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ABSTRACT OF THE DISSERTATION

Robust and Interpretable Predictions for Multimodal Sensor Systems

by

Jeya Vikranth Jeyakumar

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2022

Professor Mani B. Srivastava, Chair

Smart IoT devices, smartphones, and wearables are penetrating every aspect of our daily lives.

These devices are equipped with various sensing modalities, including video, audio, inertial

sensors, lidars, etc., that enable multiple sensing applications. Research has shown that rather

than operating each sensor in isolation, combining information from multiple sensing streams

boosts performance. This method is known as multimodal sensor fusion and Human Activity

Recognition(HAR) is one of the applications that benefits from using multiple sensors. In

recent years, deep learning algorithms have been shown to achieve high accuracies in HAR

using multimodal sensor data. However, in order to design a reliable HAR system, the

following challenges still need to be addressed. The first challenge is the heterogeneity of

the sensing devices. This arises as the set of devices monitoring a person may vary over

time or the devices might have different sampling frequencies. And the second challenge is

deep neural networks (DNNs) are considered black boxes because studying their structure

often provides little to no insight into the actual underlying mechanics. It is hard to look

"into" the network and ascertain why the model selects specific features over others during

training, thereby making the predictions from the DNNs not trustworthy to the end-users.

This lack of trust prevents the adoption of DNN models in health-related applications and

other high-stakes applications where sensitive decisions mandate a sufficient accompanying
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explanation. Therefore, this dissertation proposes methods to generate accurate predictions

robust to the heterogeneity of devices by making opportunistic use of information from

available devices and providing human-understandable explanations accompanying each

prediction to the end-users.

First, we propose a solution to address the challenges related to the heterogeneity in

sensor devices for activity recognition in our work ’SenseHAR.’We design a scalable deep

learning-based solution in which each device learns its own sensor fusion model that maps the

raw sensor values to a shared low dimensional latent space which we call the ‘SenseHAR’-a

virtual activity sensor. The virtual sensor has the same format and behavior regardless of

the subset of devices, sensors availability, sampling rate, or device location. SenseHAR helps

machine learning engineers to develop their application-specific (e.g., from gesture recognition

to activities of daily life) models in a hardware-agnostic manner based on this virtual activity

sensor.

Next, we address the issue of explainability for activity recognition in deep learning models.

We first identify the most preferred post-hoc explanation technique for classification tasks

across different modalities from an end-user perspective. To this end, we conducted a large-

scale Amazon Mechanical Turk study comparing the popular state-of-the-art explanation

methods to determine which are better for explaining model decisions empirically. Our

results show that Explanation by examples was the most preferred type of Explanation.

We also offer an open-source library ExMatchina, providing a readily available and widely

applicable implementation of explanation-by-examples. Then, we focus on interpretable

DNN models, especially models that provide concept-based explanations. We proposed

CoDEx, an automatic Concept Discovery and Extraction module that identifies a rich set

of complex concepts from natural language explanations of videos–obviating the need to

predefine the amorphous set of concepts. Finally, we introduce XCHAR, an Explainable

Complex Human Activity Recognition model that accurately predicts complex activities and

provides explanations in the form of human-understandable temporal concepts.
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CHAPTER 1

Introduction

Today, smart devices such as mobile phones, smart IoT devices, and wearables are becoming

truly ubiquitous. These devices are equipped with multiple sensors [LML10] including cam-

eras, Radiofrequency (RF) sensors, and Inertial measurement units (IMUs) ( accelerometers,

gyroscopes, and magnetometers) that enable the devices to infer the activities of a person.

The sensors on these devices generate a constant stream of data, providing a wealth of

information about the behavior of their users. Furthermore, as machine learning technology

continues to improve, these devices help support the development of smart cities, smart

homes, increased automation, better healthcare, and more connectivity across the globe.

In various disciplines, information about the same phenomenon can be acquired from

different types of detectors, at different conditions, in multiple experiments, or subjects,

among others. We use the term "modality" for each type of acquisition sensor. Due to

the rich characteristics of natural phenomena, a single modality rarely provides complete

knowledge of the phenomenon of interest. To ensure the consistent detection of activities,

multiple devices with different types of sensors are usually employed, and they are called

multimodal data sources. The increasing availability of several modalities reporting on the

same system introduces new degrees of freedom, which raise questions beyond those related

to exploiting each modality separately. To exploit the advantages of the multiple sensors,

it is necessary to fuse the data delivered by these sensors. The fused data should contain

information from all the sensors and ensure a higher certainty about the detection of the

activities performed.

By virtue of their design architecture, Deep Neural Networks (DNNs) have been shown to

approximate arbitrary functions, mapping inputs to outputs successfully. This has resulted
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in DNNs being employed to fuse this multimodal data and achieve super-human level

performance on various complex tasks like Human Activity Recognition (HAR), cancer

prediction, anomaly detection, computer vision, language translation, etc. However, with the

increase in the adoption of deep learning for sensor systems, new challenges have arisen. First

is the heterogeneity of devices. Not every device is the same and therefore models trained on

the data from one device cannot be easily transferred to work on another device. Secondly,

Deep Learning models used on this multimodal data to make important predictions in critical

contexts are black-box by nature. Therefore, explanations supporting the output of a model

are crucial, e.g., in precision medicine, where experts require far more information from the

model than a simple binary prediction for supporting their diagnosis. For doctors, this helps

monitor patients’ routines and lifestyles to provide better treatment. Other examples include

autonomous vehicles in transportation, security, and finance. Hence, we need a framework to

make predictions that is robust to the heterogeneity of the devices and provide trustworthy

predictions accompanied by human-understandable explanations.

1.1 Challenge 1: Heterogeneity in Devices

With the advancement in hardware and software technologies every year, industry and

research develop thousands of devices with different capabilities, which creates even more

heterogeneity among devices. The three main types of heterogeneity are:

Set of sensors: Each device has its own set of sensors [LJB17]. For example, unlike surveil-

lance cameras that only capture RGB images, the cameras on autonomous cars capture depth

information as well. Similarly, all smartphones and wearables do not have the same set of

inertial sensors. The inertial measurement unit can have only an accelerometer or accelerom-

eter and gyroscope, or accelerometer, gyroscope, and magnetometer. Wearables usually are

equipped with only an accelerometer and do not have a gyroscope and magnetometer to

reduce energy consumption.

Sampling frequency: Based on the cost, memory and energy consumption, each device is

configured to capture data at varying sampling frequencies. For example, the cameras used
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in sports can record videos at more than 120 frames per second (fps), whereas surveillance

cameras that are running 24x7 record videos at 10-30 fps to save the storage capacity.

Similarly, smartphones can collect inertial sensor readings in the 50 - 200 Hz frequency range.

In contrast, wearables like smartwatches and health bands collect inertial sensor readings at

a much lower frequency of 10-100Hz as low frequency helps in increasing their battery life.

Location of devices: Not all devices are placed in the same location, and sometimes the

location of the devices varies over time. For example, a person might own multiple smart

devices, usually located in different locations on the body. (E.g., Smartphones in the pockets,

smartwatches in the wrists and smart shoes on the feet.) Also, the person might keep his

smartphone in their left or right pockets, which cannot be controlled.

1.2 Challenge 2: The Need for Explainability

The increased adoption of deep learning-based solutions, often into mission-critical systems,

has accelerated the need to open up these opaque DNNs and explain the inner workings leading

to their decision [BCR97, DK17]. In human-machine hybrid systems, a human-understandable

explanation accompanying the DNN output allows smooth interfacing between the human

decision-makers and their machine counterparts. For example, "Robot Radiologists" now

provide superior MRI and X-Ray image classification compared to the average trained human

expert [Rea19]. A life-or-death diagnosis undeniably justifies using the best-performing model;

however, it is unreasonable for either a patient or medical professional to accept an automated

prediction at face value. Also, privacy regulations such as GDPR mandate the "right to

explanation" as a privilege of the content owner, which makes explanation not only desirable

but also a necessity [gdp18b]. Explanations are similarly essential in the coalition military

domain because successful battlefield decision-making based on situational understanding

produced by machines depends not only on the quality of inferences but also on providing

the human decision-maker with adequate explanations to establish trust and collaboration.
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Figure 1.1: The Vision: To provide robust predictions and human friendly explanations for

classification tasks

1.3 The Vision: Robust and Interpretable predictions

In this thesis, we design deep learning models that are robust to the heterogeneity of devices.

We also understand the human preferred explanation methods and design interpretable deep

learning models that can explain a prediction in a human-friendly manner across multiple

modalities, including inputs like motion sensors which are inherently difficult to understand.

Figure 1.1 shows the overall vision of this dissertation.

1.4 Dissertation outline

The main contributions of the dissertation are organized in different chapters as follows:

• Chapter 2 proposes SenseHAR, a robust virtual activity sensor that maps the raw

sensor values to a shared low dimensional latent space and is invariant to the device

heterogeneity.

• In Chapter 3, to solve the scalability issues with managing the millions of devices,

we designed and evaluated IoTelligent, a method based on: (i) autoencoders, which

extract the relevant features automatically from the network traffic stream; (ii) DBSCAN

clustering to identify the group of devices that exhibit similar behavior, to flag anomalous
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devices.

• Chapter 4 presents and discusses the results of a Mechanical Turk study identifying

the relative preference of post-hoc explanation methods by an average non-technical

end-user. It also offers an open-source library, ExMatchina, providing a readily available

and widely applicable implementation of explanation-by-example.

• In Chapter 5, we develop CoDEx, a concept discovery and extraction pipeline that

leverages NLP techniques to automatically extract complex concept abstractions from

crowd-sourced, natural language explanations for a given video and label–obviating the

need to define a necessary and sufficient set of concepts manually

• Chapter 6 introduces XCHAR, an interpretable DNN model for explainable complex

human activity recognition that achieves state-of-the-art accuracy and provides human-

understandable explanations in the form of temporal concepts.

• Finally, Chapter 7 provides the possible future directions of our research and Chapter 8

concludes this dissertation.
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CHAPTER 2

SenseHAR: A Robust Virtual Activity Sensor for

Smartphones and Wearables

Modern smartphones and smartwatches are equipped with inertial sensors (accelerometer,

gyroscope, and magnetometer) that can be used for Human Activity Recognition (HAR)

to infer tasks such as daily activities, transportation modes and, gestures. HAR requires

collecting raw inertial sensor values and training a machine learning model on the collected

data. The challenge in this approach is that the models are trained for specific devices

and device configurations whereas, in reality, the set of devices carried by a person may

vary over time. Ideally, one would like activity inferencing to be robust of this variation

and provide accurate predictions by making opportunistic use of information from available

devices. Moreover, the devices may be located at different parts of the body (e.g. pocket, left

and right wrist), may have different sets of sensors (e.g. a smartwatch may not have gyroscope

while a smartphone might), and may differ in sampling frequencies. In this paper, we provide

a solution which makes use of the information from available devices while being robust to

their variations. Instead of training an end-to-end model for every permutation of device

combinations and configurations, we propose a scalable deep learning based solution in which

each device learns its own sensor fusion model that maps the raw sensor values to a shared

low dimensional latent space which we call the ‘SenseHAR’-a virtual activity sensor. The

virtual sensor has the same format and similar behavior regardless of the subset of devices,

sensor’s availability, sampling rate, or a device’s location. This would help machine learning

engineers to develop their application specific (e.g., from gesture recognition to activities of

daily life) models in a hardware-agnostic manner based on this virtual activity sensor. Our

evaluations show that an application model trained on SenseHAR achieves the state of the
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art accuracies of 95.32%, 74.22% and 93.13% on PAMAP2, Opportunity(gestures) and our

collected datasets respectively.

2.1 Introduction

In the past decade, the market surrounding smartphones and wearable technology has grown

exponentially [Sta18]. Smartphones and other personal wearables used for fitness and health

monitoring are cheap, ubiquitous and a survey shows that they are owned by more than

85% and 20% of the United States population [Del18, IDC18] respectively. These devices are

equipped with multiple sensors [LML10] and Inertial measurement units (IMUs) are the most

prominent sensors that have a combination of microelectromechanical (MEMS) accelerometers,

gyroscopes, and magnetometers that enable the devices to infer the activities of a person.

While, prior research identifies smartphones as the widely used sensing modality in HAR

[MHL15, RMB10], smartwatches are also being utilized extensively to infer diverse gestures

for various applications such as sign language [BSL03] and medical rehabilitation [BKB14].

Today most people own multiple smart devices such as smartphones, smartwatch, fitness

bands, smart shoes, smart belts, etc. and we should be able to leverage on the information

from these multiple devices to improve the accuracy of activity recognition. This process

of combining information from multiple devices and sensors is called Multimodal sensor

fusion. There exist multiple ways to do multimodal sensor fusion for HAR. Previous studies

suggest feature concatenation of the sensor data [BWG12, HNT13, NMN15], an ensemble

of models [KP05, ZSF07] for multimodal sensor fusion and propose frameworks for training

data from multiple inertial sensors.

But the existing approaches fail to take into consideration the heterogeneity of the devices.

Stisen et al. [SBB15] explain that all devices are different and vary in their hardware and

operating systems. They can have a different number of sensors, different sampling frequencies

and be located at different locations on the body. Research by Amft [Amf10] and Blunck

et al. [BBF13] show that when these HAR systems are deployed in real life, i.e., across

heterogeneous devices and usage situations, recognition performances are often significantly

7



lower than what is suggested in research. Furthermore, the existing methods for HAR assume

that all the sensing devices exist at all times to make the inference and but in reality, the set

of devices carried by a person tends to vary over time even if they own multiple devices.

Unlike the existing solutions, we need a machine learning framework to exploit the in-

formation from the available sensors at any given time to give a constant stream of correct

activity predictions. Hence, we propose a solution that makes opportunistic use of the

information from available devices while being robust to their variations. We provide a

scalable deep learning based framework in which each device learns its own sensor fusion

model that maps the raw inertial sensor values to a shared low dimensional latent space which

we call the ‘SenseHAR’- virtual activity sensor. SenseHAR is robust to the heterogeneity in

devices,i.e, it has the same format and similar behavior regardless of the subset of devices,

sensor’s availability, sampling rate, or a device’s location. Since the devices get mapped to

the same latent space, we combine information from the available devices by aggregating

the SenseHAR values from each device. SenseHAR decouples the hardware from software

and helps researchers to train their application specific (e.g., from gesture recognition to

activities of daily life) algorithms in a hardware-agnostic way. In other words, the same

application model trained on SenseHAR values for daily activity recognition can be used with

any device or any combination of devices. Finally, we evaluate our method on the PAMAP2,

Opportunity and our collected Multi-Modal Activity Recognition dataset (MMAR) which

have data from multiple wearables containing inertial measurement units and located in

different parts of the body. We compare the performance and find that our solution to train

an application specific model using SenseHAR achieves the state-of-the-art accuracy and

f1-score when compared with the end-to-end models trained from scratch on raw sensor data.

To summarize, our main contributions of the paper are as follows:

• We propose a Sensor Fusion model for each device that maps the raw sensor values to

a shared low dimensional latent space- SenseHAR, the virtual activity sensor.

• We implement a training framework that enables each device to learn the proposed
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sensor fusion model and to obtain a robust SenseHAR that is invariant to the device

heterogeneity.

• We provide a method to calibrate SenseHAR in a new device or hardware setup with

the help of the SenseHAR from the pre-trained device.

• We perform thorough evaluations on PAMAP2, Opportunity and on our collected mul-

timodal dataset (MMAR) to show that the SenseHAR captures maximum information

from all the sensors from the different available devices and hence can be used to train

models for various HAR applications.

2.2 Background

2.2.1 Human Activity Recognition

The broad field of study to classify sequences of sensor data into known well-defined movements

or actions of a person is called Human Activity Recognition(HAR). Prior research has

indicated that smartphones and wearables as the widely used modalities in sensor-based

HAR [ITU15, SBI16] that can infer numerous activities including where they go, when they

exercise [MHL15] and how well they sleep [CLC13]. HAR is of great importance because

it encourages users to adopt a healthier lifestyle by increasing personal awareness about

physical activities and its positive consequences on health. It also has a great significance in

designing artificially intelligent human-computer interface [FPB08] for various applications

such as sign language [BSL03] and medical rehabilitation [BKB14]. While accelerometer is

the most prominent sensor used in activity detection [VBD96, ALK10, SKK14], gyroscope

and magnetometer [LSH09, AB10] are also integrated to improve the probability of correct

predictions and to identify activities such as the mode of locomotion [HNT13, JLX18, RMB10,

WGM18], posture [YLM13], gait [ITU15], fall detection [WAP13], exercise [SBV11] and

sleep pattern [NDE12]. Sensor data from smartwatches are utilized to infer different gestures

such as finger movements [WRD16], brushing habits [ASS19], smoking habits [PCC14], eating

[SBI16, DSW14] and cooking [ZS12].
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2.2.2 Multimodal Sensor Fusion

In HAR, to ensure the consistent detection of activities and also to recognize fine gestures

multiple devices with different types of sensors are usually employed and they are called

multi-modal data sources. To exploit the advantages of the multiple sensors, it is necessary

to fuse the data delivered by these sensors. The fused data should contain information from

all the sensors and ensure a higher certainty about the detection of the activities performed.

Sensor fusion is an existing concept and is widely applied in the field of computer vision

(merging video with audio signals) [NKK11, WJW16], in modern cars [GWS11, Hec18],

medical EEG devices [HZL16, ALB18] and robotics to detect the existence of objects and free

space [SGA17, NR15], which is used by mobile robots for obstacle detection or path planning.

The fusion of these sensor data, therefore, plays a very crucial aspect of the perception process

in almost all automated, assistance and autonomous systems. Since this fusion is be based

on a time series of data from several different sensing modalities, it is called multi-modal

sensor fusion. Multi-modal sensor fusion offers advantages in terms of being able to sense

various complementary aspects of an object with the different modalities, i.e. it increases the

information gained by the system.

2.2.2.1 Traditional Machine Learning

In the traditional method, each channel or axis of each sensor is considered as an individual

sequence. Then, for each input sequence, the list of features in both time and frequency

domain are extracted from the raw data. The frequency domain features and Time domain

features are explained in detail in the prior works [EAA16, Dar09]. These features are

just taken together and classical machine learning models like SVM, Random forests and

XGBoost or sequence-based models like Hidden Markov models and Conditional Random

Fields [AGO12, CPR11, LC11, VVL07] are applied to make the inferences on the activities.
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2.2.2.2 Deep Learning

With the advent of deep learning more sophisticated algorithms emerged to make predictions

from multiple sensor streams. S.Yao et al. [YHZ17] suggest a deep learning framework by

exploiting local interactions within each sensing modality. They apply Fourier transform

to obtain better local frequency patterns, then merge local interactions of different sensing

modalities into global interactions and extract temporal relationships. But recent research has

shown that we don’t have to extract specific features from the raw sensor values anymore as

the deep neural networks are capable of learning that by themselves. There have been works

using CNNs [ZNY14], LSTM [CZZ16] and hybrid models like Convolutions LSTMS [JLX18]

to make the activity predictions. The existing solutions to perform deep learning based

multimodal sensor fusion are as follows:

Feature Concatenation: This is a straightforward technique that combines multimodal

information in the feature level. Data obtained from different modality data are firstly

concatenated into a long feature vector. For example, Bulling et al. [BWG12] combined

the features of accelerometers and gyroscopes. Similarly, combining accelerometers with

physiological sensors [YC08], microphone [LWJ04], or location sensors [PEA07] is also

investigated to improve HAR performance. A few drawbacks of this approach is that these

methods have the tendency to neglect the intra-sensor correlations as stated in [RTB18].

Sometimes it’s not possible to perform concatenation at feature level because of the difference

in the sampling rates of the modalities and the general procedure to mitigate this is to

resample the data to the required frequency.

An ensemble of classifiers: This is another commonly adopted method in multimodal

activity models [KP05, ZSF07]. Ensemble classifiers make the final prediction by combining

the predictions from multiple base models and the common techniques used are bagging,

boosting and stacking. Prior research generally confirms that a diverse set of models increases

predictive accuracy in comparison to single models combination [Fin11, PEA10]. However, a

fundamental weakness of EC as stated in [RTB18] is that because fusion takes place at the

end of the model, a lot of potential information and cross-sensor relationships are already
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lost.

Modality-Specific Architectures: Recent work by Radu et al. [RTB18] proposes Modality-

Specific Architecture (MA) in Deep Learning which comprises of two types of hidden layers –

hidden layers related to a specific sensor type and hidden layers that capture unified concepts

across the sensor. Separate architectures are built for each modality to first learn sensor-

specific information before their generated concepts are unified through representations that

bridge across all the sensors (i.e., shared modality representations) later in the network.

2.2.3 Heterogeneity in smartphones and wearables

Set of sensors: All smartphones and wearables do not have the same set of inertial sensors.

The inertial measurement unit can have only an accelerometer (3 DOF) or accelerometer and

gyroscope (6 DOF), or accelerometer, gyroscope, and magnetometer (9 DOF). Wearables

usually are equipped with only an accelerometer and don’t have gyroscope and magnetometer

to reduce energy consumption.

Sampling frequency: The sampling rates of the inertial sensors in different devices are

different. Smartphones can collect inertial sensor readings in the frequency range of 50 - 200

Hz. On the other hand, wearables like smartwatches and health bands collect inertial sensor

readings at a much lower frequency of 10-100Hz as low frequency helps in increasing their

battery life.

Location of devices: A person might own multiple smart devices and they are usually

located in different locations on the body. (E.g., Smartphones in the pockets, smartwatches

in the wrists and smart shoes in the feet.)

2.3 Related Works

In deep learning, before we use a neural network for a task (classification, regression), the usual

architecture is to extract features through many layers (convolutional, recurrent, pooling, etc.).

These layers map the inputs to the latent space on which the last classification layer is applied.
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Latent space has gained a lot of importance in Natural Language Processing(NLP) for word

embeddings [GL14], [PSM14], in social network analysis for random graph models [HRH02]

and in computer vision for applications like style transfer [ZPI17], data compression [HS06]

and data interpolation [WZX16]. The work by Ngiam et al. [NKK11] shows how to learn a

shared representation between modalities and evaluate it on a unique task, where the classifier

is trained with audio-only data but tested with video-only data and vice-versa.

For cross-domain activity recognition, the concept of transfer learning where certain

parameters can be transferred while training a new model for a different application has been

explored [MR16, CFK13] but this method still requires true activity labels to train the new

model. Chen et al. [CWH19] introduce stratified transfer learning approach that uses pseudo

labels from existing sensors instead of true labels. It performs intra-class knowledge transfer

between domains iteratively to transform them into the same subspaces. Rokni et al. [RG18]

introduce an autonomous training method where, pseudo labels obtained from existing sensors

are concatenated with features from the new sensor and then clustered to improve accuracy.

But these approaches only work on the traditional method of extracting features from the

raw sensor values. Xing et al. [XSB18] show that the shared latent space representation

exists for time series sensory data, and it can help transfer knowledge from ambiance edge

devices to wearable edge devices and vice versa. Radu et al.’s deep learning based modality

specific architecture [RTB18] does sensor fusion in latent space. But this work does not take

into consideration the heterogeneities in the devices and sensors and hence, a new end-to-end

model has to be trained for each device and application. Also, these models assume that

all the modalities are present at any given time which is generally not the case in real life

implementations. The work by Khan et al. [KRM18] assumes that the distribution of weights

and biases in the convolutional layers remains largely unchanged across different activities,

and thus automatically adapts and learns the model across different domains with minimal

labeled data. This approach does not address the problem of a new device having a different

hardware configuration than the existing device. The conventional procedure to take care of

the difference in sampling rates of the devices is to interpolate or resample the collected data

to the required frequency. The two common methods of interpolation used for HAR are linear
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[CSC13] and cubic spline [TIH07]. This means additional preprocessing has to be done before

feeding it to the HAR models. Stisen et al. [SBB15] propose a clustering-based approach as

a mitigation technique to improve HAR performance in the presence of heterogeneities but

their work is limited to devices with a single modality(accelerometer).

One of the early efforts in creating a virtual sensor from sensor fusion was the work

on virtual gyroscope [CXQ08] which proposed the theory of gyro-free IMU. The virtual

gyroscope with multigyroscope and accelerometer array (MGAA)configuration merges the

outputs of multi-gyroscopes and specifically placed accelerometers through a Kalman filter.

The work by LiKamWa et al. [LLL13] proposed Moodscope, a virtual mood sensor for a

smartphone that measures an important mental state of the user based on the interactions

with the smartphone. These papers relied on traditional signal processing and decision-based

algorithms and hence do not generalize well for different devices and different users.

2.4 SenseHAR: Virtual activity sensor

2.4.1 Overview

We introduce SenseHAR, a robust virtual activity sensor for wearables and smartphones and

Figure 6.3 shows the overview of SenseHAR. The inertial sensor data from the available

heterogeneous devices are fused using a sensor fusion network to a shared low dimensional

latent space. This shared latent space is called SenseHAR- a virtual activity sensor. Fusing

information from different devices to a shared latent space combines the advantages of both

feature concatenation and ensemble classifiers as it captures both inter-device and intra-device

correlations. SenseHAR is robust to variations in hardware configurations such as the set of

sensors, sampling frequency, device location, and device combinations. Therefore, application-

specific machine learning models for activity recognition can be trained on the SenseHAR

values in a hardware agnostic manner. The same application model trained on SenseHAR

values for daily activity recognition can be used with any device or any combination of devices.

This enables to infer activities continuously even while the set of devices carried by the person
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Figure 2.1: SenseHar Overview: Data from the inertial sensors of heterogeneous devices are

fused together to construct a shared latent space (SenseHAR). Machine Learning models for

diverse applications are trained using SenseHAR in a hardware agnostic way.

varies over time, with negligible to no loss in performance.

2.4.2 Requirements

An Ideal virtual activity sensor should have the following requirements:

• Similar format and behavior regardless of the number of available devices.

• Generate values at a constant frequency irrespective of the sampling rates of the

individual devices.

• Provide all the required information for activity detection so that it can be used to train

models for different applications like identifying gestures and detecting daily activities.

• Have only a few channels. In our paper, the virtual activity sensor has three channels

similar to the axes in the IMU sensors and the reason for restricting to only three

dimensions is explained in section 2.6.2 Capture the correlation across different sensors

and at different locations

2.4.3 Training framework

A naive way to construct SenseHAR would be to use convolutional layers on the sensor data

from each device to extract features in the latent space but this would not result in a shared
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common latent space for all devices and would be specific to each device. Instead, we propose

a branched, parallel training architecture to obtain robust SenseHAR. Figure 2.2 shows the

training framework. Let ’n’ be the total number of devices and D refers to the set of available

devices D = {Di}, i ∈ {1, ..., n}. Let ’s’ be the number of sensors in each device and it can

have the values {1,2,3}. Eg. The value of ’s’ is ’1’ if the IMU has only an accelerometer,

’2’ if accelerometer and gyroscope or ’3’ if accelerometer, gyroscope, and magnetometer. F

refers to the set of Sensor fusion models for each device. F = {Fi}, i ∈ {1, ..., n}. The first

part of the training framework is the sensor fusion network which consists of ’n’ Sensor

Fusion models corresponding to each device. Let B be the set of branches in the training

framework that follows the sensor fusion network. There are a total of ’n+1’ branches

B = {bi}, i ∈ {1, ..., n + 1}, one for each device and one branch for the combination of all

devices. Each branch is mapped to the common shared latent space–SenseHAR. The final

’n+1’th branch aggregates the output of the sensor fusion model from all the individual devices

by taking the arithmetic mean(µ). This helps in constraining the values of SenseHAR to lie

within the same latent space while combining the information from multiple devices. All the

branches share the same application model ’M-shared’. The models are trained using the

activity labels by minimizing the sum of the cross-entropy loss of all the branches. The loss

function is given in Equation 3.1 where ’m’ is the total training samples, ’b’ the number of

branches, ’c’ is the total number of output classes, ’y’ is the true label and ’a’ is the activation

of the output layer. This method of training constructs a shared latent space between the

Sensor Network and Application model, which contains the high-level features from the sensor

streams of all devices making it robust and invariant to heterogeneity.

Loss(L) =
1

m

m∑
i=1

n+1∑
b=1

(
log

c∑
j=1

eabj(x) − aby(i)(x
(i))

)
(2.1)

2.4.4 Sensor fusion network

The sensor fusion network comprises the sensor fusion model of each individual device as

shown in Figure 2.2. This network is responsible for mapping the raw sensor streams to
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Figure 2.2: Branched Training Framework to construct SenseHAR: It has (a)Sensor Fusion

Network comprising ’n’ Sensor fusion models which maps to the shared latent space ’SenseHAR’

(b) Shared Application model to predict activities.

the shared low dimensional latent space. Each sensor fusion model consists of three stages.

Figures 2.3, 2.4, 2.5 show the three stages of the sensor fusion model.

2.4.4.1 Stage 1

Each sensor stream is considered separately and passed through a series of one-dimensional

convolutional layers (1-D Conv). The 1-D convolutional layer is used for extracting local

features from 1D patches in every sensor sequence and can identify local patterns within

the window of convolution. And because the same transformation is applied on every patch

identified by the window, a pattern learned at one position can also be recognized at a

different position, making 1D convolution layers translation invariant. Figure 2.3 shows

the data-flow in stage 1. The input to the first stage is the data from available sensors

and is of the shape [(s*3) x t] where ’3’ denotes the 3 axes for each sensor and ’s’ is the

number of sensors in each device. The output of the first stage is a collection of feature maps

corresponding to each filter for every sequence and is of the shape [(s *3) x t x k1] where ’k1’

is the number of 1-D kernels.
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Figure 2.3: Sensor Fusion Model - Stage 1: Contains 1-D Conv layer to extract features from

each sensor stream

2.4.4.2 Stage 2

The second stage is of the sensor fusion network is to capture the correlation across the

corresponding axes in different sensors. So we concatenate the feature maps to the shape [3 x

t x (s * k1)] and feed it to the second set of convolutional layers. The output of the second

convolutional layer is of the shape [3 x t x k2] where ’k2’ is the number of convolution kernels

in the 2nd stage. Figure 2.4 shows the data-flow in stage 2.

2.4.4.3 Stage 3

The initial layer of this stage is a K-Max pooling layer [KGB14]. K-max pooling over a linear

sequence of values returns a subsequence of k maximum values in the sequence, instead of

the single maximum value and it helps to sample down different length vectors into a fixed

length. The output from the pooling layer is fed to a Time-Distributed Dense layer which

applies the same Dense (fully-connected) operation to every time-step of a tensor, i.e., it

allows you to apply that Dense function across every input over time. Thus the output of

this layer is a sequence of the same length as the input sequence. In our paper, we use a
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Figure 2.4: Sensor Fusion Model - Stage 2: Captures the correlation across the corresponding

axes in different sensors.

Time-distributed Dense layer with 3 neurons to capture the correlation across all the feature

maps and finally we get a sequence of values of constant dimension [3 x t]. The reason for

choosing 3 can be understood from section 2.6.2 and Figure 2.5. Intuitively it corresponds

to the 3 virtual axes of the virtual sensor.

2.4.5 Application model

The second part of the training framework is the application model(M-Shared). This

application model is shared by all the branches in the training framework. It includes two

stacked LSTM layers followed by an output dense layer to give the activity predictions.

The LSTM layers capture the temporal information from the SenseHAR sequence. Dense

layer has ’c’ neurons corresponding to the number of output classes. And since this is a

classification problem we use softmax (σ) as the activation of the final dense layer which

is given in Equation 3.2. Softmax function is used to impart probabilities to the logits ’a’

when we have multiple classes and we get the probability distribution of output classes. We

consider the most probable occurrence with respect to other outputs as the predicted class.

Figure 2.6 shows the application model architecture.

σ(a)j =
eaj∑c
k=1 e

ak
(2.2)
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2.5 Evaluation Methods

2.5.1 Constructing SenseHAR

Inertial sensor data is collected from a person wearing multiple devices while performing

various daily activities. We then use the training framework discussed in section 2.4.3 to

train the Sensor fusion models for each device and the Application model by training with

the collected data. With the trained sensor fusion models each device can map to the shared

low dimensional latent space and generate SenseHAR values.

2.5.2 Testing on Subset of devices

Though a person might own multiple devices, the set of devices carried by them varies over

time. Example: Alice might own a smartphone, a Fitbit, a smartwatch and smart shoes.

While going for a run she might have all of them(a smartphone in the pocket, a smartwatch

on her left hand, Fitbit on her right hand and smart shoes on her feet), while she’s heading to

her office she might have only her smartphone and smartwatch and while reading she might

just be having one of these devices. So, when Alice has only one device at a given time, we

directly use the pre-trained Application model on the data from that device’s SenseHAR

to make inferences but when she has multiple devices, we take the arithmetic mean of the

SenseHAR values from each device to combine their information and use the same pre-trained

Application model on the aggregated values to infer the activities.

2.5.3 Calibrating for new Hardware

When a person buys a new device, it usually has different device hardware specifications (e.g.

Different sensor sampling rate or missing the magnetometer sensor). The new device has

to be calibrated such that it generates similar SenseHAR values as the existing device. To

achieve that, we first need to obtain a new sensor fusion model specific for that device which

has different inertial sensor modalities than that were included in the training phase. We do

this by following these two steps:
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Figure 2.7: Collecting raw data from new device and SenseHAR values from pre-trained

device synchronously.

2.5.3.1 Synchronous Data Collection Phase

We combine our new device or hardware setup with an existing device whose sensor fusion

model is already available and synchronously collect data as shown in Figure 2.7. This

provides us the raw sensor values from the new hardware and the SenseHAR values from the

existing device which will be used as the ground truth soft labels.

2.5.3.2 Calibration Phase

We then initialize a new sensor fusion model for the new device which is trained to generate

SenseHAR values that resemble the values obtained from the existing device by minimizing

the mean squared error(regression) as shown in Figure 2.8. Once we obtain the sensor fusion

model for the new device, we combine it with the same pre-trained Application model to

infer the activities. This method eliminates the need to collect a large amount of labeled

data for that particular hardware setup makings easier than training a new end-to-end model

from the ground up.
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Figure 2.8: Calibrating the new sensor fusion model by training it with the SenseHAR values

of the pre-trained device.

2.5.4 Training for different applications

For a given device with a trained sensor fusion model, we first collect labeled SenseHAR

data for the new application and then train a new Application model for that application

(Eg. gesture recognition) using the SenseHAR values and new activity labels. This method

while providing similar performance as training from scratch a model on the raw sensor data

has two additional benefits– 1. Saves time as compared to training a model from scratch

since we are only training a few layers. 2. The application model can be designed in a

hardware-agnostic way since SenseHAR has the same configuration on all devices.

2.6 Results

2.6.1 Datasets

There are plenty of publicly available datasets for human activity recognition and we selected

the PAMAP2 and Opportunity datasets because they had the most number of inertial

sensor modalities. We also collected our own multimodal dataset to perform more concrete
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evaluations. The location of the inertial sensors in the three datasets is shown in Figure 2.9.

A short description of each dataset used in this paper is as follows:

2.6.1.1 PAMAP2 [RS12b, RS12a]

This dataset had 9 subjects and each subject had to follow a particular protocol that contained

12 different activities. There were three inertial measurement units used in this study and

they were placed in three different locations on the body: wrist, ankle, and chest. The IMUs

contained accelerometer, gyroscope, and magnetometer and the data were collected at a

sampling frequency of 100 Hz. In our evaluations, we used subject four as our test data and

the remaining subjects were used as training data.

2.6.1.2 Opportunity dataset [RCR10]

This dataset had four trials and each trial had data from so many different sensors including

body sensors, object sensors, and ambient sensors. Since we focus only on the inertial

sensor data we consider the five inertial body-worn sensors which were worn in five different

locations on the body: Left lower arm (LLA), Left upper arm (LUA), Right lower arm (RLA),

Right Upper arm (RUA) and Back of the torso. These inertial units recorded accelerometer,

gyroscope and magnetometer values. The activities performed had two different hierarchy of

labels– High-level activities which considered the 4 major locomotion activities(sit, stand,

walk, lie, random) and Low-level activities which had 17 different micro activities such as

opening and closing doors, shelves, drawers and drinking tea. In our evaluation, we removed

the activities with null labels and considered trial 1 to 3 as training data and trial 4 as test

data.

2.6.1.3 Our Collected dataset - Multimodal Activity Recognition dataset (MMAR)

We prepared a multimodal dataset using three commonly available devices– a MotionsenseHRV

wrist band worn in our left wrist that collects accelerometer and gyroscope data at a sampling

frequency of 25Hz, an Android smartwatch (Asus Zenwatch 2) on right wrist that collects
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Devices Sampling Frequency Sensors Activities

Smartphone

(Pocket)
100Hz A,G,M Sitting idle

Sitting(using computer)

Standing

Walking

Running

Smartwatch

(Right wrist)
50Hz A,G

Wristband

(Left wrist)
25Hz A,G

Table 2.1: Description of our collected Multimodal Activity Recognition (MMAR) dataset.

accelerometer and gyroscope data at 50Hz and an Android smartphone (Pixel 3)in the right

pocket which records data from accelerometer, gyroscope and magnetometer at 100Hz. We

collected data for the following five activities: sitting idle, sitting and using a computer,

standing, walking and running. The total duration of our collected dataset was for two and a

half hours, with 30 minutes approx. for each activity. The data was split into two sets such

that 70% was considered for training and 30% for testing. Table 2.1 summarizes MMAR

dataset.

2.6.2 Number of SenseHAR Channels

The number of channels for SenseHAR was a hyper-parameter and it depends on the number of

neurons in the Time-Distributed dense layer of the sensor fusion model as discussed in section

2.4.4.3. We wanted to find the smallest number of channels that can capture information

and the correlation across different sensor modalities without the loss in performance of the

model. This is because the number of channels affect the model size and hence having fewer

channels results in fewer parameters and a simpler model. So to find the smallest number of

channels for the virtual activity sensor, we created different models having the SenseHAR

channels ranging from 1 to 10 based on our sensor fusion model architecture. We evaluated

this on Opportunity and PAMAP2 datasets and plotted the f1-scores achieved vs the number

of channels, to obtain the graph shown in Figure 2.10. From our analysis, we found that
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Figure 2.9: Placement of Inertial sensors in the different datasets. PAMAP2 dataset has

3, Opportunity has 5, and our collected dataset (MMAR) has 3 inertial sensors placed at

different locations on the body.

increasing the number of channels beyond three did not have a significant increase in the

performance of the model for both the datasets and hence we decided to use three channels

to represent SenseHAR.

2.6.3 Baseline models

To evaluate the performance of our proposed method using SenseHAR we used the following

existing deep learning based multi-modal architectures as our baseline models.

Feature Concatenation methods: The sensing modalities are concatenated to a single

modality vector and we considered the three common deep learning architectures– Dense

Neural Network(DNN), Convolutional Neural Network(CNN) and a hybrid Convolutional

LSTM neural network.

Modality Specific Architecture: We implemented the two modality specific architectures

MA-DNN and MA-CNN as described by Radu et al. in [RTB18] which achieved state of the

art performance on multi-modal datasets. These architectures have a dedicated DNN and
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Figure 2.10: Number of SenseHAR channels vs F1-score for PAMAP2 and Opportunity

datasets. There was not a significant gain in performance when the SenseHAR dimensions

increased beyond three.
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Datasets
DNN CNN Conv-LSTM MA-DNN MA-CNN

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

PAMAP2 85.82 0.8622 90.40 0.9036 94.68 0.9446 92.16 0.9204 95.14 0.9499

Opportunity (Gestures) 67.21 0.5842 71.13 0.6431 74.80 0.6792 72.86 0.6684 74.40 0.6754

Opportunity (Locomotion) 85.67 0.8494 87.25 0.8778 89.56 0.8968 88.37 0.8841 90.52 0.9044

MMAR 88.23 0.8831 91.14 0.9107 93.20 0.9298 90.86 0.9082 93.28 0.9306

Table 2.2: Performance comparision of the baseline models for activity recognition in PAMAP2,

Opportunity and MMAR datasets.

CNN for each sensing modality whose output is then combined through a fully connected

layer to identify the target class.

Evaluation Metrics We used the comparison of classification accuracy and mean F1-Score

with the baseline models as our evaluation metrics. Classification accuracy is the number of

correct predictions made as a ratio of all predictions made and the F1-score can be interpreted

as a weighted average of precision and recall. The F1 scores can be calculated using the

equation 2.3.

F1− score = 2 ∗ precision ∗ recall
precision+ recall

(2.3)

Table 2.2 compares the multimodal activity recognition performance of the different

baseline models for the three datasets.

2.6.4 Training to obtain SenseHAR values

First, we obtain the SenseHAR values and the Application model using all the devices and

sensor modalities by training them in the branched manner as explained in Section 2.4.3 for

each dataset. We modified the K-max-pool layer of the sensor fusion model such that the

sensor fusion model outputs SenseHAR values at a constant frequency of 25Hz (the smallest

sampling frequency in the considered datasets). The training framework has one branch for

every device and one branch for the combination of devices as shown in Figure 2.2 and all

branches use the same Application model. Therefore, the framework for PAMAP2 dataset

and MMAR dataset has 4 branches and Opportunity dataset has 6 branches.
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Dataset Branch Sensors Sampling Rate Device Location Accuracy F1-score

PAMAP2

1 AGM 100 Wrist (W) 83.35 0.8347

2 AGM 100 Ankle (A) 86.81 0.8664

3 AGM 100 Chest (C) 87.24 0.8736

4 AGM 100 W, A, C 95.32 0.9508

Opportunity

(Gestures)

1 AGM 30 Back 65.14 0.5994

2 AGM 30 RUA 67.32 0.6088

3 AGM 30 RLA 63.81 0.5845

4 AGM 30 LUA 66.74 0.6077

5 AGM 30 LLA 62.05 0.5763

6 AGM 30 Back, RUA, RLA, LUA, LLA 74.22 0.6748

MMAR

1 AGM 100 Pocket (P) 86.88 0.8658

2 AG 50 Left Wrist (LW) 89.51 0.8955

3 AG 25 Right Wrist (RW) 87.39 0.8747

4 AGM 100,50,25 P, LW, RW 93.13 0.9308

Table 2.3: Performance of each branch from SenseHAR training framework for activity

recognition in PAMAP2, Opportunity and MMAR datasets.The application model trained

on the combination of SenseHAR values from all devices is able to achieve the state-of-the-art

performance

After the training process, we get a sensor fusion model for every device that maps to

SenseHAR and an Application model that works on the SenseHAR values. We obtain the

accuracy and F1-scores on the test data and report the performance obtained by each branch

in Table 2.3. Since the final branch in our framework corresponds to the Sensor fusion of all

the available modalities we compare it with the performance of the baseline models shown in

Table 2.2 and observe that our model achieves the state of the art performance of 95.32%,

74.22% and 93.13% on PAMAP2, Opportunity(gestures) and MMAR datasets respectively.
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Dataset Device Combination
F1-Scores

Ensemble CNN Conv-LSTM MA-DNN MA-CNN SenseHAR-M

PAMAP2

Ankle, Chest 0.8765 0.8923 0.9218 0.8809 0.9210 0.9326

Ankle, Wrist 0.8722 0.8735 0.8982 0.8677 0.8996 0.9002

Wrist, Chest 0.8875 0.8931 0.9008 0.8845 0.9016 0.9036

Opportunity

(Gestures)

RUA+LUA+Back 0.6226 0.6323 0.6533 0.6230 0.6568 0.6630

RLA+LLA 0.5852 0.5952 0.6197 0.6018 0.6168 0.6190

RUA+LLA 0.6148 0.6338 0.6392 0.6222 0.6420 0.6554

MMAR

Smartphone +Smartwatch 0.8966 0.8955 0.9120 0.8851 0.9202 0.9308

Smartphone +Wristband 0.8842 0.8845 0.9095 0.8739 0.9106 0.9102

Wristband +Smartwatch 0.8784 0.8811 0.9152 0.8812 0.9158 0.9175

Table 2.4: Performance comparison of the baseline models and SenseHAR-M (Model trained

on SenseHAR values) for activity recognition considering different combination of devices in

PAMAP2, Opportunity and MMAR datasets.

2.6.5 Different Combination of devices

We consider different scenarios where only a subset of the devices is available in each dataset.

In these cases, we first obtain the SenseHAR values by using the sensor fusion model of

the available devices. Then we take the arithmetic mean of the SenseHAR values from the

available devices to combine their information and feed it to the trained Application model to

get the activity predictions. We also train from scratch the baseline models for this different

combination of devices to compare with our approach. Table 2.4 shows that our method

of averaging the SenseHAR values to combine information and using the same Application

model to make predictions performs equally well as training a new model from scratch for

different combinations. This is of great significance because it eliminates the need to train a

new model for every possible permutation of devices.

2.6.6 A new device with Different Sensors

In this case, we consider that the the user has a new device with only a subset of the sensors.

In our experiments, the new devices are– 1. Chest sensor without gyroscope from PAMAP2
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Figure 2.11: Performance comparison of the baseline models and SenseHAR-M (Model trained

on SenseHAR values) for activity recognition in a new device with different sensors across

datasets.

dataset, 2.RUA sensor without gyroscope and magnetometer from Opportunity dataset, 3. A

smartphone without gyroscope and magnetometer from MMAR dataset. As seen from the

table 2.3, these devices were not considered in the training phase. So now we initialize a new

Sensor fusion model for each of the new devices which can take in the data from available

sensors as input and train it using the SenseHAR values from a pre-trained device using

the method explained in section 2.5.3. The Sensor Fusion model of the new devices learn

to map to the same low dimensional latent space and the SenseHAR values obtained from

this model is combined with the same previously trained Application model. We evaluate

the performance on the test data and compare this performance to the performance of the

baseline models (i.e.) the model that is trained from scratch on the available sensors and using

the activity labels. We observe that even without using the true activity labels but training

only on the SenseHAR values, this method is able to come very close to the performance of a

baseline model trained on the true labels. There is a small performance drop of less than 1%

as shown in Figure 2.11.
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Figure 2.12: Performance comparison of the baseline models and SenseHAR-M (Model

trained on SenseHAR values) for activity recognition in a new device with different sampling

frequency across datasets.

2.6.7 A new device with a Different Sampling frequency

In this evaluation, we considered only the PAMAP2 and MMAR datasets since these datasets

had frequencies higher than 25Hz. For this experiment, we considered two new devices from

PAMAP2 dataset– 1. Wrist sensor that collects data at 50 Hz, 2. Ankle sensor that collects

data at 25Hz and one new device from the MMAR dataset– 3. Smartwatch on the left wrist

at 25Hz. The data for this experiment was obtained by downsampling the original data to

from initial frequency to 50Hz and 25Hz respectively. We create a new sensor fusion model

for each of these new devices such that they are able to support the new frequencies. This is

done by adjusting the max-pooling layer of the sensor fusion model such that it maintains

the same SenseHAR frequency of 25Hz. Then the sensor fusion models are trained in the

same way as mentioned in section 2.5.3, combined with the Application model and evaluated

on the test user data. We compare the performance with the baseline models trained from

scratch on these new frequencies using the true activity labels. We find that our method

is able to achieve similar performance as the baseline models though we trained it without

using true activity labels. The performance metrics are shown in Figure 2.12.
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2.6.8 A new hardware at a Different Location

To evaluate different locations, we used the Opportunity dataset since they had five different

modalities based on locations (i.e) they had inertial sensors on five different locations on the

body as seen in Figure 2.9. Instead of using all the five devices in the training framework

as mentioned in section 2.6.4 we now use only four devices by leaving out one device. The

left out device is then introduced as the new device in a different location. The experiment

was done five times with the new device being in a different location each turn. A new

sensor fusion model was initialized and calibrated for the new device. Figure 2.13 shows the

performance of the new device when introduced in each of the five locations. We observe

that, introducing an inertial sensor in a totally new location, calibrating a new sensor fusion

model using the SenseHAR values from existing devices and combining it with the pre-trained

Application model has an average performance drop of 5.2% and the worst performance drop

of 6% (for the new device in ’Back’ location) when compared to training a new baseline

models from scratch using true activity labels. The drop in performance can be attributed

to the bias in SenseHAR to the locations included in the training framework and can be

mitigated by considering more devices located at different locations while training to obtain

SenseHAR.

2.6.9 Different Activities

Usually, we initialize and train a new model on the sensor data for every new application

and this is an extremely time and resource consuming process. So to avoid always training

a model from scratch, we use the same Sensor fusion model for a particular device to

obtain the SenseHAR values and then train an Application model which is a simple LSTM

network on the SenseHAR values for the specific application. Training this simple LSTM

model takes significantly less time than training a new model on raw sensor data since the

SenseHAR already captures the high-level features corresponding to the activities. To test

the generalizability of the SenseHAR values, we did it in two ways: (i) Train an Application

model for a different application using the same SenseHAR values (ii) Test the performance
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Figure 2.13: Performance comparison of the baseline models and SenseHAR-M (Model trained

on SenseHAR values) for activity recognition in a new device at a new location in Opportunity

dataset.

across datasets with similar hardware setup.

Different Application: Opportunity dataset has two different labels for each sensor stream-

one for low-level gestures and another for higher level locomotion activity. In the training

framework, while mapping to the shared latent space, we used the labels from low-level

gestures and hence the Application model obtained will correspond to inferring the gestures.

Now to infer the modes of locomotion, we train a new Application model on the SenseHAR

data by using the same sensor fusion models. Table 2.5 shows the comparison of the

performance metrics obtained by training the baseline models from the start for a different

application and our proposed method.

Across Datasets: Data collection of MMAR dataset was similar to the PAMAP2 dataset

which also had a wrist sensor worn on the participant’s right wrist and hence, we obtained a

Sensor fusion model from the PAMAP2 dataset for the wrist sensor sampled at 50Hz. We

then used that Sensor fusion model on MMAR dataset to obtain the SenseHAR data for

the smartwatch on the right wrist and trained a new Application model on the SenseHAR

data for MMAR dataset. The performance of the new Application model was compared with

baseline models from scratch on the training data. The performance comparison is shown
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Dataset Activites
F1-score

SenseHAR Model Baseline

Opportunity

(Locomotion)

Stand 0.9114 0.9048

Sit 0.8346 0.8107

Walk 0.9330 0.9600

Lie 0.9466 0.9589

MMAR

Sit(idle) 0.9021 0.8992

Sit(use Computer) 0.9045 0.9088

Stand 0.9412 0.9488

Walk 0.9227 0.9210

Run 0.9574 0.9586

Table 2.5: Comparing individual activity recognition performance between the Application

model trained on SenseHAR values and baseline model for Opportunity and MMAR datasets.

in Table 2.5. We found that the F1-score achieved by the Application model trained on

SenseHAR values for each activity was similar to that of the baseline model. This shows that

SenseHAR is able to capture the information of these activities performed by the participant.

This is of importance because we are able to achieve similar performance as state of the art

models in a hardware-agnostic way.

2.6.10 Training Time

We used GTX 1060 GPU to train our models. The initial training time to obtain the robust

shared latent space representation is longer when compared to training an end-to-end model

since the training framework involves optimization of the sum of the loss functions from

multiple branches. It took 80 minutes for PAMAP2 and 50 minutes for Opportunity and

MMAR datasets to obtain SenseHAR. But once we obtain the SenseHAR, as discussed

in section 2.4 we do not have to train a new end-to-end model for different combination

of devices since we can use the same application model and this saves time considerably.
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Figure 2.14: Comparison of time taken to train baseline models and to calibrate SenseHAR

on a new device.

Additionally, the time taken to calibrate a new device to map to the same latent space is

three to four times shorter than training a new end-to-end model as only a few convolutional

layers in the sensor fusion model have to be trained. Figure 3.7 compares the time taken to

calibrate the SenseHAR with the time taken to train the baseline models for a new device.

It’s important to note that we don’t have to collect labeled data for calibrating SenseHAR

which further saves the time and effort that would be required to label the data for every

new device.

2.7 Related Work

In deep learning, before we use a neural network for a task (classification, regression), the usual

architecture is to extract features through many layers (convolutional, recurrent, pooling, etc.).

These layers map the inputs to the latent space on which the last classification layer is applied.

Latent space has gained a lot of importance in Natural Language Processing(NLP) for word

embeddings [GL14], [PSM14], in social network analysis for random graph models [HRH02]

and in computer vision for applications like style transfer [ZPI17], data compression [HS06]

and data interpolation [WZX16]. The work by Ngiam et al. [NKK11] shows how to learn a
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shared representation between modalities and evaluate it on a unique task, where the classifier

is trained with audio-only data but tested with video-only data and vice-versa.

For cross-domain activity recognition, the concept of transfer learning where certain

parameters can be transferred while training a new model for a different application has been

explored [MR16, CFK13] but this method still requires true activity labels to train the new

model. Chen et al. [CWH19] introduce stratified transfer learning approach that uses pseudo

labels from existing sensors instead of true labels. It performs intra-class knowledge transfer

between domains iteratively to transform them into the same subspaces. Rokni et al. [RG18]

introduce an autonomous training method where, pseudo labels obtained from existing sensors

are concatenated with features from the new sensor and then clustered to improve accuracy.

But these approaches only work on the traditional method of extracting features from the

raw sensor values. Xing et al. [XSB18] show that the shared latent space representation

exists for time series sensory data, and it can help transfer knowledge from ambiance edge

devices to wearable edge devices and vice versa. Radu et al.’s deep learning based modality

specific architecture [RTB18] does sensor fusion in latent space. But this work does not take

into consideration the heterogeneities in the devices and sensors and hence, a new end-to-end

model has to be trained for each device and application. Also, these models assume that

all the modalities are present at any given time which is generally not the case in real life

implementations. The work by Khan et al. [KRM18] assumes that the distribution of weights

and biases in the convolutional layers remains largely unchanged across different activities,

and thus automatically adapts and learns the model across different domains with minimal

labeled data. This approach does not address the problem of a new device having a different

hardware configuration than the existing device. The conventional procedure to take care of

the difference in sampling rates of the devices is to interpolate or resample the collected data

to the required frequency. The two common methods of interpolation used for HAR are linear

[CSC13] and cubic spline [TIH07]. This means additional preprocessing has to be done before

feeding it to the HAR models. Stisen et al. [SBB15] propose a clustering-based approach as

a mitigation technique to improve HAR performance in the presence of heterogeneities but

their work is limited to devices with a single modality(accelerometer).
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One of the early efforts in creating a virtual sensor from sensor fusion was the work

on virtual gyroscope [CXQ08] which proposed the theory of gyro-free IMU. The virtual

gyroscope with multigyroscope and accelerometer array (MGAA)configuration merges the

outputs of multi-gyroscopes and specifically placed accelerometers through a Kalman filter.

The work by LiKamWa et al. [LLL13] proposed Moodscope, a virtual mood sensor for a

smartphone that measures an important mental state of the user based on the interactions

with the smartphone. These papers relied on traditional signal processing and decision-based

algorithms and hence do not generalize well for different devices and different users.

2.8 Discussion & Future Work

Training Process: For each dataset, the sensor sequences were divided into window size

of five seconds with one-second overlap. When the number of sensor modalities changes,

we change the input shape of the first convolutional layer in the Sensor fusion model to

handle this difference. When the sensors had different sampling frequencies, we adjusted the

K-max-pool layers to support the different frequencies. In our implementation, the sensor

fusion model had one or two max-pool layers with a pool size of two if the input sensor data

was sampled at 50Hz or 100Hz respectively. When the sampling frequency was 30 Hz, we

adjusted the K-max-pool layer such that it returns the maximum five values from a pool

size of six. Thus when high frequency sensor values are fed into the sensor fusion model,

the output, which is the SenseHAR values, will always have a constant frequency of 25Hz.

Though the frequency of the SenseHAR is less than the input raw sensor frequencies, the

relevant high-frequency features from the sensors are captured by the convolutional and

pooling layers of the sensor fusion model, and is rich in information. In addition to the

convolutional, K-max-pool, LSTM and dense layers, we also used batch normalization [IS15]

and dropout layers [SHK14] in our models. The use of batch normalization reduces the

impacts of earlier layers by keeping the mean and variance fixed, which makes the layers

independent with each other and helps the model to train faster. We used dropout layers as

the method of regularization to prevent over-fitting of our models. In the dropout layer, the
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neurons are randomly dropped out of the network with a certain probability during training.

This makes the other neurons to step in and handle the representation required to make

predictions for the missing neurons resulting in multiple independent internal representations

being learned by the network. We used Adam optimizer [KB14], an extension of the classical

stochastic gradient descent procedure, which maintains an adaptive, per-parameter learning

rate which helps the network to converge faster.

Pre-Processing: Since our method works on raw sensor streams it requires no pre-processing

before the training phase. Hence, we don’t require domain-specific expertise to do feature

engineering. This saves the effort required to do identify the important features and also the

time required to compute those features. We used a window size of five seconds as inputs to

our model so that we have sufficient information from each sensor to capture the high-level

features and map them to a shared latent space.

Limitations and Future work: To make sure that the SenseHAR values are not biased to

the applications it is trained on, we need a significantly large dataset with diverse activities.

In our experiments, since the maximum sampling frequency of the devices we considered was

100Hz, the performance of SenseHAR was evaluated only on activities that last for a few

seconds. We did not consider any minute fine-grained activities that occur in the millisecond

scale (lasts for only a few milliseconds) as it requires data sampled at high frequencies to

capture the fine grained information. In the current method, our sensor fusion model does not

work for devices having sensors with sampling frequencies less than 25Hz. So in the future,

we aim to address this issue by trying different techniques like zero padding to the input

sequence or adding de-convolutional layers to the sensor fusion model to support any arbitrary

sampling rates. Also, we used the arithmetic mean for combining information because we

wanted the shared latent space obtained from our training framework to be independent of

the type of device or the device configuration or location and only contain information related

to the activities and hence we gave equal weights to all the devices. In future we plan to

incorporate techniques like adaptive weighted averaging and explore different normalization

techniques at the sensor fusion step, which might help in improving the performance.
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2.9 Conclusion

In this paper, we explore the different challenges and heterogeneities in smartphones and

wearables for HAR and construct SenseHAR– a virtual activity sensor that is robust to the

variations and availability of the inertial sensors using deep learning. SenseHAR enables

the inferring of human activities even when the set of available devices varies over time by

mapping the information from the available devices to a shared low-dimensional latent space.

We explain the method to calibrate the SenseHAR for a new device in the absence of labeled

data with the help of an existing calibrated device. Finally, we do a comprehensive evaluation

of SenseHAR and compare its performance with the state-of-the-art multimodal architectures

for various device combinations and configurations. Our results indicate that SenseHAR

generalizes well for a different set of devices, different sampling frequency, different sensors

and for different applications. It shows a small degradation in performance when calibrating

for a device introduced in a new location on the body which wasn’t included in the training

framework. This drop in performance can be minimized if we include a wide array of devices

located at different locations on the body in the training framework. Our virtual activity

sensor - SenseHAR decouples hardware from software and will help application developers to

not worry about the hardware specifications of the device while creating activity recognition

models.
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CHAPTER 3

Combining Individual and Joint Networking Behavior for

Intelligent IoT Analytics

The IoT vision of a trillion connected devices over the next decade requires reliable end-to-end

connectivity and automated device management platforms. While we have seen successful

efforts for maintaining small IoT testbeds, there are multiple challenges for the efficient

management of large-scale device deployments. With Industrial IoT, incorporating millions

of devices, traditional management methods do not scale well. In this work, we address these

challenges by designing a set of novel machine learning techniques, which form a foundation of

a new tool, IoTelligent, for IoT device management, using traffic characteristics obtained at

the network level. The design of our tool is driven by the analysis of 1-year long networking

data, collected from 350 companies with IoT deployments. The exploratory analysis of

this data reveals that IoT environments follow the famous Pareto principle, such as: (i)

10% of the companies in the dataset contribute to 90% of the entire traffic; (ii) 7% of all

the companies in the set own 90% of all the devices. We designed and evaluated CNN,

LSTM, and Convolutional LSTM models for demand forecasting, with a conclusion of the

Convolutional LSTM model being the best. However, maintaining and updating individual

company models is expensive. In this work, we design a novel, scalable approach, where a

general demand forecasting model is built using the combined data of all the companies with

a normalization factor. Moreover, we introduce a novel technique for device management,

based on autoencoders. They automatically extract relevant device features to identify device

groups with similar behavior to flag anomalous devices.
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3.1 Introduction

The high-tech industry expects a trillion new IoT devices will be produced between now

and 2035 [mas16, him18, 1T20]. These devices could range from simple sensors in everyday

objects to complex devices, defined by the industrial and manufacturing processes. The

Internet of Things ecosystem should include the necessary components that enable businesses,

governments, and consumers to seamlessly connect to their IoT devices. This vision requires

reliable end-to-end connectivity and device management platform, which makes it easier for

device owners to access their IoT data and exploiting the opportunity to derive real business

value from this data. The benefits of leveraging this data are greater business efficiencies,

faster time to market, cost savings, and new revenue streams. Embracing these benefits

ultimately comes down to ensuring the data is secure and readily accessible for meaningful

insights.

The Arm Mbed IoT Device Management Platform [pel20a] addresses these requirements

by enabling organizations to securely develop, provision and manage connected devices at

scale and by enabling the connectivity management [pel20b] of every device regardless of its

location or network type. The designed platform supports the physical connectivity across

all major wireless protocols (such as cellular, LoRa, Satellite, etc.) that can be managed

through a single user interface. Seamlessly connecting all IoT devices is important in ensuring

their data is accessible at the appropriate time and cost across any use case. While we

could see successful examples of deploying and maintaining small IoT testbeds, there are

multiple challenges in designing an efficient management platform for large-scale device

deployments. The operators of IoT environments may not be fully aware of their IoT assets,

let alone whether each IoT device is functioning and connected properly, and whether enough

networking resources and bandwidth allocated to support the performance objectives of their

IoT networks. With the IoT devices being projected to scale to billions, the traditional

(customized or manual) methods of device and IoT networks management do not scale to

meet the required performance objectives.

In this work, we aim to address these challenges by designing a set of novel machine
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learning techniques, which form a foundation of a new tool, IoTelligent [JCL20], for IoT

networks and device management, using traffic characteristics obtained at the network level.

One of the main objectives of IoTelligent is to build effective demand forecasting methods

for owners of IoT ecosystems to manage trends, predict performance, and detect failures.

The insights and prediction results of the tool will be of interest to the operators of IoT

environments.

For designing the tool and appropriate techniques, we utilize the unique set of real

(anonymized) data, which were provided to us by our business partners. This dataset

represents 1-year of networking data collected from 350 companies with IoT deployments,

utilizing the Arm Mbed IoT Device Management Platform. The exploratory analysis of the

underlying dataset reveals a set of interesting insights into the nature of such IoT deployments.

It shows that the IoT environments exhibit properties similar to the earlier studied web

and media sites [AW96, Kim01, CG04, TFC07] and could be described by famous Pareto

principle [wik], when the data distribution follows the power law [pow]. The Pareto principle

(also known as the 80/20 rule or the "law of the vital few") states that for many events or

data distributions roughly 80% of the effects come from 20% of the causes. For example,

in the earlier web sites, 20% of the web pages were responsible for 80% of all the users

accesses [AW96]. The later, popular web sites follow a slightly different proportion rule:

they often are described by 90/10 or 90/5 distributions, i.e., 90% of all the user accesses are

targeting a small subset of popular web pages, which represent 5% or 10% of the entire web

pages set.

The interesting findings from the studied IoT networking dataset can be summarized as

follows:

• 10% of the companies in the dataset contribute to 90% of the entire traffic;

• 7% of all the companies in the dataset own 90% of all the devices.

IoTelligent tool applies machine learning techniques to forecast the companies’ traffic demands

over time, visualize traffic trends, identify and cluster devices, detect device anomalies and

failures. We designed and evaluated CNN, LSTM, and Convolutional LSTM models for
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demand forecasting, with a conclusion of the Convolutional LSTM model being the best.

To avoid maintaining and upgrading tens (or hundreds) of models (a different model per

company), we designed and implemented a novel, scalable approach, where a global demand

forecasting model is built using the combined data of all the companies. The accuracy of the

designed approach is further improved by normalizing the “contribution” of individual company

data in the combined global dataset. To solve the scalability issues with managing the millions

of devices, we designed and evaluated a novel technique based on: (i) autoencoders, which

extract the relevant features automatically from the network traffic stream; (ii) DBSCAN

clustering to identify the group of devices that exhibit similar behavior, to flag anomalous

devices. The designed management tool paves the way the industry can monitor their

IoT assets for presence, functionality, and behavior at scale without the need to develop

device-specific models.

3.2 Dataset and the Exploratory Data Analysis

The network traffic data was collected from more than 350 companies for a total duration of

one year. The traffic data is binned using 15 minute time window, used for billing purposes.

• Unix timestamp;

• Anonymous company ids;

• Anonymous device ids per company;

• The direction of the network traffic (to and from the device);

• Number of bytes transmitted in the 15 minute interval;

• Number of packets transmitted in the 15 minute interval.

Preliminary analysis was done to find the most impactful and well-established companies. We

found that the companies’ data that represent two essential metrics, such as the networking

traffic amount and number of deployed IoT devices, both follow the Pareto law. The main

findings from the studied IoT networking dataset can be summarized as follows:
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Figure 3.1: (left) CDF of networking traffic; (right) CDF of devices.

Figure 3.2: (left) Networking traffic per company; (right) Number of devices per company.

• 10% of the companies in the dataset contribute to 90% of the entire traffic;

• 7% of all the companies in the dataset own 90% of all the devices.

Figure 3.1 shows on the left side the logscale graph of CDF (Cumulative Distribution

Function) of the traffic (where one can see that 10% of the companies in the dataset contribute

to 90% of the entire traffic) and the CDF of the devices per company distribution (where one

can see that 7% of all the companies in the dataset own 90% of all the devices). Also, it is

quite interesting to note how significant and sizable the contributions are of the first 5-10

companies on those graphs: both for the networking traffic volume and the number of overall

devices.

Another interesting observation was that companies with highest number of devices did

not correspond to companies with maximum amount of traffic, and vice versa, the high

volume traffic companies did not have a lot of devices. This makes sense, for example, a

difference in the outputs of hundreds of simple sensors and a single recording camera. Among

some other insights into special properties of many IoT environments (at the networking
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level) we observe the pronounced diurnal and weekly patterns, and changes in the traffic

patterns around some seasonal events and holidays. It could be explained by the fact that

many IoT environments are related to human and business activities.

3.3 Demand Forecasting

The demand forecasting problem is formulated in the following way. Given a recent month’s

traffic pattern for a company, what is the expected traffic for this company a week ahead?

This problem requires that a predictive model forecasts the total number of bytes for each

hour over the next seven days. Technically, this framing of the problem is referred to as a

multi-step time series forecasting problem, given the multiple forecast steps. Choosing the

right time granularity for (i) making the prediction and (ii) data used in the model, is another

important decision for this type of a problem.

We found that a reasonable trade-off would be to use 1 hour time granularity. This

eliminates the small noises in traffic and also ensures that we have a sufficient data to train

our models on.

3.3.1 Modeling Approach

Based on our exploratory data analysis, we select 33 companies with largest traffic and 5

companies with largest number of devices. These companies are responsible for 90% of the

networking traffic volume and 90% of IoT devices. Therefore, by designing and evaluating

the modeling approach for these companies, we could efficiently cover the demand forecasting

for 90% of the traffic volume and assessing the monitoring solution for 90% of devices.

The specific goal is to predict the company traffic for a next week given the previous three

weeks of traffic data in an hourly time granularity. We use a deep learning based approach

for demand forecasting, because deep learning methods are robust to noise, highly scalable,

and generalizable. We have considered three different deep learning architectures for demand

forecasting: CNN, LSTM, and Convolutional LSTM in order to compare their outcome and

accuracy.
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Convolutional Neural Network (CNN) [KSH12]: It is a biologically inspired variant

of a fully connected layer, which is designed to use minimal amounts of preprocessing.

CNNs are made of Convolutional layers that exploit spatially-local correlation by enforcing

a local connectivity pattern between neurons of adjacent layers. The main operations in

Convolution layers are Convolution, Activation (ReLU), Batch normalization, and Pooling or

Sub-Sampling. The CNN architecture, used in our experiments, has 4 main layers. The first

three layers are one-dimensional convolutional layers, each with 64 filters and relu activation

function, that operate over the 1D traffic sequence. Each convolutional layer is followed by a

max-pooling layer of size 2, whose job is to distill the output of the convolutional layer to

the most salient elements. A flatten layer is used after the convolutional layers to reduce the

feature maps to a single one-dimensional vector. The final layer is a dense fully connected

layer with 168 neurons (24 hours x 7 days) with linear activation and that produces the

forecast by interpreting the features extracted by the convolutional part of the model.

Long Short Term Memory (LSTM) [GSC99, HS97]: It is a type of Recurrent Neural

Network (RNN), which takes current inputs and remembers what it has perceived previously

in time. An LSTM layer has a chain-like structure of repeating units and each unit is

composed of a cell, an input gate, an output gate, and a forget gate, working together. It is

well-suited to classify, process, and predict time series with time lags of unknown size and

duration between important events. Because LSTMs can remember values over arbitrary

intervals, they usually have an advantage over alternative RNNs, Hidden Markov models,

and other sequence learning methods in numerous applications. The model architecture, used

in our experiments, consists of two stacked LSTM layers, each with 32 LSTM cells, followed

by a dense layer with 168 neurons to generate the forecast.

Convolutional LSTM [XCW15]: Convolutional LSTM is a hybrid deep learning archi-

tecture that consists of both convolutional and LSTM layers. The first two layers are the

one-dimensional Convolutional layers that help in capturing the high-level features from the

input sequence of traffic data. Each convolutional layer is followed by a max-pooling layer to

reduce the sequence length. They are followed by two LSTM layers, that help in tracking the

temporal information from the sequential features, captured by the convolutional layers. The
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(a) (b)

Figure 3.3: (a) Each company has its own prediction model, (b) Using one model for all the

companies, trained on the combined dataset.

final layer is a dense fully connected layer, that gives a forecasting output.

We use batch-normalization and dropout layers in all our models. To evaluate the

prediction accuracy of the designed models, we compare the predicted value Xpred
n with the

true, measured value Xn using following error metrics:

Mean Absolute Error (MAE):

MAE =
1

N
ΣN
n=1|Xn −Xpred

n |

Mean Squared Error (MSE):

MSE =
1

N
ΣN
n=1(Xn −Xpred

n )
2

3.3.2 Individual Model Per Company

This is the naive approach where each company has it’s own demand forecasting model,

that is, the model for each company is trained by using only the data from that particular

company as shown in Figure 3.3 (a).

So, for each company, we trained three models with the architectures described above (i.e.,

CNN, LSTM, and Convolutional LSTM). Figure 3.4 (a) presents the detailed parameters of the

designed Convolutional LSTM, while Figure 3.4 (b) reflects the relative performance of three
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Figure 3.4: (a) Model Architecture of Convolutional LSTM Model; (b) Comparing performance

of the three architectures: Convolutional LSTM achieves best performance.

Figure 3.5: Company A: the 4th week demand forecast based on data from the previous 3

weeks.

49



different architectures (with the MAE error metrics). We found that for both error metrics

the Convolutional LSTM model performs better than the other two architectures. When

comparing architectures’ accuracy by using MAE and MSE, we can see that Convolutional

LSTM outperforms CNN by 16% and 23% respectively, and outperforms LSTM by 43% and

36% respectively. Therefore, only Convolutional LSTM architecture is considered for the

rest of the paper. Finally, Figure 3.5 shows an example of company A (in the studied dataset):

its measured networking traffic over time and the forecasting results with the Convolutional

LSTM model.

Building an individual model per each company has a benefit that this approach is simple

to implement. But this method has significant drawbacks. First, the model easily overfits

on the training data since it’s trained only using limited data from a particular company

resulting in poor forecasting performance. Secondly, it is not scalable as the number of

required forecasting models is directly proportional to the number of companies. The service

provider has to deal with the models’ maintenance, their upgrades, and retraining (with new

data) over time. Therefore, in the next Section 3.3.3, we aim to explore a different approach,

which enables a service provider to use all the collected, global data for building a single

(global) model, while using it for individual company demand forecasting. Only Convolutional

LSTM architecture is considered in the remaining of the paper (since as shown, it supports

the best performance).

3.3.3 One Model for All Companies - Without Normalization

In this approach, we train a single Convolutional LSTM model for demand forecasting by

using data from all the companies. The networking traffic data from all the companies were

combined. The data from January to October were used for training the model, and the data

from November and December were used as the test set.

This method is highly scalable since it trains and utilizes a single model for demand

forecasting of all companies. While this approach is very attractive and logical, it did not

always produce good forecasting results. Figure 3.6 shows the forecasting made by this global
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model for Company A (with this company we are already familiar from Figure 3.5). As we

can see in Figure 3.6, the model fails to capture a well-established traffic pattern.

Figure 3.6: Demand forecasting using the Global model trained on data without normalization.

One of the explanations of the observed issue is that this company’s traffic constitutes

a very small fraction compared to the other companies in the combined dataset. So, the

globally trained model has “learned" the traffic patterns of larger companies in the set, while

has “downplayed" the traffic patterns of smaller companies. The reason the model fails to

capture a well-established traffic pattern for companies with less traffic is because, the traffic

prediction loss in terms of absolute value is still small. However, it is not a desirable outcome

as we would like our model to capture the traffic pattern even for companies with low traffic.

3.3.4 One Model for All Companies - With Normalization

This method aims to address the issues of the previous two approaches. In this method, the

data from each company is normalized, that is, all the data subsets are scaled so that they lie

within the same range. We use the min-max scaling approach to normalize the data subsets

so that the values of the data for all companies lie between 0 and 1. Equation 3.1 shows the

formula used for min-max scaling, where ’i’ refers to the ’i’th company.

Xi
norm =

Xi −Xi
min

Xi
max −Xi

min

(3.1)

Then a single deep learning model for forecasting is trained using the normalized data of

all companies. The predicted demand (forecast) is then re-scaled using Equation 3.2 to the

original scale.

Xi = Xi
norm ∗ (Xi

max −Xi
min) +Xi

min (3.2)
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This method of training the global model gives equal importance to the data from all

companies and treats them fairly. The designed model does not over-fit and is generalizable

since it is trained on the data from multiple companies. Figure 3.7 graphically reflects the

process of the global model creation with normalized data from different companies.
Scaling Inverse

Scaling

Figure 3.7: One global prediction model is trained by using the normalized data from all the

companies.

Figure 3.8 shows that the designed forecasting model can capture well the patterns of

companies with low traffic volume (such as Company A).

Figure 3.8: Demand forecasting using the Global model trained on data with normalization.

3.4 Introducing Uncertainty to Forecasting Models

In the previous section, we designed a single global model with normalization, that can be

used to forecast for multiple companies. But demand forecasting is a field, where an element

of uncertainty exists in all the predictions, and therefore, representing model uncertainty is

of crucial importance. The standard deep learning tools for forecasting do not capture model
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Figure 3.9: Demand forecasting with uncertainty for Global model trained on data with

normalization.
uncertainty. Gal et. al [GG16] propose a simple approach to quantify the neural network

uncertainty, which shows that the use of dropout in neural networks can be interpreted as a

Bayesian approximation of a Gaussian process - a well known probabilistic model. Dropout

is used in many models in deep learning as a way to avoid over-fitting, and it acts as a

regularizer. However, by leaving it “on" during the prediction, we end up with the equivalent

of an ensemble of subnetworks, within our single larger network, that have slightly different

views of the data. If we create a set of T predictions from our model, we can use the mean

and variance of these predictions to estimate the prediction set uncertainty. Figure 3.9 shows

the forecast with uncertainty for Company A, using the global model with normalization.

To evaluate the quality of forecast based on uncertainty, we introduce Prediction Interval

Coverage Probability (PICP) metric.

3.4.1 Prediction Interval Coverage Probability (PICP)

PICP tells us the percentage of time an interval contains the actual value of the prediction.

Equations 3-5 show the calculation of PICP metric, where l is the lower bound, u is the

upper bound, xi is the value at timestep i, ŷ is the mean of the predicted distribution, z

is the number of standard deviations from the Gaussian distribution, (e.g., 1.96 for a 95%

interval), and σ is the standard deviation of the predicted distribution.

l(xi) = ŷi − z ∗ σi (3.3)

u(xi) = ŷi + z ∗ σi (3.4)

PICPl(x),u(x) =
1

N

N∑
i=1

hi, where hi =

1, if l(xi) ≤ yi ≤ u(xi)

0, otherwise
(3.5)
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Figure 3.10: Demand forecasting with Global model trained on data with normalization.

3.4.2 Evaluating Forecast with Uncertainty

We evaluate the overall performance of our global forecast model, introduced in Section 3.3.4,

based on the PICP metric described above. The forecasting is done 100 times for each

company with a dropout probability of 0.2, and then the mean and standard deviations

are obtained for each company. Figure 3.10 shows the global model’s forecast for the third

week of December for two different companies: Company B and Company C. As we can

see from the plot, the model captures the traffic pattern, but still, the predicted values

show some deviations from the actual values. This results in some errors when using the

traditional error metrics discussed in Section 3.3.1, though the model is performing very

well. Therefore, introducing uncertainty helps the model to generate a reasonable forecast

distribution. Figure 3.11 shows the forecast with uncertainty, where the different shades of

blue indicate the uncertainty interval, obtained for different values of uncertainty multipliers.

As we can see from the plot, the single global forecasting model can capture well the general

traffic trends across multiple companies. Figure 3.12 shows the mean PICP calculated across

all the companies for the different uncertainty multipliers.

We find that on an average 50% of the forecast values lie within the predicted interval

with one standard deviation, 74% for two standard deviations and 85% for three standard

deviations. The forecast samples which lied outside the predicted interval were mostly due to

the fact that the months of November and December had lots of holidays and hence those

days did not follow the captured traffic pattern.
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(a) (b)

Figure 3.11: Demand forecasting with Uncertainty using the Global model trained on data with

normalization.

Figure 3.12: Mean PICP for different values of sigma multiplier.

3.5 Device Monitoring and Diagnostics

Once an Internet of Things (IoT) ecosystem is installed, it does not follow a “fire and forget”

scenario. There will be unforeseen operational issues, some devices will fail and/or would need

to be either repaired or replaced. Each time this happens, the company is on the mission to

minimize the downtime and ensure that its devices function properly to protect their revenue

stream. However, to address the issues of failed or misbehaving devices, we need to identify

such devices in the first place. Therefore, the ability to monitor the device’s health and

being able to detect, when something is amiss, such as higher-than-normal network traffic

or “unusual" device behavior, it is essential to proactively identify and diagnose potential

bugs/issues. Again, large-scale IoT deployments is a critical and challenging issue. When

there are thousands of devices in the IoT ecosystem, it becomes extremely difficult to efficiently

manage these devices as it is practically impossible to monitor each device individually. So,

we need an efficient way to analyze the observed device behaviors and identify devices that
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show an anomalous (“out of usual norm") behavior.

Anomalous or failed devices can be categorized into two types:

1. The devices that behave significantly different from the other devices;

2. The devices whose observed behavior suddenly changes from its “normal" behavior over

time.

The following Section describes the designed technique to accomplish the device monitoring

and diagnostic via device categorization over time.

3.5.1 Cluster Devices based on their Traffic Patterns and Identify Anomalous

Devices

When there are thousands of devices in a given IOT Ecosytem, there usually exist multiple

devices of the same type or having similar behavior. We identify these groups of devices in an

unsupervised manner based on their network traffic pattern over a given month. Figure 3.13

shows an overview of the proposed method and its steps to obtain the groups of "similar"

devices:

• The monthly network traffic from the thousands of IoT devices are passed through an

autoencoder to extract features in the latent space in an unsupervised manner.

• Then we use a density-based clustering algorithm, DBSCAN, on the latent space to

identify the groups of similar devices. The objective is to learn what normal data points

looks like and then use that to detect abnormal instances. Any instance that has a low

affinity to all the clusters is likely to be an anomaly.

3.5.1.1 Autoencoder [MMC11]

It is a neural network capable of learning dense representations of the input data, called

latent space representations, in an unsupervised manner. The latent space has low dimensions
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Figure 3.13: The pipeline for clustering similar groups of devices and detecting noisy devices

based on their traffic patterns.

which helps in visualization and dimensionality reduction. An autoencoder has two parts: an

encoder network that encodes the input values x, using an encoder function f, and, a decoder

network that decodes the encoded values f(x), using a decoder function g, to create output

values identical to the input values. Autoencoder‘s objective is to minimize reconstruction

error between the input and output. This helps autoencoders to capture the important

features and patterns present in the data in a low dimensional space. When a representation

allows a good reconstruction of its input, then it has retained much of the information present

in the input. In our experiment, an autoencoder is trained using the monthly traffic data

from the IoT devices which captures the important features or the encoding of the devices in

the latent space.

Architecture of the Autoencoder: We use a stacked autoencoder in our experiment with

two fully connected hidden layers each in the encoder and the decoder. The central bottle

neck layer was a fully connected layer with just three neurons which helps in reducing the

dimensions. We used mean squared error as the reconstruction loss function.

3.5.1.2 DBSCAN [EKS96]

(Density-Based Spatial Clustering of Applications with Noise), is a density-based clustering

algorithm that captures the insight that clusters are dense groups of points. If a particular

point belongs to a cluster, it should be near to lots of other points in that cluster. The

algorithm works in the following order: First, we choose two parameters, a positive number,

epsilon and a natural number, minPoints. We then begin by picking an arbitrary point in
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Estimated clusters: 3Estimated clusters: 9
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Figure 3.14: Number of Clusters per company when visualized in the latent space. The black

points represent the anomalous devices

our dataset. If there are more than minPoints points within a distance of epsilon from that

point, (including the original point itself), we consider all of them to be part of a "cluster".

We then expand that cluster by checking all of the new points and seeing if they too have

more than minPoints points within a distance of epsilon, growing the cluster recursively if

so. Eventually, we run out of points to add to the cluster. We then pick a new arbitrary

point and repeat the process. Now, it’s entirely possible that a point we pick has fewer than

minPoints points in its epsilon ball, and is also not a part of any other cluster. If that is the

case, it’s considered a "noise point" not belonging to any cluster and we mark that as an

anomaly.

Figure 3.14 shows the latent space and the clusters obtained for Company A(left) and

Company B(right). Companies A and B had more than 30000 devices each, installed in their

IoT ecosystems and they had three and nine unique types of devices respectively. Based on

the devices’ traffic patterns observed over the period of a month, the autoencoder mapped

the devices of the same type close to each other while the devices of different types were

mapped far apart from each other in the latent space. When DBSCAN clustering was applied

in the latent space, we observed that the number of distinct clusters formed was exactly the

same as the corresponding number of device types per company. The devices which didn’t
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fall in these well formed clusters because of their different traffic patterns were marked as

anomalies and are represented by the black points.

3.6 Related Work

Demand forecasting has been broadly studied due to the problem importance and its signifi-

cance for utility companies.Statistical methods use historical data to make the forecast as

a function of most significant variables. The detailed survey on regression analysis for the

prediction of residential energy consumption is offered in [ACA19] where the authors believe

that among statistical models, linear regression analysis has shown promising results because

of satisfactory accuracy and simpler implementation compared to other methods. In many

cases, the choice of the framework and the modeling efforts are driven by the specifics of the

problem formulation.

While different studies have shown that demand forecasting depends on multiple factors

and hence can be used in multivariate modeling, the univariate methods like ARMA and

ARIMA [NW02, NSF17] might be sufficient for short term forecast. Machine learning (ML)

and Artificial Intelligence (AI) methods based on neural networks [SJD16, Hu17], support

vector machines SVM) [Chi13], and fuzzy logic [SBH05] were applied to capture complex

non-linear relationships between inputs and outputs. When comparing ARIMA, traditional

machine learning, and artificial neural networks (ANN) modeling, some recent articles provide

contradictory results. In [HTL13], ARIMA achieves better results than ANN, while the

study [Ger17] claims that ANNs perform slightly better than ARIMA methods. In our work,

we construct a deep-learning based Convolutional LSTM forecasting model (a hybrid model

with both Convolutional and LSTM layers). The Convolutional LSTM model works well

on time series data as shown in [JLX18, JLS19] for activity recognition and in [XCW15] for

forecasting rainfall. They are good in long term demand prediction, and indeed, automatically

captures non-linear patterns.

In general, the quality and the prediction power of the models designed by using ML

and AI methods critically depend on the quality and quantity of historical data. To create a
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good forecasting model, several approaches have been developed in the literature. One such

approach is an ensemble of multiple forecasting methods applied on the same time series data

and a weighted average of their forecasts is used as a final result [WSH09]. In our work, we

pursue a different approach by making use of the normalized data from multiple companies

and train a single global model to make traffic predictions. This makes our method highly

scalable.

3.7 Conclusion

In our work, we proposed IoTelligent, a tool that applies machine learning techniques to

forecast the companies’ traffic demands over time, visualize traffic trends, identify and cluster

devices, detect device anomalies and failures. We showed that among the different neural

network architectures, Convolutional LSTM model performed the best for demand forecasting.

In order to avoid maintaining and upgrading tens (or hundreds) of models (a different model

per company), we designed and implemented a novel, scalable approach, where a global

demand forecasting model is built using the combined data of all the companies. This method

was improved by normalizing the “contribution” of individual company data in the combined

global dataset. We also introduced uncertainty intervals to the forecasts to provide better

information to the users. To solve the scalability issues with managing the millions of devices,

we designed and evaluated a novel technique based on: (i) autoencoders, which extract the

relevant features automatically from the network traffic stream; (ii) DBSCAN clustering to

identify the group of devices that exhibit similar behavior, in order to flag anomalous devices.

The designed management tool paves the way the industry can monitor their IoT assets for

presence, functionality, and behavior at scale without the need to develop device specific

models.
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CHAPTER 4

An Empirical Study of Deep Neural Network Explanation

Methods

Explaining the inner workings of deep neural network models have received considerable at-

tention in recent years. Researchers have attempted to provide human parseable explanations

justifying why a model performed a specific classification. Although many of these toolkits

are available for use, it is unclear which style of explanation is preferred by end-users, thereby

demanding investigation. We performed a cross-analysis Amazon Mechanical Turk study

comparing the popular state-of-the-art explanation methods to empirically determine which

are better in explaining model decisions. The participants were asked to compare explanation

methods across applications spanning image, text, audio, and sensory domains. Among

the surveyed methods, explanation-by-example was preferred in all domains except text

sentiment classification, where LIME’s method of annotating input text was preferred. We

highlight qualitative aspects of employing the studied explainability methods and conclude

with implications for researchers and engineers that seek to incorporate explanations into

user-facing deployments.

4.1 Introduction

In recent years, the explainability of deep neural network (DNN) models has come under

scrutiny due to their black box nature [BCR97, DK17]. While it can approximate complex

and arbitrary functions, studying its structure often provides little to no insight on the actual

underlying mechanics. It is hard to look "into" the network and ascertain why specific features

are selected over others during training. Although the impressive state-of-the-art performance
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cannot be disputed, it is increasingly insufficient to place confidence in inferences without

justification. In particular, when considering deployments where models generate high-stakes

predictions, sensitive decisions often mandate a sufficient accompanying explanation. For

example, “Robot Radiologists” now provide superior MRI and X-Ray image classification in

comparison to the average trained human expert [Rea19]. A life-or-death diagnosis undeniably

justifies the use of the best-performing model; however, it is unreasonable for either a patient

or medical professional to simply accept an automated prediction at face value. With

the inclusion of privacy regulations, including the GDPR “right to explanation,” such an

explanation is not only desirable, but also legally mandated [gdp18b].

While multiple definitions exist across the literature, we define an explanation as an

image, text, or other visual aid that accompanies a prediction to offer intuition into the

underlying reasons for the model output. Previous works have introduced several alternative

techniques to provide such insight into a DNN model inference. Approaches span contrasting

styles that focus on different model elements, e.g., the training dataset or the learned

feature representations. Model-transparent approaches such as Grad-CAM++ [CSH18a] and

saliency maps [SVZ13] highlight which particular input features triggered key activations

within a model’s weights. Model-agnostic methods such as LIME [RSG16], SHAP [LL17],

and Anchor [RSG18] treat the model as a black-box and attempt to approximate the

relationship between the input sample and the output prediction. Finally, example-based

methods [KL17, KKK16, HCL19, CLT19] offer instances from the training dataset in an

attempt to capture the relationship between a given test input and the underlying training

data that contributed to the model’s decision.

Given the diverse suite of available methods, a challenge arises in determining which

explanation is best suited to a particular application domain. The notion of a satisfying

explanation is dictated primarily by the target audience. In the case of a radiology diagnosis,

this includes both the patient and medical professional. Despite each method offering distinct

benefits to a model developer, the non-technical end-user can easily become overwhelmed;

a succinct yet clear explanation is needed. Selecting the most appropriate method for a

deployment is currently limited by a lack of comprehensive empirical information elucidating
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the preferred explanation style according to the average end-user (i.e. individuals without

machine learning expertise). Although there have been several works in the literature

comparing and surveying different explanation methods [CPC19, GBY18, CTR17, HB20,

WCM20, LT19], to the best of our knowledge we are the first to explore the preferences of

the general population toward explanation methods across multiple input domains. This

insight can additionally help steer the efforts of researchers in designing new methods and

improving upon existing solutions.

Study Details. We performed a comprehensive Mechanical Turk study comparing six of

the most popular explanation methods across four distinct application domains to determine

which styles are most preferred in understanding DNN model decisions. The explanations used

include LIME, Grad-CAM++, Anchor, SHAP, saliency maps, and explanation-by-example.

Applications incorporated data inputs including image, audio, text, and sensory analysis.

Each study question compared two explanation methods for a test input, and the participant

was instructed to select the method that they considered to offer a better explanation, thus

providing a relative ranking. Responses were filtered out if the questionnaire was completed

too quickly or if a sufficient fraction (20%) of the validation questions were incorrect. Every

method was fine-tuned with optimized hyperparameters such that each was portrayed in

the best manner possible. As there were no explanation-by-example implementation readily

available, we developed and offer an open-source library ExMatchina for use.

Study Results. 4970 validated responses were collected from 455 participants. For the

image, audio, and sensor application domains, the explanation-by-example style was the

preferred method in 89.6%, 70.9%, and 84.8% of the responses, respectively, when it was

an available option, surpassing other methods by a statistically significant margin when

considering bootstrap confidence. In the text application domain, LIME ’s highlighted text

with annotated sentiment prediction was the preferred explanation method in 70.4% of the

responses when it was an available option.

Key Contributions. This paper’s contributions can be summarized as follows. First, we

provide a unification, comparison, and analysis of existing explainability approaches for DNNs

across various applications and input domains. Second, we present and discuss the results of a
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Mechanical Turk study1 identifying the relative preference of explanation styles by an average

non-technical end-user. Finally, we offer an open-source library ExMatchina2, providing a

readily available and widely applicable implementation of explanation-by-example.

4.2 Unifying Visual Explanation Methods Across Input Domains

Traditionally, DNN explanation frameworks emphasize their application over input domains

that are naturally visualizable and understandable, e.g., image or text. However, DNNs are

regularly applied across a wide class of domains, including time-series data (e.g., sensory

data) that humans may struggle to reason about. Although most of the popular explanation

methods are designed for images and text, prior works have shown that they can be successfully

applied to time-series data [SAE19, GGG19, AS19].

Thus, we seek a unified representation such that an arbitrary input domain’s explanation

can be visualized and presented to end-users. In particular, we focus on the following

representative dataset domains: image, text, audio, and sensory (ECG) data. These selected

input domains are intended to provide insight into a subset of the popular DNN use cases.

The unified representation supplies a common substructure to facilitate comparisons across

multiple domains and enables a better understanding of the benefits of a particular approach.

4.2.1 A Unified Representation of Visual Explanation Frameworks

Figure 4.1 summarizes our approach towards unifying visual explanation methods across input

domains for a given pre-trained model and a test input. We focus on visual explanations

as they are the predominant means for conveying explanations, e.g., via text or image

representations. Our unification does not encompass adaptive NNs and methods exploring

the intralayer and interlayer statistical properties [VSB18, CVN20, ABT20].

A pre-trained DNN model F maps a set of input data X for a domain D to a set of labels

1https://github.com/nesl/Explainability-Study

2https://github.com/nesl/ExMatchina
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Figure 4.1: A unified representation of how we are drawing baseline comparisons for each

visual explanation method, adapted from [CPC19].

Y, i.e., F : X → Y, where XD = {x1
D, . . . , x

n
D} and the set X lies3 in the domain space Rp, i.e.,

X ∈ Rp. An explanation method requires a model metadata set M = {m1, . . . ,mn}, where

mi represents a component of the DNN model that is utilized. Existing frameworks typically

employ the set of activations A, the training dataset T, or the black-box representation of

model f . Certain explanations may only require the black-box representation of the model or

have access to the activations and training dataset as well, i.e. M ⊆ {f,A,T}.

For a given input data instance xi and a prediction ŷ = F (xi), an explanation method

will generate an explanation e(xi,M). Traditionally, such an explanation would be in the

form of a superimposed image on top of the original input data instance to highlight what

features of the input “explain" the decision, i.e., both the explanation and the input were

in the visual domain V and the space Rv such that xi
V ∈ Rv and e(xi,M) ∈ Rv. For any

given task where the input domain is in a non-visual space, X ∈ Rp \ Rv, the input and its

explanation should be mapped to the visual space such that

ev(x
i,M) ∈ Rp×v. (4.1)

3For the sake of clarity, we omit the notation D as we assume the input from all domains has been
translated to the real space, e.g., a text input is first converted to an integer representation.
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4.2.2 Superimposition Based Explanation Methods

A vast majority of explanation methods focus on visualizing an explanation by superimposing

values onto the original test input data instance. While most of these frameworks already

support the image and text domains, we also sought to provide visualized explanations for

tasks in the audio and sensory domains. Generally, sensory and audio data are time-series

that can be plotted for visualization. While DNN models and associated explanations are

trained and inferenced on the raw time-series data, explanations are ultimately presented in

visual form. That is, explanation outputs are inherently mapped to images. The value at

each time step of a time-series data is analogous to pixels in the image and, therefore, the

explanation methods can be applied by highlighting time instances or slices on the plots of

the signal waveforms. Thus, we will describe how this intuition can lead to visualizations

in multiple domains for both model-agnostic and model-transparent explanation methods.

Generally, both categories will result in a superimposition of an explanation e(xi,M) onto an

input instance xi, i.e.,

ev(x
i,M) = g(xi) + g(e(xi,M)) (4.2)

where g is a function that projects both the input space as well as the original explanation

onto the visual space, e.g., a plot of an ECG input sample.

Model-agnostic methods. Model-agnostic explanation methods treat the model as a

black-box, i.e., M = {f}. The general approach is to approximate the relationship between

the input and the output prediction. Surrogate methods such as LIME [RSG16] create

a proxy model that is inherently interpretable to produce a local approximation of the

relationship between a prediction and perturbed instances of the input data. Anchor [RSG18]

uses a similar perturbation-based approach to approximate the relationship between the

model’s prediction and the input data via high-precision if-then rules. Likewise, SHAP [LL17]

computes the contribution of each feature of an input test instance to the output prediction.

In particular, SHAP uses a game-theory based approach by computing Shapley values for

each feature.

Model-transparent methods. Model-transparent superimposition methods have full access

66



to the DNN pipeline and typically focus on the relationship between an input instance, an

output instance, and the associated activations of the hidden layers, i.e., M = {f,A}. These

methods similarly aim to highlight the features of the input that are important to the output

classification.

Popular methods such as saliency maps [SVZ13] visualize the gradient of the output classi-

fication with respect to the pixels of the input image. Grad-CAM++ [CSH18a] superimposes

a heatmap on the regions of important input features computed by the weighted gradients of

an output classification with respect to the final convolutional layer of a CNN model.

For both model-agnostic and model-transparent methods, the raw data is provided to the

DNN model and the associated explanation method without modifications4. Upon generating

the explanation, the raw data will be visualized and the explanation is superimposed on the

visualized representation.

4.2.3 Training Data Based Explanation Methods

In contrast to methods that project explanations onto the input space, techniques such as

explanation-by-example fall under a category that project explanations across the under-

lying training data or other representative prototype examples. There is a wide variety of

explanation by example frameworks that may focus on various aspects of the DNN model

as well as the training dataset, i.e., M = {f,A,T}. Protoype methods [PM18] and their

associated critics [KKK16] focus on the distributions of the input dataset with respect to

an inference to generate prototype examples for a particular input. Techniques such as

influence functions [KL17] incorporate the relationship between the training dataset and the

model weights at training time to identify the dataset samples that are most influential for a

particular classification.

As explanation-by-example frameworks generate a set of examples as an explanation,

the mapping of an explanation of any domain to the visual domain is more straightforward.

4Although an approach like LIME may require segmentation of the data, we assume these procedures to
be subsumed by the function e(xi,M).
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Explanation Style Explanation Method
Domains

Image Text Audio Sensory data

Superimposition

over test input

LIME ✓ ✓ ✗ ✗

Anchor ✓ ✓ ✗ ✗

SHAP ✓ ✓ ❍ ❍

Saliency Maps ✓ ✗ ❍ ❍

Grad-CAM++ ✓ ✗ ❍ ❍

Explanation-by-Example ExMatchina ✓ ✓ ✓ ✓

Table 4.1: Comparing explanation methods across different input domains. Checkmarks (✓)

indicate that a method is explicitly designed for a domain. Circles (❍) indicate that a method

was able to be successfully adapted to a domain. Crossmarks (✗) indicate that adapting a

method to the specified domain is non-trivial; we chose to exclude these evaluations to avoid

potentially inaccurate representations that portray these methods in a suboptimal light.

Generated examples are visualized in the same manner by which an input data instance is

visualized. Thus, if the general function for explanation by example frameworks is defined as

e(xi,M) = E = examples(xi), (4.3)

then the associated visualized explanation for all domains will be

ev(x
i,M) = g(E),∀E ∈ E. (4.4)

To the best of our knowledge, there is currently no openly available implementation of

explanation-by-example. However, as this style of explanation has received considerable

attention in recent work [PM18, KL17, KKK16, pro20], we believed it important to include in

the study. Our open-source implementation of explanation-by-example, ExMatchina, provides

the nearest matching data samples from the training dataset as representative examples.

Nearest examples were selected by comparing feature activations at the last convolutional

layer.
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The nearest matching examples from the training set T is defined as the training data

that has the highest cosine similarity with the test input x in their activations:

examples(x) = max
t∈T

cos(Ak(x), Ak(t)) = max
t∈T

∑n
i=1 A

k
i (x)A

k
i (t)√∑n

i=1 (A
k
i (x))

2
√∑n

i=1 (A
k
i (t))

2
(4.5)

where Ak represents the visualization of the kth feature map as a vector of activation

values. The use of cosine similarity as a distance metric for selecting the nearest neighbors is

validated by Papernot and McDaniel [PM18]. For multiple examples, the maxN samples can

be obtained.

We summarize the domains currently supported by state-of-the-art frameworks in Ta-

ble 4.1.

4.3 Study Methodology

We conducted four separate Amazon Turk studies, one for each dataset. Study questions

were formed in the following manner: first, a random test input and model-predicted class

were presented along with two randomly selected explanations. Participants were asked to

select which of the two available methods offered a better explanation for the provided model

prediction. Due to the variability in the amount of time required to parse a test input and

the associated explanations, the number of questions each participant answered varied across

each study; the image classification questionnaire consisted of 15 comparisons, 12 for text

classification, 6 for keyword classification, and 12 for the ECG-based arrhythmia heartbeat

classification task.

Validating Responses. Two filtering criteria were included to eliminate participants

providing illegitimate responses. First, participants that provided responses faster than a

minimum threshold required to quickly read the survey were removed to exclude submissions

auto-completed by bots. Second, each test input was accompanied by a validation question

asking if they agree with the model prediction without providing the true label to cross-

reference whether a participant was willing and able to comprehend the test input provided;
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Task Image Recognition Sentiment Analysis Key Word Detection Heartbeat Classification

Domain Image Text Audio Sensory data (ECG)

Dataset Cifar-10 Sentiment140 Speech Commands MIT-BIH Arrhythmia

Classes 10 2 10 5

Table 4.2: An overview of the application tasks and datasets used in our study

those that failed 20% of these validation questions were eliminated from the published results.

As the average participant is unlikely to have sufficient insight into the ECG sensor inputs,

validation questions in that particular questionnaire offered the true label and simply asked

participants to select whether or not the model was correct in its prediction.

IRB Exemption and Compensation. This research study has been certified as exempt

from review by the IRB per 45 CFR 46.101, category 2 (UCLA IRB#20-000893). Participants

were compensated at a rate of 15 USD per hour.

4.3.1 Tasks and Datasets

In an attempt to capture a wide array of common DNN use cases, we selected well-known

classification datasets across each of the surveyed input domains, as depicted in Table 4.2.

The test samples included in the study questionnaire were randomly selected from each

domain’s test set. The Cifar10 dataset [KH09] was selected for image data, the Sentiment140

dataset [GBH09] for text, Google’s Speech Commands dataset [War18] for audio, and the

the MIT-BIH Arrhythmia ECG Dataset [MM01] for sensory data. Cifar10 is a classic

image classification dataset with 10 different classes. The text domain application performed

sentiment analysis over Sentiment140, consisting of tweets with associated positive or negative

sentiment; the shorter text length was explicitly desired to maximize participant engagement.

For audio keyword recognition, the ten most common keywords of one-second long utterances

were extracted from Google’s speech commands dataset. In the sensory data domain, ECG

data represents a class of sensory values that are relatively familiar and recognizable to the

average individual. A heartbeat classification application was derived from the MIT-BIH
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Image Input

Text Input

Sensor Input

Figure 4.2: Depiction of surveyed explanation methods for image, text, and ECG input.

Arrhythmia Dataset. Tabular data were excluded from our study as models are typically

derived using interpretable linear models or decision trees instead of DNNs.

4.3.2 Models and Explanations

A CNN (Convolutional Network Network) model was trained for each of the four tasks.

Batch-normalization and dropout layers were used in all models. The trained models achieved

f-1 scores of 87.8%, 83.5%, 90.2%, and 86.2% on Image classification, Text Sentiment Analysis,

Key Word detection, and ECG Heartbeat classification, respectively. Screenshots of the

explanations for image, text, and sensor data are presented in Figure 4.2. More specific details

on the model architecture, hyper-parameters, and audio data explanations are available in

the supplementary material.

4.3.2.1 Configuring and Optimizing Explanation Methods

To provide a comparative analysis across various approaches to visual explanations, we selected

a subset of methods that were most commonly explored in related works and explainability

studies [CPC19, CTR17, GBY18]: Grad-CAM++, saliency maps, LIME, Anchor, SHAP, and

ExMatchina. Though several heatmap methods exist [FV17, PDS18, SCD17], we selected
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Grad-CAM++ as the representative as it provides a more localized and compact explanation

when compared to Grad-CAM, from which it is based on [CSH18a]. Our open-source

implementation of explanation-by-example, ExMatchina, uses NN-query based on a number

of prior works that advocate for a similar approach [GGG19, PM18].

Model transparent explanation methods including Grad-CAM++, saliency maps, and

ExMatchina require the specification of which model layer to use in generating explanations.

To ensure a fair comparison for these methods, we universally selected the activations after the

last convolutional layer to uniformly capture the information extracted by the convolutional

layers. This approach is validated by previous work [CSH18a] and our empirical observation

that the last convolutional layers generally provided the best explanations.

LIME and Anchor [KVV19] required various hyperparameter tuning to generate acceptable

explanations on images. The Felzenszwalb segmentation algorithm [FH04] was used to segment

images into super-pixels.

SHAP has several different approximation methods to choose from. DeepExplainer was

used on text, and GradientExplainer was used on image, audio, and ECG, as we empirically

observed these to provide the best explanations for the datasets in our study.

Not all of the methods studied were intended for the suite of explored datasets. In

particular, Grad-CAM++ and saliency maps are intended for image classification only.

However, by treating the ECG and audio test samples as a one-dimensional image with only

a single channel, normalized between 0 and 1, we were able to extract explanations for these

datasets using these methods.

While we were able to successfully adapt the Grad-CAM++, saliency map, and SHAP

methods for audio and sensory domains, it was non-trivial to adapt the saliency map and

Grad-CAM++ to text and LIME and anchor to audio and ECG. To avoid potentially

inaccurate representations that risk portraying methods in a suboptimal manner, we opted

to exclude their application to these respective domains for this study.

Explanation toolkits that provided a built-in display method were used as is, and visual

depictions were generated for those that did not provide such a solution. For example, as
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SHAP was used on ECG and audio data, which cannot be illustrated in the exact same

manner as an image, we created plots and highlighted the slices with the SHAP value

gradients to illustrate the time slices that contributed positively or negatively. Similarly,

in applying Grad-CAM++ and saliency maps to ECG and audio data, we highlighted the

background of the time slices with the associated heatmap. In order to make audio data

more comprehensible for the survey participants, we generated videos for each test sample

and explanation. The waveform of the sample was plotted and overlaid with the audio track.

When played, the video displayed a vertical bar that translates horizontally to accordingly

indicate which part of the waveform is significant based on the particular explanation.

4.4 Study Results & Discussion

Table 4.3 presents the aggregated results of the Mechanical Turk study. After questionnaire

validation, 4970 responses were collected across 455 individuals. Explanation-by-example was

the largely preferred explanation style for image, audio, and sensory data classification; when

ExMatchina was an available explanation, participants selected it 89.6%, 70.9%, and 84.8% of

the time, respectively. In the text input domain, LIME was the preferred explanation method,

as it was preferred 70.4% of the time. The presented confidence intervals are calculated using

the bootstrap method as described in [DE96] with 95% confidence interval. These results

should not be interpreted to conclude that any of these methods are inherently superior, but

instead indicate that these are the methods most appealing to those who may not possess

knowledge of machine learning, i.e. the "non-expert" layperson.

4.4.1 Usability and Stability of Explanations

LIME and Anchor were particularly unstable due to the inconsistent results generated across

multiple runs. An additional contributor to their poor performance in the image domain was

the reliance on segmentation algorithms to first split the image into superpixels. Selecting

across the multiple available algorithms (e.g., Felzenszwalb, Slic, Quickshift, and Compact

watershed) increased the overhead of ensuring the overall method was applied effectively.
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Explanation Method Image Study Text Study Audio Study Sensor Study

LIME 47.7 ± 4.5% 70.4 ± 3.6% - -

Anchor 38.9 ± 4.3% 25.8 ± 3.5% - -

SHAP 33.7 ± 4.3% 59.9 ± 3.8% 34.7 ± 4.8% 32.8 ± 3.3%

Saliency Maps 39.4 ± 4.3% - 46.1 ± 5.1% 40.4 ± 3.5%

Grad-CAM++ 50.8 ± 4.5% - 48.1 ± 5.3% 42.0 ± 3.5%

ExMatchina 89.6 ± 2.6% 43.7 ± 3.9% 70.9 ± 4.7% 84.8 ± 2.5%

Table 4.3: Results of the Mechanical Turk study evaluating user preference for DNN expla-

nation methods across image, text, audio, and sensory input domains. Survey questions

individually compare two methods at a time, with each explanation compared to all other

available methods equally. Results indicate the rate by which users selected a particular

method when it is an available explanation, with 95% bootstrap confidence intervals.

In contrast, segmentation was not necessary in the text domain as the granularity of words

provide a natural unit of semantic value. Nevertheless, LIME and Anchor’s explanations

were still unstable across repeated runs; different explanations can be generated each time

these methods are run on the same test sample. Moreover, each application required

experimentation with different kernel and hyper-parameters settings to optimize against

the generated explanations. In summary, these highly tunable methods incur increased

configuration complexity and a higher probability of suboptimal specification.

In contrast, the other surveyed methods including Grad-CAM++, saliency maps, SHAP,

and explanation-by-example did not require such fine-grained hyperparameters tuning, making

them significantly easier to use. The only configuration parameter was the model layer to use

in generating explanations. Moreover, these methods provide stable explanations; repeated

runs over the same test instance lead to the same result.
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4.4.2 Idealized vs Actualized Explanations

An individual’s expectation of an explanation is sometimes different than those provided by

the studied methods. In particular, superimposition explanations such as Grad-CAM++,

saliency maps, and SHAP highlight input features that are most important to the predicted

classification. However, these features may be in stark contrast to human intuition; similarly,

Anchor and LIME would occasionally mask features that humans think are explicitly im-

portant. For example, given an image of an airplane in the sky, superimposition methods

might highlight the sky to indicate that the sky is the most important detail determining that

the object is an airplane; however, a human might prefer that the airplane is the defining

characteristic leading to the airplane labeling. Similarly, when explaining audio data these

methods would occasionally emphasize sections of the input that contained no speech (i.e.,

noise, background audio, or silence). In ECG data, flat sections may be highlighted instead

of the actual heartbeat spikes. An ironic downside of using superimposition methods is that

they show features which the models think are important, but which humans might not focus

on, ultimately leading to the explanation method being generally less preferable.

Similarly, explanation-by-example should ideally produce examples that are always highly

similar to the test input. In the image, audio, and ECG domains, we found that the nearest

training examples repeatedly offered an intuitive and semantically similar mapping of training

data, associated labels, and model inference. For example, nearest image examples commonly

depicted the predicted class with a visually similar position, orientation, and relative sizing.

Cases where the training examples could be considered dissimilar (i.e. “bad” explanations)

were relatively rare. This consistency of explanation is a likely contributor to the preference

of this method over the alternatives. In the audio and ECG domains, training examples

were often impressively similar, including matching signal noise, event length, and position

within the sample window. However, the semantic similarity of explanation-by-example is

fundamentally limited by the quality of the training data; a lack of similar examples would

necessarily lead to a subpar explanation [KKK16]. This was most obviously apparent in the

text domain, where the nearest training examples to a test input may be seemingly unrelated.
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In the text domain, LIME in particular offers an intuitive annotation of the text with

associated sentiments and expected probabilities. The accuracy by which the annotated

sentiments consistently matched human intuition, combined with its assembly into a natural

visual interface, are likely key contributors to its success in explaining text data. Interestingly,

LIME and Anchor occasionally assign sentiment to words that are neutral according to

human intuition; for example, assigning positive or negative sentiment to words such as “at”

or “with”.

4.4.3 Privacy Risks

Unlike superimposition methods, explanation-by-example mandates access to a set of reference

data (e.g., training data) by which to generate nearest examples. This poses privacy risks

regarding potentially exposing personally identifiable information, particularly when operating

over sensitive training data. Those seeking to employ explanation-by-example methods in

deployments should ensure that the examples offered do not violate user privacy. In contrast,

model-transparent methods that reveal model weights offer a reduced attack surface for

inferring underlying data; model-agnostic methods that rely only on a test input and the

model prediction function are able to mostly circumvent these concerns [SRS17]. In certain

instances, differential privacy techniques can be used to anonymize training data when

revealing training examples [ACG16, BWW19]. While we note that this may impact the

quality of explanation, studying its quantitative effect is left to future work.

4.5 Conclusion

Successfully explaining deep neural network models hinges upon having an effective means

of communicating the inner-workings of these complex processes. In certain domains, the

explicit need for interpretable models outweighs the performance gains of black-box neural

network methods. However, in the cases where the performance offered by DNNs are needed,

it is important that they are accompanied by explanations that provide satisfying insight

into model behavior.
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Our study across hundreds of participants conclude that explanation-by-examples and

LIME are the currently preferred explanation styles according to the average non-technical

end-user. In input domains spanning visual, audio, and sensory data, explanation by

nearest training examples offer users an opportunity to compare features across a test

input and similarly mapped ground-truth examples. In the text domain, LIME’s method

of decomposing and annotating test inputs provides an intuitive visual approach to text

classification. Although the other studied methods can be retargeted across many of the

surveyed input domains, they failed to provide a more desirable explanation. Future efforts

in designing DNN explanations are certain to challenge the current baseline; nevertheless,

we hope our results and discussion bring insights empowering researchers and engineers to

incorporate effective means of communicating complex inferences with the end-user.
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CHAPTER 5

Automatic Concept Extraction for Concept

Bottleneck-based Video Classification

Recent efforts in interpretable deep learning models have shown that concept-based expla-

nation methods achieve competitive accuracy with standard end-to-end models and enable

reasoning and intervention about extracted high-level visual concepts from images, e.g.,

identifying the wing color and beak length for bird-species classification. However, these

concept bottleneck models rely on a necessary and sufficient set of predefined concepts–which

is intractable for complex tasks such as video classification. For complex tasks, the labels

and the relationship between visual elements span many frames, e.g., identifying a bird

flying or catching prey–necessitating concepts with various levels of abstraction. To this

end, we present CoDEx, an automatic Concept Discovery and Extraction module that

rigorously composes a necessary and sufficient set of concept abstractions for concept-based

video classification. CoDEx identifies a rich set of complex concept abstractions from natural

language explanations of videos–obviating the need to predefine the amorphous set of concepts.

To demonstrate our method’s viability, we construct two new public datasets that combine

existing complex video classification datasets with short, crowd-sourced natural language

explanations for their labels. Our method elicits inherent complex concept abstractions in

natural language to generalize concept-bottleneck methods to complex tasks.

5.1 Introduction

Deep neural networks (DNNs) provide unparalleled performance when applied to application

domains, including video classification and activity recognition. However, the inherent
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black-box nature of the DNNs inhibits the ability to explain the output decisions of a

model. While opaque decision-making may be sufficient for certain tasks, several critical

and sensitive applications force model developers to face a dilemma between selecting the

best-performing solution or one that is inherently explainable. For example, in the healthcare

domain ([YRJ19]), a life-or-death diagnosis compels the use of the best performing model,

yet accepting an automated prediction without justification is wholly insufficient. Ideally,

one could take advantage of the power of deep learning while still providing a sufficient

understanding of why a model is making a particular decision, especially if the situation

demands trust in a decision that can have severe impacts.

To address the need for model interpretability, researchers have sought to enable model

intervention by leveraging concept bottleneck-based explanations. Unlike post hoc explanation

methods–where techniques are used to extract an explanation for a given input for an inference

by a trained black-box model ([CTR17, JNC20]), concept bottleneck models are inherently

interpretable and take a human reasoning-inspired approach to explaining a model inference

based on an underlying set of concepts that define the decisions within an application. Thus far,

prior works have focused on concept-based explanation models for image ([KBB09, KNT20])

and text classification ([MKL20]). However, the concepts are assumed to be given a priori by a

domain expert–a process that may not result in a necessary and sufficient set of concepts. For

instance, for bird species identification, an expert may have collected wing color but failed to

collect beak color as a concept though it might be important for classification. More critically,

prior works have considered simple concepts with the same level of abstraction, e.g., visual

elements present in a single image. For more complex tasks such as video activity classification,

a label may span multiple frames. Thus, the composing set of concepts will have various

levels of abstraction representing relationships of various visual elements spanning multiple

frames, e.g., a bird flapping its wings. So it is impractical to identify all the key concepts

in advance. Therefore, unlike the prior works, we aim to exploit the complex abstractions

inherent in natural language explanations to extract the set of important complex concepts.

Research Questions. In summary, this paper seeks to answer the following research

questions:
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• How can a machine automatically elicit the inherent complex concepts from natural

language to construct a necessary and sufficient set of concepts for video classification

tasks?

• Given that a machine can extract such concepts, are they informative and meaningful

enough to be detected in videos by DNNs for downstream prediction tasks?

• Are the machine extracted concepts perceived by humans as good explanations for the

correct classifications?

Approach. This paper introduces an automatic concept extraction module for concept

bottleneck-based video classification. The bottleneck architecture equips a standard video

classification model with an intermediate concept prediction layer that identifies concepts

spanning multiple video frames. To compose the concepts that will be predicted by the

model, we propose a natural language processing (NLP) based automatic Concept Discovery

and Extraction module, CoDEx, to extract a rich set of concepts from natural language

explanations of a video classification. NLP tools are leveraged to elicit inherent complex

concept abstractions in natural language. CoDEx identifies and groups short textual

fragments relating to events, thereby capturing the complex concepts from videos. Thus, we

amortize the effort required to define and label the necessary and sufficient set of concepts.

Moreover, we employ an attention mechanism to highlight and quantify which concepts are

most important for a given decision.

To demonstrate the efficacy of our approach, we construct two new datasets–MLB V2E

(Video to Explanations) for baseball activity classification and MSR-V2E for video category

classification–that combine complex video classification datasets with short, crowd-sourced

natural language explanations for their corresponding labels. We first compare our model

against the existing standard end-to-end deep-learning methods for video classification and

show that our architecture provides additional benefits of an inherently interpretable model

with a marginal impact on performance (less than 0.3% accuracy loss on classification tasks).

A subsequent user study showed that the extracted concepts were perceived by humans as

good explanations for the classification on both the MLB-V2E and MSR-V2E datasets.
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Contributions. We summarize our contributions as follows.

• We propose CoDEx , a concept discovery and extraction module that leverages NLP

techniques to automatically extract complex concept abstractions from crowd-sourced,

natural language explanations for a given video and label–obviating the need to manually

pre-define a necessary and sufficient set of concepts thereby reducing the annotation

effort.

• We construct two new public datasets, MLB-V2E and MSR-V2E, that combine complex

video classification datasets with short, crowd-sourced natural language explanations

and labels.

• We evaluate our approach on the two complex datasets and show that the concept-

bottleneck model attains high concept accuracies while maintaining competitive task

performance when compared to standard end-to-end video classification models.

• We also augment the concept-based explanation architecture to include an attention

mechanism that highlights the importance of each concept for a given decision. We

show that users prefer the concepts extracted by our method over baseline methods to

explain a predicted label.

5.2 Related Work

There is a wide array of works in explainable deep learning for various applications. This

work focuses on the concepts-based explanations for video classification, and this section

provides an overview of the existing literature for overlapping domains.

Concept-Based Explanations for Images and Text. A number of existing works

consider concept-bottleneck architectures where models are trained to interact with high-level

concepts. Generally, the approaches are multi-task architectures, where the model first

identifies a human-understandable set of concepts and then reasons about the identified

concepts. Until now, the applications have been limited to static image and text applications.

[KNT20] used pre-labeled concepts provided by the dataset to train a model that predicts
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the concepts, which is then used to predict the final classification. However, the caveat is

that the concepts had to be manually provided. [GWZ19] and [YKA20] proposed approaches

that automatically extract groups of pixels from the input image that represent meaningful

concepts for the prediction. They were designed largely for image classification and extract

concepts directly from the dataset. [KWG18] propose a post-hoc explanation method that

returns the importance of user-defined concepts for a classification. In the mentioned works,

the concepts have been limited to simple concepts and are not suited for complex tasks such

as video classification where we have complex concepts that may span multiple frames with

various levels of abstraction.

Explanations for Video Classification Other approaches have been considered to explain

video classification and activity recognition. [CSH18b] applied GradCAM and GradCAM++

to video classification, where for each frame, the important region of the frame to the model is

highlighted as a heatmap. [HPH20] extract both spatial and temporal explanations from input

videos by highlighting the relevant pixels. However, these are post-hoc techniques that focus

on explaining black-box models, whereas our approach enables concept-bottleneck methods

for video classification that are intended to be inherently interpretable and intervenable.

Video Captioning. In recent years, there is a large number of works ([PYL17, GGZ17,

WMZ18, YTW19, ZZC18, CJ21, YKC17]) on video captioning. While they also employ

natural language techniques, these works are tangential to generating text explanations for

classifications, since they are merely describing the video. Our model provides an explanation

justifying the classification of the video. Similarly, the associated datasets such as MSR-

VTT ([XMY16]) only have videos with ground truth captions that only describe the video

without the context of a classification–which often results in concepts that do not pertain

to a classification. For instance, in the MSR-VTT dataset, an example set of captions for a

video labeled as an "animal" is "a black and white horse runs around" and "a horse galloping

through an open field." These two captions have a superfluous set of a concepts that do

not pertain to the "animal" classification, e.g., "there is a horse, and a horse is an animal."

Although some captions may be useful, we chose to construct our own dataset to ensure

the text explanations focused on explaining the classification. Semantic Concept Video
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Figure 5.1: The overall pipeline showing the automatic concept extraction framework from

natural language explanations and the concept bottleneck classification model training

framework.

Classification. The closest works to this paper is the body of work in semantic concept

video classification ([FLX04, FLG07]), where the concepts are defined as salient objects that

are visually distinguishable video components. The concepts in these works are simple objects

detected in the videos and are not complex enough to capture the semantics of events that

happen over multiple frames of the videos. These works typically used traditional SVM-based

video classifiers. [AZS14] represent a video category based on the co-occurrences of the

semantic concepts and classify based on the co-occurrences, but their method requires a

predefined set of concepts. Thus, we now present the methodology behind our automatic

concept extraction for concept bottleneck video classification.

5.3 Concept Discovery and Bottleneck Video Classification

This work introduces CoDEx , an automatic concept extraction method from natural language

explanations for concept-based video classification. Figure 6.3 depicts the overall concept-

bottleneck pipeline, composed of CoDEx and the concept bottleneck model. CoDEx extracts

a set of concepts from natural language explanations that will comprise the bottleneck layer

for the video classification model. We first formalize the overall problem and then provide

the methodology for both modules.

Problem Formalization. We assume that we have a training dataset {(xn, ln)}Nn=1 = D
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of videos xn with a label ln ∈ L, where L is a predefined set of possible class labels for the

video. Each video is represented as a sequence of frames f ∈ F where F is the set of video

frames. Thus video xn = ⟨fn0, fn1, . . . , fnT ⟩ , where fnt represents frame t of video n. For

each video xn, we form a label-explanation pair (ln, en), where en is a (short) natural language

document explaining the given label ln. If multiple annotators contribute to an explanation

for video-label pair, (xn, ln) , then these are concatenated to form en. The full set of pairs

E = {(ln, en)}Nn=1 is the explanation corpus. Thus, the design goals are:

• Concept Discovery and Extraction (CoDEx) Module: Given the explanation

corpus, first produce an N ×K concept matrix, C, where the (n, k)th element is 1 if

the nth explanation contains discovered concept k and 0 otherwise. We call the nth

row cn, the concept vector for video xn. K is the total number of discovered concepts.

• Concept Bottleneck Model: Given a concept matrix, C, the second goal is to train

a concept bottleneck model such that for a given video xi, we predict a concept vector

ci–which indicates the presence or absence of concepts and their importance scores.

The model then makes use of ci to make the final video classification.

label, ln explanation, en

strike The batter did not swing. The ball was in the strike zone.

foul The batter hit the ball into the stands and it landed in foul territory.

ball The hitter didn’t swing. The ball was outside the strike zone.

none The video did not load.

out the batter hit the ball and it was caught by the fielder

label, ln concepts, cn

strike {the batter did not swing, the ball was in the strike zone}

foul {the batter hit the ball, it landed in foul territory}

ball {the batter did not swing, the ball was outside the strike zone}

out {the batter hit the ball, it was caught by the fielder}

Grouped conceptsCompleted concepts Text Pruned conceptsText Removed text

Explanation Corpus Ɛ
Extracted Concepts

Figure 5.2: Running example for all six stages of the discovery pipeline module. The left

table is the explanation corpus, with highlighted fragments to be modified. The right table

contains the discovered concepts. The detailed step-by-step modifications are provided in

Appendix A.1.
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5.3.1 CoDEx: Concept Discovery and Extraction module

We now describe CoDEx , that extracts concepts from the explanation corpus, E . The

automatic extraction of the significant concepts is done in 6 steps, as outlined in Fig. 6.3.

These are: cleaning, extraction, grouping, completion, pruning, and vectorization,

which produce the final concept matrix, C. Each of these steps are described below and

illustrated with an example corpus depicted in Figure 5.2.

Cleaning. We remove explanations associated with corrupted or unlabeled videos from the

explanation corpus. In Figure 5.2, this phase would remove the fourth row with the "none"

label.

Extraction. The objective of this phase is to identify sentence constituents relevant to

explaining the label. These text fragments, short sequences of words that appear in the

document, are referred to as raw concepts. To achieve this, the cleaned explanation corpus is

tokenized then passed through a pretrained constituency parser to recursively decompose

the sentences. At each level of the constituency hierarchy, the text fragments are evaluated

to determine whether they constitute a candidate raw concept. The rules for candidate raw

concepts include the inclusion and exclusion rules mentioned in Table 5.1 and follow the

widely adopted Universal POS tag naming convention for token types ([PDM12]). Every

constituency parsed phrase that satisfies one of the two inclusion rules and not the exclusion

rule is considered a candidate concept.

rule name rule

Inclusion 1. noun/pronoun → auxillary (optional) → particle (optional) → verb (optional)

Inclusion 2. noun/pronoun → auxiliary whose lemma is ‘be’ → any token

Exclusion subordinating conjunction

Table 5.1: Inclusion and exclusion rules for candidate concepts.

After the extraction process is completed, we have a set of raw concepts, K̃, and each

video is associated with a subset of these raw concepts. An example of extracted raw concepts,

K̃, can be found in Appendix A.1.
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Completion. There are instances where the pretrained constituency parser will split

sentences midway through a text fragment in one sentence that was kept whole in another.

For instance, in Figure 5.2, the constituency parser splits the explanation for "foul" such

that "the batter hit the ball" is incorrectly excluded from the raw concepts. To ensure that

those concepts are captured, we perform a substring lookup of each raw concept through all

documents of the explanation corpus and count an explanation as containing a raw concept if

it contains the corresponding raw concept as a substring. This does not change the number

of raw concepts identified but increases their frequency counts.

Grouping (similar raw concepts). When identical text fragments are identified in different

explanations, they are counted directly as the same raw concept. However, we would ideally

like to treat superficially different concepts as the same if they essentially carry the same

meaning, e.g., Figure 5.2 highlights two different raw concepts that carry the same meaning

and hence can be grouped. For this, we use agglomerative clustering ([Mul11]) approach that

measures the degree of difference between pairs of raw concepts and groups them together if

they are similar enough. Our key contribution here is the distance metric used in clustering

which is a novel measure of meta-distance between raw concepts. This measures the difference

between concepts based on two aspects of the raw concepts: their linguistic difference and

their difference in terms of the label categories with which they are associated.

We define meta-metric, d, as combining a linguistic distance, dtext (capturing linguistic

difference) as well as a meta-metric, dlabel (capturing the difference in the labels associated

with each raw concept). More formally, for two raw concepts κi, κj ∈ K̃ our distance is linear

combination:

d(κi, κj) = dtext(vi,vj) + λdlabel(ni,nj) (5.1)

where vi is a sentence embedding for the text fragment of concept κi (e.g., based on the BERT

model [DCL19]), dtext is a standard distance measure between vectors (e.g., cosine distance),

dlabel is a meta-distance which aims to capture the similarity between two label count vectors,

and λ is a hyperparameter controlling the relative importance between textual and label

distance. The inclusion of a label distance helps to distinguish between concepts that are
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superficially linguistically very simlar, but have very distinct meanings within the domain of

interest. For instance, without the dlabel, the concepts “the ball passed inside the strike zone”

and “the ball passed outside the strike zone” will be grouped together though they are very

different concepts as they have a very small dtext. We provide a more formal definition of

the meta-metric dlabel more formally and provide some intuition behind its construction in

Appendix A.2. We also exclude concept groups which occur rarely in the explanation corpus,

with frequency less than some small threshold, t.

Pruning. Here, we seek a compact subset of concepts that, together, capture a high degree of

information about the label while maintaining interpretability. More formally, after grouping,

we have a set of raw concepts K̃ = {κ1, . . . , κJ}, and we seek some subset of maximally

informative concepts K⋆ = {κj1 . . . , κjK} ⊆ K̃.

To see what is meant by maximally informative, consider a randomly selected entry in

the explanation corpus (l, e). We define a binary random variable, Cj for each raw concept

κj, and for any concept set K = {κj1 , . . . , κjK}, random vector CK = [C1, . . . ,CK ], such that

Cj = 1 if κj ∈ e and 0 otherwise. Y is the random variable which takes label l.

We wish to choose the smallest subset of concepts such that the mutual information (MI)1

between chosen concepts, K, and label, Y , given by I(Y ;CK), is greater than a threshold

fraction, γ < 1 of the MI between the label and the complete concept vector, I(Y ;CK̃). That

is to say we wish to find K which satisfies:

I(Y ;CK) ≥ γI(Y ;CK̃) (5.2)

and where there is no subset K′ ⊆ K̃ with |K′| < |K| which also satisfies Equation equation 5.2.

In practice, this is infeasible as the problem is combinatorial. However, we note that

f(K) = I(Y ;CK) is a monotone submodular set function of K̃. Given this, if we recursively

construct a set of size K, by greedily adding single concepts that most improve the MI, the

resulting set will be at least 1− 1
e

as good as the most informative set of size K ([NWF78]).

Therefore, we guarantee a highly-informative set K⋆ by iteratively adding concepts to those

1We use the standard definition of mutual information (MI) for discrete random variables ([Mac03]).
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previously selected, greedy with respect to the MI, until we have a set that satisfies Equation

5.2.

Vectorization. Each concept κjk ∈ K⋆ is given a unique index k ∈ {1, . . . , K}, and each

data-point, xn is associated with a concept vector cn = (cn1, . . . , cnK), where cnk = 1 if

κjk ∈ en and 0 otherwise, indicating the presence or absence of the kth concept in the nth

explanation. The collection of all the concept vectors gives an N ×K concept matrix, C.

5.3.2 Concept Bottleneck Model

We use the videos, the extracted concepts from CoDEx , and the labels to train an interpretable

concept-bottleneck model to predict the activity and the corresponding concepts. Figure 6.3

shows the overview of our bottleneck architecture. The activity label, the concepts, and the

corresponding concept scores are the outputs of the interpretable model and are indicated by

dotted arrows in Figure 6.3.

Our bottleneck model architecture is based on the standard end-to-end video classification

models where we use convolutional neural network-based feature extractors pretrained on the

Imagenet dataset [DDS09] to extract the spatial features from the videos. The features are

then passed through temporal layers that can capture features across multiple frames which

in turn is bottle-necked to predict the concepts. Lastly, we deploy an additive attention

module ([BCB14] that gives the concept score αc indicating the importance of every concept

to the classification. The attention module also improves the interpretability of the the

bottleneck model by indicating the key concepts for classification and this is evaluated in

section 5.5. More details regarding the model architecture and hyper-parameters are in the

Appendix A.4

Model loss function. The entire bottleneck classification model is trained in an end-to-end

manner. Since the concepts are represented as binary vectors, we use sigmoid activation

on the concept bottleneck layer and binary categorical loss function as the concept loss.

The final layer of the classifier has softmax activations and categorical cross-entropy as the

classification loss function. Thus, the overall loss function of the model is the sum of concept
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loss and the classification loss. The hyperparameter β controls the tradeoff between concept

loss, LC , versus classification loss, LY as shown in equation 5.3.

Loss(L) =
1

N

N∑
n=1

(LYn + β × LCn) where β > 0 (5.3)

and LYn = −
m∑
j=1

yj log fS(sj)

and LCn =
l∑

k=1

[
−cik log(fσ(sk))− (1− ck log(1− fσ(sk)))

]
and fσ(si) =

1

1 + e−si
, fS(si) =

esi∑m
j=1 e

sj

Testing phase. Given an input test video, the model provides us with the activity prediction

(label of the video), a concept vector indicating the relevant concepts that induced this

classification and the concept importance score for each concept. By retrieving the phrase

representing the concepts present in the video, the result obtained is a human-understandable

explanation of the classification.

5.4 Implementation

To demonstrate our automatic concept extraction method, we construct two new datasets -

MLB-V2E (Video to Explanations) and MSR-V2E, which combines short video clips with

crowd-sourced classification labels and corresponding natural language explanations. For

both datasets, we obtained a video activity label and natural language explanations for that

label by crowd-sourcing on Amazon Mechanical Turk and used unrestricted text explanations

to extract concepts automatically. For IRB exemption and compensation information, please

refer to the Ethics Statement.

MLB-V2E Dataset: We used a subset of the MLB-Youtube video activity classification

dataset introduced by [PR18]–which had segmented video clips containing the five primary

activities in baseball: strike, ball, foul, out, in play. We preprocessed the dataset and extracted
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2000 segmented video clips where each video was 12 seconds long, 224×224 in resolution, and

recorded at 30 fps. To ensure that the quality of explanations is good, we screened over 450

participants. Based on their baseball knowledge, 150 participants were qualified to provide

the natural language text explanations for our video clips. We have included a sample of our

screening survey, the primary survey, and the explanations collected in the supplementary

materials.

MSR-V2E Dataset: For this dataset, we used 2020 video clips from the MSR VTT dataset

introduced by [XMY16]. The MSR-VTT dataset has general videos from everyday life and

descriptions of these videos associated with them. Each video clip is between 10-30 seconds

long, and approximately 200 participants provided the labels and explanations to construct

the MSR-V2E dataset. The videos are classified into ten categories: Automobiles, Cooking,

Beauty and Fashion, News, Science and Technology, Eating, Playing Sports, Music, Animals,

and Family

Figure 5.3 shows the number of videos belonging to each category in the MLB-V2E and

the MSR-V2E datasets. Since the MSR-V2E dataset is imbalanced, we do some weighted

oversampling while training to ensure that the models learn to predict all the classes.

IRB Exemption and Compensation. This research study has been certified as exempt

from review by the IRB and the participants were compensated at a rate of 15 USD per hour.

Dataset privacy. There was no personally identifiable information collected at anytime

during the turk study. The responses provided by the mechanical turkers that are present in

the dataset are completely anonymous.

Training: All our models were trained on 2 × Titan GTX GPUs using Adam optimizer. A

summary of our entire model architecture and a trained model is provided in the supplementary

materials.
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(a) MLB-V2E Dataset (b) MSR-V2E Dataset

Figure 5.3: The number of videos belonging to each category on (a) the MLB-V2E dataset

and (b) the MSR-V2E dataset

5.5 Results

Number of extracted concepts. Table 5.2 shows that the system extracted 78 concepts

and 62 concepts from the explanation corpus of MLB-V2E and MSR-V2E respectively.

Dataset
Number of Concepts after each Phase

Extraction Completion Grouping Pruning

MLB-V2E 1885 1885 225 78

MSR-V2E 1678 1678 104 62

Table 5.2: The number of concepts extracted by the Concept Discovery module from the

explanation corpus after every phase.

The number of concepts remaining after the pruning phase is determined by the cumulative

Mutual Information(MI) threshold. To identify the best threshold, we plotted the number

of concepts at different thresholds versus performance of the model as shown in Figure 5.4.

We found that the task classification performance did not increase after a certain number
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of concepts and that optimal spot for the number of concepts corresponded to 90% Mutual

Information.

(a) MLB-V2E Dataset (b) MSR-V2E Dataset

Figure 5.4: The number of concepts versus performance trade-off for the (a) the MLB-V2E

dataset and (b) the MSR-V2E dataset.

Comparing concept-bottleneck models to baselines. We adopt model architectures

and hyperparameters from standard well -performing approaches that fall under 3 categories:

1) without concept bottleneck [AA19], 2) with concept bottleneck [KNT20], 3) with concept

bottleneck and attention. We compared the performance of models with the bottleneck layer

with standard video classification models without a concept bottleneck layer. We find that,

though the latent space was constrained to the limited set of concepts extracted from the

explanation corpus, bottleneck models performed as well as the unconstrained models, on both

datasets. We also find that the addition of the attention layer improves the concept prediction

of the models. Table 5.3 shows that concept bottleneck models achieved comparable task

accuracy to standard black-box models on both tasks, despite the bottleneck constraint while

achieving high concept prediction performance. All the models in the table used Inception-V3

as their feature extractor. Appendix A.5 shows the performance with other feature extractors.

Ablation Study of CoDEx. We performed an ablation study to highlight the impact

of each stage in CoDEx’s pipeline. In the first experiment, we replaced the constituency
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Dataset Model Type
Task Classification Concepts

Accuracy(%) F1-score AUC

MLB-V2E

Standard 68.46 ± 1.27 0.68 ± 0.011 -

CB 68.16 ± 1.12 0.68 ± 0.004 0.85 ± 0.003

CB + Attn. 68.38 ± 1.34 0.68 ± 0.004 0.88 ± 0.001

MSR-V2E

Standard 61.79 ± 1.42 0.60 ± 0.012 -

CB 61.42 ± 1.18 0.60 ± 0.013 0.83 ± 0.006

CB + Attn. 61.68 ± 1.23 0.60 ± 0.013 0.86 ± 0.004

Table 5.3: Performance of Models with Inception V3 as the feature extractor. ’CB’ refers

to ’Concept Bottleneck’. The full table with results from different feature extractors can be

found in Appendix A.5.

parser-based extraction phase with word-level tokens obtained from the explanation corpus

as concepts. We found that using word-level concepts significantly reduced both the task

and the concepts prediction performance. We also evaluated how removing the grouping and

pruning phases from the pipeline would impact performance. We observed that the grouping

and pruning stages had a greater impact on the concept prediction performance that affected

the explainability of the model. Table 5.4 shows the results of our study.

Concept scores for interpretability. In addition to increasing the performance in concept

prediction, the attention module also improves the explainability of the bottleneck model by

providing an importance score for the concepts. Figure 5.5 shows the explanation from the

concept bottleneck model with attention to test samples from the two datasets. The title

shows the classification label, the y-axis indicates the top-3 concepts predicted as present in

the video clip, and the x-axis corresponds to the concept score. Others refers to the sum of

the importance of all the remaining concepts.

Human study to evaluate concepts’ explainability. We performed a Mechanical Turk

study to evaluate the explainability of our extracted complex concepts to the end-users.

The participants were asked to select from four different options (presented in random)
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(a) MLB-V2E Dataset

(b) MSR-V2E Dataset

Figure 5.5: Explanation offered by the model indicating the predicted class concepts present

and their corresponding scores for (a) the MLB-V2E dataset (b) the MSR-V2E dataset.
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Dataset Concepts Extraction
Task

Acc (%)

Task

F1-score

Concepts

AUC

MLB-V2E

CoDEx 68.38 0.6802 0.8801

w/o Extraction 63.47 0.5823 0.8185

w/o Grouping 67.80 0.6772 0.8122

w/o Pruning 68.36 0.6802 0.8419

w/o Grouping & Pruning 65.29 0.6526 0.7821

MSR-V2E

CoDEx 61.68 0.6010 0.8600

w/o Extraction 58.02 0.5214 0.7830

w/o Grouping 59.31 0.5745 0.7888

w/o Pruning 61.68 0.6010 0.8131

w/o Grouping & Pruning 54.70 0.5178 0.7467

Table 5.4: Ablation Studies: Shows the effect of each step in CoDEx on model performance

of what they consider to be the best possible Explanation for the classification of a given

video. The four options are: Concepts predicted by bottleneck models without attention,

Concepts predicted by bottleneck models with attention, Word-level concepts and a Random

set of 2-5 concepts from the set of the most frequent concepts. The methodology of this

study was inspired by [CGW09]’s paper. Figure 5.6 presents the aggregated results of the

Mechanical Turk study. The complex concepts predicted by the concept bottleneck model

with attention was considered as the preferred explanation by 68% and 57% of the responses

in the MLB-V2E and MSR-V2E datasets respectively followed by the concepts bottleneck

models without attention in 20% and 28% of the responses for the two datasets. The presented

confidence intervals are calculated using the bootstrap method as described by [DE96] for

95% confidence.

Quantifying the Annotation effort. In prior works, annotating a dataset with concepts

first requires identifying the necessary set of concepts that have to be annotated. Therefore,

identifying the set of important concepts will either require a domain expert who has to
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MLB-V2E Dataset MSR-V2E Dataset

A: CB B: CB+Attn. C: Word-level D: Random

Figure 5.6: Survey responses with 95% bootstrap confidence interval for the two datasets.

The participants preferred the concepts extracted by CoDEx and predicted by CB+Attn.

as their preferred explanation by a significant margin.

provide a list of all the possible concepts or a separate study to identify the key concepts.

Then annotating those concepts for each data point would require another study, making

it more time-consuming and costly. Further, if the vocabulary of concepts is large, the

annotation process would be inconvenient for the user. In our case, we significantly reduce

the effort to identify and annotate the concepts with natural language explanations in a

single user study. Moreover, natural language explanations can express richer compositions of

concepts rather than simply identifying the presence or absence of an individual concept. To

quantify the annotation effort, we conducted a small-scale study to annotate both MLB-V2E

and MSR-V2E datasets with predefined concepts and compared it with the time it took to

annotate with natural language explanations. For the MLB-V2E Dataset, we had a baseball

domain expert who suggested thirty concepts to be annotated. For the MSR-V2E Dataset,

we used the 62 concepts identified by CoDEx. The average time it took to complete per

survey (each with ten videos) is indicated in Figure 5.7. We can see that the time it takes to

annotate with text based explanations is 23.6% less for MLB-V2E Dataset and 30.8% less for

MSR-V2E Dataset when compared to annotating with predefined concepts. We observe that
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the time to annotate increases with the increase in the number of concepts to be annotated.

-23.6%

-30.8%

Figure 5.7: Average time taken to annotate 10 videos in a survey.

The helpfulness of extracted concepts in classification An MLP model trained on

only the concepts (without video information) achieves a higher accuracy (7% for MLB-V2E

and 4% for MSR-V2E) than the video classification model as shown in Table 5.5. This result

indicates that the concepts extracted are meaningful for the classification task. Therefore,

there is still headroom available if the concept bottleneck network can predict these initial

concepts better from the videos.

Dataset Task Accuracy(%) Task F-1 score

MLB-V2E 75.68 0.7585

MSR-V2E 65.23 0.6422

Table 5.5: Performance of MLP classifier trained only on concepts (without videos)

The relationship between concepts and the classification task To understand the

relationship between the extracted the concepts and the task classification, we compared the

performance of the Concept Bottleneck models with a) MLP classifier b)Linear Classifier as

the final classification layers. The results showed that there was approximately 2% drop in

classification performance when using a Linear Classifier instead of an MLP as indicated in
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Table 5.6. This indicates that, the classification task is not just a simple linear combination

of the extracted concepts and the composition of concepts is important for classification.

Dataset
Accuracy (%) Difference

(%)MLP Linear Classifier

MLB-V2E 68.38 66.94 -1.44

MSR-V2E 61.68 60.02 -1.66

Table 5.6: Comparison of the performance of Bottleneck models with MLP classifier and

Linear Classifier

5.6 Conclusion

The remarkable performance of deep neural networks is only limited by the stark limitation in

clearly explaining their inner workings. While researchers have introduced feature highlighting

post-hoc explanation techniques to provide insight into these black-box models, the inherently

interpretable concept-bottleneck models offer a promising new approach to explanation by

decomposing application tasks into a set of underlying concepts. We build upon concept-based

explanations by introducing an automatic concept extraction module, CoDEx , to a general

concept bottleneck architecture for identifying, training, and explaining video classification

tasks. In coalescing concept definitions across crowd-sourced explanations, CoDEx amortizes

the hardship of manually pre-defining the concepts while reducing the burden on the data

annotators. We also show that our method provides reasonable explanations for classification

without compromising performance compared to standard end-to-end video classification

models.
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CHAPTER 6

X-CHAR: Explainable Complex Human Activity

Recognition via Temporal Concepts

Human activity recognition(HAR) utilizing multimodal sensors has emerged as a critical

and high-impact research area in human-centered computing. Successful HAR applications

have been demonstrated in the previous decade through academic research and industrial

applications, including healthcare monitoring, smart home control, and daily sports tracking.

However, compared to simple human activities, the expanding requirements of many current

applications for complex human activity recognition (CHAR) have begun to attract the

attention of the research field. Recent works have shown that deep learning models are highly

accurate in predicting complex activities using sensor data. However, these deep learning

models are black-box by design, and it is not easy to understand why they made a specific

prediction. This results in a lack of trust in the model, hindering its deployment in the real

world. In this chapter, we introduce X-CHAR , an eXplainable Complex Human Activity

Recognition model that offers explanations in the form of human-understandable high-level

temporal concepts. We evaluate our model on three different complex activity datasets

and demonstrate that our model offers explanations without compromising the prediction

accuracy. We also conducted a mechanical Turk study to show that the explanations offered

by our model are more understandable than the explanations from existing methods for

complex activity recognition.
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6.1 Introduction

Any Artificial Intelligent (AI) systems often need to interact with humans, which are sentient

beings (i.e., posse feelings) and often need an explanation or reassurance (regarding some

topic or event). For instance, a bank, hospital, or any other organization that uses predictive

analytics to decide on actions that impact people’s lives should not make important decisions

based on just a model’s performance. Lack of trust in deep learning models has also hindered

the adoption of AI systems in many fields [LSP06, Mil19]. Several governmental agencies are

slowly proceeding to regulate AI to be more transparent. The first to move in this direction

is the countries of the European Union, which have set several guidelines where they state

that any AI-based system should be completely explainable [gdp18c, gdp18a]. With more

transparent, explainable (i.e., interpretable) AI systems, the users will be better equipped to

understand and, therefore, trust the services provided by the AI systems leading to broader

adoption of such systems [MRC16, LGM20].

In some critical areas, the explainability of AI systems is a necessary component not

only to understand the severity of the current situation but also to take further actions.

For instance, in the healthcare domain, let us consider a Deep Neural Net (DNN) model

performing diagnosis for a specific disease. Usually, a classic black-box DNN model merely

outputs class labels. Even though it could outperform humans in sheer predictability, such

inexplicable classification/prediction outcomes are useless in health domains. Sometimes, a

doctor disagrees with the model’s assessment. He/she needs to know why the model made

specific outcomes to correct such mistakes in the future. On the contrary, it is also possible

that the model most likely interprets some complex correlations from the data that the

doctor is not aware of in the first place. Furthermore, who would be responsible given the

misdiagnosis (e.g., a sick person is classified as healthy and does not get the proper treatment)

caused by the outcomes of the black-box DNN model? This is still a gray area to be further

decided by the policymakers.

Nowadays, DNN models are widely used for complex activity recognition tasks on different

types of mobile sensor datasets (e.g., mobile phones, smartwatches, wearables) [JLX18, JLS19].
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However, with the severity of use cases, it is crucial to explain the model’s inference to the

users. This can be climacteric in complex activity recognition tasks in critical domains (e.g.,

healthcare, autonomous cars, surveillance, and military domains). For example: using a

neural network model to identify if a nurse is following a sanitary protocol before moving

between patients—a task that spans long periods.

Usually, post-hoc explanations are not trustworthy [Rud19], which provide explanations

that are not faithful to what the original model computes. On the other hand, saliency-based

methods [SCD17, SVZ13] only indicate where the network is looking at and do not provide

enough explanation to understand the interpretation of training data from any black-box

models. As a consequence, a recent line of research has focused on developing interpretable

deep learning models and providing explanations in the form of high-level human "concepts"

[KNT20, JDC21]. For instance, the existing Concept Bottleneck Models (CBM) [KNT20]

first predicts the presence of an intermediate set of human-specified concepts given the input

instance. Then, the intermediate set of concepts is used to predict/classify the final output.

However, for Complex activity classification, it is not enough for an explanation to merely

indicate the presence and absence of concepts. This is because the ordering/sequence of a set

of concepts and the frequency of these concepts matter to make the final complex activity

inference. For example, for a nurse to perform a safe patient care activity, they must perform

the following simple activities in sequence: sanitize hands-> check vitals -> blood collection

-> clean patient -> sanitize hands. The key challenges in obtaining such explanations are

as follows: First, the input sequence and the corresponding concepts can vary in length.

Second, the ratio of the lengths of input sequence and concepts can also vary. Third, we do

not usually have an accurate alignment (i.e., correspondence of the elements) of the input

sequence and the concepts.

To this end, we propose X-CHAR (eXplainable Complex Activity Human Recognition),

an end-to-end explainable deep learning model to classify the complex activity given an input

sensor stream and provides an explanation that indicates the sequence and frequency of the

concepts responsible for that classification. We consider that these complex activities are

made up of simple activities occurring in a particular sequence, and these simple activities
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Figure 6.1: Our goal

are the temporal concepts. X-CHAR equips several standard deep-learning-based feature

extractor layers with an intermediate Temporal Concept Bottleneck (TCB) layer to identify

the temporal concepts. Since the input sequence and the concepts are unaligned and can

be of variable length, then we propose a novel Connectionist Temporal Classification (CTC)

loss to train the bottleneck layer and solve the challenges mentioned above. Thus, X-CHAR

recognizes the complex activity and provides an explanation in the form of a sequence of

high-level concepts for a given input data stream.

To demonstrate the efficacy of our approach, we use three complex activity datasets

(Nurse Activity, Opportunity, and restaurant activities datasets) where the classification tasks

require an inference explanation. We first compare our model against the existing standard

end-to-end deep-learning methods for activity classification add citations and show that our

architecture provides additional benefits of an inherently interpretable model without any

impact on performance. We then conduct a user study to show that humans perceive the

explanations (in the form of temporal concepts) as good explanations for the classification.

To summarize, the major contributions of this paper are as follows:

• We propose X-CHAR , an End-to-end explainable model architecture for complex

activity recognition

• We show that having a bottleneck layer does not decrease the task accuracy compared

to baseline models and has the additional benefit of being interpretable.

• We evaluate our approach on multiple time-series datasets. We conducted extensive

experiments to show that adding this bottleneck layer provides explainability with no
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loss in performance. We also conducted a human study to show that these explanations

are preferred over other baseline explanation methods.

6.2 Definitions

Definition 1 (Simple Activity). A simple activity is defined as a unit-level activity that can

be captured by a given sensor within a short window of time and cannot be broken down further

given application semantics. The level of granularity depends on the sampling frequency of

the sensor. For example, activities like ‘pressing a switch’ requires high sampling frequency

while activities like sitting can be captured by low sampling frequency. Simple activities can

either occur sequentially or concurrently.

Definition 2 (Temporal Concepts). In explainable AI literature, the definition of concepts with

regard to images is; a group of pixels that represent a higher-level and human-understandable

feature that is relevant to a particular application/task. For instance, in bird species classifi-

cation task, the wing and beak colors are considered as the concepts whereas the sky color or

background is completely ignored for that application.

In this paper, we define the temporal concept of the complex activity recognition as follows.

A temporal concept is a section/portion of the input sequence that corresponds to a human

understandable simple activity and is relevant to the particular task. Also, a group of temporal

concepts have temporal dependencies, such that the sequence/order of the temporal concepts

and the frequency of each temporal concept in the input sequence matter. Therefore, we can

say that all temporal concepts are simple activities but not all simple activities are temporal

concepts.

Definition 3 (Complex Activity). In this paper, a complex event is strictly defined as a

particular pattern or sequence of ≥ 2 instances of concepts that have temporal dependencies.

Under this definition, a complex event must be composed of multiple simple events that

may evolve over long periods of time in different orders and frequency. For example, the

"long-jump" sporting event is considered a complex event that consists of five sub-activities:

"standing still", "running", "jumping", "landing", and "standing up". Another example is a
103



sanitary protocol violation event in a hospital scenario: a nurse could violate the sanitary

protocol if she or he processes one patient, and then processes another patient without proper

sanitation.

6.3 System Design

In this section, we first formalize the overall problem and provide an overview of X-CHAR

(Section 6.3.2) architecture. We then present the detailed descriptions of the different building

blocks of the proposed system with appropriate figures, descriptions, and algorithms (as in

Sections 6.3.3, 6.3.4, 6.3.5).

6.3.1 Problem Formulation

Support, there is a set of input time series instances X, where each instance Xi = [xi,1, xi,2, xi,3, .., xi,T ]

and each time instance xi,t ∈ RD×1. Here, T is the total number of time steps and D is the

number of sensor channels. Given the multivariate time-series X, the tasks of the machine

learning algorithm are two folds. First, each input instance Xi represents a sequence of

concepts ci such that C ∈ RK×1 (i.e., K << T ) and the task is to find that sequence of

concepts given the input instance Xi. Each concept represents a simple event that happens

for a short period of time. Second, the sequence of concepts ci represents a complex event yi

depending on the particular order of these concepts together. A complex event is composed

of multiple simple events evolving over certain time periods in different orders and frequency.

Therefore, the task is to utilize the concept sequence and frequency to classify the complex

event yi such that yi ∈ Y and Y ∈ RN×1. Here N is the total number of complex activities

in the dataset.

6.3.2 X-CHAR Model

This work introduces X-CHAR , an interpretable DNN architecture for the concept-based

complex activity classification, that provides both the complex activity classification label and

104



it corresponding explanation in the form of temporal concepts for a given input sensory data.

Figure 6.3 depicts the overall model architecture that shows how both the classification label

and the corresponding explanation is generated, X-CHAR . There are three integral parts:

Sensor fusion module, temporal bottleneck module, and classification module in X-CHAR

. First, the Sensor fusion module extracts features from different sensors and maps them

to a shared latent space. Second, the temporal bottleneck module extracts the temporal

relationship between the obtained features and predicts the temporal concept associated with

each timestep. Third, the classification module predicts the final complex activity label from

the temporal concepts. Each of these modules are described below in detail.

6.3.3 Sensor Fusion Module

This module consists of two stages: the first stage extracts intra-sensor features and the

second stage extracts the inter-sensor features.

6.3.3.1 Stage I

In State I, each sensor stream is considered separately and passed through a series of

one-dimensional convolutional layers (1-D Conv). The 1-D convolutional layer is used for

extracting local features from 1D patches in every sensor sequence to identify local patterns

within the window of convolution. Since the same transformation is applied on every patch

identified by the window. A pattern learned at one position can also be recognized at another

position which makes 1D convolution layers translation invariant. The input to the first stage

is input Xi which has the spape of [D × t]. Here D is the number of sensory channels in the

input stream. The output of the first stage is a collection of feature maps corresponding to

each filter for every sequence, which is of the shape [D× t× l1]. Here kl is the number of 1-D

kernels.
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Figure 6.2: Temporal Concepts Decoder

6.3.3.2 Stage II

In the Stage II of the sensor fusion module, the proposed model captures the correlation

across the corresponding axes in different sensors. Therefore, X-CHAR concatenates the

feature maps to the shape of [t × (s × l1)] and feeds it to the second set of convolutional

layers. The output of the second convolutional layer is of the shape [t× l2]. Here l2 is the

number of convolution kernels in Stage II.

6.3.4 Temporal Bottleneck Module

Recall that we mention three main challenges in Section I. The total numbers of input

sequence and corresponding concepts and the ratio of their total numbers is not fixed. The

exact accurate alignment (i.e., correspondence of the elements) of input sequence and the

concepts is also unknown. To solve these challenges, we design the concept bottleneck model

so that it can facilitate the proper alignment between input sequence and output concepts.

This module is designed to identify the sequence of concepts Ci from the given input Xi.

There are three main components in this module: a set of bi-directional LSTM layers, a dense

layer, and a softmax activation layer. First, this module uses a set of bi-directional LSTM

layers to capture the temporal information from the preceding sensor fusion module. Next,
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the time-distributed dense layer is used to map the temporal features from the proceeding

module to different concepts to aid the softmax activation layer. The total number of neurons

k in the dense layer is equal to the set of available concepts k in the dataset. Finally, the

softmax layer outputs the probability distribution over the possible concepts at each timestep

t.

Connectionist Temporal Classification Use Connectionist Temporal Classification

(CTC) loss to model the concepts. The CTC algorithm can assign a probability for any Y

given an X. It is alignment free, monotonicity with many to one mapping.

p(Ci|Xi) =
∑

a∈AXi,Ci

T∏
t=1

pt(at|Xi) (6.1)

where (Xi, Ci) is the ith pair of input and concept sequence, AXi,Ci
is set of the alignment

between (Xi, Ci) and pt(at|Xi) is the probability of alignment of at given the input instance

Xi.

LC = − log p(C|X) (6.2)

6.3.5 Classifier

This module predicts the final complex activity. In this module, we use a Temporal Convolu-

tional Neural network (TCN) layer followed by a dense layer with softmax activation. The

TCN captures the relationship between the temporal concepts from the bottleneck module

and the dense layer predicts the complex activity. Dense layer has ’n’ neurons corresponding

to the number of output classes. And since this is a classification problem we use softmax (σ)

as the activation of the final dense layer which is given in Equation 3.2. Softmax function is

used to impart probabilities to the logits ’a’ when we have multiple classes and we get the

probability distribution of output classes. We consider the most probable occurrence with

respect to other outputs as the predicted class.

Classification Loss (L2): We use categorical cross entropy as our complex activity loss
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function since it is a multi-class classification problem.

LYn = −
m∑
j=1

yj log fS(sj) (6.3)

where, fS(si) =
esi∑m
j=1 e

sj
(6.4)

Overall loss. The entire X-CHAR classification model is trained in an end-to-end manner.

Therefore, the overall loss of the model (L) is a weighted sum of concepts loss (Lc) and

classification loss (Ly) as written in Equations equation 6.3 as

L = βLYn + (1− β)LCn (6.5)

6.3.6 Inference Phase

After we’ve trained the model, we to use it to predict the complex activity and find the likely

concept sequence as explanation for a given input. The predicted activity is obtained by

taking the argmax of the probabilities from the classification layer and the corresponding

concepts sequence is obtained by decoding the output of the temporal bottleneck module

with beam search algorithm [LL04] and is show in Figure 6.2

6.4 Experimental Evaluations

6.4.1 Datasets

In this section, we first present the implementation details of a real-world prototype of the

proposed system. Nextly, we evaluate the performance of the prototype in two of many

realistic scenarios. Then, we introduce the comparison methods and metrics used in the

evaluations. Finally, we discuss the performance evaluations in terms of figures and tables

with proper descriptions.

Complex Nursing Activity Dataset. The complex nursing event dataset is based on a

public dataset from Nursing Activity Recognition Challenge [LAT19]. The dataset contains
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Figure 6.3: The overall model architecture

nurse activity data collected from three sources: Motion Capture, Meditag, and Accelerometer

sensors, and it includes six different simple activities performed by eight subjects (nurses).

The simple activities are (i) Vital signs measurements, (ii) Blood collection, (iii) Blood

glucose measurement, (iv) Indwelling drip retention and connection, (v) Oral care, and (vi)

Diaper exchange and cleaning of the area. Each of these activities is performed five times by

each nurse. The duration of each data segment ranges from 30 to 60 seconds. These simple

activities are considered as the concepts in our experiments. Because of the noisy and missing

data problem in Motion capture and Meditag data, we only used the accelerometer data in

our experiment. The sampling frequency of the accelerometer is 4Hz. The dataset is split

into two parts: the first part contained data from 6 nurses, and the second part contained
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Complex Nurse Activity Concept Sequence

Physiological Measurement
Vitals → Blood collection → Blood Glucose

Blood collection → Vitals → Blood glucose

Patient cleaning

Vitals → Oral care → Clean

Oral care → Vitals → Clean

Oral care → Blood glucose → Clean

Blood glucose → Oral care → Clean

Unsanitary Operations

Clean → Blood glucose → Vitals

Clean → Oral care → Vitals

Vitals → Clean → Oral care

Oral care → Clean → Blood glucose

Safe IV/Drips Procedure

Vitals → Blood collection → Drips → Vitals

Vitals → Drips → Vitals

Vitals → Drips → Blood collection → Vitals

Unsafe IV/Drips Procedure

Vitals → Blood collection → Drips

Blood collection → Drips → Vitals

Drips → Blood collection → Vitals

Table 6.1: Description of Complex Nurse Activity Dataset

data from the remaining two nurses. We then generate five complex nursing activities data

by randomly selecting segments corresponding to the different concepts and concatenating

them together in a predefined order for each complex activity as mentioned in Table 6.1. We

generated a training dataset of 3000 complex activity samples (600 for each complex activity)

from the first part and a validation dataset of 1000 complex activity samples (200 for each

complex activity) from the second part. The results reported in Section 6.5 are based on the

models’ performance on the validation dataset.

Opportunity Dataset

This dataset had four trials from five different participants. Each trial had data from so

many different sensors including body sensors, object sensors, and ambient sensors. Since
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we focus on activity recognition task we consider the five inertial body-worn sensors which

were worn in five different locations on the body: Left lower arm (LLA), Left upper arm

(LUA), Right lower arm (RLA), Right Upper arm (RUA) and Back of the torso. These

inertial units recorded accelerometer, gyroscope and magnetometer values. The activities

performed had two different hierarchy of labels– High-level activities which considered the 4

major complex activities(Early morning routine, making sandwich, making tea, cleaning) and

Low-level activities which had 17 different micro activities such as opening and closing doors,

shelves, drawers, drinking etc.. In our evaluation, we preprocessed the dataset to remove nan

values and segments without complex activity labels. We considered data from four users in

training and the fifth user in testing.

CRAA: Complex Restaurant Activities from Audio dataset

This complex activity dataset this generated by using a subset of the audio samples from

ESC-50 [Pic] and Kitchen-20 [MOF19] audio datasets. The ESC-50 dataset is a labeled

collection of environmental audio recordings that consists of 5-second-long recordings organized

into 50 semantical classes. Kitchen20 contains 5 to 10 second audio recordings from kitchen

activities for 20 different classes. From these datasets, we considered the audio clips from

12 different categories as our concepts. We then constructed a audio-based complex human

activity recognition dataset by concatenating the concepts is different sequences to obtain

the various complex events. In particular, we generated the following 5 complex activities

that would be performed by a person working in a restaurant: Making a juice, Making a

Puree/sauce, Having a drink, Hygienic use of restroom, Unhygienic use of restroom. In

total, we synthesized a training dataset of 1000 complex activity audio samples (200 for

each complex activity) and a test dataset of 250 complex activity audio samples (50 for each

complex activity). The brief description of the dataset is shown in Table 6.2

6.4.2 Baseline Complex Activity Detection Models

We compare the performance of X-CHAR to three existing state of the art complex activity

prediction DNN models. They are:
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Restaurant Worker Activity Concept Sequence

Using Restroom (Hygienic)
Footsteps → Using toilet → Toilet flush → Wash Hands

Wash Hands → Using toilet → Toilet flush → Wash Hands

Using Restroom (Unhygienic)

Footsteps → Using toilet → Toilet flush

Footsteps → Wash Hands → Using toilet → Toilet flush

Wash Hands → Using toilet → Toilet flush → Footsteps

Making a fruit juice

Open Shelf → Chopping → using blender

Peeling → Chopping → using blender

Open Shelf → Peeling → using blender

Making a puree/sauce

Peeling → Using blender → Chopping → using blender

Chopping → Using blender → Peeling → using blender

Open Shelf → Using blender → Chopping → using blender

Having a drink Take glass → Pour water → Drink

Table 6.2: Description of CRAA: Complex Restaurant Activities from Audio dataset

6.4.2.1 DEBONAIR [CLP21]

It uses convolutional layers to extract features and LSTM layers to predict the complex

activities. This model only predicts the final activities and not the concepts.

6.4.2.2 AROMA [PCY18]

The input data is split into a predefined smaller segments of equal size. Then each segment

is predicted a simple activity and then a classifier predicts the complex activities from simple

activities. This model requires the data to be labelled for every timestep.

6.4.2.3 Concept-Bottleneck Models [KNT20]

Concept bottleneck models(CBM) predict concepts that are provided at training time, and

then using these concepts to predict the label. They only indicate the presence and absence

of concepts and do not capture the temporal relations between them.
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6.4.3 Baseline Explanation Methods

We compare X-CHAR explanations with other explanation methods. There are plenty of

saliency-based post-hoc explanation methods that provide an explanation in the form of a

heatmap highlighting the important portion of the input sample. In our paper, we chose

GradCAM since it is one of the most widely used explanation technique and unlike other

methods like LIME, SHAP, it doesn’t involve splitting the input data into smaller windows

which affects the quality of explanation.

6.4.3.1 GradCAM [SCD17]

Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of the target

class flowing into the final convolutional layer to produce a coarse localization map highlighting

the important regions in the input for predicting that class.

6.4.3.2 Explanation by Examples [JNC20]

Explanation by Examples select particular instances of the dataset to explain the behavior of

machine learning models. The nearest matching examples from the training set as chosen

from the training dataset that has the highest cosine similarity with the given test input in

their activations.

6.4.3.3 Concept-Bottleneck model [KNT20]

These are interpretable models that provide explanations in the form of highlevel human

“concepts” that accompanies a prediction.
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Dataset Model Task F1-score
Concept

Accuracy Edit Distance

Nurse Activities

DEBONAIR 0.9691 - -

AROMA 0.9677 72.25 2.26

CBM 0.9244 88.40 -

X-CHAR 0.9698 89.35 0.15

Opportunity

DEBONAIR 0.8382 - -

AROMA 0.8318 53.97 2.87

CBM 0.7726 64.52 -

X-CHAR 0.8357 67.36 1.54

CRAA

DEBONAIR 0.9880 - -

AROMA 0.9576 86.40 1.94

CBM 0.9032 96.58 -

X-CHAR 0.9886 97.70 0.10

Table 6.3: Performance comparison of X-HAR with other baseline models on the three

datasets

6.5 Results

6.5.1 Comparison of Model Performance

We compared the performance of X-CHAR with other complex activity recognition models

discussed in Section 6.4.2 on the three datasets. We find that X-CHAR achieves the best

F1-score on two of the datasets and best concept prediction accuracy on all three datasets.

DEBONAIR is good in complex activity classification but it cannot predict concepts. AROMA

has a decent task classification performance but a poor concept prediction accuracy. CBM

models have good concept prediction accuracy but a poor classification performance since

they don’t capture the sequence information of the concepts.
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Figure 6.4: Explanation by X-CHAR

6.5.2 X-CHAR Explanations

In addition to the high performance in complex activity prediction, the temporal bottleneck

module improves the explainability of X-CHAR by providing the sequence of occurrence of

the temporal concepts. Figure 6.5 shows the explanation from X-CHAR to test samples from

the nurse activity dataset. The title shows the classification label, and the explanation is

provided below the plot in green.

6.5.3 Human Study to evaluate Concepts Explainability

We performed a Mechanical Turk study to evaluate the explainability of the temporal concepts

from X-CHAR to the end-users. The participants were asked to select from four different

options (presented in random) of what they consider to be the best possible Explanation

for the classification of a given input sensor data. The four options are: Heatmaps from

Gradcam, Explanation-by examples, Concepts predicted by bottleneck models and Temporal

Concepts predicted X-CHAR . The methodology of this study was inspired by [CGW09]’s

paper. Figure 6.6 presents the aggregated results of the Mechanical Turk study. The temporal

concepts predicted by the X-CHAR was considered as the preferred explanation by 82% of
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a) Explanation by Examples

b) GradCAM c) Concept Bottleneck Explanation

Figure 6.5: Explanation from other methods that were included in the survey

the responses in the Nurse complex activity dataset followed by the concepts bottleneck

models in 54% of the responses. The presented confidence intervals are calculated using the

bootstrap method as described by [DE96] for 95% confidence.

6.6 Discussion

Sensory data, unlike images or text, is inherently difficult to understand for humans. Our

results have confirmed the same and has shown that humans prefer explanations in the

form of concepts especially when the input data is inherently complex. As the number of

channels in the input increased, more study participants preferred temporal concept based

explanations. A possible future direction to explore is to replace the classifier module after

the temporal bottleneck module with a Neurosymbolic layer. This might help the model to

learn rules from the temporal concepts thereby resulting in better explanations.
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A: X-HAR B: CBM C: Explanation by Examples D: GradCAM

Figure 6.6: Survey Results

6.7 Conclusion

In this paper, we presented X-CHAR , an interpretable deep learning model for complex

activity prediction that provides the sequence of simple activities relevant to the task called

temporal concepts as explanation. We thoroughly evaluated our model on three complex

activity datasets and showed that our model achieves state-of-the-art performance in complex

activity recognition while also providing human-friendly explanations.
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CHAPTER 7

Discussion and Future Work

7.1 Explanation by examples offers robustness to Adversarial At-

tacks

In addition to explaining the model’s prediction on benign data, we also apply explanation by

example method to adversarial examples. Deep learning models are vulnerable to adversarial

attacks [LQX20]. The goal of the experiment is to study how does explanation-by-example

behave on adversarial test inputs. We test the robustness of this method by first testing on

adversarial inputs generated by existing methods.

Existing adversarial attacks Consider the input image x ∈ RN where N = 3×W ×H is

the size of images. The hard-label classifier gives its predicted label y, where y ∈ {1, ..., C}.

Currently, given the original image xorg, its ground-truth label yorg, a target class t ̸= yorg

and adversarial image xadv, one of the commonly used methods for generating an adversarial

image is to minimize the L2-distance:

minimize
xadv∈RN

∥xadv − xorg∥22 (7.1a)

subject to f(xadv) = t (7.1b)

By minimizing the L2-distance, the attacker seeks to make the adversarial images inconspicu-

ous from the human perspective such that the attack cannot be easily prevented [GMP17]

[MGF17]. The existing adversarial attacks relies on solving the above optimization problem

to create adversarial examples.
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7.1.0.1 Experiments

We conducted experiments using the CIFAR-10 dataset where we apply the CnW attack

[CW17], SignOPT attack [CSC19] and our adaptive versions of these attacks and produce

explanations by explanation by example method . The experiments show that explanation

by example identifies adversarial examples generated by the exiting algorithms where the

attacker doesn’t have any knowledge of the explanation method being used. As Figure shows,

though the adversarial example is classified to a different target class, the nearest neighbours

in the latent space still belong to the correct class thereby indicating that the input image

has been tampered with.

7.2 Types of input modalities

As we have shown in this dissertation, the input modality decides the preferred explanation

type for an end-user. We can broadly classify the inputs into the following two categories:

7.2.0.1 Inherently Interpretable Inputs

Data from input modalities like audio and video are considered to be inherently interpretable

because an average human can label or identify the image or audio at given time. Hence,

the concepts for the data of this category can be obtained by using a turk study when the

mechanical turkers will provide a written explanation and concepts can be extracted using

NLP techniques.

7.2.0.2 Inherently Non-Interpretable Inputs

Sensory time series data whose relationships with the prediction labels are less intuitive

and more subtle, and thus not easily understood. This inherent non-interpretability of

the inputs makes it hard for those who are not experts in sensor technologies to have a

causal understanding between physical, physiological, and cognitive states and raw sensor

measurements. This type of input data requires a person with domain expertise to label the
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Figure 7.1: CnW and SignOPT are existing adversarial attacks and all attack examples are

mis-classified as horse though appear to be a frog or car. Explanation by example still shows

frog and car images as the nearest examples even though they are misclassified adversarial

inputs.
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concepts and hence are challenging to obtain.

7.3 A Hybrid Explanation Method for Multimodal Systems

In this dissertation we identified the preferred type of post-hoc explanation method as well

as designed inherently interpretable neural networks. A possible direction for future research

would be to combine both inherently interpretable models and post-hoc methods and provide

an hybrid explanation to the end-user such that they receive the benefits of both the worlds.

For example, we can predict the temporal concepts using X-CHAR model and use saliency

based methods to highlight the important concepts for prediction.
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CHAPTER 8

Conclusion

This dissertation proposes the framework that is robust to the heterogenetiy of the devices

and provides trusthworthy predictions accompanied with user-friendly explanations. First, we

identified the different challenges and heterogeneities in the sensing modalities and discussed

our solution, SenseHAR– a virtual activity sensor that is robust to the variations and

availability of the inertial sensors using deep learning. SenseHAR enables the inferring of

human activities even when the set of available devices varies over time by mapping the

information from the available devices to a shared low-dimensional latent space. We explain

the method to calibrate the SenseHAR for a new device in the absence of labeled data with the

help of an existing calibrated device. Finally, we do a comprehensive evaluation of SenseHAR

and compare its performance with the state-of-the-art multimodal architectures for various

device combinations and configurations. We also provide a scalable device management

framework to identify anomalous IoT devices.

Then, to provide human understandable explanations for classification tasks we conducted

a study involving tasks across multiple domains. Our study with hundreds of participants

concluded that explanation-by-examples and LIME are the currently preferred explanation

styles according to the average non-technical end-user. In input domains spanning visual,

audio, and sensory data, explanation by nearest training examples offer users an opportunity

to compare features across a test input and similarly mapped ground-truth examples. In

the text domain, LIME’s method of decomposing and annotating test inputs provides an

intuitive visual approach to text classification. Next, we focus on inherently interpretable

models particularly on models that are interpretable via concepts. We first proposed CoDEx,

an NLP-based automatic concept extraction module that can extract concepts from text and
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decreases the annotation effort. Finally, we designed an interepretable DNN model, X-CHAR

, that can capture the temporal relation of the concepts unlike the prior works. We showed

that our model achieved state-of-the-art performance in complex activity recognition and

provided human-friendly explanations for multi-modal inputs.
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APPENDIX A

CoDEx Module

A.1 Running Example to describe the Concept Discovery and Ex-

traction Pipeline

Example (A simple Explanation corpus). Consider using baseball domain with a few meaningful

labels, a null label L = {strike, ball, foul, out,none} and five entries in the explanation corpus E:

id, n label, ln explanation, en

1 strike The batter did not swing. The ball was in the strike zone.

2 foul the batter hit the ball into the stands and it landed in foul territory

3 ball The hitter didn’t swing. The ball was outside the strike zone.

4 none The video did not load.

5 out the batter hit the ball and it was caught by the fielder

Step 1 (After Cleaning Phase). The none label entry is removed after the Cleaning phase

id, n label, ln explanation, en

1 strike The batter did not swing. The ball was in the strike zone.

2 foul the batter hit the ball into the stands and it landed in foul territory.

3 ball The hitter didn’t swing. The ball was outside the strike zone.

4 out the batter hit the ball and it was caught by the fielder

Step 2 (After Extraction Phase). The raw concepts are extracted based on the defined rules

discussed in Table 5.1 corresponding to each explanation with the help of a pre-trained constituency

parser.
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id, n label, ln raw concepts, K̃

1 strike The batter did not swing, The ball was in the strike zone

2 foul the ball into the stands, it landed in foul territory

3 ball The hitter didn’t swing, The ball was outside the strike zone

4 out the batter hit the ball, it was caught by the fielder

Step 3 (After Completion Phase). The concept ’the batter hit the ball’ was not extracted by the

Extraction phase for the Id 2 explanation in this corpus. This missing concept is retrieved through

the sub-string matching.

id, n label, ln raw concepts, K̃

1 strike The batter did not swing, The ball was in the strike zone

2 foul the batter hit the ball, the ball into the stands, it landed in foul territory

3 ball The hitter didn’t swing, The ball was outside the strike zone

4 out the batter hit the ball, it was caught by the fielder

Step 4 (After Grouping Phase). We show the grouped concepts for this example corpus

Concept-id, i Concept groups

1 [The batter did not swing, The hitter didn’t swing]

2 [the batter hit the ball, the batter hit the ball]

3 [The ball was in the strike zone]

4 [The ball into the stands]

5 [it landed in foul territory]

6 [The ball was outside the strike zone]

7 [it was caught by the fielder]

Step 5 (After Pruning Phase). The concept ’the ball into the stands’ of Concept-Index 4 from

previous table was not contributing much and hence was pruned.
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Concept-id, i Concept groups

1 [The batter did not swing, The hitter didn’t swing]

2 [the batter hit the ball, the batter hit the ball]

3 [The ball was in the strike zone]

4 [it landed in foul territory]

5 [The ball was outside the strike zone]

6 [it was caught by the fielder]

Step 6 (After Vectorization). After pruning, each sample is mapped to their corresponding concept

vector. The value of concept vector at index i is 1 if en has the concept with index i, else, it’s 0. The

Matrix containing all the concept vectors is called the Concept Matrix, C

id, n label, ln Concept Vector, cn

1 strike [1,0,1,0,0,0]

2 foul [0,1,0,1,0,0]

3 ball [1,0,0,0,1,0]

4 out [0,1,0,0,0,1]

A.2 Meta-distance for label based proximity

At the end of the Completion Phase we define a count for each raw concept, κi ∈ K̃, given

by Mi. And for each label category l ∈ L, we define a label count for raw concept κi as mil

where i is the index of the concept. These count the presence of raw concepts explanations,

and
∑

l∈L mil = Mi. Finally we group together raw concept κi’s label counts into a label

count vector mi = [mi1, . . . ,mi|L|]

Now we describe the meta-metric dlabel used in the Grouping phase more formally and

provide some intuition behind its construction. Consider that we have two raw concepts

κi, κj ∈ K̃ and label count vectors mi and mj. We next assume that vector mi constitutes

Mi i.i.d. draws from a categorical distribution with unknown parameters µi = (µil)
|L|
l=1, where

µil is the probability that a randomly selected occurrence of raw concept i belongs to an

entry in the explanation corpus with label category l. Our label distance dlabel is the evidence
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ratio between the count vectors, mi and mj, being drawn from independent categorical

distributions (model Mindp) versus them being drawn from the same distribution (model

Mcomb). More precisely,

dlabel(mi,mj) =
p(mi,mj|Mindp)

p(mi,mj|Mcomb)

Note that this is not a true distance between count vectors as two identical count vectors

do not have a distance of zero. Nonetheless, it satisfies the other requirements of a metric:

non-negativity, symmetry and the triangle inequality, and two vectors that are more (less)

likely to come from the same multinomial will have a distance less (more) than 1.

To evaluate the label distance we must calculate the evidence for various categorical

samples given the model p(m|µ,M) . For simplicity, we assume total count M is known and

define a Dirichlet prior p(µ|α1) where 1 is the vector of all 1s (this makes the simplifying

assumption that the prior is symmetric). The evidence for m is then:

p(m|α) =
∫

p(m|µ,M)p(µ|α1)dµ

The label meta-metric is the evidence ratio given by:

dlabel(mi,mj) =
p(mi|α)p(mj|α)
p(mi +mj|α)

For computational efficiency (and since it did not appear to affect results measurably) we use

an approximation for p(m|α) in our calculation of dl.

We first evaluate the expected parameter of the posterior distribution given count vector

m, namely

µ̃ = E[µ|α,m]

then evaluate the evidence for m conditioned on µ̃, i.e.

p(m|µ̃) =
K∏
k=1

(
mil + α

Mi +Kα

)mil

We then calculate log dlabel(mi,mj) and exponentiate to improve precision. After grouping,

the raw concept within a cluster with highest frequency is identified as the representative

concept of that cluster.
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A.3 Language Models

A.3.1 Concept Extraction

After obtaining the free form textual explanations for both datasets, we first cleaned them

by removing explanations associated with corrupted video files and the videos which were

labelled incorrectly. We then considered three different Spacy’s pretrained constituency

parsers: en_core_web_lg, en_core_web_md, en_core_web_sm to parse the explanations

and extract raw concepts based on the rules discussed in section 5.3.1. We found that, the

parser en_core_web_lg was more accurate in identifying the constituents and resulted in

better concept extraction.

A.3.2 Concept Grouping

For text distance we embedded the raw concepts with a sentence encoder and we experi-

mented with two models: paraphrase-distilroberta-base-v1 (distil) [SDC19] and stsb

-roberta-base (stsb) [RG19] into a 768 dimensional space both using the sentence_transformer

python library.

And to cluster the semantically similar concepts together using agglomerative cluster-

ing [Mul11], we evaluated a variety of distance metrics within the resulting 768-dimensional

space, including: Our proposed meta-distance metric, Chebyshev (infinity norm), manhattan,

Euclidean and cosine distances. To select hyperparameters, including prior α for label dis-

tance, and relative importance factor λ we performed a grid search and selected the values

that resulted in well-formed clusters. Based on our experiments (Provided in code), we found

that stsb encoder with our proposed meta-distance metric resulted in the best grouping of

concepts. Note: dtext can be either cosine or manhattan distance as they gave similar clusters.

After clustering, we set the frequency occurrence threshold of 3 and removed the rare

concept groups which occurred less than this threshold. Then, pruning was done using 90% of

mutual information score as discussed in section 5.3.1 which resulted in 78 significant concepts

for our MLB-V2E dataset and 62 concepts for MSR-V2E dataset as shown in Table 5.2.
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Therefore, each video was associated with a binary concept vector of shape [1× k] where k is

the number of concepts, indicating the presence and absence of each concept.

A.4 The Classification Models

We considered three different feature extractors : Resnet 50v2 [HZR16], Resnet 101v2 [HZR16]

and InceptionV3 [SVI16] models and pretrained on the Imagenet dataset to extract features

from each frame of our video clips. We excluded the final classification layer from these

models and did a global maxpool across the width and height such that we get a 2048 size

feature vector for every frame. We then concatenate the features together, resulting in a

[2048× 360] feature matrix for every video where 360 is the number of frames per video.

For the Temporal Layer, we considered both temporal convolution [LFV17] and LSTM [HS97]

based architectures which are good at extracting temporal features and found that Temporal

CNNs outperformed LSTM by a significant amount. And the Bottleneck Layer is a dense

layer with k neurons and hence the output is a vector of shape [1× k] where k is the number

of significant concepts. We introduced an attention layer in the concept-bottleneck model

that gives the concept score for each concept. The final fully connected layer is implemented

with L neurons (L classes) which predicts the class from the video.

A.5 Performance of Models

Table A.1 and Table A.2 show the performance of all the models with different feature

extractors on the two datasets. Each model was trained thrice and the mean and standard

deviation of the performance are reported. We find that models with Inception V3 as the

feature extractor performed the best. Adding attention mechanism improved the performance

of concepts prediction and also achieved higher accuracies than the concept bottleneck models

without attention.
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Feature

Extractor
Model Type

Task Classification Concepts

Accuracy(%) F1-score AUC

Resnet 50V2

Standard 67.92 ± 0.78 0.68 ± 0.003 -

CB 67.83 ± 0.74 0.68 ± 0.001 0.85 ± 0.005

CB + Attn. 67.96 ± 0.65 0.68 ± 0.002 0.88 ± 0.002

Resnet 101V2

Standard 68.18 ± 0.88 0.68 ± 0.005 -

CB 68.01 ± 1.02 0.68 ± 0.013 0.85 ± 0.004

CB + Attn. 68.26 ± 1.12 0.68 ± 0.009 0.88 ± 0.000

Inception V3

Standard 68.46 ± 1.27 0.68 ± 0.011 -

CB 68.16 ± 1.12 0.68 ± 0.004 0.85 ± 0.003

CB + Attn. 68.38 ± 1.34 0.68 ± 0.004 0.88 ± 0.001

Table A.1: Performance of Models on the MLB-V2E Dataset

Feature

Extractor
Model Type

Task Classification Concepts

Accuracy(%) F1-score AUC

Resnet 50V2

Standard 61.52 ± 1.20 0.59 ± 0.008 -

CB 61.23 ± 1.71 0.59 ± 0.008 0.82 ± 0.009

CB + Attn 61.28 ± 1.54 0.59 ± 0.007 0.86 ± 0.004

Resnet 101V2

Standard 61.56 ± 1.31 0.60 ± 0.008 -

CB 61.38 ± 1.24 0.60 ± 0.008 0.83 ± 0.006

CB + Attn. 61.44 ± 1.32 0.60 ± 0.009 0.86 ± 0.003

Inception V3

Standard 61.79 ± 1.42 0.60 ± 0.012 -

CB 61.42 ± 1.18 0.60 ± 0.013 0.83 ± 0.006

CB + Attn. 61.68 ± 1.23 0.60 ± 0.009 0.86 ± 0.004

Table A.2: Performance of Models on the MSR-V2E Dataset
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