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Abstract 

We use the Exemplar-Based Random-Walk model (EBRW) 
to extend the Varying Abstraction Model (VAM). Unlike the 
VAM which is designed to account for categorization 
proportions, this Varying Abstraction-Based Random-Walk 
(VABRW) model is able to predict categorization response 
times. The extension is especially useful in situations where 
response accuracies are not very informative for 
distinguishing between models.  Application of the VABRW 
to data previously gathered by Nosofsky and Palmeri (1997) 
provides additional evidence for the view that people use 
partial abstraction in category representations.  

Keywords: response times; categorization; abstraction; 
cognitive models 

Introduction  

Because of its crucial role in almost every aspect of 

cognitive processing, categorization has been studied 
extensively in the past 35 years.  Many different models 

have been proposed to account for the categorization results 

and tested using empirical data collected in category 

learning tasks. The vast majority of these experiments and 
models have focused on categorization decisions and on 

typicality ratings, neglecting the corresponding processing 

times.  This is surprising, as response times are arguably the 
most prominent dependent variable in the whole discipline 

of cognitive psychology. Response times have been argued 

to provide a window into understanding the nature of 
cognitive representations and decision processes (Nosofsky 
& Palmeri, 1997). 

    The few existing attempts of modeling categorization 

response times all start from the exemplar view on category 

representation (Smith & Medin, 1981).  In this view, a 
category is assumed to be represented by memory traces of 

all the exemplars that were previously encountered as a 

member of the category. For example, Lamberts (2000) has 
extended Nosofsky’s (1986) Generalized Context Model 

(GCM) to the Extended Generalized Context Model for 

response times and Nosofsky and Palmeri’s (1997) 
Exemplar Based Random Walk Model (EBRW) combines 
elements of the GCM with Logan’s (1988) instance based 

model of automaticity. Both approaches showed the 

usefulness of extending models that only account for 

categorization decisions to models that also predict response 
times. 

    The exemplar view on category representation is not the 

only view that has gained support. The most notable 

alternative to the exemplar view in accounting for 
categorization decisions is the prototype view, which holds 

that a category is represented by a summary of its members.  

Though the exemplar model seems to outperform the 
prototype model in general (e.g., Nosofsky, 1992; 

Vanpaemel & Storms, 2010), in some conditions the 

prototype representation seems to be supported (Minda & 

Smith, 2001; Smith & Minda, 1998). Moreover, models 
have been proposed that leave room for partial abstraction in 

category representation (Anderson, 1991; Griffiths, Canini, 

Sanborn, & Navarro 2007; Love, Medin & Gureckis, 2004; 

Rosseel, 2002; Vanpaemel & Storms, 2008). These models 
provided a broader window on representational abstraction 

suggesting that also levels of abstraction that are 

intermediate between exemplar and prototype models are 
viable representations that deserve consideration.   

   Despite more than three decades of research on 

categorization, the question about the nature of category 

representation still awaits conclusive evidence.  Moreover, 
the field seems to be converging to the view that human 

conceptual structure is sufficiently flexible to adopt highly 

abstract representations as well as exemplar representations, 
shifting the focus from establishing the single representation 

that always underlies categorization decisions, to identifying 

the conditions in which one representation is more likely to 

be used than another. In this paper, we contribute to this 
debate by presenting a general framework to account for 
decision times. More specifically, we generalize the EBRW 

model to encompass a broad set of representations each 

assuming different levels of abstraction, as implemented in 
the Varying Abstraction Model (VAM; Vanpaemel & 

Storms, 2008).  In what follows, we first describe the way 

the VAM and EBRW model are combined into the Varying 
Abstraction-Based Random-Walk model (VABRW). Next 

we apply the VABRW  to data collected by Nosofsky and 

Palmeri (1997).  
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VABRW 

The VABRW is most easily described in two steps: the 
different representations it assumes, and the processes and 

mechanisms that, when added to these representations, give 

rise to the categorization behavior of interest.  

VAM  Representations 

Following the GCM, the VAM starts with the assumption 
that the members of a category can be represented as points 

in a multidimensional psychological space. Category 

representations are constructed by dividing these points in 

clusters and averaging the coordinates of the points within 
these clusters. The resulting coordinates define the set of 

subprototypes that make up the category representation.  

    For example, if   cluster �� contains �� stimuli,  the 

coordinate value ���  for subprototype j on dimension k can 

then be calculated as follows: 

                                   ��� = �
	
 ∑ �
���∈�
  ,   

 

where �
� is the coordinate value of stimulus i on dimension 
k. 

    In general, there is no restriction on how the members of 

a category should be divided in clusters. Thus, the VAM 
encompasses all the representations that can be constructed  

from a category, including the exemplar representation as 

the least abstract and the prototype representation as the 
most abstract representation. If, for example, a category 

consists of four members, 15 different category 

representations can be created (see Figure 1).   

    The fact that the VAM considers all the representations 
that can be constructed from a category raises a problem 
when a category contains a large number of exemplars. In 

this case, the number of possible category representations 

within the VAM becomes quite large and this will severely 
complicate model fitting. A more constrained version of the 

VAM therefore favors representations that are based on the 

clustering of similar stimuli (Vanpaemel, 2011) while an 
even more constrained version considers only one 

representation at each level of abstraction (Verbeemen, 

Vanpaemel, Pattyn, Storms & Verguts, 2007). This latter 

version of VAM uses a K-means clustering procedure 
(Hastie, Tibshirani, & Friedman, 2001) in order to reduce 

the number of possible representations per category. The K-
means clustering procedure selects the most plausible 
clustering of category members based on the similarity 

between the category members, assigning similar members 

to the same cluster and keeping dissimilar members 

separate. The K-means clustering procedure would for 
example select category representations A (exemplar 

representation) ,E (out of the six representations with three 

subprototypes), N (out of the seven representations with two 

subprototypes) and O (prototype representation) from the 
representations shown in Figure 1. Within this study we 

used this latter version of the VAM to obtain the appropriate 

category representations.  

Predicting Classification Response Time 

In order to derive response time predictions from the 
intermediate category representations of the VAM, we 

combined the VAM representations with the processing 
assumptions of the EBRW model. The EBRW model 

assumes a random walk process in which the categorizer 
gathers evidence that a particular stimulus belongs to a 

particular target category. More specifically, the EBRW 

model assumes that when a to be categorized stimulus is 
presented, the exemplars of the target categories race to be 

retrieved, with rates proportional to the similarity of the 

exemplar to the stimulus. The exemplar that is the first to be 

retrieved provides evidence in favor of the category to 
which it belongs. When enough evidence is gathered and a 

category criterion is reached, the appropriate response is 
executed. 

 
 

Figure 1: The 15 possible representations for a category 

with four members. The subprototypes are represented by 

the black circles and are connected by lines to the original 

category members (the white circles). Panel A shows the 
exemplar representation (no members are merged); Panel O 

shows the prototype representations (all members are 

merged together into a single subprototype); Panels B-G 
show intermediate representations with three subprototypes; 

and Panels H-N show intermediate representations with two 

subprototypes. 
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    Although the EBRW model starts from the assumption 

that a category is represented by an exemplar representation, 
its mechanisms can be combined with other representational 

assumptions (see, for example, Nosofsky & Stanton, 2005 

for a prototype variant of the EBRW model). To combine 

the EBRW processes with the representations of the VAM it 
suffices to assume that upon the presentation of a target 

stimulus, the subprototypes that constitute the category will 

enter the race with rates related to the similarity of the 

stimulus to the subprototype and that the subprototype that 
is the first to be retrieved provides evidence in favor of the 

category to which it belongs. 

    The expected duration of the random walk when stimulus 
i is presented and thus the predicted response time for 

stimulus i is given by:  

 ���|�� = ���|�� ���������  , 
 

in which ���|�� represents the expected number of steps 

and �������|�� the expected time needed to take each 

individual step. The expected time to take each individual 

step is computed by: 

          ��������� = ! + �
�#�$%#�&� ,  

 

in which ! is a constant parameter that can be interpreted as 

the time needed to find the category to which the retrieved 

exemplar belongs. '
( and '
) are the  similarity of stimulus 
i to category A and category B, respectively, and are 

calculated by summing the similarities between the stimulus 
and the subprototypes that constitute category A and 

category B: 

'
( = * +��
 , ���
,
-#$

, 
in which '( denotes the set of subprototypes representing A. 
The similarities between the stimulus and the subprototypes 

can be computed by first determining the distances between 

the stimulus and the subprototypes that make up the 
category in the multidimensional psychological space. The 

distance between stimulus i and subprototype j is calculated 

by: 

.��
, �� = /* 0���
� − ��� �23

�4�
5

�2 , 
 

where �
� and ��� are the coordinate values of stimulus i 

and subprototype j on dimension k and 0 < 0� < 1 is an 

attentional weight associated with dimension k. These 

distances are then converted to obtain a measure of the 

similarity from each stimulus to every subprototype  
 +��
 , �� = 9:;<��� ,,
�  , 

 
where c is the sensitivity parameter.  

    The expected number of steps in the random walk is 

calculated by: 
 

���|�� = =>
 − ?
 − @ + =>
 − ?
 A 1 − �>
 ?
⁄ �)
1 − �>
 ?
⁄ �(%)C , 

 

if  ?
 ≠ >
 and ���|�� = @= , 
 

otherwise, where A and B are integers that represent the 

criteria or the amount of evidence needed to execute an A or 

B response, and ?
 can be computed by: 

 

  ?
 = '
( �'
( + '
)�,⁄  

and >
 by: >
 = 1 − ?
 . 
 

The free parameters in the EBRW model are the sensitivity 

parameter c, the attentional weight 0�, the criteria A and B 

that represent the amount of evidence needed before a 

response is executed and the time constant !. Furthermore 

two scaling parameters (slope k, intercept �) are added to 
rescale the model predictions into realistic response times. 

As VABRW shares its processing assumptions with EBRW, 

it has identical parameters. The only difference is that while 
EBRW assumes only a single representation (the exemplar 

representation), VABRW considers a range of 

representations (including the exemplar and prototype 

representation). These representations could be indexed by a 
parameter, that unlike more traditional parameters is 

discrete. The goal of applying VABRW to data, as we will 

do in the next section, is to estimate the value of this 
discrete parameter, thereby informing us about the level of 

abstraction people rely upon. 

Application of VABRW  

Experimental Procedure In an effort to test the EBRW 
model, Nosofsky and Palmeri (1997) administered an 

experiment (their Experiment 1) in which three participants 

were asked to perform a speeded classification task. The 

stimuli in the task were 12 Munsell colors. Nosofsky and 
Palmeri constructed two categories by dividing the stimuli 

in two categories of six members each: category A, 
represented by circles in Figure 2 and category B 

represented by squares in the same figure.  
   The speeded classification task was administered in five 

sessions of 30 blocks, each for a total of 150 blocks. Within 

a block, each color was presented only once, in a 
randomized order. Participants were asked to respond as 

quickly and accurately as possible. Corrective feedback was 

provided after each trial. After the speeded classification 

task, participants completed a similarity scaling task in 
which they were asked to rate the similarity of each pair of 

colors on a 10-point scale. These similarity ratings were 
then used to construct a multidimensional space for each 
participant. 

2844



 

 
 

Figure 2: The category structure used in Experiment 1 of 

Nosofsky and Palmeri (1997). Category A is represented by 
circles, category B by squares. 

 

Data Nosofsky and Palmeri (1997) computed for each of 
the three participants, response times for individual stimuli 

averaged across blocks 31 to 150, yielding 12 data points, 

and response times for groups of 5 blocks averaged across 

individual stimuli, yielding 30 data points. Additionally, the 
accuracies for the individual stimuli were computed, but 

since these were close to ceiling they were not included in 

their model analyses. The response times for the individual 

stimuli showed a very regular pattern: stimuli lying far from 
the category boundary were responded to faster than stimuli 

lying close to the category boundary. The response times for 

each group of 5 blocks showed, as expected, a decrease in 
response times with practice. Nosofsky and Palmeri  

showed that the  individual participant data could be well 

accounted for by the EBRW model.   

    We believed these data to be appropriate to apply the 
VABRW model. As mentioned above, the main focus of 

this application is investigating which category 

representations is most supported by the data. Furthermore 
fitting the model to the individual participant data allowed 

us to check whether there were individual differences in the 

participants category representations. 

 
Fitting Procedure  The most constrained version of the 

VABRW contained 36 different representations, resulting 

from the combination of 6 representations for each category 

which were identified using K-means clustering. All 36 
models were fit separately following the same procedure as 
Nosofsky and Palmeri (1997).  Each model was fitted to the 

data by searching for a single set of parameters to 
simultaneously predict both the mean response time for each 

stimulus and the speed-up curves (i.e. the mean response 

time as a function of grouped block), using the total sum of 

squared errors (SSE) as a goodness of fit criterion. Like 
Nosofsky and Palmeri, we further assumed that the amount 

of evidence that needed to be gathered in order to execute a 

categorization response was the same for the two target 
categories (A=B). In order to predict the speed-up curves, 

Nosofsky and Palmeri assumed that on each block an 

additional token of the exemplar was stored in memory. 
This assumption was implemented by multiplying the 

similarity of the stimulus to the category with the number of 

blocks. We instantiated the same multiplication, formalizing 

the assumption that with each  block the participants got 
more confident about the category representation they used. 

The only aspect in which our fitting procedure differed from 

Nosofsky and Palmeri’s was that we restricted A to values 

between 1 and 10,  to make the model fitting more feasible.  
 

Results Consistent with earlier findings, the exemplar 

representation captured the data better than the prototype 
representation. The optimal representations for Participants 

1 ,2 and 3 are presented in Panels A, B and C of Figure 3. 

As in Figure 1, the subprototypes that make up the category 

representations are presented in black while the category 
members that have been clustered together to obtain these 
subprototypes are presented in white. When we consider the 

best fitting representation, the three participants differ in the 
type of representation that best accounted for their data. 

Participant 3 seemed to rely on an exemplar representation, 

a finding that fits well with the impressive fits that the 

EBRW model provided to the data. Participants 1 and 2 in 
contrast relied on less detailed representations. For 

Participant 1 the best fitting model consists  of 5 

subprototypes in Category A and 4 subprototypes in 

Category B and thus comes quite close to the fully detailed 
exemplar representation. Participant 2, in contrast, relied on 
a much more abstract representation consisting of 2 

category A subprototypes and 2 category B subprototypes.  
Table 1 shows the correlations between the observed and 

predicted values, as well as the best fitting parameter values 

for each participant. The relatively high correlations 

between the observed and predicted values indicate that the 
models did a fairly good job in accounting for the response 

time data.  

 
Table 1: Best-fitting parameters and correlations. 

 

 Participants 

 1 2 3 

c 2.6831 0.6663 1.7910 
A 10 9 4 

α 0.1794 0.1964 0.0558 F� 0.2871 0.3127 0.7469 

k 224.4538 45.0123 661.5330 

µ 293.7754 342.0962 447.1176 

 
correlations 

   

individual 0.9339 0.9936 0.9570 

speed-up 0.9281 0.6297 0.9334 
Note. c= sensitivity parameter, A= the criterion parameter, α= time 

constant, wx= weight for dimension x, k = slope and µ = intercept. 

Correlations on the row “individual” are the correlations with the 

individual mean response times and correlations on the row 

“speed-up” are the correlations with the speed-up curves. 
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Discussion 

Generally, different computational models of category 

learning are compared on their ability to account for the 

choice proportion in a category learning task. Though useful 
to discriminate among competing models, choice 

proportions provide only a limited window on 

categorization behavior. Also other variables like typicality 
and classification response times are informative about the 
underlying category representations and processes. Several 

researchers attempted to extend categorization models to be 

able to predict classification response times in category 
learning tasks. (Ashby, Boynton & Lee, 1994; Lamberts, 

2000; Nosofsky &  Palmeri, 1997; Nosofsky & Stanton, 

2005).  

In this paper we extended the VAM, designed to predict 
choice proportions, to enable it to account for response 

times by combining the set of category representations 

provided by the VAM with the process assumption of the 
EBRW model. Based on response time data from Nosofsky 
and Palmeri (1997), we showed that the best-fitting 

representations of two of the three participants relied on 

some amount of partial abstraction. This finding adds to the 
growing body of evidence that categorization should not 

always be exemplar based, but can rely on intermediate 

representations as well (e.g., Griffiths et. al. 2007, 

Vanpaemel & Storms, 2008).  
Although response times are not the primary variable of 

interest in categorization research, we believe that they can 

provide additional information about the nature of category 
representations and should be used more often in the 
evaluation of computational models of category learning. 

One problem, for example, with evaluating models using 

choice proportions is that it becomes difficult to study 
participants that have received extensive training. In long 

learning tasks, like the one used by Nosofsky and Palmeri 

(1997),  participants will often reach expertise and have, by 
the end of training,  classification proportions that are close 

to ceiling for the training examples. A clear advantage of 

working with response times is that, even after extensive 

training, they show variation that is likely to be linked to the 
categorization processes and representations. Therefore, 
response times can offer insights in the category 

representation of the expert engaging in the task.   

    Being able to investigate abstraction after extensive 
learning is of particular theoretical importance, since  one 

key factor that is thought to influence abstraction seems to 

be the time point in learning (Smith and Minda, 1998).  
Further, when models of category learning are applied 

outside a lab context to semantic concepts, such as fruits or 

vehicles, relying on choice proportions is very difficult, 

since most people are experts for these categories. Models 
such as VABRW escape this conundrum, because they can 

account for response times. In this capacity, VABRW has 
the promise to provide fruitful insights in the representation 
of semantic concepts.  

 

 

 
 
Figure 3: The best category representations for the three 

participants. 
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