is omitted.

6.2 Computation and Algorithm

In this section, we derive the algorithm to solve (6.5). Note that gj ∈ H(j) =

H0
(j) ⊕ H1

(j) and gαk ∈ H(αk) = H(α) ⊗ H(k). Denote ϕj1, · · · , ϕjmj
as basis functions

of H0
(j), and R

1
j , Rj, and Rαk as reproducing kernels of H1

(j), H(j), and H(αk) respectively.

Since in general the minimization problem (6.5) does not have a solution in a finite di-

mensional space, as in Gu [12], we approximate the solution by a subset of representers.

Specifically, let {x̃u = (x̃u,1, · · · , x̃u,p), u = 1, · · · , q} be a subset of all observations

{xi, i = 1, · · · , n}. We collect all basis functions ϕjk for j = 1, · · · , p and k = 1, · · · ,mj

and denote them as ϕ = (ϕ1, · · · , ϕm)
T , a vector of functions of x with dimension m =∑p

j=1mj. Denote θ1 = (θ1, · · · , θp)T and θ2 = (θα1, · · · , θα(α−1), θα(α+1), · · · , θαp)T . Let
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ξ1ju(xj) = R1
j (x̃u,j, xj), ξθ1,u(x) =

p∑
j=1

θjξ1ju(xj), ξαku(xα, xk) = Rαk((x̃u,α, x̃u,k), (xα, xk)),

and ξθ2,u(x) =
p∑

k=1,k ̸=α

w−1
αk θαkξαku(xα, xk) for u = 1, · · · , q, k = 1, · · · , p, and k ̸= α. Let

ξθ1(x) = (ξθ1,1, · · · , ξθ1,q)T , ξθ2(x) = (ξθ2,1, · · · , ξθ2,q)T , and ξ(x) = ξθ1(x)+ξθ2(x). The

approximate solution can be represented as

ĝ(x) =
m∑
v=1

dvϕv(x) +

q∑
u=1

cu

{
p∑

j=1

θjξ1ju(xj) +

p∑
k=1,k ̸=α

w−1
αk θαkξαku(xα, xk)

}

= ϕT (x)d+ ξT (x)c, (6.6)

where c = (c1, · · · , cq)T and d = (d1, · · · , dm)T are coefficients. Plugging ĝ(xi) in (6.6)

into (6.5), we need to compute c, d, and θ2 as minimizers of

log

{
1

n

n∑
i=1

e−ϕ
T

i d−ξT

i c

}
+ bTϕd+ bTξc+

λ1
2
cTQc+ λ2w

Tθ2 (6.7)

subject to θ2 ≥ 0 where ϕi = ϕ(xi), ξi = ξ(xi), bϕ = n−1
n∑

i=1

∫
Xα
ϕ(xα

i )ρ(x
α
i )dxα, bξ =

n−1
n∑

i=1

∫
Xα
ξ(xα

i )ρ(x
α
i )dxα, Q1 =

{ p∑
j=1

θjR
1
j (x̃u,j, x̃v,j)

}q

u,v=1
, Qαk =

{
Rαk((x̃u,α, x̃u,k),

(x̃v,α, x̃v,k))
}q

u,v=1
, Q2 =

p∑
k=1,k ̸=α

w−1
αk θαkQαk, and Q = Q1 +Q2.

In the following we propose a computational procedure that solves (6.7) iteratively.

We first fix θ2 and update c and d using the Newton-Raphson algorithm. With fixed

θ2, dropping the last term that does not depend on c and d, we update c and d by

minimizing

A1(d, c) = log

{
1

n

n∑
i=1

e−ϕ
T

i d−ξT

i c

}
+ bTϕd+ bTξc+

λ1
2
cTQc. (6.8)

Note that (6.8) has the same form as (10.31) in Gu [12]. Therefore, we can solve

(6.8) using the Newton-Raphson procedure with λ1 and θ1 selected by the approximate
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cross-validation (ACV) method (Gu [12]).

With fixed c and d, we update θ2 using the quadratic programming method. Let

ψ1j(x) =
q∑

u=1

cuξ1ju(xj) for j = 1, · · · , p, ψ1(x) = (ψ11, · · · , ψ1p)
T , ψ2k(x) =

w−1
αk

q∑
u=1

cuξαku(xα, xk) for k = 1, · · · , p and k ̸= α, andψ2(x) = (ψ21, · · · , ψ2(α−1), ψ2(α+1),

· · · , ψ2p)
T . We rewrite ĝ in (6.6) as ĝ(x) = ϕT (x)d + ψT

1 (x)θ1 + ψ
T
2 (x)θ2. Plugging

ĝ(xi) into (6.5) and keeping terms involving θ2 only, (6.7) reduces to

log

{
1

n

n∑
i=1

e−ϕ
T

i d−ψT

1iθ1−ψ
T

2iθ2

}
+ bTψ2

θ2 +
λ1
2
cTQ2c+ λ2w

Tθ2 (6.9)

subject to θ2 ≥ 0, whereψ1i = ψ1(xi), ψ2i = ψ2(xi), and bψ2
= 1

n

n∑
i=1

∫
Xα
ψ2(x

α
i )ρ(x

α
i )dxα.

Furthermore, the constraint minimization problem (6.9) is equivalent to

A2(θ2) = log

{
1

n

n∑
i=1

e−ϕ
T

i d−ψT

1iθ1−ψ
T

2iθ2

}
+ bTψ2

θ2 +
λ1
2
cTQ2c (6.10)

subject to θ2 ≥ 0 and wTθ2 ≤M for some constantM , whereM controls the sparsity in

θ2. Note that A2(θ2) is a convex function of θ2 (The proof is the same as (2.12)). We solve

(6.10) iteratively using the quadratic programming. Denote the current estimate of θ2 as

θ̃2 and g̃(x) = ϕ
T (x)d+ψT

1 (x)θ1+ψ
T
2 (x)θ̃2. Define µg̃(h) =

n∑
i=1

e−g̃(xi)h(xi)/
n∑

i=1

e−g̃(xi),

µg̃(h1h
T
2 ) =

n∑
i=1

e−g̃(xi)
(
h1(xi)h

T
2 (xi)

)
/

n∑
i=1

e−g̃(xi) for any functions h,h1,h2. We update

θ2 by minimizing the following second order Taylor approximation of A2(θ2) (some con-

stants independent of θ2 have been removed):

1

2
θT2HA(θ̃2)θ2 + θ

T
2

{
GA(θ̃2)−HA(θ̃2)θ̃2

}
(6.11)

subject to θ2 ≥ 0 andwTθ2 ≤M for some constantM , whereGA(θ̃2) = −µg̃(ψ2)+bψ2
+

λ1q2/2 is the gradient, HA(θ̃2) = Vg̃(ψ2,ψ
T
2 ) is the Hessian, Vg̃(ψ2,ψ

T
2 ) = µg̃(ψ2ψ

T
2 ) −
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µg̃(ψ2)µg̃(ψ
T
2 ), q2 = (w−1

α1 c
TQα1c, · · · , w−1

α(α−1)c
TQα(α−1)c, w

−1
α(α+1)c

TQα(α+1)c, · · · ,

w−1
αp c

TQαpc)
T , andQαk =

{
Rαk((x̃u,α, x̃u,k), (x̃v,α, x̃v,k))

}q

u,v=1
for k = 1, · · · , p and k ̸= α.

We apply the quadratic programming to solve (6.11) and k-fold cross-validation or

BIC method to select M . The iterative procedure for updating θ2 may be stopped after

a fixed number of steps or until convergence. We summarize our complete algorithm as

follows.

Algorithm for the neighborhood selection approach:

1. Initialize: θ2 = θ
0
2.

2. Cycle until convergence: Update c, d and θ2 sequentially:

(a) Fix θ2 at the current estimate, update c and d by solving (6.8) with tuning

parameters λ1 and θ1 selected by the ACV method.

(b) Fix d, c, λ1 and θ1 at the current estimates, update θ2 by applying quadratic

programming to iteratively solve the quadratic approximations (6.11) subject

to θ2 ≥ 0 and wTθ2 ≤ M where the tuning parameter M is selected by the

k-fold cross-validation or the BIC method.

6.3 Algorithm Implementation

In this section, we provide details about the implementation of the proposed algorithm

using existing R packages. Specifically, we implement Step 2.(a) in the algorithm using a

modification of the sscden1 function in the gss package (Gu et al. [17]) and Step 2.(b)

using the R function solve.QP in the quadprog package (Turlach and Weingessel [38]).
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6.3.1 Implementation of the Newton-Raphson Method

Given current value of θ2, we update c and d by minimizing (6.8) using the Newton-

Raphson method. We implement by modifying the function sscden1 in the gss package

since (6.8) has the same form as (10.31) in Gu [12] with different penalties. By definition,

H(αk) = H(α) ⊗H(k) = (H0
(α) ⊕H1

(α))⊗ (H0
(k) ⊕H1

(k)) = (H0
(α) ⊗H0

(k))⊕ (H0
(α) ⊗H1

(k))⊕

(H1
(α)⊗H0

(k))⊕ (H1
(α)⊗H1

(k)) = H(0)
(αk)⊕H(1)

(αk)⊕H(2)
(αk)⊕H(3)

(αk) where H
(0)
(αk) = H0

(α)⊗H0
(k),

H(1)
(αk) = H0

(α)⊗H1
(k), H

(2)
(αk) = H1

(α)⊗H0
(k), andH(3)

(αk) = H1
(α)⊗H1

(k). For density estimation,

the penalized likelihood method in Gu [12] does not penalize functions in the parametric

component space H0
(αk) and has different smoothing parameters for components in the

nonparametric component spaces H(1)
(αk), H

(2)
(αk), and H(3)

(αk). Our goal is edge detection

by detecting non-zero interactions. Therefore, we penalize the combined interaction

gαk ∈ H(αk) as a whole with a smoothing parameter θαk for k = 1, · · · , p and k ̸= α. The

interaction gαk collects parametric and nonparametric interaction components in H(0)
(αk),

H(1)
(αk), H

(2)
(αk), and H(3)

(αk). Note that θ2 = (θα1, · · · , θα(α−1), θα(α+1), · · · , θαp)T is fixed at

this step. We modified the function sscden1 to solve (6.8) with smoothing parameters

λ1 and θ1 estimated by the approximated cross-validation method.

6.3.2 Implementation of Quadratic Programming

With c and d being fixed at their current values, we need to update θ2 iteratively by

applying the quadratic programming algorithm to minimize

1

2
θT2HA(θ̃2)θ2 + θ

T
2

{
GA(θ̃2)−HA(θ̃2)θ̃2

}
(6.12)

subject to θαk ≥ 0 for k ̸= α and wTθ2 ≤M for someM , whereM is a tuning parameter.

We use the R function solve.QP to solve (6.12). We estimate the tuning parameter M
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by minimizing a k-fold cross-validation or the BIC score defined as follows. Let I1, · · · , Ik

be k randomly partitioned subsamples of the original data, nj = |Ij|, and n(−j) = n−nj.

Denote g
(−j)
M as the estimate without observations in the subset Ij which minimizes the

following function with respect to θ2:

log

 1

n(−j)

∑
i/∈Ij

e−g(xα
i )

+
1

n(−j)

∑
i/∈Ij

∫
Xα

g(xα
i )ρ(x

α
i )dxα + λ1

∑
k ̸=α

wαkθ
−1
αk ||gαk||

2 (6.13)

subject to θαk ≥ 0 for k ̸= α and wTθ2 ≤M . The k-fold cross-validation score is defined

as

CV(M) = log

 1

n

k∑
j=1

∑
i∈Ij

e−g
(−j)
M (xα

i )

+
1

n

k∑
j=1

∑
i∈Ij

∫
Xα

g
(−j)
M (xα

i )ρ(x
α
i )dxα. (6.14)

The BIC score is defined as

BIC(M) = log

{
1

n

n∑
i=1

e−gM (xα
i )

}
+

1

n

n∑
i=1

∫
Xα

gM(xα
i )ρ(x

α
i )dxα + log(nkn), (6.15)

where gM expresses the dependence of the estimate onM explicitly and kn is the number

of non-zero elements in the estimate of θ2. We applied the k-fold cross-validation method

in all simulations with k = 5 and the BIC method in real data applications to get sparser

graphs.

6.3.3 Initial Values and Convergence Criterion

To get a good initial value θ02, we first estimate the conditional density f(xα|x\{α}) ∝

eg(x)ρ(x) with τ1
∑
k ̸=α

wαk||gαk|| being replaced by (λ1/2)
∑
k ̸=α

θ−1
αk ||gαk||2. We modified the

sscden function in the gss package to estimate the conditional density and denote the

estimate of ηαk as η̌αk. Since θαk = 0 in θ2 if and only if ηαk = 0, the magnitude of η̌αk
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provides one way to initialize θαk. Specifically, we set θ0αk = {
∑n

i=1 η̌
2
αk(xi)}1/2.

The convergence criterion in Step 2 in the algorithm is ||θ2− θ̃2||2/(||θ̃2||2+10−6) ≤ ε

or the number of zeros in θ2 stops increasing for fixed number of steps, where θ2 and θ̃2

are the updated and previous estimates, respectively, || · ||2 is the Euclidean norm, and ε

a threshold. We set ε = 0.001 in simulation and real data examples.
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Chapter 7

Theoretical Analysis

In this chapter, we study the theoretical properties of the proposed method. Following

similar steps and under same regularity conditions as Gu [12], we derive convergence rate

for the conditional density estimate ĝ subject to both L1 and L2 penalties. In addition,

we derive the convergence rates for interactions in the SS ANOVA decomposition, which

is new and important for edge detection.

7.1 Notations

Let f0(xα|x\{α}) = eg0(x)ρ(x) be the true conditional density to be estimated. Let

g = g(1) + g(2) =
p∑

j=1

gj +
∑
k ̸=α

gαk, and ĝ be the minimizer of (6.4). Define V ∗(h1, h2) =∫
X\{α}

f\{α}(x\{α})
∫
Xα
h1(x)h2(x)ρ(x)dxαdx\{α}, J1(h1, h2) =

p∑
j=1

θ−1
j

∫
Xj
h1h2dxj,

J2(h1, h2) =
∑
k ̸=α

wαk(
∫
Xα

∫
Xk

|h1h2|dxαdxk)1/2, and J∗
2 (h1, h2) =

∑
k ̸=α

θ−1
αk

∫
Xα

∫
Xk
h1h2dxαdxk

for any functions h1, h2, where f\{α}(x\{α}) is the density of X\{α} on X\{α} = X1× · · ·×

Xα−1 × Xα+1 × · · · × Xp. We denote ||h|| = (
∫
Xj
h2dxj)

1/2 as the L2 norm for any

h ∈ H(j). Then, we have V ∗(g) = V ∗(g, g), V1(g
(1)) = V ∗(g(1)), V2(g

(2)) = [V ∗(g(2))]1/2,
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J1(g) = J1(g, g) =
p∑

j=1

θ−1
j ||Pjgj||2, J2(g) = J2(g, g) =

∑
k ̸=α

wαk||gαk||, and J∗
2 (g) =

J∗
2 (g, g) =

∑
k ̸=α

θ−1
αk ||gαk||2.

Without loss of generality, we assume wαk = 1 in the proof, simulations and real

applications. Furthermore, we let V (g) = V1(g
(1)) + V2(g

(2)), J = J1 + J2, and J
∗(g) =

J1(g) + J∗
2 (g). Notations Op, op, ≤p and

a.s.→ are defined the same as Section 3.1.

7.2 Convergence Rates

We start this section by introducing conditions and lemmas that are needed for the-

oretical analysis.

Condition 7.1 V ∗ is completely continuous with respect to J∗.

From Theorem 3.1 of Weinberger [42], there exists eigenvalues γv of J∗ with respect

to V ∗ and the associated eigenfunctions ζv such that

V ∗(ζv, ζu) = δv,u, J∗(ζv, ζu) = γvδv,u,

where 0 ≤ γv ↑ ∞ and δv,u is the Kronecker delta. Functions satisfying J∗(g) <∞ can be

expressed as a Fourier series expansion g =
∑
v

avζv, where av = V ∗(g, ζv) are the Fourier

coefficients.

Condition 7.2 For v sufficiently large and some φ > 0, the eigenvalues γv of J∗ with

respect to V ∗ satisfy γv > φvr where r > 1.

Consider the quadratic functional

1

n

n∑
i=1

−e−g0(Xi)g(Xi) +
1

n

n∑
i=1

∫
Xα

g(xα
i )ρ(x

α
i )dxα +

1

2
V ∗(g − g0) +

λ1
2
J∗(g), (7.1)
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and denote the minimizer of (7.1) as g̃. Plugging the Fourier series expansions g =
∑
v

avζv

and g0 =
∑
v

av,0ζv into (7.1), g̃ has Fourier coefficients ãv = (κv + av,0)/(1 + λ1γv),

where κv = n−1
n∑

i=1

{e−g0(Xi)ζv(Xi) −
∫
Xα
ζv(x)ρ(x)dxα}. It is not difficult to verify that

E(κv) = 0 and E(κ2v) ≤ n−1
∫
X\{α}

f\{α}(x\{α})
∫
Xα
ζ2v (x)e

−g0(x)ρ(x)dxαdx\{α}.

Condition 7.3 For some c1 <∞, e−g0 < c1.

Under Condition 7.3, noting that V ∗(ζv) =
∫
X\{α}

f\{α}(x\{α})
∫
Xα
ζ2v (x)ρ(x)dxαdx\{α} =

1 by the definition of V ∗ and ζv, we have E(κ2v) ≤ n−1c1.

Lemma 7.1 Assume J∗(g0) <∞. Under Conditions 7.1−7.3, as λ1 → 0 and n→ ∞,

(V ∗ + λ1J
∗)(g̃ − g0) = Op(n

−1λ
−1/r
1 + λ1).

Proof: By the Fourier series expansions of g̃ and g0, we have

V ∗(g̃ − g0) =
∑
v

(ãv − av,0)
2 =

∑
v

κ2v − 2κvλ1γvav,0 + λ21γ
2
va

2
v,0

(1 + λ1γv)2
,

λ1J
∗(g̃ − g0) =

∑
v

λ1γv(ãv − av,0)
2 =

∑
v

λ1γv
κ2v − 2κvλ1γvav,0 + λ21γ

2
va

2
v,0

(1 + λ1γv)2
.

Since E(κv) = 0 and E(κ2v) ≤ c1/n, we have

E[V ∗(g̃ − g0)] ≤
c1
n

∑
v

1

(1 + λ1γv)2
+ λ1

∑
v

λ1γv
(1 + λ1γv)2

γva
2
v,0,

E[λ1J
∗(g̃ − g0)] ≤

c1
n

∑
v

λ1γv
(1 + λ1γv)2

+ λ1
∑
v

(λ1γv)
2

(1 + λ1γv)2
γva

2
v,0. (7.2)

Following similar arguments in the proof of Lemma 9.1 in Gu [12], we have

∑
v

λ1γv
(1 + λ1γv)2

= O(λ
−1/r
1 ),

∑
v

1

(1 + λ1γv)2
= O(λ

−1/r
1 ),

∑
v

1

1 + λ1γv
= O(λ

−1/r
1 ).
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The lemma follows from (7.2) and the fact that
∑

v γva
2
v,0 = J∗(g0) <∞. □

As in Gu [12], when g0 is “supersmooth”, in the sense that
∑

v γ
l
va

2
v,0 <∞ for some 1 <

l ≤ 2 which is assumed in Theorem 7.1, the rates can be improved to O(n−1λ
−1/r
1 + λl1).

Now we want to bound the approximation error ĝ − g̃. Define

Ah1,h2(τ) =
1

n

n∑
i=1

e−(h1+τh2)(Xi) +
1

n

n∑
i=1

∫
Xα

(h1 + τh2)ρ(x
α
i )dxα +

λ1
2
J∗(h1 + τh2)

+ λ2
∑
k ̸=α

θαk,

Bh1,h2(τ) =
1

n

n∑
i=1

−e−g0(Xi)(h1 + τh2)(Xi) +
1

n

n∑
i=1

∫
Xα

(h1 + τh2)ρ(x
α
i )dxα

+
1

2
V ∗(h1 + τh2 − g0) +

λ1
2
J∗(h1 + τh2).

Taking derivative of Ah1,h2 and Bh1,h2 with respect to τ evaluated at τ = 0, we obtain

Ȧh1,h2(0) =− 1

n

n∑
i=1

e−h1(Xi)h2(Xi) +
1

n

n∑
i=1

∫
Xα

h2ρ(x
α
i )dxα + λ1J

∗(h1, h2), (7.3)

Ḃh1,h2(0) =− 1

n

n∑
i=1

e−g0(Xi)h2(Xi) +
1

n

n∑
i=1

∫
Xα

h2ρ(x
α
i )dxα + V ∗(h1 − g0, h2)

+ λ1J
∗(h1, h2). (7.4)

Setting h1 = ĝ and h2 = ĝ − g̃ in (7.3), we have

− 1

n

n∑
i=1

e−ĝ(Xi)(ĝ − g̃)(Xi) +
1

n

n∑
i=1

∫
Xα

(ĝ − g̃)ρ(xα
i )dxα + λ1J

∗(ĝ, ĝ − g̃) = 0. (7.5)
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Setting h1 = g̃ and h2 = ĝ − g̃ in (7.4), we have

− 1

n

n∑
i=1

e−g0(Xi)(ĝ − g̃)(Xi) +
1

n

n∑
i=1

∫
Xα

(ĝ − g̃)ρ(xα
i )dxα + V ∗(g̃ − g0, ĝ − g̃)

+ λ1J
∗(g̃, ĝ − g̃) = 0. (7.6)

Subtracting (7.6) from (7.5), we obtain

λ1J
∗(ĝ − g̃)− 1

n

n∑
i=1

{
e−ĝ(Xi) − e−g̃(Xi)

}
(ĝ − g̃)(Xi)

=
1

n

n∑
i=1

{
e−g̃(Xi) − e−g0(Xi)

}
(ĝ − g̃)(Xi) + V ∗(ĝ − g̃, g̃ − g0). (7.7)

Condition 7.4 For g in a convex set B0 around g0 containing ĝ and g̃, c2 < eg0−g < c3

holds uniformly for some 0 < c2 < c3 <∞.

Condition 7.5 For any u, v = 1, 2, · · · ,
∫
X\{α}

f\{α}(x\{α})
∫
Xα
ζ2vζ

2
ue

−g0ρ(x)dxαdx\{α} <

c4 for some c4 <∞.

Applying the mean value theorem, we have e−ĝ(Xi) − e−g̃(Xi) = −e−(g̃+τi(ĝ−g̃))(Xi)(ĝ −

g̃)(Xi) where τi ∈ [0, 1]. Since ĝ and g̃ belongs to B0 which is a convex set around g0,

under Condition 7.4, there exists a b
(i)
0 ∈ (c2, c3) such that −e−(g̃+τi(ĝ−g̃))(Xi)(ĝ− g̃)(Xi) =

−b(i)0 e
−g0(Xi)(ĝ − g̃)(Xi). Then

− 1

n

n∑
i=1

{
e−ĝ(Xi) − e−g̃(Xi)

}
(ĝ − g̃)(Xi) =

1

n

n∑
i=1

b
(i)
0 e

−g0(Xi)(ĝ − g̃)2(Xi)

≥c2
n

n∑
i=1

e−g0(Xi)(ĝ − g̃)2(Xi). (7.8)
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By the same argument, there exists a c
(i)
0 ∈ (c2, c3) such that

1

n

n∑
i=1

{
e−g̃(Xi) − e−g0(Xi)

}
(ĝ − g̃)(Xi) = − 1

n

n∑
i=1

c
(i)
0 e

−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi).

(7.9)

Lemma 7.2 Under Conditions 7.1, 7.2 and 7.5, suppose h1, h2 are functions satisfying

J∗(h1) <∞, J∗(h2) <∞, as λ1 → 0 and nλ
2/r
1 → ∞, one has

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)− V ∗(h1, h2)
∣∣∣ = op

(
{(V ∗ + λ1J

∗)(h1)(V
∗ + λ1J

∗)(h2)}1/2
)
.

(7.10)

Proof: Since J∗(h1) <∞, J∗(h2) <∞, then h1 and h2 can be expressed as Fourier series

h1 =
∑

v h1,vζv and h2 =
∑

v h2,vζv. Let

Ui = ζv(Xi)ζu(Xi)e
−g0(Xi) −

∫
X\{α}

f\{α}(x\{α})

∫
Xα

ζv(x)ζu(x)ρ(x)dxαdx\{α}.

Note that Ui are i.i.d. random variables with E(Ui) = 0. Then under Condition 7.5, we

have

E

(
1

n

n∑
i=1

Ui

)2

=
1

n
Var

(
ζv(X1)ζu(X1)e

−g0(X1)
)
<
c4
n
.
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Furthermore,

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)− V ∗(h1, h2)
∣∣∣

=
∣∣∣∑

v

∑
u

h1,vh2,u
1

n

n∑
i=1

Ui

∣∣∣
≤

∑
v

∑
u

1

1 + λ1γv

1

1 + λ1γu

(
1

n

n∑
i=1

Ui

)2


1/2{∑
v

∑
u

(1 + λ1γv)(1 + λ1γu)h
2
1,vh

2
2,u

}1/2

=Op

(
n−1/2λ

−1/r
1 {(V ∗ + λ1J

∗)(h1)(V
∗ + λ1J

∗)(h2)}1/2
)

=op

(
{(V ∗ + λ1J

∗)(h1)(V
∗ + λ1J

∗)(h2)}1/2
)
,

where the second equality holds because of
∑
v

1
1+λ1γv

= O(λ
−1/r
1 ) and the strong law of

large numbers. □

Lemma 7.3 Under Conditions 7.1, 7.2 and 7.5, suppose h1 and h2 are functions satis-

fying V ∗(h1) <∞, V ∗(h2) <∞, as λ1 → 0 and nλ
2/r
1 → ∞, one has

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)−
1

n

n∑
i=1

c
(i)
0 e

−g0(Xi)h1(Xi)h2(Xi)
∣∣∣

≤p c0{(V ∗ + λ1J
∗)(h1)(V

∗ + λ1J
∗)(h2)}1/2, (7.11)

where c0 = max{|c2 − 1|, |c3 − 1|}.
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Proof: Note that for each Xi,

E|e−g0(Xi)h1(Xi)h2(Xi)|

=

∫
X\{α}

f\{α}(x\{α})

∫
Xα

|h1(x)h2(x)|ρ(x)dx

≤
{( ∫

X\{α}

f\{α}(x\{α})

∫
Xα

h21(x)ρ(x)dx
)( ∫

X\{α}

f\{α}(x\{α})

∫
Xα

h22(x)ρ(x)dx
)}1/2

={V ∗(h1)V
∗(h2)}1/2

≤{(V ∗ + λ1J
∗)(h1)(V

∗ + λ1J
∗)(h2)}1/2,

where the first inequality follows Cauchy-Schwartz inequality. Since Xi’s are indepen-

dent, we have |e−g0(Xi)h1(Xi)h2(Xi)|’s are i.i.d. random variables with mean

E|e−g0(Xi)h1(Xi)h2(Xi)| ≤
{
V ∗(h1)V

∗(h2)
}1/2

< ∞. Therefore, by the strong law of

large numbers, 1
n

n∑
i=1

|e−g0(Xi)h1(Xi)h2(Xi)|
a.s.→ E|e−g0(X1)h1(X1)h2(X1)| as n → ∞.

Then, we have

∣∣∣ 1
n

n∑
i=1

e−g0(Xi)h1(Xi)h2(Xi)−
1

n

n∑
i=1

c
(i)
0 e

−g0(Xi)h1(Xi)h2(Xi)
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

(1− c
(i)
0 )e−g0(Xi)h1(Xi)h2(Xi)

∣∣∣
≤ 1

n

n∑
i=1

|(1− c
(i)
0 )||e−g0(Xi)h1(Xi)h2(Xi)|

≤c0
1

n

n∑
i=1

|e−g0(Xi)h1(Xi)h2(Xi)|

a.s.→c0E|e−g0(X1)h1(X1)h2(X1)| (λ1 → 0, nλ
2/r
1 → ∞)

≤c0{(V ∗ + λ1J
∗)(h1)(V

∗ + λ1J
∗)(h2)}1/2.

□

Note that conditions 7.1-7.5 are common assumptions for convergence rate analysis
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of the SS ANOVA estimates, which were also made in Gu [12]. Condition 7.2 states that

the growth rate of the eigenvalues γv is at v
r, which controls how fast λ1 approaches zero.

Condition 7.4 bounds eg0−g at g in a convex set B0 around g0. Condition 7.5 requires

bounded fourth moment of ζv. We consider metrics V ∗ + λ1J
∗ and V + λ1J .

Theorem 7.1 Assume
∑
v

γlva
2
v,0 < ∞ for some l ∈ [1, 2]. Under Conditions 7.1-7.5,

suppose V ∗(ĝ − g̃) <∞, for some r > 1, as λ1 → 0 and nλ
2/r
1 → ∞,

(V ∗ + λ1J
∗)(ĝ − g0) = Op(n

−1λ
−1/r
1 + λl1).

Proof: Note that for each Xi, E{e−g0(Xi)(ĝ − g̃)2(Xi)} =
∫
X\{α}

f\{α}(x\{α})
∫
Xα
(ĝ −

g̃)2(x)ρ(x)dxαdx\{α} = V ∗(ĝ− g̃) <∞. SinceXi’s are independent, we have e
−g0(Xi)(ĝ−

g̃)2(Xi)’s are i.i.d. random variables with mean E{e−g0(Xi)(ĝ−g̃)2(Xi)} = V ∗(ĝ−g̃) <∞.

Therefore, by the strong law of large numbers, 1
n

n∑
i=1

e−g0(Xi)(ĝ−g̃)2(Xi)
a.s.→ E{e−g0(X1)(ĝ−

g̃)2(X1)} as n→ ∞. Substituting (7.8) into the left-hand side of (7.7), we have

λ1J
∗(ĝ − g̃)− 1

n

n∑
i=1

{
e−ĝ(Xi) − e−g̃(Xi)

}
(ĝ − g̃)(Xi)

≥c2
n

n∑
i=1

e−g0(Xi)(ĝ − g̃)2(Xi) + λ1J
∗(ĝ − g̃)

a.s.→ c2E{e−g0(X1)(ĝ − g̃)2(X1)}+ λ1J
∗(ĝ − g̃) (λ1 → 0, nλ

2/r
1 → ∞)

=c2V
∗(ĝ − g̃) + λ1J

∗(ĝ − g̃). (7.12)

Substituting (7.10) and (7.11) into the right-hand side of (7.7) and let h1 = ĝ − g̃,
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h2 = g̃ − g0, as λ1 → 0 and nλ
2/r
1 → ∞, we have

∣∣∣ 1
n

n∑
i=1

{
e−g̃(Xi) − e−g0(Xi)

}
(ĝ − g̃)(Xi) + V ∗(ĝ − g̃, g̃ − g0)

∣∣∣
≤
∣∣∣V ∗(ĝ − g̃, g̃ − g0)−

1

n

n∑
i=1

e−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)
∣∣∣

+
∣∣∣ 1
n

n∑
i=1

e−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)−
1

n

n∑
i=1

c
(i)
0 e

−g0(Xi)(ĝ − g̃)(Xi)(g̃ − g0)(Xi)
∣∣∣

≤p(op(1) + c0){(V ∗ + λ1J
∗)(ĝ − g̃)(V ∗ + λ1J

∗)(g̃ − g0)}1/2, (7.13)

where the first inequality follows (7.9) and the second inequality directly follows Lemma

7.2 and 7.3. Combining (7.7), (7.12), and (7.13), we obtain

(c2V
∗ + λ1J

∗)(ĝ − g̃) ≤p (op(1) + c0){(V ∗ + λ1J
∗)(ĝ − g̃)(V ∗ + λ1J

∗)(g̃ − g0)}1/2.

(7.14)

Combining (7.14) with Lemma 7.1, as λ1 → 0 and nλ
2/r
1 → ∞, we have (V ∗ + λ1J

∗)(ĝ−

g̃) = Op(n
−1λ

−1/r
1 + λl1) and Theorem 7.1 holds. □

Theorem 7.2 Under the conditions in Theorem 7.1,

(V + λ1J)(ĝ − g0) = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ).

Proof: We know

∑
k ̸=α

||gαk(xα, xk)||2 ≤

{∑
k ̸=α

||gαk(xj, xk)||

}2

≤ (p− 1)
∑
k ̸=α

||gαk(xα, xk)||2. (7.15)

Then, there exists some constant C ∈ [1,
√
p− 1] such that C {

∑
k ̸=α

||gαk(xα, xk)||2}1/2 =∑
k ̸=α

||gαk(xα, xk)||. Since
∑
k ̸=α

θαk is bounded by a fixed M < ∞, we can scale λ1, λ2 such
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that θαk ≤ 1. Since J∗
2 (g) =

∑
k ̸=α

θ−1
αk ||gαk(xα, xk)||2 = cT (

∑
k ̸=α

θαkQαk)c,
∑
k ̸=α

||gαk(xα, xk)||2 =

cT (
∑
k ̸=α

θ2αkQαk)c, we have J2
2 (g) = C2

∑
k ̸=α

||gαk(xα, xk)||2 ≤ C2J∗
2 (g) and consequently

J2 ≤ C(J∗)1/2. Furthermore, V 2
2 (g

(2)) =
∫
X\{α}

f\{α}(x\{α})
∫
Xα

{
g(2)(x)

}2
ρ(x)dxαdx\{α}

= V ∗(g(2)), we have V2(g
(2)) = [V ∗(g(2))]1/2. Therefore,

(V2 + λ1J2)(g
(2)) = ((V ∗)1/2 + C

√
λ1(λ1J

∗)1/2)(g(2)) ≤ (1 + C2λ1)
1/2(V ∗ + λ1J

∗)1/2(g(2))

by the Cauchy-Schwarz inequality. Finally,

(V + λ1J)(ĝ − g0) = (V1 + λ1J1)(ĝ
(1) − g

(1)
0 ) + (V2 + λ1J2)(ĝ

(2) − g
(2)
0 )

≤ (V ∗ + λ1J
∗)(ĝ(1) − g

(1)
0 ) + (1 + C2λ1)

1/2(V ∗ + λ1J
∗)1/2(ĝ(2) − g

(2)
0 )

= Op(n
−1λ

−1/r
1 + λl1) +O(n−1/2λ

−1/2r
1 + λ

l/2
1 )

= Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ). (7.16)

□

Corollary 7.1 Assume conditions in Theorem 7.2 hold, 0 < c5 < ρ(x) < c6 and 0 <

c7 < f\{α}(x\{α}) < c8 for some positive constants c5, c6, c7, c8, we have

||ĝαk − g0αk|| = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ), k ̸= α, k = 1, · · · , p,

where g0αk are two-way interactions in the true function g0.

Proof: By definition of V (·), V (ĝ − g0) = V1(ĝ
(1) − g

(1)
0 ) + V2(ĝ

(2) − g
(2)
0 ) = V ∗(ĝ(1) −

g
(1)
0 ) + [V ∗(ĝ(2) − g

(2)
0 )]1/2. Following (7.16),

[V ∗(ĝ(2) − g
(2)
0 )]1/2 = Op(n

−1/2λ
−1/2r
1 + λ

l/2
1 ).
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Following Lin et al. [28], under the condition 0 < c5 < ρ(x) < c6 and 0 < c7 <

f\{α}(x\{α}) < c8 for some positive constants c5, c6, c7, c8, [V
∗(g)]1/2 is equivalent to the

L2 norm. Specifically,

V ∗(g) ∼ ||g||2 =
p∑

j=1

||gj||2 +
∑
k ̸=α

||gαk(xα, xk)||2,

where ∼ means equivalence, || · || is the L2 norm, and V ∗(g(1)) ∼
p∑

j=1

||gj||2, V ∗(g(2)) ∼∑
k ̸=α

||gαk(xα, xk)||2, respectively.

By definition, V (g(2)) = [V ∗(g(2))]1/2 ∼ (
∑
k ̸=α

||gαk(xα, xk)||2)1/2. Consequently, two-

way interactions under L2 norm have the same convergence rate as [V ∗(g(2))]1/2,

||ĝαk − g0αk|| = Op(n
−1/2λ

−1/2r
1 + λ

l/2
1 ), k ̸= α, k = 1, · · · , p.

□

The convergence rate in Theorem 7.2 is the square root of the rate in Theorem 7.1.

This is because V ∗ + λ1J
∗ is associated with the square of L2 norm while the L2 norm

was used in V + λ1J . Corollary 7.1 holds because V2 and J2 associated with two-way

interactions are equivalent to L2 norm. Consequently, two-way interactions under L2

norm have the same convergence rate as Theorem 7.2. We only show convergence rate

for interactions in Corollary 7.1 since we are mainly interested in edge selection.
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Simulation Results

In this chapter, we conduct simulations to evaluate the performance of the proposed

method. We consider continuous random variables only such that we can compare them

with some existing methods. In our implementation, we estimate the conditional density

for each variable on the data range and transform the data into [0, 1]. We construct

an SS ANOVA model using the tensor product of cubic spline models. Specifically, let

H(j) = W 2
2 [0, 1] where

W 2
2 [0, 1] =

{
f : f, f ′ are absolutely continuous,

∫ 1

0

(f ′′)2dx <∞
}

(8.1)

is the Sobolev space for cubic spline models. Each H(j) can be decomposed as H(j) =

{1(j)}⊕H(j) and H(j) = H0
(j)⊕H1

(j) where H0
(j) and H1

(j) are RKHS’s with RKs R0
j (x, z) =

k1(x)k1(z) and R
1
j (x, z) = k2(x)k2(z)− k4(|x− z|) respectively, k1(x) = x− 0.5, k2(x) =

1
2
(k21(x)− 1

12
), and k4(x) =

1
24
(k41(x)−

k21(x)

2
+ 7

240
). SS ANOVA decomposition of

p⊗
j=1

H(j)

can then be constructed based on these decompositions. More details can be found in

Wang [41]. In all simulations and real data applications, when using the pseudo-likelihood
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method, we choose ρ as

ρ(xα,x\{α}) =
ϕ((xα − µ(x\{α}))/σ)

Φ((1− µ(x\{α}))/σ)− Φ((−µ(x\{α}))/σ)
, (8.2)

where ϕ(·) and Φ(·) are the standard normal density and CDF, and µ(·) and σ are esti-

mated by fitting a nonparametric regression model in model space (1.12) with covariates

x\{α}. More estimation details can be found in Chapter 3 of Gu [12]. We select the

tuning parameter M using the 5-fold cross-validation method.

We compare the proposed method with four existing parametric and semiparamet-

ric methods: space (Sparse PArtial Correlation Estimation) (Peng et al. [32]), QUIC

(QUadratic Inverse Covariance estimation) (Hsieh et al. [20]), nonparanormal (NPN)

(Liu et al. [29]), and SpaCE JAM (Voorman et al. [40]). Due to computational con-

straints, we will not compare the proposed method with the nonparametric joint density

estimation method in Gu et al. [13]. Based on our experience, the joint method becomes

computationally infeasible when p is large due to memory restrictions.

The space method assumes that E(X) = 0 and Cov(X) = Σ. Denote the precision

matrix Ω = Σ−1 = (σij)p×p and ρij = −σij/
√
σiiσjj as the partial correlation between

Xi and Xj. Denote x(i) = (x1,i, · · · , xn,i)T as the vector of n observations on the ith

variable, i = 1, · · · , p. Peng et al. [32] solved the following regularization problem for

edge selection

1

2

( p∑
i=1

wi||x(i) −
∑
j ̸=i

ρij
√
σjj

σii
x(j)||2

)
+ λ

∑
1≤i<j≤p

|ρij|, (8.3)

where w = {wi}pi=1 are non-negative weights. This method is implemented with R

package space. We select the tuning parameter λ using the 5-fold cross-validation method

(Lafit et al. [25]).
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The QUIC method assumes that X is multivariate Gaussian and learns the precision

matrix Ω by solving the following penalized likelihood

−log det(Ω) + tr(SΩ) + λ||Ω||1, (8.4)

where || · ||1 is the L1 penalty, S is the sample covariance matrix, and λ is the tuning

parameter which is selected by minimizing the BIC score. The method is implemented

with R package QUIC.

The NPN method assumes that there exists some monotone functions f1, · · · , fp such

that f(X) ∼ N (µ,Σ) where f(X) = (f1(X1), · · · , fp(Xp))
T . The NPN is a semipara-

metric model since it consists of parameters µ and Σ and nonparametric transformations

f ’s. The graphical lasso is applied to the transformed data to estimate the undirected

graph, and the tuning parameter is selected by the extended BIC score (Foygel and Dr-

ton [9]). Estimation details were given in Liu et al. [29]. We use R package huge to

implement the NPN method.

The SpaCE JAM method models the conditional mean nonparametrically using ad-

ditive models: E(Xj|X\{j}) =
∑
k ̸=j

fjk(Xk) where fjk(·) belongs to a functional space F

(Voorman et al. [40]). The functions fjk are estimated as the minimizers of the following

least squares with a group lasso type penalty:

argminfjk∈F

{
1

2n

p∑
j=1

||x(j) −
∑
k ̸=j

sjk||22 + λ
∑
k>j

(
||sjk||22 + ||skj||22

)1/2}
, (8.5)

where sjk = (fjk(x1,k), · · · , fjk(xn,k))T and skj = (fkj(x1,j), · · · , fkj(xn,j))T . The SpaCE

JAM method is implemented with R package spacejam (Voorman et al. [40]) and cubic

basis function is used to allow non-linear conditional relationships among variables. The

tuning parameter λ is selected by the BIC method. Note that space is a neighborhood
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selection method while QUIC, NPN, and SpaCE JAM are global methods.

To evaluate the performance of edge detection, we compute three criteria: specificity

(SPE), sensitivity (SEN), and F1 scores, which are defined the same way as Chapter

4. We consider both Gaussian and non-Gaussian simulation settings to evaluate the

performance of edge detection. We set dimension p = 20 and consider two sample sizes

n = 150 and n = 300. All simulations are repeated 100 times.

8.1 Gaussian Simulation

We first use huge.generator function to randomly generate a p× p sparse precision

matrix Ω, where the probability poff of the off-diagonal elements being non-zero is equal

to 0.2 or 0.4. Then we generate n i.i.d. samples X1, · · · ,Xn from N (0,Ω−1). We apply

the proposed method, space, QUIC, NPN, and SpaCE JAM methods to select edges.

Tables 8.1, 8.2 presents averages and standard deviations of sensitivity, specificity, and

F1 score. Different methods have different trade-offs between sensitivity and specificity.

In terms of F1 score, the proposed method has slightly better performance than QUIC,

space, and SpaCE JAM in most cases. This indicates that the proposed nonparametric

method is as efficient as the parametric QUIC method when the Gaussian assumption

holds. The NPN method has worse performance than other methods.

8.2 Non-Gaussian Simulation

In general, it is difficult to construct a flexible multivariate nonparametric distribu-

tion as discussed in Section 2 in Voorman et al. [40]. To overcome this problem, we use

the same approach in Voorman et al. [40] to generate a graphical model using a directed
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Proposed Method space QUIC
SPE SEN F1 SPE SEN F1 SPE SEN F1

poff = 0.2
n=150 0.912 0.968 0.834 0.986 0.654 0.762 0.768 0.964 0.666

(0.028) (0.037) (0.050) (0.011) (0.096) (0.075) (0.036) (0.034) (0.042)
n=300 0.929 0.998 0.870 0.989 0.869 0.907 0.813 0.982 0.712

(0.026) (0.008) (0.046) (0.01) (0.059) (0.04) (0.032) (0.025) (0.04)
poff = 0.4
n=150 0.866 0.815 0.807 0.969 0.461 0.599 0.668 0.797 0.691

(0.040) (0.066) (0.046) (0.013) (0.062) (0.058) (0.047) (0.058) (0.030)
n=300 0.883 0.968 0.903 0.961 0.564 0.681 0.689 0.827 0.717

(0.042) (0.027) (0.028) (0.015) (0.058) (0.049) (0.043) (0.046) (0.026)

Table 8.1: Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for the proposed method, space, QUIC in Gaussian
simulation.

NPN SpaCE JAM
SPE SEN F1 SPE SEN F1

poff = 0.2
n=150 0.820 0.751 0.521 0.939 0.798 0.776

(0.108) (0.402) (0.281) (0.035) (0.147) (0.068)
n=300 0.762 0.995 0.668 0.945 0.954 0.875

(0.042) (0.016) (0.042) (0.022) (0.041) (0.037)
poff = 0.4
n=150 0.793 0.617 0.474 0.945 0.508 0.608

(0.142) (0.411) (0.312) (0.025) (0.135) (0.126)
n=300 0.673 0.951 0.706 0.905 0.704 0.727

(0.039) (0.036) (0.021) (0.031) (0.128) (0.076)

Table 8.2: Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for NPN, SpaCE JAM in Gaussian simulation.
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acyclic graph (DAG) and conditional distributions. We use the rdag function in the

spacejam package to generate a DAG of X and denote ED as the directed edge set. The

conditional relationships among variables can be created via E(Xj|X\{j}) =
∑
k ̸=j

fjk(Xk).

The distribution of X is usually not a well-known multivariate distribution except for

the particular case when all fjks are linear associated with a multivariate Gaussian dis-

tribution.

We decompose XT = (Y T ,ZT ) where Y and Z are random vectors of dimensions 5

and 15 respectively. We first generate a DAG with p = 20 nodes and m edges selected

at random from all possible p(p − 1)/2 possible edges. We consider two choices of m:

m = 20 and m = 40. Given a DAG, we generate data as follows:

Zj|{Zk, Ys : {k, j}, {s, j} ∈ ED} =
∑

{k,j}∈ED

f
(1)
jk (Zk) +

∑
{s,j}∈ED

f
(1)
js (Ys) + ϵj

Yj|{Yk : {k, j} ∈ ED} =
∑

{k,j}∈ED

f
(2)
jk (Yk) + ϵj,

where ϵj’s are i.i.d. random noises from the standard normal distribution, f
(1)
jk (t) = b

(1)
jk,1t

with b
(1)
jk,1 generated from the standard Gaussian distribution, and f

(2)
jk (t) = b

(2)
jk,1t+b

(2)
jk,2t

2+

b
(2)
jk,3t

3 with b
(2)
jk,1, b

(2)
jk,2 and b

(2)
jk,3 independently generated from the Gaussian distributions

with mean zero and variances 1, 0.3, and 0.1, respectively.

Simulation results are shown in TableS 8.3, 8.4. Since data are generated according to

a model assumed by the SpaCE JAM method, as expected, the SpaCE JAM performs better

than the space, QUIC, and NPN methods. Remarkably, the proposed method has larger

F1 scores than SpaCE JAM in all cases. In conclusion, the proposed method is efficient in

edge detection and performs better than some existing methods.
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Proposed Method space QUIC
SPE SEN F1 SPE SEN F1 SPE SEN F1

m = 20
n = 150 0.97 0.835 0.840 0.997 0.588 0.730 0.808 0.838 0.588

(0.020) (0.074) (0.066) (0.004) (0.084) (0.068) (0.034) (0.079) (0.050)
n = 300 0.984 0.917 0.915 0.998 0.631 0.767 0.859 0.854 0.660

(0.013) (0.064) (0.050) (0.003) (0.075) (0.058) (0.035) (0.079) (0.055)
m = 40
n = 150 0.970 0.598 0.725 0.984 0.359 0.517 0.705 0.671 0.627

(0.020) (0.064) (0.05) (0.012) (0.039) (0.041) (0.039) (0.053) (0.031)
n = 300 0.985 0.685 0.800 0.982 0.430 0.587 0.740 0.673 0.645

(0.014) (0.067) (0.049) (0.013) (0.054) (0.050) (0.046) (0.049) (0.036)

Table 8.3: Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for the proposed method, space, QUIC in nonpara-
metric distribution simulation.

NPN SpaCE JAM
SPE SEN F1 SPE SEN F1

m = 20
n = 150 0.83 0.791 0.588 0.963 0.697 0.736

(0.066) (0.125) (0.054) (0.019) (0.079) (0.062)
n = 300 0.818 0.894 0.629 0.979 0.716 0.786

(0.041) (0.082) (0.052) (0.057) (0.089) (0.072)
m = 40
n = 150 0.671 0.708 0.634 0.690 0.710 0.643

(0.042) (0.060) (0.031) (0.111) (0.112) (0.044)
n = 300 0.707 0.724 0.662 0.654 0.814 0.692

(0.045) (0.048) (0.038) (0.07) (0.051) (0.031)

Table 8.4: Averages and standard deviations (in parentheses) of specificity (SPE),
sensitivity (SEN), and F1 score for NPN, SpaCE JAM in nonparametric distribution
simulation.
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Real Data Examples

In this chapter, We illustrate our neighborhood selection method using two real datasets.

In Section 9.1, we apply our method to Arabidopsis Thaliana gene expression data and

compare the estimated graph with those from space, QUIC, NPN, and SpaCE JAM. In

addition, we present a diagnostic procedure for some existing methods. In Section 9.2,

we illustrate our method using real data with a mixed data type.

9.1 Isoprenoid Gene Network in Arabidopsis Thaliana

In this section, we consider the gene expression data for Arabidopsis thaliana, which

is an important plant species in molecular biology and genetics studies. There are n =

118 observations of Affymetrix GeneChip microarrays in the dataset, where a subset

of p = 39 genes from the isoprenoid pathway is selected for analysis. The dataset was

introduced in Wille et al. [43] and can be downloaded from https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC545783/. Lafferty et al. [24] also analyzed this dataset using the

nonparanormal method.

All observations are preprocessed by log-transformation and standardization as in
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Lafferty et al. [24]. We build a graph for all 39 gene expression levels using the proposed

method and compare its structure with those from space, QUIC, NPN, and SpaCE JAM.

Wille et al. [43] stated that the GGM selection using the BIC method usually detects

too many edges for biologically relevant analysis. Therefore, we limit the number of

edges in the graph by controlling the regularization parameters as in Lafferty et al. [24].

Specifically, we tune M such that the number of edges |E| = 52. Similarly, by tuning

the regularization parameters in space, QUIC, NPN, and SpaCE JAM, we select the graphs

with the same number of edges |E| = 52.

Figure 9.1 presents graphs with |E| = 52 for all four methods. These five graphs

have some common edges, for example, edges 1-27, 1-33, 2-28, 2-30, 2-34, 2-35, 3-32,

3-33, 3-39, 5-37, 10-26, 10-33, 10-39, 11-36, 12-29, 12-30, 12-34, 12-35, 22-39,

23-33, 25-37, 28-34, 34-35, and 37-38. There are also some interesting differences. For

instance, only our proposed method detects the edge 16-21. We now describe a general

diagnostic procedure to explain reasons why other methods miss this edge.

We first extend the squared error projection in Gu [12] for diagnostics on any sub-

spaces of Mα. Let

Ṽ (ĝ − g) =

∫
X\{α}

f\{α}(x\{α})

∫
Xα

{
(ĝ − g)(x)−

∫
Xα

(ĝ − g)(x)ρ(x)
}2
ρ(x)dxαdx\{α}

(9.1)

where ĝ ∈ Mα ⊖ {1}. We remove the constant functions from the model space since

they are not relevant to the diagnostics on interactions. Ṽ (ĝ − g) can be treated as a

proxy of the symmetrized Kullback-Leibler distance (Gu [12]). For any decomposition

Mα ⊖ {1} = M0
α ⊕ M1

α, the squared error projection of ĝ in M0
α is defined as g̃ =

argmin
g∈M0

α

{
Ṽ (ĝ − g)

}
. It can be shown that Ṽ (ĝ − gu) = Ṽ (ĝ − g̃) + Ṽ (g̃ − gu) when

gu = −log ρ(x) ∈ M0
α. The ratio Ṽ (ĝ − g̃)/Ṽ (ĝ − gu) represents the contribution of
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Figure 9.1: The estimated graph with 52 edges from the proposed method (top left),
the space (top middle), the QUIC (top right), the NPN (bottom left), the SpaCE
JAM (bottom right).

functions in the subspace M1
α which can be dropped when the ratio is small (Gu et al.

[13]).

Now we apply the diagnostic procedure to explain why our proposed method detects

the edge 16-21 which is missed by other methods. Note that each interaction space

H(αk) = H(0)
(αk) ⊕ H(1)

(αk) ⊕ H(2)
(αk) ⊕ H(3)

(αk) where H(0)
(αk) = H0

(α) ⊗ H0
(k), H(1)

(αk) = H0
(α) ⊗

H1
(k), H

(2)
(αk) = H1

(α) ⊗ H0
(k), and H(3)

(αk) = H1
(α) ⊗ H1

(k) correspond to linear-linear, linear-

smooth, smooth-linear, and smooth-smooth interactions (Wang [41]). The QUIC and
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space are special cases with gαk ∈ H(0)
(αk), and the SpaCE JAM is a special cases with

gαk ∈ H(0)
(αk) ⊕ H(1)

(αk). Therefore, for diagnostics of QUIC and SpaCE JAM methods, we

consider the contribution ofM1
α = Mα⊖{1}⊖H(0)

(αk) and the contribution ofM1
α = Mα⊖

{1}⊖H(0)
(αk)⊖H(1)

(αk), respectively. For the edge 16-21, we have Ṽ (ĝ− g̃)/Ṽ (ĝ−gu) = 0.352

for QUIC and Ṽ (ĝ− g̃)/Ṽ (ĝ−gu) = 0.340 for SpaCE JAM, respective. These non-ignorable

contributions suggest that the assumptions of the QUIC and SpaCE JAMmethods are likely

violated.

9.2 Conditional Dependence Among Demographic,

Clinical, Laboratory and Treatment Variables of

Hemodialysis Patients

In this section, we illustrate the application of the proposed methods to mixed bi-

nary and continuous variables using a data set collected from hemodialysis patients. The

data include patients who received dialysis treatments from 2010 to 2014 and stayed at

the Fresenius Medical Care - North America throughout their treatments. To reduce

heterogeneity, we include n = 2932 non-diabetic and non-Hispanic patients who used

arteriovenous fistula for dialysis access and survived longer than two years. We use the

averages of measurements in the second year of dialysis for analysis. We consider the

following 23 variables: demographic variables including race (white and non-white) and

gender (male and female); clinical variables including height (cm), weight (kg), sbp

(systolic blood pressure, mmHg), dbp (diastolic blood pressure, mmHg), and temp (tem-

perature, Celsius); laboratory variables including albumin (g/dL), ferritin (ng/mL),

hgb (hemoglobin, g/dL), lymphocytes (%), neutrophils (%), nlr (neutrophils to lym-

phocytes ratio, unitless), sna (serum sodium concentration, mEq/L), wbc (white blood
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cell, 1000/mc); and treatment variables including qb (blood flow, mL/min), qd (dialy-

sis flow, mL/min), saline (mL), olc (on-line clearance, unitless), idwg (interdialytic

weight gain, kg), ufv (ultrafiltration volume, L), ufr (ultrafiltration rate, mL/hr/kg),

and epodose (erythropoietin dose, unit).

We have 2 binary variables, race and male, and 21 continuous variables. We apply

the logistic regression approach described in the Supplement to estimate the conditional

density of each binary variable, and the pseudo-likelihood to estimate the conditional

density of each continuous variable. We apply the BIC method to select the tuning

parameter M and the AND rule to decide edges. Figure 9.2 shows the estimated graph

which contains some of the expected dependences between variables such as gender and

height, weight and height, and sbp and dbp. The link between ufv and idwg is

also well-known (Uduagbamen et al. [39]). Many other edges corroborate with existing

literature. For example, anemia is a common complication of dialysis patients, and its

management is a major challenge. A central aim of anemia management is to maintain

patients’ hemoglobin level consistently within a target range. Erythropoietin has been

used to raise hemoglobin level, which is revealed by the edge between epodose and

hgb. Serum albumin has been found strongly associated with erythropoietin sensitivity

(Agarwal et al. [1]), which is corroborated by the edge between epodose and albumin.

It has been found that black patients receive greater doses of erythropoietin than white

patients (Lacson et al. [23]), which is corroborated by the edge between epodose and

race. The graph in Figure 9.2 provides a holistic view of complex relationships between

demographic, clinical, laboratory and treatment variables and help building new theories

to be tested in future studies.
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Figure 9.2: The estimated graph for dialysis data.

92



Part 3

R Package edgeSelection and

Conclusions

93



Chapter 10

Package Description

We create an R package named edgeSelection, which can be installed from GitHub.

Detailed codes and descriptions can be found in https://github.com/haodongucsb/

edgeSelection. In this chapter, we provide a brief introduction to this package with

some examples to illustrate how to perform edge selection using these two methods.

10.1 Introduction

The edgeSelection package unifies two edge selection methods into one main func-

tion named edge.selection, which is a wrapper of two functions, selection.joint

and selection.neighborhood, specified by the argument method= "joint" or method

= "neighborhood". Specifically, the main function can be called with the following syn-

tax:

edge.selection(data, method = c("joint", "neighborhood"), ...)

The required arguments include:

• data Data Frame containing all variables.

• method Which method should be used for edge selection.
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Other optional arguments are in ..., which can be specified based on the user’s

needs. Some of those arguments are shared by these two methods, including type,

alpha, subset, na.action, seed, prec, maxiter, id.basis, nbasis. They work

the same way as in gss package (Gu et al. [17]). The remaining optional arguments are

specifically related to the joint density approach or the neighborhood selection approach,

and we provide those details in Section 10.2 and 10.3.

The returned value is edgeMatrix, which is the estimated graph structure in a p× p

matrix, where p is the dimension of data. The jkth element in edgeMatrix is an estimate

of θjk. Non-zero jkth and kjth elements indicate that there is an edge between Xj and

Xk.

10.2 Joint Density Approach

selection.joint function select edges using the joint density approach. Syntax of

this function is:

selection.joint(data, ...)

where data is the data frame from edge.selection. Besides those common arguments

shared by two methods, other optional arguments in ... include domain, quad, w.

domain, quad work the same way as in the function ssden1 in gss package. w is an

optional vector to specify pre-defined weights of two-way interactions with default values

as all ones. This function returns edgeMatrix as the edge selection result.

selection.joint is only feasible when the dimension p is small. Our experience

indicates that the joint method becomes almost infeasible when the dimension is large

because of memory restriction.
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10.3 Neighborhood Selection Approach

selection.neighborhood function select edges using the neighborhood selection ap-

proach. This function is called in the following syntax:

selection.neighborhood(data, ...)

where data is the data frame from edge.selection. Other optional arguments in ... in-

clude rho, ydomain, yquad, skip.iter, W, neighborhoodMethod. rho, ydomain,

yquad, skip.iter work the same way as in the function sscden1 in gss package. W is

an optional matrix to specify pre-defined weights for two-way interactions in each con-

ditional density with default values as all ones. neighborhoodMethod can specify which

method to select tuning parameter M . It can be "cv" or "BIC". This function also

returns edgeMatrix as the edge selection result.

selection.neighborhood can be used for high-dimensional data, and a parallel back-

end can be set up for parallel computation. To use parallel computation, packages

doMC, foreach usually need to be installed and loaded first, and multiple cores are

necessary for the machine. Section 10.4.2 gives one example for the set up of parallel

computation. If a parallel backend is not applicable, the usual for loop is used in the

selection.neighborhood function.

10.4 Examples

10.4.1 edge.selection for Joint Density Approach

We first simulate a 5-dimensional data, which follows multivariate normal distribution

as in Section 4.2 and apply the joint density approach to perform edge selection.

library(MASS)

simu5 <- function(n) {
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inverseSigma <- matrix(c(62, -20, 0, 0, -20, -20, 62, -10, 0, 0, 0, -10,

62, 10, 0, 0, 0, 10, 62, -15, -20, 0, 0, -15, 62), 5)

Sigma <- solve(inverseSigma)

data5 <- MASS::mvrnorm(n, rep(0.5, 5), Sigma)

data5

}

set.seed(5732)

n <- 600

data <- as.data.frame(simu5(n))

edgeMatrix <- edge.selection(data = data, method = "joint")

This edgeMatrix selects all true edges (larger than zero in the off-diagonals) and exclude

all false edges (zeros in the off-diagonals).

We also apply the joint density approach for a real data set NO2 in the gss package,

which has been introduced in Section 5.1.

library(gss)

data(NO2)

edgeMatrix <- edge.selection(data = NO2, method = "joint",nbasis = 100)

where we specify nbasis, the number of observations to fit smoothing spline model as

100. The plot of the estimated graph is shown in Figure 5.1.

10.4.2 edge.selection for Neighborhood Selection Approach

In the first example, we provide details to set up the parallel computation. If a parallel

backend is not applicable, edge.selection still works by using a for loop inside. We

simulate multivariate normal distribution using the huge package as in Section 8.1 and

apply the neighborhood selection approach to select two-way interactions.
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library(doMC)

library(foreach)

library(huge)

registerDoMC(20)

n <- 200; p <- 20

set.seed(5732)

z <- huge.generator(n, d = p, graph = "random", prob = .2, verbose =

FALSE, vis = FALSE, v = .65) data <- data.frame(z$data)

edgeMatrix <- edge.selection(data = data, method = "neighborhood")

trueEdges <- as.matrix(z$theta)

To see the accuracy of edge selection, one can compare the estimated graph structure in

edgeMatrix with the ground truth in trueEdges.

We also look at the edge detection on the Arabidopsis Thaliana gene expression data

in Section 9.1, and this data set has been included in our package.

data(Gene)

edgeMatrix <- edge.selection(data = Gene, method = "neighborhood",

neighborhoodMethod = "BIC")

where we specify neighborhoodMethod, the method to select tuning parameter M as

"BIC". The plot of the estimated graph is shown in Figure 9.1.
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Chapter 11

Conclusions

11.1 Joint Approach

In the first part of this dissertation, we present a nonparametric method to learn

edges for pairwise graphical models under the SS ANOVA decomposition. The proposed

method provides a unified framework without restrictions on data types for each variable.

The joint density function is estimated via a penalized pseudo-likelihood method with

L2 penalty on main effects and L1 penalty on two-way interactions. We propose an

iterative procedure to compute the estimates. We establish convergence rates of joint

density function estimate and interaction components in the SS ANOVA decomposition.

In simulation studies, we compare our method with Jeon and Lin’s method (details in

Section 1.6.1), which applied L1 penalty on both main effects and two-way interactions.

Simulation results showed our method has better overall performance in both the F1 score

and the ROC curve. In real applications, the estimated graphs are compared among our

method, Jeon and Lin’s method, and Gu’s method (details in Section 1.6.2). As shown in

Section 5.1, 5.2, our method finds new connections among variables, which may provide

a new perspective in the corresponding area.
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11.2 Neighborhood Selection Approach

In the second part of this dissertation, we develop a fully nonparametric method for

neighborhood selection in pairwise graphical models. Since the range of each random

variable is an arbitrary set, the proposed method provides a unified framework for mixed

data types. The proposed SS ANOVA models are more general than existing parametric

and semiparametric models. We developed penalized likelihood and pseudo-likelihood

methods with L1 penalty to select edges. As illustrated in Section 9.1, in addition to

providing more flexible alternatives, the proposed method also serves as a new diagnostic

tool for existing graphical models. We establish convergence rates of conditional density

function estimate and interaction components in the SS ANOVA decomposition. Simula-

tion results showed that the proposed method is efficient in edge detection and performs

well under Gaussian and non-Gaussian situations. Applications to real data indicated the

proposed method could detect edges that may provide new perspectives for researchers.

11.3 Comparison and Future Work

These two approaches are developed under a consolidated framework of SS ANOVA

decomposition. They are nonparametric methods and more flexible than existing para-

metric and semi-parametric methods. They also provide a unified framework without any

restrictions on the type of each random variable. However, the joint approach becomes

computationally infeasible when the dimension is large due to memory restrictions. The

neighborhood selection approach overcomes this disadvantage and is more computation-

ally efficient by working on conditional densities.

We note that the proposed methods can be easily extended to select variables in non-

parametric conditional density estimation, which has not been studied to the best of our
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knowledge. The proposed method can also be extended to incorporate prior knowledge of

the conditional density of a node using a model-based penalty or a semiparametric model

(Shi et al. [36], Yu et al. [46]). For example, it may be known that the conditional density

of Xα is close to, but not necessarily a Gaussian distribution. We may consider a quintic

thin-plate spline space for H(α) with a tensor sum decomposition H(α) = H0
(α) ⊕ H1

(α)

where H0
(α) = {1(α), x(α), x2(α)} corresponds to the space for logistic density of a Gaussian

distribution.
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[19] Höfling, H. and Tibshirani, R. [2009]. Estimation of sparse binary pairwise markov
networks using pseudo-likelihoods., Journal of Machine Learning Research 10(4).

[20] Hsieh, C.-J., Dhillon, I. S., Ravikumar, P. K. and Sustik, M. A. [2011]. Sparse
inverse covariance matrix estimation using quadratic approximation, Advances in
neural information processing systems, pp. 2330–2338.

[21] Jeon, Y. and Lin, Y. [2006]. An effective method for high-dimensional log-density
anova estimation, with application to nonparametric graphical model building, Sta-
tistica Sinica pp. 353–374.

[22] Koller, D. and Friedman, N. [2009]. Probabilistic graphical models: principles and
techniques, MIT press.

[23] Lacson, E., Rogus, J., Teng, M., Lazarus, M. and Hakim, R. [2008]. The association
of race with erythropoietin dose in patients on long-term hemodialysis, American
Journal of Kidney Diseases 52(6): 1104–1114.

[24] Lafferty, J., Liu, H., Wasserman, L. et al. [2012]. Sparse nonparametric graphical
models, Statistical Science 27(4): 519–537.

[25] Lafit, G., Tuerlinckx, F., Myin-Germeys, I. and Ceulemans, E. [2019]. A partial cor-
relation screening approach for controlling the false positive rate in sparse gaussian
graphical models, Scientific Reports 9(1): 1–24.

103



[26] Lee, J. D. and Hastie, T. J. [2015]. Learning the structure of mixed graphical models,
Journal of Computational and Graphical Statistics 24(1): 230–253.

[27] Lin, Y. and Zhang, H. H. [2006]. Component selection and smoothing in multivariate
nonparametric regression, The Annals of Statistics 34(5): 2272–2297.

[28] Lin, Y. et al. [2000]. Tensor product space anova models, The Annals of Statistics
28(3): 734–755.

[29] Liu, H., Lafferty, J. and Wasserman, L. [2009]. The nonparanormal: Semiparametric
estimation of high dimensional undirected graphs, Journal of Machine Learning
Research 10(Oct): 2295–2328.
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