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Abstract 

This lecture discusses a theory for the transport of mass, 

charge, linear and angular momentum and energy in damped nuclear colli­

sions, as induced by multiple transfer of individual nucleons. 

Notes for a lecture given at the 
Enrico Fermi Summer School on Nuclear Physics 

Varenna, Italy, 9-21 July 1979 
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1. Introduction 

Modern accelerator technology has presented us with intense beams 

of heavy nuclei with energies of several MeV per nucleon. Such beams offer 

a powerful and flexible tool for studying large-scale nuclear dynamics. 

One of the central aspects in this undertaking is the jjnterplay between 

nuclear dynamics and nuclear structure. How does the specific nuclear 

structure affect the nuclear dynamics? Or, conversely: How can nuclear 

collisions be used to probe new aspects of nuclear structure? These ques­

tions are now receiving increased attention and it is therefore most appro­

priate at the present time to devote a school to the theme: nuclear struc­

ture and heavy-ion collisions. 

As a first step towards understanding the role of nuclear struc­

ture in nuclear dynamici, one might consider the question: How would 

nuclei behave if there were ho special structure effects? The under­

lying motivation for this is the wish to establish a general reference 

dynamics against which to interpret the experimental data on actual 

nuclei and relative to which the nuclear-structure effects can be dis­

cussed in an instructive manner. 

The philosophy is here very similar to the one associated with 

the macroscopic ("liquid-drop") model of nuclear statics. We do of 

course not. believe that the nuclear properties vary smoothly as a 

function of particle number, deformation etc. But nevertheless the 

actual nuclear properties do exhibit regularities and systematic trends 

which can be understood on rather general grounds without reference to 
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the specific structure of the individual nuclei. The identification 

of this smooth background part would enable us to understand the gross 

features of the experimental data. Moreover, by being able to eliminate 

the macroscopic part from OUT considerations we could enhance the fea­

tures arising from the specific microscope structure. 

When two heavy nuclei collide with energies of several MeV per 

nucleon a large fraction of their initial translational energy is con­

verted into intrinsic excitation (hence the term "damped collisions"). 

However, although strongly perturbed and highly excited, the two final 

fragments do show a large resemblance with the initial nuclei; this fact 

indicates that a binary configuration has been maintained throughout the 

entire collision process. The dynamics of the intermediate complex can 

therefore be discussed in terms of the degrees of freedom associated with 

a dinuclear system. 

Although the final fragments resemble the initial nuclei they 

are by no means identical to them: typical mass and charge widths amount 

to several units. This implies that a substantial number of nucleons 

are transferred in such a collision. The transfer of a nucleon is gen­

erally associated with a dissipation of energy and momentum and in fact 

simple estimates suggest that this mechanism is an important, if not 

dominant, agency for the damping of the dinuclear motion. 

In this lecture I shall indicate how the effects of nucleon trans­

fer in nuclear collisions may be explored in a simple model. The aim is 

to obtain an impression of the general features associated with the 

transfer-induced transport in nuclear collisions. It should be 
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emphasized from the outset that although we focus our attention on the 

transfer mechanism we do not wish to preclude the coexistence of other 

important mechanisms, such as the excitation of various collective 

modes in the nuclei. In fact, the dynamical interplay between the 

different coexisting mechanisms forms a fascinating subject for future 

study. 

2. The Model 

In the present discussion we take advantage of the approximate 
validity of the independent-particle model of nuclei. We thus assume 
that the nucleons move nearly independently in the nuclear one-body mean 
field. The occupation probabilities of the single-particle states in 
the nucleus are then taken to be as in Fermi-Dirac gases. 

& t e
a " e A 1 / T -1 

f*Cea) - (1 + e a A ) 1 

For simplicity we consider here only one type of nucleon - the generaliza­
tion is straightforward. In (1) e is the energy of the nucleon in the 

a 

projectile-like nucleus A and e. is the energy of the nucleon in the 
target-like nucleus B; the corresponding Fermi energies are denoted by 
e. and e«. The above assumption need not be good at the very early 
stages of the collision but this is less important. At the time when 
good communication is established between the two nucleides they are 
typically excited by several MeV and (1) appears a reasonable description. 
Furthermore, due to the good communication, we assume that the (time-
dependent) temperature T is the same in the two collision partners. 
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The two nuclei move with velocities !5. and U„. These velocities 
A o 

refer to those parts of the nuclei which are in the interaction zone 
rather than to the nuclear centers. 

When the communication between A and B has been established the 
transfer of nucleons is possible. In line with the mean-field independent-
particle description we shall assume that the nucleons are transferred in­
dividually rather than as correlated clusters (although we do not wish to 
preclude that such transfers might also occur and even play an important 
role). The driving force for the nucleon transfer arises partly from the 
difference in the Fermi levels, F = e B - e., and partly from the relative 
velocity of the two gases, U = tL - tL. The transfer of a nucleon creates 
a one-particle one-hole type excitation of the intrinsic nuclear system. 

rgy of this exciton amounts to 
o> - F - tNp . (2) 

It can be shown -* that the energy of this exciton amounts to 

Here p = •=• (p + p. ) where p is the momentum of the nucleon relative to 
Z 3. D 9. 

A and p, is its momentum relative to B. It is an important assumption 
that once a nucleon has been transferred it is quickly accepted as an 
equal member of the recipient nucleus and no memory of its heritage re­
mains. By this assumption the multiple transfers can be considered as 
markovian and the process can be treated by standard transport theory. 
The relevance of transport theory to damped nuclear collisions was first 
recognized by N&'renberg. * 

Consider for the moment a flat contact geometry with the area a. 

The rates of transfer between the two nuclei are then given by 
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A^a/^'f'^&Ap) IT l 

v & 

for transfer into and out of A, respectively. Here the occupation 
factors f give the probability that a nucleon is initially present in 
the donor nucleus with the momentum p and the blocking factors f~= 1-f 
give the probability that such a state is available in the recipient 
nucleus. The transfer rate is proportional to the magnitude of the 
velocity in the direction normal to the contact surface as simple clas­
sical arguments would suggest. ' 

The above expressions for the basic transfer rates from the 
core of the model. If the geometry of the interaction zone is gently 
curved the proper generalization of (3) can be accomplished by applica­
tion of the proximity method. ' The ensuing formulas make it relatively 
simple to study the dynamical role of nucleon transfer in nuclear colli­
sions. Such studies, based on direct numerical simulation, are presently 
under way. * 

• i 

For the general discussion of the transport problem it is con­
venient to reduce the master equation implied by (3) to its Fokker-Planck 
approximation. The characteristic quantities are then the transport 
coefficients, which govern the rate of change of the mean values of the 
macroscopic variables and their covariances. They can be determined by 
following the short-term evolution of a system which has been prepared 
with specified sharp values of the macroscopic variables. If we were 
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to consider only the particle number A we would have 

V A(A) - ^ A * A + - r 
(4) 

for the drif t and diffusion coefficients, respectively, and the dynam­

ical evolution of the probability distribution for a given mass par t i ­

tion, P(A; t ) , would be governed by 

& P = - i V A P + ^ I D M P - <s> 

This only serves as a simple illustration. In reality we wish to con­
sider the simultaneous evolution of several interrelated macroscopic 
variables. 

3. Nearly Degenerate Limit 
Until now, most of the experimental studies of damped nuclear 

collisions have been carried out at relatively low energies, with the 
nuclei meeting each other with kinetic energies of a few MeV per nucleon. 
Since this energy is small in comparison with the intrinsic kinetic 
energies of the nucleons the collective motion is relatively slow and 
the nuclei acquire only modest excitation. Under these circumstances • 
only the nucleons near the Permi surface take part in the exchange and 
the entire treatment simplifies considerably. In the following we shall 
specialize to this limit and thus assume 

U<<V F, F, T, u < < T r (6) 
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Then the occupation factors can be written in the approximate 

formX) 

T A f 3 « i(oi) 6(e - Ep) 

C7) 
f* f B « *(-u>) 6(e - E p ) 

where 

iCoi) = OJ(1 - e ' ^ ) " 1 . (8) 

Due to the appearance of the 6-function in (7) the energy integration in 

(3) is t r iv i a l and only the directional integration remains. I t i s use­

ful to introduce the flux-weighted directional average of a function 

g(n) by 

<g> = 4 ^ J ^ i c o s 0 i g ( ^ C 9 ) 

where the polar axis is perpendicular to the interaction surface between 
A and B. 6^ 

With these simplifications the transfer rates (3) reduce to 

A ^ N ' C e p ) < i(±aO> F CIO) 

where the subscript F has been attached to the flux average to indicate 
that only the particles in the Fermi surface should be considered. The 
overall transfer rate is governed by the quantity N 1 (eF) which is the 
differential one-body current of nucleons transferred at the Fermi sur­
face:43 

N' (£p) = ~ N( Ep) , N(e F) - | p v a . (11) 
F 
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Here ? p v is the one-way flux in standard nuclear matter. The expres­

sion for N(£p) holds for a flat, fully open contact surface; in general 

the current N(E p) depends sensitively on the geometry of the interaction 

zone and may be difficult to calculate. For a certain family of dinuclear 

configurations simple estimates can be obtained by use of the proximity 

method, * 

From the knowledge of the basic transfer rates it is straight­

forward to derive the appropriate expressions for the transport coeffi­

cients for a given set of macroscopic variables {£} (assumed to be addi­

tive such as e.g. the particle number A and the momentum P). The drift 

coefficient vector V represents net rate of change of the variables, 

hence ' 

(12) 
= N'(eF)<aj 2(p)>p. 

The corresponding diffusion coefficient tensor D represents the rate of 

increase in the covariances, hence 

V * " N,CeF)<i<iCw) + iC-w)^r(p)tfr2Cp))F 

1 2 (13) 
= N'CepKf coth(£)^(p)tf2Cp5^. 

These expressions appear immediately plausible when one considers 

the fact that the differential transition rate from B to A, at the energy 

E, is given by N' (e) 1 f: and the rate for the opposite direction is 

given by N' (e) i: f . (The situation corresponds to a random walk where 

the net gain is the difference in the number of steps taken and the 
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variance is the total number of steps.) Tha cancellation of the blocking 

factors 7 in the expression for the drift coefficients V is a general re­

flection of the fact that this quantity can be represented in terms of 

one-body operators and hence is insensitive to correlations among the 

particles. 

4. The Dinucleus 

The expressions (12) and (15) have been written for arbitrary 

additive observables {£}. Let us now consider the case of actual inter­

est, the dinucleus. For simplicity we shall restrict our attention to 

the following variables 

C = { Z, N, P, t , $A, t B } (14) 

where Z and N are the proton and neutron numbers of the projectile-like 

partner A, P and £ are the radial and angular momenta at the relative 

dinuclear motion, and S. and jL are the individual angular momenta carried 

by the dinuclear partners A and B. 

It is simplest to consider the particle numbers Z and N. From 

(12) and (13) we obtain 

V Z = N Z F Z » V N = N N F N ( 1 5 ) 

D Z Z = N Z T * • ^ - N f t * * 

and Dm = 0. Here Ni and IV, are the differential one-body currents of 

protons and neutrons, respectively, and F~ = -33C/8Z and F N = -33C/8N are 

the corresponding driving forces. The "effective temperature" T* is 

given by 
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T * = < ^ c o t h (£)> p. (16) 

It is the average energy stored in the elementary transfer modes of 
excitation. The appearance of t* is a characteristic feature of the 
model. It should be noted that the transport coefficients (15) satisfy 
a generalized Einstein relation DF = V x* in accordance with the fluc­
tuation-dissipation theorem. A general discussion of the implications 
of the fluctuation-dissipation theorem on low-energy nuclear dynamics 

71 has been made by Hofmann and Siemens. •* The transport coefficients (IS) 
make it possible to study the simultaneous transport of charge and mass 
in nuclear collisions. •' 

By elementary but somewhat more complicated calculation it can 
be shown that the transport coefficients for the various momentum vari­
ables are approximately 

V p p = - 2m N R 

n - 2m N T* Upp 

\ = - m N R" x £j 
ft = - a ft ft _ b rt 
\ R-V V S D - " R VL 
DLL m N R V (I I jj) 
\s, --s^v*^ (18) 

•* ah *• , /l 0 0\ 

VA ' VB * * a) 

VB = VB Ca * b)' 
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Here N = N„ + N„ denotes the average one-body nucleon current from one 

partner to the other, R is the position of A relative to B, and a and 

b are the distances from (the centers of) A and B to the interaction 

zone where the transfers occur. The off-diagonal diffusion coefficients 

coupling tie above momentum variables to the particle numbers have been 

omitted here since they are often (but not always) negligible. Likewise, 

the explicit appearance of T* is only approximate and may not always be 

quantitatively accurate. 

The drift coefficients for P and £ are recognized as the radial 

and tangential components of the window friction ' J and can be derived 

on simple classical grounds due to their one-body character. The vanish­

ing of the zz-component of D., is a trivial reflection of angular momen­

tum conservation (L is always perpendicular to R). The diffusion tensors 

for the intrinsic angular momenta contain an additional term resulting 

from off-axis transfers (such transfers may change the K quantum numbers 

in A and B and hence S. and S f i need not remain perpendicular to R); this 

term depends explicitly on the geometrical size of the interaction zone 

as measured by the effective neck radius p -- (and it is therefore typ-
2 2 ically smaller than the first term by a factor p __/R ). 

The degradation of the initial macroscopic energy leads to ex­

citation of the microscopic degrees of freedom in the two nucleides. 

The generated heat Q is of primary interest since it characterizes the 
1/2 state of the intrinsic system (through the temperature T = (Q/a) ' , 

a «» (A + B)/8 MeV). It is therefore convenient to include Q in the set 

of macroscopic variables considered. This can be done although the 

intrinsic energy is not an additive variable. The drift coefficient, 
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equal to the energy dissipation rate, can be calculated from the loss of 

macroscopic energy, 

V 4 
= F Z V Z + F N V N + mN(2R 2

 + U t ) 2 . (19) 

The various diffusion coefficients involving Q can be obtained approx­

imately by use of the generalized Einstein relation (with the driving 

force FQ = - 33C/3Q equal to unity): 

*» a (20) 

D «*V T * . 

This completes the derivation of the transport coefficients for 

the disphere. No arbitrary parameters enter in the expressions (although 

the form factors depend delicately on the details of the interaction zone 

and therefore are difficult to estimate accurately). The theory thus 

implies that certain specific relations exist between the different macro­

scopic variables. This feature may be particularly useful when trying 

to determine from experiment the relative importance of the particle-

transfer mechanism in damped nuclear collisions. 

5. Confrontation with Experiment 

In order to determine the relative importance of the nucleon 

transfer mechanism in damped nuclear collisions, and verify the specific 

structure implied by the above formulas, it is necessary to confront the 

theory with experiment. This task is made difficult by the fact that the 

transport process depends delicately on the details of the interaction 
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zone whose dynamics is still only poorly understood. One may try to cir­

cumvent this complication, which presents an interesting problem by itself, 

by correlating a number of different observables. We shall discuss here 

one example of such an approach, namely the relation between the energy 

loss and the mass dispersion. It was first suggested by Huizenga et al.10-* 

that this relation may be used to elucidate the basic nature of the trans­

fer mechanism. (This subject has also been addressed by Gobbi in a lec­

ture at this school.) 

The basic idea ia the following: Each nucleon transfer induces 

an energy loss u> given by (2). The transfer rate is equal to the rate 
2 of increase in the dispersion a., by ordinary random-walk theory. Hence 

the rate of energy loss can be written 

HT T -" Q " " Ve dT 4 W 
1 2 where w is the appropriate average exciton energy and T = •=• u U is 

the kinetic energy of the relative motion. We restrict our attention 

to nearly peripheral, partially damped collisions so that the relative 

velocity U is predominantly tangential. 

If there were no intrinsic motion of the nucleous prior to their 
1 9 m 

transfer they would contribute an excitation energy w = y mU = — T 

(neglecting the relatively small contribution from driving force F act­

ing on asymmetric s 

duced the quantity 

ing on asymmetric systems). Therefore, Huizenga et a l . * have intro-

_ u 1 dT ,m\ 
° - - = T ID ( 2 2 ) 

A 
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which can be extracted empirically from the relation between the kinetic 

energy loss and the mass dispersion obtained in a given experiment. 

(It is here important that a indeed turns out to be experimentally well-

defined.) It follows that if all the dissipation were induced by trans­

fer of particles initially at rest then a would be unity. 

In the present theory where the dissipation is produced by trans­

fer of Fermi-Dirac particles (which have an initial motion and are sub­

ject to the blocking effect) we have 

-^ T = - < oj2 > F N» (£p) (23) 

and 

- g a A
2 * 2x*N'(eF) (24) 

as follows from the general expressions (12) and (13) respectively. 

Hence i t follows that 

- ^ £ • (25) 
da A

2 2t 

For a nearly peripheral collision (where u is almost tangential) between 

nearly symmetric systems (so that F. can be neglected) we have 

<w 2> F ^ U 2 P F
2 = | m U 2 T F • (26) 

Consequently we arrive at the following simple estimate 

T 
a * - | - . (27) 

2T 
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It should be noted that if the blocking effect were ignored in the cal­

culation one would arrive at ct^l. 

The above simplistic estimate (27) indicates that a should 

typically be substantially larger than unity (since usually x* « T p ) . 

Moreover the formula suggests that a should decrease as the bombarding 

energy E (and hence t*) is increased. Both of these features are 

indeed present in the experimental data where a-values of 2 to 16 have 

been found and where a clear decrease with E has been established in 

all cases explored. ' We wish to emphasize that these are both features 

which would not find an explanation within a classical transfer model-

For nearly symmetric systems the value of T* is essentially 
1 2 determined by •* m U . The formula (27) therefore suggests that the 

a-values for many different systems should fall on the same "universal" 
1 2 curve when plotted against T I H U . Such a behavior is indeed borne out 

by experiment. This fact lends support to the employed model, and pro­

vides evidence that the mechanism considered, namely the transfer of 

individual nucleons, plays an essential role as a damping mechanism. 

However, it must be stressed that the perturb-itive estimate (27) relies 

on a number of idealizations and a more refined treatment is called for 

before a definite comparison can be made. 

6. Concluding Remarks 

We have explored the consequences of the independent-particle 

idealization for the dynamical properties of the dinucleus; no additional 

physical assumptions have been introduced. In this way clear and rel­

atively simple results have been derived for the dinuclear transport 



-16-

coefficients. Although the approach treats only uncorrelated microscopic 

modes of excitation, it is not meant to preclude the possible coexistence 

of additional mechanisms, such as the interplay with collective dinuclear 

modes and the special dynamics of the interaction zone. The high spec­

ificity of the present results holds promise that a careful confrontation 

with experiment might indicate conclusively to what extent the predicted 

behavior is borne out by real nuclei. At the same time the relative 

importance of other agencies might be established; should thsy prove 

important, an appropriate extension of the theory is called for. 
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