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Cohomology and L
2-Betti numbers for subfactors

and quasi-regular inclusions

by Sorin Popa1, Dimitri Shlyakhtenko2 and Stefaan Vaes3

Abstract

We introduce L2-Betti numbers, as well as a general homology and cohomology theory
for the standard invariants of subfactors, through the associated quasi-regular symmetric
enveloping inclusion of II1 factors. We actually develop a (co)homology theory for arbi-
trary quasi-regular inclusions of von Neumann algebras. For crossed products by countable
groups Γ, we recover the ordinary (co)homology of Γ. For Cartan subalgebras, we recover
Gaboriau’s L2-Betti numbers for the associated equivalence relation. We prove that the
L2-Betti numbers vanish for amenable inclusions. We compute the L2-Betti numbers for
the standard invariants of the Temperley-Lieb-Jones subfactors and for the Fuss-Catalan
subfactors.
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1 Introduction

It has been a longstanding problem to define a suitable (co)homology theory, including the
theory of L2-cohomology and of L2-Betti numbers, for objects encoding “quantum symmetries”
that arise in Jones’s theory of subfactors, [J82]. Such objects include the standard invariant
in Jones subfactor theory (λ-lattice or Jones planar algebra), rigid C∗-tensor categories as well
as representation categories of compact quantum groups. The main goal of the present paper
is to give a definition of such a (co)homology theory. In fact, our approach gives a unified
way of defining (co)homology for discrete groups, measure preserving discrete groupoids and
equivalence relations as well as such quantum symmetries. In this way, we present a common
approach to L2-Betti numbers, which includes Atiyah-Cheeger-Gromov L2-Betti numbers of
groups, Gaboriau’s L2-Betti numbers for equivalence relations, as well as (new) L2-invariants
such as L2-Betti numbers associated to a Jones subfactor.

The importance of a suitable definition of L2-Betti numbers in the context of quantum symme-
tries is apparent already from the case of discrete groups. Indeed, the theory L2-invariants has
had a wide rage of applications in geometry, topology, geometric group theory, ergodic theory
and von Neumann algebras, see [L02, P01, G01]. They were originally defined by Atiyah [A74]
for Γ-coverings p : X → X of compact Riemannian manifolds, in the context of equivariant
index theory, and they were generalized to measurable foliations in [C78]. When X is con-
tractible, these are invariants of the group Γ. For general countable groups Γ, not necessarily
having a nice classifying space, the L2-Betti numbers β(2)

n (Γ) were introduced in [CG85], as
the L(Γ)-dimension of the usual group homology of Γ with coefficients in ℓ2(Γ). A remarkable
result of Gaboriau [G01] shows that these numbers are orbit equivalence invariants, and his
introduction of these invariants in ergodic theory has led to a number of striking advances in
that field.

Key to our approach is the definition of a Hochschild type (co)homology for general quasi-regular
inclusions of von Neumann algebras, which in the irreducible case we show to be equivalent to a
Hochschild type (co)homology of an algebra that we canonically associated to such an inclusion
and call the tube algebra. When computed with L2-coefficients, the resulting cohomology groups
are naturally modules over a semifinite von Neumann algebra and in this way, we obtain the
notion of L2-Betti numbers of a quasi-regular inclusion.

Quasi-regular inclusions of von Neumann algebras T ⊂ S are generalizations of crossed product
inclusions in which S = T ⋊ Γ is a crossed product by a discrete group Γ acting by automor-
phisms of T , so that the normalizer NS(T ) = {u ∈ U(S) | uTu∗ = T} generates the entire von
Neumann algebra S. For quasi-regular inclusions, S is generated by finite index T -bimodules.

Let us explain how our construction can be used to yield (co)homology theories and L2-Betti
numbers for subfactors, groups and equivalence relations.

Subfactors. A subfactor N ⊂ M gives rise to the group like standard invariant GN,M that
“acts” on M . The corresponding crossed product type inclusion, which will be a crucial tool
for us, is the symmetric enveloping (SE) inclusion T ⊂ S defined in [P94a, P99]. Here, T =
M ⊗Mop and S should be thought of as a crossed product of T by an action of GN,M . Indeed,
in the particular case of diagonal subfactors defined by finitely many automorphisms, the
standard invariant encodes the discrete group Γ ⊂ Aut(M) generated by these automorphisms
as well as the generating set. The corresponding SE-inclusion is then precisely the inclusion
of T = M ⊗ Mop into the crossed product S = T ⋊ Γ. With this example in mind, the
SE-inclusion has been successfully used to define and study several group like properties for
standard invariants of subfactors, including amenability, the Haagerup property, property (T),
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etc., see [P94a, P94b, P01, PV14].

Since the inclusion T ⊂ S is quasi-regular, our definition yields a (co)homology theory and the
notion of L2-Betti numbers for the subfactor. Our tube algebra is then up to Morita equivalence
the same as Ocneanu’s tube algebra [O93]; in fact, this case was our motivating example for
the general definition of the tube algebra. Since this algebra only depends on the standard
invariant, our (co)homology theory and L2-Betti numbers also depend only on the standard
invariant GN,M . Actually, the definition makes sense in other related contexts, including planar
algebras and rigid C∗-tensor categories, such as representation categories of compact quantum
groups. In that case, our (co)homology corresponds to quantum group (co)homology for the
quantum double of G. In particular, the L2-Betti numbers should be viewed as the L2-Betti
numbers of this quantum double.

Discrete groups. If in the previous case N ⊂M is the diagonal subfactor defined by a finite
family of automorphisms of N , or more generally for crossed product inclusions T ⊂ T ⋊Γ = S,
with Γ a discrete group, our (co)homology of the inclusion T ⊂ S is equivalent to ordinary
group (co)homology with coefficients in a unitary representation. The L2-Betti numbers are
exactly the Cheeger-Gromov L2-Betti numbers of Γ. Our tube algebra in this case becomes
(essentially) the group algebra of Γ.

Measured equivalence relations. Given a probability measure preserving equivalence re-
lation R on a probability measure space (X,µ), the associated Cartan subalgebra inclusion
T = L∞(X) ⊂ S = L(R) is quasi-regular. Applying our definition, we recover Gaboriau’s
L2-Betti numbers of R, see [G01], as well as groupoid cohomology with coefficients in a unitary
representation. In fact, this example was one of the original motivations for our definition of
(co)homology for quasi-regular inclusions.

In the last two sections, we compute L2-Betti numbers in several interesting cases and show
that the resulting theory goes well with various approximation properties of the quasi-regular
inclusion. We prove that they vanish for amenable irreducible quasi-regular inclusions, as well
as for the Temperley-Lieb-Jones subfactors/planar algebras. We prove a formula for the L2-
Betti numbers of the free product of quasi-regular inclusions and deduce that the first L2-Betti
number of the Fuss-Catalan subfactors is nonzero, while the others vanish. We also briefly
discuss homology with trivial coefficients. Finally, we prove that for an irreducible quasi-
regular inclusion T ⊂ S, the Haagerup property is equivalent with the existence of a proper
1-cocycle, while property (T) is equivalent with all 1-cocycles being inner. In particular, for
property (T) inclusions, the first L2-Betti number vanishes.

2 Preliminaries

2.1 Bimodules over tracial von Neumann algebras

We fix a von Neumann algebra T with a normal faithful tracial state τ . When H is a right
Hilbert T -module, we denote by zdr(H) its center valued dimension. In principle, zdr(H)
belongs to the extended positive cone of Z(T ), but we will only use this notation when H is
finitely generated as a Hilbert T -module. This precisely corresponds to zdr(H) being a bounded
operator. We similarly use the notation zdℓ(H) when H is a left Hilbert T -module.

We call a Hilbert T -bimodule H bifinite if both zdℓ(H) and zdr(H) are bounded. We call their
support projections the left, resp. right support of H.

3



Let z1, z2 ∈ Z(T ) be central projections and α : Z(T )z1 → Z(T )z2 a bijective ∗-isomorphism.
We say that H is an α-T -bimodule if the right support of H equals z1, the left support equals
z2 and

ξa = α(a)ξ for all a ∈ Z(T )z1 .

Definition 2.1. Let (T, τ) be a von Neumann algebra with a normal faithful tracial state. We
say that a bifinite Hilbert T -bimodule H with right support z1 and left support z2 is irreducible
if the space EndT−T (H) of T -bimodular bounded operators equals Z(T )z1 represented by its
right action on H, and also equals Z(T )z2 represented by its left action on H.

Note that in the situation of Definition 2.1, there is a unique bijective ∗-isomorphism α :
Z(T )z1 → Z(T )z2 satisfying ξa = α(a)ξ for all ξ ∈ H, a ∈ Z(T )z1, so that H is in particular
an α-T -bimodule.

Whenever p ∈ Mn(C) ⊗ T is a projection and ψ : T → p(Mn(C) ⊗ T )p is a normal unital
∗-homomorphism, we define the T -bimodule H(ψ) given by

H(ψ) = p(Cn ⊗ L2(T )) and a · ξ · b = ψ(a)ξb for all a, b ∈ T, ξ ∈ H(ψ) .

Denote by Tr the non-normalized trace on Mn(C) and by EZ the unique trace preserving
conditional expectation of T onto Z(T ). Then, zdr(H) = (Tr⊗EZ)(p). Also, the left support
of H(ψ) equals the support of the homomorphism ψ, i.e. the smallest projection z ∈ T with
the property that ψ(1 − z) = 0.

When T is a II1 factor and H a Hilbert T -bimodule, then the product dℓ(H) · dr(H) of the left
and right dimension of H is at least 1. This follows for instance by using the categorical dimen-
sion function on bifinite Hilbert T -bimodules. The non-factorial version of this observation is
provided by the following lemma.

Lemma 2.2. Let α : Z(T )z1 → Z(T )z2 be a bijective ∗-isomorphism and let H be a bifinite
α-T -bimodule with right support z1 and left support z2. Then,

z2 ≤ zdℓ(H) α(zdr(H)) .

Proof. Take unital ∗-homomorphisms ϕ : T → p(Mn(C) ⊗ T )p and ψ : T → q(Mn(C) ⊗ T )q
such that H ∼= H(ϕ) and H ∼= H(ψ) as Hilbert T -bimodules. For any tracial state τ1 on T , we
have that (Tr⊗τ1) ◦ ψ is a trace on T . Therefore,

(Tr⊗EZ) ◦ ψ = (Tr⊗EZ) ◦ ψ ◦ EZ .

Since H is an α-T -bimodule, we have ψ(a) = (1⊗α(az1))q for all a ∈ Z(T ). We conclude that
for all x ∈ T , we have that

(Tr⊗EZ)(ψ(x)) = (Tr⊗EZ)(ψ(EZ (x))) = (Tr⊗EZ)(q(1⊗ α(EZ(x))))

= zdr(H(ψ))α(EZ (x)) = zdℓ(H)α(EZ(x)) .
(2.1)

We now use the Connes tensor product H⊗T H. Note that H⊗T H ∼= H((id⊗ψ)ϕ). Therefore,

zdr(H⊗T H) = (Tr⊗Tr⊗EZ)((id ⊗ ψ)(p)) .

Using (2.1), it follows that

zdr(H⊗T H) = (Tr⊗EZ)(ψ((Tr⊗id)(p))) = zdℓ(H)α((Tr⊗EZ)(p))

= zdℓ(H)α(zdr(H)) .

Since z2 is the left support of H, the T -bimodule L2(Tz2) is a sub-T -bimodule of H ⊗T H.
Therefore, z2 ≤ zdr(H⊗T H) and the lemma is proved.
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When T is a II1 factor, the bifinite Hilbert T -bimodules form a rigid C∗-tensor category. In
particular, every bifinite Hilbert T -bimodule decomposes as a direct sum of finitely many
irreducible T -bimodules. We need the following non-factorial version of this fact.

Proposition 2.3. Let (T, τ) be a von Neumann algebra with a normal faithful tracial state.
Every bifinite Hilbert T -bimodule is a direct sum of finitely many Hilbert T -bimodules that are
irreducible in the sense of Definition 2.1.

Proof. Take a bifinite Hilbert T -bimoduleH. Take a positive number κ > 0 such that zdℓ(H) ≤
κ 1 and zdr(H) ≤ κ 1. We first prove that H is a, possibly infinite, direct sum of irreducible
Hilbert T -bimodules. Write H as H(ψ) for some normal unital ∗-homomorphism ψ : T →
p(Mn(C) ⊗ T )p. Since zdℓ(H) ≤ κ 1, we get that ψ(T ) has finite index as a von Neumann
subalgebra of p(Mn(C) ⊗ T )p equipped with the trace Tr⊗τ . Using e.g. [V07, Lemma A.3],
also

ψ(Z(T )) = ψ(T )′ ∩ ψ(T ) ⊂ ψ(T )′ ∩ p(Mn(C)⊗ T )p

has finite index. We identify ψ(T )′ ∩ p(Mn(C) ⊗ T )p = EndT−T (H). Since Z(T ) is abelian,
it follows that EndT−T (H) is of type I and that we can find projections pk ∈ EndT−T (H)
with

∑
k pk = 1 such that for every k, EndT−T (pkH) equals the image of Z(T ) by its left

action. By symmetry, we can further decompose and find that H is the orthogonal direct sum
of irreducible Hilbert αk-T -bimodules Hk ⊂ H, where αk : Z(T )z1,k → Z(T )z2,k are bijective
∗-isomorphisms.

Write (Z(T ), τ) = L∞(X,µ) for some standard probability space (X,µ). We then view each αk

as a nonsingular partial automorphism of X, with domain Dk ⊂ X and range Rk ⊂ X. Define
the set W = ⊔kDk as the disjoint union of the sets Dk. Define the maps π1, π2 : W → X given
by π1(x) = x and π2(x) = αk(x) when x ∈ Dk. The positive measurable function x 7→ |π−1

1 (x)|
is equal to

∑
k z1,k. Similarly, the function x 7→ |π−1

2 (x)| equals
∑

k z2,k.

Recall that we have chosen κ > 0 such that zdℓ(H) ≤ κ 1 and zdr(H) ≤ κ 1. We claim that∑
k z1,k ≤ κ2 1. By Lemma 2.2, we get for all k that

z1,k ≤ zdr(Hαk
)α−1

k (zdℓ(Hαk
)) ≤ κ zdr(Hαk

) .

Summing over k, it follows that

∑

k

z1,k ≤ κ zdr
(⊕

k

Hαk

)
= κ zdr(H) ≤ κ2 1 .

So, the claim is proved. Similarly, we get that
∑

k z2,k ≤ κ2 1.

So after removing from X a set of measure zero, both functions x 7→ |π−1
1 (x)| and x 7→ |π−1

2 (x)|
are bounded on X. We can thus write W as the disjoint union of finitely many Borel sets
W1, . . . ,Wη such that for each j, both the restriction of π1 to Wj and the restriction of π2 to
Wj are 1-to-1. Denote by r1,j,k ≤ z1,k the projection that corresponds to Dk ∩ Wj. Define
r2,j,k = αk(r1,j,k). For every fixed j, the sets (Wj ∩Dk)k form a partition of Wj. Since both
the restriction of π1 to Wj and the restriction of π2 to Wj are 1-to-1, the projections (r1,j,k)k
are orthogonal, as well as the projections (r2,j,k)k.

Define the Hilbert T -bimodules H1, . . . ,Hη ⊂ H given by

Hj =
⊕

k

Hkr1,j,k =
⊕

k

r2,j,kHk .
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By the orthogonality of the projections (r1,j,k)k, we get that Hjr1,j,k = Hkr1,j,k. Similarly,
r2,j,kHj = Hkr1,j,k. The irreducibility of the Hk implies that all Hj are irreducible.

Since the sets W1, . . . ,Wη form a partition of W, we get that

H =

η⊕

j=1

Hj .

If (T, τ) is a von Neumann algebra with a normal faithful tracial state and H is a bifinite Hilbert
T -bimodule, then τ induces a canonical trace TrrH on End−T (H), i.e. the commutant of the
right T -action on H, as well as a canonical trace TrℓH on EndT−(H). Both restrict to faithful
traces on EndT−T (H) and these might be different. We denote by ∆H the, possibly unbounded,
positive, self-adjoint operator affiliated with Z(EndT−T (H)) such that TrrH = TrℓH( ·∆H). The
canonical trace on EndT−T (H), denoted by TrH is then defined as

TrH = TrℓH( ·∆
1/2
H ) = TrrH( ·∆

−1/2
H ) . (2.2)

2.2 Quasi-regular inclusions of von Neumann algebras

Definition 2.4. Let (S, τ) be a tracial von Neumann algebra and T ⊂ S a von Neumann
subalgebra. The quasi-normalizer of T inside S is defined as

QNS(T ) =
{
x ∈ S

∣∣∣ ∃x1, . . . , xn, y1, . . . , ym ∈ S such that xT ⊂
n∑

i=1

Txi and

Tx ⊂
m∑

j=1

yjT
}
.

We say that T ⊂ S is quasi-regular if QNS(T )
′′ = S.

For irreducible subfactors T ⊂ S, the quasi-normalizer is particularly well behaved, as can
be seen from the following lemma. All the results in the lemma can be deduced from [PP84,
Section 1]. For the convenience of the reader, we give a self contained proof.

Lemma 2.5. Let (S, τ) be a II1 factor and T ⊂ S an irreducible subfactor. Denote by E :
S → T the unique trace preserving conditional expectation. Let K ⊂ L2(S) be a finite index
T -subbimodule.

1. There exists a basis (in the sense of [PP84]) of K ∩ S as a right T -module: elements
x1, . . . , xn ∈ K ∩ S satisfying

pK(x) =
n∑

i=1

xiE(x∗i x) for all x ∈ S ,

where pK is the orthogonal projection of L2(S) onto K.

2. Similarly, there exists a basis of K ∩ S as a left T -module: elements y1, . . . , ym ∈ K ∩ S
such that

pK(x) =

m∑

j=1

E(xy∗j )yj for all y ∈ S .
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3. The space of T -bounded vectors in K equals K ∩ S.

4. The densely defined linear maps K ⊗T L
2(S) → L2(S) and L2(S) ⊗T K → L2(S) given

by multiplication are well defined bounded operators.

5. If K is irreducible, the multiplicity of K in L2(S) is bounded above by both dℓ(K) and
dr(K).

Let (Ki)i∈I be a maximal family of inequivalent irreducible finite index T -bimodules that appear
in L2(S). The map

⊕

i∈I

(
(L2(S),Ki)⊗K0

i

)
→ QNS(T ) : V ⊗ ξ 7→ V (ξ) (2.3)

is an isomorphism of vector spaces. Here, (L2(S),Ki) denotes the space of T -bimodular bounded
operators from Ki to L2(S) and K0

i ⊂ Ki is the subspace of T -bounded vectors. All tensor
products and direct sums are algebraic. Also, by 5, the vector spaces (L2(S),Ki) are finite
dimensional.

Proof. To prove 1-5, we may assume that K is irreducible. Since K is a finite index T -bimodule,
we can choose a T -bimodular unitary operator

V : p(Cn ⊗ L2(T )) → K ,

where the left T -module structure on p(Cn ⊗ L2(T )) is given by left multiplication with ψ(a),
a ∈ T and ψ : T → p(Mn(C)⊗T )p is a finite index inclusion. Define the elements xi ∈ K given
by xi := V (p(ei ⊗ 1)). Define V ∈ (Cn ⊗ L2(S))p given by

V =
n∑

i=1

ei ⊗ xi .

The T -bimodularity of V means that aV = Vψ(a) for all a ∈ T . In particular, V = Vp. Then,
VV∗ is an element of L1(S) that commutes with T . So, VV∗ is a multiple of 1. Therefore,
V ∈ (Cn ⊗ S)p and xi ∈ S for all i.

1. View V as a partial isometry from C
n ⊗ L2(T ) to L2(S) with initial projection p and final

projection pK. A direct computation gives that

V ∗(x) =

n∑

i=1

ei ⊗ E(x∗i x) for all x ∈ S .

From this, 1 follows immediately.

2. This is analogous to 1.

3. Denote by K0 ⊂ K the space of T -bounded vectors. The inclusion K ∩ S ⊂ K0 is obvious.
On the other hand, K0 = V (p(Cn ⊗ T )). Since all xi ∈ S, it follows that K0 ⊂ S.

4. Identifying
p(Cn ⊗ L2(T ))⊗T L

2(S) = p(Cn ⊗ L2(S)) ,

the multiplication operator K⊗T L
2(S) → L2(S) is the composition of the unitary operator

V ∗ ⊗ 1 : K ⊗T L
2(S) → p(Cn ⊗ L2(S))
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and the bounded operator p(Cn ⊗ L2(S)) → L2(S) given by left multiplication with V.

5. Assume that the T -bimodule p(Cn⊗L2(T )) appears at least k times in L2(S). We then find,
for i = 1, . . . , k, T -bimodular isometries

Vi : p(C
n ⊗ L2(T )) → L2(S)

with orthogonal ranges. The corresponding elements Vi ∈ (Cn ⊗ S)p then satisfy

(id ⊗ E)(V∗
j Vi) = δi,jp .

Since ViV
∗
j belongs to T ′ ∩ S = C1, it follows that

ViV
∗
j = δi,j(Tr⊗τ)(p) 1 = δi,j dr(K) 1 .

The elements dr(K)−1/2Vi are thus partial isometries in Cn ⊗ S with left support equal to 1
and orthogonal right supports below p. It follows that k ≤ (Tr⊗τ)(p) = dr(K). By symmetry,
also k ≤ dℓ(K).

To prove the remaining statement in the lemma, observe that the map in (2.3) is injective and
has its range in QNS(T ). When x ∈ QNS(T ), define K as the closed linear span of TxT . Then,
K is a finite index T -bimodule and x is a T -bounded vector in K. So, x lies in the range of the
map in (2.3).

2.3 Rank completions

Let (A, τ) be a von Neumann algebra with a normal faithful tracial state and let H be a (purely
algebraic) A-bimodule. In [T06, Section 2], the following quasi-metric is defined on H. For all
ξ, η ∈ H, we put

[ξ] := inf{τ(p) + τ(q) | (1− p)ξ(1− q) = 0} and drank(ξ, η) := [ξ − η] .

As explained in [T06, Section 2], the separation/completion of H w.r.t. rank metric drank is
again an A-bimodule. It is called the rank completion of H.

In the framework of quasi-regular inclusions T ⊂ S, we will use the rank completion w.r.t.
A = Z(T ). The following lemma is then of crucial technical importance.

Lemma 2.6. Let (S, τ) be a tracial von Neumann algebra, T ⊂ S a von Neumann subalgebra
and S a ∗-algebra with T ⊂ S ⊂ QNS(T ). Let H be a (purely algebraic) S-bimodule. Consider
the rank metric on H viewed as a Z(T )-bimodule. Both the left and the right module actions
of S on H are rank continuous. Hence, the rank completion of H canonically is an S-bimodule.

Proof. Fix x ∈ S. By symmetry, it suffices to prove that the left action of x on H is a rank
continuous map. Denote by K ⊂ L2(S) the Hilbert T -bimodule defined as the closed linear span
of TxT . Since x ∈ QNS(T ), we see that K is a bifinite Hilbert T -bimodule. By Proposition 2.3,
we can decompose K as the direct sum of finitely many irreducible T -bimodules K1, . . . ,Kη .
Each of these Kj is an αj-T -bimodule, where αj is a partial automorphism of Z(T ). It follows
that for every projection p ∈ Z(T ), we have

xp = p0xp where p0 = α1(p) ∨ · · · ∨ αη(p) . (2.4)

Fix ε > 0. We construct δ > 0 such that for every ξ ∈ H with [ξ] < δ, we have [xξ] < ε. Since
the αj are normal partial automorphisms, we can take δ1 > 0 such that for any projection
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p ∈ Z(T ) with τ(p) < δ1, we have τ(αj(p)) < ε/(2η). Put δ = min{δ1, ε/2}. Take ξ ∈ H with
[ξ] < δ. We prove that [xξ] < ε.

Take projections p, q ∈ Z(T ) such that τ(p) + τ(q) < δ and (1 − p)ξ(1 − q) = 0. Define
p0 = α1(p) ∨ · · · ∨ αη(p). Since τ(p) < δ1, we get that τ(p0) < ε/2. From (2.4), we get that
xp = p0xp and thus, (1− p0)x = (1− p0)x(1− p). Therefore,

(1− p0)xξ(1− q) = (1− p0)x(1− p)ξ(1− q) = 0 .

Since τ(p0) < ε/2 and τ(q) < ε/2, we conclude that [xξ] < ε.

2.4 Rigid C∗-tensor categories

Recall that a rigid C∗-tensor category is a C∗-tensor category that is semisimple, with irre-
ducible tensor unit ε ∈ C and with every object α ∈ C having an adjoint α ∈ C that is both a
left and a right dual of α. For basic definitions and results on rigid C∗-tensor categories, we
refer to [NT13, Sections 2.1 and 2.2].

For α, β ∈ C, the finite dimensional Banach space of morphisms from α to β is denoted by
(β, α). Recall that End(α) = (α,α) is a finite dimensional C∗-algebra. We denote the tensor
product of α, β ∈ C by juxtaposition αβ. For every α ∈ C, we choose a standard solution of the
conjugate equations (in the sense of [LR95], see also [NT13, Definition 2.2.12]): sα ∈ (αα, ε)
and tα ∈ (αα, ε) such that

(t∗α ⊗ 1)(1 ⊗ sα) = 1 , (s∗α ⊗ 1)(1 ⊗ tα) = 1 and t∗α(1⊗X)tα = s∗α(X ⊗ 1)sα (2.5)

for all X ∈ End(α). These sα, tα are unique up to unitary equivalence and the functional
Trα(X) = t∗α(1⊗X)tα = s∗α(X⊗1)sα on End(α) is uniquely determined and tracial. The trace
Trα is non-normalized: Trα(1) = d(α), the categorical dimension of α.

We also consider the partial traces

Trα ⊗id : (αβ, αγ) → (β, γ) : (Trα ⊗id)(S) = (t∗α ⊗ 1)(1 ⊗ S)(tα ⊗ 1) ,

id⊗ Trα : (βα, γα) → (β, γ) : (id ⊗Trα)(S) = (1⊗ s∗α)(S ⊗ 1)(1⊗ sα) .

Note that Trβ ◦(Trα ⊗id) = Trαβ = Trα ◦(id⊗ Trβ) on (αβ, αβ).

We denote by Irr(C) a set of representatives of all irreducible objects in C. The fusion ∗-algebra
C[C] of C has Irr(C) as a vector space basis, with

α · β =
∑

γ∈Irr(C)

mult(αβ, γ) γ and α# = α , (2.6)

where mult(αβ, γ) denotes the multiplicity of γ ∈ Irr(C) in αβ, i.e. the dimension of the vector
space (αβ, γ).

Using the categorical trace, all spaces of morphisms (β, α), for α, β ∈ C, are finite dimensional
Hilbert spaces with scalar product

〈V,W 〉 = Trβ(V W
∗) = Trα(W

∗V ) for all V,W ∈ (β, α) .

We denote by onb(β, α) any choice of orthonormal basis of the Hilbert space (β, α). When
α ∈ Irr(C) and V,W ∈ (β, α), we have that W ∗V ∈ (α,α) = C1. Therefore, for all β ∈ C, we
have ∑

α∈Irr(C)

∑

V ∈onb(β,α)

d(α)V V ∗ = 1 . (2.7)
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2.5 Subfactors, their standard invariant and symmetric enveloping algebra

Let N ⊂M be an inclusion of II1 factors with finite Jones index, [M : N ] <∞. Let N ⊂M ⊂
M1 ⊂ · · · be the associated Jones tower and use the convention thatM0 =M ,M−1 = N . Recall
that for all n ≥ 0,Mn+1 is generated byMn and the Jones projection en : L2(Mn) → L2(Mn−1).
The relative commutants Aij = M ′

i ∩Mj , i ≤ j, form a lattice of multimatrix algebras called
the standard invariant. Together with the projections en ∈ Aij , i < n < j, they form a λ-lattice
in the sense of [P94b], with λ = [M : N ]−1.

Another axiomatization for the standard invariant of a subfactor is given by Jones [J99]. Indeed,
he showed that the axioms of a λ-lattice are equivalent to the existence of a planar algebra
structure on the linear spaces Aij . A key ingredient is the assignment to the isotopy invariance
class of a planar tangle T of a certain multi-linear map ZT between certain tensor products of
these linear spaces. We refer to [J99] for details.

We also consider the C∗-tensor category C of all M -bimodules that are isomorphic to a finite
direct sum of M -subbimodules of ML

2(Mn)M for some n. Note that C is a rigid C∗-tensor
category.

For every extremal4 finite index subfactor N ⊂M , we consider the symmetric enveloping (SE)
algebra S =M ⊠eN M

op introduced in [P94a, P99]. By [P94a, P99], S is the unique tracial von
Neumann algebra generated by commuting copies of M and Mop together with an orthogonal
projection eN that serves as the Jones projection for both N ⊂ M and Nop ⊂ Mop. Writing
T = M ⊗Mop, we refer to T ⊂ S as the SE-inclusion for the subfactor N ⊂ M . By [P99],
T ⊂ S is irreducible and quasi-regular.

Denote by C the C∗-tensor category of M -bimodules generated by N ⊂M as above. By [P99],
we have

L2(S) =
⊕

α∈Irr(C)

(
Hα ⊗Hα

)
(2.8)

as T -bimodules. Given any C∗-tensor category C of finite index M -bimodules having equal left
and right dimension, one can define the SE-inclusion T ⊂ S with T =M ⊗Mop and such that
(2.8) holds; see [LR94, M99] and see also [PV14, Remark 2.7].

3 The tube ∗-algebra of an irreducible quasi-regular inclusion

Let N ⊂ M be an extremal finite index subfactor with associated SE-inclusion T ⊂ S (see
Section 2.5). In [PV14], the representation theory of the standard invariant of N ⊂ M was
defined as the class of SE-correspondences, i.e. S-bimodules H that are generated by T -central
vectors. It was shown that this representation theory only depends on the standard invariant.
Denoting by C the tensor category of M -bimodules generated by N ⊂ M , the notions of an
admissible state on the fusion ∗-algebra C[C] (see (2.6)) and an admissible representation of
C[C] were defined in [PV14] and characterized purely in terms of C as a rigid C∗-tensor category.
It was proved that there is a canonical bijection between SE-correspondences and admissible
representations of C[C].

In [NY15a], a more categorical point of view on this representation theory was given. For any
rigid C∗-tensor category C, the notion of a unitary half braiding on an ind-object of C was defined
(see Section 3.4 for details). In the case where C is the category of finite index M -bimodules

4This means that the natural anti-isomorphism between M ′ ∩ M1 and N ′ ∩ M is trace preserving. This is
equivalent with all M -subbimodules of L2(Mn) having equal left and right M -dimension.
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generated by an extremal subfactor N ⊂M with associated SE-inclusion T ⊂ S, it was proved
in [NY15a] that there is a canonical bijection between the class of these unitary half-braidings
and the generalized SE-correspondences, i.e. the S-bimodules H that, as a T -bimodule, are a
direct sum of T -bimodules of the form Hα ⊗Hβ, α, β ∈ C (recall that T =M ⊗Mop). In this
picture, one should think of the SE-correspondences as the spherical part of the representation
theory given by all generalized SE-correspondences.

In [GJ15], the representation theory of a rigid C∗-tensor category has been developed further
and linked to the tube ∗-algebra A of Ocneanu [O93]. This ∗-algebra A, whose construction
is recalled in Section 3.3 below, comes with a family of projections (pi)i∈Irr(C) and a canonical
isomorphism pε · A · pε ∼= C[C]. It was proved in [GJ15] that a state ω on C[C] is admissible if
and only if ω remains positive on A.

The main parts of this section are 3.1 and 3.2. Inspired by Ocneanu’s tube algebra of a tensor
category ([O93]) and the above connection between representations of the tube algebra and
SE-correspondences, we define a tube ∗-algebra A for an arbitrary irreducible quasi-regular
inclusion T ⊂ S of II1 factors, see Section 3.1. In the special case where T ⊂ S is an SE-
inclusion, our tube algebra is Morita equivalent with Ocneanu’s, see Proposition 3.12.

We actually define the tube ∗-algebra A for an irreducible quasi-regular inclusion T ⊂ S
together with a choice of tensor category C of finite index T -bimodules containing all finite index
T -subbimodules of L2(S). A canonical choice for C is of course the tensor category generated
by all finite index T -subbimodules of L2(S), but it is convenient to also allow larger choices
of C. In Section 3.2, we construct a canonical bijection between Hilbert space representations
of the tube ∗-algebra A and Hilbert S-bimodules H that, as a T -bimodule, are a direct sum
of T -bimodules in C. In this way, the ∗-algebra A exactly encodes the S-bimodules that are
“discrete” as a T -bimodule (i.e. a direct sum of finite index T -subbimodules).

In the second part of this section, we unify and complete the different pictures of the repre-
sentation theory mentioned above. For general rigid C∗-tensor categories C, we construct in
Section 3.4 a canonical bijection between Hilbert space representations of the tube ∗-algebra
A of C and unitary half braidings for C in the sense of [NY15a]. When C is a category of
M -bimodules with corresponding SE-inclusion T ⊂ S, we prove in Section 3.3 that there is a
canonical bijection between generalized SE-correspondences and Hilbert space representations
of the tube ∗-algebra (see Corollary 3.13). Finally, in Section 3.5, we explain the relation with
the approach of [J01], where representations of a planar algebra (i.e. standard invariant of a
subfactor) are viewed as Hilbert space representations of the associated affine category.

3.1 Construction of the tube ∗-algebra

Let S be a II1 factor and T ⊂ S an irreducible quasi-regular subfactor. Given Hilbert T -
bimodules H1,H2, we say that a T -bimodular bounded operator V : H2 → H1 has finite rank
if the closure of V (H2) is a finite index T -bimodule. We denote the vector space of these finite
rank T -bimodular operators as (H1,H2).

Fix a tensor category C of finite index T -bimodules containing all finite index T -subbimodules
of L2(S). Realize every i ∈ Irr(C) as an irreducible T -bimodule Hi. Write S = QNS(T ). With
some abuse of notation, we denote for all i, j ∈ Irr(C),

(iS, Sj) := (Hi ⊗T L
2(S), L2(S)⊗T Hj) .

For every finite subset F ⊂ Irr(C), denote by eF the orthogonal projection of L2(S) onto the
sum of the T -subbimodules of L2(S) that are equivalent with one of the Hi, i ∈ F . By Lemma
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2.5, every eF has finite rank. Also, a bounded T -bimodular operator V : L2(S) ⊗T Hj →
Hi ⊗T L

2(S) has finite rank if and only if there exists a finite subset F ⊂ Irr(C) satisfying
V = V (eF ⊗ 1) = (1⊗ eF )V .

We can then define the tube ∗-algebra A associated with T ⊂ S and C. As a vector space, A
is defined as the algebraic direct sum

A =
⊕

i,j∈Irr(C)

(iS, Sj) .

The product of V ∈ (iS, Sk) and W ∈ (k′S, Sj) is denoted by V ·W , belongs to (iS, Sj) and is
defined as

δk,k′ (1⊗m)(V ⊗ 1)(1 ⊗W )(m∗ ⊗ 1) . (3.1)

Here, m : S ⊗T S → S denotes the multiplication map and m∗ is its adjoint w.r.t. the Hilbert
space structures L2(S) ⊗T L

2(S) and L2(S). Since m need not extend to a bounded operator
from L2(S) ⊗T L2(S) to L2(S), one has to be careful in the interpretation of (3.1). But
since V and W are finite rank intertwiners, we can take a finite subset F ⊂ Irr(C) such that
W = W (eF ⊗ 1) and V = (1⊗ eF )V . By Lemma 2.5, we have that m(eF ⊗ 1) and m(1⊗ eF )
are bounded T -bimodular operators from L2(S)⊗T L

2(S) to L2(S). So, the expression in (3.1)
is a well defined finite rank intertwiner.

The associativity of the product map gives us the associativity of the product on A.

We now define the adjoint operation on A. Denote by δ : L2(T ) → L2(S) the inclusion
map. Then denote a = m∗δ. Again, a need not be a well defined intertwiner from L2(T ) to
L2(S)⊗T L

2(S). But, whenever F ⊂ Irr(C) is a finite subset, we have that (eF⊗1)a = (1⊗eF )a
is well defined and given by

(eF ⊗ 1)a =

n∑

i=1

xi ⊗ x∗i ,

where x1, . . . , xn is a basis of eF (L
2(S)) as a right T -module (see Lemma 2.5.1). One checks

that
(a∗ ⊗ 1)(1 ⊗ a) = 1 ,

which rigorously speaking only makes sense after multiplying with eF for an arbitrary finite
subset F ⊂ Irr(C).

The adjoint of V ∈ (iS, Sj) is denoted by V #, belongs to (jS, Si) and is defined as

V # = (a∗ ⊗ 1⊗ 1)(1 ⊗ V ∗ ⊗ 1)(1⊗ 1⊗ a) .

The fundamental properties of m, a and δ can be summarized as:

m(1⊗m) = m(m⊗ 1) , (a∗ ⊗ 1)(1 ⊗m∗) = m = (1⊗ a∗)(m∗ ⊗ 1) ,

m(1⊗ δ) = 1 = m(δ ⊗ 1) , (a∗ ⊗ 1)(1 ⊗ a) = 1 = (1⊗ a∗)(a⊗ 1) .
(3.2)

As above, these formulas only make sense after multiplication with enough projections eF ,
F ⊂ Irr(C) finite.

Using (3.2), one easily checks that A is a ∗-algebra. When Irr(C) is infinite, the ∗-algebra A
is non-unital. But, for every i ∈ Irr(C), the element (1 ⊗ δ)(δ∗ ⊗ 1) ∈ (iS, Si) is a self-adjoint
projection in A that we denote as pi. Note that (iS, Sj) = pi · A · pj. So, A always has enough
self-adjoint idempotents.
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When K is a Hilbert T -bimodule that is a direct sum of finite index T -bimodules, then the
algebra (K,K) of finite rank intertwiners has two natural faithful traces:

TrℓK(W ) =
∑

i

〈W (ξi), ξi〉 and TrrK(W ) =
∑

j

〈W (ηj), ηj〉 ,

where the ξi, resp. ηj, form an orthonormal basis of K as a left, resp. right, T -module. We have
TrℓK(1) = dℓ(K) and TrrK(1) = dr(K). We have Trℓ = Trr if and only if all subbimodules of K
have equal left and right dimension. We denote by ∆K the positive, self-adjoint, but generally
unbounded, operator on K such that

Trr( · ) = Trℓ(∆K · ) .

For every finite index intertwiner V ∈ (K,K′), we have that ∆KV and V∆K′ are equal and
bounded. When K is an irreducible finite index T -bimodule, (K,K) is one-dimensional and ∆K

equals the ratio dr(K)/dℓ(K) between the right and left T -dimension of K.

In particular, we consider the positive self-adjoint, but generally unbounded, operator ∆S on
L2(S). For every finite subset F ⊂ Irr(C), we have that ∆SeF is bounded and given by

∆S =
∑

α∈F

∆αe{α} .

Since intertwiner spaces have a left and a right trace, we also have a left and a right scalar
product on all our intertwiner spaces, defined as

〈V,W 〉ℓ = TrℓK(V W
∗) = TrℓH(W

∗V ) , 〈V,W 〉r = TrrK(V W
∗) = TrrH(W

∗V )

for all V,W ∈ (K,H).

Finally, note that

Trℓ(V ) = a∗(1⊗ V )a and Trr(V ) = a∗(V ⊗ 1)a for all V ∈ (S, S) . (3.3)

The following lemma implies that every ∗-representation of A on a pre-Hilbert space is auto-
matically by bounded operators, and that A has a universal enveloping C∗-algebra.

Lemma 3.1. For every i ∈ Irr(C) and every finite subset F ⊂ Irr(C), we have

∑

j∈Irr(C)

∑

W∈onbℓ((1⊗eF )(iS,Sj)(eF⊗1))

dℓ(j) W ·W# = dr(eF (L
2(S)))2 pi . (3.4)

Here, we denote by onbℓ any choice of orthonormal basis w.r.t. the left scalar product. Also
note that the sum in (3.4) only has finitely many terms : since F is finite and i is fixed, there
are only finitely many j ∈ Irr(C) for which (1 ⊗ eF )(iS, Sj)(eF ⊗ 1) is non-zero, and each of
these is a finite dimensional Hilbert space.

Proof. Note that the map

(eF ⊗ 1⊗ eF )(SiS, j) → (1⊗ eF )(iS, Sj)(eF ⊗ 1) :W 7→ (a∗ ⊗ 1⊗ 1)(1⊗W )
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is a unitary w.r.t. the left scalar products and that
(
(a∗⊗1⊗1)(1⊗W )

)#
= (W ∗⊗1)(1⊗1⊗a).

Therefore, the left hand side of (3.4) equals

∑

j∈Irr(C)

∑

W∈onbℓ((eF⊗1⊗eF )(SiS,j))

dℓ(j) (a
∗ ⊗ 1⊗m)(1⊗WW ∗ ⊗ 1)(m∗ ⊗ 1⊗ a)

= (a∗ ⊗ 1⊗m)(1⊗ eF ⊗ 1⊗ eF ⊗ 1)(m∗ ⊗ 1⊗ a)

= dr(eF (L
2(S)))2 (1 ⊗ δ)(δ∗ ⊗ 1) = dr(eF (L

2(S)))2 pi ,

because m(eF ⊗ 1)a = m(1⊗ eF )a = dr(eF (L
2(S)))δ.

The ∗-algebra A has the following natural weight τ : A → C with corresponding von Neumann
algebra completion A′′ acting on L2(A). In the unimodular case, i.e. when all T -subbimodules
of L2(S) have equal left and right dimension, τ is a trace and A′′ is a semifinite von Neumann
algebra.

Proposition 3.2. Let S be a II1 factor, T ⊂ S an irreducible quasi-regular subfactor and C a
tensor category of finite index T -bimodules containing all finite index T -subbimodules of L2(S).
Define the ∗-algebra A as above. The linear map

τ : A → C : τ(V ) =
∑

i∈Irr(C)

Trℓi((1⊗ δ∗)Vii(δ ⊗ 1))

is a faithful positive functional on A. Denote by L2(A) the completion of A w.r.t. the norm
‖V ‖2,τ =

√
τ(V # · V ). Left multiplication extends to a ∗-representation of A by bounded

operators on L2(A) and τ extends uniquely to a normal semifinite faithful weight on A′′ with
modular automorphism group

στt (V ) = (1⊗∆it
S )V for all V ∈ (iS, Sj) .

Proof. Take V,W ∈ (iS, Sj). A direct computation yields

τ(V # ·W ) = TrℓSj(V
∗W ) and τ(W · V #) = TrℓSj((∆S ⊗ 1)V ∗W ) .

By Lemma 3.1, the representation of A on L2(A) is indeed by bounded operators. The remain-
ing statements follow by standard methods of modular theory.

The following definition is now a natural one and corresponds exactly to the case where τ is a
trace.

Definition 3.3. Let S be a II1 factor and T ⊂ S an irreducible quasi-regular subfactor. We
say that the inclusion T ⊂ S is unimodular when all T -subbimodules of L2(S) have equal left
and right dimension.

3.2 Representations of the tube ∗-algebra and Hilbert bimodules

We say that a Hilbert space K is a right Hilbert A-module when we are given a ∗-anti-
homomorphism from A to B(K). We denote the right action of V ∈ A on ξ ∈ K as ξ · V .
We say that K is non-degenerate when K · A has dense linear span in K. Note that K is
non-degenerate if and only if the linear span of the subspaces K · pi, i ∈ Irr(C), is dense in K.
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Theorem 3.4. Let S be a II1 factor, T ⊂ S an irreducible quasi-regular subfactor and C a
tensor category of finite index T -bimodules containing all finite index T -subbimodules of L2(S).
Let A be the associated tube ∗-algebra. The formulas below provide a natural bijection between

• Hilbert S-bimodules H that, as a T -bimodule, are a direct sum of T -bimodules contained
in C ;

• non-degenerate right Hilbert A-modules.

Given a Hilbert S-bimodule H that, as a T -bimodule, is a direct sum of T -bimodules contained
in C, define for all i ∈ Irr(C), the space Ki := (H, i) and turn Ki into a Hilbert space using the
right scalar product 〈ξ, η〉 = Trri (η

∗ξ). Denote mlr : S⊗T H⊗T S → H : mlr(x⊗ξ⊗y) = x ·ξ ·y.
Then,

ξ · V = mlr(1⊗ ξ ⊗ 1)(1 ⊗ V (∆
1/2
S

⊗ 1))(a⊗ 1) (3.5)

for all V ∈ (iS, Sj) and ξ ∈ Ki = (H, i), turns the direct sum K = ⊕i∈Irr(C)Ki into a non-
degenerate right Hilbert A-module.

Given a non-degenerate right Hilbert A-module K, denote Ki := K · pi for all i ∈ Irr(C) and
defineH0 as the algebraic direct sum of all Ki⊗H0

i , i ∈ Irr(C), whereH0
i is the set of T -bounded

vectors in the irreducible T -bimodule Hi. The formulas

(ξ ⊗ µ) · x =
∑

j∈Irr(C)

∑

U∈onbr(iS,j)

dr(j) ξ · (U(δ∗ ⊗ 1))⊗ U∗(µ ⊗ x) ,

x · (ξ ⊗ µ) =
∑

j∈Irr(C)

∑

U∈onbℓ(j,Si)

dℓ(j) ξ · ((1⊗ δ)U(∆
1/2
S

⊗ 1))# ⊗ U(x⊗ µ)
(3.6)

for all ξ ∈ Ki, µ ∈ H0
i and x ∈ S, together with the scalar product

〈ξ1 ⊗ µ1, ξ2 ⊗ µ2〉 =
1

dr(i)
δi,j 〈ξ1, ξ2〉 〈µ1, µ2〉

turn the Hilbert space completion H of H0 into a well defined Hilbert S-bimodule that, as a
T -bimodule, is a direct sum of copies of Hi, i ∈ Irr(C), with (H, i) = Ki.

Proof. Given a Hilbert S-bimoduleH and defining K0 as the algebraic direct sum of the Hilbert
spaces Ki := (H, i), a slightly tedious, but straightforward computation shows that (3.5) defines
a ∗-anti-representation of A on K0. By Lemma 3.1, this anti-representation is by bounded
operators on the Hilbert space completion K of K0 and we have found a non-degenerate right
Hilbert A-module K.

Conversely, assume that K is a non-degenerate right Hilbert A-module and define the pre-
Hilbert space H0 as above. It is again straightforward but slightly tedious to check that the
formulas (3.6) turn H0 into an S-bimodule satisfying

〈x · µ · y, µ′〉 = 〈µ, x∗ · µ′ · y∗〉

for all x, y ∈ S and µ, µ′ ∈ H0. In order to prove that we can uniquely extend this to a Hilbert
S-bimodule structure on the Hilbert space completion H of H0, it suffices to prove that for all
i, j ∈ Irr(C), ξ ∈ Ki, ξ

′ ∈ Kj , µ ∈ H0
i and µ′ ∈ H0

j , the linear functionals

S → C : x 7→ 〈(ξ ⊗ µ) · x, ξ′ ⊗ µ′〉 and x 7→ 〈x · (ξ ⊗ µ), ξ′ ⊗ µ′〉
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extend to normal functionals on S. By symmetry, we only consider the first functional. It
follows from (3.6) that it is a finite linear combination of functionals of the form

x 7→ 〈U∗(µ⊗ x), µ′〉 (3.7)

with µ ∈ H0
i , µ

′ ∈ H0
j and U ∈ (iS, j). Since µ is a bounded vector, we can define the bounded

operator Lµ : L2(S) → Hi ⊗T L
2(S) given by Lµ(x) = µ⊗ x for all x ∈ S. It follows that

〈U∗(µ⊗ x), µ′〉 = 〈x,L∗
µ(U(µ′))〉 .

Since L∗
µ(U(µ′)) ∈ L2(S), the functional in (3.7) is indeed normal.

By construction, the above correspondence between Hilbert S-bimodules and HilbertA-modules
is indeed bijective, in the sense of the theorem.

Given an irreducible quasi-regular inclusion of II1 factors T ⊂ S, we have two natural S-
bimodules: the trivial S-bimodule L2(S) and the family of coarse S-bimodules L2(S)⊗T L

2(S),
as well as L2(S) ⊗T H ⊗T L

2(S) for an arbitrary T -bimodule H that is a direct sum of finite
index T -bimodules. Through Theorem 3.4, they correspond to the following representations of
the tube algebra. The proof of this lemma is given by a direct computation.

Lemma 3.5. Let T ⊂ S be an irreducible quasi-regular inclusion of II1 factors and C a tensor
category of finite index T -bimodules containing all finite index T -subbimodules of L2(S). Denote
by A the associated tube ∗-algebra.

Under the bijection of Theorem 3.4,

1. the S-bimodule L2(S) ⊗T L
2(S) corresponds to the right Hilbert A-module L2(pε · A),

where L2(A) is given by Proposition 3.2 and the right action of W ∈ A on L2(pε · A) is
given by right multiplication with στ−i/2(W ) ;

2. given a T -bimodule H that is a direct sum of T -bimodules in C, the S-bimodule L2(S)⊗T

H ⊗T L
2(S) corresponds to the right Hilbert A-module

⊕
i∈Irr(C)(H, i) ⊗ L2(pi · A) ; in

particular, with H =
⊕

i∈Irr(C)Hi, we find the right Hilbert A-module L2(A) ;

3. the S-bimodule L2(S) corresponds to the right Hilbert A-module defined by completing

Er :=
⊕

i∈Irr(C)

(S, i)

w.r.t. the left scalar product on (S, i) and right A-module structure given by

ξ · V = m(1⊗m)(1⊗ (ξ ⊗∆
1/2
S

)V )(a⊗ 1)

for all ξ ∈ (S, i) and V ∈ (iS, Sj).

Remark 3.6. 1. The right A-module Er should be considered as the trivial representation
of A. Its adjoint is the left A-module

Eℓ :=
⊕

i∈Irr(C)

(i, S)

with left A-module structure given by

V · ξ = (1⊗ a∗)((1⊗∆
−1/2
S

)V ⊗ 1)(1⊗ ξ ⊗ 1)(m∗ ⊗ 1)m∗

for all V ∈ (iS, Sj) and ξ ∈ (j, S).
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2. Also this left A-module Eℓ can be completed into a Hilbert A-module by using the left
scalar product on each (i, S).

3. In Remark 3.8, we will see that Eℓ and Er can also be viewed as the GNS-spaces of A
w.r.t. a canonical state on A.

Corollary 3.7. Let S be a II1 factor, T ⊂ S an irreducible quasi-regular subfactor and C a
tensor category of finite index T -bimodules containing all finite index T -subbimodules of L2(S).
Let A be the associated tube ∗-algebra. Then (3.8) below gives a bijection between

• unital, completely positive, trace preserving T -bimodular maps ϕ : S → S ;

• states ωϕ on A with the property that ωϕ(pε) = 1.

This bijection is given by

ωϕ(V ) = Tr(ϕ ◦ V ) for all V ∈ (S, S) and

ωϕ(V ) = 0 when V ∈ (iS, Sj) with i 6= ε or j 6= ε.
(3.8)

Note that for all V ∈ (S, S) and for every T -bimodular linear map ϕ : S → S, we can view ϕ◦V
as a finite rank T -bimodular map, i.e. as an element of (S, S). We denote by Tr the categorical

trace on (S, S) given by Tr( · ) = Trr(∆
−1/2
S

· ) = Trℓ(∆
1/2
S

· ).

Note that whenever ϕ : S → S is a normal, completely positive, T -bimodular map, the irre-
ducibility of T ⊂ S implies that ϕ(1) = λ1 and τ ◦ ϕ = λ τ for some λ ≥ 0. It is therefore not
restrictive to only consider unital, trace preserving maps.

Proof. Given a unital, completely positive, trace preserving T -bimodular map ϕ : S → S,
define the S-bimodule H as the separation/completion of S ⊗ S w.r.t. the scalar product
〈x ⊗ y, a ⊗ b〉 = τ(xϕ(yb∗)a∗). Note that by construction, as a T -bimodule, H is isomorphic
with a direct sum of irreducible T -subbimodules of L2(S)⊗T L

2(S), which thus belong to C. By
Theorem 3.4, we find a ∗-representation of A on a Hilbert space K and a unit vector ξ0 ∈ K ·pε
corresponding to the T -central vector 1⊗ 1 ∈ H. Define ωϕ as the vector state on A given by
ξ0. A direct computation shows that (3.8) holds.

Conversely, given a state ω : A → C with ω(pε) = 1, combining the GNS-construction and
Theorem 3.4, we find an S-bimodule H and a T -central unit vector ξ1 ∈ H. Denote by ϕ the
unique unital, completely positive, trace preserving T -bimodular map ϕ : S → S satisfying
〈x · ξ1 · y, ξ1〉 = τ(xϕ(y)) for all x, y ∈ S. A direct computation shows that ωϕ = ω.

Remark 3.8. The trivial and the regular representation of Lemma 3.5 can also be understood
in the context of Corollary 3.7. The identity map S → S : x 7→ x, corresponds to the state
ǫ : A → C given by ǫ(V ) = Tr(V ) for all V ∈ (S, S) and ǫ(V ) = 0 if V ∈ (iS, Sj) with i 6= ε
or j 6= ε. Performing the GNS-construction with this state ǫ, we obtain the right Hilbert
A-module Er of Lemma 3.5. Also note that ǫ is a character when restricted to pε · A · pε, but
it is not a character on the entire ∗-algebra A.

The map S → S : x 7→ τ(x)1 corresponds to the state A → C : V 7→ τ(pε · V · pε). Performing
the GNS-construction with this state, we obtain the right Hilbert A-module L2(pε · A).
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3.3 Ocneanu’s tube ∗-algebra of a rigid C∗-tensor category

Let C be a rigid C∗-tensor category. We recall the construction of Ocneanu’s tube ∗-algebra,
introduced in [O93] when C has only finitely many irreducible objects. As a vector space, A is
given as the algebraic direct sum

A =
⊕

i,j,α∈Irr(C)

(iα, αj) .

So, an element V ∈ A is given by elements V α
ij ∈ (iα, αj), with only finitely many of these

elements being nonzero. Whenever V ∈ (iα, αj), we also view V as an element of A living in the
corresponding direct summand. When i, j ∈ Irr(C) and β ∈ C is a not necessarily irreducible
object, every V ∈ (iβ, βj) defines an element in A concretely given by

V α
kl = δi,k δj,l

∑

α∈Irr(C)

∑

U∈onb(β,α)

d(α) (1⊗ U∗)V (U ⊗ 1) . (3.9)

Here, we use the same conventions for the orthonormal basis onb(β, α) as in (2.7).

We then turn A into a ∗-algebra:

V ·W = δk,k′ (V ⊗ 1)(1 ⊗W ) if V ∈ (iα, αk) and W ∈ (k′β, β, j) ;

V # = (t∗α ⊗ 1⊗ 1)(1⊗ V ∗ ⊗ 1)(1 ⊗ 1⊗ sα) if V ∈ (iα, αj).

Note that V # ∈ (jα, αi) when V ∈ (iα, αj). To avoid confusion with composition and adjoints
of morphisms, we systematically write the dot and use the symbol # for the operations in A.

The identity morphism 1 ∈ (iε, εi), when viewed as an element of A, is denoted as pi. Note
that the pi are self-adjoint idempotents and that

pi · A · pj =
⊕

α∈Irr(C)

(iα, αj)

as vector spaces.

Identifying α ∈ Irr(C) with the identity map 1 ∈ (εα, αε), we get an isomorphism pε · A · pε ∼=
C[C], where C[C] is the fusion ∗-algebra of C (see (2.6)).

The co-unit ǫ : A → C is the unital ∗-homomorphism given by ǫ(pi) = 0 for all i 6= ε and
ǫ(α) = d(α) for all α ∈ Irr(C) viewed as the identity map 1 ∈ (εα, αε).

The following lemma ensures purely algebraically that there is a universal C∗-norm on A, a
fact that was proved already in [GJ15]. The proof is identical to the proof of Lemma 3.1.

Lemma 3.9. For all i ∈ Irr(C) and α ∈ C, we have that

∑

j∈Irr(C)

∑

W∈onb(iα,αj)

d(j)W ·W# = d(α)pi .

For every ∗-representation π of A as linear operators on a pre-Hilbert space H, we have that
‖π(V )‖ ≤ d(α)‖V ‖ for all i, j ∈ Irr(C), α ∈ C, V ∈ (iα, αj). Here, ‖V ‖ denotes the operator
norm of V ∈ (iα, αj).

As in Proposition 3.2, we have a natural trace on the tube ∗-algebra A with corresponding von
Neumann algebra completion A′′.
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Proposition 3.10. The map

τ : A → C : τ(V ) =
∑

i∈Irr(C)

Tri(V
ε
ii)

is a positive faithful trace on A : τ(V ·W ) = τ(W · V ) and τ(V # · V ) ≥ 0 for all V,W ∈ A
with τ(V # · V ) = 0 if and only if V = 0.

Denote by L2(A) the completion of A w.r.t. the norm ‖V ‖2,τ =
√
τ(V # · V ). For every V ∈ A,

left multiplication as well as right multiplication with V extend to bounded operators on L2(A).

Denote by A′′ the von Neumann algebra generated by the left action of A on L2(A). Then τ
uniquely extends to a normal semifinite faithful trace on A′′.

Proof. A direct computation gives for all i, j, α, β ∈ Irr(C) and V ∈ (iα, αj), W ∈ (iβ, βj) that

τ(V ·W#) = δβ,α
1

d(α)
Triα(VW

∗) and τ(W# · V ) = δβ,α
1

d(α)
Trαj(W

∗V ) .

It follows that τ is a trace. The remaining statements follow from Lemma 3.9.

Remark 3.11. Given i, j, α ∈ Irr(C), we have considered (iα, αj) as a Hilbert space using the
scalar product 〈V,W 〉 = Triα(VW

∗). Now, we can also view (iα, αj) as a subspace of A and
thus, of L2(A). Then, the scalar product is scaled with the factor d(α).

When using the notation onb(iα, αj), we always refer to an orthonormal basis for the first
mentioned scalar product. This is the most convenient, since we also use such orthonormal
bases on arbitrary spaces of morphisms (β, γ) with β, γ ∈ C.

Assume now that M is a II1 factor and that C is a tensor category of finite index M -bimodules
having equal left and right dimension. Consider the SE-inclusion T ⊂ S defined in Section 2.5.
We then have two tube ∗-algebras: Ocneanu’s tube algebra of the tensor category C that we
recalled above and the tube algebra of the quasi-regular inclusion T ⊂ S defined in Section 3.1.
We prove that both tube algebras are naturally strongly Morita equivalent.

Proposition 3.12. Let M be a II1 factor and C a tensor category of finite index M -bimodules
having equal left and right dimension. Put T =M⊗Mop and let C1 be the tensor category of T -
bimodules generated by α⊗β, α, β ∈ C. The formula (3.10) below defines a Morita equivalence
between Ocneanu’s tube ∗-algebra associated with C (as defined in this section) and the tube
∗-algebra associated with the quasi-regular SE-inclusion T ⊂ S and C1 (as defined in Section
3.1).

Proof. Note that for every rigid C∗-tensor category and every set of objects O ⊂ C, we can
define the ∗-algebra

AO =
⊕

i,j∈O

⊕

α∈Irr(C)

(iα, αj)

in exactly the same way as we defined the tube ∗-algebra A in the beginning of this section.
By construction, we have

AO =
⊕

i,j∈Irr(C)

(
Ki ⊗ pi · A · pj ⊗Kj

)
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where Ki is the vector space given as the algebraic direct sum Ki =
⊕

k∈O(k, i). So, when O
is large enough in the sense that for every i ∈ Irr(C), there exists a k ∈ O with (k, i) 6= {0}, we
get that AO is strongly Morita equivalent with A.

Returning to the context of Proposition 3.12, we put O = {β α | α, β ∈ Irr(C) }. We denote
by A1 the tube ∗-algebra associated with the quasi-regular inclusion SE-inclusion T ⊂ S and
C1. Note that Irr(C1) = {α ⊗ β | α, β ∈ Irr(C)}. The construction of the SE-inclusion T ⊂ S
comes with canonical intertwiners δη ∈ (S, η ⊗ η) for every η ∈ Irr(C), see [PV14, Remark 2.7].

Let α,α′, β, β′, η, η′ ∈ Irr(C). Whenever V ∈ (αη, η′α′) and W ∈ (βη, η′β′), the tensor product
of V and W defines a morphism θ(V,W ), in the category C1, from (η′ ⊗ η′)(α′ ⊗ β′) to (α ⊗
β)(η ⊗ η). There is a unique ∗-isomorphism Ψ : A1 → AO given by

Ψ
(
(1⊗ δη)θ(V,W )(δ∗η′ ⊗ 1)

)
= (1⊗ V )(12 ⊗ s∗β′ ⊗ 1)(1 ⊗W ∗ ⊗ 12)(tβ ⊗ 13) (3.10)

for all α,α′, β, β′, η, η′ ∈ Irr(C), V ∈ (αη, η′α′) and W ∈ (βη, η′β′). Note that the right hand
side belongs to (βαη, ηβ′α′) and thus defines an element in AO.

It is straightforward to check that Ψ is indeed a ∗-isomorphism.

Still assume that M is a II1 factor and that C is a tensor category of finite index M -bimodules
having equal left and right dimension, with associated SE-inclusion T ⊂ S. Recall from the
first two paragraphs of Section 3 the notion of a generalized SE-correspondence. Combining
Proposition 3.12 and Theorem 3.4, we thus obtain the following result.

Corollary 3.13. Let M be a II1 factor and C a tensor category of finite index M -bimodules
having equal left and right dimension. There is a natural bijection between generalized SE-
correspondences of the SE-inclusion T ⊂ S and non-degenerate ∗-representations of the tube
∗-algebra A of C.

3.4 Representations of the tube ∗-algebra and unitary half braidings

Given a II1 factor M and a tensor category C of finite index M -bimodules having equal left
and right dimension, we have seen in Section 3.3 two equivalent ways to express the associated
representation theory: as generalized SE-correspondences for the SE-inclusion T ⊂ S and as
representations of the tube ∗-algebra A of C.

In [NY15a], it was proved that there is a natural bijection between generalized SE-correspon-
dences and unitary half braidings on ind-objects for C. Formally, an ind-object X ∈ ind-C
is a possibly infinite direct sum of objects in C. Then, ind-C is again a C∗-tensor category
and we refer to [NY15a, Section 1.2] for a rigorous definition. Following [NY15a], a unitary
half braiding σ on an ind-object X ∈ ind-C is a family of unitary morphisms σα ∈ (Xα,αX)
satisfying

• naturality, meaning that (1⊗ V )σα = σβ(V ⊗ 1) for all V ∈ (β, α) ;

• σε = id ;

• multiplicativity, meaning that σαβ = (σα ⊗ 1)(1⊗ σβ).

Let σ be a unitary half braiding on the ind-object X ∈ ind-C. Since C is a category of finite
index M -bimodules, we can realize ind-C as the category of Hilbert M -bimodules H that can
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be written as a direct sum of M -bimodules belonging to C. For every α ∈ C, we have the
M -bimodular unitary operator

σα : Hα ⊗M X → X ⊗M Hα .

Since L2(S) is the direct sum of the T -bimodules Hα ⊗ Hα, α ∈ Irr(C), we find a unitary
operator

Σ : L2(S)⊗M X → X ⊗M L2(S)

by composing

L2(S)⊗M X =
⊕

α∈Irr(C)

(Hα ⊗M X)⊗Hα
⊕σα−→

⊕

α∈Irr(C)

(X ⊗M Hα)⊗Hα = X ⊗M L2(S) .

Define H = L2(S)⊗M X and note that H is a left Hilbert S-module. Defining

ξ · x = Σ∗((Σξ) · x) , (3.11)

we also have a right Hilbert S-module structure on H. In [NY15a], it is proved that these left
and right actions commute and that H is a generalized SE-correspondence. Moreover, it is
proved in [NY15a] that all generalized SE-correspondences arise canonically in this way from
a unitary half braiding on an ind-object.

In combination with Corollary 3.13, there is thus also a natural bijection between non-degenerate
Hilbert space representations of the tube ∗-algebra A and unitary half braidings on ind-C. Both
the tube ∗-algebra A and the notion of a unitary half braiding are defined without referring to
the realization of C as a category of finite indexM -bimodules. It is therefore not surprising that
we can as follows construct this bijection in an abstract context of rigid C∗-tensor categories.

Proposition 3.14. Let C be a rigid C∗-tensor category and denote by A the associated tube ∗-
algebra. The following defines a natural bijection between unitary half braidings on ind-objects
for C and non-degenerate right Hilbert A-modules K.

• Given a unitary half braiding σ on X ∈ ind-C, define the Hilbert spaces Ki = (X, i),
i ∈ Irr(C) and define K as the orthogonal direct sum of all Ki, i ∈ Irr(C). The formula

ξ · V = (Trα ⊗id)(σ∗α(ξ ⊗ 1)V ) for all ξ ∈ Ki, V ∈ (iα, αj), i, j, α ∈ Irr(C) (3.12)

turns K into a non-degenerate right Hilbert A-module satisfying Ki = K · pi.

• Given a non-degenerate right Hilbert A-module K, write Ki = K · pi for all i ∈ Irr(C) and
define the ind-object X ∈ ind-C such that (X, i) = Ki for all i ∈ Irr(C). There is a unique
unitary half braiding σ on X satisfying

Trαj((1⊗ η∗)σ∗α(ξ ⊗ 1)V ) = 〈ξ · V, η〉 (3.13)

for all i, j, α ∈ Irr(C), ξ ∈ Ki, η ∈ Kj, S ∈ (iα, αj).

Proof. Let σ be a unitary half braiding on X ∈ ind-C. Define the pre-Hilbert space K0 as
the algebraic direct sum of the Hilbert spaces Ki, i ∈ Irr(C). Consider the bilinear map
K0 ×A → K0 given by (3.12). The multiplicativity of σ, i.e. σαβ = (σα ⊗ 1)(1 ⊗ σβ), implies
that (ξ · V ) ·W = ξ · (V ·W ) for all ξ ∈ K0, V,W ∈ A.
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Since σαα = (σα ⊗ 1)(1 ⊗ σα), we get 1⊗ tα = (σα ⊗ 1)(1⊗ σα)(tα ⊗ 1) and thus,

σα = (s∗α ⊗ 1⊗ 1)(1⊗ σ∗α ⊗ 1)(1 ⊗ 1⊗ tα) .

It follows that 〈ξ · V, η〉 = 〈ξ, η · V #〉 for all ξ, η ∈ K, V ∈ A.

By Lemma 3.9, this ∗-anti-representation of A on K0 is necessarily by bounded operators. So,
we can pass to the completion and have found the non-degenerate right Hilbert A-module K.

Conversely, assume that we are given a non-degenerate right Hilbert A-module K. Define the
ind-object X ∈ ind-C such that (X, i) = Ki for all i ∈ Irr(C). Define Xi as the sub-object of
X given as the direct sum of all sub-objects equivalent with i. For all fixed i, j, α ∈ Irr(C) and
every fixed V ∈ (iα, αj), we have that (ξ, η) 7→ 〈ξ · V, η〉 is a bounded sesquilinear form on
Ki ×Kj. So we have uniquely defined bounded morphisms σα,ij ∈ (Xiα,αXj) satisfying

Trαj((1⊗ η∗)σ∗α,ij(ξ ⊗ 1)S) = 〈ξ · S, η〉

for all ξ ∈ Ki, η ∈ Kj , S ∈ (iα, αj).

For fixed α, j ∈ Irr(C), there are only finitely many i ∈ Irr(C) for which (iα, αj) 6= {0}. So, for
fixed α, j ∈ Irr(C), there are only finitely many i ∈ Irr(C) for which σα,ij 6= 0. Similarly, for fixed
α, i ∈ Irr(C), there are only finitely many j ∈ Irr(C) for which σα,ij 6= 0. Define σα = (σα,ij)ij
as an infinite matrix indexed by Irr(C). We uniquely define σα for arbitrary objects α ∈ C such
that naturality holds. By the finiteness properties, all these infinite matrices can be multiplied.

The multiplicativity of the right A-action on K translates to σαβ = (σα ⊗ 1)(1⊗ σβ). We then
also get that 1⊗ tα = (σα ⊗ 1)(1 ⊗ σα)(tα ⊗ 1) and thus,

1 = σα (1⊗ 1⊗ s∗α)(1 ⊗ σα ⊗ 1)(tα ⊗ 1⊗ 1) .

The property that 〈ξ · V, η〉 = 〈ξ, η · V #〉 translates to

σ∗α = (1⊗ 1⊗ s∗α)(1 ⊗ σα ⊗ 1)(tα ⊗ 1⊗ 1)

and we find that σασ
∗
α = 1.

From the formula σαα = (σα ⊗ 1)(1 ⊗ σα), we also get that t∗α ⊗ 1 = (1 ⊗ t∗α)(σα ⊗ 1)(1 ⊗ σα)
and thus,

1 = (1⊗ 1⊗ t∗α)(1⊗ σα ⊗ 1)(sα ⊗ 1⊗ 1) σα ,

meaning that 1 = σ∗ασα. Altogether, it follows that for every α ∈ C, the infinite matrix σα
actually defines a unitary morphism σα ∈ (Xα,αX). So we have found the required unitary
half braiding σ on X.

3.5 The tube algebra and the affine category of a planar algebra

Jones introduced the affine category associated to a subfactor inclusion (this notion is related
to his annular category [J01]). Let us briefly recall its construction. Let P = (P±

k ) be a planar
algebra which can be viewed as the quotient of a universal planar algebra [J99] by a set of
relations R. Given a tangle T in the universal planar algebra, one can separate its strings into
three groups and draw it on the sphere with two disks labeled “left” and “right” removed (in
the drawing the sphere is identified with the plane to which we add a point at infinity):
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i j

†† k

k

T

Here thick lines stand for the indicated number of parallel strings. The symbols † mark a
preferred interval on each of the two disks, corresponding to region bounding both the preferred
portion of the leftmost disk and ⋆ as well as the region where the topmost string of T connects to
the rightmost disk. Such drawings make sense both for shaded planar algebras (the kind coming
from subfactor theory) as well as the unshaded planar algebras. We will mainly concentrate
on the shaded case in this paper, although it is worth pointing out that our constructions work
unaltered in the unshaded case as well. In the shaded case, the additional data on the picture is
the shading (not shown) so that each string lies at the boundary of a shaded and an unshaded
region. The shading of the picture is completely determined once we specify the shading of one
of the regions (e.g., the region marked by ⋆). In this case the shading of the region containing
the left-most † is the same as the shading of the region containing ⋆, while the shading of the
rightmost region containing † is either the same or opposite, depending on whether k is even
or not. Alternatively, we can fix the shading of each the two regions containing the symbols †
(note that this also fixes the parity of k).

Because the drawing is on the sphere, we can equally well draw it as

i j

†
†

k

k

T (3.14)

which is more customary (in the latter picture the inner disk is often called the “input disk”
and the outer disk, the “output disk”).

One considers the linear span of such diagrams (taken up to isotopy that fixes the boundaries
of the annulus) and then takes a quotient by an appropriate subspace which ensures that any
relation R still holds when drawn in any open simply connected region inside the annulus. The
resulting quotient is denoted by A(P ) and is called the affine category (or affine algebroid)
associated to P . We will sometimes write A when P is understood.

Note that A(P ) is bi-graded by the numbers of strings going to the left and right disks as well
as the choices of shading of the two regions marked by †.

This linear space has a natural multiplication x · y given by drawing the tangles for x and y as
in (3.14) and then gluing y into the input disk of x in a way that matches the regions marked by
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† (the multiplication is defined to be zero unless the the output disk of y has the same number
of string boundary points as the input disk of x and compatible shading). There is also an
involution # given by an orientation-reversing diffeomorphism of the sphere that switches the
two removed disks.

By [C12, Proposition 5.6] and [GJ15, Proposition 3.5], the algebra A(P ) is naturally Morita
equivalent to the algebra A of Section 3.3.

For future purposes we point out that the algebra A has a natural subalgebra B consisting of
sums of elements of the form

i j

††

T

i.e., ones that have no strings looping around the right disk. This subalgebra is also bi-graded
according to the shading of input and output disks and the number of input/output strings.

Also for future purposes we would like to present a graphical picture for the tensor product
A⊗B A as well as the higher tensor powers A⊗B ⊗ · · · ⊗B A. To do so, we consider the space
Xk which is the two-sphere S2 with k points r1, . . . , rk as well as two disks removed; these disks
are labeled “left” and “right”. We then consider once again a planar algebra P as a quotient of
the universal planar algebra by a set of relations R. This time, we consider the space Ak given
by the linear span of isotopy classes of elements of the universal planar algebra drawn on Xk

modulo the linear span of relations from R which are taken to hold true in any open simply
connected region in Xk. In the example below, T ∈ P 1

2
(i+j+2r+2s) gives rise to an element in

A2:

i j

††

T • •

r

r

s

s

(3.15)

We endow the space Ak with an A-bimodule structure as follows. The left multiplication action
is given by gluing an element of x ∈ A drawn as in (3.14) into the left disk of an element ξ ∈ Ak

(with xξ = 0 if the number of string boundary points on the outer disk of x is different from
the number of boundary points on the left disk of A). The right action (of the opposite algebra
Aop) is given by gluing an element of A into the right disk, with a similar requirement of
equality of numbers of boundary points.

Note that by isotoping strings as illustrated below

T •

...

...

...

 T •

...

...

...

(3.16)

24



and viewing the inside of the dashed region as another planar algebra element, T ′, obtained by
adding ∩ to the bottom of T , one can always draw an element of Ak in the form of (3.15).

Alternatively, using the fact that the picture is drawn on the sphere, any element can be viewed
as linear combination of elements of the form

i j

††

T • •

r

r

s

s

(3.17)

Lemma 3.15. Ak is isomorphic to the k-fold tensor product A⊗B · · · ⊗B A.

Proof. The proof is by induction on k; the case k = 1 is clear. Assuming the isomorphism to
hold for k, we note that there is map from A⊗B Ak to Ak+1 given by:

i j

†

†

T ⊗ k l

†

†

S • •

7→ δjk i l

†

†

T S • • •

(3.18)

It is clear that this map is surjective, since every element of the form (3.17) can be clearly
obtained in its image.

We claim that the map is injective. To see this, consider the construction of the tangle (3.17):
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i l

†

†

T S • • •

and let us analyze the effect of removing the dashed line in the figure above. The removal of
this line permits us to apply any isotopy or a relation from R in some open simply connected
region that intersects the dashed line (drawn in green on the picture). We may now move this
region along the dashed circle until it is in between T and S, deforming the strings going in
and out of the green region in the process (in a way similar to (3.16)). But this means that by
possibly modifying T and S we may assume that the relation precisely amounts to identifying
Ta⊗ S with T ⊗ aS for a ∈ B.

4 Cohomology of quasi-regular inclusions of von Neumann

algebras

Throughout this section, we fix a tracial von Neumann algebra (S, τ) with von Neumann
subalgebra T ⊂ S.

Definition 4.1. Whenever H is a Hilbert S-bimodule and T ⊂ S ⊂ QNS(T ) is an intermediate
∗-algebra, we define the cohomology Hn(T ⊂ S,H) as the n-th cohomology of the complex

C0 δ
−→ C1 δ

−→ · · ·

where C0 = Hc
T = the space of T -central vectors in the rank completion Hc of H as a Z(T )-

bimodule,

Cn = the space of T -bimodular maps from S⊗T · · · ⊗T S︸ ︷︷ ︸
n factors

to Hc and

δ : Cn → Cn+1 : δ =

n+1∑

i=0

(−1)iδi is given by

(δ0c)(x0 ⊗ · · · ⊗ xn) = x0 · c(x1 ⊗ · · · ⊗ xn) ,

(δic)(x0 ⊗ · · · ⊗ xn) = c(x0 ⊗ · · · ⊗ xi−1xi ⊗ · · · ⊗ xn) for i = 1, . . . , n and

(δn+1c)(x0 ⊗ · · · ⊗ xn) = c(x0 ⊗ · · · ⊗ xn−1) · xn .

Remark 4.2. 1. Note that the maps δ0 and δn+1 are well defined because by Lemma 2.6, the
rank completion Hc is an S-bimodule. In the definition of Cn, we denote by ⊗T the algebraic
relative tensor product.

2. When T is a factor, and in particular when T ′ ∩ S = C1, the rank completion over Z(T ) in
Definition 4.1 disappears. However, as we will see below, when T ⊂ S is a Cartan subalgebra,
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it is crucial to take the rank completion in order to recover the usual cohomology theory of
the underlying equivalence relation.

3. We denote Zn(T ⊂ S,H) = Ker(δ : Cn → Cn+1) and Bn(T ⊂ S,H) = Im(δ : Cn−1 → Cn).
Note that Z1(T ⊂ S,H) precisely is the space of T -bimodular derivations from S to Hc, i.e.
the space of T -bimodular maps c : S → Hc satisfying c(xy) = xc(y) + c(x)y for all x, y ∈ S.

4. The cohomology Hn(T ⊂ S,H) only ‘sees’ the part of H that, as a Hilbert T -bimodule,
is a direct sum of Hilbert T -bimodules that appear as subbimodules of some tensor power
L2(S)⊗T · · · ⊗T L

2(S). Indeed, replacing H by this T -subbimodule, the cochain spaces Cn

do not change.

We define the L2-cohomology of T ⊂ S as the cohomology with values in the following “uni-
versal” coarse S-bimodule (relative to T ) :

Hreg = (L2(S)⊗T L
2(S)) ⊕ (L2(S)⊗T L

2(S)⊗T L
2(S))⊕ · · ·

= L2(S)⊗T H⊗T L
2(S) with H = L2(T )⊕ L2(S)⊕ (L2(S)⊗T L

2(S))⊕ · · · .
(4.1)

At first sight, it may sound more natural to consider L2(S)⊗T L
2(S) as the coarse S-bimodule,

but then we do not have a Fell absorption principle and, as seen in Lemma 3.5, we miss part
of the regular representation from the point of view of the tube algebra.

We define M(T ⊂ S) as the von Neumann algebra EndS−S(Hreg). We have the following
natural normal semifinite faithful weight µ on M(T ⊂ S) : whenever H1 is a bifinite Hilbert
T -bimodule and W : H1 → H is a T -bimodular isometry with p = WW ∗, we define the
T -bimodular isometry V : H1 → Hreg given by V (ξ) = 1⊗ ξ ⊗ 1 and put

µ((1⊗ p⊗ 1)x(1⊗ p⊗ 1)) = TrH1(V
∗xV ) for all x ∈ M(T ⊂ S) , (4.2)

where TrH1 is the canonical trace on EndT−T (H1) (see (2.2)).

Note that EndS−S(L
2(S) ⊗T L

2(S)) is a corner of M(T ⊂ S) and that the restriction of µ to
this corner is the vector state given by the vector 1⊗ 1.

Definition 4.3. Let T ⊂ S ⊂ QNS(T ) be an intermediate ∗-algebra. We define the L2-
cohomology of T ⊂ S as Hn(T ⊂ S,Hreg).

Note that Hn(T ⊂ S,Hreg) canonically is an M(T ⊂ S)-module. In the unimodular case, i.e.
when µ is a trace on M(T ⊂ S), we define

β(2)
n (T ⊂ S) := dimM(T⊂S)H

n(T ⊂ S,Hreg) .

Here, we use Lück’s dimension function for arbitrary modules over a von Neumann algebra
with a semifinite trace, see [L02, Section 6.1] and [KPV13, Section A.4].

We are mainly interested in the following two types of quasi-regular von Neumann algebra in-
clusions T ⊂ S : Cartan subalgebras and quasi-regular irreducible subfactors. We prove below
that for a Cartan subalgebra A ⊂ M of a tracial von Neumann algebra and S = spanNM (A),
the cohomology theory in Definition 4.1 amounts to the usual cohomology theory for the under-
lying equivalence relation R (and, in particular, forgets to scalar 2-cocycle on R that is given
by A ⊂ M). In that case, unimodularity is automatic, M(A ⊂ M) is an infinite amplification
of L(R), and β(2)

n (A ⊂ S) equals the n-th L2-Betti number of R in the sense of Gaboriau, [G01].

When T ⊂ S is an irreducible quasi-regular subfactor, we interpret the cohomology theory
in Definition 4.1 as a natural Hochschild type cohomology for the associated tube ∗-algebra.
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We prove that the unimodularity assumption is equivalent to the requirement that every T -
subbimodule of L2(S) has equal left and right dimension, i.e. that T ⊂ S is unimodular in the
sense of Definition 3.3.

5 Cohomology of Cartan subalgebras

Fix a tracial von Neumann algebra (M, τ) with separable predual and Cartan subalgebra
L∞(X) ⊂ M . Denote by R the associated countable probability measure preserving (pmp)
equivalence relation on (X,µ).

By [FM75], we know that M is canonically isomorphic with LΩ(R), where Ω : R(2) → T is a
scalar 2-cocycle on R. Here, R(2) = {(x, y, z) ∈ X ×X ×X | (x, y) ∈ R and (y, z) ∈ R}. We
similarly define R(n), and by convention, R(0) = X. Recall that all R(n) are equipped with a
natural σ-finite measure given by integration over (X,µ) of the counting measure through the
projection π : R(n) → X : (x0, . . . , xn) 7→ x0.

A unitary representation of R consists of a measurable field of Hilbert spaces (Kx)x∈X and
a measurable family of unitary operators U(x, y) : Ky → Kx for all (x, y) ∈ R such that
U(x, y)U(y, z) = U(x, z) for a.e. (x, y, z) ∈ R(2). Put A = L∞(X). The integration of the field
(Kx)x∈X yields the Hilbert A-module K given by the L2-sections of the field. Denote by [R]
the full group of R. For every α ∈ [R], define the unitary operator U(α) on K given by

(
U(α)ξ

)
(x) = U(x, α−1(x)) ξ(α−1(x)) for all ξ ∈ K, x ∈ X .

Define the Hilbert space H = L2(M)⊗A K. The formulae

x · (ξ ⊗ η) · av = xξav ⊗ U(αv)
∗η for all x ∈M, ξ ∈ L2(M), η ∈ K, a ∈ A, v ∈ NM (A) (5.1)

turn H into a Hilbert M -bimodule. Here, αv is the element of [R] defined by v ∈ NM(A).

Note that the vectors 1⊗ ξ ∈ H are all A-central. Therefore, H is generated, as a Hilbert M -
bimodule, by A-central vectors. Conversely, it is easy to check that every Hilbert M -bimodule
generated by A-central vectors arises in this way.

Given a unitary representation U of R on K, the cohomology Hn(R,K) is defined as follows.

Define the field (K
(n)
x )x∈R(n) given by K

(n)
x = Kπ(x). Denote by Cn the set of measurable sections

of this field, identifying two sections when they coincide a.e. Then, Hn(R,K) is defined as the
cohomology of the complex

C0 δ
−→ C1 δ

−→ · · ·

where

δ : Cn → Cn+1 : δ =

n+1∑

i=0

(−1)iδi and

(δ0ξ)(x0, . . . , xn+1) = U(x0, x1)ξ(x1, . . . , xn) ,

(δiξ)(x0, . . . , xn+1) = ξ(x0, . . . , x̂i, . . . , xn+1) for i = 1, . . . , n + 1 .

The regular representation is given by Kreg
x = ℓ2(orbit(x)) with U(x, y) being the identity

identification between orbit(x) and orbit(y) when (x, y) ∈ R. The L2-cohomology of R is thus
given by the cohomology of the complex

C0
reg

δ
−→ C1

reg
δ

−→ · · ·
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where Cn
reg consists of the measurable functions ξ : R(n+1) → C with the property that for a.e.

y ∈ R(n), we have ∑

x∈orbit(π(x))

|ξ(x, y)|2 <∞

and

(δξ)(x, y0, . . . , yn+1) =

n+1∑

j=0

(−1)jξ(x, y0, . . . , ŷj, . . . , yn+1) .

We can then turn Cn
reg into a left L(R)-module by defining

(auϕ · ξ)(x, y) = a(x) ξ(ϕ−1(x), y) for all a ∈ A,ϕ ∈ [R], ξ ∈ Cn
reg, (x, y) ∈ R(n+1) .

To define b · ξ for an arbitrary element b ∈ L(R), note that L2(R(n+1)) is a Hilbert L(R)-
L∞(R(n))-bimodule. We can view Cn

reg as the rank completion of L2(R(n+1)) viewed as a right

L∞(R(n))-module. This rank completion canonically stays a left L(R)-module.

We can then define the L2-Betti numbers of the equivalence relation R as

β(2)
n (R) := dimL(R)H

n(R,Kreg) .

It follows from [KPV13, Proposition 3.1] that this definition coincides with Gaboriau’s definition
of L2-Betti numbers, [G01].

Proposition 5.1. Let (M, τ) be a tracial von Neumann algebra with separable predual and
Cartan subalgebra A ⊂ M . Denote by R the associated countable pmp equivalence relation.
Denote S = spanNM(A).

For every unitary representation of R on K, consider the associated M -bimodule H given by
(5.1). We then have a natural isomorphism

Hn(A ⊂ S,H) ∼= Hn(R,K) .

We also have a natural isomorphism between M(A ⊂M) and an infinite amplification of L(R),
as well as the equality

β(2)
n (A ⊂ S) = β(2)

n (R) for all n ∈ N .

Proof. Denote by Cn the space of measurable sections of the field (K
(n)
x )x∈R(n) as above. The

map η 7→ 1⊗ η is a unitary operator between K and the space of A-central vectors in H. This
map extends to a linear bijection between C0 and the space of A-central vectors in Hc. Next,
for every v ∈ NM(A), the map θv : η 7→ v ⊗ η is a unitary operator between K and the space
of vectors ξ ∈ H satisfying aξ = ξαv(a) for all a ∈ A, where αv(a) = vav∗. Again, θv extends
to a linear bijection, still denoted by θv, between C

0 and the space of vectors ξ ∈ Hc satisfying
aξ = ξαv(a) for all a ∈ A.

We can then define the linear bijection

Cn → MorA−A(S⊗A · · · ⊗A S,Hc)

given by ξ 7→ cξ where, for all v1, . . . , vn ∈ NM(A),

cξ(v1 ⊗ · · · ⊗ vn) = θv1···vn
(
x 7→ U(x, αv1···vn(x))ξ(αv1···vn(x), · · · , αvn(x), x)

)
.

These maps define an isomorphism between the bar complexes defining Hn(R,K) and Hn(A ⊂
S,H), so that these cohomology spaces are isomorphic.
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Since A ⊂ M is regular, the coarse M -bimodule Hreg defined in (4.1) is isomorphic with
an infinite amplification of L2(M) ⊗A L

2(M). We have the following canonical isomorphism
Ψ : L(R) → EndM−M (L2(M) ⊗A L

2(M)). For every ϕ in the full group of the equivalence
relation R, we have a unitary element uϕ ∈ L(R) and we can choose v ∈ NM(A) such that
αv = ϕ. We define (Ψ(uϕ))(x⊗y) = xv∗⊗vy. Note that the definition of Ψ(uϕ) is independent
of the choice of v. We also define (Ψ(a))(x ⊗ y) = xa ⊗ y = x ⊗ ay for all a ∈ A. Together,
we have found a trace preserving isomorphism Ψ : L(R) → EndM−M (L2(M) ⊗A L

2(M)). So,
we also have a canonical trace preserving isomorphism between M(A ⊂ M) and an infinite
amplification of L(R). In particular, we find that β(2)

n (A ⊂ S) = β(2)
n (R) for all n ≥ 0.

6 Homology of irreducible quasi-regular inclusions

Throughout this section, we fix a II1 factor S with separable predual and an irreducible quasi-
regular subfactor T ⊂ S. We put S = QNS(T ). For any T -bimodule K, we denote by KT the
subspace of T -central vectors.

Definition 6.1. For any Hilbert S-bimodule H, we define Hn(T ⊂ S,H) as the homology of
the complex

· · ·
∂
→ C2

∂
→ C1

∂
→ C0

where C0 = HT , and

Cn =
(
H⊗T S⊗T · · · ⊗T S︸ ︷︷ ︸

n factors

)
T

with ∂ : Cn → Cn−1 : ∂ =
n∑

i=0

(−1)i∂i given by

∂0(ξ ⊗ x1 ⊗ · · · ⊗ xn) = ξ · x1 ⊗ x2 ⊗ · · · ⊗ xn ,

∂i(ξ ⊗ x1 ⊗ · · · ⊗ xn) = ξ ⊗ x1 ⊗ · · · xixi+1 ⊗ · · · ⊗ xn for i = 1, . . . , n− 1 ,

∂n(ξ ⊗ x1 ⊗ · · · ⊗ xn) = pT (xn · ξ ⊗ x1 ⊗ · · · ⊗ xn−1) .

Here pT denotes the orthogonal projection onto the subspace of T -central vectors. In Remark
6.2, we explain why ∂ is well defined and satisfies ∂2 = 0.

Remark 6.2. 1. The boundary maps ∂i are well defined for the following reasons. Write
Sn = S ⊗T · · · ⊗T S for the n-fold algebraic relative tensor product. For 0 ≤ i ≤ n − 1,
the maps ∂i are first defined as T -bimodular maps from H⊗T Sn to H⊗T Sn−1 and then
restricted to the T -central vectors. For i = n, it follows from Lemma 6.3 below that for
all ξ ∈ H and all x1, . . . , xn ∈ S, the element pT (xn · ξ ⊗ x1 ⊗ · · · ⊗ xn−1) belongs to
H ⊗T Sn−1. Since pT (a · η − η · a) = 0 for all a ∈ T and all η ∈ H ⊗T Sn−1, we conclude
that ∂n is a well defined map from H⊗T Sn to (H⊗T Sn−1)T and we restrict this map to
(H⊗T Sn)T .

2. There are two ways to see that ∂2 = 0. First, it would be more natural to consider as
chain spaces the cyclic relative tensor products (H ⊗T Sn)/T , defined as the quotient of
H⊗T Sn by the subspace generated by a · ξ⊗ x− ξ⊗x · a, a ∈ T , ξ ∈ H, x ∈ Sn. Defined
as such, the chain spaces are however too large. Defining H0 ⊂ H as the “algebraic part”
of H consisting of all T -bounded vectors ξ for which the closed linear span of TξT is a
finite index T -bimodule, it follows from [H98] (based on [FH80, P97a]) that the inclusion
map

(H ⊗T Sn)T → (H0 ⊗T Sn)/T
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from the space of T -central vectors to the cyclic relative tensor product is indeed an
isomorphism. In this way, we find an isomorphism between the complex (Cn) and the
natural bar complex (H0 ⊗T Sn)/T . In particular, ∂2 = 0.

Secondly, the formula

〈ξ ⊗ x1 ⊗ · · · ⊗ xn, c〉 = 〈ξ, c(x∗n ⊗ · · · ⊗ x∗1)〉

defines a non-degenerate sesquilinear pairing between (H ⊗T Sn)T and MorT−T (Sn,H).
Under this duality pairing, the complex (Cn) is dual to the complex (Cn) in Definition
4.1. In particular, ∂2 = 0.

Also note that we find in this way a natural sesquilinear pairing between the homology
Hn(T ⊂ S,H) and the cohomology Hn(T ⊂ S,H) defined in 4.1. This pairing can be
degenerate, see Propositions 6.5 and 8.2.

3. As in Remark 4.2, note that the homology Hn(T ⊂ S,H) only sees the part of H that, as
a Hilbert T -bimodule, is a direct sum of Hilbert T -subbimodules of some tensor power
L2(S)⊗T · · · ⊗T L

2(S).

Lemma 6.3. The natural map V : H ⊗T S ⊗T · · · ⊗T S → H ⊗T L
2(S) ⊗T · · · ⊗T L

2(S) is
injective and the orthogonal projection onto the T -central vectors leaves the image of V globally
invariant.

Proof. By Lemma 2.5, we can write S as an increasing union of T -subbimodules of the form
K0 = K∩S, where K ⊂ L2(S) is a finite index T -subbimodule. Since for such a K, the natural
map

H⊗T K0 ⊗T · · · ⊗T K0 → H⊗T K ⊗T · · · ⊗T K

is bijective, the lemma follows immediately.

The L2-Betti numbers of a quasi-regular inclusion were defined in Definition 4.3 using coho-
mology with values in the S-bimodule Hreg (see (4.1)). We now show that, in the case of an
irreducible quasi-regular inclusion, they can as well be computed using homology.

Proposition 6.4. Let S be a II1 factor with separable predual and T ⊂ S an irreducible quasi-
regular subfactor. Put S = QNS(T ). The natural weight µ on M(T ⊂ S) defined in (4.2) is a
trace if and only if T ⊂ S is unimodular in the sense of Definition 3.3. In that case,

β(2)
n (T ⊂ S) = dimM(T⊂S)Hn(T ⊂ S,Hreg) .

Proof. Write Hreg = L2(S) ⊗T H ⊗T L
2(S) as in (4.1). Denote by C the tensor category of

finite index T -bimodules generated by L2(S). Let A be the associated tube ∗-algebra, with
von Neumann algebra A′′ given by Proposition 3.2. From Lemma 3.5, we get that M(T ⊂ S)
is isomorphic with the von Neumann algebra

M :=
⊕

i,j∈Irr(C)

(
(H, i)⊗ pi · A

′′ · pj ⊗ (j,H)
)
.

In Proposition 3.2, we introduced the weight τ on A′′. Replacing in the definition of τ , the
left trace Trℓi by the categorical trace Tri, we also have the weight τ1 on A′′. The isomorphism
M(T ⊂ S) sends the weight µ to the amplification of the weight τ1 to a weight on M. Noting
that τ1 is a trace iff τ is a trace iff T ⊂ S is unimodular, we conclude that µ is a trace iff T ⊂ S
is unimodular. In that case, also τ1 = τ .
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For the rest of the proof, assume that T ⊂ S is unimodular. Note that all irreducible T -
bimodules in C appear in H. Choosing one copy of each, we define H1 =

⊕
i∈Irr(C)Hi and put

H′
reg = L2(S) ⊗T H1 ⊗T L

2(S). We have a canonical weight preserving identification between
EndS−S(H

′
reg) and A′′. Under this identification,

β(2)
n (T ⊂ S) = dimA′′ Hn(T ⊂ S,H′

reg) .

Denote by Cn, resp. Cn, the bar complexes defining Hn(T ⊂ S,H′
reg), resp. Hn(T ⊂ S,H′

reg).
Write A := A′′. Both Cn and Cn are A-modules.

For every finite subset F ⊂ Irr(F), define SF := eF (S) and denote by SnF the n-fold relative
tensor product SF ⊗T · · ·⊗T SF . We also define Cn

F as the space of T -bimodular maps from SnF

to H′
reg, and we define CF

n as the space of T -central vectors in H′
reg⊗T SnF . Note that for every

finite set F ⊂ Irr(F), Cn
F and CF

n are Hilbert A-modules. Choosing an increasing sequence of
finite subsets Fk ⊂ Irr(F) with

⋃
k Fk = Irr(F), we can view Cn as the algebraic direct limit of

the Hilbert A-modules CFk
n and we can view Cn as the inverse limit of the Hilbert A-modules

Cn
Fk

.

For every n and every finite subset F ⊂ Irr(C), consider the finite subset Fn ⊂ Irr(C) of all
α ∈ Irr(C) such that α is contained in an n-fold tensor product of elements of F . Because
(H′

reg, i)
∼= L2(A · pi), it follows that, as an A-module,

CF
n

∼=
⊕

i∈Fn

L2(A · pi)⊗ (iSnF , ε) .

Since τ is a trace on A and τ(pi) < ∞, every L2(A · pi) is an A-module of finite A-dimension.
Every (iSnF , ε) is finite dimensional and we conclude that all CF

n have finite A-dimension.

The adjoint of CF
n is Cn

F and this duality is compatible with the (co)boundary maps (see
Remark 6.2). The conclusion

dimAHn(T ⊂ S,H′
reg) = dimAH

n(T ⊂ S,H′
reg)

now follows from the approximation formulae for the A-dimensions of direct and inverse limits
(see [CG85, L02], and see also [KPV13, Section A.3] for a self-contained treatment that is
directly applicable here).

Amplifying from H′
reg to Hreg, we get that

β(2)
n (T ⊂ S) = dimAH

n(T ⊂ S,H′
reg) = dimAHn(T ⊂ S,H′

reg) = dimM(T⊂S)Hn(T ⊂ S,Hreg) .

We end this section with the following expected result on the 0’th (co)homology.

Proposition 6.5. Let S be a II1 factor with separable predual and T ⊂ S an irreducible quasi-
regular subfactor. Put S = QNS(T ). For any Hilbert S-bimodule H, the following holds.

1. H0(T ⊂ S,H) = 0 if and only if 0 is the only S-central vector in H.

2. H0(T ⊂ S,H) = 0 if and only if HT admits no sequence ξn of approximately S-central
unit vectors (meaning that limn ‖xξn − ξnx‖ = 0 for all x ∈ S).
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Proof. From Definition 4.1, we get that H0(T ⊂ S,H) equals the space of S-central vectors in
H, so that 1 follows.

Denote by C the tensor category generated by the finite index T -subbimodules of L2(S). To
prove 2, note that the absence of approximately S-central unit vectors in HT is equivalent with
the existence of a finite subset G ⊂ S satisfying

‖ξ‖ ≤
∑

x∈G

‖xξ − ξx‖ for all ξ ∈ HT . (6.1)

For every finite subset F ⊂ Irr(C), we write SF := eF (S). Note that MorT−T (SF ,H) is a
Hilbert space and δF : HT → MorT−T (SF ,H) : (δFξ)(x) = xξ − ξx is a bounded operator. As
in Remark 6.2, the adjoint δ∗F can be identified with the restriction of the boundary operator
∂ : (H⊗T S)T → HT to the Hilbert space (H ⊗T SF )T .

With this notation, the existence of a finite subset G ⊂ S satisfying (6.1) is equivalent with the
existence of a finite subset F ⊂ Irr(C) and an ε > 0 such that ε‖ξ‖ ≤ ‖δF (ξ)‖ for all ξ ∈ HT .
By the open mapping theorem and the above description of δ∗F , this is equivalent with the
existence of a finite subset F ⊂ Irr(C) such that ∂((H ⊗T SF )T ) = HT . By the Baire category
theorem, this is equivalent with ∂((H⊗T S)T ) = HT , i.e. with H0(T ⊂ S,H) = 0.

7 A Hochschild type (co)homology of the tube ∗-algebra

7.1 (Co)homology of irreducible quasi-regular inclusions

Fix an irreducible quasi-regular inclusion of II1 factors T ⊂ S together with a tensor category
C of finite index T -bimodules containing all finite index T -subbimodules of L2(S). Put S =
QNS(T ). Denote by A the associated tube ∗-algebra.

In Theorem 3.4, we constructed a bijection between non-degenerate right Hilbert A-modules K
and Hilbert S-bimodules H that, as a T -bimodule, are a direct sum of T -bimodules contained
in C. In Definitions 4.1 and 6.1, we defined the (co)homology spaces Hn(T ⊂ S,H) and
Hn(T ⊂ S,H). The following is the main result of this section, identifying this (co)homology
theory with purely algebraic (co)homology for the tube algebra A.

For this, we make use of the trivial left and right A-modules Er and Eℓ defined in Lemma 3.5
and Remark 3.6. Whenever K is a right Hilbert A-module, we define K0 as the linear span of
the Hilbert subspaces K · pi, i ∈ Irr(C).

Theorem 7.1. Let H be the Hilbert S-bimodule that corresponds to the right Hilbert A-module
K through Theorem 3.4. There are natural isomorphisms

Hn(T ⊂ S,H) ∼= TorAn (K
0, Eℓ) and Hn(T ⊂ S,H) ∼= ExtnA(E

r,K0) .

Theorem 7.1 says the following. Whenever · · · → L1 → L0 → Eℓ → 0 is a resolution of Eℓ by
projective left A-modules Lk, we can compute Hn(T ⊂ S,H) as the homology of

· · · → K0 ⊗A L1 → K0 ⊗A L0 .

Whenever · · · → R1 → R0 → Er → 0 is a resolution of Er by projective right A-modules Rk,
we can compute Hn(T ⊂ S,H) as the cohomology of

HomA(R0,K
0) → HomA(R1,K

0) → · · · .
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Proof of Theorem 7.1. We construct a concrete resolution · · · → Aℓ
1 → Aℓ

0 → Eℓ → 0 of the
left A-module Eℓ and then identify the complex · · · → K0 ⊗A Aℓ

1 → K0 ⊗A Aℓ
0 with the bar

complex in Definition 6.1. Next, we construct a concrete resolution · · · → Ar
1 → Ar

0 → Er → 0
of the right A-module Er and identify HomA(A

r
0,K

0) → HomA(A
r
1,K

0) → · · · with the bar
complex in Definition 4.1.

For every n ≥ 0, define Aℓ
n as the algebraic direct sum

Aℓ
n =

⊕

i∈Irr(C)

(iSn+1, S)

where Sk denotes the k-fold relative tensor product S⊗T · · ·⊗T S. Turn Aℓ
n into a left A-module

by
V ·W = (1⊗m⊗ 1n)(V ⊗ 1n+1)(1⊗W )m∗ (7.1)

for all V ∈ (iS, Sj) and W ∈ (jSn+1, S). Note that Aℓ
0 = A · pε.

More generally, we have the isomorphism of left A-modules

⊕

i∈Irr(C)

A · pi ⊗ (iSn, ε) → Aℓ
n : V ⊗W 7→ (V ⊗ 1)(1 ⊗W ) . (7.2)

It follows that every Aℓ
n, n ≥ 0, is a projective left A-module.

One checks that the map

∂ : Aℓ
0 → Eℓ : ∂(V ) = (1⊗ a∗)((1 ⊗∆

−1/2
S

)V ⊗ 1)m∗ (7.3)

for all V ∈ (iS, S) is a left A-module map. For all n ≥ 1, we also define the left A-module maps

∂ : Aℓ
n → Aℓ

n−1 : ∂ =
n∑

k=0

(−1)k∂k ,

where ∂k(V ) = (1k+1 ⊗m⊗ 1n−1−k)V when 0 ≤ k ≤ n− 1 ,

and ∂n(V ) = (1n+1 ⊗ a∗)((1n+1 ⊗∆
−1/2
S

)V ⊗ 1)m∗

(7.4)

for all V ∈ (iSn+1, S).

In this way, we find a complex · · · → Aℓ
1 → Aℓ

0 → Eℓ → 0. The maps

γ : Eℓ → Aℓ
0 and γ : Aℓ

n → Aℓ
n+1 (7.5)

given by γ(V ) = (1⊗ δ ⊗ 1n+1)V provide a homotopy for this complex, so that we have found
a projective resolution of the left A-module Eℓ.

Assume now that K is a non-degenerate right Hilbert A-module with corresponding Hilbert
S-bimodule H as in Theorem 3.4. Consider the bar complex Cn defining Hn(T ⊂ S,H) as in
Definition 6.1. By definition, Cn consists of the T -central vectors in H⊗T Sn and this gives the
natural isomorphism

Cn
∼=

⊕

i∈Irr(C)

(H, i)⊗ (iSn, ε) .

Recall from Theorem 3.4 that (H, i) = K · pi. In combination with (7.2), we thus find the
isomorphism

Cn
∼=

⊕

i∈Irr(C)

K · pi ⊗ (iSn, ε) ∼= K0 ⊗A Aℓ
n .
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A lengthy, but straightforward computation gives that this is actually an isomorphism between
the complexes (Cn)n≥0 and (K0 ⊗A Aℓ

n)n≥0. So, we have found the isomorphism

Hn(T ⊂ S,H) ∼= TorAn (K
0, Eℓ) .

Dualizing everything, we find as follows the resolution · · · → Ar
1 → Ar

0 → Er → 0 of the right
A-module Er. Define for n ≥ 0,

Ar
n =

⊕

i∈Irr(C)

(Sn+1, Si)

with right A-module structure

V ·W = (1n ⊗m)(V ⊗ 1)(1⊗W )(m∗ ⊗ 1)

for all V ∈ (Sn+1, Si) and W ∈ (iS, Sj). Note that Ar
0 = pε · A. In general, we have the

isomorphism of right A-modules

⊕

i∈Irr(C)

(Sn, i)⊗ pi · A → Ar
n : V ⊗W 7→ (V ⊗ 1)W , (7.6)

so that every Ar
n, n ≥ 0, is a projective right A-module.

The map defined as

∂ : Ar
0 → Er : ∂(V ) = m(1⊗∆

1/2
S
V )(a⊗ 1)

for all V ∈ (S, Si) is a right A-module map. Together with the right A-module maps

∂ : Ar
n → Ar

n−1 : ∂ =

n∑

k=0

(−1)k∂k ,

where ∂0(V ) = (a∗ ⊗ 1n)(1 ⊗ (∆
1/2
S

⊗ 1n)V )(m∗ ⊗ 1) ,

and ∂k(V ) = (1k−1 ⊗m⊗ 1n−k)V for all 1 ≤ k ≤ n ,

we find the resolution · · · → Ar
1 → Ar

0 → Er → 0.

Finally, consider the bar complex Cn defining Hn(T ⊂ S,H) as in Definition 4.1. By def-
inition, Cn consists of all T -bimodular linear maps from Sn to H. Using (7.6), we identify
HomA(A

r
n,K

0) with the direct product

HomA(A
r
n,K

0) =
∏

i∈Irr(C)

L
(
(Sn, i),K · pi

)

of all spaces of linear maps from (Sn, i) to K · pi. Using the identification K · pi = (H, i), we
then find the isomorphism

Ψ : Cn → HomA(A
r
n,K

0) ,

where for c ∈ Cn, Ψ(c) is defined as the collection of linear maps from (Sn, i) to K · pi given by
Ψ(c)(V ) = c ◦ V , which indeed makes sense because c is a T -bimodular map from Sn to H and
thus, c ◦ V is an intertwiner from i ∈ Irr(C) to H.

It is again straightforward, though a bit tedious, to check that Ψ is an isomorphism of the
complexes (Cn)n≥0 and (HomA(A

r
n,K

0))n≥0. The conclusion

Hn(T ⊂ S,H) ∼= ExtnA(E
r,K0)

follows.
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Using Proposition 3.12, we obtain as a special case, the following isomorphisms for the (co)homo-
logy of an SE-inclusion.

Corollary 7.2. Let M be a II1 factor and C a tensor category of finite index M -bimodules
having equal left and right dimension. Denote by T ⊂ S the associated SE-inclusion and let A
be the tube ∗-algebra of the tensor category C, together with its co-unit ǫ : A → C.

Whenever H is the generalized SE-correspondence associated with the non-degenerate right
Hilbert A-module K through Corollary 3.13, we have the natural isomorphisms

Hn(T ⊂ S,H) ∼= TorAn (K
0,C) and Hn(T ⊂ S,H) ∼= ExtnA(C,K

0) ,

where we view C as a left or right A-module using the co-unit ǫ.

7.2 (Co)homology and L
2-Betti numbers for rigid C∗-tensor categories

The representation theory of a rigid C∗-tensor category C can be equivalently expressed by
unitary half braidings or Hilbert space representations of the tube ∗-algebra A, see Section 3.4.

By Corollary 7.2, the natural (co)homology theory for C is precisely the Hochschild (co)homo-
logy of A w.r.t. the augmentation ǫ : A → C. Given a right Hilbert A-module K, these are
given by TorAn (K

0,C) and ExtnA(C,K
0). We thus define

β(2)
n (C) = dimA′′ TorAn (L

2(A)0,C) = dimA′′ ExtnA(C, L
2(A)0) ,

where L2(A)0 is the linear span of all L2(A · pi), i ∈ Irr(C).

Defining the subalgebra B ⊂ A given by B = span{pi | i ∈ Irr(C)}, the bar resolution for the
A-module C is

· · · → C2 → C1 → C0 → C with Cn = A⊗B · · · ⊗B A︸ ︷︷ ︸
n factors

⊗B A · pε (7.7)

and ∂ : Cn → Cn−1 given by ∂ =
∑n

k=0(−1)k∂k where

∂k(V0 ⊗ · · · ⊗ Vn) = V0 ⊗ · · · ⊗ Vk · Vk+1 ⊗ · · · ⊗ Vn for 0 ≤ k ≤ n− 1 and

∂n(V0 ⊗ · · · ⊗ Vn) = V0 ⊗ · · · ⊗ Vn−1 · pε ǫ(Vn) .

Also, when C is realized as a category of finite index M -bimodules having equal left and right
dimension, we put T = M ⊗ Mop and we consider the SE-inclusion T ⊂ S as in Section
2.5. Combining Proposition 3.12 and Theorem 7.1, we get natural isomorphisms between the
(co)homology of T ⊂ S and the (co)homology of C. In particular, we get that

β(2)
n (C) = β(2)

n (T ⊂ S) .

To a finite index subfactor N ⊂ M with Jones tower N ⊂ M ⊂ M1 ⊂ · · · , we associate the
rigid C∗-tensor category CM−M of finite index M -bimodules generated by the M -M -bimodule
L2(M1). We similarly have the category CN−N of finite index N -N -bimodules generated by
the N -N -bimodule L2(M). In Proposition 7.4, we prove that CN−N and CM−M have the same
L2-Betti numbers. The reason for this is that CM−M and CN−N are Morita equivalent and that
this Morita equivalence induces a strong Morita equivalence between their tube algebras.
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Definition 7.3 ([M01, Section 4]). The rigid C∗-tensor categories C1 and C2 are called Morita
equivalent if there exist nonzero C∗-categories C12 and C21 with finite dimensional morphism
spaces and with tensor functors C1⊗C12 → C12, C12⊗C21 → C11, etc., and with a duality functor
C12 → C21 satisfying exactly the same properties as a rigid C∗-tensor category.

For a finite index subfactor N ⊂ M , the tensor categories C1 = CN−N and C2 = CM−M

are Morita equivalent by considering the categories C12 = CN−M and C21 = CM−N of N -M -
bimodules, resp. M -N -bimodules, that are direct sums of subbimodules of some L2(Mn).

Given a Morita equivalence between C1 and C2, there is a strong Morita equivalence between
the tube ∗-algebras A1 and A2. This result was obtained in [NY15b, Section 3] using the
notion of Q-systems in a tensor category. We provide the following more direct approach. For
all i ∈ Irr(C1) and j ∈ Irr(C2), define the vector spaces

p1i · A12 · p
2
j =

⊕

α∈Irr(C12)

(iα, αj) and p2j · A21 · p
1
i =

⊕

α∈Irr(C21)

(jα, αi) .

The obvious product and adjoint operations are defined in the same way as for the tube ∗-
algebra of a rigid C∗-tensor category. In this way, we obtain the ∗-algebra

A =

(
A1 A12

A21 A2

)
. (7.8)

Similar formulas as in Lemma 3.9 still hold : for every α ∈ Irr(C12), i ∈ Irr(C1) and j ∈ Irr(C2),
we have

∑

k∈Irr(C2)

∑

W∈onb(iα,αk)

d(k)W ·W# = d(α)p1i ,

∑

k∈Irr(C1)

∑

W∈onb(kα,αj)

d(k)W# ·W = d(α)p2j .

It follows that the A1-A2-bimodule A12 is a strong Morita equivalence, in the sense that the
product maps (inside A) are isomorphisms

A12 ⊗A2 A21
∼= A1 and A21 ⊗A1 A12

∼= A2 .

Proposition 7.4. If the rigid C∗-tensor categories C1 and C2 are Morita equivalent, then
β(2)
n (C1) = β(2)

n (C2) for all n ∈ N.

Proof. Write Mk = A′′
k. The ∗-algebra A in (7.8) has a natural semifinite trace τ and we find

the imprimitivity M2-M1-bimodule L2(A21) : the left M2 action and the right M1 action on
L2(A21) are each other’s commutant.

Given a projective resolution (Ln) of the trivial A1-module C, the L2-Betti numbers β(2)
n (C1)

are computed as the M1-dimension of the homology of the complex (L2(A1)
0⊗A1 Ln)n≥0, and

thus also as the M2-dimension of the homology of the complex (L2(A21)
0 ⊗A1 Ln)n≥0.

Since the left A2-modules A21⊗A1Ln form a projective resolution of the A2-module A21⊗A1C,
and since the latter is isomorphic with the trivial A2-module, the L2-Betti numbers β(2)

n (C2)
can be computed as the M2-dimension of the homology of the complex

(L2(A2)
0 ⊗A2 A21 ⊗A1 Ln)n≥0 .

Since L2(A2)
0 ⊗A2 A21

∼= L2(A21)
0, it follows that β(2)

n (C1) = β(2)
n (C2) for all n ∈ N.
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7.3 A graphical interpretation of the bar complex associated to the affine
category A.

In this section, we give a diagrammatic description of the homology of the tensor category C
generated by a finite index subfactor N ⊂ M . Denote by P the associated standard invariant
interpreted as a Jones planar algebra. As we explained above, the resulting homology theory
depends only on Ocneanu’s tube algebra, which itself has a diagrammatic description purely in
terms of the planar algebra P, see Section 3.5. Thus given a planar algebra we can right away
associate to it a homology theory, which we now describe explicitly.

Let P be a planar algebra, which we take to be represented as a quotient of the universal planar
algebra U modulo a set of relations R. For each k = 0, 1, 2, . . . we will denote by Ak = Ak(P)
the quotient space

Uk/Rk

where Uk is the linear span of all elements of U (labeled planar networks) drawn on a two-
sphere S2 with the ordered collection of k + 2 disks r0, . . . , rk+1 removed. We require that the
disks r1, . . . , rk+1 are not connected to any strings of the diagram while r0 may be connected
to some number of strings of the diagram. Here Rk is the subspace of relations generated by
all isotopies as well as those relations obtained by insisting that each relation from R holds in
any contractible disk in S2 \ {r0, . . . , rk+1}. For shaded planar algebras (as considered in this
paper), we require that the diagram be shaded so that each string is at the boundary between
a shaded and an unshaded region. Note that this shading is specified once we make a choice
of shading of two regions: the region marked by ⋆ in the figure below (i.e., the shading of the
distinguished interval of x) as well as the shading of the region surrounding the point rk (this
shading is actually determined by the parity of the total number of strings of x). We shall

denote by A
(p)
k ⊂ Ak the subspace spanned by diagrams having exactly p strings connected to

the interior disk r0 (note that p has to be even).

In what follows, the disk r0 plays a different role than rj for j ≥ 1. To facilitate drawing
pictures, we will always identify S2 \ {r0, . . . , rk+1} with R

2 \ {r0, . . . , rk} by shrinking r1 to
the point at infinity and shrinking r2, · · · , rk+1 to points. We draw an example of an element
of Ak:

r0 x
⋆ ·rk+1 ·rk · · · ·r2

(where, once again r1 is the point at infinity). The particular placement of the points r1, . . . , rk+1

is in principle irrelevant since the whole picture is drawn up to isotopy; however this particular
ordering will be useful later in identifying a certain differential complex with a tensor product.

Our convention is that the upper-left corner of x is always the marked boundary segment of x.
For ease of drawing we denote by thick lines zero or more parallel strings. We will frequently
omit the labels for the points r1, . . . , rk+1.

It is not hard to see that, using the same isotopy as in (3.16) we can redraw any element in the
spanning set for Ak to have the form
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r0 x
⋆ ·rk+1

·rk+2 · · · ·r2

We note that by Lemma 3.15, Ak is exactly the tensor product A⊗B · · · ⊗B A︸ ︷︷ ︸
k

⊗BA·,0 (the

last tensor factor accounts for the fact that we do not permit any strings from x to the point
rk+1). We denote by dj the map from Ak → Ak−1 defined on the spanning set by asso-
ciating to a diagram in Ak drawn on S2 \ {r0, . . . , rk+1} the same diagram but drawn on
S2 \ {r0, . . . , rj , rj+2, . . . , rk+1} (these k + 1 points are ordered as written). In particular, d0 is
given by

d0




r0 x · · · · · ·




= r0 x · · · · ·

where we have drawn the strings of x that pass between the point rk and the point at infinity
= rk+1 in blue for emphasis.

It is not hard to see that
∑n

j=0(−1)jdj corresponds precisely to the differential on the bar
complex for the tube algebra as in (7.7).

8 Vanishing of L
2-Betti numbers for amenable quasi-regular

inclusions

Given a tracial von Neumann algebra (S, τ) with von Neumann subalgebra T ⊂ S, there are
several notions of amenability, which for a crossed product inclusion T ⊂ T ⋊ Γ all coincide
with the amenability of the group Γ. In [P86, Definition 3.2.1], the amenability of S relative to
T was defined as the trivial S-bimodule L2(S) being weakly contained in the relative coarse S-
bimodule L2(S)⊗T L

2(S), meaning that there exists a sequence of vectors ξn ∈ L2(S)⊗T L
2(S)

such that limn ‖xξn − ξnx‖ = 0 and limn〈xξn, ξn〉 = τ(x) for all x ∈ S.

When T ⊂ S is an irreducible quasi-regular subfactor, the above weak containment does not
exactly correspond to weak containment of tube algebra representations, where the natural
requirement is that the vectors ξn can be chosen T -central. So for our purposes, the following
relative amenability notion is more natural, and we prove in Proposition 8.2 that it indeed has
the expected properties.

Definition 8.1. Let S be a II1 factor with irreducible quasi-regular subfactor T ⊂ S. The
inclusion T ⊂ S is called amenable if there exists a net of unital, trace preserving, completely
positive, T -bimodular maps ϕi : S → S such that limi ‖ϕi(x)− x‖2 = 0 for all x ∈ S and such
that ϕi has finite rank for every fixed i, in the sense that the closure of ϕi(S) is a finite index
T -subbimodule of L2(S).
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Proposition 8.2. Let T ⊂ S be an irreducible quasi-regular inclusion of II1 factors. Let C be
the tensor category generated by the finite index T -subbimodules of L2(S). Denote by A the
associated tube ∗-algebra. Also denote S = QNS(T ).

The following statements are equivalent.

1. The inclusion T ⊂ S is amenable in the sense of Definition 8.1.

2. There exists a net of T -central, approximately S-central unit vectors in L2(S)⊗T L
2(S).

3. The trivial representation of A on Er is weakly contained in the regular representation of
A on L2(pε · A).

4. There exists a net ξi ∈ (S, S) = pε · A · pε satisfying

‖ξi‖2,τ = 1 for all i, and lim
i
‖V · ξi − Tr(V )ξi‖2,τ = 0 for all V ∈ pε · A · pε

where we use the notation ‖V ‖2,τ :=
√
τ(V # · V ).

When S has separable predual, these statements are moreover equivalent with the non vanishing
of H0(T ⊂ S, L2(S)⊗T L

2(S)).

Proof. The proposition follows immediately from Corollary 3.7 and Remark 3.8, and by tak-
ing the adjoint to prove the equivalence of 3 and 4. The final statement then follows from
Proposition 6.5.

The goal of this section is to prove that β(2)
n (T ⊂ S) = 0 for all n ≥ 1 whenever T ⊂ S is

amenable. We can however only prove this under a possibly stronger, but natural amenability
condition on the inclusion T ⊂ S, formulated as a Følner condition. As we prove in Lemma 8.10
at the end of this section, this Følner property is equivalent with amenability as in Definition 8.1
for several families of quasi-regular inclusions, including all SE-inclusions of extremal subfactors,
all crossed product inclusions and all inclusions of the form N ⋊Λ ⊂ N ⋊ Γ where Λ < Γ is an
almost normal subgroup.

Before defining the Følner property of an arbitrary irreducible quasi-regular inclusion, consider
the SE-inclusion T ⊂ S of an extremal subfactor N ⊂ M with standard invariant GN,M . In
[P93], the standard invariant GN,M is called amenable if the weighted principal graph (ΓN,M , ~v)
satisfies a Følner condition as a weighted graph. In [P94a] and [P99, Theorem 5.3], it is proved
that this Følner condition is equivalent with the amenability of S relative to T , and also with
the Kesten type condition ‖ΓN,M‖2 = [M : N ]. Note that this last property is also used to
define amenability of an abstract rigid C∗-tensor category. Reformulating the Følner property
for the weighted principal graph directly in terms of the SE-inclusion T ⊂ S, we define as
follows the Følner property for an arbitrary irreducible quasi-regular inclusion.

So, fix an irreducible quasi-regular inclusion of II1 factors T ⊂ S. Denote by C the tensor
category generated by the finite index T -subbimodules of L2(S), and write S = QNS(T ). For
every α ∈ Irr(C), we denote by eα ∈ (S, S) the orthogonal projection of L2(S) onto the span
of the T -subbimodules of L2(S) that are isomorphic with α. We write Sα := eα(S). Given a
finite symmetric subset G ⊂ Irr(C), we turn Irr(C) into a locally finite graph by putting an edge
between α, β ∈ Irr(C) if there exists a γ ∈ G such that eβ(SγSα) is nonzero5. For every finite

5Equivalently, we put an edge between α and β iff τ (SβSGSα) 6= {0}. Taking the complex conjugate, the latter
is equivalent with τ (SαSGSβ) 6= {0}. So, for a symmetric subset G ⊂ Irr(C), we obtain a symmetric condition in
α, β.
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subset F ⊂ Irr(C), we then denote by ∂G(F) the boundary of F in this graph, which we define
as the union of the inner and outer boundary of F . By definition, ∂G(F) consists of all α ∈ F
that are connected by an edge to some β 6∈ F , and of all α 6∈ F that are connected to some
β ∈ F . We define the measure µ on Irr(C) by µ({α}) = Trr(eα) for every α ∈ Irr(C).

Definition 8.3. An irreducible quasi-regular inclusion of II1 factors T ⊂ S is said to have the
Følner property if the following holds: for every finite subset G ⊂ Irr(C) and every ε > 0, there
exists a finite subset F ⊂ Irr(C) such that

µ(∂G(F)) < εµ(F) .

In Lemma 8.10, we prove that the Følner property implies amenability in the sense of Defi-
nition 8.1 and that the converse holds for large classes of quasi-regular inclusions. We do not
know whether the converse holds in general.

We now turn to L2-Betti numbers. So, we assume that S has separable predual and that the
inclusion T ⊂ S is unimodular, i.e. that all T -subbimodules of L2(S) have equal left and right
dimension, so that the L2-Betti numbers β(2)

n (T ⊂ S) are well defined.

Theorem 8.4. If T ⊂ S satisfies the Følner property, then β(2)
n (T ⊂ S) = 0 for all n ≥ 1.

In combination with Lemma 8.10 and Remark 8.11 below, we then get the following.

Corollary 8.5. For every amenable rigid C∗-tensor category C, we have that β(2)
n (C) = 0 for

all n ≥ 1.

Before proving Theorem 8.4, we introduce the following notation and prove a general vanishing
lemma for L2-Betti numbers.

Definition 8.6. Let (M, τ) be a von Neumann algebra with a normal semifinite faithful trace
τ and let A ⊂ M be a dense ∗-subalgebra contained in the domain of τ .

For every V ∈Mm,n(C)⊗A, viewed as an operator from L2(M)⊕n to L2(M)⊕m given by left
multiplication, we define

β(2)(V ) = dimM

(
KerV ∩ (Ker V ∩ A⊕n)⊥

)
.

Note that β(2)(V ) = 0 iff KerV ∩ A⊕n is dense in KerV .

The proof of the following lemma is basically identical to the end of the proof of [L02, Theorem
6.37].

Lemma 8.7. Let T ⊂ S be an irreducible quasi-regular inclusion that is unimodular. Let A be
the tube ∗-algebra as above. If β(2)(V ) = 0 for every i ∈ Irr(C) and every V ∈Mm,k(C)⊗pi·A·pi,
then β(2)

n (T ⊂ S) = 0 for all n ≥ 1.

Proof. Write M := A′′ and Mi = pi ·M·pi for every i ∈ Irr(C). We first prove that β(2)(V ) = 0
for all V ∈ Mm,k(C) ⊗ A. For this, it suffices to prove that for all i ∈ Irr(C), we have that
KerV ∩ (A · pi)

⊕k is dense in KerV ∩ L2(A · pi)
⊕k.

Take ξ ∈ L2(A · pi)
⊕k with V ξ = 0. Since the image of the multiplication map

A · pi ⊗
pi·A·pi

L2(pi · A · pi) → L2(A · pi)
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is a dense right Mi-submodule, we can take a projection q ∈ Mi that is arbitrarily close to 1
such that

ξq =W · η with W ∈Mk,l(C)⊗A · pi , η ∈ L2(Mi)
⊕l .

Since V ξq = 0, it follows that η belongs to the kernel of

U :=W# · V # · V ·W ∈Ml,l(C)⊗ pi · A · pi .

Because we assumed that β(2)(U) = 0, we can take a sequence ηr ∈ KerU ∩ (pi · A · pi)
⊕l

such that ‖η − ηr‖2 → 0. Since KerU = Ker(V ·W ), it follows that W · ηr is a sequence in
KerV ∩ (A · pi)

⊕k that converges to ξq. Since q is arbitrarily close to 1, we have proved that
KerV ∩ (A · pi)

⊕k is dense in KerV ∩ L2(A · pi)
⊕k.

We now prove that β(2)
n (T ⊂ S) = 0 for all n ≥ 1. Up to taking adjoints, it follows from

Theorem 7.1 that we can choose an exact sequence · · · → L1 → L0 → Er → 0 of right A-
modules in which every Ln is isomorphic with a direct sum of right A-modules of the form
pi · A, i ∈ Irr(C) and such that β(2)

n (T ⊂ S) is computed as the M-dimension of the homology
of

· · · → L1 ⊗A 0L
2(A) → L0 ⊗A 0L

2(A) ,

where 0L
2(A) is the linear span of all L2(pi · A), i ∈ Irr(C).

To prove the lemma, it thus suffices to prove that whenever

L2
f
→ L1

g
→ L0

is a sequence of right A-modules such that Ker g = Im f and such that both L1 and L0 are
isomorphic with a direct sum of pi ·A, i ∈ Irr(C), then the induced sequence of right M-modules
given by

L̃2
f̃
→ L̃1

g̃
→ L̃0 where L̃n = Ln ⊗A 0L

2(A) ,

satisfies

dimM
Ker g̃

Im f̃
= 0 .

Write L1 as the union of an increasing sequence of A-submodules Rk ⊂ L1 such that each Rk

is the direct sum of finitely many pi · A. Write R̃k = Rk ⊗A 0L
2(A). Then Ker g̃/ Im f̃ is the

union of the increasing sequence of M-submodules

Ker g̃ ∩ R̃k

Im f̃ ∩ R̃k

. (8.1)

It thus suffices to prove that for every k, the M-module in (8.1) has M-dimension zero.

Fix k and write Rk =
⊕n

j=1 pij · A. Then R̃k =
⊕n

j=1 L
2(pij · A). The restriction of g to Rk

can be viewed as left multiplication by some V ∈ Mm,n(C) ⊗ A. Then also the restriction of

g̃ to R̃k is given by left multiplication with the same element V . Since Ker g = Im f , we have
Ker g ∩Rk ⊂ Im f̃ ∩ R̃k. Since β

(2)(V ) = 0, the M-module

Ker g̃ ∩ R̃k

Ker g ∩Rk

has M-dimension zero. The M-module in (8.1) is a quotient of this and hence also has M-
dimension zero.
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We now prove Theorem 8.4 by showing that the assumptions of Lemma 8.7 hold for inclusions
with the Følner property. The proof follows the same lines as the proof of the same result for
discrete groups, see [CG85] and [L02, Theorem 6.37].

Theorem 8.8. Let S be a II1 factor with separable predual and T ⊂ S an irreducible quasi-
regular subfactor. Assume that the inclusion T ⊂ S is unimodular and satisfies the Følner
property. Let A be the tube ∗-algebra as above. For every V ∈Mm,n(C)⊗A, we have β(2)(V ) =
0.

To prove Theorem 8.8, we need some notation and a lemma. For every finite subset F ⊂
Irr(C), we denote by PF the orthogonal projection of L2(A) onto the closed linear span of
all subspaces (1 ⊗ eF )(iS, Sj)(eF ⊗ 1), i, j ∈ Irr(C). We write SF = eF (S) and abbreviate
(1 ⊗ eF )(iS, Sj)(eF ⊗ 1) = (iSF , SF j). For every finite subset I ⊂ Irr(C), we also denote
pI :=

∑
i∈I pi, which is a projection in A. We let A act by left multiplication operators on

L2(A). Then, the projections pI and PF commute and their product pIPF is a finite rank
projection. Finally, denote by D the (possibly unbounded) positive self-adjoint operator on
L2(A) given by multiplication with dℓ(j) on (iS, Sj).

Lemma 8.9. Assume that T ⊂ S is unimodular. For every finite subset F ⊂ Irr(C) and for
every V ∈ A, acting by left multiplication on L2(A), we have

Tr(V PFD) = µ(F)2τ(V ) , (8.2)

where Tr denotes the operator trace on B(L2(A)).

Note that for every V ∈ A, there exists a finite set I ⊂ Irr(C) such that V = V · pI . Therefore,
V PFD is a finite rank operator and its trace is well defined. Denoting by A′′ the von Neumann
algebra generated by A acting by left multiplication on L2(A), we get by continuity that (8.2)
holds (and is meaningful) for all V ∈ pI · A′′ · pI and all finite subsets I ⊂ Irr(C).

Proof of Lemma 8.9. Since T ⊂ S is unimodular, we have that ∆S = 1 and τ is a trace on A.
Fix a finite subset I ⊂ Irr(C) such that V = V · pI . Since the left scalar product on (iS, Sj)
coincides with the scalar product on (iS, Sj) given by viewing it as a subspace of L2(A), we
have

Tr(V PFD) =
∑

i∈I,j∈Irr(C)

∑

W∈onbℓ(iSF ,SF j)

dℓ(j) 〈V ·W,W 〉 .

Using that τ is a trace and using Lemma 3.1, we get that

Tr(V PFD) =
∑

i∈I,j∈Irr(C)

∑

W∈onbℓ(iSF ,SFj)

dℓ(j) τ(V ·W ·W#) = µ(F)2
∑

i∈I

τ(V ·pi) = µ(F)2τ(V ) .

We can now prove Theorem 8.8.

Proof of Theorem 8.8. Take a finite subset I ⊂ Irr(C) such that V ∈Mm,n(C)⊗A · pI . Then,
Ker(V ) is the direct sum of ((1 − pI) · L

2(A))⊕n and the kernel of the restriction of V to
L2(pI ·A)⊕n. It thus suffices to prove that Ker(V )∩(pI ·A)⊕n is dense in Ker(V )∩L2(pI ·A)⊕n.

Define q, resp. p, as the orthogonal projection of L2(pI ·A)⊕n onto Ker(V )∩L2(pI ·A)⊕n, resp.
onto the closure of Ker(V ) ∩ (pI · A)⊕n. We have p ≤ q and we must prove that p = q. Note
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that p and q are projections in Mn(C) ⊗ pI · A′′ · pI acting by left multiplication. We prove
that (Tr⊗τ)(q − p) = 0.

Take a large enough finite subset G ⊂ Irr(C) such that all matrix entries of V ∈ Mm,n(C) ⊗A
belong to the linear span of (iSG , SGj) with i ∈ Irr(C), j ∈ I. Choose G symmetrically, i.e.
G = G. Choose ε > 0. Because T ⊂ S has the Følner property, we can take a non empty finite
subset F ⊂ Irr(C) such that µ(∂G(F)) < εµ(F).

Write F ′ = ∂G(F). Using the same notations PF , pI and D to denote their n-fold direct sum
as operators on L2(A)⊕n, we claim that if ξ ∈ L2(pI · A)⊕n belongs to Ker(V ) and satisfies
PF ′(ξ) = 0, then PF (ξ) belongs to Ker(V )∩ (pI · A)⊕n. To prove this claim, we first show that
PF (ξ) ∈ (pI · A)⊕n. This follows because PF (ξ) = PFpI(ξ) and because PFpI is a finite rank
projection with image in (pI · A)⊕n.

The definition of F ′ = ∂G(F) implies that

eF m (eG ⊗ 1) = eF m (eG ⊗ eF∪F ′) and m (eG ⊗ eF\F ′) = eF m (eG ⊗ eF\F ′) .

Since for every W ∈ (iS, Sj) ⊂ L2(A), we have that PF (W ) = (1 ⊗ eF )W (eF ⊗ 1), it follows
that whenever ξ ∈ L2(A)⊕n and PF ′(ξ) = 0, we have that

PF (V · ξ) = PF (V · PF∪F ′(ξ)) = PF (V · PF\F ′(ξ)) = V · PF\F ′(ξ) = V · PF (ξ) .

So, if moreover ξ ∈ Ker(V ), then also PF (ξ) belongs to Ker(V ) and the claim is proved.

The claim means that the range projection of PF (q ∧ (1 − PF ′)) is smaller than p. Therefore,
(q − p)PF (q ∧ (1− PF ′) = 0 and, in particular,

Tr
(
D(q − p)PF (q ∧ (1− PF ′))

)
= 0 . (8.3)

Denote by w the polar part of qPF ′ and note that ww∗ = q − (q ∧ (1 − PF ′)). It thus follows
from (8.3) that

Tr(D(q − p)PFq) = Tr(D(q − p)PFww
∗) .

Since both q and PF ′ commute with D, the same holds for w and we get that

Tr(D(q − p)PFq) = Tr(Dw∗(q − p)PFw) .

Since w∗w ≤ pIPF ′ , it follows that

|Tr(D(q − p)PFq)| ≤ ‖DpIPF ′‖1,Tr ‖w
∗(q − p)PFw‖ ≤ ‖DpIPF ′‖1,Tr . (8.4)

Taking into account that all our operators act on the n-fold direct sum L2(A)⊕n and that by
unimodularity, dℓ(i) = dr(i) = d(i) for all i ∈ C, we have

‖DpIPF ′‖1,Tr = n
∑

i∈I,j∈Irr(C)

d(j) dim(iSF ′ , SF ′j)

= n
∑

i∈I,j∈Irr(C)

d(j) mult(j, SF ′ iSF ′)

= n
∑

i∈I

d(i) d(SF ′)2 = n d(I)µ(F ′)2 ≤ n d(I) ε2 µ(F)2 ,

where d(I) :=
∑

i∈I d(i).

In combination with (8.4) and the observation that D and q commute, we get that

|Tr((q − p)PFD)| ≤ n d(I) ε2 µ(F)2 .
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Using Lemma 8.9, we conclude that

(Tr⊗τ)(q − p) ≤ n d(I) ε2 .

Since ε > 0 is arbitrary, it follows that q − p = 0.

We finally prove that in many interesting cases, amenability and strong amenability are actually
equivalent conditions.

Lemma 8.10. Let T ⊂ S be an irreducible, quasi-regular inclusion of II1 factors. If T ⊂ S
has the Følner property, then T ⊂ S is amenable in the sense of Definition 8.1.

The converse holds under the extra assumptions that every irreducible T -subbimodule of L2(S)
appears with multiplicity one and that there exists a δ > 0 such that for all α, β, γ ∈ Irr(C),

either eβ m(eγ ⊗ eα)m
∗ = 0 or eβ m(eγ ⊗ eα)m

∗ ≥ δ eβ .

Here, eα denotes the projection of L2(S) onto the T -subbimodule equivalent with α.

The above extra assumptions are satisfied for all SE-inclusions, as well as all inclusions of the
form N ⋊ Λ ⊂ N ⋊ Γ given by an almost normal subgroup Λ < Γ and an outer action of Γ on
a II1 factor N .

Proof. First assume that T ⊂ S has the Følner property. Take a net of finite subsets Fi ⊂ Irr(C)
such that µ(∂G(Fi))/µ(Fi) tends to zero for every finite subset G ⊂ Irr(C). For every finite
subset F ⊂ Irr(C), define as before the element eF :=

∑
α∈F eα in (S, S) = pε · A · pε. Define

ξi := µ(Fi)
−1/2eFi

∆
1/2
S

. By construction, ‖ξi‖2,τ = 1 for all i. We claim that for every
V ∈ (S, S), we have

lim
i
〈V · ξi, ξi〉 = Tr(V ) .

Once this claim is proved, the amenability of T ⊂ S follows from Proposition 8.2. Fix V ∈ (S, S).
Take a finite subset G ⊂ Irr(C) such that V = eGV . Write F ′

i = Fi \ ∂G(Fi). Since

‖ξi − µ(Fi)
−1/2eF ′

i
∆

1/2
S

‖22,τ ≤
µ(∂G(Fi))

µ(Fi)
→ 0 ,

it suffices to prove that

lim
i

1

µ(Fi)
〈V · (eF ′

i
∆

1/2
S

), eFi
∆

1/2
S

〉 = Tr(V ) .

Since m(eG ⊗ eF ′
i
) = eFi

m(eG ⊗ eF ′
i
) and since the co-unit is a character on pε · A · pε, we get

for every i that

〈V · (eF ′
i
∆

1/2
S

), eFi
∆

1/2
S

〉 = Trℓ(eFi
∆

1/2
S

m(V ⊗ eF ′
i
∆

1/2
S

)m∗)

= Trℓ(m(V∆
1/2
S

⊗ eF ′
i
∆S)m

∗)

= Trℓ(V∆
1/2
S

) Trr(eF ′
i
) = Tr(V )µ(F ′

i) .

Dividing by µ(Fi) and taking the limit over i, the claim follows. So, T ⊂ S is amenable.

Conversely, assume that T ⊂ S is an amenable inclusion and that the extra conditions in the
lemma are satisfied. Fix a finite, symmetric subset G ⊂ Irr(C). We prove that there exists a
sequence of finite subsets Fn ⊂ Irr(C) such that µ(∂G(Fn))/µ(Fn) → 0.
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By Proposition 8.2, we find a net of vectors ξi ∈ pε · A · pε such that ‖ξi‖2,τ = 1 for all i and

lim
i

‖V · ξi − Tr(V )ξi‖τ = 0 for all V ∈ pε · A · pε. (8.5)

Since the irreducible T -subbimodules of L2(S) appear with multiplicity one, (S, S) is the linear
span of the elements eα. Define the finitely supported functions ηi : Irr(C) → C such that

ξi =
∑

α∈Irr(C)

ηi(α)√
Trℓ(eα)

eα .

Since 〈eγ · eα, eβ〉 = Trℓ(eβm(eγ ⊗ eα)m
∗) and e#γ = eγ , the infinite matrix

T G
β,α =

∑

γ∈G

Trℓ(eβm(eγ ⊗ eα)m
∗)√

Trℓ(eβ) Trℓ(eα)

is symmetric. By (8.5), we have that limi ‖T
G(ηi)− Tr(eG)ηi‖2 = 0, where ‖ · ‖2 is computed

w.r.t. the counting measure on Irr(C). Writing vα =
√
µ(α) =

√
Trr(eα), we get that

∑

α∈Irr(C)

T G
β,α vα =

∑

α∈Irr(C)

dr(α)
1/2 Trℓ(eαm(eG ⊗ eβ)m

∗)

dℓ(α)1/2 dℓ(β)1/2

=
∑

α∈Irr(C)

∆1/2
α dℓ(β)

−1/2 Trℓ(eαm(eG ⊗ eβ)m
∗)

=
∑

α∈Irr(C)

dℓ(β)
−1/2 ∆

1/2
β Trℓ(eαm(∆

1/2
S
eG ⊗ eβ)m

∗)

= dℓ(β)
−1/2 ∆

1/2
β Trℓ(m(∆

1/2
S
eG ⊗ eβ)m

∗)

= dℓ(β)
−1/2 ∆

1/2
β Trℓ(∆

1/2
S
eG) Trℓ(eβ) = Tr(eG) vβ .

So, the formal equality T G(v) = Tr(eG)v holds.

Whenever α, β ∈ Irr(C) and T G
β,α 6= 0, it follows from our assumptions that

T G
β,α ≥ δ

√
dℓ(β)√
dℓ(α)

.

In that case, we find in particular a γ ∈ G such that the bimodule β is contained in γ ⊗ α.
Then also α is contained in γ ⊗ β and we conclude that dℓ(α) ≤ Trℓ(eG) dℓ(β). We conclude
that all non zero entries of T G

β,α are bounded from below by δ/Trℓ(eG). Also note that ∂G(Fn)
is the boundary of Fn in the graph structure on Irr(C) in which α, β are connected by an edge
if and only if T G

β,α > 0. So, it follows from [P97b, Corollary 2.1] that there exists a sequence
of non empty finite subsets Fn ⊂ Irr(C) such that µ(∂G(Fn))/µ(Fn) → 0. So, T ⊂ S has the
Følner property.

Next consider the case of SE-inclusions. So we are given a II1 factorM and a tensor category C1
of finite indexM -bimodules having equal left and right dimension. We write T =M⊗Mop and
we have the SE-inclusion T ⊂ S. By construction, for all α ∈ Irr(C1), we have a T -bimodular
map

δα : Hα ⊗Hα → L2(S)
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satisfying δ∗αδα = d(α)−1 1 and δ∗αδβ = 0 if α 6= β. Also,

m ◦ (δγ ⊗ δα) =
∑

β∈Irr(C1)

∑

V ∈onb(β,γα)

d(β) δβ ◦ (V ⊗ V ) .

Note that also the T -bimodules contained in L2(S) have equal left and right dimension. We
denote by eα ∈ (S, S) the minimal projection corresponding to the irreducible T -bimodule
Hα ⊗Hα. So, eα = d(α)δαδ

∗
α. A direct computation then gives

eβm(eγ ⊗ eα)m
∗ =

mult(β, γ ⊗ α) d(γ) d(α)

d(β)
eβ .

This expression is non zero if and only if β is contained in γ ⊗ α. In that case, we have
d(β) ≤ d(γ) d(α) and it follows that eβm(eγ ⊗ eα)m

∗ ≥ eβ.

Finally consider an almost normal subgroup Λ < Γ and an outer action of Γ on a II1 factor
N . Put T = N ⋊ Λ and S = N ⋊ Γ. For every double coset γ ∈ Λ\Γ/Λ, denote by H(γ) the
‖ · ‖2-closed linear span of {xug | x ∈ N, g ∈ γ}. Each H(γ) is an irreducible T -subbimodule
of L2(S) and these T -subbimodules are mutually inequivalent. Fix α, β, γ ∈ Λ\Γ/Λ. Take
a1, . . . , ak ∈ α such that α is the disjoint union of the cosets Λai. Then, the map

U : H(γ)⊗ C
k → H(γ)⊗T H(α) : U(ξ ⊗ ei) = ξ ⊗ uai

is unitary. Write W = m ◦ U and note that W(ξ ⊗ ei) = ξuai . For all x ∈ N and g ∈ Γ, we
have that

W∗(xug) =
∑

i,ga−1
i

∈γ

xugu
∗
ai ⊗ ei .

Thus, writing β = ΛbΛ for some b ∈ Γ, we get that

eβ m(eγ ⊗ eα)m
∗ = eβWW∗ = #{i | ba−1

i ∈ γ} eβ ,

which is either 0 or at least eβ .

Remark 8.11. 1. When T ⊂ S is the SE-inclusion of a tensor category C1 of finite index
M -bimodules having equal left and right dimension, then the amenability of the inclusion
T ⊂ S is equivalent with the amenability of C1 as a rigid C∗-tensor category. This follows
immediately from Proposition 8.2 and the identification between pε ·A · pε and the fusion
algebra of C1.

2. When Λ < Γ is an almost normal subgroup and Γ y N is an outer action on the II1
factor N , then the amenability of the inclusion of T = N ⋊Λ inside S = N ⋊ Γ is equiv-
alent with the amenability of the Schlichting completion G, which is the locally compact
group defined as the closure of Γ inside the permutation group of Γ/Λ equipped with the
topology of pointwise convergence. Indeed, the closure of Λ inside G is a compact open
subgroup of G and there is a natural identification of K\G/K with Λ\Γ/Λ. Condition 4
in Proposition 8.2 then becomes the existence of a net of unit vectors ξi ∈ L2(K\G/K)
such that viewing ξi as vectors in L

2(G), we have limi〈λgξi, ξi〉 = 1 for every g ∈ G. This
last condition is equivalent with the amenability of G.
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9 Computations

9.1 The 0’th L
2-Betti number

Proposition 9.1. Let T ⊂ S be an irreducible, quasi-regular, unimodular inclusion of II1
factors. Then, β(2)

0 (T ⊂ S) = [S : T ]−1.

Proof. Let C be the tensor category of finite index T -bimodules generated by L2(S). Denote
by A the tube ∗-algebra and write M = A′′. Using the resolution in the proof of Theorem 7.1,
we get that β(2)

0 (T ⊂ S) equals the M-dimension of the left M-module K0, where K0 is defined
as the orthogonal complement in L2(A · pε) of the image of the map

⊕

i∈Irr(C)

(iS2, S) → L2(A · pε) : V 7→ (1⊗m)V − (1⊗ 1⊗ a∗)(V ⊗ 1)m∗ .

Define qε ∈ Z(M) as the central support of pε. Then, L2(A · pε) = qε · L
2(A · pε) and thus,

K0 = qε · K0. So, writing Mε := pε · M · pε, it follows from [KPV13, Lemma A.15] that
dimMK0 = dimMε(pε · K0). Note that pε · K0 equals the orthogonal complement in L2(Mε) of
the image of the map

(S2, S) → L2(Mε) : V 7→ mV − (1⊗ a∗)(V ⊗ 1)m∗ .

For every W ∈ (S, S) and V ∈ (S2, S), we have that

〈W, (1 ⊗ a∗)(V ⊗ 1)m∗〉 = 〈m(W ⊗ 1), V 〉 .

Note that L2(Mε) is the completion of (S, S) with respect to the scalar product 〈V,W 〉 =
Tr(VW ∗) and thus, L2(Mε) can be viewed as the space of bounded T -bimodular operators
V : L2(S) → L2(S) with the property that Tr(V V ∗) < ∞. Then W ∈ pε · K0 if and only if we
have

Wm(1⊗ eF ) = m(1⊗ eF )(W ⊗ 1)

for every finite subset F ⊂ Irr(C), and where the equality holds as bounded T -bimodular
operators from L2(S) ⊗T L

2(S) to L2(S). Composing with δ ⊗ 1, where δ : L2(T ) → L2(S) is
the inclusion map as before, we find that

WeF = m(1⊗ eF )(Wδ ⊗ 1) .

Since Wδ is a T -bimodular map from L2(T ) to L2(S), it must be a multiple of δ. We conclude
that

WeF = τ(W ) eF

for all finite subsets F ⊂ Irr(C). This means that pε ·K0 consists of the multiples of the identity
operator on L2(S). If [S : T ] = ∞, also Tr(1) = ∞ and it follows that pε · K0 = {0}. Then also
β(2)

0 (T ⊂ S) = 0. If [S : T ] <∞, we write zε = [S : T ]−11 and we get that zε is a minimal central
projection in Mε projecting onto pε · K0. So in that case, β(2)

0 (T ⊂ S) = τ(zε) = [S : T ]−1.

Corollary 9.2. If C is a rigid C∗-tensor category, we have β(2)

0 (C) =
(∑

α∈Irr(C) d(α)
2
)−1

.

Corollary 9.3. Let T ⊂ S be an irreducible, unimodular inclusion of II1 factors with finite
index. Then,

β(2)

0 (T ⊂ S) = [S : T ]−1 and β(2)
n (T ⊂ S) = 0 for all n ≥ 1 .
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Proof. By Theorem 7.1, we compute β(2)
n (T ⊂ S) by tensoring an exact sequence of A-modules

with L2(pε ·A)0⊗A · . In the finite index case, L2(pε ·A)0 = pε ·A and the sequence stays exact.
So, β(2)

n (T ⊂ S) = 0 for all n ≥ 1, while β(2)

0 (T ⊂ S) was computed in Proposition 9.1.

9.2 The L
2-Betti numbers of free products

Proposition 9.4. Let T ⊂ S1 and T ⊂ S2 be irreducible, quasi-regular, unimodular inclusions
of II1 factors. Define S as the amalgamated free product S = S1∗T S2 w.r.t. the trace preserving
conditional expectations. Assume that T ⊂ S is still irreducible and that the inclusions are non-
trivial: Si 6= T . Then,

β(2)

0 (T ⊂ S) = 0 ,

β(2)

1 (T ⊂ S) = β(2)

1 (T ⊂ S1) + β(2)

1 (T ⊂ S2) + 1− (β(2)

0 (T ⊂ S1) + β(2)

0 (T ⊂ S2)) and

β(2)
n (T ⊂ S) = β(2)

n (T ⊂ S1) + β(2)
n (T ⊂ S2) for all n ≥ 2 .

Denote by Ci the tensor category of finite index T -bimodules generated by T ⊂ Si. If C1 and
C2 are free, in the sense that every alternating tensor product of T -bimodules in Irr(C1) \ {ε}
and Irr(C2) \ {ε} stays irreducible, then T ⊂ S1 ∗T S2 is automatically irreducible.

Corollary 9.5. If a rigid C∗-tensor category C is the free product of non trivial full tensor
subcategories C1 and C2, then

β(2)

0 (C) = 0 ,

β(2)

1 (C) = β(2)

1 (C1) + β(2)

1 (C2) + 1− (β(2)

0 (C1) + β(2)

0 (C2)) and

β(2)
n (C) = β(2)

n (C1) + β(2)
n (C2) for all n ≥ 2 .

Proof of Proposition 9.4. Let C be the tensor category of finite index T -bimodules generated
by T ⊂ S. Write S = QNS(T ) and Sk = QNSk

(T ) for k = 1, 2. Denote by A the associated

tube ∗-algebra. Consider the left A-module Eℓ as in Remark 3.6. To compute β(2)
n (T ⊂ S), we

will construct a specific resolution of Eℓ. Define the A-module map ∂ : A · pε → Eℓ given by
(7.3). For k = 1, 2 and n ≥ 1, consider the n-fold relative tensor product Snk = Sk ⊗T · · · ⊗T Sk,
define

Ak
n =

⊕

i∈Irr(C)

(iSSnk , S)

and turn Ak
n into a left A-module as in (7.1). We have the left A-module isomorphisms

⊕

i∈Irr(Ck)

A · pi ⊗ (iSnk , ε) → Ak
n : V ⊗W → (V ⊗ 1)(1 ⊗W )

so that every Ak
n is a projective left A-module. The same formulas as in (7.4) yield A-module

maps
∂ : Ak

1 → A · pε and ∂ : Ak
n → Ak

n−1 for all n ≥ 2 .

Taking direct sums, we find the complex

· · · → A1
3 ⊕A2

3 → A1
2 ⊕A2

2 → A1
1 ⊕A2

1 → A · pε → E → 0 . (9.1)

We claim that the complex in (9.1) is exact. The exactness at the position A1
n ⊕ A2

n for
n ≥ 2 follows by using the same homotopy as in (7.5). The exactness at the position A1

1 ⊕A2
1
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follows in the same way, once we prove that ∂(V ) = ∂(W ) for V ∈ A1
1 and W ∈ A2

1 implies
that ∂(V ) = ∂(W ) = 0. To prove this statement, define S′1 as the linear span of T and all
alternating products of S1 ⊖ T and S2 ⊖ T that end with S2 ⊖ T . Note that the multiplication
map defines a unitary T -bimodular operator L2(S′1) ⊗T L

2(S1) → L2(S). We similarly define
S′2. In this way, we identify (iS, S) with (iS′1S1, S) and with (iS′2S2, S). Viewing (iS′1, S) as a
subspace of (iS, S) by the inclusion S′1 ⊂ S and using the multiplication maps mk : S⊗T Sk → S,
we define the linear maps

D1 : A · pε → A · pε : V 7→ (12 ⊗ a∗1)(V ⊗ 1)m∗
1 for all V ∈ (iS′1S1, S) ,

D2 : A · pε → A · pε : V 7→ (12 ⊗ a∗2)(V ⊗ 1)m∗
2 for all V ∈ (iS′2S2, S) .

Note that for every V ∈ (iS, S), we have D1(V ) ∈ (iS′1, S). We also have D1(V ) = V for all
V ∈ (iS′1, S). Analogous statements hold for D2.

Using the embedding (iS′k, S) ⊂ (iS, S) as the homotopy, we get that

Ak
1

∂
→ A · pε

Dk→ A · pε

is exact.

Writing S◦k = Sk ⊖ T , we have that S is the linear span of T and all alternating products in
S◦1 and S◦2. When e.g. V ∈ (iS◦1S

◦
2S

◦
1, S), then D1(V ) belongs to (iS◦1S

◦
2, S), and D2(D1(V ))

belongs to (iS◦1, S), so that D1(D2(D1(V ))) belongs to (i, S) and equals ∂(V ), where we viewed
(i, S) ⊂ (iS, S) through the identification of W and (1 ⊗ δ)W . All further (D2D1)

n(V ) with
n ≥ 2 equal ∂(V ). In general, for all V ∈ A · pε, the sequences (D1D2)

n(V ) and (D2D1)
n(V )

become constantly equal to ∂(V ) for n large enough.

So, defining for all n ≥ 1, the maps

Sn : A · pε → A · pε : Sn(V ) = D1(V )−D2(D1(V )) + · · ·+D1((D2D1)
n−1(V ))− (D2D1)

n(V )

Tn : A · pε → A · pε : Tn(V ) = D2(V )−D1(D2(V )) + · · ·+D2((D1D2)
n−1(V ))− (D1D2)

n(V )

also the sequences Sn(V ) and Tn(V ) become constant for n large enough, and we denote this
‘limit’ as S(V ), resp. T (V ). When V ∈ (iS′1S

◦
1, S), we have Tn(V ) = V −Sn−1(V )−(D1D2)

n(V ),
so that S(V ) + T (V ) = V − ∂(V ). The same formula holds when V ∈ (iS′2S

◦
2, S) and when

V ∈ (i, S). So, we get that

S(V ) + T (V ) = V − ∂(V ) for all V ∈ A · pε .

We are now ready to prove the exactness of (9.1) at the position A1
1 ⊕ A2

1. Assume that
∂(V ) = ∂(W ) for V ∈ A1

1 and W ∈ A2
1. Since Ak

2 → Ak
1 → A · pε is exact, it suffices to prove

that ∂(V ) = 0. We have that D1(∂(V )) = 0. But also D2(∂(W )) = 0 and thus, D2(∂(V )) = 0.
Both together imply that S(∂(V )) = 0 = T (∂(V )), so that ∂(V ) = ∂(∂(V )) = 0.

Finally, we have to prove that (9.1) is exact at the position A·pε. Take V ∈ A·pε with ∂(V ) = 0.
Then, V = S(V ) + T (V ). It suffices to prove that S(V ) ∈ ∂(A2

1) and that T (V ) ∈ ∂(A1
1). For

this, it suffices to prove that D2(S(V )) = 0 and D1(T (V )) = 0. Since D2(W −D2(W )) = 0 for
all W ∈ A · pε, the definition of S immediately implies that D2(S(V )) = 0. Similarly, we get
that D1(T (V )) = 0.

So, we have proved that (9.1) is a resolution of E by projective left A-modules. Write M = A′′.
By Theorem 7.1, the L2-Betti numbers of T ⊂ S can thus be computed as the M-dimension
of the homology of the complex

· · · → B1
3 ⊕ B2

3 → B1
2 ⊕ B2

2 → B1
1 ⊕ B2

1 → L2(A · pε) ,
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where
Bk
n =

⊕

i∈Irr(Ck)

L2(A · pi)⊗ (iSnk , ε)

and the boundary maps are the natural extensions of the boundary maps in (9.1). Denote by
Ak the tube ∗-algebra of T ⊂ Sk and Ck. Write Mk = A′′

k. By Theorem 7.1, the L2-Betti
numbers of T ⊂ Sk are computed as the Mk-dimension of the homology of the complex

· · · → Lk
3 → Lk

2 → Lk
1 → L2(pε · Ak · pε) ,

where
Lk
n =

⊕

i∈Irr(Ck)

L2(Ak · pi)⊗ (iSnk , ε)

and the boundary maps are as above.

For k = 1, 2, define the projection qk ∈ M given by qk =
∑

i∈Irr(Ck)
pi. For any chain com-

plex (Ln)n≥0 of Mk-modules, the Mk-dimension of the homology of (Ln)n≥0 equals the M-
dimension of the homology of the complex (M· qk ⊗Mk

Ln)n≥0. Since for every i ∈ Irr(Ck), the
multiplication map M· qk ⊗Mk

L2(Ak · pi) → L2(A · pi) is a dimension isomorphism, it follows
that β(2)

n (T ⊂ Sk) can be computed as the M-dimension of the homology of (Bk
n)n≥0.

We then immediately get that

β(2)
n (T ⊂ S) = β(2)

n (T ⊂ S1) + β(2)
n (T ⊂ S2) for all n ≥ 2 .

We also get that

β(2)

1 (T ⊂ S) = β(2)

1 (T ⊂ S1) + β(2)

1 (T ⊂ S2) + dimM(∂(B1
1) ∩ ∂(B

2
1)) . (9.2)

Since both Sk 6= T , we get that all alternating products of S◦1 and S◦2 define nonzero orthogonal
T -subbimodules of L2(S). Therefore, T ⊂ S has infinite index and β(2)

0 (T ⊂ S) = 0.

For k = 1, 2, define the projection zk ∈ pε · A · pε given by zk = 0 if [Sk : T ] = ∞ and
otherwise given as [Sk : T ]−1 times the projection of L2(S) onto L2(Sk) viewed as an element
in pε · A · pε = (S, S). Write Mε = pε · M · pε. Exactly as in the proof of Proposition 9.1, we
get that

dimM(∂(B1
1) ∩ ∂(B

2
1)) = dimMε(pε · ∂(B

1
1) ∩ pε · ∂(B

2
1))

= 1− dimMε(pε · ∂(A
1
1)

⊥ + pε · ∂(A
2
1)

⊥) = 1− τ(z1 ∨ z2)

= 1− (τ(z1) + τ(z2)− τ(z1 ∧ z2)) .

Since T ⊂ S has infinite index, we have z1 ∧ z2 = 0 and we conclude that

dimM(∂(B1
1) ∩ ∂(B

2
1)) = 1− [S1 : T ]

−1 − [S2, T ]
−1 = 1− β(2)

0 (T ⊂ S1)− β(2)

0 (T ⊂ S2) .

Together with (9.2), we have found the required formula for β(2)

1 (T ⊂ S).

9.3 The L
2-Betti numbers of tensor products

Proposition 9.6. If T1 ⊂ S1 and T2 ⊂ S2 are irreducible, quasi-regular, unimodular inclusions
of II1 factors, then

β(2)
n (T1 ⊗ T2 ⊂ S1 ⊗ S2) =

n∑

k=0

β(2)

k (T1 ⊂ S1)β
(2)

n−k(T2 ⊂ S2) .

If C1 and C2 are rigid C∗-tensor categories, we have a similar formula for β(2)
n (C1 × C2).

51



Proof. The tube algebra A of T ⊂ S is canonically isomorphic with the algebraic tensor product
A1 ⊗ A2 of the tube algebras Ak of Tk ⊂ Sk. Also the trivial left A-module E is the tensor
product E1 ⊗ E2 of the trivial left Ak-modules Ek. Given resolutions (Lk

n) of Ek by projective
left Ak-modules, we build the bicomplex of A-modules (L1

n ⊗ L2
m)n,m. The total complex

Ln =

n⊕

k=0

(L1
k ⊗ L2

n−k)

is a resolution of E by projective left A-modules. The computation of β(2)
n (T ⊂ S) can then be

done exactly as in the proof of [K09, Theorem 2.1].

9.4 The L
2-Betti numbers of the Temperley-Lieb-Jones subfactors

Definition 9.7. For every extremal finite index subfactor N ⊂M , we define β(2)

sub,n(N ⊂M) :=

β(2)
n (T ⊂ S) where T ⊂ S is the SE-inclusion of N ⊂M .

The following proposition implies in particular that β(2)

sub,n(N ⊂M) only depends on the stan-
dard invariant of the subfactor N ⊂M .

Proposition 9.8. Let N ⊂M be an extremal finite index subfactor with tunnel/tower (Mk)k∈Z.
Let CM be the category of finite index M -bimodules generated by N ⊂M .

1. We have β(2)

sub,n(N ⊂ M) = β(2)
n (CM ). More generally, whenever Mk ⊂ P ⊂ Mm for

some k ≤ m, we have β(2)

sub,n(N ⊂M) = β(2)
n (CP ) where CP is the category of finite index

P -bimodules generated by L2(Mn), n ≥ m.

2. We have β(2)

sub,n(N ⊂ M) = β(2)

sub,n(P ⊂ Q) whenever Ma ⊂ P ⊂ Mk ⊂ Mm ⊂ Q ⊂ Mb

with a ≤ k < m ≤ b.

Proof. These are immediate consequences of the discussion in Section 7.2 and the stability of
L2-Betti numbers under Morita equivalence in Proposition 7.4.

We prove the following result. Recall that a subfactor N ⊂ M is called Temperley-Lieb-Jones
(TLJ) if the relative commutants M ′

k ∩Mm in the Jones tower N ⊂ M ⊂ M1 ⊂ · · · are as
small as possible, i.e. generated by the Jones projections en, k < n < m.

Theorem 9.9. 1. Let N ⊂M be a TLJ subfactor. Then, β(2)

sub,n(N ⊂M) = 0 for all n ≥ 1.

2. Let N ⊂M be a Fuss-Catalan subfactor in the sense of [BJ95]. Then β(2)

sub,1(N ⊂M) > 0

and all other L2-Betti numbers vanish.

Fuss-Catalan subfactors arise as the free composition of two TLJ subfactors (see [BJ95]). So,
the exact value of β(2)

sub,1(N ⊂M) can be computed using Proposition 9.4.

Proof. 1. Let C be the tensor category of finite index M -bimodules generated by N ⊂ M .
Denote by A its tube ∗-algebra, with corresponding von Neumann algebra M = A′′. In [GJ15,
Section 5.2], it is proved that for every i ∈ Irr(C), the von Neumann algebra pi ·M·pi is diffuse
abelian and the subalgebra pi · A · pi is essentially a polynomial algebra. In particular, every
nonzero element of pi ·A · pi defines an injective operator in pi ·M · pi. Combining Lemma 9.10
below and Lemma 8.7, we conclude that β(2)

n (C) = 0 for all n ≥ 1.
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2. By definition, a Fuss-Catalan subfactor N ⊂ M is the free composition of TLJ subfactors
N ⊂ P and P ⊂ M . Let N ⊂ M ⊂ M1 ⊂ · · · be the Jones tower. Define CP as the
category of finite index P -bimodules generated by L2(Mn), n ≥ 0. By definition, CP is the free
product of the categories of P -bimodules C1 and C2 generated by resp. N ⊂ P and P ⊂ M .
By Proposition 9.8, we have β(2)

sub,n(N ⊂ M) = β(2)
n (CP ) for all n ≥ 0. From 1, we know that

β(2)
n (Ck) = 0 for all k = 1, 2 and n ≥ 1. Since CP is the free product of C1 and C2, the conclusion

follows from Proposition 9.4.

In the proof of Theorem 9.9, we needed the following lemma, using the notation of Definition 8.6.

Lemma 9.10. Let (X,µ) be a standard probability space and D ⊂ L∞(X,µ) a dense ∗-
subalgebra with the property that every a ∈ D \ {0} satisfies a(x) 6= 0 for a.e. x ∈ X. Then for
every V ∈Mm,n(C)⊗D, we have that β(2)(V ) = 0.

Proof. View V as a measurable function X →Mm,n(C) with the property that the components
x 7→ V (x)ij belong to D for all i, j. Denote by K the closure of KerV ∩D⊕n inside L2(X,µ)⊕n.
We have to prove that K = KerV .

For all subsets I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n} with |I| = |J |, we denote by V (x)I,J the I×J
minor of the matrix V (x), i.e. the determinant of the matrix given by the I-rows and J-columns
of V (x). Define k ∈ {0, . . . , n} as the largest integer for which there exist such subsets I and J
with |I| = |J | = k and with x 7→ V (x)I,J being nonzero on a non negligible set of x ∈ X. Since
x 7→ V (x)I,J belongs to D, we then get that V (x)I,J 6= 0 for a.e. x ∈ X, while V (x)I′,J ′ = 0
for a.e. x ∈ X and all subsets I ′, J ′ with |I ′| = |J ′| > k. After removing from X a set of
measure zero and after reordering the indices, we may assume that with I = J = {1, . . . , k},
we have V (x)I,J 6= 0 for all x ∈ X, and V (x)I′,J ′ = 0 for all x ∈ X and all subsets I ′, J ′ with
|I ′| = |J ′| > k.

We define for all r = k + 1, . . . , n, the elements ξr ∈ D⊕n given by

ξr(x)j =





(−1)jV (x)I,(J\{j})∪{r} if 1 ≤ j ≤ k ,

(−1)k+1V (x)I,J if j = r ,

0 if j ∈ {k + 1, . . . , n} \ {r} .

For every x ∈ X, the matrix V (x) has rank r and the vectors ξr(x) ∈ C
n, r = k + 1, . . . , n,

form a basis for KerV (x).

Fix η ∈ KerV . Then, for a.e. x ∈ X, we have that

η(x) =

n∑

r=k+1

V (x)−1
I,Jη(x)r ξr(x) . (9.3)

Fix ε > 0. Take a measurable subset X0 ⊂ X such that µ(X \ X0) < ε and such that
both x 7→ V (x)−1

I,J and x 7→ η(x)r are bounded on X0. Denote by 1X0 the projection in
L∞(X,µ) that corresponds to X0. Then (9.3) implies that η · 1X0 belongs to the linear span of
(KerV ∩ D⊕n) · L∞(X). Thus, η · 1X0 ∈ K. Since ε > 0 is arbitrary, we conclude that η ∈ K.
So we have proved that K = KerV .

9.5 Homology with trivial coefficients

The following result generalizes the statement that homology of finite groups with trivial coef-
ficients vanishes.
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Proposition 9.11. Let T ⊂ S be a finite index inclusion. Then Hn(T ⊂ S,L2(S)) = 0 for all
n ≥ 1, while H0(T ⊂ S,L2(S)) = C.

Proof. By Remark 6.2, the differential complex in Definition 6.1 computing Hn(T ⊂ S,L2(S))
consists of cyclic tensor products, which are exactly the higher relative commutants T ′ ∩ Sk
associated to the Jones tower T ⊂ S ⊂ S1 ⊂ · · · . The differential of this complex is then
precisely the one considered in [J98, Section 6] and it follows from [J98] that the complex is
acyclic.

Remark 9.12. Let T ⊂ S be an irreducible quasi-regular inclusion of II1 factors. Write
S = QNS(T ). By Remark 6.2.2, the homology Hn(T ⊂ S,L2(S)) can be computed by the bar
complex (Cn)n≥0 given by the (n+1)-fold cyclic tensor products Cn = Sn+1/T of S relative to
T . Defining the shift τ : Cn → Cn : τ(x0⊗· · ·⊗xn) = xn⊗x0⊗· · · xn−1, one can also define the
cyclic chain complex (Cλ

n)n≥0 given by Cλ
n = Cn/{ξ−(−1)nτ(ξ) | ξ ∈ Cn}. The cyclic homology

of T ⊂ S can then be defined as the homology of (Cλ
n)n≥0. Similarly, one defines the cyclic

cohomology of T ⊂ S. Again, when T ⊂ S has finite index, cyclic homology trivializes (see
[J98, Corollary 6.3]), but for other quasi-regular inclusions like the SE-inclusion of a subfactor
of infinite depth, one obtains a potentially interesting cyclic (co)homology theory.

Using the methods of Theorem 7.1, the cyclic homology of T ⊂ S can be identified with a cyclic
homology theory for the tube ∗-algebra A associated with T ⊂ S and the tensor category C
generated by the finite index T -subbimodules of L2(S). In particular, one can define in this
way a cyclic homology theory for rigid C∗-tensor categories.

Let P be a planar algebra. Consider the space C viewed as a module over the tube algebra
associated to P by using the augmentation map. The homology with coefficients in this module
is then computed by the differential complex described as follows. The space Ck is the linear
span of diagrams drawn on the sphere with points rk+1, . . . , r1 = ∞ removed:

x · · · · · ·

The differential ∂k : Ck → Ck−1 is again given by
∑k

j=0(−1)jdj where dj sends a diagram drawn

on S2 \ {r1, . . . , rk+1} to the diagram drawn on S2 \ {r1, . . . , rj , rj+2, . . . , rk+1}. In particular,
we have that d0 is given by

d0




x · · · · · ·




= x · · · · ·

where we have colored the strings of x that pass between the point rk and the point at infinity
= rk+1 in blue for emphasis.

In the case of the TLJ planar algebra, the space Ck is linearly spanned by all possible topological
arrangements of non-intersecting circles surrounding k points in the plane (which is identified
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with the sphere with a point at infinity removed). Furthermore, the interiors of the circles are
shaded in an alternating fashion, so that each circle lies at the boundary between a shaded an
unshaded region. The shading of the entire picture is completely determined by whether the
region near the point at infinity is shaded or not, and we refer to this as the shading of the
picture. Thus, for example

C0 = C, C1 = span{σk : k ≥ 0}, C2 = span{σca,b : a, b, c ≥ 0}

where

σk = · k , σca,b = · · ca b (9.4)

(the letters indicate numbers of parallel strings). Here we are abusing notation and are using
the same symbol and picture not specifying the shading at infinity. These elements are linearly
independent in the case that the parameter δ is generic (i.e., δ ≥ 2). For δ < 2 there are
relations between these elements. In particular, in that case C1 is the linear span of σk for
0 ≤ k ≤ d for some fixed d (depending on δ < 2).

Proposition 9.13. We have H0(TLJ(δ)) = C, while H1(TLJ(δ)) = H2(TLJ(δ)) = 0.

Before proving Proposition 9.13, it is worth noting that if δ ≥ 2, the fusion algebra associated
to the TLJ planar algebra is isomorphic to the algebra of single-variable polynomials R = C[t]
with the augmentation given by ǫ : p 7→ p(δ). One can easily check that the map q 7→ q′(δ)
is a nontrivial linear function on the space of Hochschild 1-cycles for (R,α) and descends to a
nonzero functional on HH1(R,C). This homology group is therefore nonzero (it is in fact equal
to C).

So, the TLJ planar algebra provides an example where the homology of a tensor category/planar
algebra is different from the homology of the associated fusion algebra.

Proof. Using the notation (9.4), we have

∂1σk = 0 and ∂2σ
c
a,b = δaσb+c − δbσa+c + δcσa+b,

where the shading of all of the terms on the right hand side of the equation is the same as
that of the element on the left, except that the shading of the last term is reversed if c is odd.
So, H0(TLJ(δ)) = C. We also get that ∂2σ

0
a,1 = δaσ1 − δσa + σa+1 so that σa+1 (with either

shading) is homologous to a linear combination of σa and σ1. Applying this inductively shows
that any σk (with either shading) is homologous to an element of the linear span of σ1 and σ0
(both with the opposite shading). On the other hand, ∂2σ

1
0,0 = σ1−σ1+ δσ0 which shows that

σ0 (with either shading) is homologous to zero. Finally, ∂2σ
0
0,1 = σ1 − δσ0 + σ1 which shows

that 2σ1 (with either shading) is homologous to δσ0 and thus to zero. So, we have proved that
H1(TLJ(δ)) = 0.

We further compute

∂3

(
· a · b · c

)
= δaσ0b,c − δbσ0a,c + δcσ0a,b − σca,b

55



where the shading of all terms on the right is the same as that of the term on the left, except
that the shading of σca,b is reversed when c is odd.

We will use the notation x ∼ y to indicate that x− y ∈ image ∂3. Thus:

σca,b ∼ δaσ0b,c − δbσ0a,c + δcσ0a,b. (9.5)

(with same or reversed shading depending on the parity of c).

Next, consider

∂3




· ·b · cl


 = σ0b+l,c − δbσ0l,c + δcσl0,b − σl+c

0,b

∼ σ0b+l,c − δbσ0l,c + δc
[
σ0b,l − δbσ00,l + δlσ00,b

]

−
[
σ0b,l+c − δbσ0,l+c + δl+cσ00,b

]
.

where the shading of all of the terms is the same as that of the term on the left hand side,
except that the shading of the first occurrence of σ00,b is reversed according to the parity of l
and the shading of its second occurrence is reversed according to the parity of l + c.

Thus
σ0b+l,c − δbσ0l,c ∼ σ0b,l+c − δcσ0b,l + span{σ0a,0, σ

0
0,b : a, b ≥ 0}.

(with all possible shadings of the right hand side). Taking l = 1 we get:

σ0b+1,c ∼ δbσ01,c + σ0b,c+1 − δcσb,1 + span{σ0a,0, σ
0
0,b : a, b ≥ 0}. (9.6)

Applying this recursively shows that

σca,b ∼ span{σ01,a, σ
0
b,0, σ

0
0,c : a, b, c ≥ 0} (9.7)

(with all possible shadings).

Setting c = 0 in (9.6) gives

σ0b+1,0 ∼ δbσ01,c + span{σ0a,0, σ
0
0,b : a, b ≥ 0}.

Thus
σ01,c ∼ σ0b+1,0 + span{σ0a,0, σ

0
0,b : a, b ≥ 0}. (9.8)

Using (9.5) with a = c = 0 we get that

σ00,b ∼ σ0b,0 − δbσ00,0 + σ00,b (9.9)

so that σ0b,0 ∼ δbσ00,0. Using (9.9) and (9.8) we deduce that

σ01,c ∼ span{σ0a,0, σ
0
0,b : a, b ≥ 0},

which together with (9.9) implies that

span{σ01,a, σ
0
b,0, σ

0
0,c : a, b, c ≥ 0} ∼ span{σ0a,0, σ

0
0,b : a, b ≥ 0} ∼ span{σ00,a : a ≥ 0}.
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Combining this with (9.7) we obtain that any σca,b is equivalent modulo the image of ∂3 to an

element of span{σ00,a : a ≥ 0} (with all possible shadings).

Assume now that that z ∈ ker ∂2. Then we may assume that z (up to the image of ∂3) is of
the form

∑
αaσ

0
0,a (with various shadings).

If δ ≥ 2 then {σ00,a : a ≥ 0} and {σa : a ≥ 0} are both linearly independent sets (with either
shading). Using

∂2σ
0
0,a = 2σa − δaσ0

(with same shadings on both sides) we deduce

2
∑

αaσa − (
∑

αaδ
a)σ0 = ∂2z = 0

which implies that αa = 0 for all a and so z ∼ 0. We have proved that H2(TLJ(δ)) = 0.

If δ < 2 we already know that H2(TLJ(δ)) vanishes because TLJ(δ) is finite-depth; however,
there is a short independent argument. Indeed, there exists an integer k so that {σ00,a : 0 ≤ a ≤

k} and {σa : 0 ≤ a ≤ k} are both linearly independent sets and moreover span{σ00,a : 0 ≤ a ≤

k} = span{σ00,a : a ≥ 0}. Thus we may assume that z =
∑k

a=0 αaσ
0
0,a and using the formula

for ∂2z we conclude again that αa = 0 for 0 ≤ a ≤ k and that z ∼ 0.

We do not know if Hn(TLJ(δ)) = 0 for all values of δ but suspect that this is the case. In
general, it would be very interesting to construct a resolution (of finite length?) for TLJ(δ)
that allows to prove at the same time that Hn(TLJ(δ)) = 0 for all n ≥ 1 and β(2)

n (TLJ(δ)) = 0
for all n ≥ 0.

9.6 One-cohomology characterizations of property (T), the Haagerup prop-
erty and amenability

We recall the following definitions from [P86, P01].

Definition 9.14. Let S be a II1 factor and T ⊂ S a quasi-regular irreducible subfactor.

1. [P86, Definition 4.1.3] S has property (T) relative to T if the following holds: when-
ever ϕi : S → S is a net of normal T -bimodular completely positive maps satisfying
limi ‖ϕi(x)− x‖2 = 0 for every x ∈ S, then limi

(
supx,‖x‖≤1 ‖ϕi(x)− x‖2

)
= 0.

2. [P01, Definition 2.1] S has the Haagerup property relative to T if there exists a net of
normal T -bimodular completely positive maps ϕi : S → S such that limi ‖ϕi(x)−x‖2 = 0
for every x ∈ S and such that for every i, the map ϕi : S → S belongs to the compact
ideal space J (〈S, eT 〉) (see [P01, Section 1.3.3] and Lemma 9.20 below).

Whenever T ⊂ S is a quasi-regular irreducible subfactor, we denote by C the tensor category of
finite index T -bimodules generated by L2(S). As before, for every subset F ⊂ Irr(C), we denote
by eF the orthogonal projection of L2(S) onto the closed linear span of all T -subbimodules of
L2(S) that are isomorphic with a T -bimodule contained in F .

Definition 9.15. Let S be a II1 factor and T ⊂ S a quasi-regular irreducible subfactor. Denote
S = QNS(T ). A 1-cocycle for T ⊂ S is a T -bimodular derivation c : S → H from S to a Hilbert
S-bimodule H. Such a 1-cocycle is said to be
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1. inner if there exists a T -central vector ξ ∈ H such that c(x) = xξ − ξx for all x ∈ S ;

2. approximately inner if there exists a net of T -central vectors ξi ∈ H such that limi ‖c(x)−
(xξi − ξix)‖ = 0 for all x ∈ S ;

3. bounded if c extends to a bounded operator from L2(S) to H ;

4. proper if for every κ > 0, there exists a finite subset F ⊂ Irr(C) such that ‖c(x)‖ ≥ κ‖x‖2
for all x ∈ (1− eF )(S).

The following is the main result of this section and provides a one-cohomology characterization
of property (T), the Haagerup property and amenability. These characterizations are well
known in the group case : the first is analogous to the Delorme-Guichardet theorem (see e.g.
[BHV08, Theorem 2.12.4]) ; for the second one, see [CC+01, Theorem 2.1.1] ; for the last one,
see [G80, Chapter III, Corollary 2.4].

Theorem 9.16. Let S be a II1 factor with separable predual and T ⊂ S a quasi-regular irre-
ducible subfactor. Denote S = QNS(T ).

1. S has property (T) relative to T if and only if for every Hilbert S-bimodule H, every
1-cocycle c : S → H is inner.

2. S has the Haagerup property relative to T if and only if there exists a proper 1-cocycle
c : S → H into some Hilbert S-bimodule H.

3. S is amenable relative to T (see Definition 8.1) and [S : T ] = ∞ if and only if there
exists an approximately inner, but non inner 1-cocycle c : S → L2(S)⊗T L

2(S).

The following is an immediate consequence of Theorem 9.16.1.

Corollary 9.17. Let S be a II1 factor and T ⊂ S a unimodular quasi-regular irreducible
subfactor. If S has property (T) relative to T , then β(2)

1 (T ⊂ S) = 0.

Before proving Theorem 9.16, we need a few technical lemmas.

Lemma 9.18. Let S be a II1 factor and T ⊂ S a quasi-regular irreducible subfactor. Denote
S = QNS(T ). A 1-cocycle c : S → H is bounded if and only if it is inner.

Proof. When ξ ∈ HT , the normal functional S → C : x 7→ 〈xξ, ξ〉 is T -central and hence a
multiple of the trace τ . Therefore, ‖xξ‖ = ‖x‖2 ‖ξ‖ = ‖ξx‖ for all ξ ∈ HT and x ∈ S. It follows
in particular that every inner 1-cocycle is bounded.

Conversely, if c : S → H is a bounded 1-cocycle, which we extend to c : L2(S) → H, we define
ξ as the center of the closed convex hull K of {u∗c(u) | u ∈ U(S)}. Since v∗Kv = K for all
v ∈ U(T ), it follows that v∗ξv = ξ for all v ∈ U(T ), so that ξ is T -central. When v ∈ U(S), the
map η 7→ v∗ηv + v∗c(v) is an isometry that globally preserves K. Therefore v∗ξv + v∗c(v) = ξ
for all v ∈ U(S), so that c(x) = xξ − ξx for all x ∈ S.

Lemma 9.19. Let S be a II1 factor and T ⊂ S a quasi-regular irreducible subfactor. Let
ϕi : S → S be a net of normal T -bimodular completely positive maps. If ϕi → id in ‖ · ‖2
uniformly on {x ∈ S | ‖x‖ ≤ 1}, then ϕi → id in ‖ · ‖2 uniformly on {x ∈ S | ‖x‖2 ≤ 1}.
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Proof. It suffices to prove the following statement: if ε > 0 and ϕ : S → S is a normal unital
T -bimodular completely positive map satisfying ‖ϕ(u) − u‖2 ≤ ε2/8 for all u ∈ U(S), then
‖ϕ(x) − x‖2 ≤ ε‖x‖2 for all x ∈ S. To prove this statement, construct the Hilbert S-bimodule
H with T -central unit vector ξ ∈ HT satisfying 〈xξy, ξ〉 = τ(xϕ(y)) for all x, y ∈ S. By our
assumption, ‖u∗ξu− ξ‖ ≤ ε/2 for all u ∈ U(S). Averaging, it follows that ‖PS(ξ) − ξ‖ ≤ ε/2,
where PS denotes the orthogonal projection of H onto the S-central vectors in H.

As in the proof of Lemma 9.18, ‖xη‖ = ‖x‖2 ‖η‖ = ‖ηx‖ for all η ∈ HT and x ∈ S. Therefore,

‖xξ − ξx‖ = ‖x(ξ − PS(ξ))− (ξ − PS(ξ))x‖ ≤ ε‖x‖2

for all x ∈ S. But then we get, for all x, y ∈ S that

|τ(y∗(ϕ(x) − x))| = |〈ξx− xξ, yξ〉| ≤ ε ‖x‖2 ‖y‖2 .

Therefore, ‖ϕ(x) − x‖2 ≤ ε‖x‖2 for all x ∈ S.

Lemma 9.20. Let S be a II1 factor and T ⊂ S a quasi-regular irreducible subfactor. Let
ϕ : S → S be a normal completely positive T -bimodular map. Then ϕ belongs to the compact
ideal space J (〈S, eT 〉) (i.e. the norm closed linear span of all finite projections in the semifinite
factor 〈S, eT 〉) if and only if for every ε > 0, there exists a finite subset F ⊂ Irr(C) such that
‖ϕ(x)‖2 < ε‖x‖2 for all x ∈ (1− eF )L

2(S).

Proof. We denote by Rϕ the bounded operator on L2(S) defined by Rϕ(x) = ϕ(x) for all x ∈ S.
Note that Rϕ ∈ T ′ ∩ 〈S, eT 〉. First assume that Rϕ ∈ J (〈S, eT 〉) and choose ε > 0. Define
the spectral projection qε := 1[ε,+∞)(|Rϕ|). Denoting by Trr the canonical semifinite trace on
〈S, eT 〉, we have Trr(qε) < ∞. Since qε ∈ T ′ ∩ 〈S, eT 〉, it follows that the range of qε is a
T -subbimodule of L2(S) of finite right dimension. So we can take a finite subset F ⊂ Irr(C)
such that qε ≤ eF . Whenever x ∈ (1− eF )L

2(S), we get qε(x) = 0 and thus, ‖ϕ(x)‖2 < ε‖x‖2.

To prove the converse, assume that ε > 0 and that F ⊂ Irr(C) is a finite subset such that
‖ϕ(x)‖2 < ε‖x‖2 for all x ∈ (1− eF )L

2(S). Then ‖Rϕ−RϕeF‖ ≤ ε. By Lemma 2.5.5, we have
that eF ∈ J (〈S, eT 〉), so that Rϕ lies at distance less than ε from J (〈S, eT 〉).

Lemma 9.21. Let S be a II1 factor with separable predual and T ⊂ S a quasi-regular ir-
reducible subfactor. Denote S = QNS(T ). Let ϕn : S → S be a sequence of unital normal
T -bimodular completely positive maps satisfying limn ‖ϕn(x)− x‖2 = 0 for every x ∈ S. Con-
struct the associated Hilbert S-bimodules Hn with T -central unit vectors ξn ∈ (Hn)T satisfying
〈xξny, ξn〉 = τ(xϕn(y)) for all x, y ∈ S.

1. After passage to a subsequence, c : S → H =
⊕

nHn : x 7→ ⊕n(xξn − ξnx) is a well
defined 1-cocycle.

2. If ϕn does not converge to the identity uniformly on the unit ball of S, the choice in 1
can be made so that c is not inner.

3. If each ϕn belongs to the compact ideal space J (〈S, eT 〉), the 1-cocycle c is proper.

Proof. Denote by C the tensor category of finite index T -bimodules generated by L2(S). Write
Irr(C) =

⋃
nFn where Fn ⊂ Irr(C) is an increasing sequence of finite subsets. Define Sn =

eFn(S) and note that S =
⋃

n Sn. After passage to a subsequence, we may assume that ‖xξn −
ξnx‖2 ≤ 2−n‖x‖2 for all x ∈ Sn and all n ≥ 0. So, for every x ∈ S, the sequence (‖xξn− ξnx‖)n
is square summable and c(x) is a well defined vector in H.
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To prove 2, it suffices to show that if c is inner, then ϕn converges to the identity uniformly on
the unit ball of S. So, assume that c(x) = xη− ηx for all x ∈ S, where η = ⊕nηn is a T -central
vector. It follows that xξn − ξnx = xηn − ηnx for all x ∈ S and all n ≥ 0. For all x, y ∈ S, we
get that

τ(y∗(ϕn(x)− x)) = 〈ξnx− xξn, y〉 = 〈ηnx− xηn, y〉

and we conclude that ‖ϕn(x) − x‖2 ≤ 2‖ηn‖ ‖x‖2. Since limn ‖ηn‖ = 0, it follows that ϕn

converges to the identity uniformly on the unit ball of S.

Finally assume that all ϕn belong to J (〈S, eT 〉). By Lemma 9.20, we can take finite subsets
Fn ⊂ Irr(C) such that ‖ϕn(x)‖2 ≤ ‖x‖2/2 for all x ∈ (1− eFn)(S). Since

‖xξn − ξnx‖
2 = 2(‖x‖22 − Re τ(x∗ϕn(x))) ,

we get that ‖xξn−ξnx‖
2 ≥ ‖x‖22 for all x ∈ (1−eFn )(S). Defining the finite sets Gn =

⋃n
k=1Fk,

it follows that ‖c(x)‖2 ≥ n ‖x‖22 for all x ∈ (1− eGn)(S). So, c is proper.

We are now ready to prove Theorem 9.16.

Proof of Theorem 9.16. 1. Assume that S has property (T) relative to T and let c : S → H
be a 1-cocycle. We have to prove that c is inner. Replacing H by H ⊕ H and c by c ⊕ c,
we may assume that c is real : there exists an anti-unitary involution J : H → H satisfying
J(xξy) = y∗J(ξ)x∗ for all x, y ∈ S, ξ ∈ H and c(x∗) = J(c(x)) for all x ∈ S. For the
following reason, c is automatically a closable map from S ⊂ L2(S) to H. When Hα ⊂ H is
an irreducible finite index T -subbimodule and Pα : H → Hα is the orthogonal projection, it
follows from Lemma 2.5 that Pα ◦ c is a multiple of a co-isometry. Therefore, Hα belongs to
the domain of c∗. When ξ ∈ H is orthogonal to all finite index T -subbimodules of H, then ξ
also belongs to the domain of c∗ with c∗(ξ) = 0. So, c∗ is indeed densely defined.

By [S88, Corollary 3.5], we then find a continuous 1-parameter family of unital normal T -
bimodular completely positive maps ϕt : S → S, t > 0, given by ϕt(x) = exp(−tc∗c)(x), where
we view c∗c as a positive, self-adjoint, densely defined operator on L2(S) so that exp(−tc∗c) is
a positive, self-adjoint contraction for every t > 0. Since S has property (T) relative to T and
using Lemma 9.19, we get that limt→0 ‖1− exp(−tc∗c)‖ = 0 in the operator norm of B(L2(S)).
This means that c∗c is a bounded operator on L2(S). By Lemma 9.18, c is an inner 1-cocycle.

Conversely assume that S does not have property (T) relative to T . Take a sequence of unital
normal T -bimodular completely positive maps ϕn : S → S that converge to the identity in
‖ · ‖2 pointwise, but not uniformly on the unit ball of S. The construction of Lemma 9.21
gives a non inner 1-cocycle.

2. If S has the Haagerup property relative to T , then the construction in Lemma 9.21 provides
a proper 1-cocycle. Conversely, when c : S → H is a proper 1-cocycle, we define, as in the
beginning of the proof of 1, the 1-parameter family of unital normal T -bimodular completely
positive maps ϕt : S → S, t > 0, given by ϕt(x) = exp(−tc∗c)(x). Using Lemma 9.20, it follows
that each ϕt, t > 0, belongs to the compact ideal space J (〈S, eT 〉). For every x ∈ S, we have
that limt→0 ‖ϕt(x)− x‖2 = 0. So, S has the Haagerup property relative to T .

3. If [S : T ] < ∞, every 1-cocycle c : S → H is bounded and thus inner by Lemma 9.18.
Indeed, whenever Hα ⊂ L2(S) is an irreducible T -subbimodule, the restriction of c to Hα ∩ S
must be a multiple of an isometry. Since L2(S) is the direct sum of finitely many irreducible
T -subbimodules, it follows that c extends to a bounded operator from L2(S) to H.
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By Proposition 8.2, S is nonamenable relative to T if and only if there exists a finite subset
G ⊂ S such that

‖ξ‖ ≤
∑

x∈G

‖xξ − ξx‖ for all ξ ∈ HT .

So if S is nonamenable relative to T , every 1-cocycle c : S → H that is approximately inner
must be inner.

Finally assume that [S : T ] = ∞ and that S is amenable relative to T . We prove that
there exists an approximately inner, but non inner, 1-cocycle c : S → H. Equip the space
MorT−T (S,H) with the topology of pointwise norm convergence. Since S admits a countable
basis as a T -module, MorT−T (S,H) is a Fréchet space. Consider the continuous linear map
∂ : HT → MorT−T (S,H) given by (∂ξ)(x) = xξ − ξx for all x ∈ S. Since [S : T ] = ∞, the
map ∂ is injective. Since S is amenable relative to T , there exists a sequence of unit vectors
ξk ∈ HT such that ∂ξk → 0. So the open mapping theorem implies that ∂(HT ) is not closed in
MorT−T (S,H). Any c ∈ MorT−T (S,H) that lies in the closure of ∂(HT ) but does not belong
to ∂(HT ) is an approximately inner, but non inner 1-cocycle.
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Nathan, Paris, 1980.

[H98] H.-P. Huang, Commutators associated to a subfactor and its relative commutants. Ann. Inst.
Fourier (Grenoble) 52 (2002), 289-301.

[J82] V.F.R. Jones, Index for subfactors. Invent. Math. 72 (1983), 1-25.

[J98] V.F.R Jones, The planar algebra of a bipartite graph. In Knots in Hellas ’98, World Scientific,
1999, pp. 94-117.

[J99] V.F.R. Jones, Planar Algebras, Preprint, Berkeley 1999, arXiv:math.QA/9909027.

61



[J01] V.F.R. Jones, The annular structure of subfactors. In Essays on geometry and related topics,
Vol. 1, 2, Monogr. Enseign. Math. 38, Enseignement Math., Geneva, 2001, pp. 401-463.
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