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Summary

The human microbiome contains diverse microorganisms, which share and compete for the same 

environmental niches [1, 2]. A major microbial growth form in the human body is the biofilm 

state, where tightly packed bacterial, archaeal and fungal cells must cooperate and/or compete for 

resources in order to survive [3–6]. We examined mixed biofilms composed of the major fungal 

species of the gut microbiome, C. albicans, and each of five prevalent bacterial gastrointestinal 

inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella 

pneumoniae and Enterococcus faecalis [7–10]. We observed that biofilms formed by C. albicans 

provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even 

when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found 

that co-culture with bacteria in biofilms induces massive gene expression changes in C. albicans, 

including upregulation of WOR1, which encodes a transcription regulator that controls a 

phenotypic switch in C. albicans, from the “white” cell type to the “opaque” cell type. Finally, we 

observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into “mini-

biofilms,” which allow C. perfringens cells to survive in a normally toxic environment. This work 

indicates that bacteria and C. albicans interactions modulate the local chemistry of their 

environment in multiple ways to create niches favorable to their growth and survival.

© 2014 Elsevier Ltd. All rights reserved.
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Results

The fungal species C. albicans forms mixed biofilms with five bacterial species

C. albicans with or without C. perfringens, B. fragilis, E. faecalis, E. coli or K. pneumoniae 

cells were adhered to a bovine serum coated, polystyrene well for 90 minutes and allowed to 

develop into biofilms for 24 hours, a standard procedure for producing C. albicans biofilms 

[11, 12]. Confocal scanning laser microscopy (CSLM) images confirmed that in all cases, 

both fungal and bacterial species incorporated into the biofilm (Figure 1). The bacteria 

adhered to both C. albicans hyphal and yeast-form cells (Figure 1; Figure S1A – F). While 

B. fragilis, and C. perfringens had minimal effect on the biofilm architecture, incorporation 

of E. coli, E. faecalis and K. pneumoniae reduced the overall biofilm thickness (Figure 

S1G). We designed a colony forming unit (CFU) assay as a readout for live bacterial and C. 

albicans cells present, and found that both bacteria and C. albicans were incorporated into 

the biofilms over time (Figure 2A – D, S2A – C).

C. perfringens and B. fragilis proliferate in co-cultured biofilms with C. albicans under 
ambient oxic conditions

C. albicans and/or C. perfringens or B. fragilis cells were co-cultured in biofilms for 4, 24, 

48, or 72 h, under ambient oxic or anoxic conditions. Growth of each species over time was 

measured by plating for CFUs (Figure 2A – D). The adherence and growth of C. albicans 

was unaffected by the presence or absence of bacterial cells; however the initial adherence 

of C. perfringens and B. fragilis increased ten-fold in the presence of C. albicans. In mixed 

biofilms, after adherence, C. perfringens showed substantial growth, from ~5×105 CFU/ml 

to ~1×107 CFU/ml in 24 h, regardless of whether the biofilm was grown under ambient oxic 

or anoxic conditions (Figure 2A, C). Without C. albicans, viable C. perfringens cells 

decreased below detection (<10 CFU/ml) after 24 h in ambient oxic conditions (Figure 2A). 

B. fragilis showed the same trend (Figure 2B, D). In addition to the standard laboratory 

strain of C. albicans (SC5314), we tested two other clinical isolates of C. albicans and found 

they are also able to support anaerobe growth (Figure S2D, E). Our data demonstrate that 

incorporation into a C. albicans biofilm grown under ambient oxic conditions enables 

growth of the anaerobes C. perfringens and B. fragilis; without the protective biofilm, the 

viability of both bacterial species rapidly declines.

C. albicans biofilms create a hypoxic microenvironment

To test the hypothesis that biofilms create locally hypoxic environments which enable the 

growth of anaerobic bacteria, we measured oxygen levels in biofilms using a miniaturized, 

Switch-able Trace Oxygen Sensor (STOX-Sensor), an instrument capable of measuring 

oxygen concentrations as low as 10 nM [13]. Measurements with the STOX-Sensor revealed 

a gradient of oxygen concentration throughout the depth of the biofilm, decreasing from 

~300 μM (ambient oxygen) near the top of the biofilm to less than 50 μM near the bottom 

(Figure 2E). The oxygen gradient remained the same whether C. albicans was grown in 

monoculture or was co-cultured with C. perfringens or B. fragilis.
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Co-culture in biofilms with bacteria alters gene expression in C. albicans

To determine whether C. albicans was responding to bacteria in the mixed-species biofilm, 

we measured gene expression changes in C. albicans by microarray (Figure 3A; Dataset 1). 

Relative to the C. albicans biofilm formed in the absence of bacteria, many genes were up- 

and down-regulated in the presence of bacteria. Some genes changed expression in response 

to all of the bacterial species, while others were specific to a few species.

Among the most differentially regulated genes were those encoding the transcription 

regulators controlling the white-opaque switch in C. albicans, a transition between two cell 

types, each of which is heritable for many generations [14–17] (Figure 3B). In particular, 

WOR1, which encodes the “master” regulator of white-opaque switching, was strongly 

upregulated by co-culture with K. pneumoniae, E. coli, and E. faecalis. Co-culture with K. 

pneumoniae also induced upregulation of several other transcription regulators known to 

play roles in the white-opaque switch, in a WOR1-independent manner (Figure S3, Dataset 

2) [16, 18–21].

Although a number of opaque-specific genes were upregulated, the full opaque-specific 

gene expression pattern was not observed, and when removed from this condition, the C. 

albicans cells revert to “classical” white cells. We propose that co-culture with bacterial 

cells poises C. albicans to switch from white to opaque, but that additional signals are 

required for full switching.

C. perfringens is protected by and induces aggregation of C. albicans in suspension 
culture

To further explore interactions between C. albicans and the bacterial microbiome members, 

we co-cultured them in suspension cultures, and observed that some of the bacteria induced 

co-aggregation with C. albicans cells (Table S1, Figure 4A – D). The most dramatic effect 

occurred with C. perfringens in ambient oxic conditions. Light microscopy revealed that the 

aggregates induced by C. perfringens were composed of dense clumps containing both C. 

albicans and C. perfringens cells and resembling miniature biofilms (Figure 4G). By 

monitoring CFUs/ml of C. perfringens grown in suspension cultures over time (Figure 4H, 

I), we observed that the presence of C. albicans enabled survival of C. perfringens in oxic 

suspension conditions to levels of ~1×106 CFU/ml; in the absence of C. albicans, C. 

perfringens CFUs dropped at least five orders of magnitude, to undetectable levels (<10 

CFU/ml) by 24 h (Figure 4H).

Although the mini-biofilms are too small to directly probe for oxygen concentration, we 

note that C. albicans gene expression under these conditions was significantly enriched for 

genes regulated during hypoxic conditions (P = 1.4×10−5) [22] (Figure S4A, Dataset 3), 

suggesting that the mini-biofilms, like conventional, surface-adhered biofilms, provide a 

hypoxic environment. Consistent with this idea, we found that C. perfringens cells also 

stimulate aggregation in early stages of conventional C. albicans biofilm formation on a 

solid surface (Figure S4B).

We repeated the suspension growth experiment with cell-free supernatant or heat-killed C. 

perfringens cells, and observed that both are able to induce aggregation of C. albicans 
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(Figure 4E, F). We blindly screened a library of 205 deletion strains in C. albicans [23] 

(Table S2), and identified eight transcription regulator-encoding genes and two other genes 

that are required for the observed interspecies aggregation (Figure 4K–R; Figure S4C). 

Notably, six of the transcription regulators (Brg1, Tec1, Rob1, Bcr1, Ndt80, and Efg1) 

found in our screen were previously identified “master regulators” of conventional biofilm 

formation [12], providing strong evidence that C. perfringens induces aggregate formation 

via the biofilm genetic program. The other two regulator mutants deficient in aggregation 

were rim101Δ/Δ and flo8Δ/Δ, which have not been reported to be required for conventional 

biofilm formation. DEF1, which regulates hyphal extension [24], and ALS3, which encodes 

an adhesin important for biofilm formation and plays a role in interacting with many 

bacterial species [25–29], were also required for aggregation (Figure S4C). As described in 

supplemental materials, we quantified aggregation using a sedimentation assay and verified 

that the deletion strains were complemented by gene “add-backs” (Figure S4D, E).

These results support a model whereby in ambient oxic suspension culture, C. perfringens 

induces C. albicans to form protective aggregates, which depend on the C. albicans biofilm 

genetic program. These mini-biofilms, which contain both C. albicans and C. perfringens, 

allow C. perfringens to survive in oxic conditions that are normally toxic.

Discussion

In this work we uncovered multiple interactions between C. albicans, a major fungal species 

of the human microbiome, and several bacterial members of the microbiome.

C. albicans biofilms: a microenvironment supporting anaerobic bacterial growth

It has been known for some time that bacterial biofilms are able to generate hypoxic 

microenvironments, supporting the growth of anaerobic bacterial species [30, 31], and it has 

been speculated that biofilms formed by Candida species may also be hypoxic, based on 

gene expression data and mutant phenotypes [30, 32–34]. Our work directly demonstrates, 

for the first time, that C. albicans biofilms create a hypoxic internal microenvironment when 

grown under ambient oxygen conditions. We also show that the microenvironment within 

the C. albicans biofilm is sufficient to support the growth of two different anaerobic species, 

C. perfringens and B. fragilis, and it is likely that decreased oxygen concentration plays a 

major role in anaerobe survival. Different strains of C. perfringens and B. fragilis have been 

reported to grow in oxygen levels as high as 3–5% (~40–70 μM) [35, 36], and we have 

shown that C. albicans biofilms provide an environment where the oxygen concentration is 

as low as ~50 μM. This finding suggests that C. albicans may permit the growth of 

anaerobes in oxic areas of the host that would otherwise be uninhabitable by those species. 

This idea may be especially important for the establishment of C. perfringens infection, 

which causes a wide variety of illnesses, including enterotoxemia, gas gangrene, and wound 

infections, many of which are life-threatening [37, 38].

The fact that oxygen concentration decreases steadily from the top to the bottom of a C. 

albicans biofilm adds to our understanding of the heterogeneous nature of biofilms. C. 

albicans biofilms are composed of multiple cell types (yeast, pseudohyphae, hyphae, 

persister/dormant cells and dispersing cells) that express different genetic programs [39–43] 
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due to their precise location within the biofilm. The oxygen concentration gradient is one 

critical variable that structures the biofilm microenvironment and suggests that metabolism 

and gene expression vary between cells at different levels throughout the biofilm.

Partial induction of the white/opaque switch program in C. albicans

We monitored the transcriptional response of C. albicans to bacterial species in mixed 

biofilms, and found there was significant overlap between the genes upregulated by co-

culture with K. pneumoniae and genes enriched in opaque cells compared to white cells (p = 

8.4×10−20). There is also significant overlap between genes upregulated by co-culture with 

K. pneumoniae and genes enriched in a strain overexpressing WOR1 after passage through 

the mouse gut, compared to a wild type strain (p = 3.4×10−9) [44]. We propose that 

induction of WOR1 by bacteria may prime C. albicans for white-opaque switching, but that 

additional environmental cues are needed to fully induce the switch to the opaque form. An 

alternative hypothesis is that partial induction of the opaque program is an adaptive response 

to exposure to bacteria.

Aggregation induction by co-culture in suspension

We found that C. perfringens induces aggregation of C. albicans in ambient oxic suspension 

cultures and that the aggregates, which contain both fungi and bacteria, allow C. perfringens 

to survive in a normally toxic environment. Induction of aggregation may be similar to 

induction of biofilm formation, as aggregation requires the same master regulators needed 

for C. albicans to form a “conventional” biofilm on a solid surface. Moreover, the cells in 

the aggregates resemble cells in biofilms on solid surfaces. These observations indicate that 

the biofilm “program” in C. albicans does not require a solid surface to become activated, 

and the definition of a C. albicans biofilm may be expanded from a substrate-attached 

community to include suspended aggregates. E. coli, Pediococcus damnosus, and several 

other bacterial species were previously found to induce aggregation when co-cultured with 

several yeast species, including Candida utilis, S. cerevisiae, and Schizosaccharomyces 

pombe [45]. The evidence suggests that many microbial species are able to co-aggregate, 

and our work has demonstrated that adherence between fungi and bacteria can allow the 

survival of the bacteria.

Interspecies Interactions

We have shown that C. albicans interacts in a variety of ways with several representative 

species of the gut microbiome. These microbes are clearly able to sense one another; for 

example C. albicans responds through large changes in adherence and gene expression. We 

have provided new evidence of antagonistic (reduction of C. albicans biofilm thickness by 

the presence of K. pneumoniae) and beneficial (protection of C. perfringens by C. albicans 

biofilms) relationships, and have begun to uncover the genes involved in these interactions. 

These findings highlight the importance of considering the microenvironments encountered 

by microbiome members. The strategy of studying pairwise interactions between fungi and 

bacteria in the context of heterogeneous microenvironments can be expanded to better 

understand the complex community of thousands of species that encounter one another in 

the host.
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Experimental Procedures

Co-cultures in suspension or biofilms

C. albicans and/or bacteria were grown in suspension or in biofilms adhered in 6-well 

polystyrene plates, in Brain Heart Infusion (BHI) medium, supplemented with 5% fetal 

bovine serum (BHI-FBS). Additional details in Supplement.

Colony Forming Units (CFUs) Assay

CFUs were plated from serial dilutions of either biofilms or suspension cultures. Dilutions 

were plated on YPD agar, LB agar, or blood agar at 30°C or 37°C, depending on the species. 

Additional details in Supplement.

Oxygen measurement

Oxygen concentration in biofilms was measured with a Unisense STOX-Sensor 

microelectrode, with measurements obtained every 10 μm from top to bottom. Additional 

details in Supplement.

Gene expression microarrays

Cy3 or Cy5-labeled cDNA was hybridized to custom Agilent microarrays, analyzed in 

GenePix Pro, and normalized with LOWESS. Additional details in Supplement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• C. albicans biofilms are hypoxic and support anaerobic bacteria survival

• Bacteria induce part of the C. albicans opaque genetic program in mixed 

biofilms

• C. perfringens induces biofilm formation in C. albicans in suspension co-culture
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Figure 1. C. albicans forms biofilms with five different species of bacteria in vitro
C. albicans was grown in biofilms for 24 h either alone (A), or with E. coli (B), K. 

pneumoniae (C), E. faecalis (D), C. perfringens (E), or B. fragilis (F). Biofilms were stained 

with conconavalin A – Alexa 594 and Syto 13 dyes, then imaged by CSLM. Images are 

maximum intensity projections of the top and side view. Representative images of at least 

three replicates are shown. Scale bars are 50 μm. See also Figure S1.

Fox et al. Page 10

Curr Biol. Author manuscript; available in PMC 2015 October 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Mixed-species biofilms provide a niche for growth of anaerobic bacteria
(A–D) CFU/ml of indicated species grown in biofilms in monoculture or co-culture under 

oxic or anoxic conditions. Cells were collected from biofilms only (not from the media 

above the biofilm) at 1.5, 4, 24, 48, and 72 h, and plated for CFUs. A) C. albicans and/or C. 

perfringens in oxic conditions. B) C. albicans and/or B. fragilis in oxic conditions. C) C. 

albicans and/or C. perfringens in anoxic conditions. D) C. albicans and/or B. fragilis in 

anoxic conditions. E) Oxygen was measured in biofilms composed of the indicated species 

using a STOX-Sensor. Readings were taken every 10 μm from the top to the bottom of the 

biofilm. For all graphs, the mean of at least two replicates is shown, with error bars 

representing standard deviation. See also Figure S2.

Fox et al. Page 11

Curr Biol. Author manuscript; available in PMC 2015 October 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Co-culture with bacteria in biofilms induces differential gene expression in C. albicans
A) Heat map of gene expression in C. albicans when co-cultured with the indicated species 

in biofilms, compared to C. albicans alone. Shown are the median values of at least two 

biological replicates. Control refers to C. albicans with media added to mimic the inoculum 

with bacteria, compared to C. albicans alone. 2863 genes differentially regulated at least 

twofold in at least one condition are displayed along the x-axis. Upregulated genes are 

yellow, downregulated genes are blue. B) Gene expression pattern of genes encoding 

transcription regulators that control the white-opaque switch circuit. The top panel shows 

expression levels measured in opaque vs. white cells from [19]. The bottom panel shows 

expression levels when C. albicans is co-cultured in biofilms with the indicated bacterial 

species, compared to C. albicans alone. See also Figure S3.
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Figure 4. C. perfringens induces aggregation of C. albicans during ambient oxic, suspension co-
culture
Suspension cultures of C. albicans with or without C. perfringens, grown for 4 h or 24 h at 

37°C, in anoxic or ambient oxic conditions. A–F) 4 h growth. A) C. albicans alone, anoxic. 

B) C. albicans + C. perfringens, anoxic. C) C. albicans alone, oxic. D) C. albicans + C. 

perfringens, oxic. E) C. albicans + cell-free supernatant from C. perfringens culture. F) C. 

albicans + heat-killed C. perfringens cells. G) C. albicans and/or C. perfringens imaged by 

light microscopy. Representative images are shown. Scale bars are 20 μm. H–I) CFU/ml of 

indicated species grown in monoculture or co-culture, in suspension cultures under ambient 

oxic or anoxic conditions. H) C. albicans and/or C. perfringens in ambient oxic conditions. 

I) C. albicans and/or C. perfringens in anoxic conditions. Shown is the mean of at least two 

replicates, error bars are standard deviation. J–R) C. albicans wild type or mutant strains 

grown in suspension, in ambient oxygen, for 4 h with C. perfringens. J) WT. K) rim101Δ/Δ. 

L) flo8Δ/Δ. M) brg1Δ/Δ. N) tec1Δ/Δ. O) rob1Δ/Δ. P) bcr1Δ/Δ. Q) efg1Δ/Δ. R) ndt80Δ/Δ. 

Assay was performed at least twice for each condition or mutant strain. See also Figure S4.
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