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Abstract: The inclusive production of the ψ(2S) charmonium state was studied as a

function of centrality in p-Pb collisions at the nucleon-nucleon center of mass energy
√
sNN

= 5.02 TeV at the CERN LHC. The measurement was performed with the ALICE detec-

tor in the center of mass rapidity ranges −4.46 < ycms < −2.96 and 2.03 < ycms < 3.53,

down to zero transverse momentum, by reconstructing the ψ(2S) decay to a muon pair.

The ψ(2S) production cross section σψ(2S) is presented as a function of the collision cen-

trality, which is estimated through the energy deposited in forward rapidity calorime-

ters. The relative strength of nuclear effects on the ψ(2S) and on the corresponding

1S charmonium state J/ψ is then studied by means of the double ratio of cross sections

[σψ(2S)/σJ/ψ]pPb/[σψ(2S)/σJ/ψ]pp between p-Pb and pp collisions, and by the values of the

nuclear modification factors for the two charmonium states. The results show a large

suppression of ψ(2S) production relative to the J/ψ at backward (negative) rapidity, corre-

sponding to the flight direction of the Pb-nucleus, while at forward (positive) rapidity the

suppressions of the two states are comparable. Finally, comparisons to results from lower

energy experiments and to available theoretical models are presented.
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1 Introduction

Charmonia are bound states of a charm and an anticharm quark (cc), and represent an im-

portant testing ground for the properties of the strong interaction. In high-energy proton-

proton collisions, the charmonium production process is usually factorized in two steps:

the creation of a cc pair followed, on a longer time scale, by the binding and emission of

one or more gluons that brings the pair to a colour singlet state. This process is described

reasonably by theoretical models inspired by Quantum Chromodynamics (QCD) [1], al-

though a quantitative evaluation of the production cross sections and polarization of the

charmonium states still meets difficulties [1, 2].

If a charmonium state is produced within the nuclear medium, as can happen in proton-

nucleus collisions, several effects become important and might influence the charmonium

formation. In particular, the modification in the nucleus of the parton distribution func-

tions (shadowing/anti-shadowing) [3–5], can lead to a suppression or an enhancement of

the charmonium production. Furthermore, the incoming partons, as well as the outgoing

cc pair, may lose energy in the nuclear medium, altering the differential distributions of the

produced charmonium state [6]. Finally, once the bound state is formed, it may be disso-

ciated via collisions within nuclear matter [7–9]. However, the formation of the final-state

resonance occurs in a finite time τf which, depending on the kinematics of the cc pair and

on the collision energy, may be longer than its crossing time, τc, in the nucleus.

Among the narrow charmonium states, i.e. those with a mass smaller than twice the

mass of the lightest D mesons, we address in this paper the vector states (JPC = 1−−)

J/ψ, characterized by a binding energy ∆E ∼ 650 MeV (corresponding to the mass gap

to the open charm threshold), and the weakly bound ψ(2S), with ∆E ∼ 50 MeV [10]. A

comparison of the production cross section of the two states in proton-nucleus collisions

offers interesting insights into the size of the various cold nuclear matter (CNM) effects

outlined above. In particular, shadowing acts on the initial state partons and has a nearly

identical size for the two resonances [11, 12]. Therefore, its effect largely cancels out
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when studying the ratio of their production cross sections. Also coherent energy loss

mechanisms [6], have a similar effect on the two resonances, due to the fact that they act

on a compact cc pair not yet evolved into a final color singlet state. On the contrary, the

break-up probability of the final resonance inside the nucleus should be much larger for the

weakly bound ψ(2S) [13].

Early results on J/ψ and ψ(2S) production in proton-nucleus collisions were obtained

at fixed target experiments by E866 [14] at FNAL (
√
sNN = 63 GeV), by HERA-B [15] at

HERA (
√
sNN = 39 GeV) and by NA38, NA50, NA60 [16–18] at the CERN SPS (

√
sNN =

17–29 GeV). At mid-rapidity, i.e., close to ycms = 0, the relative production cross section

σψ(2S)/σJ/ψ was found to decrease rather strongly for increasing mass number of the nuclear

target. Since part of the kinematic domain accessed at fixed target energies is characterized

by τf < τc [9], such an observation can indeed be related to a stronger break-up effect on

the weakly bound ψ(2S).

At collider energies, it becomes technically more difficult to have data samples cor-

responding to various nuclear colliding species. Therefore, in order to vary the thickness

of CNM crossed by the cc pair, one can rather select classes of events based on estima-

tors of the geometry (centrality) of the collision, corresponding to various ranges in the

number of nucleon-nucleon collisions Ncoll. This procedure was followed by the PHENIX

experiment at RHIC, which studied the nuclear modification factors, defined as the ratio

between the measured yields in d-Au and proton-proton collisions, normalized to Ncoll, for

the J/ψ and ψ(2S) resonances at mid-rapidity [19]. At
√
sNN = 200 GeV, the nuclear mod-

ification factors were smaller by a factor ∼ 3 for ψ(2S) relative to J/ψ for central events,

indicating a stronger suppression for ψ(2S). However, such an observation is surprising

since for mid-rapidity production at RHIC energies the time spent by the cc pair in the

nucleus (τc < 0.05 fm/c) is below the formation time of the final-state resonance (most

theory estimates [9, 20, 21] give τf > 0.15 fm/c). In such a situation, one would rather

expect a similar suppression for the J/ψ and ψ(2S) states.

At the LHC, centrality-integrated results on the ψ(2S) and J/ψ resonances for p-Pb

collisions at
√
sNN = 5.02 TeV were obtained by ALICE [22, 23] and LHCb [24, 25]. At both

forward (positive) and backward (negative) rapidities, corresponding to the p-going and

Pb-going directions respectively, a significantly larger suppression of ψ(2S) compared to

J/ψ was observed, relative to proton-proton collisions. Again, this result was unexpected,

as the τc values are either at most the same order of magnitude (at negative ycms) or more

than two orders of magnitude smaller (at positive ycms) than τf [22]. Therefore, additional

effects, as the interaction of the loosely bound ψ(2S) with a hadronic or partonic medium

produced in the collision, might be necessary in order to explain the results [11, 26].

As outlined above, a differential measurement as a function of the collisions centrality is

equivalent to a study of the propagation of the cc pairs over various thicknesses of CNM. In

this Letter, we go in that direction by showing results obtained by the ALICE Collaboration

on ψ(2S) studies in p-Pb collisions as a function of centrality, estimated through the energy

deposited at very forward rapidity by the remnants of the Pb-nucleus. The corresponding

J/ψ studies were published in [27]. In section 2 we give a brief overview of the experimental

apparatus and run conditions. Section 3 presents details on the analysis procedure, while

section 4 is dedicated to the results. The conclusions are presented in section 5.
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2 Experimental conditions

The analysis presented in this Letter is based on the detection of the ψ(2S)→ µ+µ− decay

in the forward muon spectrometer of ALICE, described in detail elsewhere [28, 29]. This

detector covers the pseudorapidity range −4 < ηlab < −2.5 and includes a 3 T· m dipole

magnet and five stations of tracking chambers, the central one being inside the magnet

gap. A main absorber (10 interaction lengths thick) is positioned between the ALICE

interaction point and the tracking system, in order to remove hadrons. A second absorber

is placed downstream of the tracking detectors. It removes the remaining hadrons and

low-momentum muons produced predominantly from π and K decays, and is followed by

two stations of trigger chambers that select muon candidates based on their transverse

momentum (pT). In addition to the muon spectrometer, the first two layers of the Inner

Tracking System (SPD, i.e., Silicon Pixel Detectors, the first covering |ηlab| < 2.0 and the

second |ηlab| < 1.4) [30] are used for the determination of the position of the interaction

vertex. The two V0 scintillator hodoscopes (covering −3.7 < ηlab < −1.7 and 2.8 < ηlab <

5.1, respectively) are used for triggering purposes [31]. Finally, two sets of Zero-Degree

Calorimeters (ZDC), positioned at 112.5 m on the two sides of the interaction point, each

one including a neutron calorimeter (ZN) and a proton calorimeter (ZP), are used to clean-

up the event sample from interactions occurring out of the nominal bunches and for the

centrality estimate [32, 33].

The data-taking conditions were described in [23, 34] and are briefly stated here.

Two data samples were taken, corresponding to the p-beam or the Pb-beam going in

the direction of the muon spectrometer, and labelled in the following as p-Pb and Pb-p,

respectively. The integrated luminosities were LpPb
int = 5.01± 0.19 nb−1 and LPbp

int = 5.81±
0.20 nb−1 [35]. The events used in this analysis were collected requiring a coincidence

between a minimum bias (MB) trigger condition, defined by the logical AND of signals on

the two V0 hodoscopes (>99% efficiency for non-single diffractive events), and the detection

of two candidate opposite-sign tracks in the trigger system of the muon spectrometer. A

pµT > 0.5 GeV/c cut on such tracks was also imposed at the trigger level. The offline

event selection, the muon reconstruction and identification criteria and the kinematic and

quality cuts applied at the single-muon and dimuon levels have already been described in

refs. [22, 23, 27, 36]. In particular, the covered dimuon rapidity ranges were 2.03 < ycms <

3.53 and −4.46 < ycms < −2.96 for the p-Pb and Pb-p configurations, respectively.

3 Data analysis

In this section, the evaluation of the various elements that enter the cross section measure-

ments and the nuclear modification factor calculations are described.

The centrality selection and the determination of Ncoll are based on a hybrid method

described in detail in ref. [33]. Events are selected according to the energy deposited at

very large rapidity in the ZN positioned in the Pb-going direction, which mainly detects

slow neutrons emitted by the Pb-nucleus as the result of the interaction. Their emission,

according to results obtained in the analysis of lower energy proton-nucleus experiments,

– 3 –
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ZN centrality class 〈Ncoll〉
2–20% 11.3 ± 0.6 ± 0.9

20–40% 9.6 ± 0.2 ± 0.8

40–60% 7.1 ± 0.3 ± 0.6

60–80% 4.3 ± 0.3 ± 0.3

80–100% 2.1 ± 0.1 ± 0.2

Table 1. Average numbers of binary nucleon-nucleon collisions, Ncoll, evaluated in the ZN centrality

classes used in this analysis. The first quoted systematic uncertainty is uncorrelated, while the

second is global.

is expected to be monotonically related to Ncoll [37]. A centrality selection based on the

ZN energy is found to be less biased than other centrality estimators, based on the charged

particle multiplicity measurements at central (SPD) or forward (V0) pseudorapidity [33].

The average number of nucleon-nucleon collisions 〈Ncoll〉 for each ZN-selected centrality

class is then obtained by assuming that the charged particle multiplicity measured at central

rapidity is proportional to the number of participants Npart = Ncoll + 1 [38]. The values of

〈Ncoll〉, used in this analysis, are reported in table 1, together with their uncertainties.

The centrality classes used in this analysis correspond to 2–20%, 20–40%, 40–60%,

60–80% and 80–100% of the measured cross section corresponding to the MB trigger. Very

central events (0–2%) are discarded from the event sample due to a large contamination

from pile-up interactions.

The estimate of the ψ(2S) signal is based on binned likelihood fits to the dimuon in-

variant mass spectra mµµ corresponding to events in the centrality ranges defined above.

Details on the procedure, on the fitting functions and on the estimate of systematic uncer-

tainties are discussed in [22]. The function used in the fit is the sum of a continuum back-

ground, mainly related to uncorrelated decays from pions and kaons and to semi-leptonic

decays of pairs of hadrons with open heavy flavor, and of resonance shapes correspond-

ing to the J/ψ and ψ(2S) mesons. The background is parameterized by various empirical

shapes, directly fitted to the data. The resonances are described by either a Crystal Ball

function or a pseudo-gaussian with a mass-dependent width [39]. The main parameters of

the J/ψ line shapes, i.e. mass position and width, are left as free parameters, while the

non-gaussian tail parameters are fixed to Monte-Carlo (MC) estimates. The ψ(2S) line

shape parameters, given the less favourable signal over background, are fixed relative to

those of the J/ψ, assuming that the mass difference and the widths scale according to the

MC result. The results of the fits are shown in figure 1.

The quality of the fits is good, with χ2/ndf ranging from 0.7 to 1.3. The ψ(2S) signal is

visible in all the centrality bins, and the signal over background ratio increases from central

(0.06 for p-Pb and 0.04 for Pb-p) to peripheral events (0.15 and 0.28, respectively). The

number of reconstructed ψ(2S) for the various centrality bins, N i
ψ(2S)→µ+µ− , ranges from

265±73±32 (i= 2–20%) to 100±29±9 (i= 80–100%) in p-Pb, where the first uncertainty

is statistical and the second one is systematic. The corresponding values for Pb-p are
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Figure 1. Opposite-sign dimuon invariant mass spectra in ZN centrality classes at forward (top)

and backward (bottom) rapidities. The fit curves shown in red in the figure correspond to the sum

of signal and background shapes, the former being also shown separately in blue.

141± 64± 13 (i= 2–20%) and 65± 20± 7 (i= 80–100%). The systematic uncertainties on

the signal extraction are given by the root mean square of the number of ψ(2S) obtained

in 72 fits corresponding to various fitting functions for background and signal, to different

fitting ranges, to variations of the non-gaussian tails of the resonance shape, and of the

ψ(2S) mass resolution values. In p-Pb, the systematic uncertainties range between 11 and

13% from peripheral to central events (11–21% for Pb-p).

The product of acceptance times efficiency A×ε for the ψ(2S) resonance was calculated

with the MC-based procedure described in refs. [22, 23]. The values are the same as quoted

there for the centrality integrated production (0.270± 0.014 for p-Pb and 0.184± 0.013 for

Pb-p), since it was verified that the tracking efficiency does not depend on the centrality of

the collision [27]. The quoted errors are the quadratic sum of the systematic uncertainties

on tracking, trigger and matching efficiencies and on the choice of the ψ(2S) pT and y input

shapes used in the MC simulations.

The normalization of the ψ(2S) yield was calculated according to the procedure de-

scribed in ref. [27]. It is based on the evaluation, for each centrality class, of the number

of minimum bias events as N i
MB = F i2µ/MB · N

i
2µ, where N i

2µ is the number of dimuon-

triggered events and F i2µ/MB is the inverse of the probability of having a dimuon triggered

in a MB event for that class. The F i2µ/MB-values increase from central to peripheral events

and are 287± 3 and 694± 8 for the 2–20% centrality class in p-Pb and Pb-p respectively.

The corresponding values for the 80–100% class are 3291 ± 36 and 3338 ± 35. The sys-

tematic uncertainties quoted above (statistical uncertainties are negligible) come from the

comparison obtained with two slightly different approaches in the calculation of F i2µ/MB,

as detailed in [27].
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In the evaluation of the systematic uncertainties on F i2µ/MB, the presence of interaction

pile-up was considered. Pile-up can lead to a bias in the evaluation of the centrality of

the collision since, for example, the superposition of the signals from two peripheral events

in the ZN can fake a more central event. The contribution of pile-up was calculated by

detecting events with multiple interaction vertices in the SPD, and checking via a Monte-

Carlo that the ZN energy distribution can be reproduced assuming a pile-up probability

corresponding to the observed interaction rate. Events in the 0–2% centrality interval were

rejected, as the pile-up contribution becomes significant (∼30%) in that region. The effect

is small but not negligible in the 2–20% range, where it amounts to 2.1% (2.6%) for p-Pb

(Pb-p), and becomes < 1% going towards more peripheral events.

From the quantities described above, the inclusive cross section for ψ(2S) production

in the centrality bin i, times its branching ratio to dimuons B.R.ψ(2S)→µµ, was calculated

with the following expression

B.R.ψ(2S)→µ+µ−σ
i,ψ(2S)
pPb =

N i
ψ(2S)→µ+µ−

(A× ε) ·N i
MB

× σMB (3.1)

The ratio NMB/σMB, where NMB is the total number of minimum bias events and

σMB is the cross section for events satisfying the minimum bias trigger condition, gives the

integrated luminosity Lint. The σMB values were evaluated through a van der Meer scan

which gives σpPbMB = 2.09 ± 0.07 b and σPbpMB = 2.12 ± 0.07 b [35]. A determination of the

luminosity which makes use of a different reference process, based on the signals released in

a Čerenkov counter [29], gives a result compatible within 1% [35]. Therefore, an additional

1% uncertainty is added to the σMB values used in the ψ(2S) cross section determination.

The comparison of the ψ(2S) and J/ψ production cross sections can be performed by

calculating the ratio B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ. In this way, the uncertain-

ties related to the cross section normalization and to the reconstruction efficiency cancel

out. The J/ψ cross section values that enter this ratio are those reported in [27], with the

value for the centrality interval 2–20% obtained by summing the 2–10% and 10–20% results.

This ratio can be further normalized to the corresponding measurement in pp collisions.

This quantity, called double ratio in the following, gives direct access to modifications in

the ψ(2S) production relative to that of the J/ψ, going from pp to p-Pb collisions. Due

to the lack of precise pp data at
√
s = 5.02 TeV, the results obtained at

√
s = 7 TeV [40]

were used instead. This choice is justified from the fact that the
√
s- and y-dependence

of the cross section ratio is known to be weak in the TeV beam energy range. An 8%

systematic uncertainty has been included, corresponding to the maximum estimated size

of the variation of the ratio between the two energies [22].

The estimate of the nuclear modification factors Q
i,ψ(2S)
pPb as a function of centrality is

performed as the product of the corresponding Q
i,J/ψ
pPb for the J/ψ [27] (except for the 2–20%

centrality interval where Q
i,J/ψ
pPb was re-computed by merging the 2–10% and 10–20% bins)

and the double ratio between the ψ(2S) and J/ψ cross sections in p-Pb and pp collisions:

Q
i,ψ(2S)
pPb = Q

i,J/ψ
pPb ·

σ
i,ψ(2S)
pPb

σ
i,J/ψ
pPb

· σ
J/ψ
pp

σ
ψ(2S)
pp

(3.2)
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Source of uncertainty σ
ψ(2S)
pPb , Q

ψ(2S)
pPb σ

ψ(2S)
Pbp , Q

ψ(2S)
Pbp

2.03< ycms <3.53 -4.46< ycms <-2.96

Tracking efficiency (I) 4 6

Trigger efficiency (I) 3 3.4

Matching efficiency (I) 1 1

Signal extraction 10.8 − 13.4 10.8 − 20.9

MC input 1.8 2.5

σMB (I) 3.3 3.0

σMB (I,II) 1.6 1.6

Table 2. Systematic uncertainties, in percentage, on the ψ(2S) cross sections and nuclear mod-

ification factors. For centrality-dependent quantities, the range of variation is given. Type I un-

certainties are correlated over centrality, while type II are correlated between the forward and the

backward rapidity regions. When no indication is given, the uncertainties are uncorrelated. The

uncertainty on σMB is related to the ψ(2S) cross section only.

The uncertainties are obtained combining those on Q
i,J/ψ
pPb [27] with those on the double

ratio, avoiding a double counting of the J/ψ related uncertainties. The notation Q
i,ψ(2S)
pPb ,

rather than the more usual R
i,ψ(2S)
pPb , is used in this Letter, to draw attention to possible

residual biases in the centrality determination, related to the loose correlation between the

centrality estimators and the corresponding collision geometry [33].

Table 2 summarizes the values of the systematic uncertainties on the various ingredi-

ents that enter the cross section determination and the calculation of the nuclear modifi-

cation factor.

4 Results

The ψ(2S) production cross sections as a function of the centrality of the collision, expressed

via 〈Ncoll〉, are plotted in figure 2 (left). As expected, their values increase with 〈Ncoll〉.
In figure 2 (right) the ratio B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ is shown as a

function of 〈Ncoll〉 and compared with the corresponding value for pp collisions. Despite the

large uncertainties, the data suggest a decreasing trend from peripheral to central events, in

particular at backward rapidity, indicating a suppression of the ψ(2S) production relative

to the J/ψ. While for peripheral collisions the cross section ratios are consistent with the

pp value, they become a factor 2–3 smaller for central events, in both rapidity ranges. As

remarked in section 3, the pp cross section ratio measured at
√
s = 7 TeV has been used,

including an 8% additional uncertainty to account for its possible
√
s- and y-dependence.

The degree of suppression of ψ(2S) is directly quantified in figure 3 where the double

ratio between the ψ(2S) and J/ψ cross sections in p-Pb and pp collisions is shown. The

result is compared with two theoretical calculations. The first is based on a scenario where

– 7 –
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Figure 2. Left: ψ(2S) production cross sections shown as a function of 〈Ncoll〉 for both p-Pb and

Pb-p collisions. Right: B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ shown as a function of 〈Ncoll〉 and

compared to the pp value (line), with a band representing its uncertainty. In both figures, vertical

error bars correspond to statistical uncertainties, while the open boxes represent the systematic

uncertainties. The Pb-p points are slightly shifted in 〈Ncoll〉 to improve visibility.

the resonances may be dissociated via interactions with the partons or hadrons produced in

the collision in the same rapidity region (co-movers) [11]. The model includes contributions

from nuclear shadowing, based on the EPS09 LO parameterization [3], and a co-mover in-

teraction term, with dissociation cross sections σco−J/ψ = 0.65 mb and σco−ψ(2S) = 6 mb,

these values being fixed from fits to low-energy experimental data [41]. The effect of co-

movers is larger at backward rapidity since their density is larger in that region. The

calculated co-mover densities are compatible with the measured experimental charged par-

ticle multiplicities [42]. The calculation reproduces well the measured values of the double

ratio. Shadowing effects are very similar for the two mesons and in this model they are

assumed to cancel out in the double ratio, so that only co-mover absorption plays a role.

The second model (QGP+HRG) is based on a thermal-rate equation framework [43] which

also implements the dissociation of charmonia in a hadron resonance gas, including a to-

tal of 52 non-strange and single-strange meson species, up to a mass of 2 GeV/c2 [26].

The fireball evolution includes the transition from a short QGP phase into the hadron

resonance gas, through a mixed phase. The shadowing effects, implemented through the

EPS09 parametrization, cancel out in the double ratio, as in the previous model. The result

of the calculation, also shown in figure 3, is in fair agreement with the measured values, in

particular for central collisions. The model uncertainties are dominated by the evaluation

of the charmonium dissociation rates. The ALICE result is also compared to mid-rapidity

(|y| < 0.35) PHENIX data [19] in figure 3. Remarkably, in spite of the very different
√
sNN

and ycms values, the observed patterns as a function of centrality are similar. It should also

be noted that the PHENIX result can be qualitatively described in a hadronic dissociation

scenario, as discussed in [11, 26].

In figure 4 the nuclear modification factor for ψ(2S) mesons is shown as a function of

centrality, separately for forward and backward rapidities. In both regions, a trend towards

an increasing suppression can be seen when moving from peripheral to central collisions.
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Figure 3. Double ratio [σψ(2S)/σJ/ψ]pPb/[σψ(2S)/σJ/ψ]pp for p-Pb and Pb-p collisions, shown as

a function of 〈Ncoll〉 (Pb-p points are slightly shifted in 〈Ncoll〉 to improve visibility). The data

are compared to PHENIX mid-rapidity results [19] and to the theoretical calculations of ref. [11]

and [26]. The boxes around unity correspond to the global systematic uncertainties at forward (red

box) and backward (blue box) rapidities. The grey box is a global systematic uncertainty common

to both p-Pb rapidity ranges, while the green box refers to the PHENIX results.

The corresponding Q
J/ψ
pPb values [27] are also shown. At forward-y there is an indication

for a smaller Q
ψ(2S)
pPb with respect to Q

J/ψ
pPb. The difference between the ψ(2S) and the J/ψ

nuclear modification factors amounts, for central events, to 1.9σ, while, integrating over

centrality, the corresponding quantity is 2.3σ. At backward-y the suppression patterns

for the J/ψ and the ψ(2S) are different, with Q
J/ψ
pPb ∼ 1 (or even slightly larger), and a

strong suppression for the ψ(2S). In the most central collisions, the difference between the

measured QpPb corresponds to 4.3σ, while, integrating over centrality, suppressions differ

by 4.1σ. The results are compared to calculations including either only shadowing (EPS09

LO [11], EPS09 NLO [44]) or only coherent energy loss [45] and to models implement-

ing final state interactions (co-movers [11], QGP+HRG [26]). While the J/ψ results are

reproduced by shadowing/energy loss calculations, additional final state effects, as those

discussed in the context of figure 3, are needed to describe the ψ(2S) results, in particular

at backward rapidity.

Finally, the double ratios are shown in figure 5 as a function of the pair crossing time

τc in nuclear matter [9]. This quantity can be calculated as τc = 〈L〉/(βzγ) where 〈L〉 is

the average thickness of nuclear matter crossed by the pair, which was evaluated, for each

centrality class, using the Glauber model [46], βz = tanh yrestcc is the velocity of the cc along

the beam direction in the nucleus rest frame, γ = Ecc/mcc and Ecc = mT,cc cosh yrestcc . The

value mcc = 3.4 GeV/c2 was chosen for the (average) mass of the evolving cc pair [9, 47],

while mT,cc was calculated in each centrality bin starting from the measured J/ψ 〈pT〉
values [27]. We use the J/ψ 〈pT〉 as a proxy for the average pT of the cc pair, as the
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Figure 4. J/ψ [27] and ψ(2S) nuclear modification factors, QpPb, shown as a function of 〈Ncoll〉 for

the backward (left) and forward (right) rapidity regions and compared to theoretical models [11, 26,

44, 45]. The boxes around unity correspond to the global ψ(2S) systematic uncertainties at forward

(red box) and backward (blue box) rapidities. The grey box is a global systematic uncertainty

common to both J/ψ and ψ(2S).

ψ(2S) statistics is too low to extract a corresponding 〈pT〉 value. If we assume instead

that 〈pψ(2S)T 〉 ∼ 1.1〈pJ/ψT 〉 as measured by LHCb in pp collisions at
√
s = 7 TeV [48, 49],

the τc values would decrease by ∼ 4%. Other sources of uncertainties on τc include the

uncertainties on the measured J/ψ 〈pT〉, which contribute less than 1%, and those on 〈L〉,
which are dominant and of the order of 10%. In figure 5 we show the double ratio as a

function of τc in the two rapidity regions. Different τc intervals can also be selected by

slicing the events in bins of pT (see ref. [36]), varying, in this way, the γ values of the

cc. The double ratio results, obtained in [36], are therefore also shown in figure 5 at their

corresponding average τc values. In the double ratio one effectively removes, as discussed

above, initial state effects, so that figure 5 shows the τc dependence of final state effects on

ψ(2S) compared to J/ψ. The two sets of results, corresponding to a slicing of the events in

centrality or in pT, are in good agreement. At backward-y, where the largest τc values are

reached, a clearly decreasing trend can be observed. The average resonance formation time

τf is, according to most theory estimates [9, 20, 21], larger by at least a factor ∼ 2 than

the accessible τc range. On the other hand, the width of the τf distribution is expected

to be non-negligible [21], and it cannot be excluded that at least a fraction of the cc

pairs hadronizes inside the nucleus. Therefore, the observed behaviour is likely due to a

combination of final state effects which take place outside the nucleus, as e.g. interaction

with a hadronic resonance gas, and dissociation effects on the fully formed resonance, due

to nuclear matter, and taking place inside the nucleus. The relative importance of the two

mechanisms is difficult to quantify in such a simple analysis and quantitative theoretical

studies, also exploring alternative mechanisms, are needed. At forward rapidity, where τc
becomes smaller than τf by about 2–3 orders of magnitude, the interaction with nuclear

matter is not expected to play any significant role. The results of a similar analysis carried

out on PHENIX mid-rapidity data [19] are also shown in figure 5. Within uncertainties, a

scaling of the ALICE and PHENIX double ratio values with τc is observed.
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Figure 5. Double ratio [σψ(2S)/σJ/ψ]pPb/[σψ(2S)/σJ/ψ]pp shown as a function of τc for the backward

and forward rapidity regions. For each y-range, the two sets of points were obtained from the

centrality analysis and from the pT-dependent analysis of ref. [22]. Statistical uncertainties are

shown as lines, while the total systematic uncertainties are shown as boxes around the points.

The results of a corresponding analysis carried out on the PHENIX mid-rapidity data [19] is also

shown. The box around unity represents the PHENIX global systematic uncertainty. For the

ALICE results, the global uncertainties are different for the various data sets, and are included in

the boxes around the points.

5 Conclusions

The centrality dependence of the ψ(2S) production in p-Pb collisions at
√
sNN = 5.02 TeV

was measured in five intervals, using the ZN energy as an estimator. The ratio

B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ is compatible with pp measurements in periph-

eral events, whereas a decrease is observed towards central events, showing that the ψ(2S)

state is suppressed with respect to the J/ψ state. The results on the nuclear modifica-

tion factors, together with the corresponding model comparisons, show that effects such as

shadowing or energy loss are enough to explain the J/ψ behaviour, while additional mech-

anisms are needed to describe the ψ(2S) suppression. Theoretical models that include

final state interactions are able to reproduce such a suppression. A study of the double

ratio [σψ(2S)/σJ/ψ]pPb/[σψ(2S)/σJ/ψ]pp, as a function of the crossing time τc, shows that at

forward-y the τc values are much shorter than the resonance formation time τf , excluding

any significant role of final state interactions with nuclear matter. Effects occurring at later

times, such as the break-up by co-movers in the hadronic gas, are suitable candidates for

an explanation of the observed ψ(2S) suppression. At backward-y the τc values, although

significantly larger, are still smaller than τf . However, the observed scaling of the double

ratios with τc may be suggestive of an effect at least partly related to a dissociation of the

fully-formed resonance in nuclear matter.
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Personal Academico(DGAPA), México, Amerique Latine Formation academique - Euro-

pean Commission (ALFA-EC) and the EPLANET Program (European Particle Physics

Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM)

and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands;

Research Council of Norway (NFR); National Science Centre, Poland; Ministry of Na-

tional Education/Institute for Atomic Physics and National Council of Scientific Research

in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science

of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic

Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation

for Basic Research; Ministry of Education of Slovakia; Department of Science and Technol-

ogy, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas

(CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Minis-

terio de Economı́a y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleŕıa
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R. Sahoo48 , S. Sahoo57 , P.K. Sahu57 , J. Saini133 , S. Sakai72 , M.A. Saleh135 , J. Salzwedel19 ,
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M. Šefč́ık40 , J.E. Seger87 , Y. Sekiguchi127 , D. Sekihata46 , I. Selyuzhenkov97 , K. Senosi65 ,

S. Senyukov3 ,35 , E. Serradilla10 ,63 , A. Sevcenco58 , A. Shabanov52 , A. Shabetai113 ,

O. Shadura3 , R. Shahoyan35 , M.I. Shahzad16 , A. Shangaraev111 , A. Sharma91 , M. Sharma91 ,

M. Sharma91 , N. Sharma125 , A.I. Sheikh133 , K. Shigaki46 , Q. Shou7 , K. Shtejer9 ,26 ,

– 18 –



J
H
E
P
0
6
(
2
0
1
6
)
0
5
0

Y. Sibiriak80 , S. Siddhanta105 , K.M. Sielewicz35 , T. Siemiarczuk77 , D. Silvermyr33 ,

C. Silvestre71 , G. Simatovic129 , G. Simonetti35 , R. Singaraju133 , R. Singh79 , S. Singha79 ,133 ,

V. Singhal133 , B.C. Sinha133 , T. Sinha100 , B. Sitar38 , M. Sitta31 , T.B. Skaali21 ,

M. Slupecki123 , N. Smirnov137 , R.J.M. Snellings53 , T.W. Snellman123 , J. Song96 , M. Song138 ,

Z. Song7 , F. Soramel29 , S. Sorensen125 , R.D.de Souza121 , F. Sozzi97 , M. Spacek39 , E. Spiriti72 ,

I. Sputowska117 , M. Spyropoulou-Stassinaki89 , J. Stachel93 , I. Stan58 , P. Stankus85 ,

E. Stenlund33 , G. Steyn65 , J.H. Stiller93 , D. Stocco113 , P. Strmen38 , A.A.P. Suaide120 ,

T. Sugitate46 , C. Suire51 , M. Suleymanov16 , M. Suljic25 , i, R. Sultanov54 , M. Šumbera84 ,
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