
UC Irvine
ICS Technical Reports

Title
Episodic learning

Permalink
https://escholarship.org/uc/item/8zb209n6

Authors
Kibler, Dennis F.
Porter, Bruce W.

Publication Date
1983
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zb209n6
https://escholarship.org
http://www.cdlib.org/


I

I

Episodic Learning

Dennis F. Kibler

Bruce Wo Porter^

Technical Report 194

May 1983

Department of Information and Computer Science
University of California, Irvine

This research was supported by
contract N00123-81-C-1165 from the

Naval Ocean Systems Center.

no, H Y
c.



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

ABSTRACT

A system is described which learns to compose sequences of operators into

episodes for problem solving. The system incrementally learns when and why

operators are applied. Episodes are segmented so that they are generalizable

and reusable. The idea of augmenting the instance language with higher level

concepts is introduced. The technique of perturbation is described for

discovering the essential features for a rule with minimal teacher guidance.

The approach is applied to the domain of solving simultaneous linear

equations,

Keywords: machine learning, episodic segmentation, perturbation,
augmentation, problem solving.



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

1. Introduction

With the aid of a teacher, junior high school students can learn to solve

simultaneous linear equations. Operators that are applied in solving these

problems include multiplying an equation by a constant and combining like

terms. The students are already familiar with how these operators are

applied. Moreover, the teacher assumes that the students understand basic

concepts about numbers, such as a number being positive, negative, or

non-zero.

Our system, nicknamed PET, incrementally induces correct rules from the

training instances presented. Incremental learning is defined to be [7]:

multistage learning, in which information learned at one stage is
modified to accomodate new facts provided in subsequent stages.

In PET this includes modification of existing knowledge by adding more rules

as well as generalizing existing rules. The rules are correct in the sense

that, at any point in the learning process:

- the knowledge is consistent with all past training instances.

- sequences of rules (episodes) are guaranteed to simplify the problem
state if they apply.

Learning rules for applying operators involves two stages of learning:

- Stage 1 learning involves understanding when each available operator
should be applied. The concern here is with learning the enabling
conditions for individual operators, without knowledge of the other
operators in the solution path to provide context.

- Stage 2 learning involves understanding whv each operator is applied
with emphasis on the sequencing of operators. We refer to this as
episodic learning. Episodic segmentation is the grouping of
operators to form an episode. Episodes are discrete, reusable
components for plan generation and each simplifies the problem
state.

We developed an approach to stage 1 learning which solved some of the

problems of learning when to apply operators. Basically, we reduced the size



I

I

of the generalization space for learning when an operator should be applied,

while not constraining the order of the training instances presented by the

teacher. PET could create its own training instances by perturbing those

given by the teacher. Each perturbation is a minor variant of the original

and allows PET to discover the set of features which are essential for a given

operator to succeed.

Stage 2 learning builds sequences of rules that are used to move from the

initial state of a problem to a goal state. Again, a major concern is

reducing the size of the search space. A traditional problem solver [4]

simply explores the search space for a path to a goal state. However, a

learning system substitutes knowledge derived from experience for this search.

The main features of our approach to episodic learning ares

- segmentation of rule sequences into meaningful, re-usable episodes.

- augmentation of the instance language to include higher-order
concepts not present in the training instance itself.

- perturbation of a training instance to create new instances.

Stage 1 learning (incorporating perturbation) and stage 2 learning of

episodes are combined into a system for learning to solve systems of

simultaneous linear equations from examples.^

2b Related Work

Our knowledge representation scheme and goals are similar to those of other

researchers. We use a relational production system, somewhat like Vere's [16]

except that we use a ^ of conditions rather than a set, to represent the

implemented in Prolog on Dec2020. Available upon request.



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

program's knowledge of when to apply operators» Production systems have been

successfully used to model the acquisition of skill for poker playing [17],

puzzle solving [1], algebra problems [13], arithmetic problems [2], and

I symbolic integration [10]. Of these, Neves's [13] system learned to solve one
equation in one unknown from textbook traces. The system learned both the

context (preconditions) of an operator as well as which operator was applied,

although the operator had to be known to the system. His generalization

language was simpler than ours in that a constant could only be generalized to

a variable. Anzai [1] gradually refined weak general problem solving methods

into strong ones by acquiring strategies for the tower-of-Hanoi problem. Weak

methods, without some heuristics, would leave our program with too large a

space to search. The program LEX [9, 10, 11, 12] uses version spaces to

describe the current hypothesis space as well as concept trees to direct or

bias the generalizations. As it is not the main point of our work, we keep

only the minimal (maximally specific) generalization [14] of the examples.

I MACROPS [4] is an example of stage 2, or episodic learning. This system
remembers robot plans that have been generated so that the plan can be reused

without re-generation. The plans are stored in triangle tables which record

the order of application of operators in the plan and how their pre-conditions

are satisfied. The plans are generalized to be applicable to other instances

(as are episodes).

I While effective in learning plans, MACROPS has difficulty applying its
acquired knowledge [3]. The central problem is that the operators in a

MACROPS plan are not segmented into meaningful sequences. Any sequence of

operators can be extracted from the triangle table and re-used as a macro



operator. A sequence of length N defines N(N-1)/2 macros. However, few of

these sequences are useful. MACROPS offers no assistance in selecting the

useful sequences from a plan. If sequences are not extracted from the

triangle table then the entire plan must be considered an episode. This

results in a large collection of opaque, single-purpose, macro operators.

Branching within an episode is made impossible. In either case, combinatorial

2explosion makes planning with the macros impractical.

3. Operators for Solving Linear Equations

The operators applicable to solving simultaneous linear equations are

described in figure 3-1.

Operator Semantics
combinex(Eq) Combine x-terms in equation Eq.
combiney(Eq) Combine y-terms in equation Eq.
combinec(Eq) Combine constant terms in equation Eq.
deletezero(Eq) Delete tem with 0 coefficient or

0 constant from equation Eq.
sub(Eql,Eq2) Replace Eq2 by the result of

subtracting Eql from Eq2
add(Eql,Eq2) Replace Eq2 by the result of

adding Eql and Eq2
mult(Eq,N) Replace equation Eq by the result

of multiplying Eq by N

Figure 3-1: Operators

4. Description Languages

This section describes three languages used by PET: the instance language,

the generalization language and the rule language.

2
It should be recognized that MACROPS was designed to control a physical

robot, not a simulation. For this reason, the designers thought it important
to permit the planner to skip ahead in a plan if situation permits or to
repeat a step in a plan if the operation failed due to physical difficulties.



4.1. Instance Language

The instance language serves as "internal form" for training instances. We

adopt a relational description of each equation, so the training instance:

a: 2x-5y=-l
b: 3x+4y=10

is stored as:

{term(a,2*x),term(a,-5*y),term(a,l),
term(b,3*x),term(b,4*y),term(b,-10)}

where a and b are equation labels and x and y are variables in the instance

language.

4.2. Generalization Language

Following Mitchell [10] and Michalski [6, 8] we have concept trees for

integers, equation labels, and variables (figure 4-1). Basically we are using

the typed variables of Michalski [6].

integer

/ \

non-zero zero

/ \ \

positive negative 0

/ 1 \ /I

1 2 3 ... -1 -2 ...

eqn

/ \

a b

variable

/ \

X y

Figure 4-1: Concept trees

We permit generalizations by 1) deleting conditions, 2) replacing constants

by variables (typed), and 3) climbing tree generalization. Disjunctive

generalization is allowed by adding additional productions or rules. This



I
I covers all the generalization rules discussed by Michalski [6] except for

closed interval generalization.

To be more specific, generalizations of equation(a) are achieved by

generalizing any term according to its concept tree or by deleting any term.

term(a,2*x) has two generalizations of a (a and eqn(X)), four generalizations

of 2 (2, positive(N), nonzero(N), and integer(N)), and two generalizations of

X (x and var(Y)), giving a total of 16 possible generalizations. Two equations

may have four such terms as well as two constant terms, yielding a total of

16*16*16*16*4*4 or more than a million possible generalizations! Note we have

not counted the additional generalizations that come abut by deleting terms.

4.3. Rule Language

Knowledge is encoded in rules which suggest operators to apply. Rules are

of the form:

<score>—<bag of terms expressed in generalization language> => <operator>

(The score of a rule is described in section 6.2.) PET does not learn

"negative" rules to prune the search tree, as in [5].

5. Perturbation

Perturbation is a technique for stage 1 learning which enables a learning

system to discover the essential features of a rule with minimal teacher

involvement. A perturbation of a training instance is created by:

- deleting a feature of the instance to determine whether its presence
is essential.

- if a feature is essential, modifying it slightly to determine if it
can be generalized. Perturbation operators, which are added to the
concept tree used for generalization, make these minor
modifications.

For example, given the problem (a) 2x+3y=7 (b) 2x+3x-5y=5, the teacher

advice to combinex(b), and an empty rule base, PET first describes the rule



I

as:

{tenn(a,2*x) ,terTn(a,3*y) ,tenn(a,-7) ,
tenn(b,2*x)jterm(b,3*x),term(b,-5*y),term(b,-5)} => combinex(b).

Now PET perturbs the instance by modifying each of the coefficients

individually. This is done by zeroing, incrementing and decrementing each

coefficient. Some of the instances created by perturbation are:

(i) (ii) (iii) (iv) (v)
3y=7 2x =7 2x+3y=7 2x+3y=0 2x+3y=7

2x+3x-5y=5 2x+3x-5y=5 3x-5y=5 2x+3x-5y=5 2x+4x-5y=5

Notice that combinex(b) is still effective in examples i,ii,iv, and v but is

not effective in example iii. By effective we mean that not only is the

operator applicable, but also that it simplifies the problem state. Since the

operator is effective in example i, PET generalizes (minimally) its current

rule conditions with this example yielding the new rule;

{term(a,3*y),term(a,-7),
term(b,2*x),term(b,3*x),term(b,-5*y),term(b,-5)} => combinex(b).

The major effect is to delete the condition on the x-term of equation(a).

Perturbed examples for which the operator is not effective are disregarded. In

other domains this negative information might be useful, but it is not

necessary for this domain. Skipping ahead and generalizing with example v,

the rule becomes:

{termCa,3*y),termCa,-7),
term(b,2*x),term(b,pos(N)*x),term(b,-5*y),term(b,-5)} => combinex(b).

And after all positive instances of the operator combinex(b) have been

generated by the perturbation technique and generalized, the rule is formed:

{term(b,pos(N)*x),term(b,pos(M)*x)} => combinex(b).

Essentially, perturbation is a technique for creating near-examples and

near-misses [18] with minimal teacher involvement upon which standard

generalization techniques can be applied.



6. Episodic Learning

6.1. Importance for Learning

As we noted in the MACROPS use of operator sequences, unless the system can

select meaningfully useful sequences from the set of candidate sequences,

combinatorial explosion makes re-use of generalized plans infeasible. To be

useful, a model of episodic learning must have a clear definition of

"episode." We define an episode to be a sequence of rules which, when

applied, simplifies a problem state. Our episodes are "loosely packaged" to

allow branching. Rather than storing an entire plan for reaching a goal state

from the start state, we segment the solution path into small, re-usable,

generalizable episodes, each accomplishing a simplification of the problem.

Episodic, or stage 2, learning is concerned with these sequences of rules

and their connections. These sequences are learned incrementally. Learning a

rule for an operator depends on an understanding of why the operator is

3
applied. PET understands two reasons for selecting an operator:

1. By applying the operator, the problem state is simplified. In the
domain of algebra problems, a state is simplified if the number of
terms in the equations is reduced.

2. By applying the operator, the preconditions of an existing rule are
satisfied. The rule being formed for the operator is then loosely
linked with the rule that the operator enables. If more than one
rule is enabled, then multiple branches through the episode are
allowed.

To understand (2), note that problem states in the solution path for

algebra problems (and other domains) do not monotonically improve. That is.

3 "Understand" is used here to mean "know-how" encoded in production rules.
We do not mean to infer any deep model of understanding which might include
causality and analogy.



10

with any natural definition of "simpler" (estimate of distance to a goal), PET

cannot select a rule to apply. For example, multiplying an equation by a

constant does not simplify a problem state, even though it is a necessary

operation. Only by learning the connection between rules and their grouping

into episodes can a student learn to solve algebra problems.

PET adds a rule to the rulebase when the purpose of the rule's action (the

"why" component of the operator) is understood. Initially PET does not have

rules for any operators. The first operators for which rules can be learned

are those which simplify the problem state, such as combining like terms. Any

operators applied before combine cannot be understood and PET must "bear with"

the teacher. After rules are formed for the combine operators, subtract can

be learned. For instance, sub(a,b) applied to:

a; 2x+3y=5
b: 2x-ly=l

yields:
a: 2x+3y=5
b; 2x-2x -ly-3y=l-5

Now PET can learn sub(a,b) for reason (2) above: a rule which is already

understood (for a combine operator) is enabled by subtract. An episode can be

formed connecting the rules for sub(a,b) and combine(b).

6.2. Scoring Operators

A simple scoring scheme connects rules into episodes and resolves conflicts

when more than one rule is enabled. A natural scheme is to score each rule by

its position in an episode. The rules for the combine operators are given a

score of 0. The rule for subtract, which enables a combine operator, is giyen

a score of 1 (0+1). Intuitively, the score is the length of the episode

before something good happens (i.e. the equations get simplified). For

conflict resolution, PET selects the rule with the lowest score among those



11

enabled. Ties are resolved arbitrarily.

Scoring is also used for perturbation. For each instance generated, PET

must determine whether it is positive or negative for the operator being

learned. For this determination, and to assign scores to new rules, PET

considers the following three cases:

1. The rule is assigned a score of 0 if, when applied to the instance
given by the teacher, the number of terms in the equations is
reduced. In this case a perturbation is a positive instance if and
only if the rule can be applied and it simplifies the instance.

2. The rule is assigned a score of 1 if, when applied to the instance
given by the teacher, it enables a score 0 rule. In this case a
perturbation is a positive instance if and only if the rule can be
applied and, after some sequence of score 0 operators are applied,
the instance is simplified.

3. The rule is assigned a score of N(>1) if, when applied to the
instance given by the teacher, it enables a score N-1 rule. In
this case a perturbation is a positive instance if and only if the
rule can be applied and it enables the same score N-1 rule .

7. Augmentation

A description in the instance language is basically a translation of a

training instance. This description is more appropriate to computation than

the surface language used to input the instance. This is adequate for

learning in some domains. That is, the relevant objects and operations in a

training instance necessary for learning it are retained in the instance

language. However, in more complex domains, more knowledge needs to be

represented than is captured in a literal translation of a training instance

into the instance language.

The LEX system [12] must re-start the problem solver for each training
instance created by the problem generator to determine if it is positive
or negative for the concept.



12

Augmentation of the instance language with additional knowledge is useful

in these complex domains. In the domain of backgammon, for example, merely

recording the location of the pieces on the board in the instance language is

inadequate. In addition, we need to have knowledge of pip count, presence of

primes, near primes and steppingstones, etc. These higher order concepts are

computable from the instance language and form a more appropriate language for

learning in the domain.

In the domain of algebra problems, augmentation serves to relate terms in

the instance language. For example, a relevant relation between coefficients

is productof{N,M,P) (the product of N and M is P). This relation augments the

instance language. The augmentation represents necessary pieces of knowledge

(not available at the surface level of the training instance) which a student

must have in order to solve problems.

Augmentation of the instance language is necessary when the terms or values

necessary for an operation (the RHS of a rule) are not present in the

pre-conditions for the operation (the LHS of the rule). For example, the

training instance;

a: 2x-5y=-l
b: 3x+4y=10

might be presented with teacher advice mult(a,3). This yields:

a: 6x-15y=-3
b: 3x+4y=10

From this training instance, PET forms the rule (after perturbation):

{term(a,2*x),term(b,3*x)} =>mult(a,3).

Here the 3 in the RHS operation mult(a,3) appears on the LHS in term(b,3*x).

In this case, we say that the LHS of the rule is predictive of the operator on

the EIHS and no augmentation is needed.



13

In contrast, the teacher advice to apply mult(b,2) to the last pair of

equations cannot generate a predictive rule. The operation is useful and

yields:

a: 6x-15y=-3
b: 6x+8y=20

The problem is that the 2 in the RHS operation mult(b,2) is not contained in

the instance language description of the equations. Therefore, it could not

be on the LHS of any rule in this language.

An augmentation of the instance language is needed to relate the 2 on the

RHS with some term on the LHS. In this case, the additional knowledge needed

is the 3-ary predicate productof, specifically productof(2,3,6). Now the rule

to cover the training instance can be formed:

{term(ai6*x),term(b,3*x),productof(2,3,6)} => mult(a,2)

This can be generalized (with more training instances) to:

{term(a,N*x),term(b,M*x).productof(L,N,M)} => mult(a,L).

Concepts in the augmentation language form a second-order search space for

generalizing to the correct rule for an operator. Figure 7-1 is the

augmentation search space for algebra problems. The space consists of a

(partial) list of concepts that a student might rely on for understanding

relations between numbers. When a predictive rule cannot be found in the

first-order search space then PET tries to form a rule using the augmentation

as well. Concepts are pulled from the list and added to a developing rule.

If the concept makes the rule predictive, then it is retained. Otherwise, it

is removed and another concept is tried. If no predictive rule can be found

then PET ignores the training instance.

Vere [15] has also addressed the problem of learning in the presence of



14

sumof(L,M,N) (sum of L and M is N)
productof(L,M,N) (product of L and M is N)
squareof(M,N) (square of M is N)

Figure 7-1: augmentation search space

"background information." For example, learning a general rule for a straight

in a poker hand requires knowledge of the next number in sequence. This is

considered background to the knowledge in the poker domain. Vere describes an

"association chain" which links together each term in a rule. If a term in

the rule is not linked in the chain (analogous to our test for

predictiveness), then more background information must be "pulled in" until it

is associated.

Augmentation is similar to selecting background knowledge. One problem

with both approaches is determining how much background knowledge to

incorporate. Incorporating too little knowledge, which results in an

over-generalized rule, can be detected by an association chain violation or,

in PET, by a non-predictive rule. However, detecting when too much knowledge

has been pulled in is difficult. In this case, the rule formed will be

over-specialized. We overcome this problem (to a large extent) by

perturbation. Vere relies solely on forming a disjunction of rules (each

overly specialized) for the correct generalization.

Vere allows only one concept in the background knowledge. This further

simplifies the task of knowing how much knowledge to pull in. However, as the

complexity of problem domains increase, more background knowledge must be

brought to bear. Our augmentation addresses some of the problems of managing

this knowledge.



15

8. The Learning Cycle

The learning cycle algorithm is described in figures 8-1 - 8-5. The

rulebase is initially empty and, as PET learns, rules are added, generalized,

and supplanted. PET requests advice whenever the current rules do not apply

to the problem state. Both stage 1 and stage 2 learning is required.

repeat

get problem from teacher
repeat

if some rule matches problem then apply ^episode (no learning)
else get operation from user and
if understand_why_operation_used then

call; learn_operation
else no learning

until problem solved
display current set of rules

until teacher satisfied

Figure 8-1: The Learning Cycle

function: understand_why_operation_used
if operation simplifies state (reduces number of terms)

then rule for operation gets score of 0 and return true
orif effect of operation enables a rule in rulebase

then rule for operation gets score of 1 plus score of
rule enabled and return true

else return false

Figure 8-2: Can operation be learned?

Subroutine; Learn_operation
perturb instance, removing nonessential conditions of operation,

forming candidate rule
if LHS of rule is not predictive of operation then

augment instance to find generalization and re-perturb
call: integrate_operation_into_current_rule_base

Figure 8-3: Learn operation

Subroutine; integrate_operation_into_current_rule_base
if a member of rule base can be generalized to cover current

candidate then supplant member by generalization
else

add candidate rule to rule base.

Figure 8-4: Integration subroutine



16

Subroutine: apply_episode
Apply the rule with minimum score S
loop (apply rules in remainder of episode)
while S>0

S<—S-1

apply rule with score S
repeat

loop (apply score-O rules)
select score-O rule from those enabled

and apply it
while a score-O rule is enabled

Figure 8-5: Apply Episode

9. Examples of System Performance

This section discusses highlights from PET's episodic learning for problem

solving in the domain of linear equations.

9.1. Example 1—Learning Combine

The rulebase is initially empty and the teacher presents a training

instance:

a; 2x+3y=5
b: 2x+4y=6

with the advice sub(a,b). PET applies the operator which yields:

a: 2x+3y=5
b: 2x-2x+4y-3y=6-5

PET must understand why an operator is useful before a rule is formed. The

operator failed to simplify the equations (in fact the number of terms in the

equations went from six to nine) and did not enable any other rules (since the

rulebase is empty). Unable to understand why sub(a,b) was suggested by the

teacher, PET cannot form a rule for the operator and waits for something

understandable to happen.

The teacher now suggests that combinex(b) be applied, yielding:

a: 2x+3y=5
b: 0x+4y-3y=6-5

Since the number of terms is reduced from nine to eight, PET understands the



17

purpose of combinex(b) (to simplify the state) and proceeds to form a rule.

This involves stage 1 and stage 2 learning.

Stage 1 learning involves forming a rule for when the operator is applied.

Perturbation tests each term in the equations to determine which are essential

and which can be generalized. PET forms the rule:

{term(b,pos(N)*x), term(b,neg(M)*x)} => combinex(b)

which means:

given a problem state, whenever equation b contains an x-term with
a positive coefficient and an x-term with a negative coefficient, then
combine the two terms.

The new set of equations is:

a: 2x+3y=5
b: 0x+4y-3y=6-5

PET is unable to apply current knowledge (i.e. the rule for combinex(b)) so

the teacher suggests combiney(b)^ which yields:
a: 2x+3y=5
b: 0x+ly=6-5

Stage 1 learning produces the rule:

{term(b,pos(N)*y), term(b,neg(M)*y) => combiney(b)

This rule cannot be generalized with the current rulelist and is simply added.

Learning rules for the operators combinec(b) and deletezero(b) are similar

and will be assumed to be completed.

Stage 2 learning of the combine operators involves relating them to

episodes, or sequences of operators. Since combine simplifies a problem state

immediately, the operators are given a score of zero. The current rulelist

5 deletezero(b) could also be suggested, but we continue with a combine
operator for continuity.



18

(with scores) is:

0 — {tenii(b,pos(N)*x), term(b,neg(M)*x)} => combinex(b)
0 — {tenn(b,pos(N)*y), tenn(b,neg(M)*y)} => combiney(b)
0 — {term(b,pos(N)), term(b,neg(M)} => combinec(b)
0 — {term(b,0*x)} => deletezero(b)
0 — {tennCbjO}} => deletezero(b)

With further training instances for the combine operators, PET forms the

rules:

0—{term(eqn(L),int(N)*x), term(eqn(L),int(M)*x)} => combinex(eqn(L))
0—{term(eqn(L),int(N)*y), term(eqn(L),int(M)*y)} => combiney(eqn(L))
0—{term(eqn(L),int(N)), term(eqn(L),int(M)} => combinec(eqn(L))
0—{term(eqn(L),0*var(X))} => deletezero(eqn(L))
0—{term(eqn(L),0)} => deletezero(eqn(L))

9o2. Example 2—Learning Subtract

The teacher now gives another training instance for subtract:

a: 3x+4y=10
b: 3x+5y=ll

Since the combine operators in the rulebase do not apply, the teacher suggests

that sub(a,b) be applied, yielding:

a: 3x+4y=10
b: 3x-3x+5y-4y=ll-10

Now combinex(b) applies, so sub(a,b) can be learned (since it enables a rule

with score 0)» PET learns the rule (after perturbation):

{term(a,3*x), term(b,3*x), term(b,pos(N)*y)} => sub(a,b)

With further training instances the generalized rule for sub is:

{term(eqn(Ll),nonzero(N)*var(X)), term(eqn(L2),nonzero(M)*var(X)),
term(eqn(L2),nonzero(0)*var(Y))} => sub(eqn(Ll),eqn(L2))

This rule is given a score of one (one plus score of rule enabled^l+0).

PET has learned its first episode with the scored rules:

0—{term(eqn(L),int(N)*x), term(eqn(L),int(M)*x)} => combinex(eqn(L))
0—{term(eqn(L),int(N)*y), term(eqn(L),int(M)*y)} => combiney(eqn(L))
0—{term(eqn(L),int(N)), term(eqn(L),int(M)} => combinec(eqn(L))
0—{term(eqn(L),0*var(X))} => deletezero(eqn(L))
1—{term(eqn(Ll),nonzero(N)*var(X)), term(eqn(L2),nonzero(M)*var(X)),

term(eqn(L2),nonzero(0)*var(Y))} => sub(eqn(Ll),eqn(L2))



19

\

It is important to note that the episode learned is "loosely packaged."

That isj rules from the rulebase can be applied in any order so long as the

scores of the rules in the sequence are non-increasing. This enables PET to

proceed with learning subtract while the rules for the combine operators are

being refined. It is important that PET be able to use partial-knowledge with

assurance that:

- rules formed using the partial-knowledge as a basis will not be
incorrect (refer to our definition of correct rules in section 1.)

- the partial-knowledge can be refined independent of other rules in
the rulebase.

9.3. Example 3—Learning Multiply

The teacher presents PET with an example of multiply with the training

instance:

3x+4y=7
6x+2y=8

Current knowledge does not apply, so PET requests advice. mult(a,2) is

suggested which yields:

5x+8y=14
6x+2y=8

Now sub(a,b) applies so the rule for mult(a,2) can be learned. Mult(a,2)

is given a score of 2 (one more than the score of the rule enabled). Stage 1

learning requires perturbing each term of the pair of equations and testing

for essential features. Example perturbations and resulting conclusions are:



20

Perturbation 1: Delete tenn(a,3*x)
4y=7 mult(a,2) 8y=14

6x+2y=8 ==> 6x+2y=8
No 8core<2 rule is enabled so presence of
non-zero term is essential.

Perturbation 2; Increment term(a,3*x)
4x+4y=7 mult(a,2) 8x+8y=14
6x+2y=8 ==> 6x+2y=8

No score<2 rule is enabled so term(a,3*x) is
essential.

Perturbation 3: Delete term(a,4*y)
3x =7 mult(a,2) 6x =14 sub(a,b) 6x =14
6x+2y=8 ==> 6x+2y=8 ==> 6x-6x+2y=8-14

Mult(a,2) enabled the sub(a,b) rule.
Therefore, term(a,4*y) is non-essential
and is deleted from the generalization of the rule.

Perturbations 4-12 are similar.

From this stage 1 analysis, PET forms the rule:

{term(a,3*x),term(b,6*x),term(b,pos(N)*y)} => mult(a,2)

At this point PET realizes that it has over-generalized since the rule is

non-predictive (the 2 on the RHS does not occur on the LHS). PET augments the

instance description and forms the candidate rule:
{term(a,3*x),term(b,6*x),term(b,pos(N)*y),productof(2,3,6)} => mult(a,2)

After additional examples, PET forms the correct rule:

2 — {term(a,pos(K)*x),term(b,pos(L)*x),term(b,pos(M)*y),
productof(pos(N),pos(K),pos(L)} => mult(a,pos(N))

which supplants the more specific rule in the rulebase.

A troublesome (first) training instance for multiply is:

a: 3x+4y=9
b: 9x+3y=21

Assuming PET does not have a rule for multiply, the teacher suggests

mult(a,3). After perturbation, PET forms the rule:

{term(a,3*x),term(b,9*x),term(b,pos(N)*y)} => mult(a,3)

The problem is that the rule is "falsely" predictive. Although the rule



21

passes the test for predictiveness, the 3 on the LHS does not explain (or

account for) the 3 on the RHS. Therefore, the rule will not correctly

generalize.

Removing these spurious concepts is the role of perturbation theory.

However, our perturbation operators are too weak to generate a positive

instance of the operator mult(a,3) from the example given. This would require

perturbing two terms (or features) of the example simultaneously (e.g. the

x-terms of each equation). Unable to find a positive instance through

perturbation, PET cannot discover the spurious association which resulted in

the error.

The difficulty arises due to the simplicity of the test for predictiveness.

Since the test is syntax-based it lacks an understanding of how terms are

related and why they are important to a rule. We beleive that a deeper

representation of knowledge in rules is essential and are currently addressing

this issue.

9.4. Example 4—Learning "Cross Multiply"

The teacher presents the training instance:

2x+6y=8
3x+4y=7

Since no rule is enabled, the teacher advice to apply mult(a,3) yields:

6x+18y=24
3x+ 4y=7

Since mult(b,2) is enabled, mult(a,3) can be learned. After perturbation, PET

acquires the rule:

{term(a,2*x),term(b,3*x),term(b,pos(N)*y)} => mult(a,3)

This rule is given a score of 3 since it enables a rule with score 2. The

rule will be generalized (after perturbation and subsequent training



22

instances) to:

3 — {tenn(a,pos(N)*x),term(b,pos(M)*x),tenn(b,pos(L)*y)} => mult(a,pos(M))

10. Limitations and Extensions

As with most learning programs we require that the concept to be learned be

representable in our generalization language. In addition PET has to be

supplied with some coarse notion of when an operator has been effective in

simplifying the current state. Furthermore we assume that the teacher gives

only appropriate advice and there is no "noise."

Extensions that we are considering are:

- Learning from negative instances as well as positive ones.

- Improving the use of augmentation by introducing structured
concepts. These would permit climbing tree generalizations for this
second-order knowledge. Another improvement would be allowing
multiple concepts to be pulled into a rule from the augmentation
search space. This requires a requisite change in the test for
predictiveness.

- Applying the theory to learning operators in other domains.
Integration problems have been attempted [10]. We would like to
try our approach in the calculus problem domain.

11. Conclusions

A system has been described which learns sequences of rules, or episodes,

for problem solving. The learning is incremental and thorough. The system

learns when and why operators are applied. Although the system starts with an

extremely general and course notion of why an operator should be applied,it's

representation becomes increasingly fine and complete as it forms rules from

examples. The idea of augmenting the generalization language with

higher-level concepts was introduced. Moreover, we described why the

augmentation is natural and when it must be used. Due to the power of

perturbation, our system can learn episodes with minimal teacher interaction.

The episodes are segmented into discrete, re-usable segments, each



23

accomplishing a recognizable simplification of the problem state. The

approach is shown effective in the domain of solving simultaneous linear

equations.



24

REFERENCES

1. Anzai,Y. Learning strategies.by computer. CSCSI II. (1978), 181-190.
2. Brazdil, P. Experimental 1pai-nrng mndfti I' -A Conference Proceedings
(1978), 46-50.
3. Carbonell, J.G. Learning by Analogy: Formulating and Generalizing Plans
from Past Experience. In Michalski,R.S., Carbonell,J.G., Mitchell,T.M., Ed.,
Machine Learning. Tiogo Publishing, 1983,
4. Fikes, R.E. and Nilsson, N.J. STRIPS: A new approach to the application
of theorem proving to problem solving. tiL 2. (1971), 189-208.
5. Kibler, D.F, and Morris, P.H. Dont be Stupid. IJCAI (1981), 345-347.
6. Michalski, R.S., Dietterich, T.G. Learning and Generalization of
Characteristic Descriptions: Evaluation Criteria and Comparative Review of
Selected Methods. IJCAI 6 (1979), 223-231.
7. Michalski,R.S., Carbonell,J.G. , Mitchell,T.M. Machine Learning. Tiogo
Publishing, 1983.

8. Michalski, R.S. A Theory and Methodology of Inductive Learning. In
Michalski,R.S., Carbonell,J.G., Mitchell,T.M., Ed., Machine Learning, Tiogo
Publishing, 1983.

9. Mitchell, T.M. Version spaces: a candidate elimination approach to rule
learning. IJCAI 5 (1977), 305-310.
10. Mitchell, T.M., Utgoff, P.E., Nudel, B, and Banerji, R. Learning
Problem-Solving Heuristics Through Practice. IJCAI 1_ (1981), 127-134.
11. Mitchell, T.M. Generalization as Search. Artificial Intelligence 18
(1982), 203-226.

12. Mitchell, T.M., Utgoff, P.E., Nudel, B, and Banerji, R. Learning by
Experimentation: Acquiring and Refining Problem- Solving Heuistics. In
Michalski,R.S., Carbonell,J.G., Mitchell,T.M., Ed., Machine Learning, Tiogo
Publishing, 1983.
13. Neves, D.M. A computer program that learns algebraic procedures by
examining examples and working problems in a textbook. CSCSI j[_l (1978),
191-195.

14. Vere, S.A. Induction of concepts in the predicate calculus. UCAI ^
(1975), 281-287.
15. Vere, S.A. Induction of Relational Productions in the Presence of
Background Information. IJCAI 5 (1977), 349-355.
16. Vere, S.A. Inductive learning of relational productions. In Waterman,
D.A. and Hayes-Roth, F., Ed., Pattern-Directed Inference Systems. Academic
Press, 1978.
17. Waterman, D.A. Generalization learning techniques for automating the
learning of heuristics, AI 1. (1970), 121-170.
18. Winston, P.H. Learning structural description from examples. In
Winston, P.H., Ed., The Psychology of Computer Vision. McGraw-Hill, 1975.



i

I

1
Lil^rary Use Only .

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I




