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Abstract

Agricultural production around the world has undergone tremendous changes over the past century.

However, two features remain salient in modern agricultural production. One is that global crop production

depends heavily on a few major crop-producing regions, and the other is that climatic conditions still play a

vital role in determining crop production in these regions. Not surprisingly, anthropogenic global warming

has been considered one of the greatest threats to feeding the world’s growing populations. This dissertation

studies the impacts of climatic events on agriculture in three aspects: farmers’ decisions in the first chapter,

farm profits in the second chapter, and agricultural production in the third chapter.

In the first chapter, I ask the following question: can we find statistical evidence that farmers in the

US Corn Belt show recency effects associated with local yield shocks? As climate change is projected to

increase extreme heat events in frequency and severity, farmers are expected to see an increase in crop yield

variability. Using field-level crop-choice data in the major US Corn Belt states (Iowa, Illinois, and Indiana),

this chapter uncovers statistical evidence that crop-choice decisions in the region feature recency effects

associated with local yield shocks largely driven by plausibly random weather. In the region, short-run

acreage adjustment occurs mainly along the intensive margin (transition between corn and soybeans). I show

that farmers are less likely to plant corn—which is more susceptible to heat/water stress than soybeans—

after a hotter or drier than average year, irrespective of the within-season timing of the heat. This means

that low yields of corn or soybeans in one year predict less corn being planted in the subsequent year.

Interestingly, relative yield does not predict the probability of growing corn next year. Based on the insights

from my conceptual model, these empirical results suggest that farmers respond sensitively to total exposure

to extreme heat during the previous growing season but do not respond to when it was concentrated (e.g.,

1st half or 2nd half of the growing season) or which crop it affected most.

In the second chapter, I ask the following question: what are the economic costs of large-scale droughts

to crop producers? Extreme weather events, such as heatwaves and droughts, in a major crop-producing

area decrease crop yields but tend to increase crop prices. Such a negative correlation makes it difficult

to quantify net crop revenue impacts. This paper proposes a panel approach to estimating the impacts of

extreme weather events in major crop-producing regions on crop revenues accounting for the correlation

between crop price and yield in the context of US crop production. I first show that, under some conditions,

weather-induced changes in crop revenues are identical to those of crop profits, for which data are scant. To
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estimate weather-induced crop revenue effects, I use a national-level yield shock as an explanatory variable

in addition to local weather variables. This variable bears two appealing features. First, it can account

for heterogeneous crop yield responses to weather across regions. Second, it permits coefficients that can

be interpreted as the conditional price flexibilities of demand. I show that, when estimating crop revenue

impacts of weather, it is important to additionally account for spatially varying degrees of the correlation

between local and aggregate yield shocks, temporally varying price flexibilities, and spatially heterogeneous

yield response to weather. I apply this approach to the 1988 and 2012 US Midwest droughts to quantify the

impacts of the droughts on crop revenues across US counties. I estimate that crop revenue was impacted by

(-)11% for corn and (+)1% for soybeans in 1988, and (+)11% for corn and 0% in 2012. I also document

that, in the two years, regional inequality of crop revenues substantially deteriorated.

In the third chapter, I work with John Abatzoglou to answer the following question: how does planting-

season weather affect agricultural production? Record-high prevented planting of staple crops such as corn

and soybeans in the US Corn Belt due to heavy rainfall in recent years has spurred the concern over food

security, as growing evidence suggests winter and spring precipitation extremes will occur more frequently

in the upper US Corn Belt in the coming decades. We examine within-season time-varying effects of

planting-season water balance—precipitation minus reference evapotranspiration—on prevented planting

of corn and soybeans in the US Corn Belt. Our results show significant impacts of excess moisture on

preventing planting and suggest a 58-176% increase in prevented planting during the months of April-June

per standard deviation increase in water balance. This framework is additionally used alongside downscaled

climate change projections to estimate future changes in county-level prevented planting during the mid-

century (2036–2065) under the moderate emission scenario (RCP 4.5). We find that prevented planting will

increase in parts of Iowa, Minnesota, and Wisconsin by 0-30% and generally decrease in the other parts of

the US Corn Belt. This work highlights the value of incorporating water balance data in assessing prevented-

planting impacts and is the first known study to examine changing risk of prevented planting under future

climate scenarios that may help inform adaptation efforts to avoid losses.
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CHAPTER 1

Recency Effects of Yield Shocks on Crop Choice in the US Corn Belt

1.1. Introduction

Numerous studies in the behavioral science identified a variety of biases and heuristics in people’s

probabilistic decision-making processes (Thaler 2016; Tversky and Kahneman 1973). Such biases and

heuristics appear even when professionals make decisions relevant to their expertise (Amir and Ganzach

1998; Nofsinger and Varma 2013; Singh 2021). One of the cognitive biases is recency bias. This

cognitive bias arises when agents make decisions by weighing recent information as more relevant than

older information. Such bias is prevalent in part because people tend to think that the next outcome will be

similar to those preceding it (i.e., strong belief in serial correlation of events).

This paper seeks to answer the following question: can we find statistical evidence that farmers in

the US Corn Belt show recency effects associated with plausibly random yield shocks when they make

crop choice decisions? Understanding how weather-driven shocks affect farmers’ crop choice is important

particularly in a changing climate. As extreme heat events are projected to increase in frequency and severity

in the coming decades, farmers are expected to experience more variable crop yields (Collins et al. 2013).

Because farmers’ crop choice has direct implications for food security and water quality from land-use

change, recency effects on crop choice mean that past yield shocks could have lingering impacts on food

production and local environment in subsequent years (Hendricks et al. 2014a; Lark et al. 2022; Metaxoglou

and Smith 2020; Metaxogolou and Smith 2022). This would also mean that policy concerning cropland

management should be more carefully designed in a changing climate.

To answer my question, I use field-level crop choice data from 2004 to 2020 in Iowa, Illinois, and

Indiana along with the conditional grouped coefficient estimator proposed by Hendricks et al. (2014b). In

the study region, corn and soybeans are the two major crops, and acreage adjustment occurs mainly through

transition between corn and soybeans (i.e., intensive margin). My results suggest that farmers’ previous-

year experiences of weather and yield shocks do affect their crop choice decisions in the following year.
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This behavioral pattern is surprising given that, in the study region, growing-season weather is serially

uncorrelated and does not appear to provide useful information about weather for the subsequent growing

season. These findings are consistent with previous studies in the field of behavioral science suggesting that

recent experiences play greater roles in people’s decisions than objective probabilities (e.g., Durand et al.

2021; Fredrickson and Kahneman 1993; Gallagher 2014; Hertwig et al. 2004; Singh 2021). To be more

specific, I show that farmers are less likely to plant corn—–which is more susceptible to heat/water stress

than soybeans–—after a hotter-or-drier-than-average year, irrespective of the timing of extreme heat. This

means that low yields of either corn or soybeans predicts less corn planted next year, but relative yield does

not predict the probability of growing corn next year. I show that these results are not explained by the

conventional ”market” expected crop revenues, or perfect-foresight crop yield or revenue shocks.

The US Corn Belt provides an ideal setting for testing recency effects on crop choice. First, farming

practices have been highly homogeneous across fields in the study area in the sense that most fields grow

corn and soybeans in rotation. Second, because of limited irrigation, crop yields depend heavily on weather

conditions in the study area. Third, growing-season weather in the US Corn Belt has been highly random

from year to year. Not surprisingly, past weather has little predictive power of future crop yields, which I

statistically show in the paper.

Besides inter-annual randomness of weather, recency effects on crop choice in the US Corn Belt are

somewhat surprising considering the fact that farmers in the region typically make highly calculated planting

decisions from checking potential rotation benefits and local crop prices to soil conditions. Crop choice is

arguably the most important decision to make in a crop year, among others including seed density and

fertilization. Mainly because of lack of irrigation in most parts of the area, crop yield is largely at the mercy

of weather leaving not much room for farmers to affect yields once the crop has been planted.

Focusing on the intensive margin, I use a binary crop choice (corn or soybeans) as the outcome of

interest. The main explanatory variables of interest are two types of (lagged) county-level yield shocks: 1)

relative yield shock, measured by yield shock for corn relative to that for soybeans and 2) average yield

shock (weighted by acreage across corn and soybeans). I also consider (lagged) crop-specific yield shocks

and (lagged) total exposure to extreme heat. I control for contemporaneous-year crop-specific i) planting-

time market expectations of crop revenues and ii) harvest-time realized crop revenue shocks.
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In the conceptual framework, I develop testable hypotheses that allow me to use coefficients on various

forms of (lagged) yield shocks to infer to which weather signal farmers sensitively respond: total exposure

to extreme heat or timing of extreme heat (i.e., during which growing-season phase it is concentrated). To do

so, I conceptualize crop yield response to weather focusing on extreme heat, which the literature identified

as the strongest weather predictor of crop yields in the US Corn Belt (Ortiz-Bobea et al. 2019; Schlenker

and Roberts 2009). I utilize two stylized facts: i) corn and soybeans are different in terms of when extreme

heat is particularly damaging and ii) extreme heat tends to peak around the phase when extreme heat is

particularly damaging to corn. The conceptual model suggests that average (and crop-specific) yield shocks

better predict the probability of planting corn than relative yield shocks do if farmers sensitively respond to

total exposure to extreme heat but little to timing of extreme heat, and vice versa.

Econometrically, I use the conditional grouped coefficients approach proposed by Hendricks et al.

(2014b). This approach allows me to account for the dynamic crop choice incentives coming from crop

rotation effects and to mitigate potential bias arising from parameter heterogeneity in the short dynamic

panel. Following Hendricks et al. (2014b), I estimate separate econometric models for regions with different

soil and climate characteristics to alleviate the potential bias induced by coefficient heterogeneity in the

dynamic panel with small T . The major difference of this work from Hendricks et al. (2014b) is the

explanatory variables of interest. While Hendricks et al. (2014b) focused on estimating the acreage response

to expected prices, I focus on estimating a potential recency effect of local yield shocks on crop choice.

I find that, conditional on corn having been planted in the prior year, a 10 percentage points (pp.)

increase in the average yield shock in the previous year predicts a 1.5 pp. increase in the probability of

corn being planted. The magnitude is much smaller (0.5 pp.) for fields that were planted to soybeans in

the prior year due to asymmetric yield penalties associated with continuous cropping. Interestingly, relative

yield does not affect farmers’ crop choice decisions. Based on the insights from the conceptual model, my

empirical findings that crop-specific and average yield shocks better predict the probability of corn than

relative yield shocks suggest that farmers sensitively respond to the total exposure to extreme heat during

the previous growing season but reacts little to when it was concentrated (e.g., 1st half or 2nd half of the

growing season).

This paper builds on and integrates multiple strands of literature. A body of studies in a variety of

disciplines have documented that a decision-maker’s recent experiences play an important role in their
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decisions and beliefs (e.g., Beltrán et al. 2018; Gallagher 2014; Nofsinger and Varma 2013). Using a panel

dataset of large regional floods and flood insurance policies in the US, Gallagher (2014) shows that insurance

take-up substantially increases the year after a flood and then steadily drops off. Leveraging electronic health

records spanning 86,000 deliveries, Singh (2021) finds that, when physicians choose a delivery decision

between vaginal and cesarean delivery, they tend to switch to the other delivery mode for the subsequent

patient—regardless of patient indications—if the prior patient had complications in one delivery mode.

Using a controlled experimental setting where participants make crop choice decisions after observing

a sequence of drought conditions, Demnitz and Joslyn (2020) find that people tend to make overly cautious

crop choices when droughts occurred in the recent sequences. They also find that providing correct

information prior to decision-making helps reduce over-cautious crop choice. Moore et al. (2019) find

that people appear to form a belief about normal weather conditions based on weather experienced between

2 to 8 years ago, which is a much shorter time window than scientists often use to define climate or normal

weather (e.g., 30 years). There is a nascent literature on recency effects in the field of agricultural economics,

but these studies have been focused on crop insurance (Che et al. 2020; Fezzi et al. 2021). My paper is the

first known work to examine how farmers’ recent experiences of weather-induced yield shocks affect their

acreage allocation decisions at the intensive margin in the US Corn Belt.

My work also broadly speaks to the literature on the impacts of climate change on agriculture. Many

studies have used crop choice in their conceptual framework as a textbook adaptation strategy to climate

change (Burke and Emerick 2016; Deschênes and Greenstone 2007; Mendelsohn et al. 1994). However,

few studies used crop choice as their main outcome variable of interest in their empirical analysis. Some

exceptions are Cui (2020) and Ramsey et al. (2021). Cui (2020) uses US county data on planted acres

aggregating corn and soybeans to study how acreage responds to long-run average temperatures. As his

focus is on acreage response to gradual temperature changes, his analysis is on the extensive margin whereas

I focus on the intensive margin. Ramsey et al. (2021) studies how short-run past local weather trend affects

farmers’ crop choice in eleven counties in Kansas, using a dynamic multinomial probit model and field-level

data. As mentioned in their paper, biophysical environment in the US Corn Belt is quite different from that

in the western Kansas. Importantly, given that the US Corn Belt is a major producer and exporter of corn

and soybeans, crop production in my study region has more significant implications for global food security.
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On top of that, my conceptual framework contributes to the land-use literature by showing that an

appropriate consideration of agronomic and climatic contexts can be essential to understanding farmers’

decisions. My model illustrates that farmers’ acreage allocation could be highly nuanced and even counter-

intuitive without considering local agroclimatic contexts. This is an important point given that, despite a

wide availability of fine-resolution geospatial data, it is still costly to obtain individual-level data that would

allow us to investigate detailed mechanisms of agents’ belief formation.

1.2. Background

In this section, I discuss salient agronomic and climatic features that I make use of when developing my

context-based conceptual model in the next section. In the study region, the most active planting season is

May. Although planting seasons for the two crops often overlap, corn tends to be planted a few weeks earlier

than soybeans. Different active planting time windows are driven by the fact that two crops are different in

terms of ideal planting conditions and potential yield penalties from missing them.

Fact.1 Extreme heat in July (silking period for corn) is particularly damaging to corn, whereas extreme

heat in August (podding period for soybeans) is particularly damaging to soybeans.

Figure 1.1 shows within-season time-varying crop yield effects of extreme heat, measured by degree days

above 30◦C from May to September.1 (See appendix for details of estimation.) Extreme heat is particularly

damaging to corn around July (silking period) and to soybeans around August (podding period). The

time-varying effects of extreme heat on crop yields in the figure are in line with previous studies (Berry

et al. 2014; Ortiz-Bobea et al. 2019; Zipper et al. 2016).

Fact.2 Extreme heat tends to peak when it is particularly damaging to corn.

The bottom plot in figure 1.1 indicates that July and August comprise the growing-season period that most

differentiates corn and soybean yields. Red bins under each subplot show the distribution of extreme heat

over the typical growing season in the study area. It tends to peak in early to mid July when extreme heat

can have detrimental effects on corn but not as much on soybeans.

1April to September is the growing season commonly used in the literature on statistical crop yield modelling. When extreme heat
is the main weather variable of interest, ignoring the active planting season would not be a problem because of negligible exposure
to extreme heat.
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FIGURE 1.1. Time-Varying Effects of Exposure to Temperature above 30◦C over the
Growing Season

Note: The blue lines represent within-season marginal effects of exposure to temperature above
30◦C on crop yield shocks in percentage points. For Corn and Soy, the dependent variables were
constructed by the ratio of realized yield to linear trend yields. For Corn relative to Soy, I divided
the ratio for Corn by that for Soy. The shaded areas show the 95% confidence intervals around
the marginal effects. Standard errors were clustered by year. Red bins represent the within-season
distribution of exposure to extreme heat during the typical growing season in the study area.

Growing-season weather in 2003 and 2012 in Iowa illustrates the importance of such heterogeneous

time-varying extreme-heat effects between the two crops. In the two years, Iowa counties saw a hotter-

than-usual summer with a different timing of when extreme heat was concentrated. Extreme heat was

concentrated in August for 2003 but it was in July for 2012 as seen in figure 1.2. The dashed lines represent
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10th, 50th, and 90th percentiles of the historical distribution of monthly degree days above 30◦C. The

different concentration phases led to different patterns of relative yield shocks in the two years. As can be

seen in figure 1.3, corn yield was much higher than soybean yield in 2003, but the opposite was the case in

2012.

FIGURE 1.2. Monthly Exposure to Temperature above 30◦C in Iowa
Source: www.asmith.ucdavis.edu/data/weather

Note: Thick green and orange lines show monthly total exposure to temperature above 30◦C in an
average county of Iowa in 2003 and 2012. Black dashed lines represent the 10th, 50th, and 90th
percentiles of the historical distribution of monthly total exposure to temperature above 30◦C in an
average county of Iowa.

Fact.3 Soybeans can adapt to water stress better than corn.

Putting aside the heterogeneous time-varying effects of extreme heat, soybeans can better adapt in times

of water stress due to its internal self-protective mechanism against water stress (Rippey 2015). During

droughts, soybeans can continue to grow while adjusting its growth pace and compensate for water deficit

once water becomes available. This means that soybeans can endure water stress over a longer period and

range of growth stages. Back in 2012, a substantial amount of corn in Illinois died when extreme heat spiked

in July, but soybeans slowed down its growth by shutting down their pods to conserve water. When rains

returned in mid-August, soybean plants rebounded by filling out remaining pods that survived. As a result,

soybean yields were not too far below the normal level.
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FIGURE 1.3. Percentage Yield Shocks in Iowa

Fact.4 Total growing-season exposure to extreme heat is 80% more damaging to corn than soybeans in the

study region.

In table 1.1, I report the results from the regressions of log yields on growing-season weather variables

using the county-level data from 1961 to 2019 based on the results from Schlenker and Roberts (2009) for

corn and soybeans:

log(ycit) = βc1precit + βc2prec
2
it + βc3mddit + βc4hddit +αi + fi(t) + ϵcit ,(1.1)

where ycit denotes the yield for crop c in county i in year t. prec denotes total precipitation,mdd represents

total exposure to beneficial heat (Moderate Degree Days: degree days between 10◦C and 29◦C or 30◦C),

and hdd represents total exposure to harmful heat (Heating Degree Days: degree days above 29◦C or 30◦C)

during the growing season (April to September). αi represents the county fixed effects, which capture

county-specific time invariant unobservables, such as soil quality. fi(t) is the county-specific linear time

trend, which captures variation of log yield that is not explained by weather variables, such as technological

improvements.
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TABLE 1.1. OLS Results: Log Yield on Weather Variables

Corn Soy
(1) (2) (3) (4) (5) (6) (7) (8)

prec (Apr-Sep) 0.151∗∗∗ 0.154∗∗∗ 0.143∗∗∗ 0.147∗∗∗ 0.111∗∗∗ 0.107∗∗∗ 0.107∗∗∗ 0.103∗∗∗

(0.041) (0.041) (0.042) (0.043) (0.022) (0.021) (0.022) (0.020)
precsq (Apr-Sep) -0.013∗∗∗ -0.013∗∗∗ -0.012∗∗∗ -0.013∗∗∗ -0.009∗∗∗ -0.008∗∗∗ -0.009∗∗∗ -0.008∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.002) (0.001) (0.001) (0.001)
mdd (Apr-Sep) 0.040∗∗∗ 0.042∗∗∗ 0.029∗∗ 0.030∗∗ 0.049∗∗∗ 0.046∗∗∗ 0.042∗∗∗ 0.041∗∗∗

(0.014) (0.015) (0.013) (0.013) (0.009) (0.008) (0.008) (0.008)
hdd (Apr-Sep) -0.798∗∗∗ -0.898∗∗∗ -1.04∗∗∗ -1.20∗∗∗ -0.447∗∗∗ -0.315∗∗∗ -0.587∗∗∗ -0.425∗∗∗

(0.097) (0.169) (0.128) (0.213) (0.038) (0.070) (0.050) (0.090)
hdd (Aug) 0.277 0.445 -0.365∗∗ -0.457∗∗

(0.271) (0.345) (0.168) (0.210)

Temp. Threshold 29◦C 29◦C 30◦C 30◦C 29◦C 29◦C 30◦C 30◦C
County FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
County Linear Trend ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
R2 0.824 0.826 0.827 0.829 0.826 0.830 0.827 0.831
Observations 17,090 17,090 17,090 17,090 17,089 17,089 17,089 17,089

Note: The table shows the regressions of log yield on weather variables using US county data in
Iowa, Illinois, and Indiana from 1961 to 2019. Cluster robust standard errors are in parentheses.
Standard errors were clustered by year. prec denotes total precipitation, precsq denotes squared
total precipitation, mdd denotes total degree days between 10◦C and a temperature threshold
(29◦C for corn or 30◦C for soy). hdd denotes total degree days above the temperature threshold.
Asterisks indicate the following: ***=1% significance level, **=5% significance level, and *=10%
significance level.

FIGURE 1.4. Histogram of (county-level) Skewness of Yield Shocks

Note: The figure uses county-level yield shocks measured by deviations from a linear time trend
(1961–2020).
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Columns (1) and (5) show that aggregate exposure to extreme heat over the growing season is 80% more

damaging to corn than to soybeans in the region. This could be the result of two compounding effects. One

is that corn is generally more susceptible to water stress and the other is extreme heat tends to peak around

the phase when it is more damaging to corn. Not surprisingly, corn yield shocks tend to be more negatively

skewed in the study region as figure 1.4 shows. Comparison between columns (2) and (6) confirms the

heterogeneous time-varying effects on crop yields between the two crops.

1.3. Conceptual Framework

In what follows, I describe how the degree of recency effects associated with two weather signals—

total exposure to or timing of extreme heat—can affect crop choice decisions at the intensive margin. In

doing this, I make use of details on the unique agroclimatic contexts in the study region. I then relate

the insights from the model to my empirical setting. That is, I develop testable hypotheses that allow

me to use coefficients on different types of yield shocks to infer to which weather signal farmers respond

sensitively. Another important goal of the conceptual model is to show that recency effects of weather-

induced yield shocks on intensive-margin crop choice decisions can be very subtle and even counter-intuitive

if one does not carefully consider the local unique agroclimatic features. Specifically, it is possible that a

farmer experiencing local weather that favored one crop over the other this year may form a belief that the

unfavored crop would have a higher yield in the subsequent year.

Because of limitations of the observational data used in this study, I do not attempt to assess the causes

or rationality of a potential recency effect. I use the term recency effect to simply refer to how much a farmer

weighs recent information more heavily than older information in her decision-making. In practice, recency

effects could arise for various reasons: limited memory, time-varying states, high level of ambiguity about

the distribution of growing-season weather, high level of ambiguity aversion, and high reliance on heuristics

due to difficulty of processing information (Hogarth and Einhorn 1990; Kala 2015). For example, Kala

(2015) shows that high ambiguity aversion could lead to a recency bias even when agents believe that states

do not vary over time.

I use a simple model that reflects climatic conditions and heterogeneous crop yield responses to weather

between corn and soybeans with an emphasis on extreme heat in the study area.2 Consider a farmer who

2The literature has documented that extreme heat is by far the most influential weather variable that explains crop yield variability
for the two crops in the region (Schlenker and Roberts 2009).
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decides to plant either corn or soybeans on a nonirrigated field.3 Assume that yields are exogenously

determined by local weather. For simplicity, I model crop yields as a function of extreme heat during

the growing season. One may consider extreme heat in the model as exposure to heat and water stress

combined. This is because heat and water stress are highly intertwined. In the statistical framework of

crop yields, extreme heat partially picks up water stress during crop growth stages, when water stress is not

explicitly controlled for in a regression model (Ortiz-Bobea et al. 2019).

For simplicity, I assume that extreme heat occurs only once each growing season and is independently

and identically distributed across seasons. Let st denote the within-season timing of extreme heat in year

t and let it denote its intensity. This simplified representation is far from how weather is realized in

practice because jointly probabilistic climatic conditions are drawn over the entire growing season. However,

reflecting more realistic climatic settings complicates the model without improving the intuition. I further

assume that fields are relatively homogeneous in terms of climate and soil characteristics so that the farmer

can learn what her yield would have been even for the crop she did not plant simply by observing yields on

her neighboring fields.

Let yc(st , it) denote realized yield for crop c in year t with st and it and, similarly, let yc(st , it = 0)

denote the potential yield achievable when there is no extreme heat (it = 0). For comparability of crop

yields between corn and soybeans, I write crop yields as realized yield normalized by potential yield: yct ≡
yc(st ,it)
yc(st ,it=0)

. Thus, corn-relative-to-soybean yield shock (hereinafter, relative yield shock) can be written as

Yt(st , it) ≡
ycornt

y
soy
t
− 1.

Holding all other things constant, such as expected crop prices and rotational benefits, the farmer would

plant the crop that she expects to have a higher yield. Since extreme heat is the only component of crop

yield in the model, a belief about extreme heat is sufficient for a belief about relative yield shock. Suppose

the farmer forms a belief about the timing of extreme heat this year based on observations available up to

and including last year as follows:

Et−1[st] = (1− ρs)s̄t−2 + ρsst−1(1.2)

≈ (1− ρs)sa + ρsst−1,(1.3)

3Acreage adjustment along the extensive margin (transition between corn or soybeans and the other land uses including idle) has
been limited in the study area.
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where s̄t−2 = 1
t−2

∑t−2
τ=1 sτ ≈ sa and sa is the population mean. Similarly for intensity,

Et−1[it] = (1− ρi)īt−2 + ρiit−1(1.4)

≈ (1− ρi)ia + ρiit−1.(1.5)

ρ = (ρs,ρi) is a vector of recency effect parameters. These parameters describe how much the farmer

weighs last year’s observation than the older ones in the dimension of the timing and intensity of extreme

heat. Without more information about farmers’ belief formation, there is little reason to assume ρs = ρi or

ρs,ρi ∈ [0,1]. For example, a farmer might respond sensitively to a higher-than-normal heat intensity last

year, if the farmer considers it as a signal of a larger heat wave occurring.

Suppose the farmer forms a belief about extreme heat in the coming year based on the historical

distribution of extreme heat around the phase that critically differentiates corn and soybean yields.

Normalize the length of the differentiating time window to 1 (e.g., mid of June to end of August). For

tractability of the model, I adopt a simple functional form that maps extreme heat (s, i) to relative yield

shock (Y ) as follows: Y (s, i) = i(s−0.5). This functional form reflects the stylized facts that corn (soybeans)

becomes less (more) susceptible to extreme heat as the growing season progresses (See figure 1.1). Around

s = 0.5, relative yield shock becomes zero.

Suppose, under climate (i.e., the typical growing season) denoted as a, sa = 0.25 and ia = 1. The

assumption sa = 0.25 reflects the fact that extreme heat occurs when corn is more susceptible to the heat

than soybeans under climate. Let a vector a ≡ (sa = 0.25, ia = 1,Y (sa, ia)) represent the timing and intensity

of extreme heat under climate and its corresponding relative yield shock. Figure 1.5 depicts such extreme

heat and relative yield shock in the (s,Y ) space while i is represented via slope of a line Y (s, i). Given the

functional form and a, expectation of relative yield shock for this year can be expressed as

Et−1[Yt |Yt−1 = Y (st−1, it−1),ρs,ρi] = ((1− ρi) + ρiit−1)((1− ρs)0.25+ ρsst−1 − 0.5)

Suppose that, last year, the farmer experienced extreme heat and yield at b ≡ (sb = 0.8, ib = 2,Y (sb, ib)). The

intensity was twice higher than normal and the timing was toward the phase when soybeans are relatively

more susceptible to extreme heat. This weather experience is similar to growing-season weather in 2003 in

Iowa when weather favored corn over soybeans. If the farmer is free of recency effects, the weather shock b
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would have a limited effect on her belief formation about relative yield shock. Formally,

Et−1[Yt |Yt−1,ρs = 0,ρi = 0]

=Et−1[Yt |ρs = 0,ρi = 0]

=Y (sa, ia)

≡Y a

The first equality implies that, if a farmer is free of recency effects, then her belief for this year is independent

of last year’s shock. The second equality means that her expected relative yield shock is identical to relative

yield shock under climate.

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

Y a

Y (s, ia = 1)

Y (s, ib = 2)

E[Yt |ρs = 0,ρi = 0]

s = sb

E[Yt |Yt−1 = Y (s, , i = ib),ρs = 0.5,ρi = 0]

E[Yt |Yt−1 = Y (s, , i = ib),ρs = 0,ρi = 0.5]

a

b

c

d

s

Y

FIGURE 1.5. (Conceptual Framework) Canonical Cases

To build some intuition behind how recency parameters affect her belief formation, consider two

canonical cases depicted in figure 1.5: i) ρs > 0 and ρi = 0, and ii) ρs = 0 and ρi > 0. Suppose ρs > 0 and

ρi = 0. In this case, a higher-than-normal relative yield shock last year (i.e., Yt−1 > Y a) leads the farmer to

form a belief of a higher-than-normal relative yield shock this year (i.e., Et−1[Yt |Yt−1,ρs > 0,ρi = 0] > Y a).

Graphically with b, Et−1[Yt |Yt−1 = Y (sb, ib),ρs > 0,ρi = 0] would be positioned somewhere between point
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c and d as long as ρs < 1. This is because ρi = 0 requires the line Et−1[Yt |Yt−1,ρs > 0,ρi = 0] pivot

around (sa,Y a).4 Suppose ρs = 0 and ρi > 0. In this case, a higher-than-normal relative yield shock last

year does not necessarily lead the farmer to form an expectation of a higher-than-normal yield shock this

year. Instead, regardless of last year’s relative yield shock or the timing of extreme heat, greater-than-

normal heat intensity leads the farmer to expect that weather would be less favorable-than-normal to corn.

Graphically with b, Et−1[Yt |Yt−1 = Y (sb, ib),ρs = 0,ρi > 0] would be positioned below Y (sa, ia). This is

because ρs = 0 requires the slope of the line Et−1[Yt |Yt−1 = Y (sb, ib),ρs = 0,ρi > 0] to be zero and the

expectation of higher-than-normal intensity lowers the expected relative yield shock. In this case, even if

weather was more favorable-than-normal to corn than soybeans last year, the farmer believes that corn yield

would be lower than soybeans this year relative to normal. This is because the farmer updates her belief

about extreme heat only in the intensity dimension and, under the normal timing (s = sa), corn is more

vulnerable to extreme heat than soybeans.5

The insights from the model allow me to develop some conjectures for my empirical analysis. In the

empirical analysis, I regress a binary crop choice (1 for corn and 0 for soybeans) on (lagged) relative yield

shock, crop-specific yield shocks, and average yield shock of corn and soybeans. If farmers tend to react

sensitively to timing (i.e., during which growing season phase extreme heat was concentrated) but little

to intensity (i.e., total growing-season exposure to extreme heat), ceteris paribus farmers are more likely

to plant the crop with a higher yield last year. In this case, we expect that a higher relative yield shock

would predict a higher probability of planting corn. On the other hand, if farmers tend to react sensitively

to intensity but little to timing, they are more likely to plant soybeans if either crop is damaged more than

normal. In this case, relative yield shock would not predict the probability of planting corn but higher crop-

specific and average yield shocks would predict a higher probability of planting corn. Finally, if farmers are

4More generally,

sign{Et−1[Yt |Yt−1,ρs > 0,ρi = 0]−Y ∗} = sign{Yt−1 −Y a}
= sign{st−1 − sa}.

5More generally,

sign{Et−1[Yt |Yt−1,ρs = 0,ρi > 0]−Y a} = −sign{it−1 − ia}
Put differently,

sign{Et−1[Yt |Yt−1,ρs = 0,ρi ]−Y a} =

sign{Yt−1 −Y (it−1 = 1, st−1)}, if st−1 < .5
−sign{Yt−1 −Y (it−1 = 1, st−1)}, otherwise
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sensitive to both intensity and timing, it is not straightforward to form a hypothesis although the insights

from the canonical cases remain still valid. This is because it is less clear how relative magnitudes of two

recency parameters would interplay. In figure S1.1 and S1.2, I include non canonical cases where both

recency parameters are positive.

1.4. Data

The dataset for my empirical analysis covers Iowa, Illinois and Indiana from 2004 to 2020. The unit of

analysis is field-by-year. Although crop classification data date back to earlier than 2004 for the three states,

local crop price data at hand are available from 2004. The dependent variable of interest is field-level binary

crop choice (corn or soybeans). The potential independent variables of interest are county-level yield shocks

and exposure to extreme heat over the growing season. The control variables include contemporaneous-year

crop-specific ”market” expectation of crop revenues, realized revenue shocks, and planting-time soil

moisture.

Field-level Crop Choice

To construct annual field-level crop choice data, I use two types of geospatial data following Hendricks et al.

(2014b), Hendricks et al. (2014a) and Pates and Hendricks (2021). One is pixel-level crop classification

data. The other is agricultural field boundaries. I obtain pixel-level crop classification data from the U.S.

Department of Agriculture (USDA)’s Cropland Data Layer (CDL). The CDL is a 30m-resolution satellite-

derived crop map produced annually to assess crops and cropland area across the contiguous United States.

Any satellite-derived classification data contain classification errors. Such classification errors can vary

across classifications, regions, and time. Fortunately, corn and soybeans are among the most accurate crops

in the CDLs with accuracy well above 90% in the sample period for the study area. (See Lark et al. (2021)

for more details.)

For field boundaries, I use the Common Land Unit (CLU) from the USDA Farm Service Agency (FSA).

The CLU delineates the smallest unit of land that has a common land cover and land management in

agricultural land associated with USDA farm programs. I use the 2008 version of the CLU because it
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CDL Field-level Mode after Cleaning

FIGURE 1.6. CDL with Field Boundaries from CLU

is the only version available at hand.6 To construct annual field-level crop data, I take the mode of crop

classifications (i.e., dominant crop) for each field in a given year and use the mode as field-level crop choice.

FIGURE 1.7. Distribution of the Share of Field-Level CDL Mode

One potential issue with use of time-invariant field boundaries is that they may have evolved over time,

for example, by someone renting or buying/selling a portion of a field. Figure 1.6 shows some examples

of crop classifications from the CDL overlaid with field boundaries from the CLU. As can be seen from

the figure, some instances can be observed with significant portions of multiple crops in a field boundary.

Without further information, it is not possible to distinguish whether these observations are a result of a

farmer planting multiple crops in one field or multiple farmers making different crop choice decisions.

6Following Hendricks et al. (2014b), I drop polygons smaller than 15 acres because these polygons are likely to be non-agricultural
boundaries, such as gullies, waterways, or farmsteads.
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Figure 1.7 shows such a tendency is more pronounced for large fields. To mitigate such concerns and

classification errors from the CDL, I drop observations whose proportion of field-level mode is smaller than

0.8. This data-cleaning process leaves me 11 million observations (left panel in figure 1.9). Among these

observations, I drop fields that always rotate or never rotate. A quarter of fields in the sample belong to the

former category and 4% belongs to the latter category.

Geographic Boundaries

Following Hendricks et al. (2014b) and Pates and Hendricks (2021), I run separate econometric models over

a set of geographic boundaries known as Major Land Resource Areas (MLRAs) from the Natural Resources

Conservation Service (NRCS). Each MLRA shares similar biophysical and environmental characteristics

in terms of soil, water, climate, vegetation, land use, and type of farming. A total of 33 MLRAs intersect

with or are included in the study area. Some MLRAs contain much smaller numbers of fields than others. I

merge small MLRAs into relatively large neighboring MLRAs to finally have 20 geographic groups. Figure

1.8 shows these boundaries together with the CDL. Figure 1.10 shows how similar soil characteristics are

within MLRAs and different across MLRAs in terms of clay, sand, silt and ph in 0-5cm depth (Walkinshaw

et al. 2020).

FIGURE 1.8. CDL with
MLRA

FIGURE 1.9. Share of Crop Choice by Previous Crop
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FIGURE 1.10. Soil Properties (0-5cm)

Note:Values in clay, sand, and silt are percent by weight.

Yield and Acreage

I obtained the county-level data on planted acres and yields for corn and soybeans from the USDA National

Agricultural Statistics Service (NASS).

Crop Prices

The local crop price data are sourced from Data Transmission Network (DTN) and Cash Grain Bids (CGB).

These price data are point-level mostly at grain elevators.7 I interpolate these point-level price data to a

high resolution grid using the inverse-distance weighting method. I take the simple average of interpolated

gridded price data within each field to construct field-level price data.

For post-harvest price, I take the simple average of the daily spot price in December for corn and in

November for soybeans. For planting-time ”market” expectation of post-harvest crop price, I use a futures

price (national component) adjusted by expected local crop basis (local component), which is measured

7I thank Matthieu Stigler for providing geolocation information about grain elevators.
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by the difference between local spot price and nearby futures contract price. For futures prices, I use

futures contracts traded on the Chicago Board of Trade (CBOT). For corn (soybeans), I average December

(November) contract futures prices traded in the months of January and February. Although January and

February are months ahead of planting seasons for many regions in the US Corn Belt, farmers tend to start

to prepare inputs, including seeds and fertilizers in the months. For expected basis, I average local grain

basis in March. Figure 1.11 shows interpolated planting-time expected prices and post harvest prices for

corn and soybeans in 2012 when there was a historic drought in the region. The figure suggests that there

exists some variation in prices over space but it is limited.

FIGURE 1.11. Interpolated Corn and Soybean Prices in 2012

Climate

To be consistent with yield data, I use county-level weather data for my empirical analysis. I first construct

daily county-level weather variables on precipitation and (minimum and maximum) temperatures, I

aggregate gridded data (4km resolution) from the PRISM Climate Group to the county level using cropland

areas as weights. For farmland weights, I use the National Land Cover Database 2019, which identifies
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land use at a 30m resolution across the US. Using daily temperature data, I calculate degree days above

temperature thresholds (e.g., 10◦C) over the growing season (April-September). I conduct auxiliary

analysis on weather and crop yields using either county-level panel data or county-specific time-series data

for 1961–2019. Because the PRISM gridded data are available only after 1980, for this analysis, I use

county-level temperature and precipitation data made available by Wolfram Schlenker. This dataset was

derived from the balanced panel of weather stations.8

Soil Moisture

In my analysis, I control for planting-time soil moisture level in 2cm depth at the field level, because

sometimes excessive wet soil moisture prevents farmers from planting corn making them plant soybeans

instead. I obtain gridded surface soil moisture data from the National Aeronautics and Space Administration

(NASA)’s Gravity Recovery and Climate Experiment (GRACE; 2002–2017) and GRACE Follow On

(GRACE-FO; 2018-present) satellites (Kornfeld et al. 2019; Tapley et al. 2004). The data report wetness

percentiles relative to the period 1948–2012 at a 14km resolution on a weekly basis. I take the simple

average of surface moisture level in April. Table 1.2 shows descriptive statistics of some important variables.

(Construction of yield shocks will be explained in the next section.)

TABLE 1.2. Descriptive Statistics

min 25th median 75th max SD
expected price for corn ($/bushel, 2019) 2.46 3.80 4.31 5.58 7.52 1.07
expected price for soy ($/bushel, 2019) 5.27 9.12 10.24 12.96 16.58 2.22
yield for corn (bushel/acre) 19.00 158.00 176.60 191.20 246.70 29.98
yield for soy (bushel/acre) 19.00 47.72 52.40 57.00 80.40 7.42
expected revenue for corn ($/acre, 2019) 303.52 682.73 754.23 892.56 1327.77 187.90
expected revenue for soy ($/acre, 2019) 247.10 479.79 540.11 643.96 898.78 120.86
average yield shock -0.66 -0.05 0.02 0.07 0.34 0.11
relative yield shock -0.79 -0.05 0.00 0.06 1.28 0.12
surface soil moisture (percentile) 0.78 41.39 62.04 80.83 100.00 23.68

1.5. Empirical Strategy

Many fields in the US Corn Belt rotate their crops from one year to the next year, most switching

between corn and soybeans. Crop rotation provides several benefits. For example, crop rotation naturally

8I used data and code available at Wolfram Schlenker’s webpage (http://www.columbia.edu/˜ws2162/links.html).
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replenishes soil nutrients and reduces pest populations. These benefits often lead to yield-boosting and/or

input-saving effect (Hennessy, 2006). Because of these agronomic benefits of crop rotation, the incentive to

plant a crop this year largely depends on what was planted in the previous year. As the crop choice is the

main outcome of interest, such dependence gives rise to a dynamic panel setting.

I adopt the econometric framework of Hendricks et al. (2014b). Hendricks et al. (2014b) uses a first-

order Markov transition model to characterize crop choice dynamics. Following Hendricks et al. (2014b)

I estimate the model using ordinary least squares (OLS) along with the linear probability model. I run a

separate econometric model for each MLRA group to alleviate the potential bias induced by coefficient

heterogeneity. Hendricks et al. (2014b) show that failure to account for such coefficient heterogeneity can

lead to an illusion that acreage response to expected crop prices is larger in the long run than in the short

run. This illusion contradicts the agronomic intuition that predicts higher short-run acreage response in the

presence of crop rotation benefits.

I focus on the intensive margin (transition between corn and soybeans) because this is the main margin

of acreage adjustment particularly in the short run. I characterize the set of linear Markov transition

probabilities as follows:

φccit = P r(cit = 1|ci,t−1 = 1) = βl1iS
l
j(i),t−1 +θ

′
1iXit + f1i(t) +α1i ,(1.6)

φscit = P r(cit = 1|ci,t−1 = 0) = βl0iS
l
j(i),t−1 +θ

′
0iXit + f0i(t) +α0i ,(1.7)

where φccit (φ
sc
it ) denotes the probability of planting corn on field i in year t conditional on corn (soybeans)

having been planted in the previous year. The main parameters of interest are βs. Srelj(i)t denotes the relative

yield shock in county j for field i in year t. Similarly, Savgj(i)t denotes the average yield shock (weighted

by acreage across corn and soybeans). Xit includes a vector of control variables: crop-specific expected

revenues and realized revenue shocks in the current year, and planting-time surface soil moisture. For time

trend fi(t), I use a county-specific quadratic time trend. αi denotes field fixed effects, which will pick up

time-invariant field-level characteristics, such as soil quality. Following Hendricks et al. (2014b), I use

subscript i to indicate that coefficients are heterogeneous across fields. The probability of transition from

corn to soybeans is simply φcs = 1 − φcc, and the probability of transition from soybeans to soybeans is

φss = 1−φsc.
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I construct relative yield shock, Srel.j(i)t , and average yield shock, Savg.j(i)t as below.

Srel.j(i)t =
ycornj(i)t /ŷ

corn
j(i)t

y
soy
j(i)t/ŷ

soy
j(i)t

− 1,(1.8)

S
avg.
j(i)t =

∑
c∈{corn,soy} a

c
j(i)ty

c
j(i)t/ŷ

c
j(i)t∑

c∈{corn,soy} a
c
j(i)t

− 1,(1.9)

where ycj(i)t is the realized yield, ŷcj(i)t is the predicted yield, and acj(i)t denotes planted acre. In the baseline

model, for predicted yields ŷcj(i)t , I use a linear time trend to fit (county-level) yield data spanning from 1991

to 2020 for ŷcj(i)t . I measure these shocks at the county level, which will effectively capture yield shocks that

fields in a county experience on average. Although farming practices, and soil and climate characteristics

are highly similar within counties in the study region, some counties would have more heterogeneous fields

than others, potentially leading to less precise parameter estimates. One might raise some concerns over

use of realized yields when constructing yield shocks because not all yield shocks are driven by weather

fluctuations. For example, previous studies have found that severity of air pollution affects crop yields and

cleaner air has contributed to yield gains for corn and soybeans over the past two decades in the US (Lobell

and Burney 2021; Metaxoglou and Smith 2020). In the results section, I also report results from a regression

model that uses yield shock variables constructed with predicted yields based on weather.

I consider only one-year lag of local yield shocks because including more than one-year lag complicates

interpretation of my results by introducing direct and indirect channels. Suppose we include both two-year

lag and one-year lag of yield shocks in the baseline econometric model. Conditional on last year’s shock,

the shock two years ago affects the farmer’s crop choice this year in two channels. Through the (direct)

belief-changing channel, the shock two years ago might have affected what the farmer expects her yields to

be this year if recency effects last more than one year. Through the (indirect) rotation-incentive-changing

channel, the farmer might have planted a different crop last year than what she would have planted without

the shock two years ago, and the potentially different crop choice last year might alter a rotation incentive

this year.

I include as control variables contemporaneous-year crop-specific a) ”market” expectation of crop

revenues and b) realized crop revenue shocks. I approximate expected revenues and revenue shocks are

22



calculated as follows:

r̃evcit = log(p̃
c
it ŷ

c
j(i)t)(1.10)

revcit = log(p
c
ity

c
j(i)t/p̃

c
it ŷ

c
j(i)t)(1.11)

where p̃cit is planting-time expected post-harvest price and ŷcj(i)t is the trend yield. pcit is the realized post-

harvest price and ycj(i)t is the realized yield. Although I included expected crop revenues r̃evcit , most of

the within-field variation comes from temporal variation in price due to limited year-to-year fluctuations in

trend yields. For this reason, using expected prices rather than expected revenues as control variables does

not change the results presented in this paper. I also control for average soil moisture level in April. Because

the crop choice response to planting-time soil moisture could be nonlinear and the appropriate functional

form is not apparent, I fit a natural spine with 3 knots. The number and location of knots do not change the

estimated parameters of interest.

Following Hendricks et al. (2014b), I run a separate model for each MLRA. When reporting aggregate

estimated parameters, I average them weighted by crop acres of MLRAs. For standard errors, I use a wild

cluster bootstrap method with 300 replications. I cluster standard errors by year. Clustering standard errors

by year allows for cross-sectional dependence across fields in any given year but assumes independence

between years. For each replication, I preserve the regressors but reconstruct the dependent variable by

summing the predicted value from OLS and the reconstructed residuals whose sign switches by year with

the probability of 0.5 (Cameron et al., 2008).

I exploit within-field variation for identification. Hendricks et al. (2014b) and Pates and Hendricks

(2021) exploit both cross-sectional and temporal variation while including field characteristics (e.g., soil

characteristics and irrigation status) as controls in their econometric model rather than including field

fixed effects. This implicitly assumes fields and the farmers who use them are identical within a MLRA

conditional on field characteristics. Exploiting cross-sectional variation could be less preferred in my setting.

While the explanatory variable of interest in the previous studies was crop-specific expected prices which

vary across fields, my explanatory variables of interest—-yield shocks—-vary only across counties in a

given year. Because there are not many counties in each MLRA, parameter estimates could be less stable

among different specifications. Admittedly, including individual fixed effects could cause biases in the

dynamic panel model (Nickell 1981). In 1.8.2, I show that the magnitude of the potential bias induced by
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fixed effects would be negligible. In practice, coefficients obtained by exploiting both cross-sectional and

temporal variation and those obtained by using only within-field variation tend to be similar, but estimates

tend to be more robust to multiple specifications for the latter.

1.6. Results

In what follows, I present empirical results focusing on the fields that were planted to corn in the prior

year, because these fields tend to leave more room for crop choice adjustment than fields previously planted

to soybeans. Seifert et al. (2017) show that yield drag from continuous corn is 4.3% and that for continuous

soybeans is 10.4% although there is some heterogeneity across sub-regions. A larger magnitude of yield

drag from continuous soybeans implies that fields that were planted to corn have more room for flexibly

changing crop choices. Because of this asymmetric yield drag, continuous corn is much more common than

continuous soybeans as shown in figure 1.9. In appendix, I include the results for the fields that were planted

to soybeans in the previous year. As expected, the magnitudes of estimated parameters are generally much

smaller for fields that were previously planted to soybeans.

Before presenting my main results, I address some potential concerns readers might raise.

Are growing-season weather and yield shocks random from year to year?

My results suggest yes. Figure 1.12 shows county-level time series of growing-season weather variables

and yield shocks from 1961 to 2019 with thick lines representing average values across counties in the

study region. Each figure shows little autucorrelation over the period, To formally test stationarity of these

variables, I conduct the augmented Dickey Fuller (ADF) test for each county. I consider only one lag

because this time lag is most relevant to my empirical setting. Results show that, for all weather and yield

shock variables used in the figure, the null hypothesis of having a unit root is rejected at a 5% significance

level in more than 99% percent of the counties in the study region.

Does prior-year weather have predictive power of crop yields?

My results suggest no. To see if prior-year weather has predictive power of crop yields, I regress log yields

on a set of lagged weather variables using county-level data spanning from 1961 to 2019. As table 1.3

suggests, both for corn and soybeans, the null hypotheses of the joint nullity of the coefficients on lagged
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(a) (growing-season) Weather

(b) Yield Shocks

FIGURE 1.12. Time Series of (county-specific) Weather Variables and Yield Shocks

Note: The thin lines show county-specific values, while the thick lines represent the average values
across all counties in Iowa, Illinois, and Indiana. For Corn and Soy, yield shocks were constructed
by the ratio of realized yield to the linear trend yields minus 1. For information about construction
of average and relative yield shocks, see Eq.(1.8) and Eq.(1.9).
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TABLE 1.3. OLS Results: Log Yield on (lagged) Weather Variables

Corn Soy
(1) (2) (3) (4) (5) (6)

(t-1) prec (Apr-Sep) -0.022 -0.025 -0.027 -0.053∗ -0.057∗ -0.062∗∗

(0.040) (0.041) (0.041) (0.030) (0.030) (0.028)
(t-1) precsq (Apr-Sep) 0.001 0.001 0.002 0.004∗ 0.004∗ 0.004∗∗

(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)
(t-1) mdd (Apr-Sep) 0.008 0.008 0.008 -0.012 -0.014 -0.016

(0.020) (0.022) (0.022) (0.011) (0.012) (0.012)
(t-1) hdd (Apr-Sep) -0.039 -0.038 -0.035 -0.120 -0.113 -0.117

(0.141) (0.150) (0.154) (0.074) (0.078) (0.081)

P value (Joint Nullity) 0.9611 0.9430 0.9216 0.1397 0.1166 0.0717
County FE ✓ ✓ ✓ ✓ ✓ ✓
County time trend linear quadratic spline linear quadratic spline
R2 0.674 0.677 0.680 0.762 0.769 0.774
Observations 17,082 17,082 17,082 17,081 17,081 17,081

Notes: The table shows the regressions of log yield on (lagged) weather variables using US
county data in Iowa, Illinois, and Indiana from 1961 to 2019. Cluster robust standard errors are
in parentheses. Standard errors were clustered by year. prec denotes total precipitation, precsq
denotes squared total precipitation,mdd denotes total degree days between 10◦C and a temperature
threshold (29◦C for corn or 30◦C for soy). hdd denotes total degree days above the temperature
threshold. Asterisks indicate the following: ***=1% significance level, **=5% significance level,
and *=10% significance level.

weather variables are rejected at the 5% significance level. This suggests that there is little evidence that

prior-year weather predicts current-year crop yields. This result would not be surprising given serially

uncorrelated weather variables. Admittedly, for soybeans, (lagged) precipitation and precipitation squared

have statistically significant coefficients but the signs are opposite to those observed in the regression results

of log yields on current-year weather variables.

1.6.1. Results with various types of lagged shocks.

Do prior-year yield shocks affect crop choice?

My results suggest yes for average and crop-specific yield shocks but no for relative yield shocks. The top

left plot in figure 1.13 shows estimation results for various (lagged) shocks. In each column, I regress a

binary crop choice (1 for corn and 0 for soybeans) on a different shock variable conditional on the control
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(a) Yield Shocks

(b) Degree Days above Extreme Heat

FIGURE 1.13. Effects of (lagged) Yield and Weather Shocks on the Probability of Planting
Corn

Note: The figure visualizes OLS results from the linear probability model: probability of planting
corn conditional on corn being planted in the previous year. Average denotes average yield
shocks weighted by acreage across corn and soybean, Relative denotes corn-relative-to-soybean
yield shocks. dday means total degree days from April to September. White dots represent
average coefficients weighted by the size of MRLAs and dark lines show their 90%, 95% and,
99% confidence intervals obtained from standard errors from a wild bootstrap whereby data were
resampled by year. Colored points show the point estimates for individual MLRAs with color
indicating the size of MLRA.
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FIGURE 1.14. Coefficients on (lagged) Extreme Heat

Note:The figure visualizes OLS results from the linear probability model: probability of planting
corn conditional on corn being planted in the previous year. White dots represent average coefficients
on weighted by the size of MRLAs and dark lines show their 90%, 95% and, 99% confidence
intervals obtained from standard errors from a wild bootstrap whereby data were resampled by year.
Colored points show the point estimates for individual MLRAs with color indicating the size of
MLRA.

variables: current-year crop-specific expected revenues, realized revenue shocks, and planting-time soil

moisture. Colored circle-shaped points show MLRA-specific coefficients and white diamond-shaped points

represent average coefficients weighted by the size of MLRAs.

Average yield shock has a statistically significant positive effect on the probability of planting corn.

An increase in average yield shock by 10 percentage points (approximately one standard deviation) leads

to an increase in the probability of planting corn by 1.5 percentage points in the current year. (In the next

subsection, I discuss in more detail the implications of the magnitudes of these estimates.) As can be seen

in the figure, there is substantial coefficient heterogeneity across MLRAs, implying that failure to account

for such coefficient heterogeneity may lead to a pooling bias (Pesaran and Smith 1995). It is also noticeable

that crop-specific yield shocks also significantly and positively predict the probability of planting corn.

Interestingly, the average coefficient on relative yield shock is close to zero. Based on the insight from the

conceptual model, the results in figure 1.13 are consistent with the canonical case in which a farmer shows

a strong recency effect in the dimension of intensity but not in that of timing of extreme heat.
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Although assessing what drives coefficient heterogeneity is beyond the scope of this paper, coefficients

on (lagged) average yield shocks tend to be large—with a few noticeable exceptions—in the regions where

temporal variability of yield shocks is low, soil quality is high, and the crop choice response to prices is

strong. These heterogeneous effects could arise for many reasons. For example, heterogeneous biophysical

environments could make crop choice a more viable and effective strategy for mitigating potential weather

shocks than other farming practices, such as soil management in some regions than in others.

Do prior-year weather shocks affect crop choice?

My results suggest yes. The bottom left plot in figure 1.13 shows coefficients on total degree days above

30◦C, 32◦C, and 34◦C from April to September in the prior year.9 The results suggest that farmers tend

to plant less corn if exposure to extreme heat was larger-than-normal in the previous year. In figure 1.14,

I disaggregate the extreme heat variables into two sub-periods: June-July and August-September. The

coefficients on extreme heat variables for the months of August and September tend to be noisier, because

extreme heat tends to be concentrated in the months of June and July. With this caveat, however, average

coefficients for the late growing season tend to be larger than those for the early growing season. Recall

that soybeans are particularly susceptible to extreme heat in the later phase of the growing season. This

means that farmers are more likely to plant soybeans even if extreme heat was concentrated when extreme

heat is particularly damaging to soybeans in the previous year.

Do farmers anticipate crop yields?

To investigate this question, I run the same models used to generate the left plots in figure 1.13 but use

contemporaneous-year shocks rather than prior-year shocks. The right plots in figure 1.13 show that there

is no systematic evidence that farmers anticipate contemporaneous-year shocks. It is possible that farmers

anticipate yield shocks based on planting-season weather regardless of what happened in the previous years.

However, planting-season weather has played a limited role in predicting growing-season weather. In one

interview in 2013, Joe Glauber, a former chief economist at the USDA, states ”early season moisture levels

are “a poor predictor” of how things will play out during the growing season. During the past 60 years

in Iowa, when the season began with low subsoil-moisture levels, half had corn yields that were above

9I include additional (lagged) weather variables as control variables: precipitation, squared precipitation, and total growing degree
days.
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average” (Doering et al., 2013). Even in 2012 when a historic drought in the US Corn Belt significantly

favored soybeans over corn, there was no noticeable acreage shift toward soybeans.

1.6.2. How did the 2012 US Midwest drought affect farmers’ acreage allocation in 2013?

In 2012, the US Corn Belt experienced one of the most disastrous droughts in its history. Figure 1.15 shows

the spatial distribution of percentage average yield shocks in 2012. For many counties in the study region,

average yield dropped by more than 20%. In what follows, I use my regression results to estimate the

impact of the drought on acreage allocation at the local and aggregate levels. I assume, for each county, the

counterfactual average yield shock to be 0 in 2012, which could have been achieved if corn and soybean

yields did not deviate from the trend yields. Figure 1.16 shows spatially heterogeneous coefficients on

(lagged) average yield shock across MLRAs for both types of fields: fields that were planted to corn and

those that were planted to soybeans in the prior year.

I calculate field-specific estimated effects of the drought on the probability of planting corn by simply

multiplying coefficients on the (lagged) average yield shock by county-level average yield shocks in 2012:

For corn fields in 2012 :
∂P ri(cit = 1|ci,t−1 = 1)

∂S
avg
j(i),t−1

S
avg
j(i),2012

For soy fields in 2012 :
∂P ri(cit = 1|ci,t−1 = 0)

∂S
avg
j(i),t−1

S
avg
j(i),2012

Figure 1.17 shows the spatial distribution of estimated effects of average yield shock on the probability

of planting corn. As the figure suggests, there is substantial heterogeneity in the estimated effects across

regions and crops planted in 2012 due to heterogeneity in coefficients and average yield shocks in 2012.

My estimates suggest that for some fields the probabilities of planting corn dropped by up to 15 percentage

points.

By taking acreage-weighted average of the estimated changes in the probability of planting corn, I

estimate that, on average, for the fields that were planted to corn (soybeans) in 2012, 3% (1.4%) of the

acreage in the study region were planted to soybeans instead of corn in 2013 due to the 2012 US Midwest

drought. Recall that I include only flexible fields, which exclude fields that always rotate or never rotate.

These flexible fields accounted for 64% of the total corn and soybeans acreage in 2012 and, out of these

flexible fields, around 66% were planted to corn. Taken all together, I estimate that around 1.4% of the

acreage in the study region was planted to soybeans instead of corn owing to the 2012 drought.
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FIGURE 1.15. Average Yield Shock
in 2012

FIGURE 1.16. Coefficients on (lagged) Average Yield Shock on
Probability of Planting Corn

FIGURE 1.17. Effect of Average Yield Shock in 2012 on Probability
of Planting Corn in 2013
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FIGURE 1.18. Coefficients on Control Variables

Note: The figure visualizes OLS results from the linear probability model: probability of planting
corn conditional on corn being planted in the previous year. White dots represent average coefficients
weighted by the size of MRLAs and dark lines show their 90%, 95% and, 99% confidence intervals
obtained from standard errors from a wild bootstrap whereby data were resampled by year. log Exp.
Rev. means log of expected revenue. log Rev. shock means log of realized crop revenue shocks. For
more information about variable construction, see the econometric strategy section.

1.6.3. Other results with (lagged) average yield shock.

Hereinafter, I present additional results focusing on (lagged) average yield shocks. One potential concern

regarding my specification is that prior-year yield or weather shocks and market expected prices could be

highly correlated. This is because weather tends to be spatially correlated and weather in the US Corn

Belt tends to influence crop prices. If the high correlation between yield shocks in one year and market

expected prices in the planting season of the following year is problematic, then coefficients on market

expected revenues—a strong predictor of crop choice—should change substantially depending on inclusion

of (lagged) weather or yield shock variables. As figure 1.18 suggests, however, including (lagged) average

yield shock barely changes coefficients on control variables. Figure 1.18 also suggests that farmers do not

seem to anticipate revenue shocks.

32



FIGURE 1.19. Coefficients on Multiple Types of (lagged) Average Yield Shocks

Note: The figure visualizes OLS results from the linear probability model: probability of planting
corn conditional on corn being planted in the previous year. White dots represent average coefficients
weighted by the size of MRLAs and dark lines show their 90%, 95% and, 99% confidence intervals
obtained from standard errors from a wild bootstrap whereby data were resampled by year. Colored
points show the point estimates for individual MLRAs with color indicating the size of MLRA. Avg.
YS denotes (lagged) average yield shock.

Does the way of constructing yield shocks affect the main results?

Not substantially. So far I have measured yield shocks as realized yields relative to trend yields. One

potential concern would be that non-climatic factors could also influence yields. An alternative way of

constructing yield shocks is to use predicted yields from a regression of yield on weather. A major potential

limitation of this approach is that it is challenging to precisely quantify the magnitude of weather-driven

components at a unit of observation (here county-by-year) using a panel-data econometric approach. One

of the widely adopted specifications is the panel model in Eq.(1.1). This statistical approach is simple but

assumes constant marginal effect of extreme heat over the growing season. As hinted from figure 1.1, this

approach substantially underestimates the crop yield declines of soybeans in 2003 and of corn in 2012.
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Following Berry et al. (2014), I parsimoniously extends Eq.(1.1) to allow effects of extreme heat

to smoothly vary as the growing season progresses. I focus on extreme heat because the literature has

documented that exposure to extreme heat during the growing season is the most influential weather variable

for crop yield variation. I model crop yields as:

log(yit) = g(hdd0it , ...,hddDit) + β2mddit + β3precit + β4prec
2
it +αi + fi(t) + ϵit ,(1.12)

hdddit is degree days above a temperature threshold (29◦C for corn and 30◦C for soybeans) in d ∈ {1, ...,D},

where D is the number of days from April 1 to September 30. Using a natural cubic spline with 4 knots

for g (), I allow coefficients on extreme temperature to flexibly change over the entire growing season. For

mdd, I use 10◦C and 29◦C (30◦C) for corn (soybeans) as temperature thresholds.

The right panel in figure 1.19 shows that the average coefficient from the baseline model changes from

.15 to .125 when average yield shocks are constructed using predicted yields from Eq.(1.12). Comparison

between the the left and right panels in figure 1.19 shows that results do not substantially change when a

(county-specific) linear trend is used rather than a (county-specific) quadratic trend in Eq.(1.6).

Do farmers respond differently to negative or positive, or small or large shocks?

My results suggest no. To explore potential nonlinear or asymmetric responses, I parsimoniously extend the

baseline model by including a dummy variable, Dk
j(i)m, interacted with (lagged) average yield shock:

P r(cit = 1|ci,t−1 = 1) = βk1iS
avg.
j(i),t−1 + β

k
2i(S

avg.
j(i),t−1 ×D

k
j(i)m,t−1) +θ

′
1iXit +α1i + f1i(t).(1.13)

I consider four dummy variables. The first two dummy variables aim to investigate farmers’ potential

asymmetric responses to negative and positive yield shocks:

D
positive
j(i)m,t−1 =


1 if Savgj(i)m,t−1 > 0,

0 otherwise
, D

negative
j(i)m,t−1 =


1 if Savgj(i)m,t−1 ≤ 0,

0 otherwise

Previous studies have documented that people tend to react differently to positive and negative events (Ding

et al. 2004; Kahneman and Tversky 1979; Krishnamurthi et al. 1992). It is also possible that farmers react

more sensitively to either extremely positive or negative yield shocks. To explore such nonlinear responses,

I construct dummy variables using 10th and 90th percentiles of the MLRA-specific distribution of average
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FIGURE 1.20. Coefficients on Dummy Variables Interacted with (lagged) Average Yield
Shock

Note:The figure visualizes OLS results from the linear probability model: probability of planting
corn conditional on corn being planted in the previous year. White dots represent average coefficients
weighted by the size of MRLAs and dark lines show their 90%, 95% and, 99% confidence intervals
obtained from standard errors from a wild bootstrap whereby data were resampled by year. Colored
points show the point estimates for individual MLRAs with color indicating the size of MLRA. Avg.
YS denotes (lagged) average yield shock.

yield shocks:

D
high
j(i)m,t−1 =


1 if Savgj(i)m,t−1 > ψ

m
90(S

avg
j(i)m,t−1),

0 otherwise
, D low

j(i)m,t−1 =


1 if Savgj(i)m,t−1 ≤ ψ

m
10(S

avg
j(i)m,t−1),

0 otherwise,

where ψmk denotes kth percentile of the distribution of average yield shocks for MLRA m. In columns in

figure 1.20, I report the regression results of the form in Eq.(1.13) with Dpositive
j(i)m,t−1,D

negative
j(i)m,t−1,D

high
j(i)m,t−1, and

D low
j(i)m,t−1 (from left to right). In each column of figure 1.20, a white circle-shaped point represents estimated

acreage-weighted βk1i , whereas a white diamond-shaped point represents estimated acreage-weighted βk2i in

Eq.(1.13). Figure 1.20 shows that coefficients on the average yield shocks interacted with dummy variables

are not statistically different from zero at the aggregate level, meaning that there is no strong evidence of

asymmetric or nonlinear crop choice responses to (lagged) average yield shocks.
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1.7. Conclusion

Using field-level data, this paper studied recency effects of weather-induced yield shocks on crop choice

responses along the rotational margin (transition between corn and soybeans) in the US Corn Belt while

accounting for rotation incentives and coefficient heterogeneity. Accounting for rotation incentives is

essential given that farmers’ crop choice decisions depends strongly on what they planted in the previous

year, particularly in the short run.

In the conceptual model, I showed that short-run crop choice responses to past weather could be highly

subtle and even counter-intuitive, if we do not account carefully for agroclimatic contexts. My empirical

results reveal that farmers tend to plant less corn, when they experienced a hotter or drier summer than

average in the prior year. Interestingly, corn-relative-to-soybean yield shocks do not predict the probability

of corn being planted. These empirical results are consistent with behavioral patterns in the conceptual

model in which farmers sensitively respond to how hot/dry it was in the previous growing season regardless

of when (i.e., mid-season or end-season) it was hot/dry.

Evidence of recency effects on crop choice gives reasons for both hope and concern. On the positive side,

it is encouraging that farmers tend to respond immediately to past climatic experience. In a rapidly changing

climate, recency effects could turn out to be an effective way of mitigating weather-induced agricultural

shocks but only to the extent that weather becomes serially correlated from year to year. For the similar

reason, however, heavy reliance on recent information may lead to sub-optimal decisions if growing-season

weather in one year is independent of that in the prior years. In the paper, I find little evidence that farmers

anticipate yield shocks. This is not surprising given that growing-season weather has been highly random

from year to year and past weather does not predict the current-year crop yields.

This paper took an initial step to make use of fine-resolution satellite-derived data to explore behavioral

aspects of farmers in the major US Corn Belt states. There are multiple directions that future research could

take. Future research could utilize an experiment and/or survey to complement the results found in this

study. As weather-driven shocks could manifest in multiple ways and farmers’ choice could be nuanced,

considering local contexts would be essential to drawing valuable insights. Another direction is on margins

other than crop choice: soil management, water use, and technology adoption. Lastly, future studies in other

agricultural and climatic settings (e.g., specialty or perennial crops and multi-year droughts) would provide

their own unique findings and implications.
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1.8. Supplementary Section

1.8.1. Estimating time-varying effects of extreme heat on crop yields (for figure 1.1).

I use county-by-year panel data spanning from 1991 to 2020 for Iowa, Illinois, and Indiana to estimate

the time-varying effects of extreme heat on crop yields to generate figure 1.1 using the following panel

regression:

log(yit) = g(h0it , ...,hDit) +αi + fi(t) + ϵcit ,(1.14)

where yit is crop-specific or relative yield in county i and year t. hdit is degree days above 30◦C in

d ∈ {1, ...,D}. D is the number of days from May 1 to September 30. The top subfigure uses corn yield, the

middle subfigure uses soybean yield, and the bottom subfigure uses corn yield relative to soybean yield.

For g (), I use a natural cubic spline with K = 4 knots. The basis matrix associated with the spline allows

us to reduce the number of parameters to be estimated. (See Ortiz-Bobea 2021 for detailed discussion.) In

my setting, the basis matrix maps daily exposure to extreme heat with D bins to K bins (K < D). Let H be

a (nT ×D) matrix of daily exposure to extreme heat over the growing season. The basis matrix for a natural

cubic spline with K knots, B, allows us to reduce dimensionality as follow:

H̃
nT×K

= H
nT×D

× B
D×K

.

The effect of extreme heat over the growing season could be then modeled as:

g(h0it , ...,hDit)(1.15)

=
K∑
k=1

D∑
d=1

γkBdkhdit(1.16)

=
K∑
k=1

γk

D∑
d=1

Bdkhdit︸       ︷︷       ︸
h̃kit

(1.17)

Using the newly constructed regressors H̃ , I can approximate the time-varying effect of extreme heat on crop

yield over the entire growing season with K parameters rather than D parameters. The crop yield model that
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allows for time-varying coefficients on extreme heat can be written as:

log(yit) =
K∑
k=1

γk

D∑
d=1

h̃kit +αi + fi(t) + ϵit ,(1.18)

I recover the marginal effect of extreme heat at each d by pre-multiplying the Γ̂ the basis matrix:

β̂1
D×1

= B
D×K
× Γ̂
K×1

I use standard errors clustered by year to allow for spatial dependence in the error term. Using standard

errors for γ , var(γ̂) and a basis matrix, I derive the standard error for the marginal effect of extreme heat at

each day d from the diagonal elements of

var(β1)
D×D

= B
D×K

var(Γ̂ )
K×K

B′
K×D

.

1.8.2. Bias due to the inclusion of field fixed effects.

In what follows, I show that exploiting within-field variation introduces almost no bias on my estimates.

I first formally express the bias using generic notations and I then approximate the bias using data. I assume

that coefficients are homogeneous across fields within MLRAs. Once coefficients are homogeneous across

cross-section units, the issue boils downs to the Nickell (1981)’s problem. Nickell (1981) derived an explicit

expression for bias on OLS estimates caused by individual fixed effects in a dynamic model for large N

and small T . The bias on the lagged dependent variable is widely known as Nickell bias. The explanatory

variable of interest in my econometric analysis is exogenous variables not the lagged dependent variable.

Because this bias is less known, it would be worthwhile to include an explicit bias expression here.

I follow the notations of Nickell (1981):

ỹt = [yit − yi·] , N × 1 vector,(1.19)

ỹt−1 = [yit−1 − yi·−1] , N × 1 vector,(1.20)

X̃t =
[
xijt − xij·

]
, N × J vector,(1.21)

ϵ̃t = [ϵit − ϵi·] , N × 1 vector,(1.22)

b̃ =
[
βj

]
, J × 1 vector,(1.23)
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where for any variable zit , zi· = (1/T )
∑T
t=1 zit and zi·−1 = (1/T )

∑T−1
t=0 zit .

Consider the dynamic model with exogenous variables that exploits within-individual variation:

(1.24)

ỹ︷︸︸︷

ỹ1

ỹ2
...

ỹT


= ρ

ỹ−1︷ ︸︸ ︷

ỹ0

ỹ1
...

ỹT−1


+

X̃︷︸︸︷

X̃1

X̃2
...

X̃T


b+

ϵ̃︷︸︸︷

ϵ̃1

ϵ̃2
...

ϵ̃T


.

Let ρ̂, b̂ denote the OLS estimates. Nickell (1981) derives

plim
N→∞

(ρ̂ − ρ) =
(

plim
N→∞

1
NT

ỹ′−1Mỹ−1

)−1
plim
N→∞

1
NT

ỹ′−1ϵ̃(1.25)

plim
N→∞

(b̂ − b) = − plim
N→∞

[
(X̃ ′X̃)−1X̃ ′ ỹ−1

]
plim
N→∞

(ρ̂ − ρ)(1.26)

where M = I − X̃(X̃ ′X̃)−1X̃ ′ .

For each MRLA, I calculate the magnitude of bias on exogenous variables in Eq.(1.26) assuming that

my data have sufficiently large N , which is close to true. In my setting, the dependent variable is a binary

variable (1 for corn and 0 for soybeans) and exogenous variables are planting-time soil moisture, current-

year crop-specific expected revenues, realized revenue shocks and one of (lagged) average, relative and

crop-specific yield shocks, exposure to extreme heat. (X̃ ′X̃)−1X̃ ′ ỹ−1 is a vector of coefficients from the

regression of the lagged dependent variable on exogenous variables. In any cases, these coefficients are

smaller than .2 in absolute value. If plim
N→∞

(b̂ − b) is sufficiently small, then we can conclude that the bias on

b is small.

ỹ′−1Mỹ−1 is the mean of squared residuals from the regression of the lagged dependent variable on

exogenous variables. Denoted as ẽ, the sample analog of ϵ̃ in ỹ′−1ϵ̃ is the residuals from the dynamic model

Eq.(1.24). I approximate plim
N→∞

(ρ̂ − ρ) with (ỹ′−1Mỹ−1)
−1ỹ′−1ẽ. The values of (ỹ′−1Mỹ−1)

−1ỹ′−1ẽ computed

using data are smaller than 1
100000 . Thus, I conclude the bias on my estimates due to field fixed effects is

negligible.
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1.8.3. Supplementary Figures.

1.8.3.1. Noncanonical Cases.
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FIGURE S1.1. (Conceptual Framework) ρs = 0.5
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FIGURE S1.2. (Conceptual Framework) ρs = 0.25
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1.8.3.2. Results for Fields Planted to Soybeans in the Previous Year.

(a) Yield Shocks

(b) Degree Days above Extreme Heat

FIGURE S1.3. Effects of (lagged) Yield and Weather Shocks on the Probability of Planting
Corn

Note:The figure visualizes OLS results from the linear probability model: probability of planting
corn conditional on soybean being planted in the previous year. Average denotes average yield
shocks weighted by acreage across corn and soybean, Relative denotes corn-relative-to-soybean
yield shocks. dday means total degree days from April to September. White dots represent
average coefficients weighted by the size of MRLAs and dark lines show their 90%, 95% and,
99% confidence intervals obtained from standard errors from a wild bootstrap whereby data were
resampled by year. Jittered points show the point estimates for individual MLRAs with color
indicating the size of MLRA.
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(a) Coefficients on Control Variables

(b) Coefficients on Multiple Types of (lagged) Average Yield Shocks

FIGURE S1.4. Results for Fields That Were Planted to Soybeans in the Previous Year I

Note: The figure visualizes OLS results from the linear probability model: probability of planting
corn conditional on soybean being planted in the previous year. White dots represent average
coefficients weighted by the size of MRLAs and dark lines show their 90%, 95% and, 99%
confidence intervals obtained from standard errors from a wild bootstrap whereby data were
resampled by year. Jittered points show the point estimates for individual MLRAs with color
indicating the size of MLRA. Avg. YS denotes (lagged) average yield shock. log Exp. Rev. means
log of expected revenue.

42



(a) Coefficients on (lagged) Extreme Heat

(b) Coefficients on Dummy Variables Interacted with (lagged) Average Yield Shock

FIGURE S1.5. Results for Fields That Were Planted to Soybeans in the Previous Year II

Note: The figure visualizes OLS results from the linear probability model: probability of planting
corn conditional on soybean being planted in the previous year. White dots represent average
coefficients weighted by the size of MRLAs and dark lines show their 90%, 95% and, 99%
confidence intervals obtained from standard errors from a wild bootstrap whereby data were
resampled by year. Jittered points show the point estimates for individual MLRAs with color
indicating the size of MLRA. Avg. YS denotes (lagged) average yield shock.
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CHAPTER 2

Estimating the Impacts of Extreme Weather Events on Crop Revenues

Accounting for the Correlation between Price and Yield

2.1. Introduction

Quantification of the sector-specific economic impacts of extreme weather events is essential to

informing policy implementation and evaluation in a changing climate (Diffenbaugh et al. 2021). Like

any other natural disasters, extreme weather events can result in numerous victims, and damages are often

localized to the directly affected areas. From farmers’ perspective, however, extreme weather events like

droughts and heatwaves in crop-producing regions can generate both winners and losers. When such events

hit these areas, they can lead to a substantial heterogeneity in the effects on crop yields across regions but

commensurate price increases in response to production declines transmit to broad areas. This combination

of yield and price responses to extreme weather events makes it interesting but not straightforward to

quantify economic impacts on individual crop producers.

In this study, I quantify the impacts of the two historic US Midwest droughts—i.e., in 1988 and 2012—

on the crop-specific revenues for corn and soybeans at the county and national level. To this end, I first

propose a panel-data econometric approach to estimating the effects of local and nationwide weather shocks

on county-level crop-specific revenues. My approach accounts for the correlation between price and yield,

and spatially heterogeneous crop yield responses to weather. Accounting for the correlation is important

in the context of the US corn and soybean production because the correlation is negative in many parts of

the Corn Belt. Importantly, estimating only yield effects of weather shocks would overestimate the welfare

effects of extreme weather events on producers for three reasons. First, as emphasized by Mendelsohn et al.

(1994), measuring yield effects alone does not capture changes in crops and inputs (i.e., it ignores behavior).

Second, it does not account for price effects. Third, it does not allow for policy responses: governments

invariably respond to widespread disasters with disaster assistance policies.
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I focus on crop revenues because they are closely linked to profits generated from crop production.

Admittedly, weather-induced changes in crop profits are the ultimate outcome of interest. However, spatially

and temporally granular data on expenses are not available at least across the US. In the conceptual

framework, I first show that weather-induced changes in crop profits are identical to those in crop revenues

under the following conditions. First, weather does not change the prices of inputs that farmers use during

the growing season. Second, farmers can adjust their inputs in response to weather during the growing

season. The close relationship between crop revenues and profits implies that empirically quantifying crop

revenue effects could have significant implications for properly formulating and evaluating policies, such

as agricultural assistance programs and ad hoc disaster payments. If policy makers determine the amount

of disaster payments based on weather or yield shocks, they may end up overcompensating farmers’ profit

losses.

The most relevant work to this study is Hornbeck (2012). Hornbeck (2012) examines the immediate

impacts of and the long-term economic adjustment to the 1930s American Dust Bowl, an environmental

catastrophe that greatly eroded sections of the Plains. One of the adjustment margins considered in the

paper was agricultural revenue. While both the Dust Bowl and the 1988 and 2012 droughts affected many

parts of major crop-producing regions in the US, the former had enduring effects on agricultural productivity

due to soil erosion but the latter did not have such persistent productivity effects.

Methodologically, his empirical framework is based on average changes for more-eroded counties

relative to changes for less-eroded counties in the same state and with similar pre-1930s characteristics.

Because of this empirical setting, his study focuses on between-region relative impacts. As he mentions in

the paper, his estimates on relative changes in production—which do not account for price responses—may

overstate the absolute degree of adjustment in eroded counties. This is because soil erosion can discourage

certain types of production in the eroded location, increase shared output prices, and encourage those types

of production in the noneroded location. Unlike Hornbeck (2012), I exploit within-county variation and

quantify drought-induced changes in crop revenues at the county level by comparing crop revenues predicted

by counterfactual normal and observed weather. In doing so, I explicitly account for price responses to

nationwide yield shocks.

In the literature on the economics of climate change, agricultural economic outcomes—such as crop

revenue and farm profit—have received academic attentions since economists started studying the impacts of
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climate change on agriculture (Burke and Emerick 2016; Deschênes and Greenstone 2007; Mendelsohn et al.

1994). The focus of these studies have been on a gradual warming trend rather than extreme weather events.

However, climate change means not only changes in the mean temperature but also more frequent and severe

extreme weather events like heatwaves (Collins et al. 2013). Because these extreme weather events in major

crop-producing regions often lead to an increase in crop prices, it is important to account for the role of

prices in quantifying the economic impacts of weather events on crop producers. Furthermore, much prior

work focuses on ex-ante assessments of climate change impacts on agricultural outcomes accounting for

adaptation, but I focus on ex-post assessments of the impacts of extreme weather events on crop revenues.

Using the Ricardian approach, Mendelsohn et al. (1994) sought to assess the impact of climate change

on crop revenues. The approach exploits variation in climate across locations to establish the relationship

between crop revenues and climate accounting for farmers’ long-run adaptive responses given their local

climate. One major drawback of this approach is that parameter estimates could be biased owing to potential

omitted variables that are correlated with local climate. In contrast, Deschênes and Greenstone (2007) used

a fixed-effects panel approach by exploiting year-to-year variation of weather within locations to understand

how weather affects agricultural profits. Deschênes and Greenstone (2007) included year-fixed effects in

all of their empirical analyses. Given that fluctuations in crop prices in the US are similar across regions,

useful variation needed for accounting for price adjustments in response to production declines is soaked

up by year-fixed effects in estimation. Burke and Emerick (2016) has also conducted some analysis of crop

revenues using a long-difference approach. Because the approach uses temporally averaged variables, it

would not be suitable for quantifying the impacts of an extreme weather event in a particular year on crop

revenues.

Unlike previous studies, I do not include year-fixed effects in my regression model. Instead, I construct

a variable I call the weather-induced nationwide yield shock (WINYS), and include this variable as one

of the explanatory variables in models of crop revenue. This variable has two appealing features. First,

the coefficient on the variable in the crop revenue equation can be interpreted as the price flexibility of

demand conditional on other covariates including local weather variables. Second, the variable can account

for heterogeneous responses to weather across regions. The second feature is important in years of extreme

weather because the contribution of irrigated counties to crop production tends to be high in those years.

For this reason, my estimation includes both irrigated and nonirrigated counties. My preferred specification
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allows the coefficients on WINYS to vary over space and time. My purpose in allowing for spatially

heterogeneous coefficients is to account for the spatially varying degrees of correlation between WINYS

and local weather, while temporally varying coefficients would capture the period-specific conditional price

flexibilities of demand.

In 1988, the US saw a substantial decrease in crop yields: 29% for corn and 21% for soybeans. Similarly

in 2012, the national crop yields dropped by 25% for corn and 12% for soybeans. I estimate that, despite

devastating yield losses, national-level crop revenues were less negatively affected because of the induced

increases in prices; to be specific, by (-)11% for corn and (+)1% for soybeans in 1988, and (+)11% for corn

and 0% in 2012. The major factor that differentiates corn revenue impacts in 1988 and 2012 stems from the

fact that my estimates of conditional price flexibilities are much higher in the post-2005 period particularly

for corn. To reinforce the idea, I ask what would have happened if the 1988 drought—more devastating in

terms of crop yields—occurred in 2012. I estimate that the hypothetical 1988 drought in 2012 would have

increased crop revenues by 21% for corn and 4% for soybeans. Last but not least, I also document that,

in the two years, regional inequality of crop revenues substantially increased compared to years of normal

weather.

2.2. Background

2.2.1. Definition of Drought.

In this chapter, I use the term ‘drought’ to represent both heat and water stress that are associated with crop

yields. Drought is a complex phenomenon and it is difficult to define a meaningful measure of characteristics

of droughts in terms of intensity, magnitude, duration, and spatial extent. Not surprisingly, different studies

define drought in different ways, making it very difficult to establish a universal drought index (Heim 2002).

In the climatology and meteorology literature, drought tends to strictly refer to water deficit. Based on the

time scale over which water deficits accumulate, the literature often functionally separates hydrological,

environmental, agricultural, and other droughts. In the agronomy literature on crop yields, drought has been

used to mean both dry and/or hot weather conditions. Since the seminal work by Schlenker and Roberts

(2009), however, it is more common to use heat-related terms, such as heat waves and extreme temperatures

particularly when researchers statistically model crop yields. As dryness and hotness are often intertwined,

it is not always useful to distinguish the two concepts, at least in the statistical framework of crop yields. In
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(a) Yield (b) (market-year) Price

(c) Stocks as Percent of Use (d) (per-acre) Crop Revenue

FIGURE 2.1. US Time-Series of Agricultural Outcomes for Corn and Soybeans

the statistical framework of crop yields for corn and soybeans in the US, exposure to extreme heat during the

growing season is the most influential driver of crop yields and partially picks up the effect of water stress

on crop yields when water stress is not included as explanatory variables (Berry et al. 2014; Ortiz-Bobea

et al. 2019).

2.2.2. 1988 and 2012 US Midwest Droughts on Corn and Soybean Production.

In 1988 and 2012, the US Midwest experienced the most catastrophic droughts over the past half century.

Previous studies have documented that the two droughts are comparable in terms of severity and spatial
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extent (e.g., Karl et al. 2012; Rippey 2015). As figure 2.1a shows, national crop yields, simply measured by

deviation from a linear trend, dropped by 25% (23%) for corn and 18% (11%) for soybeans in 1988 (2012).

Figure 2.2b shows the spatial distribution of planted area in 1988 and 2012 and, similarly, figure 2.2a shows

the spatial distribution of county-level yield shocks measured by a percentage deviation from the linear trend

yield. It is noticeable that the two droughts impacted many parts of the US Corn Belt.

As figure 2.1 shows crop prices were above the flexible trend lines for both crops in the two marketing

years of 1988 and 2012. It is apparent that, at the beginning of the marketing year of 1988, there were

abundant carryover stocks of corn that could buffer a production decline. To be specific, as figure 2.1c

shows, stocks as a percent of use were over 50% for corn in 1988 while it was lower than 20% for corn in

2012 as well as soybeans in 1988 and 2012.

One may wonder whether farmers were able to anticipate the two droughts before planting their crops.

I find little evidence that many farmers anticipated the droughts. Figure 2.1 shows the prior years, namely,

1987 and 2011, were normal in terms of crop yields for both crops, suggesting that the two droughts were

flash droughts rather than multi-year droughts. Simple exploratory analysis also reveals that planted area

did not noticeably drop in the area severely affected by the droughts. A report released in 2012 May by the

World Agricultural Supply and Demand Estimates (WASDE) of the US Department of Agriculture (USDA)

suggests that the 2012 drought was not foreseeable at least by the agency until a month before the drought

started becoming severe. For example, according to the report, the projected corn yield in bushels per acre

was 166.0 but the actual yield dropped by 26%, ending up with 123.1. In the same report, the WASDE

projected the average prices received by farmers in the 2012/2013 marketing year to be 4.20−5.00 $/bu (in

nominal value) for corn, but their counterparts ended up with 6.89 $/bu.

2.3. Conceptual Framework

In this section, I present a simple conceptual model to show weather-induced changes in profits are

identical to those in crop revenues under some conditions. To be consistent with my empirical setting, I

focus on the post-planting profit-maximizing problem associated with crop production in a single crop year.

This means that the model also does not consider planting costs (e.g., rents and seeds) but consider within-

season input adjustment costs. The following model can be applicable for farmers in both rain-fed and
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(a) Yield Shock (deviation from trend)

(b) Planted Acres

FIGURE 2.2. Maps of Planted Acres and Yield Shocks

irrigated regions. To be consistent with my empirical analysis, I do not consider storage decisions, although

they are an important means of buffering year-to-year price fluctuations.
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Consider a risk-neutral representative crop producer’s post-planting per-acre profit-maximizing

problem:

πi (Ii ;wi ,w−i) = max
Ii
p(q)yi(Ii(wi);wi)− ciIi(wi)(2.1)

where p is the producer’s expected harvest price and Ii is the input quantity, which is the only decision

variable in this model. wi represents a generic weather variable that positively affects yield yi during the

growing season. w−i denotes a vector of nonlocal weather associated with the other producers’ yields.

For simplicity, assume that yield depends only on input and exogenous weather. Assume, for all k, yk is

concave in Ik and wk , and let ck denote the input price. I assume that the input price is independent of

weather conditions. q is the total quantity supplied. In the context of corn or soybean production in the US,

contribution of an individual farmer to the total quantity produced is negligible. That is,

q = qi +
∑
j,i

qj

≈
∑
j,i

qj

=
∑
j,i

ajyj(Ij ;wj ),

where ai denotes harvested acreage. Thus, the producer behaves as a price taker. The first order condition

then gives p(
∑
j,i ajyj(Ij ;wj ))

∂yi (Ii ;wi )
∂Ii

= ci . For given wi and w−i, let I ∗(wi ,w−i) maximizes her per-acre

profit with the corresponding profit πi
(
I ∗i (wi ,w−i);wi ,w−i

)
. That is, the optimal input quantity depends

on both local and nonlocal weather. To illustrate the link between the optimal input quantity and local

weather, consider a farmer with an irrigated farm who would decide how much to irrigate her crop taking

into consideration precipitation or water demand (evapotranspiration). Nonlocal weather can affect the

optimal input choice indirectly through changes in price. If price is expected to increase due to bad weather

in other regions, the marginal revenue of production increases and thereby the optimal input quantity would

change.
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Now consider effects of a widespread weather event like the 2012 Midwest drought on her profit. Using

the Envelope theorem and taking total derivatives gives

∆πi = yi
∂p

∂q

∑
j,i

aj

(
∂yj
∂Ij

∂Ij
∂wj

+
∂yj
∂wj

)
∆wj︸                                     ︷︷                                     ︸

price component due to changes in w−i

+ p
∂yi
∂wi

∆wi︸     ︷︷     ︸
yield component

+aiyi

(
∂yi
∂wi

+
∂yi
∂Ii

∂Ii
∂wi

)
∂p

∂q

∑
j,i

aj
∂yj
∂Ij

∂Ij
∂p

∆wi︸                                                    ︷︷                                                    ︸
price component due to changes in wi

.

(2.2)

(See appendix 2.7 for full derivation.) The first underbrace is the magnitude of (per-acre) profit change

through price driven by changes in the other producers’ weather conditions. Holding acreage fixed, the

direct and indirect effects of nonlocal weather on yields in other regions affect the representative producer’s

expected price. The second underbrace shows how local weather affects (per-acre) profit through yield.

The third underbrace represents a very indirect effect of local weather on price. To be specific, as her local

weather changes her crop production (i.e., ∂yi
∂wi

+ ∂yi
∂Ii

∂Ii
∂wi

), this changes other producers’ expected price and

they adjust their input quantities (i.e.,
∑
j,i aj

∂yj
∂Ij

∂Ij
∂p ), which in turn change total market production and price

(i.e., ∂p∂q ).

This simple equality provides useful insights into my empirical framework in several ways. In the simple

model, a change in (per-acre) profit is identical to a change in (per-acre) revenue if the following conditions

hold. First, weather should not directly affect input price. Second, the farmer should be able to adjust their

inputs during the growing-season without constraints. In the estimation section, I use (per-acre) revenue as

a proxy for (per-acre) crop-specific profit, on which crop-specific panel data are not publicly available at

the county level in the US. It is unlikely that the close relationship between revenue and profit holds in the

long run, as input prices such as rent can also adjust over time. In addition, if weather directly affects input

prices to a large extent, the difference between revenue and profit becomes larger as the Envenlope theorem

predicts.

There are a few intuitively apparent but noteworthy points. First, although droughts can reduce a

farmer’s yield, the resulting loss of income can be offset by an increase in price if competitors in other

areas also experience adverse weather. Second, counties with more harvested acreage are more likely to

affect price. Lastly, as the first term (
∂yj
∂Ij

∂Ij
∂wj

) in the bracket of the first price component suggests, farmers

more capable of adjusting within-season input quantities in response to weather shocks are more likely to

influence price, ceteris paribus. In occurrence of drought, irrigated counties would have more capacity to

52



mitigate negative effects of drought on yields than rainfed counties. Thus, it is important to take into account

irrigated counties in the empirical framework.

2.4. Data

The unit of my empirical analysis is crop-by-county-by-year. I use panel data spanning from 1971 to

2019 in my main estimation.

TABLE 2.1. Descriptive Statistics

Statistic N Mean St. Dev. Min Max

(Corn) WINYS 90,477 0.953 0.092 0.711 1.091
(Corn) (per-acre) Revenue ($, 2019) 90,477 589.518 270.518 13.950 2,652.632
(Corn) Yield (bushel/acre) 90,477 104.919 41.341 4.500 270.200
(Corn) Acreage 90,477 41,807.870 52,865.730 10 397,000
(Corn) Stock-to-Use Ratio (SUR) 90,477 0.188 0.135 0.050 0.661
(Corn) (market-year) Price ($/bushel, 2019) 90,477 6.211 3.226 2.284 19.579
Deg. Days (>29C) 90,477 0.596 0.561 0.000 7.131
Deg. Days (10C-29C) 90,477 18.606 4.203 7.371 30.361
Total Precipitation (100mm) 90,477 5.911 1.891 0.027 14.733
(Soybeans) WINYS 71,794 0.972 0.073 0.794 1.144
(Soybeans) (per-acre) Revenue ($, 2019) 71,794 449.328 194.077 5.093 1,465.263
(Soybeans) Yield (bushel/acre) 71,794 33.072 11.043 0.700 80.400
(Soybeans) Stock-to-Use Ratio (SUR) 71,794 0.112 0.056 0.027 0.285
(Soybeans) (market-year) Price ($/bushel, 2019) 71,794 14.564 7.172 5.870 38.421
Deg. Days (>30C) 71,794 0.372 0.353 0.000 2.825
Deg. Days (10C-30C) 71,794 19.233 4.085 7.375 30.407

2.4.1. Agriculture and Weather.

The agricultural data in this study come from the National Agricultural Statistics Service (NASS) of the

USDA. I use annual data on county-level yields (bushels per harvested acre) and planted acres, and state-

level marketing year prices. When there are missing values in planted acres, I use harvested acres as a proxy

for planted acres. I construct county-level (per-acre) revenues by multiplying county-level yields and state-

level prices. I use state-level prices because county-level prices are not available for corn and soybeans.

Although there can be measurement errors in crop revenues in the dependent variable due to coarseness of

price data, the magnitude would be small and parameters of interest will be still consistently estimated.

In my regression models, I control for the stocks-to-use ratio at the beginning of the marketing year,

which is from September 1 to August 31 for both corn and soybeans. Stock-to-use ratio is measured by

the level of carryover stock for any given commodity as a percentage of the total use over the previous
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marketing year. In practice, I calculate utilization in a given marketing year t, which is the denominator in

the stock-to-use variable, by using the following identity:

It−1 +Qt =Ut + It(2.3)

⇔Ut =Qt −∆It(2.4)

It = US carryover stock in t, Qt = US production (harvest) in t, and Ut = utilization in t (US consumption

+ US net exports).

For weather variables, I use county-level data on cumulative precipitation, the square of precipitation,

moderate degree days (mdd), and heat degree days (hdd) during the growing season (April–September).

Based on the results of Schlenker and Roberts (2009), for corn, I define moderate degree days as degree

days from 10°C to 29°C and heat degree days as degree days above 29°C. I similarly define moderate

degree days and heat degree days for soybeans but use 30°C as the threshold temperature. To construct

these county-level data, I first obtain the gridded dataset with the spatial resolution of 4km from the PRISM

(Daly et al. 1997). Following Schlenker and Roberts (2009), I then aggregate weather data to the county

level using farmland areas as weights.1

2.4.2. Irrigated Acreage.

To explore the potential mitigating effects of irrigation on drought impacts, I use additional data from the

USDA NASS that allows me to assign counties to either irrigated or rainfed counties. I follow Ortiz-Bobea

et al. (2019) for designating irrigated and rainfed counties. I first calculate the proportion of irrigated

harvested acreage for a crop in a county in the US Census of Agriculture for 2002, 2007, and 2012. When

missing, I supplement this information with survey data from USDA NASS for 1981–2012. I then take

the largest proportion observed for each county and use it as a time-invariant variable that describes the

potential for the crop in the county to be irrigated. I define a county to be irrigated if the proportion of

irrigated harvested acreage is greater than 50%. When no information about the irrigation proportion is

available for a county with the USDA data, I assigned a county to irrigated counties if located to the west of

the 100th meridian and to rainfed counties otherwise.2 Figure 2.3 shows the resulting maps of irrigated and

rainfed counties.

1I used data and code available at Wolfram Schlenker’s webpage (http://www.columbia.edu/˜ws2162/links.html).
2This is because counties west of 100th meridian tend to be highly irrigated.
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FIGURE 2.3. Irrigation Status by Crop

2.5. Empirical Analysis

2.5.1. Regression Model.

For ease of discussion, I first introduce a simplified version of my regression equation, which does not

allow for any coefficient heterogeneity:

log( ˜pcs(i)tycit) = βclog
(
Q̃ct

)
+ ΓcXcit +λcSURct +αci + ϵcit(2.5)

Q̃ct is the weather-induced nationwide yield shock (WINYS) for crop c in time t, which I discuss

in detail in the next subsection. ˜pcs(i)tycit denotes per-harvested acre (hereinafter, per-acre) revenue for

crop c in county i of state s in the crop year t, relative to average of per-acre revenues over the previous

and subsequent two years (hereinafter, relative revenue):
pcs(i)tycit

1
4
∑
τ∈{−1,−2,1,2} pcs(i),t−τyci,t−τ

. pcs(i)t is the state-level

market-year price and ycit is the crop yield. Thus, variation in the dependent variable comes from deviation

of the current-year per-acre revenue from average of temporally nearby per-acre revenues. Such variable

construction can be viewed as detrending the dependent variable as a way of removing variation in the

dependent variable that is not explained by independent variables. One may also include a flexible time

trend on the right-hand side rather than detrending the dependent variable directly. The main reason for

detrending the dependent variable using temporally nearby realized values is that, unlike crop yields, per-

acre revenues tend to be highly nonlinear as can be seen in figure 2.1d. This implies that, if one fits a

flexible time trend, it is not very clear where the residual variation in the dependent variable comes from.
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Identifying source of variation is particularly important and relevant when quantifying the drought impacts

on crop revenues in the postestimation section.

Xit is a vector of local weather variables including precit , precsqit , mddit , hddit , hdd Julit , and

hdd Augit . precit is the total precipitation during the growing season (April to September), mddit is total

number of degree days of beneficial heat (10◦C − 29◦C for corn and 10◦C − 30◦C for soybeans.), hddit is

total number of degree days of extreme heat (29◦C for corn and 30◦C for soybeans). I additionally include

total number of degree days of extreme heat in July and in August to parsimoniously allow for within-season

time-varying effects of extreme heat (Berry et al. 2014; Ortiz-Bobea et al. 2019). SURct is the stock-to-use

ratio at the beginning of the crop year t. αci is the county fixed effects, which will capture time-invariant

location characteristics, such as soil types. ϵcit is the error term.

2.5.2. Weather-Induced Nationwide Yield Shock (WINYS).

The main goal of my empirical strategy is to estimate the impact of local and national weather shocks on

crop-specific county-level per-acre crop revenue using panel data. Accounting for price changes in (per-

acre) revenue due to weather shocks across a broad area is not straightforward, because price received by

farmers in one location is influenced by weather conditions of other areas to a large extent. This is more

so in the US, since agricultural transportation is efficient and, thereby, crop markets are highly spatially

integrated.

To address this issue, I construct a variable I call the weather-induced nationwide yield shock (WINYS)

as follows:

Q̃ct =
∑
i acitycit∑
i acit ỹcit

(2.6)

where acit is the planted acres for crop c in county i in year t, ycit is the realized yield, and ỹcit is the

predicted yield under normal weather conditions, which I will discuss more in detail. The WINYS variable

essentially captures crop-specific percentage yield shock weighted by acreage. The WINYS has two main

appealing features. First, it permits economically intuitive interpretation. βc in eq.(2.5) measures the price

flexibility of demand, partialling out the effects of local weather in variation of crop revenues (Hereinafter, I

call βc the conditional price flexibility.) This is because variation of price in crop revenues will be captured

by WINYS conditional on local weather, while variation of local yield will be explained by local weather.

Second, it can account for heterogeneous crop yield responses to weather. This can be done either by
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simply using realized yields or by using predicted yields from a crop yield regression model that allows for

heterogeneity in coefficient on weather variables across subgroups. Crop yield responses are substantially

heterogeneous between rain-fed and irrigated counties and between northern and southern states (Berry et al.

2014). This point is important in my empirical setting because the relative contribution of irrigated counties

to national production tends to be larger in drought years than in normal years, as figure 2.4 shows.

FIGURE 2.4. Proportion of Corn Production by Irrigated Counties

FIGURE 2.5. Land Resource Region
Source: the USDA National Resource Conservation Service (NRCS)
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For predicted yields ỹcit in the denominator of 2.6, I first run the regression of log yield on weather

variables:

log(ycit) = βc1precit + βc2precsqit + βc3mddit + βc4hddit + βc5hdd Julit + βc6hdd Augit +αci + f (t) + ϵit

(2.7)

I allow flexible time trends, f (t), and coefficients on weather variables to vary by irrigation status and Land

Resource Region (LRR) shown in figure 2.5. I then obtain predicted values of ycit using the regression

results from the estimation of eq.(2.7) combined with crop-specific 20-year rolling average weather for

normal weather conditions.

In the numerator of eq.(2.6), I use realized yields rather than fitted yields because the panel approach

in eq.(2.7) does not always fit well. For example, in 1993 when there was a historic flooding in parts of

the US Corn Belt, there is a substantial discrepancy between two types of WINYS (see figure 2.6): one that

used realized yield and the other that used fitted yields under observed weather in the numerator of WINYS.

Fortunately, the model in eq.(2.7) fits reasonably well in the two drought years at least at the aggregate level,

as figure 2.6 shows.

FIGURE 2.6. WINYS

2.5.3. Natural Hedge and WINYS.

The main motivation for estimating (per-acre) revenue rather than estimating price and yield separately is

to account for the correlation between price and yield. As the US is one of the major corn and soybean
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producers, the correlation between price and yield for the two crops is negative in many parts of the Corn

Belt. Such negative correlation is often called as ”natural hedge” (Du et al. 2014; Harwood 1999; Zulauf

et al. 2016). Prior knowledge about how the natural hedge varies across space provides useful insights into

developing my preferred specification and is an integral part of understanding what determines the spatial

distribution of crop revenue variability.

To draw key insights into the role of the natural hedge in relation to WINYS, I conduct analysis of

(per-acre) revenue variability decomposition using the time series data on national (market-year) corn price

and county-level corn yields spanning from 1971 to 2019. Variance of per-acre revenue is determined by

variance of price, variance of yield, and covariance of price and yield. Each time-series of price, yield, and

per-acre revenue has its own time trend over the period. As a time trend can distort the actual variance

leading to a misleading conclusion, I work with detrended log price and detrended log yield. I approximate

variance of detrended log per-acre revenue as follows: var(p̂tyt) = var(p̂t) + var(ŷt) + 2cov(p̂t , ŷit), where

Â denotes detrended log(A).

Figure 2.7b shows the covariance between national price and county yield for corn over 1971–2019:

cov(p̂t , ŷit). It is clear that, in the central part of the US, the natural hedge is strong. Figure 2.7a shows that

the sum of variance of price and variance of yield divided by variance of per-acre revenue var(p̂t)+var(ŷit)
var(�ptyit) .

The figure suggests that, for half of the corn-growing counties in the US, revenue variability would have

been at least 24% higher had not been the natural hedge, simply measured by cov(p̂t , ŷit).

Here, I show that there is a close connection between natural hedge and the covariance between national

and county yield. If we express the national corn price as a function of national corn production as pt =

AQθ1t e
ηt , then we have log(pt) = θ0 +θ1log(Qt) + ηt , where θ0 ≡ log(A) and ηt is the idiosyncratic error

term. If E[ηtlog(ycit)] = 0 and we ignore any time trends, we have

cov(log(pt), log(ycit)) = θ1cov(log(Qt), log(ycit)).(2.8)

This simple expression provides us two valuable insights into my empirical strategy. First, the larger θ1 in

magnitude is, the higher the degree of natural hedge will be. θ1 captures the price flexibility of demand

(Adjemian and Smith 2012; Moore 1919). Second, the natural hedge would be higher in magnitude in the

regions where local yield shock is highly correlated with national yield shocks (weighted by acreage). Figure

2.7c shows county-specific coefficients from the regression of county-level log yield shock on national-level
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(a) var(p̃t)+var(ỹit)var(�ptyit)

(b) cov(p̃t , ỹit) (c) Coefficients on WINYS

FIGURE 2.7. Crop Revenue Variability Decomposition

Notes: Ã denotes detrended log A. The figure uses data spanning from 1971-2019 for corn. pt is a
market-year US corn price. yit is a county-level corn yield.

log yield shock:

log(yit/ŷit) = ψ0i +ψ1i log(Qt/Q̂t) + eit ,(2.9)

where Qt/Q̂t(≡
∑
i acitycit/

∑
i acit ŷcit) is the WINYS for corn in eq.(2.6). As eq.(2.8) suggests, figures

2.7b and 2.7c show similar spatial patterns meaning that the natural hedge is stronger in the region where

local yield shocks are highly correlated with national yield shocks. Figure 2.8 shows that, for a given yield

variability, revenue variability is smaller if local yield shocks are highly correlated with national yield shocks

(i.e., high ψ̂1i).
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FIGURE 2.8. Revenue vs Yield Variability

Notes: The figure uses data on national corn price and county-level corn yield data from 1971 to
2019. The figure plots county-specific variance of detrended log yield and variance of detrended log
per-acre revenue. Color represents county-specific coefficients from the regression in eq.(2.9).

2.5.4. Heterogeneity in Coefficient on WINYS.

My preferred specification allows coefficients on log
(
Q̃ct

)
to vary over space and time. As figure 2.7c

suggests, the correlation between local and national yield shocks varies across areas. In the context of

the regression model in eq.(2.5), this implies that different regions would have a different correlation

between the national variable log
(
Q̃ct

)
and local weather variablesXcit and thus the coefficient on log

(
Q̃ct

)
would vary across regions. To allow for heterogeneity of coefficient over space, I group counties into

relatively homogeneous groups using the geographic boundaries used to define the Major Land Resource

Area (MLRA) from the United States Department of Agriculture (USDA) Natural Resources Conservation

Service (NRSC). Each MLRA shares similar soil and climate characteristics. Some MLRAs are small

encompassing only a few counties. If a MLRA contains fewer than 10 counties, I spatially merge these

counties to a nearby large MLRA that contains more than 10 counties. Figure 2.9 shows the final region

groups across which coefficients on log
(
Q̃ct

)
are allowed to vary.

A time-invariant coefficient on log WINYS assumes constant price flexibility of demand for corn and

soybeans. However, economists have documented that agricultural prices started showing unusual behaviors
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FIGURE 2.9. Region Groups across Which Coefficients on WINYS Vary

since the mid 2000s: high crop prices, high volatility, and a puzzling relationship between stock-to-use ratios

and crop prices, to name a few (Carter et al. 2017; Etienne et al. 2015; Wright 2014). I do not attempt to

delve into how behaviors of agricultural prices changed and what caused these changes. However, it would

seem to be worthwhile to allow for potential heterogeneity of coefficient before and after the mid 2000s. In

practice, I allow coefficients on log WINYS to vary between the pre-2005 and post-2005 periods.

2.5.5. Results.

2.5.6. Regression Results.

Table 2.2 shows the regression results of the estimation of eq.(2.5) by parsimoniously allowing for

coefficient heterogeneity. Columns 1 and 3 are for corn and columns 2 and 4 are for soybeans. Column 1 (2)

indicates that, for an average US corn (soybean) county, a one percent increase in WINYS leads to a decrease

in per-acre crop revenue by 0.5% (1%) for corn (soybeans) conditional on local weather and SUR. This result

suggests that it is important to account for price responses to widespread production shocks if one’s interest is

on the effects of weather events on crop revenues in crop-growing regions. Given that the demand for crops

is inelastic in general, the smaller-than-unity magnitude of the coefficients on log WINYS might appear

counter-intuitive. However, because, for many parts of the study region, local weather and WINYS are

correlated, the coefficients on log WINYS do not fully reflect the relationship between price and production.

Besides the estimation results on WINYS, the coefficients on local weather variables agronomically make
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TABLE 2.2. Regression of Crop Revenue on WINYS and Local Weather Variables

Log of (per-acre) Crop Revenue
(1) Corn (2) Soybeans (3) Corn (4) Soybeans

log(WINYS) -0.4778∗∗ -0.9406∗∗∗
(0.2052) (0.2620)

log(WINYS) × I(YEAR≤2005) -0.3336 -0.9134∗∗∗
(0.2185) (0.2753)

log(WINYS) × I(YEAR>2005) -1.533∗∗∗ -1.114∗
(0.2999) (0.6189)

SUR -0.2091 -0.5567∗
(0.1631) (0.3317)

SUR × I(YEAR≤2005) -0.1606 -0.5382∗
(0.1725) (0.3131)

SUR × I(YEAR>2005) -0.5814 -0.7320
(0.3926) (0.7275)

prec [rainfed] 0.1430∗∗∗ 0.1078∗∗∗ 0.1510∗∗∗ 0.1093∗∗∗
(0.0384) (0.0231) (0.0350) (0.0220)

prec [irrigated] -0.0291 0.0706 -0.0223 0.0732
(0.0381) (0.0488) (0.0373) (0.0471)

precsq [rainfed] -0.0091∗∗∗ -0.0068∗∗∗ -0.0096∗∗∗ -0.0068∗∗∗
(0.0027) (0.0017) (0.0025) (0.0016)

precsq [irrigated] 0.0031 -0.0032 0.0028 -0.0034
(0.0029) (0.0039) (0.0028) (0.0038)

mdd [rainfed] 0.0275 0.0279∗ 0.0236 0.0301∗
(0.0197) (0.0165) (0.0198) (0.0156)

mdd [irrigated] 0.0230 0.0305∗ 0.0172 0.0328∗
(0.0220) (0.0181) (0.0209) (0.0173)

hdd [rainfed] -0.6967∗∗∗ -0.6350∗∗∗ -0.6942∗∗∗ -0.6401∗∗∗
(0.1618) (0.1647) (0.1600) (0.1657)

hdd [irrigated] -0.4092∗∗∗ -0.3547∗∗ -0.4166∗∗∗ -0.3622∗∗
(0.0954) (0.1686) (0.0949) (0.1705)

hdd Jul [rainfed] -0.0016 0.0033 -0.0028 0.0031
(0.0025) (0.0029) (0.0026) (0.0028)

hdd Jul [irrigated] 0.0014 0.0016 0.0012 0.0015
(0.0012) (0.0029) (0.0013) (0.0028)

hdd Aug [rainfed] 0.0078∗∗∗ 0.0002 0.0085∗∗∗ 0.0005
(0.0029) (0.0028) (0.0028) (0.0028)

hdd Aug [irrigated] 0.0047∗∗ 0.0004 0.0049∗∗∗ 0.0006
(0.0018) (0.0025) (0.0018) (0.0026)

Observations 88,076 69,903 88,076 69,903
R2 0.20392 0.20292 0.22619 0.20403
Within R2 0.20078 0.20060 0.22314 0.20172

County fixed effects ✓ ✓ ✓ ✓
***p < 0.01, **p < 0.05, *p < 0.1

Notes: The table shows the results from the estimation of eq.(2.5). Standard errors were clustered
by years.

63



sense. For example, extreme heat has strong negative effects and the magnitudes are higher for rainfed

counties.

Columns 3 and 4 suggest that responsiveness of price to production shocks was quite different before

and after 2005 particularly for corn. For both crops, the coefficient on log WINYS is greater than one in

magnitude for the post-2005 period. This means that, if a county experienced adverse weather shock that

led to a negative yield shock equivalent to the national average yield shock, then that county’s crop revenue

would increase because price increases by more than yield drops.

The magnitude of the coefficients on log WINYS during the pre-2005 period is much higher in

magnitude for soybeans than that for corn (-0.91 for soybeans and -0.32 for corn). One possible explanation

is that, unlike for corn, the contribution of US to the global soybean supply used to be much larger than recent

decades. For example, the US produced 58% of the world’s soybeans in 1980 whereas the US proportion

dropped to 35% in 2010.

In what follows, I present results from the regression of the form in eq.(2.5) allowing for coefficient

heterogeneity to a greater extent. To be specific, I allow the coefficients on log WINYS to vary across

MLRAs and between the periods before and after 2005. I also allow the coefficients on local weather

variables to vary by irrigation status and LRRs. Lastly, I allow the coefficients on stock-to-use ratios to

vary between the periods before and after 2005. Figure 2.10 shows the region-specific coefficients on log

WINYS. Again, coefficients tend to be larger in magnitude for the post-2005 period for both crops. It is also

noticeable that there is substantial heterogeneity of coefficients over space. This spatial pattern is driven by

the fact that different regions show different degrees of correlation between local weather and WINYS. For

example, for corn in the post-2005 period, the coefficient on log WINYS is close to 0 in southern Illinois

but most of outer areas (e.g., North Dakota, Minnesota, or states along the coastal area) have coefficients

greater than 1 in magnitude.

2.5.7. Postestimation.

In this section, I quantify the impacts of the 1988 and 2012 droughts on crop revenues. To do so,

I use the regression results of my preferred specification, which allows for heterogeneous coefficients

on log WINYS and weather variables among counties. My initial step is to construct measures of

counterfactual revenues for each county and crop. For WINYS, I use the average of WINYS for each
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FIGURE 2.10. Coefficients on log(WINYS)

Notes: The figure shows coefficients on log WINYS from the regressions of the form in eq.(2.5).

crop from 1971 to 2019. The averages for both corn and soybeans are close to 1. For counterfactual

weather, I use county-level rolling averages of the previous 20-year weather realizations. Applying

the estimated parameters to these counterfactual and realized values of 1988 and 2012, and taking

exponential transformation of the predicted dependent variables3, I obtain predicted values of relative

revenues (i.e.,predicted values of ˜pcs(i)tycit

(
≡ pcs(i)tycit

1
4
∑
τ∈{−1,−2,1,2} pcs(i),t−τyci,t−τ

)
) for corn and soybeans in 1988 and

2012 under observed and counterfactual scenarios. Let ˜pcs(i)tycit
O and ˜pcs(i)tycit

C denote predicted values

of relative revenues under observed and counterfactual scenarios, respectively. I estimate county-level

percentage per-acre revenue impacts by
(

˜pcs(i)tycit
O

˜pcs(i)tycit
C − 1

)
× 100. County-level revenue changes are computed

using temporally nearby crop revenues as the base: acit ×
(

˜pcs(i)tycit
O

˜pcs(i)tycit
C − 1

)
× 1

4
∑
τ∈{−1,−2,1,2}pcs(i),t−τyci,t−τ .

I compute national-level revenue changes simply by aggregating the county-level counterparts to the US.

3Predicted relative revenues are computed as exp(log( ˜pcs(i)tycit) +
σ2
2 ) to account for the convexity of the exponential function
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Using averages of temporally nearby crop revenues as weights, I also obtain national-level percentage

revenue impacts by
(∑

i ˜pcs(i)tycit
Oacit

∑
τ∈{−1,−2,1,2} pcs(i),t−τyci,t−τ∑

i ˜pcs(i)tycit
Cacit

∑
τ∈{−1,−2,1,2} pcs(i),t−τyci,t−τ

− 1
)
× 100.

FIGURE 2.11. (per-acre) Crop Revenue Impact (%)

Notes: The figure shows estimated county-level percentage per-acre revenue impacts:(
˜pcs(i)tycit

O

˜pcs(i)tycit
C − 1

)
× 100, where ˜pcs(i)tycit

O and ˜pcs(i)tycit
C denote predicted values of relative

revenues (i.e., ˜pcs(i)tycit

(
≡ pcs(i)tycit

1
4
∑
τ∈{−1,−2,1,2} pcs(i),t−τyci,t−τ

)
) under observed and counterfactual scenarios,

respectively.

Figure 2.11 shows the spatial distribution of drought-induced percentage changes in per-acre revenue.

The figure indicates that, although counties impacted heavily by droughts experienced negative revenue

impacts, other regions tend to benefit indirectly from droughts due to a higher price received. Table 2.3

summarizes the impacts of the 1988 and 2012 droughts. At the national level, the percentage impacts on

crop revenues are estimated to be -11% (-3.83 billion US dollars) for corn and 1% (.26 billion US dollars) for

soybeans in 1988, whereas they were 11% (8.80 billion US dollars) for corn and 0% (.16 billion US dollars)
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TABLE 2.3. Impacts of the 1988 and 2012 US Midwest Droughts

Year Crop Yield (%) Revenue (%) Billion $ (2019) % of Counties w/ (+)
1 1988 corn -28.98 -11.45 -3.83 44.31
2 2012 corn -25.33 10.94 8.80 70.66
3 1988 soybeans -20.69 1.01 0.26 62.05
4 2012 soybeans -11.54 0.29 0.16 58.00

Notes: Yield (%) is the national-level percentage yield shock. Revenue (%) is the estimated national-
level percentage revenue impacts. Billion $ (2019) is the national-level crop revenue impacts
measured in 2019 US billion dollars. % of Counties w/ (+) is the proportion of counties that earned
a higher crop revenue than what it would have earned under its counterfactual normal weather.

for soybeans in 2012. The results reveal that the 1988 drought made the US corn farmers worse off as a

whole but the 2012 counterpart made them better off. This result is not surprising given that the conditional

price flexibility was much higher in magnitude for the post-2005 period (see table 2.5). In 1988, less than

one-half of corn-growing counties earned a higher per-acre revenue than what they would have earned under

normal weather conditions but, in 2012, more than 70% of the counties did so. Such temporally different

revenue impacts did not happen for soybeans, as the conditional price flexibility of soybeans has remained

stable.

TABLE 2.4. Impacts of the Hypothetical 2012 US Midwest Drought Identical to the 1988’s

Year Crop Yield (%) Revenue (%) Billion $ (2019) % of Counties w/ (+)
1 1988 corn -28.98 -11.45 -3.83 44.31
2 2012 corn 28.98 21.24 16.73 84.04
3 1988 soybeans -20.69 1.01 0.26 62.05
4 2012 soybeans -20.69 3.72 1.65 61.51

Notes: Yield (%) is the national-level percentage yield shock. Revenue (%) is the estimated national-
level percentage revenue impacts. Billion $ (2019) is the national-level crop revenue impacts
measured in 2019 US billion dollars. % of Counties w/ (+) is the proportion of counties that earned
a higher crop revenue than what it would have earned under its counterfactual normal weather.

Figure 2.12 presents comparisons between predicted relative revenues under observed and

counterfactual normal weather at the county level. While normal relative revenues are concentrated around

1, there is substantial variation in the predicted relative revenues under observed weather. Figure 2.13 shows

the percentage per-acre revenue impacts plotted against the percentage yield impacts at the county level.

The figure suggests that, for a given yield impact, percentage revenue impacts tend to be much higher in

2012 for corn but such a pattern does not appear to be the case for soybeans.
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FIGURE 2.12. Predicted County-Level (per-acre) Revenues (Realized vs Normal Weather)

Next, I ask what would have happened if the 1988 drought happened in 2012. I assume that counties

experienced local weather in 2012 identical to that of 1988 and the same level of WINYS in 1988 is also

realized in 2012. Table 2.4 summarises the results of this exercise. The results for corn suggest that if

the 1988 drought happened in 2012, the national-level revenue impacts would have been much higher in

2012 than in 1988 (21% vs -11%) and 84% of corn-growing counties would have earned a higher revenue

than their counterfactual revenues whereas only 44% of them did so in 1988. This exercise underscores the

importance of the role of market conditions in determining farmers’ crop revenues.

Finally, I document that extreme weather events in crop-growing regions can lead to regional inequality

in terms of crop revenue impacts. To formally present this idea, I first calculate relative revenue shocks(
˜pcs(i)tycit

O

˜pcs(i)tycit
C − 1

)
× 100 for all years in 1971–2019. For each crop and year, I then compute the difference

between the top and bottom quintile of the percentage county-level per-acre revenue impacts and use this

statistic as the regional inequality measure. In normal years for which I simply exclude major drought years

(1970, 1974, 1980, 1983, 1988, and 2012), the difference is less than 20 percentage points (pp.) for both
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FIGURE 2.13. (county-level) Yield Yield Impact (%) vs Estimated (per-acre) Revenue
Impact (%)

crops: 18 pp. for corn and 15 pp. for soybeans. This means that, if the top quintile county earns 10%

more per-acre revenue than what it would have earned under normal weather, the bottom quintile county

would earn more than 90% of its counterfactual revenue. In drought years, however, the quintile difference

increases to 36 pp. for corn and 28 pp. for soybeans on average. Figure 2.14 visualizes the distribution of

yield and per-acre revenue impacts for some relatively normal years: two drought years (1988 and 2012)

and three relatively normal years (2013, 2014, and 2015).

2.6. Conclusion

What are the economic costs of large-scale droughts to crop producers? The main goal of this paper is

to propose a panel approach to estimating the impacts of large-scale weather events in major crop-producing

regions on crop revenues at the local and national levels. In these areas, crop prices received by farmers are

often negatively correlated with local yield shocks. This paper provides a new way of accounting for the

correlation between price and yield in estimating weather-induced crop revenue impacts in a econometric
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FIGURE 2.14. Distribution of (county-level) Yield and per-acre Revenue Impacts (%)

panel setting. My approach utilizes the fact that the spatially varying relationship between price and yield is

largely determined by the extent to which a local yield shock is correlated with the corresponding national-

level yield shock.

In the conceptual model, I first showed that weather-induced changes in post-planting crop revenues

could be a good proxy for weather-induced changes in post-planting crop profits. The model reveals that

inclusion of irrigated counties in empirical analysis is particularly important if drought years are of the

researcher’s main interest. My crop revenue variability decomposition analysis underscores the importance

of accounting for temporally and spatially varying degree of conditional price flexibilities of demand.
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After proposing the method, I quantified the impacts of the 1988 and 2012 US Midwest droughts on

corn and soybean revenues at the county and national levels. I find that despite large yield shocks, price

increases in response to widespread yield shocks tend to offset negative yield shocks. These price increases

indirectly make better off farmers who did not experience droughts. I estimate crop revenue impacts of

the two droughts to be -11% (11%) in 1988 and 1% (0%) in 2012 for US corn (soybeans). I also showed

that extreme weather events in major crop-growing regions tend to worsen the regional inequality of crop

revenues relative to normal years.

I leave the following tasks for future work. i) Although the focus of this paper is welfare effects

to producers, it would be worth quantifying welfare losses to consumers from the higher prices and lost

productions. ii) I will try additional empirical specifications. One of the examples is adding the interaction

of SUR and WINYS in eq.(2.5). iii) Although the 1988 and 2012 droughts were flash droughts, drawing

implications of consecutive extreme droughts would be also useful given that frequency of these events

would increase in a changing climate.

2.7. Supplementary Section: Derivation

In the following, I derive ∂πi
∂wj

and ∂πi
∂wi

, which are essential components in eq.(2.2). I assume a

representative farmer i behaves as a price taker so that she considers q =
∑
j,i ajyj . Taking total derivatives

implies

∆πi =
∑
j,i

∂πi
∂wj

∆wj +
∂πi
∂wi

∆wi .

Taking derivative of πi with respect to wj gives

∂πi
∂wj

=
∂p

∂q

∂q

∂wj
yi + p

∂yi
∂wj
− ci

∂Ii
∂wj

= yi
∂p

∂q
aj

(
∂yj
∂Ij

∂Ij
∂wj

+
∂yj
∂wj

)
+
(
p
∂yi
∂Ii
− ci

)
∂Ii
∂p

∂p

∂q
aj

(
∂yj
∂wj

+
∂yj
∂Ij

∂Ij
∂wj

)
= yi

∂p

∂q
aj

(
∂yj
∂Ij

∂Ij
∂wj

+
∂yj
∂wj

)
.
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The first equality says that wj affects q, yi , and Ii indirectly. If we specify each channel using the chain rule,

we get the second equality. The third equality holds because the second term in the second equality is zero

at the optimal level of input I ∗i (wi ;w−i).

Taking derivative of πi with respect to wi gives

∂πi
∂wi

=
∂p

∂q

∂q

∂wi
yi + p

∂yi
∂wi

+
(
p
∂yi
∂Ii
− c

)
∂Ii
∂wi

= yi
∂p

∂q

∑
j,i

aj
∂yj
∂Ij

∂Ij
∂p

∂p

∂q
ai

(
∂yi
∂wi

+
∂yi
∂Ii

∂Ii
∂wi

)+ p ∂yi∂wi

= aiyi

(
∂yi
∂wi

+
∂yi
∂Ii

∂Ii
∂wi

)
∂p

∂q

∑
j,i

aj
∂yj
∂Ij

∂Ij
∂p

+ p ∂yi∂wi
.

Again the last term in the first equality becomes zero by the first order condition. The first term in the second

equality is obtained by specifying all the channels through which wi affect q. Rearranging terms gives the

third equality.
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CHAPTER 3

Effects of Water Balance on Prevented Planting in the US Corn Belt for

Corn and Soybeans

3.1. Introduction

Springtime adverse weather conditions, such as excess moisture, can prevent crops from being planted.

For example, in 2019, anomalously high precipitation in the spring across the Corn Belt led to record-high

prevented-planting cropland of nearly 20 million acres according to the U.S. Department of Agriculture

(USDA). As agricultural production relies heavily on climatic factors, there is a rich literature on the link

between climatic conditions and agricultural outcomes. Most of the prior research focuses on impacts of

growing-season weather on crop yields (e.g., Gammans et al. 2017; Lobell and Field 2007; Ortiz-Bobea et al.

2019; Schlenker and Roberts 2009). Another strand of literature has sought to understand acreage responses

to past local growing-season weather (Cui 2020; Ramsey et al. 2021). Although planting-season weather

can also have a large impact on crop production by reducing planted area, the effects of planting-season

weather on prevented planting have been understudied.

Previous studies (e.g., Hendricks et al. 2014b; Miao et al. 2016) have documented that springtime heavy

rainfall tends to reduce planted acres–for example, due to the difficulty of operating machinery in wet

soils. These studies include planting-season weather variables as controls in estimating acreage responses

to economic variables (e.g., crop prices). For example, Miao et al. (2016) used monthly cumulative

precipitation in March-May, and Hendricks et al. (2014b) used a dummy variable equal to one if precipitation

in April is above a certain threshold level (e.g., 75th percentile). To our knowledge, the study by Boyer et al.

(2022) is the only study that seeks to statistically characterize the relationship between planting-season

weather and prevented planting. Using monthly precipitation and temperature data, they find that monthly

precipitation from January to May affects the prevented-planting ratio of corn while only precipitation in

May and June impacts prevented-plant ratio of soybeans.
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In this study, we use the data on water balance measured by precipitation minus reference

evapotranspiration to shed light on the intra-season acreage sensitivities to planting-season weather for corn

and soybeans in the US Corn Belt, which produces around 20% of the world’s corn and soybeans. This

measure can be viewed as non-standardized version of the Standardized Precipitation Evapotranspiration

Index (SPEI) (Vicente-Serrano et al. 2010). The motivation for using water balance in the present study is

the following. The ability of farmers to plant their intended crop depends not only on precipitation but also

evapotranspiration – how quickly water transfers from the land to the atmosphere. Accounting for water

demand for evapotranspiration is essential because farmers have to wait until fields are dry enough for the

seeder to operate properly without causing soil compaction (Sacks et al. 2010).

Accounting for water demand for evapotranspiration is also important for climate change impact

assessments. Considering only precipitation may overestimate the impacts of planting-season weather on

prevented planting in a changing climate and may lead to misleading adaptation strategies or polices, as

evaporative demand is generally projected to increase (Vicente-Serrano et al. 2020). Admittedly, modeled

soil moisture data could be alternative appealing weather data for our research questions. However,

we opted to use water balance because there are more extensive downscaled climate change projections

on precipitation and reference evapotranspiration than on soil moisture. Lastly, water balance provides

a climatologically intuitive interpretation of parameter estimates compared to Boyer et al. (2022) that

separately estimated parameters on precipitation, precipitation squared, temperature, and the interaction

of precipitation and temperature.

In the US Corn Belt, the most common cause (> 90%) of prevented planting has been excess moisture

(USDA RMA, 2021). Growing evidence suggests that parts of the US Corn Belt are projected to experience

more frequent precipitation extremes as anthropogenic global warming continues (e.g., Zhou et al., 2022).

However, warming temperature in spring due to global warming can increase evapotraspiration and can

offset increases in precipitation, making net effects on water balance less clear. To the extent to which

changes in water balance over the planting season leave more land unplantable, efforts to meet future food

demand will be undermined.

This study consists of two parts. In the first part, we ask how planting-season weather affects prevented-

planting in the US Corn Belt by examining the relationship between monthly water balance and prevented

planting during the planting season across counties in the US corn Belt. In the second part, using a model
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developed from observations and downscaled climate change projections, we ask how the risk of prevented-

planting of corn and soybeans will change during the mid 21st century (2036-2065) to identify at-risk areas.

Answers to these questions will help stakeholders and policy-makers to make informed decisions to reduce

the economic and food security impacts of prevented planting.

3.2. Methods

3.2.1. Study Region.

We focus our analysis on a major crop-producing region made up of 12 states in the US (See figure

S3.1.). The region produces most of the corn and soybeans in the US. In the region, the most active planting

season is around May for both crops, although corn tends to be planted a few weeks earlier. To explore

the potential for heterogeneous responses between sub-regions in our analysis, we divide the region into

northern and southern sub-regions by equally spaced latitude as seen in figure S3.1.

Corn Soybeans Fraction
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(0.0122,0.0186]

(0.0186,0.0257]

(0.0257,0.0381]

(0.0381,0.0578]

(0.0578,0.32]

FIGURE 3.1. Average prevented-planting share in 2012–2021

3.2.2. Data.

Acreage

We source annual county-level crop acreage data from the USDA Farm Service Agency (FSA) for 2012–

2021. The FSA requires producers who participate in the federal programs including crop insurance to file

an annual report of all cropland use on their farms. Producers are required to report prevented, planted (and
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FIGURE 3.2. Time series of total prevented-planting acres in 12 states

successfully harvested), and (planted but) failed acres by crop. Failed acreage is acreage that was planted

with the intent to harvest but failed before it could be brought to harvest because of adverse conditions.

Under the US federal crop insurance program, prevented planting refers to the inability to plant the intended

crop acreage with proper equipment by the final planting dates designated by the USDA Risk Management

Agency (RMA). In our study region, the final planting dates are around the end of May for corn and mid-June

for soybeans.

For the dependent variable, we take a ratio of prevented-planting acres to total acres—sum of prevented,

planted, and failed acres—for each crop and year. We refer to this measure as the prevented-planting share.

Figure 3.1 shows spatial distribution of the average prevented-planting share in 2012–2021, whereas figure

S3.2 shows maps of the average planted acres in 2012–2021. Both for corn and soybeans, prevented-

planting share is high in the Prairie Pothole Region, which covers parts of North and South Dakotas and

Minnesota. Figure 3.2 shows time series of total prevented-planting acres for corn and soybeans in the 12

states over the period. Prevented-planting acres were highest in 2019 reaching 13.6 (9.9 for corn and 3.6 for

soybeans) million acres in the region. In percentage terms, these numbers are about 12% of total corn acres

(i.e., sum of planted, prevented, and failed acres) and 5.6% of total soybean acres (See figure S3.3.).

Water Balance

We obtain daily (4km-resolution) gridded data on precipitation and reference evapotranspiration from
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gridMET (Abatzoglou 2013). Reference evapotranspiration was calculated using the Penman-Monteith

equation for a reference grass crop. We define water balance as precipitation (mm) minus reference

evapotranspiration (mm). To match the acreage data, we aggregate the gridded data to the county level

using the fraction of cropland as the weight in each GridMET grid. We derived cropland using land cover

data from the National Land Cover Database (NLCD). For empirical analysis with monthly water balance

data, we compute water balance for a month as sum of daily water balance in that month. This measure

is essentially a non-standardized version of the standardized precipitation evapotranspiration index (SPEI)

with one-month time window (Vicente-Serrano et al. 2010). We use raw water balance rather than SPEI

because we are interested in approximating actual soil moisture level, which biophysically may be a more

accurate assessment of local water balance than SPEI. To explore more detailed time-varying effects, we

also conduct our analysis using daily water balance data. Table S3.1 shows descriptive statistics of the data

for empirical analysis. Figure 3.3 provides a preliminary insight into how monthly water balance influences

the changes in prevented-planting shares. The figure suggests that, for corn (soybeans), prevented-planting

share tends to be high when there is high excess water in May (June).

Multivariate Adaptive Constructed Analogs (MACA)

To assess climate change impacts, we utilize 20 downscaled Global Climate Models (GCMs) of Coupled

Model Intercomparison Project Phase 5 (CMIP5) from the Multivariate Adaptive Constructed Analogs

(MACA) dataset (Abatzoglou and Brown 2012). MACA is a statistical method for downscaling GCMs

from their native coarse resolution to a higher spatial resolution that reflects observed patterns of daily near-

surface meteorology and simulated changes in GCMs experiment. We first obtain 4km-resolution monthly

precipitation and reference evapotranspiration data for the historical period (1950-2005) and the mid of

century (2036-2065) for a moderate emission scenario (RCP4.5). We calculate monthly water balance data

as input into the aforementioned models that were empirically developed with observed data. Downscaled

MACA data allow for interoperable use in climate impact assessments as they were created using gridMET

as training data. As we did for observed weather data, we aggregate the gridded data to the county level

using the fraction of cropland as the weight in each MACA grid.

3.2.3. Regression Model.

To investigate the relationship between planting-season weather and prevented-planting share, we use
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FIGURE 3.3. Prevented-Planting Share against Monthly Water Balance in 2012–2021

Note: The figure uses all observations in the data from 2012–2021 and then fits a smoothing function
on monthly water balance data. Grey areas show 95% confidence intervals.

the fixed-effects Poisson pseudo-maximum likelihood (PPML) estimator (Hausman et al. 1984; Wooldridge

1999). We use the estimator because more than 30% of the observations of the dependent variable of our

data are zero, and naturally accommodating zero values without any transformation, the Poisson model

produces consistent estimates that are interptretable as semi-elasticities. Even if the data generating process

does not follow a Poisson distribution, the estimator is still consistent as long as the mean is correctly

specified. Admittedly, this robustness does not extend to estimated covariance matrices, but bootstrap could

be used to resolve this concern. In addition, the PPML does not suffer from the incidental parameter problem

in the presence of fixed effects, unlike other maximum likelihood estimators. The model can be also applied

to a fractional or continuous variable (Gaule and Piacentini 2013; Silva and Tenreyro 2006; Zhao et al. 2013).

Parametric estimation using monthly water balance data

Our initial step is to estimate the following simple model:

ait = exp(
∑
m∈M

βmwmit +λi + f (t))ϵit ,(3.1)
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where ait is prevented-planting share in county i in year t. wmit is monthly water balance in month m in

year t, and M ≡ {March,April,May,June}. λi is county fixed effects, f (t) denotes a linear time trend,

and ϵit is the error term. We run Eq.(3.1) separately for each crop and region. All of our regressions use

crop-by-county total acres as the weight. For standard errors, we use year-block bootstrapped standard

errors whereby we randomly resample our data by year 1,000 times. Resampling data by year assumes

independence between years but accounts for any cross-sectional correlation.

Nonparametric estimation using binned monthly water balance data

So far, we assumed the response of prevented-planting share to water balance to be constant across the

level of water balance, conditional on timing of water balance. However, the response could be nonlinear.

For example, extremely wet conditions could have a more detrimental effect than moderately wet conditions.

We explore potential nonlinear responses nonparametrically using a binned model. To do so, we bin monthly

water balance data into ten indicator variables using deciles of each county-specific historical (1979–2021)

distribution of monthly water balance, and estimate the following model:

ait = exp(
∑

m∈M,d∈{1,2,3,4,6,7,8,9,10}
βm,dI{wmit ∈Qmi,d}+λi + f (t))ϵit ,(3.2)

where I is an indicator function that equals 1 if wmit ∈ Qmi,d and 0 otherwise. Qmi,d denotes the interval

of the dth decile of the historical distribution of water balance for month m in county i. To avoid perfect

multicollinearity, we drop the bin for the 5th decile in each month.

Semiparametric estimation using daily water balance data

To investigate more detailed time-varying effects, we perform our analysis using daily water balance.

We estimate a regression of the form:

ait = exp(g(w1it , ...,wDit) +λi + f (t))ϵit ,(3.3)

where D is the number of days between March 1 and July 30. We include July simply because estimated

parameters are sometimes sensitively influenced by boundary values in semiparametric estimation. g()

is a natural cubic spline. Unlike the analysis using monthly water balance variables, Eq.(3.3) restricts

coefficients to vary smoothly over the planting season. (See Supplementary Materials for more details.)
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We optimally choose the degrees of freedom (df ∈ {3,4,5,6,7,8}) for g() for each crop and region using

the root mean square error (RMSE) of year-block 10-fold cross validation.

3.3. Results

3.3.1. Regression Results.

Figure 3.4 shows the response of prevented-planting share to monthly water balance with 95%
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FIGURE 3.4. Results from the Parametric Estimation Using Monthly Water Balance Data.

Note: The figure visualizes the regression results from the parametric estimation in Eq.(3.1) by crop
and region. White dots represent point estimates from regressions and vertical black lines represent
95% confidence intervals around them. Point estimates can be interpreted as semielasticities. For
standard errors, we use year-block bootstrapped standard errors whereby we randomly resample our
data by year for 1000 times. The pooled region include all counties in 12 states in the study region.
The northern region includes counties located above northern Iowa. The southern region includes
counties located below northern Iowa and above southern Missouri.

confidence intervals. Point estimates can be interpreted as semi-elasticities. The figure suggests that
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water balance in April-May (May-June) has large and statistically significant positive effects on prevented-

planting share of corn (soybeans) while water balance in March has limited effects. We first interpret

our results using the pooled region. Specifically, we find that a one standard deviation increase in water

balance in April (53mm), May (64mm), and June (66mm) leads to increases in prevented-planting share of

corn by 139%, 177%, and 58%, respectively. We calculated these numbers using the following formula:

[eβ̂mσm − 1] × 100%, where σm is standard deviation of water balance for month m in 1979–2021. Again

using the pooled region, the effects of monthly water balance on prevented-planting share for soybeans tends

to be less pronounced than those for corn. However, there is a noticeable difference in the timing of critical

months with a more significant influence in May and June. For soybeans, a one standard deviation increase

in water balance in April, May, and June would lead to increases in prevented-planting share by 65%,

165%, and 120%, respectively. Our results also suggest that, when we use monthly water balance rather

than precipitation, goodness of fit—measured by McFadden’s pseudo R2—increases by 5-7% (McFadden

et al., 1973). Similarly, goodness of fit also increases by 5% when we use monthly water balance rather

than total water balance from March to June. The results from the pooled regions obscure heterogeneous

responses between regions. In general, the northern region shows a stronger positive relationship between

water balance and prevented-planting share in April and May for both crops than its counterpart. On the

other hand, in the southern region, the effect of water balance remains relatively salient even in June and

this tendency is particularly true for soybeans.

Figure 3.5 shows the regression results from the nonparametric estimation in Eq.(3.2). It visualizes

the percentage impacts of an event of monthly water balance being in each decile on prevented-plant share

relative to that of monthly water balance being in a 5th decile. The numbers from 1 to 10 in each month

represents bins of 1st to 10th decile of the historical distribution of monthly water balance. (In figure S3.5,

we show the coefficients and confidence intervals used to calculate the percentage changes.) The figure

indicates that an event of extremely wet conditions in the southern region can be highly damaging for both

crops. To be specific, an event of monthly water balance in 10th decile in May increases prevented-planting

share by 15 times for corn and by 11 times for soybeans relative to an event of 5th decile. In the northern

region, extremely wet conditions appear to be less damaging than those in the southern region. However, for

soybeans in the northern region, extremely wet condition in May (i.e., 10th decile) could increase prevented-

planting share more than by six-fold relative to an event of 5th decile in May.
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FIGURE 3.5. Percentage Impacts of an Event of Monthly Water Balance Being in Each
Decile Bin

Note: The figure visualizes the regression results from the nonparametric estimation in Eq.(3.2) by
crop and region, in which we binned monthly water balance data into deciles of county-specific
distribution of monthly water balance for each county. The variable for 5th decile was dropped to
avoid perfect multicollinearity. Each dot represents a percentage impacts of monthly water balance
being in each decile relative to 5th decile. For standard errors, we use year-block bootstrapped
standard errors whereby we randomly resample our data by year for 1000 times. The pooled region
include all counties in 12 states in the study region. The northern region includes counties located
above northern Iowa. The southern region includes counties located below northern Iowa and above
southern Missouri.

Figure 3.6 shows time-varying effects of daily water balance on prevented-planting share. The results for

the pooled region suggest that corn is most sensitive to water balance around early May whereas soybeans

is most sensitive to water balance around late May. To be specific, one standard deviation increase in water

balance on the estimated most critical date for corn (soybeans), May 6 (May 23), increases prevented-

planting share by 8.7% (9%). (See table S3.3 for more detailed calculation and results.) Based on the results

for subregions, we also find that, while early May is the most critical time window for corn and soybeans
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FIGURE 3.6. Results from the Semiparametric Estimation using Daily Water Balance Data

Note: The figure visualizes the regression results from the semiparametric estimation in Eq.(3.4) by
crop and region. Each line represents a response function of prevented-planting share to daily water
balance. White lines correspond to the response functions obtained from the full-sample (2012–
2021) model. The overlay of blue response functions corresponds to 1000 response functions derived
from bootstrapped regressions in which years of data (2012–2021) were sampled with replacement.
95% confidence bands derived from the bootstrapped regressions are represented in thicker blue
lines. The pooled region include all counties in 12 states in the study region. The northern region
includes counties located above northern Iowa. The southern region includes counties located below
northern Iowa and above southern Missouri.

in the northern region and for corn in the southern region, late May is the most critical time window for

soybeans in the southern region.

3.3.2. Climate Change Impact Assessment.

Figure 3.7b shows the spatial distribution of percentage impacts of climate change on prevented-planting

share under the moderate emission scenario (RCP4.5) during the mid 21st century (2036-2065) compared
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to the historical (1950-2005) levels. Each value in the map represents the county-specific median of the

projected percentage impacts in prevented-planting share from 20 downscaled climate models. Our results

suggest that prevented-planting share of corn is projected to increase in parts of Iowa, Minnesota, and

Wisconsin by 0-30%. Located in the northern part of the US Corn Belt, many of these counties have

experienced acreage expansion over the past few decades (Cui 2020). Our results suggest that wetter spring

conditions in these areas would put a strain on farmers’ ability to plant crops in a changing climate, even

if growing-season weather becomes more favorable for planted crops. Conversely, modeled results suggest

that prevented-planting share would decrease by 10-40% in North and South Dakotas, in which prevented

planting has been historically a major concern. This finding is of great importance and relevance in a

changing climate given that the two states—particularly their eastern regions—have seen the most extensive

growth of corn and soybean acreage in the past decades due to a warming trend (Cui 2020).

Given that much of the northern region is expected to see an increase in precipitation during the spring,

the spatial heterogeneity of the projected changes in the prevented-planting share is due to net water supply

(i.e., water balance). Figure S3.4 shows the county-specific median of the projected changes in water balance

under the moderate emission scenario in the mid-century. As the figure shows, many parts of North and

South Dakotas are expected to see a decrease in water balance in April and May. The opposite is true for

the region expected to see an increase in prevented-planting shares. Because reference evapotranspiration is

projected to increase in a warmer climate, we posit that failure to account for water demand in the planting

period would suggest widespread increases in prevented planting.

It is worth emphasizing that farmers’ adaptive responses to projected changes could mitigate acreage

losses. For example, warmer temperature in late winter or early spring in the future might allow farmers

to start planting a few weeks earlier, which could potentially provide farmers with more flexibility to shift

planting dates. Besides planting date adjustments, farmers can implement variety of adaptation strategies to

reduce acreage losses: planting cover crops to improve water infiltration of the soil, installing tile drains,

and investing in machinery that could reduce the total hours of planting time.

It should be also noted that we assessed climate change impacts using county-specific median

projections but there are substantial differences in projected impacts across climate models. Figure 3.7b

shows aggregate impacts for the study region across 20 downscaled climate models under the moderate

(RCP4.5) during the mid-century (2036-2065). (Figure S3.6 shows projected prevented-planting shares
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prevented-planting share from 20 downscaled climate models (MACA) relative to the historical period (1950-2005).
The climate change impact estimates uses the response function for the pooled region from the parametric estimation
using monthly water balance data. (b) Each colored dot represents an acreage-weighted predicted prevented-planting
share from each 20 downscaled climate model under the mid-century (2036–2065) and under the moderate emission
(RCP4.5) scenario. Each black dot represents an acreage-weighted predicted prevented-planting share for the historical
period (1950-2005) from the MACA.

FIGURE 3.7. Projected Climate Change Impacts on Prevented Planting
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across 20 downscaled climate models under the moderate (RCP4.5) and high (RCP8.5) emission scenarios

during the mid-century (2036-2065) and the late-century (2070-2099).) The figure suggests that there is

substantial uncertainty about how future changes in water balance during the springtime period would affect

prevented-planting share.

3.4. Conclusion

In this paper, we sought to establish the relationship between planting-season water balance and

prevented-planting of corn and soybeans in a wide expanse of the US Corn Belt. Using water balance

that accounts for both water supply and demand, we find that wet conditions in April-May (May-June) tends

to increase prevented-planting of corn (soybeans). Using nonparametric estimation, we also document that

extremely wet events in the critical planting window can detrimentally increase prevented-planting share,

particularly in the southern portion of the region.

We have a caveat. Our study region has a unique institutional context not to mention biophysical

environment. Thus, our results might not hold in other contexts or regions. A large portion of farmers

participate in the federal crop insurance program, which has its unique prevented-planting provisions. This

means that our results reflect farmers’ behavioral responses driven by incentives they face under the current

prevented-planting provisions in the federal crop insurance policies, although, of course, weather is the key

driver of prevented-planting acreage (Kim and Kim 2018; Rejesus et al. 2005; Wu et al. 2020).

Unlike Boyer et al. (2022), we do not find that planting-season weather in March plays an important

role in determining the prevented-planting share of corn. One possible explanation is that their standard

errors do not account for the correlation across cross-sectional units (here, counties) in the data even

though the amount or fraction of prevented-planting area is highly spatially correlated. Their assumption

of spatially uncorrelated errors could have led Boyer et al. (2022) to over-rejecting the null hypothesis of

no effect in March. In addition, our result indicates that monthly water balance in June has a statistically

significant effect on prevented-planting share of soybeans, although Boyer et al. (2022) found mixed results

on precipitation and temperature in June. We posit that our different finding stems from the fact that we

harness a weather variable that simultaneously accounts for water supply and demand.

Our climate change impacts assessments suggest that prevented-planting share will decrease in the

Prairie Pothole Region—where prevented-planting acres tended to be high—in the future especially for
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corn under the moderate emission scenario (RCP4.5) during the mid of the century (2035-2065). Such

decline is due to a warming trend that increases water demand captured by reference evapotranspiration. In

some northern parts of the US Corn Belt, it appears that increasing water demand is not enough to offset

increasing precipitation in the planting season. As a result, prevented-planting share of corn is projected to

increase by 0-30% in the region.

It should be noted that these assessments were based on the median projected impacts among 20 climate

models and there is a substantial difference among the projected impacts from different climate models.

In addition, our projections are based on the average planting season over multiple years meaning that our

results are silent about the effect of changing inter-annual variability of planting season weather. One future

research direction would be investigation into changes in the intensity and frequency of extreme planting-

season weather and their corresponding consequences on prevented-planting cropland.

3.5. Supplementary Section

3.5.1. Semiparametric Estimation.

We express our regression model using daily water balance as:

ait = exp(g(w1it , ...,wDit) +λi + f (t))ϵit ,(3.4)

where ait is prevented-planting share in county i in year t. d ∈ {1, ...,D}, where D is the number of days

between March 1 to July 30. g() is a natural cubic splines. We optimally choose the degrees of freedom

for g() among 3,4,5,6,7, and 8 for each crop and region using the Root Mean Square Error (RMSE) of year-

block 10-fold cross validation. Unlike in the analysis using monthly water balance variables, g() restricts

coefficients to vary smoothly over the planting season.

The natural cubic spline function g() in Eq.(3.4) involves a basis matrix, which allows us to reduce the

number of parameters to be estimated (For detailed discussion, see Ortiz-Bobea (2021)). In our setting, the

basis matrix maps daily water balance with D bins to K bins (K < D). Let W be a (nT ×D) matrix of

daily water balance over the planting season. The basis matrix for a natural cubic spline with K degrees of

freedom, B, allows us to reduce dimensionality as follow:

W̃
nT×K

= W
nT×D

× B
D×K

.

87



The effect of water balance over the planting season could be then modeled as:

g(w0it , ...,wDit)(3.5)

=
K∑
k=1

D∑
d=1

γkBdkwdit(3.6)

=
K∑
k=1

γk

D∑
d=1

Bdkwdit︸       ︷︷       ︸
w̃kit

(3.7)

Using the newly constructed regressors W̃ , we can approximate the time-varying effect of daily water

balance on prevented-planting share over the entire planting share with K parameters rather than D

parameters. The prevented-planting model that allows for time-varying coefficients on water balance can be

written as:

ait = exp(
K∑
k=1

γkw̃kit +αi + fi(t))ϵit ,(3.8)

We recover the marginal effect of water balance at each d by pre-multiplying Γ̂ by the basis matrix:

β̂
D×1

= B
D×K
× Γ̂
K×1
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3.5.2. Supplementary Figures.

Region Group

North
South

FIGURE S3.1. Study Region and Regression Group

Corn Soybeans
1000 Acres

[0.0184,2.15]

(2.15,11.7]

(11.7,25.3]

(25.3,39.8]

(39.8,57.4]

(57.4,73.6]

(73.6,91.6]

(91.6,111]

(111,147]

(147,464]

FIGURE S3.2. Average Planted Acres in 2012–2021

Note: The values in the map include planted (and successfully harvested) and (planted but) failed
acres from the the USDA FSA.in 2012–2021
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FIGURE S3.4. Projected Change in Water Balance under RCP4.5 in the Mid-Century

Note: Each value represents the county-specific median of the projected changes in monthly water
balance (mm) from 20 downscaled climate models (MACA) for the mid-century (2036–2065) under
the moderate emission scenario (RCP4.5) relative to the historical (1950-2005) water balance.
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FIGURE S3.5. Results from the Nonparametric Estimation using Binned Monthly Water
Balance Data

Note: The figure visualizes the regression results from the nonparametric estimation in Eq.(3.2) by
crop and region, in which we binned monthly water balance data into deciles of county-specific
distribution of monthly water balance for each county. The variable for 5th decile was dropped
to avoid perfect multicollinearity. Each dot represents a marginal effect of monthly water balance
being in each decile relative to 5th decile. Point estimates can be interpreted as semielasticities. For
standard errors, we use year-block bootstrapped standard errors whereby we randomly resample our
data by year for 1000 times. The pooled region include all counties in 12 states in the study region.
The northern region includes counties located above northern Iowa. The southern region includes
counties located below northern Iowa and above southern Missouri.
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FIGURE S3.6. Climate Change Impact Projections on Prevent-Plant Share

Note: Each dot is acreage-weighted predicted prevented-planting share using the region-by-
crop specific coefficients from the parametric estimation in Eq.(3.1) and 20 downscaled climate
projections from the MACA. Each colored dot represents a predicted value for the mid-century
(2036–2065) or the late-century (2070–2099). Each black dot represents a predicted value for the
historical period (1950-2005).
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3.5.3. Supplementary Tables.

TABLE S3.1. Descriptive Statistics

variable group mean sd mean (w/o 2019) sd (w/o 2019)
Water Balance in Mar (mm) Pooled -8.833 42.253 -9.507 42.293
Water Balance in Mar (mm) North -12.534 29.306 -12.878 29.434
Water Balance in Mar (mm) South -6.715 47.993 -7.578 48.024
Water Balance in Apr (mm) Pooled -22.050 53.394 -22.725 53.277
Water Balance in Apr (mm) North -26.963 44.886 -27.838 44.735
Water Balance in Apr (mm) South -19.238 57.513 -19.799 57.394
Water Balance in May (mm) Pooled -32.099 63.848 -34.140 62.259
Water Balance in May (mm) North -46.696 51.983 -48.279 51.014
Water Balance in May (mm) South -23.745 68.348 -26.049 66.524
Water Balance in Jun (mm) Pooled -52.184 66.287 -52.941 66.375
Water Balance in Jun (mm) North -50.511 58.408 -50.738 58.778
Water Balance in Jun (mm) South -53.141 70.383 -54.202 70.325
Water Balance in Jul (mm) Pooled -74.155 68.571 -74.519 68.917
Water Balance in Jul (mm) North -76.087 57.966 -76.953 58.030
Water Balance in Jul (mm) South -73.049 73.937 -73.127 74.400
prevented-planting Share (Corn) Pooled 0.030 0.085 0.020 0.065
prevented-planting Share (Corn) North 0.044 0.110 0.032 0.093
prevented-planting Share (Corn) South 0.023 0.066 0.013 0.040
prevented-planting Share (Soybeans) Pooled 0.016 0.057 0.011 0.048
prevented-planting Share (Soybeans) North 0.022 0.072 0.016 0.063
prevented-planting Share (Soybeans) South 0.013 0.046 0.008 0.037

Notes: Water balance data span from 1979 to 2021 while data on prevented-planting share cover
2012–2021.
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TABLE S3.2. Impacts of One Standard Deviation Increase in Monthly Water Balance

Region Crop Month Marginal Effect SD of WB Effect of One SD Increase (%)
1 Pooled Corn Mar -0.002 42.253 -8.322
2 Pooled Corn Apr 0.016 53.394 135.813
3 Pooled Corn May 0.016 63.848 176.572
4 Pooled Corn Jun 0.007 66.287 58.027
5 Pooled Soybeans Mar -0.005 42.253 -19.359
6 Pooled Soybeans Apr 0.009 53.394 64.970
7 Pooled Soybeans May 0.015 63.848 165.132
8 Pooled Soybeans Jun 0.012 66.287 119.218
9 North Corn Mar -0.007 29.306 -19.229

10 North Corn Apr 0.020 44.886 143.761
11 North Corn May 0.018 51.983 154.431
12 North Corn Jun 0.008 58.408 63.189
13 North Soybeans Mar 0.002 29.306 5.541
14 North Soybeans Apr 0.014 44.886 90.865
15 North Soybeans May 0.018 51.983 152.667
16 North Soybeans Jun 0.007 58.408 47.199
17 South Corn Mar 0.004 47.993 21.244
18 South Corn Apr 0.012 57.513 104.725
19 South Corn May 0.015 68.348 182.146
20 South Corn Jun 0.007 70.383 60.988
21 South Soybeans Mar -0.004 47.993 -18.162
22 South Soybeans Apr 0.004 57.513 25.408
23 South Soybeans May 0.013 68.348 141.950
24 South Soybeans Jun 0.013 70.383 150.697

Notes: Marginal Effect is derived from the semiparametric estimation Eq.(3.1) and can be interpreted
as semi-elasticity. SD of WB refers to the standard deviation of monthly water balance in 1979–2021.
Effect of One SD Increase (%) was calculated by (exp(β̂mσm)−1)×100, where βm is the estimated
marginal effect of monthly water balance on prevented-planting share for month m and σm is the
standard deviation of water balance in month m.
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TABLE S3.3. Impacts of One Standard Deviation Increase in Daily Water Balance

Region Crop Apprx. Most Critical Day Marginal Effect SD of WB (mm) Effect of One SD Increase (%)
1 Pooled Corn 05-06 0.0136 6.1070 8.6817
2 Pooled Soybeans 05-23 0.0128 6.6957 8.9754
3 North Corn 05-01 0.0166 5.7677 10.0441
4 North Soybeans 04-30 0.0167 6.1425 10.8195
5 South Corn 05-09 0.0143 8.1217 12.3099
6 South Soybeans 05-27 0.0138 9.7320 14.3841

Notes: Marginal Effect is derived from the semiparametric estimation Eq.(3.3) and can be interpreted
as semi-elasticity. Apprx. Most Critical Date is the date that yields the highest marginal effect from
March 1 to July 30. SD of WB refers to the standard deviation of water balance on the most critical
date. Effect of One SD Increase (%) was calculated by (exp(β̂dσd) − 1) × 100, where βd is the
estimated marginal effect of monthly water balance on prevented-planting share on date d and σd is
the standard deviation of water balance on date d.
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